Sample records for clean coal program

  1. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  2. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  3. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  4. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  5. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  6. State perspectives on clean coal technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  7. Self-Scrubbing Coal -- an integrated approach to clean air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, K.E.

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceedingmore » boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.« less

  8. Clean Coal Technology Demonstration Program: Program Update 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  9. Fossil Energy organization restructured

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy has restructured its fossil energy organization to accommodate increases in activity and visibility of the President's $2.5 billion clean coal technology initiative. The realignment also includes changes in the coal research and development program and in supporting staff functions. In the coal program, changes in the organization include the establishment of two associate deputy assistant secretaries, both reporting to the deputy Assistant Secretary for Coal Technology. One associate deputy assistant secretary will oversee the Clean Coal Technology Program. A second associate deputy assistant secretary will manage the coal research and development program. An organizational chart illustratesmore » the new fossil energy headquarters organization.« less

  10. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  11. Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less

  12. Coal cleaning: An underutilized solution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, R.L.

    1995-12-31

    Custom Coals Corporation is based in Pittsburgh, Pennsylvania. It is involved in the construction and operation of advanced coal cleaning facilities. The company has initially chosen to focus on Pennsylvania`s vast reserves of coal, because these coal provide a superior feedstock for the Technology. In a $76 million project co-sponsored by the U.S. Department of Energy, Custom Coals is constructing its first coal cleaning facility. The DOE chose to participate with the company in the project pursuant to a competition it sponsored under Round IV of Its Clean Cod Technology program. Thirty-one companies submitted 33 projects seeking approximately $2.3 billionmore » of funding against the $600 million available. The company`s project was one of nine proposals accepted and was the only pre-combustion cleaning technology awarded. The project includes both the construction of a 500 ton per hour coal cleaning facility utilizing the company`s proprietary technologies and a series of power plant test bums on a variety of U.S. coals during a 12-month demonstration program. Three U.S. coal seams - Sewickley, Lower Freeport and Illinois No. 5 - will supply the initial feedstock for the demonstration project. These seams represent a broad range of raw cod qualifies. The processed coals will then be distributed to a number of generating stations for combustion. The 300 megawatt Martins Creek Plant of Pennsylvania Power & Light Co., near Allentown, Pennsylvania, will burn Carefree Coal, the 60 megawatt Whitewater Valley Power Station of Richmond Power and Light (in Indiana) and the Ashtabula, Ohio unit of Centerior Energy will burn Self-Scrubbing Coal. Following these demonstrations, the plant will begin full-scale commercial operation, providing two million tons of Pennsylvania compliance coals to electric power utilities.« less

  13. Homer City Multistream Coal Cleaning Demonstration: A progress report. Report for January 1979-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, D.W.; Higgins, S.T.; Slowik, A.A.

    1984-08-01

    The report gives an overview of ongoing testing and evaluation of the Homer City Coal Cleaning Plant, built to enable the Homer City Power Complex to meet sulfur dioxide (SO2) emission levels mandated by the State of Pennsylvania and the U.S. Government. The plant was constructed as a result of an extensive comparative evaluation of flue gas desulfurization (FGD) and physical coal cleaning. The Homer City System, the Multistream Coal Cleaning System (MCCS), was chosen as an economical alternative to FGD. The plant contains circuits for cleaning coarse, medium, and fine coals and for recovering fine and very fine coals.more » The dominant type of cleaning equipment used in the plant is the dense medium cyclone. The original '93 plant' configuration was never able to clean coal to the conditions specified in the plant design. An extensive test and evaluation program was begun to identify and correct the causes of plant operating problems. After extensive pilot plant equipment tests and engineering studies were completed, recommendations were made for plant modifications necessary to correct the design and operating deficiencies of the plant. Extensive modifications were made to one of two parallel processing trains in the plant (the 'B' circuits), and a test program was initiated to evaluate these corrective measures. The modified 'B' circuits have not yet met design conditions.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudd, M.J.

    The successful Clean Coal Technology projects which are being discussed in this conference are all a testament to the positive advancements that can be made with environmentally superior technologies when the government and industry cooperate in the context of a properly funded and a well thought-out program. Many of the technologies developed in the Clean Coal Technology Program have taken a competitive position in the marketplace, and many others are on the verge of being competitive in the marketplace. Based on the success of the Clean Coal Technology Program, one would expect that they would be ready for full deploymentmore » in the marketplace with the approach of the next millennium. This is not happening. There are several hurdles that impede their deployment. Some of those hurdles, such as the higher first-of-a-kind cost and technology risk factors that accompany not-yet mature technologies, have existed since the initiation of the Clean Coal Technology Program. However, several new hurdles are impeding the market penetration of Clean Coal Technologies. Those hurdles include the radically different marketplace due to the restructuring of the electric utility industry, a soft market, the difficulty in financing new power plants, low natural gas prices, and lower-cost and higher-efficiency natural gas combined cycle technology.« less

  15. 5. annual clean coal technology conference: powering the next millennium. Vol.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-07-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals whilemore » keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.« less

  16. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  17. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.

    1991-12-31

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less

  18. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.

    1991-01-01

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less

  19. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric powermore » marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J.H.; Im, C.J.

    Under the sponsorship of DOE/METC, UCC Research completed a program in 1984 concerned with the development, testing, and manufacture of an ultra-clean coal-water mixture fuel using the UCC two-stage physical beneficiation and coal-water mixture preparation process. Several gallons of ultra-clean coal-water slurry produced at the UCC Research pilot facility was supplied to DOE/METC for combustion testing. The finalization of this project resulted in the presentation of a conceptual design and economic analysis of an ultra-clean coal-water mixture processing facility sufficient in size to continuously supply fuel to a 100 MW turbine power generation system. Upon completion of the above program,more » it became evident that substantial technological and economic improvement could be realized through further laboratory and engineering investigation of the UCC two-stage physical beneficiation process. Therefore, as an extension to the previous work, the purpose of the present program was to define the relationship between the controlling technical parameters as related to coal-water slurry quality and product price, and to determine the areas of improvement in the existing flow-scheme, associated cost savings, and the overall effect of these savings on final coal-water slurry price. Contents of this report include: (1) introduction; (2) process refinement (improvement of coal beneficiation process, different source coals and related cleanability, dispersants and other additives); (3) coal beneficiation and cost parametrics summary; (4) revised conceptual design and economic analysis; (5) operating and capital cost reduction; (6) conclusion; and (7) appendices. 24 figs., 12 tabs.« less

  1. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  2. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  3. A commitment to coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Q.

    2006-07-15

    Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

  4. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, D.F.

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologiesmore » mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.« less

  6. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  7. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needsmore » of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.« less

  8. Definitional-mission report: Clean-coal-technology assistance project in Poland (final report). Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, V.K.

    1992-01-01

    The new impending environmental law in Poland provides for strict environmental guidelines for coal preparation, washing, mine desalination, and application of commercially viable and economical clean coal technologies for utilization of coal. The government of Poland requested the U.S. Trade and Development Program (TDP) carry out a Definitional Mission to Poland to define the requirements of the Polish authorities and to prepare specific recommendations for follow on actions by TDP. The technical assistance package proposed to be funded by TDP includes two specific activities. These are (i) an orientation visit to review selected clean coal technology projects in the U.S.,more » and (ii) preparation of a compendium of the main coal sector requirements in Poland and the types of technologies needed. The Definitional Mission has prepared a Scope of Work which recommends that TDP allocate a fund to finance the cost of the above technical assistance activities. It is further recommended that TDP enlist the assistance of a non-profit trade organization to provide this assistance to the Polish government.« less

  9. 78 FR 285 - Supplemental Final Environmental Impact Statement for Healy Power Generation Unit #2, Healy, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... Valley Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal- fired steam generator owned by AIDEA, which underwent test operation for two years as part of DOE's Clean Coal Technology Program... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance the...

  10. Wabash River coal gasification repowering project -- first year operation experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined highmore » sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.« less

  11. Coal derived fuel gases for molten carbonate fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less

  12. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  13. The Healy clean coal project: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, J.B.; McCrohan, D.V.

    1997-12-31

    The Healy Clean Coal Project, selected by the US Department of Energy under Round III of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is scheduled to be completed in August of 1997, with startup activity concluding in December of 1997. Demonstration, testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of NOx, SO{sub 2} and particulates from this 50 megawatt plantmore » are expected to be significantly lower than current standards. The project status, its participants, a description of the technology to be demonstrated, and the operational and performance goals of this project are presented.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents,more » keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.« less

  15. 75 FR 18500 - Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental... Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental Policy Act, and... coal mining operations under the Clean Water Act, National Environmental Policy Act, and the...

  16. Design verification and cold-flow modeling test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, andmore » TRW proprietary information has been excluded.« less

  17. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, George; Gokhale, Ashok J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  18. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, G.; Gokhale, A.J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald Hill; Kenneth Nemeth; Gary Garrett

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts tomore » Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.« less

  20. Undergraduate research studies program at participating institutions of the HBCU Fossil Energy Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bota, K.B.

    1991-01-01

    The primary objective of this research program is to expose students in the Historically Black Colleges and Universities (HBCU) Fossil Energy Consortium Institutions to energy and fossil fuels research, to stimulate their interest in the sciences and engineering and to encourage them to pursue graduate studies. This report provides the research accomplishment of the various students who participated in the program. Research results are presented on the following topics: Energy Enhancement and Pollutant Reduction in Coal by Cryogenic Diminution; Competition of NO and SO[sub 2] for OH Generated witin Electrical Aerosol Analyzers; Dispersed Iron Catalysts for Coal Gasification; NQR/NMR Studiesmore » of Copper-Cobalt Catalysts for Syngas Concersion; Catalytic gasification of Coal Chars by Potassium Sulfate and Ferrous Sulfate Mixtures; A New Method for Cleaning and Beneficiation of Ultrafine Coal; Characterization Studies of Coal-Derived Liquids; Study of Coal Liquefaction Catalysts and Removal of Certain Toxic Heavy Metal Ions from Coal Conversion Process Wastewaters.« less

  1. Undergraduate research studies program at participating institutions of the HBCU Fossil Energy Consortium. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bota, K.B.

    1991-12-31

    The primary objective of this research program is to expose students in the Historically Black Colleges and Universities (HBCU) Fossil Energy Consortium Institutions to energy and fossil fuels research, to stimulate their interest in the sciences and engineering and to encourage them to pursue graduate studies. This report provides the research accomplishment of the various students who participated in the program. Research results are presented on the following topics: Energy Enhancement and Pollutant Reduction in Coal by Cryogenic Diminution; Competition of NO and SO{sub 2} for OH Generated witin Electrical Aerosol Analyzers; Dispersed Iron Catalysts for Coal Gasification; NQR/NMR Studiesmore » of Copper-Cobalt Catalysts for Syngas Concersion; Catalytic gasification of Coal Chars by Potassium Sulfate and Ferrous Sulfate Mixtures; A New Method for Cleaning and Beneficiation of Ultrafine Coal; Characterization Studies of Coal-Derived Liquids; Study of Coal Liquefaction Catalysts and Removal of Certain Toxic Heavy Metal Ions from Coal Conversion Process Wastewaters.« less

  2. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less

  3. Clean coal initiatives in Indiana

    USGS Publications Warehouse

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  4. Effects of Title IV of the Clean Air Act Amendments of 1990 on Electric Utilities: An Update, The

    EIA Publications

    1997-01-01

    Describes the strategies used to comply with the Acid Rain Program in 1995, the effect of compliance on SO2 emissions levels, the cost of compliance, and the effects of the program on coal supply and demand. It updates and expands the EIA report, Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990.

  5. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2005-07-01

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  6. Cleaning and dewatering fine coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also bemore » used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.« less

  7. Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, M.K.; Samal, A.R.; Palit, A.

    One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mmmore » and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.« less

  8. Health effects of coal technologies: research needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidizedmore » bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.« less

  9. Dry cleaning of Turkish coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8,more » 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.« less

  10. Interfacial properties and coal cleaning in the LICADO process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, S.M.B.

    1986-01-01

    The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less

  11. Coal-cleaning plant refuse characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavalet, J.R.; Torak, E.R.

    1985-06-01

    This report describes a study performed for the Electric Power Research Institute's Coal Cleaning Test Facility in Homer City, Pennsylvania. The purpose of the study was to design a standard methods for chemically and physically classifying refuse generated by physical coal cleaning and to construct a matrix that will accurately predict how a particular refuse will react to particular disposal methods - based solely on raw-coal characteristics and the process used to clean the coal. The value of such a classification system (which has not existed to this point) is the ability to design efficient and economical systems for disposingmore » of specific coal cleaning refuse. The report describes the project's literature search and a four-tier classification system. It also provides designs for test piles, sampling procedures, and guidelines for a series of experiments to test the classfication system and create an accurate, reliable predictive matrix. 38 refs., 39 figs., 35 tabs.« less

  12. Westinghouse to launch coal gasifier with combined cycle unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavsky, R.M.; Margaritis, P.J.

    1980-03-01

    Following an extensive test program with a prototype coal gasifier, Westinghouse Electric Corp. is now offering an integrated gasifier/combined-cycle unit as a feasible alternative for generating power from coal in an efficient, clean manner. The Westinghouse gasification process uses a single-stage pressurized fluidized-bed reactor, followed by heat recovery, gas cleaning, sulfur and amonia removal and recovery, and gas reheat. The system produces a fuel gas free of sulfur and other contaminants from crushed run-of-mine coals of varying reactivities and caking properties. The by-products include ammonia and sulfur and an agglomerated ash residue that serves as an acceptable landfill. Air formore » the gasifier is bled from the gas-turbine air compressor and further pressurized with a booster compressor. The hot exhaust gases from the gas turbine pass through a heat-recovery steam generator that produces sufficient steam to drive a turbine providing about 40% of the total electricity generated in the plant.« less

  13. A Course in Coal Science and Technology.

    ERIC Educational Resources Information Center

    Wheelock, T. D.

    1978-01-01

    This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…

  14. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  15. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  16. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferriter, J.P.

    The paper begins by describing the role of the International Energy Agency, the importance of coal, what the IEA is doing in the area of clean coal technology, and the role of the IEA Coal Industry Advisory Board. The paper then discusses which coal technologies will be chosen, what the problem areas are, and what can be done to accelerate the take-up of clean coal technologies.

  18. The U.S. Energy Dilemma: The Gap between Today’s Requirements and Tomorrow’s Potential.

    DTIC Science & Technology

    1973-07-01

    Possible Solutions . ........ .. 142 Use of Low-Sulfur Coal ................ 43 Flue - Gas Desulfurization ................ 43 Coal Cleaning...1) use of low-sulfur coal, (2) flue - gas desulfurization , (3) coal cleaning, (4) coal refining, and (5) coal conversion. Use of Low-Sulfur Coal The...to the same point (Skillings Mining Rev., 1973). Flue - Gas Desulfurization With standards based on sulfur dioxide emissions per million Btu, rather than

  19. ASSESSMENT OF PHYSICAL COAL CLEANING PRACTICES FOR SULFUR REMOVAL

    EPA Science Inventory

    The report gives results of a study of the current level of coal cleaning activity in the U.S. n 1983, the U.S. DOE's Energy Information Administration (EIA) expanded coal data collection activities to include information on the extent and type of coal preparation conducted in ea...

  20. Final Report of the Advanced Coal Technology Work Group

    EPA Pesticide Factsheets

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  1. The Clean Coal Technology Program 100 MWe demonstration of gas suspension absorption for flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, F.E.; Hedenhag, J.G.; Marchant, S.K.

    1997-12-31

    AirPol Inc., with the cooperation of the Tennessee Valley Authority (TVA) under a Cooperative Agreement with the United States Department of Energy, installed and tested a 10 MWe Gas Suspension Absorption (GSA) Demonstration system at TVA`s Shawnee Fossil Plant near Paducah, Kentucky. This low-cost retrofit project demonstrated that the GSA system can remove more than 90% of the sulfur dioxide from high-sulfur coal-fired flue gas, while achieving a relatively high utilization of reagent lime. This paper presents a detailed technical description of the Clean Coal Technology demonstration project. Test results and data analysis from the preliminary testing, factorial tests, airmore » toxics texts, 28-day continuous demonstration run of GSA/electrostatic precipitator (ESP), and 14-day continuous demonstration run of GSA/pulse jet baghouse (PJBH) are also discussed within this paper.« less

  2. Capturing the emerging market for climate-friendly technologies: opportunities for Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-11-15

    This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less

  3. Advanced physical fine coal cleaning: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination ofmore » Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.« less

  4. Environmentally critical elements in channel and cleaned samples of Illinois coals

    USGS Publications Warehouse

    Demir, I.; Ruch, R.R.; Damberger, H.H.; Harvey, R.D.; Steele, J.D.; Ho, K.K.

    1998-01-01

    Sixteen trace and minor elements that occur in coal are listed among 189 substances identified as 'hazardous air pollutants' (HAPs) in the US Clean Air Act Amendments of 1990. We investigated the occurrence and cleanability of the 16 HAPs in Illinois coals, as a contribution to the discussion about the potential effect of pending environmental regulations on the future use of these coals in power generation. The average ash content of the samples of conventionally cleaned as-shipped coals is about 20% lower than that of standard channel samples. Conventional cleaning reduces the average concentrations of As, Cd, Co, Hg, Mn, Ni, Pb, Sb and Th in the as-shipped coals by more than 20% relative to channel samples. Thus, basing assessments of health risks from emissions of HAPs during coal combustion on channel samples without appropriate adjustment would overestimate the risk. Additional cleaning by froth-flotation reduces the ash content of finely-ground as-shipped coals by as much as 76% at an 80% combustibles recovery. Although the average froth-flotation cleanability for the majority of HAPs is less than that for ash, the cleanabilities in some individual cases approaches, or even exceeds, the cleanability for ash, depending on the modes of occurrences of the elements. ?? 1997 Elsevier Science Ltd.

  5. CONSOL`s perspective on CCT deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, F.P.; Statnick, R.M.

    1997-12-31

    The principal focus of government investment in Clean Coal Technology must be to serve the interests of the US energy consumer. Because of its security of supply and low cost, coal will continue to be the fuel of choice in the existing domestic electricity generating market. The ability of coal to compete for new generating capacity will depend largely on natural gas prices and the efficiency of coal and gas-fired generating options. Furthermore, potential environmental regulations, coupled with utility deregulation, create a climate of economic uncertainty that may limit future investment decisions favorable to coal. Therefore, the federal government, throughmore » programs such as CCT, should promote the development of greenfield and retrofit coal use technology that improves generating efficiency and meets environmental requirements for the domestic electric market.« less

  6. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    USGS Publications Warehouse

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  7. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  8. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. P.N.; Peterson, G. R.

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluationsmore » are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.« less

  10. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  11. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  12. Fossil fuels in a sustainable energy future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute themore » air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.« less

  13. Economics of utilization of high sulfur coal resources - an integrated market approach

    USGS Publications Warehouse

    Bhagwat, S.B.

    1993-01-01

    Before the Clean Air Act Amendments of 1990, coal policies - especially coal research policies - were geared to find a solution to the sulfur emission problem. However, technologies to reduce sulfur emissions cannot be tailored for a single coal. A technology that will clean Illinois coal to compliance levels will do the same, or nearly the same, for most other types of coal. This paper will discuss an integrated approach to the analysis of the future of coals from different regions in the United States and its implications for coal-related policies by government and industry.

  14. DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Hadley; R. Mike Mishra; Michael Placha

    1999-01-27

    The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less

  15. 40 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... additions” as defined in IRS Publication 534, as would be done for tax purposes. Clean coal technology... Coal Technology’, up to a total amount of $2,500,000,000 for commercial demonstrations of clean coal technology, or similar projects funded through appropriations for the Environmental Protection Agency...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goal of the U.S. Department of Energy Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985--1987 time period. The program will also attempt to develop cost-effective technologies to utilize steeply dipping seams and bituminous coal by UCC. Results of the program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks,more » and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program which incorporates maximum industry involvement is planned. Major projects are described in some detail. Finally, a strong program of supporting activities will address specific problems identified in the field testing and will seek to advance UCC technology. In summary, the program's strategy is to remove the high-risk elements of UCC by resolving those technical, environmental, and economic uncertainties that remain, and to enable industry to assume responsibility for commercialization of the process.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootten, J.M.

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  18. The direct liquefaction proof of concept program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstratingmore » optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.« less

  19. Removal of ash, sulfur, and trace elements of environmental concern from eight selected Illinois coals

    USGS Publications Warehouse

    Demir, I.

    1998-01-01

    Release analysis (RA) and float-sink (F-S) data were generated to assess the beneficiation potential of washed coals from selected Illinois coal preparation plants through the use of advanced physical cleaning at -60 mesh size. Generally, the F-S process removed greater amounts of ash, sulfur, and trace elements of environmental concern from the coals than the RA process, indicating that the cleanability of Illinois coals by advanced methods can be estimated best by F-S testing. At an 80%-combustibles recovery, the ash yield in the clean F-S products decreased by 47-75%, relative to the parent coals. Average decreases for the elements As(67%), Cd(78%), Hg(73%), Mn(71%), and P(66%) exceeded the average decrease for ash yield (55%). Average decreases for other elements were: Co(31%), Cr(27%), F(39%), Ni(25%), Pb(50%), S(28%), Sb(20%), Se(39), Th(32%), and U(8%). Only Be was enriched (up to 120%) in the clean products relative to the parent coals. These results suggested that the concentration of elements with relatively high atmospheric mobilities (As, Cd, F, Hg, Pb, and Se) during coal combustion can be reduced substantially in Illinois coals through the use of advanced physical cleaning. Advanced physical cleaning can be effective also for the removal of inorganic S. Environmental risks from the emission of other elements with enrichment or relatively low cleanabilities could be small because these elements generally have very low concentrations in Illinois coals or are largely retained in solid residues during coal combustion. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  20. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  1. Mercury concentration in coal - Unraveling the puzzle

    USGS Publications Warehouse

    Toole-O'Neil, B.; Tewalt, S.J.; Finkelman, R.B.; Akers, D.J.

    1999-01-01

    Based on data from the US Geological Survey's COALQUAL database, the mean concentration of mercury in coal is approximately 0.2 ??gg-1. Assuming the database reflects in-ground US coal resources, values for conterminous US coal areas range from 0.08 ??gg-1 for coal in the San Juan and Uinta regions to 0.22 ??gg-1 for the Gulf Coast lignites. Recalculating the COALQUAL data to an equal energy basis unadjusted for moisture differences, the Gulf Coast lignites have the highest values (36.4 lb of Hg/1012 Btu) and the Hams Fork region coal has the lowest value (4.8 lb of Hg/1012Btu). Strong indirect geochemical evidence indicates that a substantial proportion of the mercury in coal is associated with pyrite occurrence. This association of mercury and pyrite probably accounts for the removal of mercury with the pyrite by physical coal cleaning procedures. Data from the literature indicate that conventional coal cleaning removes approximately 37% of the mercury on an equal energy basis, with a range of 0% to 78%. When the average mercury reduction value is applied to in-ground mercury values from the COALQUAL database, the resulting 'cleaned' mercury values are very close to mercury in 'as-shipped' coal from the same coal bed in the same county. Applying the reduction fact or for coal cleaning to eastern US bituminous coal, reduces the mercury input load compared to lower-rank non-deaned western US coal. In the absence of analytical data on as-shipped coal, the mercury data in the COALQUAL database, adjusted for deanability where appropriate, may be used as an estimator of mercury contents of as-shipped coal. ?? 1998 Published by Elsevier Science Ltd. All rights reserved.

  2. Clean fuel for demanding environmental markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josewicz, W.; Natschke, D.E.

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54more » percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.« less

  3. Advanced coal cleaning meets acid rain emission limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boron, D.J.; Matoney, J.P.; Albrecht, M.C.

    1987-03-01

    The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.

  4. New electrostatic coal cleaning method cuts sulfur content by 40%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-01

    An emission control system that electrically charges pollutants and coal particles promises to reduce sulfur 40% at half the cost. The dry coal cleaning processes offer superior performance and better economics than conventional flotation cleaning. Advanced Energy Dynamics, Inc. (AED) is developing both fine and ultra fine processes which increase combustion efficiency and boiler reliability and reduced operating costs. The article gives details from the performance tests and comparisons and summarizes the economic analyses. 4 tables.

  5. Sulfur removal and comminution of carbonaceous material

    DOEpatents

    Narain, Nand K.; Ruether, John A.; Smith, Dennis N.

    1988-01-01

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product.

  6. Randolph Plant passes 60-million-ton milestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouls, M.W.; Adam, B.O.

    1983-09-01

    Peabody Coal Co.'s Randolph coal preparation plant has processed 60 million tons of coal during 10 years of operation. The plant, which is in Illinois, receives coal from 3 mines and 2 more will eventually send their output for cleaning. Coal from one mine travels 2 miles overland to a 30,000 ton conical bunker constructed of Reinforced Earth. Clean coal is supplied for electricity generation. The plant uses water-only processes, with a jig and three stages of hydrocyclones. A flowsheet of the scalper circuit is given.

  7. Proceedings: Fourteenth annual EPRI conference on fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-05-01

    EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less

  8. Development of the chemical and electrochemical coal cleaning process

    NASA Astrophysics Data System (ADS)

    Basilio, C. I.; Yoon, Roe-Hoan

    The continuous testing of the Chemical and Electrochemical Coal Cleaning (CECC) was completed successfully using Middle Wyodak and Elkhorn No. 3 coal samples. The CECC unit was run under the optimum conditions established for these coal samples. For the Middle Wyodak coal, the ash content was reduced from 6.96 percent to as low 1.61 percent, corresponding to an ash rejection (by weight) of about 83 percent. The ash and sulfur contents of the Elkhorn No. 3 coal were reduced to as low as 1.8 percent and 0.9 percent. The average ash and sulfur rejections were calculated to be around 84 percent and 47 percent. The CECC continuous unit was used to treat -325 mesh Elkhorn No. 3 coal samples and gave ash and sulfur rejection values of as high as 77 percent and 66 percent. In these test, the clean -325 mesh coal particles were separated from the liberated mineral matter through microbubble column flotation, instead of wet-screening.

  9. New cleaning technologies advance coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onursal, B.

    1984-05-01

    Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.

  10. Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less

  11. PHYSICAL COAL-CLEANING/FLUE GAS DESULFURIZATION COMPUTER MODEL

    EPA Science Inventory

    The model consists of four programs: (1) one, initially developed by Battell-Columbus Laboratories, obtained from Versar, Inc.; (2) one developed by TVA; and (3,4) two developed by TVA and Bechtel National, Inc. The model produces design performance criteria and estimates of capi...

  12. 77 FR 39938 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Regional Haze State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... responses are provided below. Comment 1: The Commenter recommended that emission controls for a coal... Dakota. The Commenter stated that initially the coal cleaning facility was identified as BART-eligible... further evaluate controls at the coal cleaning facility and the three EGUs under the reasonable progress...

  13. Physicochemical cleaning and recovery of coal

    NASA Astrophysics Data System (ADS)

    Wheelock, T. D.

    1982-03-01

    The development and demonstration of a method of depressing iron pyrites which is applicable to both the froth flotation and oil agglomeration methods of cleaning and recoverying fine-size coal are described.

  14. Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2005-11-08

    This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

  15. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S.T.; Atwood, T.; Qiu Daxiong

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less

  16. Sulfur removal and comminution of carbonaceous material

    DOEpatents

    Narain, N.K.; Ruether, J.A.; Smith, D.N.

    1987-10-07

    Finely divided, clean coal or other carbonaceous material is provided by forming a slurry of coarse coal in aqueous alkali solution and heating the slurry under pressure to above the critical conditions of steam. The supercritical fluid penetrates and is trapped in the porosity of the coal as it swells in a thermoplastic condition at elevated temperature. By a sudden, explosive release of pressure the coal is fractured into finely divided particles with release of sulfur-containing gases and minerals. The finely divided coal is recovered from the minerals for use as a clean coal product. 2 figs.

  17. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report No. 8, January 1996--March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    The work being performed under this Cooperative Agreement between the United States Department of Energy (DOE) and EFH Coal Company (Participant) is one part of the assessment program in the Support for Eastern European Democracy (SEED) Act of 1989 (P.L. 101-179). In October 1991, a Memorandum of Understanding (MOU) titled {open_quotes}Collaboration on the Krakow Clean Fossil Fuels and Energy Efficiency Program, A Project of Elimination of Low Emission Sources in Krakow{close_quotes} was signed by the DOE and the Ministry of Environmental Protection, Natural Resources and Forestry of the Republic of Poland, that describes the cooperation that is being undertaken bymore » the respective governments to accomplish the goals of this program. The DOE has selected eight U.S. companies to work with the government of Poland to improve the country`s air quality, particularly around the historic city of Krakow. Although the program is focused on Krakow, it is intended to serve as a model for similar pollution control programs throughout Poland and, hopefully, much of Eastern Europe. The objective of this program is to design, construct, and operate a coal beneficiation facility that will produce a low-ash, double sized stoker coal for burning in a typical traveling-gate stoker.« less

  18. Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization

    DOEpatents

    Chriswell, Colin D.; Kaushik, Surender M.; Shah, Navin D.; Markuszewski, Richard

    1989-08-22

    Pretreatment of coal by devolatization at temperatures ranging from about 420.degree. C. to about 450.degree. C. for from about 10 minutes to about 30 minutes before leaching with molten caustic leads to a significant reduction in carbonate formation, greatly reducing the cost of cleaning coal on a per ton basis.

  19. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  20. Pollution reduction technologies being applied to small coal-fired boiler systems in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markussen, J.M.; Gyorke, D.F.

    1997-12-31

    To help in alleviating air pollution problems in Poland, various US environmental technologies are being installed in the city of Krakow to reduce emissions from short-stack coal- and coke-fired boilers. Introduction of low-cost, effective US pollution abatement and energy efficiency technologies is being completed through the US-Polish Krakow Clean Fossil Fuels and Energy Efficiency Program. Seven US firms are currently participating in the program; five projects are well under way and two are in the design phase. The technologies being applied in Krakow include modern district heating equipment and controls, coal preparation techniques, micronized coal combustion, automatic combustion controls, andmore » high-efficiency particulate control equipment. These technologies will be discussed along with pollutant reduction results obtained to date. Applications of these technologies are providing some efficient and economical answers to Krakow`s severe air pollution problems. Certainly, these technologies could be equally effective in many industrial cities throughout the world with similar air pollution concerns.« less

  1. Trading up

    ERIC Educational Resources Information Center

    Murray, Corey

    2011-01-01

    As the U.S. economy slowly rebounds, the nation's community colleges are focused on putting Americans back to work. Across the country, training programs in emerging career fields, including nuclear, wind, and clean coal production, vie for the attention of job seekers in search of a more secure financial future. But these shiny new careers aren't…

  2. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunitiesmore » and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.« less

  3. Cracow clean fossil fuels and energy efficiency program. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-10-01

    Since 1990 the US Department of Energy has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The program focuses on the city of Cracow and is designed so that results will be applicable and extendable to the entire region. This report serves both as a review of the progress which has been made to date in achieving the program objectives and a summary of work still in progress.

  4. CRACOW CLEAN FOSSIL FUELS AND ENERGY EFFICIENCY PROGRAM. PROGRESS REPORT, OCTOBER 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERCE,B.

    1998-10-01

    Since 1990 the US Department of Energy has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The program focuses on the city of Cracow and is designed so that results will be applicable and extendable to the entire region. This report serves both as a review of the progress which has been made to date in achieving the program objectives and a summary of work still in progress.

  5. Distribution Route Planning of Clean Coal Based on Nearest Insertion Method

    NASA Astrophysics Data System (ADS)

    Wang, Yunrui

    2018-01-01

    Clean coal technology has made some achievements for several ten years, but the research in its distribution field is very small, the distribution efficiency would directly affect the comprehensive development of clean coal technology, it is the key to improve the efficiency of distribution by planning distribution route rationally. The object of this paper was a clean coal distribution system which be built in a county. Through the surveying of the customer demand and distribution route, distribution vehicle in previous years, it was found that the vehicle deployment was only distributed by experiences, and the number of vehicles which used each day changed, this resulted a waste of transport process and an increase in energy consumption. Thus, the mathematical model was established here in order to aim at shortest path as objective function, and the distribution route was re-planned by using nearest-insertion method which been improved. The results showed that the transportation distance saved 37 km and the number of vehicles used had also been decreased from the past average of 5 to fixed 4 every day, as well the real loading of vehicles increased by 16.25% while the current distribution volume staying same. It realized the efficient distribution of clean coal, achieved the purpose of saving energy and reducing consumption.

  6. The Krakow clean fossil fuels and energy efficiency program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feibus, H.

    1995-12-31

    The joint effort by Polish and American organizations in Krakow has accomplished a great deal in just a few years. In particular, the low emission sources program has had major successes. Poland and America have a lot to learn from each other in the clean and economical use of coal. Both our countries are major producers and users of coal. Both have had to deal with the emissions of particulate and organics from coal combustion. We were fortunate, since our free market economy and democratic government helped us deal with a lot of these problems in the 1950s. In Poland,more » the freedom to solve these problems has evolved only in the last few years. In the first phase of the program, Polish and American engineers ran combustion tests on boilers and stoves in Krakow. They also performed analyses on the cost and feasibility of various equipment changes. The results of the first phase were used in refining the spreadsheet model to give better estimates of costs emissions. The first phase also included analyses of incentives for proceeding with needed changes. These analyses identified actions needed to create a market for the goods and services which control pollution. Such actions could include privatization, regulation, or financial incentives. The second phase of the program consisted of public meetings in Chicago, Washington, and Krakow. The purpose of the meetings was to inform U.S. and Polish firms about the results of phase 1 and to encourage them to compete to take part in phase 3. The third phase currently underway consists of the commercial ventures that were competitively selected. These ventures were consistent with recommendations unanimously made by the BSC. The three phases of the Polish-American program are discussed.« less

  7. 40 CFR 60.14 - Modification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... physical change, or change in the method of operation, at an existing electric utility steam generating... projects that are awarded funding from the Department of Energy as permanent clean coal technology... installation, operation, cessation, or removal of a temporary clean coal technology demonstration project is...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Leary, H.R.

    The author first gives a tribute to clean coal pioneers and partnerships from a historical perspective. She then discusses the environmental advantages of clean coal technologies, the success of CCT because industry picked the technologies, not government mandate, Congress`s commitment to results, future possibilities, and the power of partnerships.

  9. Southern Coal Corporation Clean Water Settlement

    EPA Pesticide Factsheets

    Southern Coal Corporation is a coal mining and processing company headquartered in Roanoke, VA. Southern Coal Corporation and the following 26 affiliated entities are located in Alabama, Kentucky, Tennessee, Virginia and West Virginia

  10. Experience with wear-resistant materials at the Homer City Coal Cleaning Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    1984-10-01

    The Homer City Coal Cleaning Plant is a multistream, dual-circuit facility with a total capacity of 1.22 x 10/sup 6/ Kg/hr (1200 TPH) raw feed and serves the three generating units of the Pennsylvania Electric Company's Homer City Generating Station. The complicated multi-cleaning circuit design requires considerably more power and piping (10.6 km/35,000 ft of plus 5 cm/2 in. process piping) than a more conventional plant of the same capacity. Coupled with the maintenance intensive aspects of the plant is the requirement to have a high availability due to the mine mouth-to-cleaning plant-to-generating station philosophy under which it operates. Thesemore » factors required a dedicated effort to improve equipment wear characteristics. Experiences in the use of a variety of wear and corrosion resistant materials at the Homer City Coal Cleaning Plant are described.« less

  11. DISPOSAL OF FLUE-GAS-CLEANING WASTES

    EPA Science Inventory

    The article describes current commercial and emerging technology for disposal of wastes from flue gas cleaning (FGC) systems for coal-fired power plants. Over 80 million metric tons/yr (dry) of coal ash and desulfurization solids are expected to be produced by the 1980's. Althoug...

  12. Completing the CCT mission: The challenge of change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monk, J.R.

    1997-12-31

    In order to complete the clean coal technology mission it will be necessary to determine CCT`s role in the restructured electricity industry and develop a strategy to promote that role. First, one must understand where the industry is headed and how clean coal technology fits into that future. Then, one needs to develop a strategy for getting from here to there, from where CCT is today to where it must be in five, ten or twenty years to be a viable option for decision-makers. Coal makes sense for the United States for several important reasons, not the least of whichmore » is its abundance here. It also makes sense in terms of its economic impact on large areas of the nation. And if coal makes sense, especially economically, then clean coal technology makes even more sense because of its potential to capitalize on this abundant resource in an environmentally friendly manner. But after nearly thirty years of involvement in the political world at all levels from Washington, D.C. to Washington, Indiana, the author has learned the hard way that ``common sense`` does not always, or even often, carry the day in the policymaking process. He believes that the future of clean coal technology hinges on the ability in the next few months and years to mobilize all those who favor that technology to move forward in a cohesive and coordinated effort to affect the policymaking and political process and thereby promote and accelerate CCT development. If this can be done, then the nation will be well on the way to completing the clean coal technology mission and meeting the challenge of change.« less

  13. July 2011 Memorandum: Improving EPA Review of Appalachian Surface Coal Mining Operations Under the Clean Water Act, National Environmental Policy Act, and the Environmental Justice Executive Order

    EPA Pesticide Factsheets

    Memorandum: Improving EPA Review of Appalachian Surface Coal Mining Operations Under the Clean Water Act, National Environmental Policy Act, and the Environmental Justice Executive Order, July 21, 2011

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R.

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are allmore » affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.« less

  15. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-11-15

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target themore » recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.« less

  16. HOMER CITY MULTISTREAM COAL CLEANING DEMONSTRATION: A PROGRESS REPORT

    EPA Science Inventory

    The report gives an overview of ongoing testing and evaluation of the Homer City Coal Cleaning Plant, built to enable the Homer City Power Complex to meet sulfur dioxide (SO2) emission levels mandated by the State of Pennsylvania and the U.S. Government. The plant was constructed...

  17. Market assessment of PFBC ash use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBCmore » technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).« less

  18. Conclusions drawn from actions implemented within the first stage of the Cracow program of energy conservation and clean fossil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieda, J.; Bardel, J.; Pierce, B.

    1995-12-31

    Since 1992 Brookhaven National Laboratory (BNL) and Pacific Northwest Laboratory (PNL), acting on behalf of the U.S. Department of Energy, executed the first stage of the Cracow Program of Energy Conservation and Clean Fossil Fuels, called also American-Polish Program of Actions for Elimination of Low Emission Sources in Cracow. The main contractor for BNL and PNL was the Cracow Development Office (BRK). The interest in improving the condition of Cracow air results from the fact that the standard for permissible air pollution was exceeded several times in Cracow and especially within the central part of the town. Therefore, air pollutionmore » appeared one of the most important problems that faced the municipal authorities. It followed from monitoring investigations that the high level of air pollutant concentration is caused by in-home coal-fired tile stoves operated in winter seasons and by coal- and coke-fired boiler houses simulated mainly in the central part of the town. The results obtained in first stage are presented. This paper is an attempt to formulate conclusions drawn from these works and recommendations with regard to the future policy of the town authorities; selected results are presented to clarify or illustrate the conclusions.« less

  19. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burford, D.P.

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of themore » scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.« less

  20. EVALUATION OF THE DISPOSAL OF FLUE GAS CLEANING WASTES IN COAL MINES AND AT SEA: REFINED ASSESSMENT

    EPA Science Inventory

    The report gives a refined assessment of the feasibility of disposing of flue gas cleaning (FGC) wastes in coal mines and at sea. Its focus is on specific impact areas identified in an earlier assessment. These areas were further investigated through laboratory studies as well as...

  1. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report No. 9, April 1996--June 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    The work being performed under this Cooperative Agreement between the United States Department of Energy (DOE) and EFH Coal Company (Participant) is one part of the assessment program in the Support for Eastern European Democracy (SEED) Act of 1989 (P.L. 101-179). In October 1991, a Memorandum of Understanding (MOU) titled {open_quotes}Collaboration on the Krakow Clean Fossil Fuels and Energy Efficiency Program, A Project of Elimination of Low Emission Sources in Krakow{close_quotes} was signed by the DOE and the Ministry of Environmental Protection, Natural Resources and Forestry of the Republic of Poland, that describes the cooperation that is being undertaken bymore » the respective governments to accomplish the goals of this program. The DOE has selected eight U.S. companies to work with the government of Poland to improve the country`s air quality, particularly around the historic city of Krakow. Although the program is focused on Krakow, it is intended to serve as a model for similar pollution control programs throughout Poland and, hopefully, much of Eastern Europe. The objective of this program is to design, construct, and operate a coal beneficiation plant. Quotations for a 300tph modular heavy-medium cyclone plant are being evaluated.« less

  2. Remediation of Coal Tar by STAR: Self-Sustaining Propagation Across Clean Gaps

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Brown, J.; Torero, J. L.; Grant, G.

    2016-12-01

    Self-sustaining Treatment for Active Remediation (STAR) is an emerging remediation technique which utilizes a subsurface smouldering reaction to destroy non-aqueous phase liquids (NAPL) in situ. The reaction is self-sustaining in that, once ignited, the destructive smouldering front will propagate outwards using only the energy embedded in the contaminant. However, it is known that coal tar can occur as both a continuous pool as well as in distinct seams separated by clean intervals. This study evaluated the hypothesis that the smouldering reaction can cross or `jump' clean gaps by transferring enough heat through the gap to re-ignite the reaction in the contaminated region beyond. Column and 2D box experiments were performed at two scales to determine the maximum clean gap which could be jumped vertically and horizontally. Once the maximum gap had been determined, sensitivity to various in situ and engineering control parameters were explored including: coal tar layer thickness, soil permeability, moisture content, NAPL saturation, and air injection flowrate. High resolution thermocouples informed the progress of the reaction, continuous gas emissions analysis revealed when the reaction was active and dormant, and detailed excavation mapped the extent of remediation and whether gaps were successfully jumped. The work demonstrated that substantial clean gaps, approaching the limit of the laboratory scale, can be jumped by the smouldering reaction using convective heat transfer. Also observed in some cases was the mobilization of pre-heated coal tar into the clean gaps and the reaction's ability to propagate through and destroy coal tar both adjacent to and within the gaps. This work is providing new insights into the robust nature of the technology for in situ applications, and indicating how extreme the heterogeneity has to be before the reaction is interrupted and a new ignition location would be required.

  3. Army Energy Plan.

    DTIC Science & Technology

    1980-08-08

    only extension granted has been for one generator. 4-28 Transportation motor pools and tactical units have been directed to comply with the Clean Air ...include cooperative programs with the DOE, the Navy, and the Air Force and the .... __ _ _ _ _ _ _.--- monitoring of commercial developments and...sulfur content poses considerable threat to air quality. Sulfur can be substantially eliminated from coal, but the process is costly. In addition, 1-9

  4. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominallymore » 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.« less

  5. Spin-mapping of Coal Structures with ESE and ENDOR

    DOE R&D Accomplishments Database

    Belford, R. L.; Clarkson, R. B.

    1989-12-01

    The broad goals of this project are to determine by nondestructive magnetic resonance methods chemical and physical structural characteristics of organic parts of native and treated coals. In this project period, we have begun to explore a technique which promises to enable us to follow to course of coal cleaning processes with microscopic spatial resolution. For the past five years, our laboratory has worked on extensions of the EPR technique as applied to coal to address these analytical problems. In this report we (1) describe the world's first nuclear magnetic resonance imaging results from an Illinois {number sign}6 coal and (2) transmit a manuscript describing how organic sulfur affect the very-high-frequency EPR spectra of coals. Magnetic resonance imaging (MRI) is a non-destructive technique that has found wide medical application as a means of visualizing the interior of human bodies. We have used MRI techniques to study the diffusion of an organic solvent (DMSO) into the pores of Illinois {number sign}6 coal. Proton MRI images reveal that this solvent at room temperature does not penetrate approximately 30% of the coal volume. Regions of the coal that exclude solvent could be related to inertinite and mineral components. A multi-technique imaging program is contemplated.

  6. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  7. 6. FF coal pulverizer (ball mill inside). GG building in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FF coal pulverizer (ball mill inside). GG building in background did preliminary crushing; pulverizer to left, coal conveyor and air cleaning towers to right; conveyor on left brought crushed coal to FF. Looking north/northeast - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  8. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff hasmore » been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.« less

  9. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheldon, R.W.

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stagesmore » are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.« less

  10. Environmentally conscious alternative energy production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, M.

    This fourth volume of the series describes and compares the environmental and economic impacts of renewable and conventional power generation technologies. Chapter heading are: Economic comparisons of power generation technologies (Todd Nemec); Solar energy applications (Jan F. Kreider); Fuel cells (Matthew W. Mench); Geothermal resources and technology: an introduction (Peter D. Blair); Wind power generation (Todd Nemec); Cogeneration (Jerald Caton); Hydrogen energy (Elias K. Stefanakos, Yogi Goswami, S.S. Srinivasan, and J.T. Wolan); Clean power generation from coal (Prabir Basu and James Butler); and Using waste heat from power plants (Herbert A. Ingley). The chapter on clean coal power generation frommore » coal has been abstracted separately on the Coal Abstracts database. 2 apps.« less

  11. Method for simultaneous use of a single additive for coal flotation, dewatering, and reconstitution

    DOEpatents

    Wen, Wu-Wey; Gray, McMahan L.; Champagne, Kenneth J.

    1995-01-01

    A single dose of additive contributes to three consecutive fine coal unit operations, i.e., flotation, dewatering and reconstitution, whereby the fine coal is first combined with water in a predetermined proportion so as to formulate a slurry. The slurry is then mixed with a heavy hydrocarbon-based emulsion in a second predetermined proportion and at a first predetermined mixing speed and for a predetermined period of time. The conditioned slurry is then cleaned by a froth flotation method to form a clean coal froth and then the froth is dewatered by vacuum filtration or a centrifugation process to form reconstituted products that are dried to dust-less clumps prior to combustion.

  12. Investigation of the behavior of potentially hazardous trace elements in Kentucky coals and combustion byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.D.; Blanchard, L.J.; Srikantapura, S.

    1996-12-31

    The minor- and trace-element content of coal is of great interest because of the potentially hazardous impact on human health and the environment resulting from their release during coal combustion. Of the one billion tons of coal mined annually in the United States, 85-90% is consumed by coal-fired power plants. Potentially toxic elements present at concentrations as low as a few egg can be released in large quantities from combustion of this magnitude. Of special concern are those trace elements that occur naturally in coal which have been designated as potential hazardous air pollutants (HAPs) in the 1990 Amendments tomore » the Clean Air Act. The principle objective of this work was to investigate a combination of physical and chemical coal cleaning techniques to remove 90 percent of HAP trace elements at 90 percent combustibles recovery from Kentucky No. 9 coal. Samples of this coal were first subjected to physical separation by flotation in a Denver cell. The float fraction from the Denver cell was then used as feed material for hydrothermal leaching tests in which the efficacy of dilute alkali (NaOH) and acid (HNO{sub 3}) solutions at various temperatures and pressures was investigated. The combined column flotation and mild chemical cleaning strategy removed 60-80% of trace elements with greater than 85, recovery of combustibles from very finely ground (-325 mesh) coal. The elemental composition of the samples generated at each stage was determined using particle induced X-ray emission (PIXE) analysis. PIXE is a rapid, instrumental technique that, in principle, is capable of analyzing all elements from sodium through uranium with sensitivities as low as 1 {mu}g/g.« less

  13. Comparative analyses for selected clean coal technologies in the international marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment ofmore » existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.« less

  14. Increase in polycyclic aromatic hydrocarbon (PAH) emissions due to briquetting: A challenge to the coal briquetting policy.

    PubMed

    Chen, Yingjun; Zhi, Guorui; Feng, Yanli; Chongguo Tian; Bi, Xinhui; Li, Jun; Zhang, Gan

    2015-09-01

    Both China and UNEP recommend replacing raw coal chunks with coal briquettes in household sector as clean coal technology (CCT), which has been confirmed by the decreased emissions of particulate matter and black carbon. However, the clean effect has never been systematically checked by other pollutants like polycyclic aromatic hydrocarbons (PAHs). In this study, 5 coals with different geological maturities were processed as both chunks and briquettes and burned in 3 typical coal stoves for the measurement of emission factors (EFs) of particle-bound PAHs. It was found that the EFs of 16 parent PAHs, 26 nitrated PAHs, 6 oxygenated PAHs, and 8 alkylated PAHs for coal briquettes were 6.90 ± 7.89, 0.04 ± 0.03, 0.65 ± 0.40, and 72.78 ± 18.23 mg/kg, respectively, which were approximately 3.1, 3.7, 1.9, and 171 times those for coal chunks, respectively. Such significant increases in PAH emissions increased human health risk and challenged the policy of CCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Size and maceral association of pyrite in Illinois coals and their float-sink fractions

    USGS Publications Warehouse

    Harvey, R.D.; DeMaris, P.J.

    1987-01-01

    The amount of pyrite (FeS2) removed by physical cleaning varies with differences in the amount of pyrite enclosed within minerals and of free pyrite in feed coals. A microscopic procedure for characterizing the size and maceral association of pyrite grains was developed and evaluate by testing three coals and their washed products. The results yield an index to the cleanability of pyrite. The index is dependent upon particle size and has intermediate values for feed coals, lower values for cleaned fractions, and higher values for refuse fractions; furthermore, it correlates with pyritic sulfur content. In the coals examined, the summed percentage of grain diameters of pyrite enclosed in vitrinite, liptinite, and bi- and trimacerite provides a quantitative measure of the proportion of early diagenetic deposition of pyrite. ?? 1987.

  16. Modeling the effects of changes in New Source Review on national SO{sub 2} and NOx emissions from electricity-generating units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. Evans; Benjamin F. Hobbs; Craig Oren

    2007-03-15

    The Clean Air Act establishes New Source Review (NSR) programs that apply to the construction or modification of major stationary emissions sources. In 2002 and 2003, the U.S. Environmental Protection Agency revised its rules to narrow the applicability of NSR to facility renovations. Congress then mandated a National Research Council study of the effects of the rules. An electricity-sector model - the Integrated Planning Model (IPM) - was used to explore the possible effects of the equipment replacement provision (ERP), the principal NSR change that was to affect the power-generation industry. The studies focused in particular on coal-fired electricity generatingmore » units, EGUs, for two reasons. First, coal-fired EGUs are important contributors of these pollutants, accounting for approximately 70 and 20% of nations SO{sub 2} and NOx emissions in 2004, respectively. Second, the shares of total capacity of large coal-fired EGUs that lack flue-gas desulfurization to control SO{sub 2} and selective catalytic reduction to reduce NOx emissions are 62 and 63% respectively. Although the analysis cannot predict effects on local emissions, assuming that the Clean Air Interstate Rule (CAIR) is implemented, we find that stringent enforcement of the previous NSR rules would likely lead to no or limited decreases in national emissions compared to policies such as ERP. Our results indicate that tighter emissions caps could achieve further decreases in national emissions more cost-effectively than NSR programs. 15 refs., 3 figs., 1 tab.« less

  17. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J.H.; Im, C.J.

    The following report presents the technical progress achieved during the first quarter. The completion of this contract entails engineering evaluation in conjunction with basic laboratory research to determine overall process improvements, associated cost savings and the effect of these savings on product price as they relate to the UCC Physical Beneficiation Process for coal-water slurry manufacture. The technical effort for this quarter has concentrated on two basic areas of concern as they relate to the above-mentioned process. First, an engineering evaluation was carried out to examine the critical areas of improvement in the existing UCC Research Corporation single-stage cleaning circuitmore » (coarse coal, heavy media washer). When the plant runs for low ash coal product, at the specific gravity near 1.30, it was found that substantial product contamination resulted from magnetite carry over in the clean coal product. The reduction of the magnetite contamination would entail the application of more spray water to the clean coal drain and rinse screen, and the refinement of the existing dilute media handling system, to accept the increased quality of rinse water. It was also determined that a basic mechanical overhaul is needed on the washbox to ensure dependable operation during the future production of low-ash coal. The various cost elements involved with this renovation were determined by UCC personnel in the operational division. The second area of investigation was concerned with the laboratory evaluation of three separate source coals obtained from United Coal Company (UCC) and nearby mines to determine probable cleanability when using each seam of coal as a feed in the existing beneficiation process. Washability analyses were performed on each sample utilizing a specific gravity range from 1.25 to 1.50. 4 figures, 3 tables.« less

  19. Selective flotation of inorganic sulfides from coal

    DOEpatents

    Miller, Kenneth J.; Wen, Wu-Wey

    1989-01-01

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  20. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  1. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    NASA Astrophysics Data System (ADS)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  2. ACCOMPLISHMENTS OF THE AMERICAN-POLISH PROGRAM FOR ELIMINATION OF LOW EMISSIONS IN KRAKOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BUTCHER,T.A.; PIERCE,B.

    1998-11-05

    In 1991, US and Polish officials signed a Memorandum of Understanding formally initiating and directing the Cracow Clean Fossil Fuels and Energy Efficiency Program. Developing a program approach for the most effective use of the available funds required considerable effort on the part of all project participants. The team recognized early that the cost of solving the low emissions problem even in only one city far exceeded the amount of available US funds. Economic conditions in Poland limited availability of local capital funds for environmental projects. Imposing environmental costs on struggling companies or city residents under difficult conditions of themore » early 1990's required careful consideration of the economic and political impacts. For all of these reasons the program sought to identify technologies for achieving air quality goals which, through improved efficiency and/or reduced fuel cost, could be so attractive economically as to lead to self-sustaining activities beyond the end of the formal project. The effort under this program has been focused into 5 main areas of interest as follows: (1) Energy Conservation and Extension of Central Station District Heating; (2) Replacement of Coal- and Coke-Fired Boilers with Natural Gas-Fired Boilers; (3) Replacement of Coal-Fired Home Stoves with Electric Heating Appliances; (4) Reduction of Emissions from Stoker-Fired Boiler Houses; and (5) Reduction of Emissions from Coal-Fired Home Heating Stoves.« less

  3. Control technology assessment for coal gasification and liquefaction processes, coal gasification facility, Caterpillar Tractor Company, York, Pennsylvania. Report for the site visit of May 1981. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telesca, D.R.

    A control technology survey was conducted at the coal gasification facility of the Caterpillar Tractor Company (SIC-5161), in York, Pennsylvania on August 18, 1980 and May 7, 1981, in conjunction with an industrial hygiene characterization study. Potential hazards included coal dust, noise, fire, carbon-monoxide (630080) (CO), polynuclear aromatics, hydrogen sulfide (7783064), phenols, and flammable and explosive gases. Preemployment physicals were given to employees including complete medical histories, physical examinations, and skin examination. Examinations were given annually for the first 5 years and semiannually thereafter. The most hazardous activities were poking, cleaning, inspection of process equipment, and equipment maintenance. Coal dustmore » emissions were effectively reduced by enclosure and venting. Venturi steam injectors in the gasifier pokeholes prevented gas emissions during poking. Ash dust was controlled by removal and handling while it was wet. An audible and visual alarm was used for CO monitoring. The ventilation system in the building effectively prevented accumulation of gases. The author recommends separate lockers for contaminated and clean clothing; a clean area for eating; escape pack respirators located in the rectifier room, control room, and coal bunker; and supplied air respirators in dangerous areas. Disposal of off gas from the feeding system should be addressed.« less

  4. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  5. From in situ coal to the final coal product: A case study of the Danville Coal Member (Indiana)

    USGS Publications Warehouse

    Mastalerz, Maria; Padgett, P.L.

    1999-01-01

    A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.A surface coal mine operation and preparation plant in southwestern Indiana was sampled to examine variations in coal quality and coal petrography parameters for the Danville Coal Member of the Dugger Formation (Pennsylvanian-Desmoinesian, Westphalian D). Representative samples from in situ coal, preparation plant feeds, and a final coal product were collected in order to compare coal quality, coal petrography, trace element concentrations, and ash chemistry of the coal to those of the product. Coal quality parameters of the in situ samples and various feeds, coarse refuse, and final product were variable. The quality of the final coal product was best predicted by the coal quality of the clean coal feed (from the middle portions of the seam). Some trace element contents, especially lead and arsenic, varied between the coal feeds and the product. Lead contents increased in the feeds and product compared to the channel sample of the raw coal, possibly due to contamination in the handling process.

  6. Preparation and combustion of Yugoslavian lignite-water fuel, Task 7.35. Topical report, July 1991--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.M.; DeWall, R.A.; Ljubicic, B.R.

    1994-03-01

    Yugoslavia`s interest in lignite-water fuel (LWF) stems from its involvement in an unusual power project at Kovin in northern Serbia. In the early 1980s, Electric Power of Serbia (EPS) proposed constructing a 600-MW power plant that would be fueled by lignite found in deposits along and under the Danube River. Trial underwater mining at Kovin proved that the dredging operation is feasible. The dredging method produces a coal slurry containing 85% to 90% water. Plans included draining the water from the coal, drying it, and then burning it in the pulverized coal plant. In looking for alternative ways to utilizemore » the ``wet coal`` in a more efficient and economical way, a consortium of Yugoslavian companies agreed to assess the conversion of dredged lignite into a LWF using hot-water-drying (HWD) technology. HWD is a high-temperature, nonevaporative drying technique carried out under high pressure in water that permanently alters the structure of low-rank coals. Changes effected by the drying process include irreversible removal of moisture, micropore sealing by tar, and enhancement of heating value by removal of oxygen, thus, enhancement of the slurry ability of the coal with water. Physical cleaning results indicated a 51 wt % reduction in ash content with a 76 wt % yield for the lignite. In addition, physical cleaning produced a cleaned slurry that had a higher attainable solids loading than a raw uncleaned coal slurry. Combustion studies were then performed on the raw and physically cleaned samples with the resulting indicating that both samples were very reactive, making them excellent candidates for HWD. Bench-scale results showed that HWD increased energy densities of the two raw lignite samples by approximately 63% and 81%. An order-of-magnitude cost estimate was conducted to evaluate the HWD and pipeline transport of Kovin LWF to domestic and export European markets. Results are described.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrocco, M.

    The Ohio Power Company`s Tidd Pressurized Fluidized Bed Combined Cycle (PFBC) program continues to be the only operating PFBC demonstration program in the nation. The 70 MWe Tidd Demonstration Plant is a Round 1 Clean Coal Technology Project constructed to demonstrate the viability of PFBC combined cycle technology. The plant is now in Rs fourth year of operation. The technology has clearly demonstrated Rs ability to achieve sulfur capture of greater than 95%. The calcium to sulfur molar ratios have been demonstrated to exceed original projections. Unit availability has steadily increased and has been demonstrated to be competitive with othermore » technologies. The operating experience of the first forty-four months of testing has moved the PFBC process from a {open_quotes}promising technology{close_quotes} to available, proven option for efficient, environmentally acceptable base load generation. Funding for the $210 million program is provided by Ohio Power Company, The U.S. Department of Energy, The Ohio Coal Development Office, and the PFBC process vendors - Asea Brown Boveri Carbon (ABBC) and Babcock and Wilcox (B&W).« less

  8. Pure Air`s Bailly scrubber: A four-year retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manavi, G.B.; Vymazal, D.C.; Sarkus, T.A.

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A projectmore » company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.« less

  9. 78 FR 26739 - Notice of Final Action on Petition From Earthjustice To List Coal Mines as a Source Category and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Action on Petition From Earthjustice To List Coal Mines as a Source Category and To Regulate Air Emissions From Coal Mines AGENCY: Environmental Protection Agency (EPA). ACTION: Denial of petition for... Perciasepe, signed a letter denying a petition to add coal mines to the Clean Air Act (CAA) section 111 list...

  10. 7. INTERIOR, ROBERTS AND SCHAEFER SHAKER TABLE (LEFT), MARYLAND NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR, ROBERTS AND SCHAEFER SHAKER TABLE (LEFT), MARYLAND NEW RIVER COAL COMPANY INSTALLED APRON CONVEYOR (RIGHT) USED TO CONVEY COAL TO THE BELKNAP CHORIDE WASHER, RETURN CHUTE FOR CLEANED COAL (FAR RIGHT), AND COAL STORAGE SILO (BACKGROUND), LOOKING WEST - Nuttallburg Mine Complex, Tipple, North side of New River, 2.7 miles upstream from Fayette Landing, Lookout, Fayette County, WV

  11. Selective flotation of inorganic sulfides from coal

    DOEpatents

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  12. Clean and Secure Energy from Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Philip; Davies, Lincoln; Kelly, Kerry

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO 2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.

  13. 30 CFR 75.400 - Accumulation of combustible materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...

  14. 30 CFR 75.400 - Accumulation of combustible materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...

  15. 30 CFR 75.400 - Accumulation of combustible materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...

  16. 30 CFR 75.400 - Accumulation of combustible materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...

  17. 30 CFR 75.400 - Accumulation of combustible materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock... rock-dusted surfaces, loose coal, and other combustible materials, shall be cleaned up and not be...

  18. New Coal Standards.

    ERIC Educational Resources Information Center

    Heritage, John

    1979-01-01

    Tighter federal air pollution control standards for new coal-burning electric power plants have been issued. Through use of air pollution control devices all types of coal will be useable under the new standards. Even stricter standards may be imposed where visibility may be affected in areas now enjoying very clean air. (RE)

  19. Coal flow aids reduce coke plant operating costs and improve production rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  20. In-plant testing of a novel coal cleaning circuit using advanced technologies. Final technical report, September 1, 1995--August 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honaker, R.Q.; Reed, S.; Mohanty, M.K.

    1997-05-01

    A circuit comprised of advanced fine coal cleaning technologies was evaluated in an operating preparation plant to determine circuit performance and to compare the performance with current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon enhanced gravity concentrator and a Jameson flotation cell. A Packed-Column was used to provide additional reductions in the pyritic sulfur and ash contents by treatment of the Floatex-Falcon-Jameson circuit product. For a low sulfur Illinois No. 5 coal, the pyritic sulfur content was reduced from 0.67% to 0.34% at a combustible recovery of 93.2%. The ash contentmore » was decreased from 27.6% to 5.84%, which equates to an organic efficiency of 95% according to gravity-based washability data. The separation performance achieved on a high sulfur Illinois No. 5 coal resulted in the rejection of 72.7% of the pyritic sulfur and 82.3% of the ash-forming material at a recovery of 8 1 %. Subsequent pulverization of the cleaned product and retreatment in a Falcon concentrator and Packed-Column resulted in overall circuit ash and pyritic sulfur rejections of 89% and 93%, respectively, which yielded a pyritic sulfur content reduction from 2.43% to 0.30%. This separation reduced the sulfur dioxide emission rating of an Illinois No. 5 coal from 6.21 to 1.75 lbs SO{sub 2}/MBTU, which is Phase I compliance coal. A comparison of the results obtained from the Floatex-Falcon-Jameson circuit with those of the existing circuit revealed that the novel fine coal circuit provides 10% to 20% improvement in mass yield to the concentrate while rejecting greater amounts of ash and pyritic sulfur.« less

  1. METC Clean Coal Technology status -- 1995 update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, L.K.

    1995-06-01

    The Department of Energy (DOE) Clean Coal Technology (CCT) Program is assisting the private sector by funding demonstration programs to validate that CCT technologies are a low-risk, environmentally attractive, cost-competitive option for utility and industrial users. Since 1987, DOE has awarded 45 CCT projects worth a total value of $7 billion (including more than $2.3 billion of DOE funding). Within the CCT Program, the Morgantown Energy Technology Center (METC) is responsible for 17 advanced power generation systems and major industrial applications. METC is an active partner in advancement of these technologies via direct CCT funding and via close cooperation andmore » coordination of internal and external research and development activities. By their nature, METC projects are typically 6-10 years in duration and, in some cases, very complex in nature. However, as a result of strong commercial partnerships, progress in the development and commercialization of major utility and industrial projects has, and will continue to occur. It is believed that advanced power generation systems and industrial applications are on the brink of commercial deployment. A status of METC CCT activities will be presented. Two projects have completed their operational phase, operations are underway at one project (two others are in the latter stages of construction/shakedown), four projects are in construction, six restructured. Also, present a snapshot of development activities that are an integral part of the advancement of these CCT initiatives will be presented.« less

  2. English-Russian, Russian-English glossary of coal-cleaning terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekar, J.

    1987-09-01

    The document is an English-Russian, Russian-English glossary of coal-cleaning terms, compiled as a joint U.S./Soviet effort. The need for the glossary resulted from the growing number of language-specific terms used during information exchanges within the framework of the U.S./U.S.S.R. Working Group on Stationary Source Air Pollution Control Technology, under the U.S./U.S.S.R. Agreement of Cooperation in the Field of Environmental Protection.

  3. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less

  4. Minnesota Power Settlement

    EPA Pesticide Factsheets

    EPA and DOJ announced a Clean Air Act settlement with Minnesota Power, an ALLETE company based in Duluth, that will cover its three coal-fired power plants and one biomass-and-coal-fired steam and electricity cogeneration plan

  5. Vibratory high pressure coal feeder having a helical ramp

    DOEpatents

    Farber, Gerald

    1978-01-01

    Apparatus and method for feeding powdered coal from a helical ramp into a high pressure, heated, reactor tube containing hydrogen for hydrogenating the coal and/or for producing useful products from coal. To this end, the helical ramp is vibrated to feed the coal cleanly at an accurately controlled rate in a simple reliable and trouble-free manner that eliminates complicated and expensive screw feeders, and/or complicated and expensive seals, bearings and fully rotating parts.

  6. Clean coal : DOE should prepare a comprehensive analysis of the relative costs, benefits, and risks of a range of options for FutureGen

    DOT National Transportation Integrated Search

    2009-03-11

    According to various energy experts, for the foreseeable future, because coal is abundant and relatively inexpensive, it will remain a significant fuel for the generation of electric power in the United States and the world. However, coal-fired power...

  7. Coalbed methane: Clean energy for the world

    USGS Publications Warehouse

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  8. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Deo, M.; Edding, E.G.

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand themore » feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO 2 storage. In order to help determine the amount of CO 2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.« less

  9. Coal-Fired Rocket Engine

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

  10. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants thatmore » capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.« less

  11. Microgas dispersion for fine-coal cleaning. Technical progress report, March 1, 1981-August 31, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, R.H.; Halsey, G.S.; Sebba, F.

    1981-01-01

    The results of the flotation tests conducted demonstrate that the use of fine colloidal gas aphrons (CGA) bubbles is beneficial for fine coal flotation. As demonstrated with the ultrafine coal sample, the froth products of CGA flotation are almost twice as clean as those of the conventional flotation tests at 70% yield. The kerosene consumption was considerably higher, however, both in conventional and in CGA flotation. Attempts were made to coat the CGA bubbles with a film of kerosene and use them for flotation, hoping that this would reduce the oil consumption. However, no positive results have yet been obtainedmore » with this process. Another problem associated with CGA flotation is that the ash content of the froth products is relatively high when using a stable CGA, such as that prepared with Dowfroth M150. On the other hand, when using an unstable CGA, as is the case with MIBC, low ash clean coal products can be obtained, but at the expense of the yield. Two approaches are being investigated to correct this problem. A considerable amount of effort has been made to determine the surface charge of the CGA.« less

  12. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  13. EVALUATION OF THE IMPACT OF CHLORINE ON MERCURY OXIDATION IN A PILOT-SCALE COAL COMBUSTION--THE EFFECT OF COAL BLENDING

    EPA Science Inventory

    Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. The EPA Clean Air Mercury Rule (CAMR) depends heavily on the co-benefit of mercury removal by existing and ...

  14. Coal Utilization in Schools: Issues and Answers.

    ERIC Educational Resources Information Center

    Pusey, Robert H.

    Coal, at one-third the cost of natural gas and one-fifth the cost of oil, is our cheapest source of energy and is also in abundant supply. Because of significant technological advances, coal-fired equipment now approaches the clean and automatic operational characteristics of gas- and oil-fired boilers. For these reasons, and because schools are…

  15. Fine coal cleaning via the micro-mag process

    DOEpatents

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.J.

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mentionmore » many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.« less

  17. Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method ofmore » liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.« less

  18. Statutory complexity disguises agency capture in Citizens Coal Council v. EPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, R.

    2007-07-01

    In Citizens Coal Council v. EPA, an en banc panel for the Sixth Circuit Court of Appeals considered a challenge to EPA regulations promulgated pursuant to the Clean Water Act (CWA). The EPA promulgated the regulations in an attempt to incentivize coal companies to remine once abandoned mine sites. Petitioners, two nonprofit environmental organizations, claimed that the regulations violated the Clean Water Act and Administrative Procedure Act by allowing coal companies to remine without adhering to any enforceable pollution limitations. The EPA countered that more remining would improve water quality at abandoned sites. The Sixth Circuit rejected Petitioners' claims, findingmore » that the EPA's regulations were reasonably consistent with the CWA's goal of restoring the integrity of the nation's waters. In so holding, the court struggled to understand the meaning of the CWA's complex procedural and technical language, and allowed the EPA to justify the rule based on the CWA's broad statement of purpose. Such superficial judicial review sets a dangerous precedent in environmental law, because it exacerbates the risk of agency capture. A captured agency promulgates regulations that benefit-industry, not the environment. Without the judiciary acting as a meaningful check against agency capture, the public loses a valuable tool in the fight against major-industrial polluters like the domestic coal industry. Citizens Coal Council therefore stands as a cautionary tale, a warning sign that the judiciary may be unable to identify agency capture where the regulations at issue are promulgated pursuant to a complex statute like the Clean Water Act.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goal of the US Department of Energy (DOE) Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits that are unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985 to 1987 time period. The DOE program has stimulated industry interest and activity in developing UCC technology. Several major energy corporations and utilities have invested private funds in UCC research and development (R and D) projects. Results of themore » program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks, and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program that incorporates maximum industry involvement is planned. The program's strategy is to remove the high-risk elements of UCC by resolving technical, environmental, and economic uncertainties. This will enable industry to assume responsibility for commercialization of the technology. Thus, the elements of the program have been designed to: provide detailed design and operational data that industry can scale-up with confidence; provide accurate and complete cost estimates that can be scaled-up and will allow comparison with alternative processes; provide detailed environmental impact and control data to allow industry to implement projects that will meet applicable standards; verify the reliability of continuous operation of UCC processes; and show that UCC processes have the flexibility to meet a variety of commercial needs.« less

  20. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  1. Micronized-Coal Burner Facility

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Lupton, M. W.

    1986-01-01

    Micronized-coal (coal-in-oil mix) burner facility developed to fulfill need to generate erosion/corrosion data on series of superalloy specimens. In order to successfully operate gas turbine using COM, two primary conditions must be met. First, there must be adequate atomization of COM and second, minimization of coking of burner. Meeting these conditions will be achieved only by clean burning and flame stability.

  2. Coal resources, production, and quality in the Eastern kentucky coal field: Perspectives on the future of steam coal production

    USGS Publications Warehouse

    Hower, J.C.; Hiett, J.K.; Wild, G.D.; Eble, C.F.

    1994-01-01

    The Eastern Kentucky coal field, along with adjacent portions of Virginia and southern West Virginia, is part of the greatest production concentration of high-heating-value, low-sulfur coal in the United States, accounting for over 27% of the 1993 U.S. production of coal of all ranks. Eastern Kentucky's production is spread among many coal beds but is particularly concentrated in a limited number of highquality coals, notably the Pond Creek coal bed and its correlatives, and the Fire Clay coal bed and its correlatives. Both coals are relatively low ash and low sulfur through the areas of the heaviest concentration of mining activity. We discuss production trends, resources, and the quality of in-place and clean coal for those and other major coals in the region. ?? 1994 Oxford University Press.

  3. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment.

    PubMed

    Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; da Boit, Kátia; Teixeira, Elba C; Sampaio, Carlos H; Madariaga, Juan Manuel; Silva, Luis F O

    2017-02-01

    Soils around coal mining are important reservoir of hazardous elements (HEs), nanominerals, and ultrafine compounds. This research reports and discusses the soil concentrations of HEs (As, Cd, Cr, Cu, Ni, Pb, and Zn) in coal residues of abandoned mines. To assess differences regarding environmental impact and risk assessment between coal abandoned mines from the Santa Catarina state, eighteen coal cleaning rejects with different mineralogical and chemical composition, from eight abandoned mines were collected. Nanominerals and ultra-fine minerals from mining-contaminated areas were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM), providing new information on the mineralogy and nano-mineralogy of these coal residues. The total contents of 57 elements (HEs, alkali metals, and rare earth elements) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The calculation of NWACs (Normalized Average Weighted Concentration), together with the chemometric analysis by Principal component analysis (PCA) confirmed the variability of the samples regarding their city and their mine of origin. Moreover, the results confirmed the existence of hotspots in mines near urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit.

    PubMed

    Shi, Bobo; Su, Hetao; Li, Jinshi; Qi, Haining; Zhou, Fubao; Torero, José L; Chen, Zhongwei

    2017-07-13

    The coal fires, a global catastrophe for hundreds of years, have been proved extremely difficult to control, and hit almost every coal-bearing area globally. Meanwhile, underground coal fires contain tremendous reservoir of geothermal energy. Approximately one billion tons of coal burns underground annually in the world, which could generate ~1000 GW per annum. A game-changing approach, environmentally sound thermal energy extraction from the intractable natural coalfield fires, is being developed by utilizing the waste energy and reducing the temperature of coalfield fires at the same time. Based on the Seebeck effect of thermoelectric materials, the temperature difference between the heat medium and cooling medium was employed to directly convert thermal energy into clean electrical energy. By the time of December 2016, the power generation from a single borehole at Daquan Lake fire district in Xinjiang has been exceeded 174.6 W. The field trial demonstrates that it is possible to exploit and utilize the waste heat resources in the treated coal fire areas. It promises a significant impact on the structure of global energy generation and can also promote progress in thermoelectric conversion materials, geothermal exploration, underground coal fires control and other energy related areas.

  5. Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.

  6. Micronized coal-fired retrofit system for SO{sub x} reduction: Krakow Clean Fossil Fuels and Energy Efficiency Program. Technical progress report No. 3, October 1996--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The PROJECT proposes to install a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex; Krzeszowice, Poland (about 20 miles west of Krakow). PHRO currently utilizes 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers currently burn a high-sulfur content heavy crude oil, called Mazute. For size orientation, the PHRO Greenhouse complex grows a variety of vegetables and flowers for the Southern Poland marketplace. The greenhouse area under glass is very large and equivalent to approximately 50 football fields.more » The new micronized coal fired boiler would: (1) provide a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduce sulfur dioxide air pollution emissions, while satisfying new Polish air regulations, and (3) provide attractive savings to PHRO, based on the quantity of displaced oil. Currently, the Town of Krzeszowice is considering a district heating program that would replace some, or all, of the 40 existing small in-town heating boilers that presently burn high-sulfur content coal. Potentially the district heating system can be expanded and connected into the PHRO boiler network; so that, PHRO boilers can supply all, or a portion of, the Town`s heating demand. The new TCS micronized coal system could provide a portion of this demand.« less

  7. Installation of a stoker-coal preparation plant in Krakow, Poland. Technical progress report 11, October--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This project is one of eight projects selected under the assessment program in the Support of Eastern Democracy (SEED) Act of 0989 by the federal government to reduce low-level emission sources in the Krakow area of Poland. The objective of this Cooperative Agreement is to demonstrate that the quality of stack gas emissions can be improved through the substitution of run-of-mine coal by washed coal. To this end, EFH Coal Company will design, build, and operate a 300-mtph (330 stph) preparation plant and produce a low ash, double-screened washed coal for burning in a traveling-grate stoker in one of themore » many water heating plants in the city of Krakow. By burning this prepared coal under proper combustion condition, combustion efficiency will be increased, stoker maintenance will be lowered and the amount of carbon monoxide, sulfur dioxide and particulates in the stack gases will be reduced significantly. Contracts to: provide the raw-coal feed to the plant; dispose of plant wastes; burn the clean coal in a demonstration water heating plant in Krakow; and to market any surplus production are in place. An international irrevocable purchase order has been let for the procurement of a customized modular 300 mtph (330 stph) dense medium cyclone preparation plant to wash the 20 mm ({approx} 3/4 in.) by 5 mm. ({approx} 1/4 in.) size fraction of raw coal produced by the Katowice Coal Holding Company. This plant will be fabricated and shipped from the United States to Poland as soon as the final land-us and construction permits are granted.« less

  8. 75 FR 6178 - Mission Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... geothermal, biomass, hydropower, wind, solar, and energy efficiency sectors. The mission will focus on... offers potential growth, barriers still exist that prevent U.S. companies from accessing the market and... additional opportunities in solar, biomass, ``clean coal'' technology such as gasification or wet coal...

  9. Proven clean coal technology at work: The Provence 250 MW CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucat, P.; Jacquet, L.; Roulet, V.

    The successful start-up, in the last months of 1995, of the 250 MW Provence/Gardanne unit represents a significant milestone in the development of atmospheric Circulating Fluidized Bed (CFB) boilers for power stations. This high performance unit (over 700 tonnes/hour of steam at 169 bar, 567 C, with reheat at 566 C) has been in operation since April 1996. It is the first CFB boiler in the world to reach such a capacity. CFB boilers, with their excellent SO{sub 2} and NOx emission control capability, are today recognized as a very attractive Clean Coal Technology, particularly because of their simplicity. Themore » Provence/Gardanne project is part of a French development program for large CFB boilers which has been elaborated in the perspective of domestic applications (mainly future semi-base load units) and of the overseas market. It responds to the converging interests of Electricite de France (EDF), Charbonnages de France (CdF)and GEC ALSTHOM Stein Industrie. Besides comprehensive R and D-type investigations aiming at an in-depth understanding of the CFB process and preparing for future scale-up and development, this program has already been marked by two outstanding commercial repowering projects: a 125 MW unit, in operation since 1990 at the Emile Huchet Power Station, and the 250 MW Provence unit. These boilers have been designed and supplied by GEC ALSTHOM Stein Industrie in the framework of their long standing cooperation with Lurgi, a pioneer of the CFB process. The main components are: (1) Furnace; (2) Cyclone; (3) Back-pass; (4) Ash cooler; (5) External Heat Exchanger. However, a brief discussion of some key design options affecting bed performance is necessary to better understand this technology. The paper describes the design of the system, the retrofitting project at Emile Huchet/Carling, and then gives background information on the Provence/Gardanne retrofit, describing SO{sub 2} emissions, the 250 MW boiler, and results from the performance tests. The recent performance tests as well as the operating experience already accumulated demonstrates that the Provence Clean Energy Project participants have successfully overcome the scale-up challenge represented by the construction of the first 250 MW CFB boiler in the world. This simple and attractive clean coal technology is now ready for many commercial applications in power stations. Units up to 300-400 MW can be built right now, using the lessons learned at Provence. Development of 600 MW-class CFB boilers, subcritical or supercritical, appears within reach in the near future.« less

  10. Preliminary Public Design Report for the Texas Clean Energy Project: Topical Report - Phase 1, June 2010-July 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, Karl

    Summit Texas Clean Energy, LLC (Summit) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO 2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin sub-bituminous coal delivered by rail from Wyoming into a syntheticmore » gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H 2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO 2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. Front-end Engineering and Design (FEED) commenced in June 2010 and was completed in July 2011, setting the design basis for entering into the detailed engineering phase of the project. During Phase 1, TCEP conducted and completed the FEED, applied for and received its air construction permit, provided engineering and other technical information required for development of the draft Environmental Impact Statement, and completed contracts for the sale of all of the urea and most of the CO 2. Significant progress was made on the contracts for the purchase of coal feedstock from Cloud Peak Energy’s Cordero Rojo mine and the sale of electricity to CPS Energy, as well as a memorandum of understanding with the Union Pacific Railroad (UPRR) for delivery of the coal to the TCEP site.« less

  11. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, Norman W.; Sethi, Vijay; Brecher, Lee E.

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  12. Process for clean-burning fuel from low-rank coal

    DOEpatents

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  13. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, July-September 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, W.; Davis, A.; Walker, P. L.

    1979-05-01

    Certain important aspects of the chemical and physical composition of American lignite coals are being characterized. Differential scanning calorimetry and thermogravimetric analysis were used to study the interaction between oxygen and seventeen coal chars (40 x 100 mesh) at 100/sup 0/C. The same techniques were used to investigate briefly the interaction between air and a highly caking coal at selected isothermal temperatures in the range 100 to 275/sup 0/C.

  14. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogenmore » from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.« less

  15. 75 FR 10503 - Notice of Lodging of Consent Decree Under the Clean Air Act, the Clean Water Act, the Emergency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Decree (``Decree'') in United States v. AES Thames, LLC, Civil Action No. 3:10cv281, was lodged with the... States against AES Thames, LLC under the Clean Air Act, 42 U.S.C. 7401-7671q, the Clean Water Act, 33 U.S... injunctive relief and recovery of civil penalties in connection with AES Thames, LLC's operation of a coal...

  16. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  17. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  18. MERCURY CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    There are many sources of natural and anthropogenic mercury emissions, but combustion of coal is known to be the major anthropogenic source of mercury (Hg) emissions in the U.S. and world wide. To address this, EPA has recently promulgated the Clean Air Mercury Rule to reduce Hg ...

  19. 30 CFR 75.1728 - Power-driven pulleys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hands except on slow-moving equipment especially designed for hand feeding. (b) Pulleys of conveyors shall not be cleaned manually while the conveyor is in motion. (c) Coal spilled beneath belt conveyor... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1728 Power-driven pulleys. (a) Belts...

  20. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.

  1. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).

  2. Task 1.13 -- Data collection and database development for clean coal technology by-product characteristics and management practices. Semi-annual report, July 1--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflughoeft-Hassett, D.F.

    1997-08-01

    Information from DOE projects and commercial endeavors in fluidized-bed combustion and coal gasification is the focus of this task by the Energy and Environmental Research Center. The primary goal of this task is to provide an easily accessible compilation of characterization information on CCT (Clean Coal Technology) by-products to government agencies and industry to facilitate sound regulatory and management decisions. Supporting objectives are (1) to fully utilize information from previous DOE projects, (2) to coordinate with industry and other research groups, (3) to focus on by-products from pressurized fluidized-bed combustion (PFBC) and gasification, and (4) to provide information relevant tomore » the EPA evaluation criteria for the Phase 2 decision.« less

  3. LIFAC demonstration at Richmond Power and Light Whitewater Valley Unit No. 2. Final report, Volume 1 - public design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report discusses the demonstration of LIFAC sorbent injection technology at Richmond Power and Light`s (RP&L) Whitewater Valley Unit No. 2 under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North American (LIFAC NA), a joint venture partnership ofmore » Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and several other organizations including the Electric Power Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Final Report Volume 1: Public Design is to consolidate, for public use, all design and cost information regarding the LIFAC Desulfurization Facility at the completion of construction and startup.« less

  4. The feasibility of effluent trading in the energy industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all pointmore » sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.« less

  5. Coal-oil slurry preparation

    DOEpatents

    Tao, John C.

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  6. Pelletizing/reslurrying as a means of distributing and firing clean coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  7. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse disposal.

  8. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 6, April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less

  9. 76 FR 1192 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ..., the Commonwealth will control particulate matter emissions at the facilities by either shutting down coal-fired boilers, installing air emission controls, or converting the coal-fired boilers to natural gas-fired boilers. The Commonwealth will pay a civil penalty of $300,000 for past violations. The...

  10. 76 FR 30938 - The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... scientific reports assessing the environmental and water quality effects of mountaintop coal mining on Appalachian streams. Both reports, prepared by EPA scientists in the Agency's Office of Research and... responsible for the review of surface coal mining operations under the Clean Water Act. The two reports...

  11. Improved Leach Testing for Evaluating Fate of Mercury and Other Metals from Management of Coal Combustion Residues

    EPA Science Inventory

    Coal-fired power plants, the largest domestic source of atmospheric mercury emissions in the U.S., are also a major emission source of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate matter (PM). In response to the U.S. Environmental Protection Agency's (EPA's) Clean...

  12. EMISSION OF ORGANIC HAZARDOUS AIR POLLUTANTS FROM THE COMBUSION OF PULVERIZED COAL IN A SMALL-SCALE COMBUSTOR

    EPA Science Inventory

    The emissions of hazardous air pollutants (HAPs) from the combustion of pulverized coal have become an important issue in light of the requirements of Title I11 of the 1990 Clean Air Act Amendments, which impose emission limits on 189 compounds and compound classes. Although pre...

  13. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage

    EPA Science Inventory

    Among various clean energy technologies, one innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. With a relatively pure CO2 strea...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrens, I.M.; Stenzel, W.C.

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would bemore » measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.« less

  15. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 2, August--October, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during the second Quarter of a two year project to demonstrate that the air pollution, from a traveling grate stoker being used to heat water at a central heating plant in Krakow Poland, can be reduced significantly by replacing the unwashed, unsized coal now being used with a mechanically cleaned, double sized stoker fuel and by optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted in the other central heating plants in Krakow and indeed throughout Eastern European cities wheremore » coal is the primary source of heating fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC a central heating company in Krakow and Naftokrak-Naftobudowa, preparation plant designers and fabricators for this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Staszic Mine were evaluated. The data show that the ash content of this coal can be reduced from 24.4 percent to 6.24 percent by washing in a heavy media cyclone at 1.825 sp.gr.; the actual yield of clean coal would be 76.1 percent. The quest for long-term sources of raw coal to feed the proposed 300 tph stoker coal preparation plant continued throughout the reporting period. Meetings were held with Polish coal preparation equipment suppliers to obtain price and delivery quotations for long lead-time process equipment. Preliminary cost evaluations were the topic of several meetings with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project. The search for markets for surplus production from the new plant continued.« less

  16. Applications of micellar enzymology to clean coal technology. [Laccase from Polyporus versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, C.T.

    1990-07-24

    This project is designed to develop methods for pre-combustion coal remediation by implementing recent advances in enzyme biochemistry. The novel approach of this study is incorporation of hydrophilic oxidative enzymes in reverse micelles in an organic solvent. Enzymes from commercial sources or microbial extracts are being investigated for their capacity to remove organic sulfur from coal by oxidation of the sulfur groups, splitting of C-S bonds and loss of sulfur as sulfuric acid. Dibenzothiophen (DBT) and ethylphenylsulfide (EPS) are serving as models of organic sulfur-containing components of coal in initial studies.

  17. Coal-fired power generaion, new air quality regulations, and future U.S. coal production

    USGS Publications Warehouse

    Attanasi, E.D.; Root, D.H.

    1999-01-01

    Tighter new regulation of stack gas emissions and competition in power generation are driving electrical utilities to demand cleaner, lower sulfur coal. Historical data on sulfur content of produced coals shows little variability in coal quality for individual mines and individual coal-producing counties over relatively long periods of time. If coal-using power generators follow the compliance patterns established in Phase I of the 1990 Clean Air Act Amendments, then the industry's response to the tighter Phase II emissions standards will result in large amounts of coal production shifting from higher sulfur areas to areas with lower cost low sulfur coal. One reason this shift will likely occur is that currently only 30% of U.S. coal-fired electrical generating capacity is equipped with flue-gas scrubbers. In 1995, coal mines in the higher sulfur areas of the Illinois Basin and Northern and Central Appalachia employed 78% of all coal miners (>70,000 miners). A substantial geographical redistribution of the nation's coal supplies will likely lead to economic dislocations that will reach beyond local coal-producing areas.

  18. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    The 1990 Clean Air Act Amendments (CAAA) have two primary goals: pollution prevention and a market-based least-cost approach to emission control. To address air quality issues as well as permitting and enforcement, the 1990 CAAA contain 11 sections or titles. The individual amendment titles are as follows: Title I - National Ambient Air Quality Standards Title II - Mobile Sources Title III - Hazardous Air Pollutants Title IV - Acid Deposition Control Title V - Permits Title VI - Stratospheric Ozone Protection Chemicals Title VII - Enforcement Title VIII - Miscellaneous Provisions Title IX - Clean Air Research Title Xmore » - Disadvantaged Business Concerns Title XI - Clean Air Employment Transition Assistance Titles I, III, IV, and V will change or have the potential to change how operators of coal-fired utility boilers control, monitor, and report emissions. For the purpose of this discussion, Title III is the primary focus.« less

  19. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less

  20. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huffman, G.P.

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterizemore » a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.« less

  1. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 5, July 1, 1991--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkle, H.N.; Raghavan, J.K.; Smit, F.J.

    1991-11-21

    The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less

  2. WASTE AND WATER MANAGEMENT FOR CONVENTIONAL COAL COMBUSTION: ASSESSMENT REPORT - 1979. VOLUME V. DISPOSAL OF FGC (FLUE GAS CLEANING) WASTES

    EPA Science Inventory

    The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...

  3. 77 FR 49830 - Notice of Lodging of Proposed Amendment to the Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... control particulate matter emissions at its Huntingdon, Pennsylvania facility (``the Huntingdon facility'') by either shutting down coal-fired boilers, installing air emission controls on the existing unit, or converting the coal-fired boilers to natural gas-fired boilers by June 30, 2012. The Commonwealth did not...

  4. The gas heterogeneous flows cleaning technology from corona discharge field

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Tokarev, A.; Judanov, V.; Vinogradov, V.

    2017-11-01

    A nanogold capture and extraction from combustion products of Kara-Keche coal, description the process: a coal preparation to experiments, nanogold introducing in its composition, temperature and time performance of combustion, device and function of experimental apparatus, gas-purification of the gas flow process and receiving combustion products (condensate, coke, ash, rags) is offerred.

  5. THE ROLE OF COAL PROPERTIES AND COMBUSTION CONDITIONS IN THE CAPTURE OF MERCURY BY FLY ASH AND SORBENTS

    EPA Science Inventory

    The U. S. fleet of coal-fired power plants, with generating capacity of just over 300 GW, is known to be the major anthropogenic source of domestic mercury (Hg) emissions. As such, in March 2005, the U. S. Environmental Protection Agency (EPA) promulgated the Clean Air Mercury R...

  6. 78 FR 70321 - Petitions for Modification of Application of Existing Mandatory Safety Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    .... (9) Keep the working place free from accumulations of coal dust and coal spillages, and place rock... been intersected and the working place determined safe, continue mining inby the well at a distance... perforating multiple strings. (3) Place a mechanical bridge plug in the well if a cleaned-out well emits...

  7. Assessment on the Benefits from Energy Structure Optimization and Coal-fired Emission Control in Beijing: 1998-2013

    NASA Astrophysics Data System (ADS)

    Zong, Y.; He, K.; Zhang, Q.; Hong, C.

    2016-12-01

    Coal has long been an important energy type of Beijing's energy consumption. Since 1998, to improve urban air quality, Beijing has vigorously promoted the structure optimization of energy consumption. Primary measures included the implementation of strict emission standards for coal-fired power plant boilers, subsidized replacement and after-treatment retrofit of coal-fired boilers, the mandatory application of low-sulfur coal, and the accelerated use of natural gas, imported electricity and other clean energy. This work attempts to assess the emission reduction benefits on measures of three sectors, including replacing with clean energy and application of end-of-pipe control technologies in power plants, comprehensive control on coal-fired boilers and residential heating renovation. This study employs the model of Multi-resolution Emission Inventory for China (MEIC) to quantify emission reductions from upfront measures. These control measures have effectively reduced local emissions of major air pollutants in Beijing. The total emissions of PM2.5, PM10, SO2 and NOX from power plants in Beijing are estimated to have reduced 14.5 kt, 23.7 kt, 45.0 kt and 7.6 kt from 1998 to 2013, representing reductions of 86%, 87%, 85% and 16%, respectively. Totally, 14.3 kt, 24.0 kt, 136 kt and 48.7kt of PM2.5, PM10, SO2 and NOX emissions have been mitigated due to the comprehensive control measures on coal-fired boilers from 1998 to 2013. Residential heating renovation projects by replacing coal with electricity in Beijing's conventional old house areas contribute to emission reductions of 630 t, 870 t, 2070 t and 790 t for PM2.5, PM10, SO2 and NOX, respectively.

  8. Multi-Attribute Selection of Coal Center Location: A Case Study in Thailand

    NASA Astrophysics Data System (ADS)

    Kuakunrittiwong, T.; Ratanakuakangwan, S.

    2016-11-01

    Under Power Development Plan 2015, Thailand has to diversify its heavily gas-fired electricity generation. The main owner of electricity transmission grids is responsible to implement several coal-fired power plants with clean coal technology. To environmentally handle and economically transport unprecedented quantities of sub-bituminous and bituminous coal, a coal center is required. The location of such facility is an important strategic decision and a paramount to the success of the energy plan. As site selection involves many criteria, Fuzzy Analytical Hierarchy Process or Fuzzy-AHP is applied to select the most suitable location among three candidates. Having analyzed relevant criteria and the potential alternatives, the result reveals that engineering and socioeconomic are important criteria and Map Ta Phut is the most suitable site for the coal center.

  9. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This research project collected new data and developed models of collaborative, international technology innovation that can be used in the analysis of policy options for clean energy technology development. The findings show that this bilateral initiative is facilitating the technology learning to some degree, becoming a major component of the U.S.-China climate change collaboration; however, policy makers and collaborative practitioners must overcome political, administrative, cultural, and other challenges in their own national contexts before achieving more concrete outcomes.

  10. Installation of a stoker-coal preparation plant in Krakow, Poland. Quarterly technical progress report No. 3, November--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.

    1996-01-01

    This report describes the progress made during this reporting period of a two year project to demonstrate that the air pollution from a traveling grate stoker being used to heat water at a central heating plant in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost effective and hence be adopted by the other central heating plants in Krakow and indeed, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions -- MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators, for the execution of this effort. The washability data from a 20mm x 0.5mm size fraction of raw coal from the Nikwa Modrejow Mine were evaluated. The data show that the ash content of this coal can be reduced from 34.0 percent to 9.0 percent by washing in a heavy-media cyclone at 1.725 sp.gr.; the actual yield of clean coal would be 63.1 percent. This product would meet compliance limitations of 500 a of SO{sub 2}/GJ. An evaluation of the predicted results that can be expected when washing five different candidate Polish coals shows that compliance products containing less than 640 a SO{sub 2}/GJ and 10 percent ash at attractive yields can be produced by washing the raw coals in a heavy-media cyclone. Discussions with financial institutions regarding the cost of producing a quality stoker coal in Poland and for identifying sources of private capital to help cost share the project continued. The search for markets for utilizing surplus production from the new plant continued.« less

  11. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 March 1995--31 May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honaker, R.Q.; Reed, S.

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potentialmore » of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an extensive separation performance comparison between a pilot-scale Floatex Density Separator (18{times}18-inch) and an existing spiral circuit has been conducted at Kerf-McGee Coal Preparation plan for the treatment of nominally {minus}16 mesh coal. The results indicate that the Floatex is a more efficient separation device (E{sub p}=0.12) than a conventional coal spiral (E{sub p}=0.18) for Illinois seam coals. In addition, the treatment of {minus}100 mesh Illinois No. 5 fine coal from the same plant using Falcon concentrator, column flotation (Packed-Column) and their different combinations was also evaluated. For a single operation, both Falcon concentrator and column flotation can produce a clean coal product with 90% combustible recovery and 5% ash content. In the case of the combined circuit, column flotation followed by the Falcon achieved a higher combustible recovery value (about 75%) than that obtained by the individual units while maintaining an ash content less than 3%.« less

  12. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  13. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire.

    PubMed

    Sehn, Janaína L; de Leão, Felipe B; da Boit, Kátia; Oliveira, Marcos L S; Hidalgo, Gelsa E; Sampaio, Carlos H; Silva, Luis F O

    2016-03-01

    Detailed geochemistry similarities between the burning coal cleaning rejects (BCCRs) and non-anthropogenic geological environments are outlined here. While no visible flames were detected, this research revealed that auto-combustion existed in the studied area for many years. The occurrence of several amorphous phases, mullite, hematite and many other Al/Fe-minerals formed by high temperature was found. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present work using multi-analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and newmineral creation. It recording huge numbers of rare minerals with alunite, montmorillonite, szmolnockite, halotrichite, coquimbite and copiapite at the BCCRs. The information presented the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing potential hazardous elements (PHEs), such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. Most of the nano-particles and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important impact to environment and subsequently animal and human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Introduction

    USGS Publications Warehouse

    Warwick, Peter D.; Hook, Robert W.; SanFilipo, John R.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) team of the U.S. Geological Survey (USGS) has assessed the quantity and quality of coal beds and zones that could be mined during the next 20 years or more. Geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the Gulf of Mexico Coastal Plain, (Gulf Coast) (Figure 1). In particular, the NCRA assessed coal-quality information and characterized environmentally significant trace elements, such as arsenic and mercury, that are defined in and administered by 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of various USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal_assessments/index.html, and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).

  15. Low-Cost Options for Moderate Levels of Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon Sjostrom

    2006-03-31

    On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progressmore » to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.« less

  16. Direct liquefaction proof-of-concept facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfred G. Comolli; Peizheng Zhou; HTI Staff

    2000-01-01

    The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to thosemore » in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.« less

  17. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    PubMed

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (<0.4 wt%). Fuming of lead and zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  18. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.« less

  19. STochastic Analysis of Technical Systems (STATS): A model for evaluating combined effects of multiple uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kranz, L.; VanKuiken, J.C.; Gillette, J.L.

    1989-12-01

    The STATS model, now modified to run on microcomputers, uses user- defined component uncertainties to calculate composite uncertainty distributions for systems or technologies. The program can be used to investigate uncertainties for a single technology on to compare two technologies. Although the term technology'' is used throughout the program screens, the program can accommodate very broad problem definitions. For example, electrical demand uncertainties, health risks associated with toxic material exposures, or traffic queuing delay times can be estimated. The terminology adopted in this version of STATS reflects the purpose of the earlier version, which was to aid in comparing advancedmore » electrical generating technologies. A comparison of two clean coal technologies in two power plants is given as a case study illustration. 7 refs., 35 figs., 7 tabs.« less

  20. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less

  1. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  2. Reducing Coal Dust With Water Jets

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  3. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-11-01

    Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    PubMed

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  5. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    NASA Astrophysics Data System (ADS)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used for residential heating can be replaced with gas-burning wall-heaters, ground-source heat pumps, solar energy and electricity. In areas with inadequate clean energy sources, low-sulfur coal should be used instead of the traditional raw coal with high sulfur and ash content, thereby slightly reducing the emissions of PM, SO2, CO and other toxic pollutants.

  6. Research and development on membrane processes for removal of acid gases during coal gasification. Final report, 20 June 1975-19 October 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, R.J.; Cadotte, J.E.; Conway, E.J.

    1976-01-01

    The object of this program was to develop novel and unique membranes for separating acid gases from coal gasification streams. Many candidate membranes, including cationic, hydrophilic, and silicone, were tested. Optimum separation properties were possessed by membranes formulated from crosslinked methyl cellulose coated on polysulfone support films. The observed separation properties were explained theoretically by the solubility of the various gases in the water contained within the membranes rather than by activated transport. Each of the acid gas clean-up processes considered required additional sulfur clean-up, a guard chamber, and a Claus plant for recovering sulfur. These additional costs were calculatedmore » and added to the base costs for acid gas removal from the raw SNG. When the additional costs were added to the costs of the Rectisol, Benfield, Sulfinol, and fluidized dolomite processes the total costs ranged from 43 to 49 cents/Mscf. For the membrane process the additional sulfur removal costs were about 3.3 cents/Mscf to be added to the base costs for acid gas removal. The best membrane composition found during this program, one which exhibited a CO/sub 2//H/sub 2/ selectivity of 13 at a CO/sub 2/ flux of 6 ft/sup 3//ft/sup 2/-hr-100 psi, would entail a process cost of about 53 cents/Mscf with these additions. This is about 7 cents/Mscf more than for the average of the other processes. No better membrane performance is predicted on the basis of the experiments performed. Without a shift in several cost factors, membranes cannot be competitive. The possibility that reduced energy availability could lead to such shifts should not be discounted but is not foreseen in the near future.« less

  7. Technological and economic aspects of coal biodesulfurisation.

    PubMed

    Klein, J

    1998-01-01

    The sulfur found in coal is either part of the molecular coal structure (organically bound sulfur), is contained in minerals such as pyrite (FeS2), or occurs in minor quantities in the form of sulfate and elemental sulfur. When pyrite crystals are finely distributed within the coal matrix, mechanical cleaning can only remove part of the pyrite. It can, however, be removed by microbial action requiring only mild conditions. The process involves simple equipment, almost no chemicals, but relatively long reaction times, and treatment of iron sulfate containing process water. Different process configurations are possible, depending on the coal particle size. Coal with particle sizes of less than 0.5 mm is preferably desulfurised in slurry reactors, while lump coal (> 0.5 mm) should be treated in heaps. Investment and operating costs are estimated for different process configurations on an industrial scale. Concerning the organically bound sulfur in coal there is up to now no promising biochemical pathway for the degradation and/or desulfurisation of such compounds.

  8. Driving it home: choosing the right path for fueling North America's transportation future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Tablemore » of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.« less

  9. Boiler MACT Technical Assistance (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012.more » This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.« less

  10. Federal Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold W.

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical andmore » legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.« less

  11. Survey of Microcleaning Methods for Application to Army Coal-Fired Plants

    DTIC Science & Technology

    1989-02-01

    Authority (TVA) has successfully reduced its cost of controlling SOX by combining postcombustion flue gas desulfurization equipment with precombustion coal...effective way of meeting the new standards for SOl Several options are available, in- cluding flue gas desulfurization , fluidized bed combustors, and...are available, including flue gas desulfurization , fluidized bed combustors, and precombustion cleaning. This report (Cont’d.) 20 DISTRIBUTION

  12. 76 FR 19127 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    .... City of Vineland, New Jersey, Civil Action No. 1:11-cv-1826 was lodged with the United States District... injunctive relief for Defendant City of Vineland, New Jersey's (``the City'') violations of the Clean Air Act, 42 U.S.C. 7401 et seq., at the Vineland Municipal Electric Utility's oil- and coal-fired electric...

  13. Simultaneous Removal of SO2, NOx, and Hg from Coal Flue Gas Using a NaClO2-Enhanced Wet Scrubber

    EPA Science Inventory

    On March 10,2005, the EPA issued the Clean Air Interstate Rule which, when fully implemented in 2015, will reduce sulfur dioxide and nitrogen oxides emissions in the eastern United States by over 70% and 60%, respectively, from 2003 levels. On March 15, 2005, the Clean Air Mercur...

  14. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  15. Coal reburning for cyclone boiler NO sub x control demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  16. Field Demonstration of Enhanced Sorbent Injection for Mercury Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin Kang; Robert Schrecengost

    2009-01-07

    Alstom Power Inc. has conducted a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. DE-FC26-04NT42306) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. Mer-Cure{trademark} utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. Mer-Cure{trademark} is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. This full-scale demonstration program was comprised of three seven-week long test campaigns at three host sites including PacifiCorp's 240-MW{sub e} Dave Johnston Unit No.3 burning a Powder River Basin (PRB) coal, Basin Electric's 220-MW{sub e} Leland Olds Unit No.1 burning a North Dakota lignite, and Reliant Energy's 170-MW{sub e} Portland Unit No.1 burning an Eastern bituminous coal. All three boilers are equipped with electrostatic precipitators. The goals for this Round 2 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the previous target ofmore » $$60,000/lb mercury removed. The results for all three host sites indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90%. The estimated mercury removal costs were 25-92% lower than the benchmark of $$60,000/lb mercury removed. The estimated costs for control, at sorbent cost of $1.25 to $2.00/lb respectively, are as follows: (1) Dave Johnston Unit No.3--$2,650 to $4,328/lb Hg removed (92.8% less than $60k/lb); (2) Leland Olds Unit No.1--$8,680 to $13,860/lb Hg removed (76.7% less than $60k/lb); and (3) Portland Unit No.1--$28,540 to $45,065/lb Hg removed (24.9% less than $60k/lb). In summary, the results from demonstration testing at all three host sites show that the goals established by DOE/NETL were exceeded during this test program. Mercury removal performance4 of greater than 90% reduction was above the 50-70% reduction goal, and mercury removal cost of 25-92% lower than the benchmark was above the 25 to 50% cost reduction goal.« less

  17. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Interim report, October 1978-November 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooher, J. P.

    1979-11-15

    The rheological and combustion properties of coal/water/oil mixtures have been investigated. In addition the use of alkaline additives to remove the sulfur oxide gases has been studied. Results on stability and pumpability indicate that mixtures of 50% by weight of coal and stoichiometric concentrations of alkaline absorbents are pumpable. Correlation between viscometer data and pumping data follows a power law behavior for these mixtures. Thermal efficiencies are about the same as for pure oil. Combustion efficiencies are approximately 97%. It is possible to remove in a small scale combustion from 50 to 80% of the sulfur dioxide gases.

  18. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  19. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  20. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  1. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  2. 30 CFR 900.13 - Federal programs and Federal coal exploration programs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Federal programs and Federal coal exploration... INTRODUCTION § 900.13 Federal programs and Federal coal exploration programs. The rules for each Federal program and Federal coal exploration program are codified below under the assigned part for the particular...

  3. Pinon Pine power project nears start-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatar, G.A.; Gonzalez, M.; Mathur, G.K.

    1997-12-31

    The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing ofmore » the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.« less

  4. Iowa State Mining and Mineral Resources Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-08-01

    This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchancemore » how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.« less

  5. Clean coal technology: an environmental perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Princiotta, F.T.

    1988-08-01

    Although this paper focuses on past (since 1920) and current coal use and pollutant emissions in the U.S., it also discusses where the U.S. may be going in terms of pollutant emissions over the next several decades. Conclusions of this look at coal use include the fact that increasing coal use is vital to the economic wellbeing of the U.S. With proper application of controls, coal use can be increased as projected without unacceptable levels of sulfur and nitrogen oxides, particulate, and nitrous oxide. However, the forecast is bleaker for carbon dioxide and its projected impact on global warming. Barringmore » a technology breakthrough of major proportions (e.g., successful commercialization of nuclear fusion or solar electric generation), the best that can be envisioned is to moderate carbon dioxide emissions from the combustion of coal and other fuels through conservation.« less

  6. A summary of the U.S. Geological Survey 1999 resource assessment of selected coal zones in the Northern Rocky Mountains and Great Plains region, Wyoming, Montana, and North Dakota

    USGS Publications Warehouse

    Ellis, M.S.; Nichols, D.J.

    2002-01-01

    In 1999, 1,100 million short tons of coal were produced in the United States, 38 percent from the Northern Rocky Mountains and Great Plains region. This coal has low ash content, and sulfur content is in compliance with Clean Air Act standards (U.S. Statutes at Large, 1990).The National Coal Resource Assessment for this region includes geologic, stratigraphic, palynologic, and geochemical studies and resource calculations for 18 major coal zones in the Powder River, Williston, Green River, Hanna, and Carbon Basins. Calculated resources are 660,000 million short tons. Results of the study are available in U.S. Geological Survey Professional Paper 1625?A (Fort Union Coal Assess-ment Team, 1999) and Open-File Report 99-376 (Flores and others, 1999) in CD-ROM format.

  7. Research on the competitiveness and development strategy of china's modern coal chemical industry

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  8. U.S. Geological Survey resource assessment of selected Tertiary coal zones in Wyoming, Montana and North Dakota

    USGS Publications Warehouse

    Nichols, D.J.; Ellis, M.S.

    2003-01-01

    In 1999, 1 Gt (1.1 billion st) of coal was produced in the United States. Of this total, 37% was produced in Wyoming, Montana and North Dakota. Coals of Tertiary age from these states typically have low ash contents. Most of these coals have sulfur contents that are in compliance with Clean Air Act standards and most have low concentrations of the trace elements that are of environmental concern. The U.S. Geological Survey (USGS) National Coal Resource Assessment for these states includes geologic, stratigraphic, palynologic and geochemical studies and resource calculations for major Tertiary coal zones in the Powder River, Williston, Greater Green River, Hanna and Carbon Basins. Calculated resources are 595 Gt (655 billion st). Results of the study are available in a USGS Professional Paper and a USGS Open-File Report, both in CD-ROM format.

  9. Harnessing methane

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The total methane resource in hydrates—ice-like substances found in deep ocean sediments and Arctic permafrost—exceeds the energy content of all other fossil fuel resources,such as coal, oil, and conventional gas, according to the U.S. Geological Survey (USGS).The Methane Hydrate Research and Development Act, signed into law by U.S. President Bill Clinton on May 3, establishes a new federal commitment to developing methane hydrates, which has been touted as a potentially clean energy source that could make the U.S. less dependent on foreign sources of energy. The bill authorizes $47.5 million over five years for the Department of Energy to establish a federal methane hydrate research and development program.

  10. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  11. Flue gas conditioning today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southam, B.J.; Coe, E.L. Jr.

    1995-12-01

    Many relatively small electrostatic precipitators (ESP`s) exist which collect fly ash at remarkably high efficiencies and have been tested consistently at correspondingly high migration velocities. But the majority of the world`s coal supplies produce ashes which are collected at much lower migration velocities for a given efficiency and therefore require correspondingly large specific collection areas to achieve acceptable results. Early trials of flue gas conditioning (FGC) showed benefits in maximizing ESP performance and minimizing expense which justified continued experimentation. Trials of several dozen ways of doing it wrong eventually developed a set of reliable rules for doing it right. Onemore » result is that the use of sulfur trioxide (SO{sub 3}) for adjustment of the resistivity of fly ash from low sulfur coal has been widely applied and has become an automatically accepted part of the option of burning low sulfur coal for compliance with the Clean Air Act of l990 in the U.S.A. Currently, over 100,000 MW of generating capacity is using FGC, and it is estimated that approximately 45,800 MW will utilize coal-switching with FGC for Clean Air Act emission compliance. Guarantees that this equipment will be available to operate at least 98 percent of the time it is called upon are routinely fulfilled.« less

  12. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstratemore » that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.« less

  13. Coal Quality and Major, Minor, and Trace Elements in the Powder River, Green River, and Williston Basins, Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future mining and development. This report contains summary tables, histograms, and isopleth maps of coal analyses. Details of the compositional internal variability of the coal beds are based on the continuous vertical sampling of coal sequences, including beds in the deeper part of the PRB. Such sampling allows for close comparisons of the compositions of different parts of coal beds as well as within the same coal beds at different core hole locations within short distances of each other.

  14. The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Quarterly] technical report, December 1, 1991--February 29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, V.J.

    The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the pre-combustion removal of sulfur from coal. Microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal; however, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal samples for subsequent biodesulfurization. During the current quarter, chemical comminution and combined chemical treatment/explosivemore » comminution experiments have been performed to generate coal samples with increased surface area and porosity. Ammonia vapor was found to be the most effective chemical comminution agent and the optimum conditions for combined chemical treatment/explosive comminution have not yet been determined.« less

  15. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  16. Gas processing handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-04-01

    Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.

  17. United States Energy Policy: Security Not Independence

    DTIC Science & Technology

    2013-03-01

    the ecosystem. Examples include fish migration considerations for hydropower, birds and bats being killed in wind turbine blades, and many of the U.S...declining oil imports, and domestic energy exploration will remain American priorities. He went on to list wind , solar, clean coal, and biofuels as...crops - Winds not constant or reliable -Impact to ecosystem -Unsightly addition to landscape Solar16 -Renewable and clean -Minimal impact to

  18. Energy Research Highlights-2

    ScienceCinema

    None

    2018-01-16

    Highlights the research NETL is doing in the following fields: Clean Coal, Gasification, Carbon Sequestration, and Hydrogen. This video was featured in the lobby of the Forrestal building in Washington, D.C.

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasolinemore » fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.« less

  20. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  1. Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.R.

    1983-09-30

    This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

  2. Evaluating the feasibility of underground coal gasification in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.C.; Harju, J.A.; Schmit, C.R.

    Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south ofmore » Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.« less

  3. Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.

    2009-04-01

    Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate electricity with efficiency as high as 55% and overall UCG-IGCC process efficiency reaching 43%. Regarding to environmental problems the UCG minimize environmental impacts (waste piles/acid mine drainage) and reduce CO2 emissions because syngas contains CO2 that can be captured with relatively low-energy penalty. The Clean Coal Technologies (CCT), especially UCG and ECBM projects, will be a key factor to maintain the annual state's economy expansion associated with energy efficiency improvement programs.

  4. Micronized coal-fired retrofit system for SO{sub x} reduction Krakow clean fossil fuels and energy efficiency program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report describes results of a technical, financial and environmental assessment study for a project, which would have included a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex; Krzeszowice, Poland. Project site is about 20 miles west of Krakow, Poland. During the project study period, PHRO utilized 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers burn a high-sulfur content heavy crude oil, called mazute, The project study was conducted during a period extended from March 1996 throughmore » February 1997. For size orientation, the PHRO Greenhouse complex grows a variety of vegetables and flowers for the Southern Poland marketplace. The greenhouse area under glass is very large and equivalent to approximately 50 football fields, The new micronized coal fired boiler would have: (1) provided a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduced sulfur dioxide air pollution emissions, while satisfying new Polish air regulations, and (3) provided attractive savings to PHRO, based on the quantity of displaced oil.« less

  5. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled "Krakow Clean Fossil Fuels and Energy Efficiency Program." The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI's cooperative agreement is to apply combustion controls to existing boiler plantsmore » in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI's combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.« less

  6. 30 CFR 206.460 - Transportation allowances-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... washing allowance and the transportation allowance reduce the value for royalty purposes to zero. (c)(1... quantity of clean coal output and the rejected waste material. The transportation allowance shall be...

  7. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was tomore » provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.« less

  8. Automated flotation control at Jim Walter Resources, Mining Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchfield, J.W.

    1993-12-31

    Jim Walter Resources (JWR), Mining Division, operates in west-central Alabama in Jefferson and Tuscaloosa Counties. Their products are divided into two grades, three to four million tons of high Btu, low sulfur steam coal, and five to six million tons of medium to low volatile metallurgical coal. Predominantly, the Blue Creek seam of coal in the Warrior Basin is mined. This coal is known for its high Btu content, low sulfur, and strong coking qualities, coupled with a very high grindability. This last quality of high grindability has been very challenging for their preparation plants. Normally, after some processing degradation,more » their clean coal product will range from 40--50% minus 28 mesh. One can easily see from these numbers that froth flotation is critical to clean coal recovery and mine cost. Flotation, unlike most processing equipment, keeps most of its activity and a lot of its chemistry under a bed of froth in the cells. there are many operating variables that are constantly changing, and Management, no matter how responsive they are, cannot react quickly enough. Therefore, automated flotation appeared to be the natural course of action for a mining company that produces a minimum of 40% of its marketable product from flotation cells. The two companies that were supply their flotation chemicals came forward with proposals to fill their needs. Nalco, who has for some time had their Opticus system being tested and utilized in the industry, and Stockhausen (formerly Betz Chemical Co.). Stockhausen had no system of their own, but acquired a system from Process Technology, Inc. (PTI). JWR assigned a plant to each vendor for installation of their systems. The paper describes both systems and their performance.« less

  9. Air Emissions Inventory Guidance Document for Stationary Sources at Air Force Installations.

    DTIC Science & Technology

    1999-05-01

    small stoker-fired boilers). sox Change to lower sulfur coal, Coal Cleaning, Flue Gas Desulfurization (e.g., wet scrubbing, spray drying, furnace...Multiclone Collector. SOx Flue Gas Desulfurization (e.g., wet , semi-dry, or dry scrubbers) NOx Low Excess Air, Burners out of Service, Biased Burner...both flue gas desulfurization spray dryer adsorber (FGD-SDA) and a fabric filter (FF). d Factors apply to boilers equipped with an electrostatic

  10. The properties of the nano-minerals and hazardous elements: Potential environmental impacts of Brazilian coal waste fire.

    PubMed

    Civeira, Matheus S; Pinheiro, Rafael N; Gredilla, Ainara; de Vallejuelo, Silvia Fdez Ortiz; Oliveira, Marcos L S; Ramos, Claudete G; Taffarel, Silvio R; Kautzmann, Rubens M; Madariaga, Juan Manuel; Silva, Luis F O

    2016-02-15

    Brazilian coal area (South Brazil) impacted the environment by means of a large number of coal waste piles emplaced over the old mine sites and the adjacent areas of the Criciúma, Urussanga, and Siderópolis cities. The area studied here was abandoned and after almost 30 years (smokeless visual) some companies use the actual minerals derived from burning coal cleaning rejects (BCCRs) complied in the mentioned area for industry tiles or refractory bricks. Mineralogical and geochemical similarities between the BCCRs and non-anthropogenic geological environments are outlined here. Although no visible flames were observed, this study revealed that auto-combustion existed in the studied area for many years. The presence of amorphous phases, mullite, hematite and other Fe-minerals formed by high temperature was found. There is also pyrite, Fe-sulphates (eg. jarosite) and unburnt coal present, which are useful for comparison purposes. Bad disposal of coal-dump wastes represents significant environmental concerns due to their potential influence on atmosphere, river sediments, soils and as well as on the surface and groundwater in the surroundings of these areas. The present study using advanced analytical techniques were performed to provide an improved understanding of the complex processes related with sulphide-rich coal waste oxidation, spontaneous combustion and mineral formation. It is reporting huge numbers of rare minerals with alunite, montmorillonite, szomolnokite, halotrichite, coquimbite and copiapite at the BCCRs. The data showed the presence of abundant amorphous Si-Al-Fe-Ti as (oxy-)hydroxides and Fe-hydro/oxides with goethite and hematite with various degrees of crystallinity, containing hazardous elements, such as Cu, Cr, Hf, Hg, Mo, Ni, Se, Pb, Th, U, Zr, and others. By Principal Component Analysis (PCA), the mineralogical composition was related with the range of elemental concentration of each sample. Most of the nano-minerals and ultra-fine particles found in the burned coal-dump wastes are the same as those commonly associated with coal cleaning rejects, in which oxidation of sulphides plays an important role to environment and human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  12. Executive summary - Geologic assessment of coal in the Gulf of Mexico coastal plain, U.S.A.

    USGS Publications Warehouse

    Warwick, Peter D.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The National Coal Resource Assessment (NCRA) project of the U.S. Geological Survey (USGS) has assessed the quantity and quality of the nation's coal deposits that potentially could be mined during the next few decades. For eight years, geologic, geochemical, and resource information was collected and compiled for the five major coal-producing regions of the United States: the Appalachian Basin, Illinois Basin, Northern Rocky Mountains and Great Plains, Colorado Plateau, and the western part of the Gulf of Mexico Coastal Plain (Gulf Coast) region (Figure 1). In particular, the NCRA assessed resource estimates, compiled coal-quality information, and characterized environmentally sensitive trace elements, such as arsenic and mercury, that are mentioned in the 1990 Clean Air Act Amendments (U.S. Environmental Protection Agency, 1990). The results of the USGS coal assessment efforts may be found at: http://energy.cr.usgs.gov/coal/coal-assessments/index.html and a summary of the results from all assessment areas can be found in Ruppert et al. (2002) and Dennen (2009).Detailed assessments of the major coal-producing areas for the Gulf Coast region along with reviews of the stratigraphy, coal quality, resources, and coalbed methane potential of the Cretaceous, Paleocene, and Eocene coal deposits are presented in this report (Chapters 5-10).

  13. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  14. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  15. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  16. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  17. Romania Country Analysis Brief

    EIA Publications

    2014-01-01

    Romania’s energy strategy is to secure supply through both fuel imports and domestic supplies and maintain a balanced energy resource portfolio by promoting clean coal technologies, nuclear energy, renewable energy expansion, and shale gas development.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, L.

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  19. Testing of the 15-inch air-sparged hydrocyclone for fine coal flotation at the Homer City preparation plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.; Yi, Y.; Gopalakrishnan, S.

    1993-12-31

    Previous plant testing had been limited to the processing of minus 100 mesh classifier overflow (Upper Freeport Coal {approximately} 20% ash) with the 6-inch air-sparged hydrocyclone (ASH-6C) as reported at Coal Prep 92. The ASH-6C unit was found to provide separation efficiencies equivalent, or superior, to separations with the ASH-2C system. During the summer of 1992 the construction of the first 15-inch air-sparged hydrocyclone prototype was completed by the Advanced Processing Technologies, Inc. Installation at the Homer City Coal Preparation Plant was accomplished and testing began in October 1992. The ASH-15C unit can operate at a flowrate as high asmore » 1,000 gpm. Experimental results are reported with respect to capacity, combustible recovery and clean coal quality.« less

  20. Environmental regulations and energy for home heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.S.; Fishelson, G.; Gardner, J.L.

    1975-01-01

    A cost/benefit study of environmental policies supports banning coal as an urban fuel. In an analysis of the Chicago area a coal ban resulted in costs exceeding benefits in only 16 of 172 square miles. In 54 areas benefits were double costs. Benefits include improved air quality, health, and savings on cleaning supplies, and showed no income or racial preferences. As coal use declines, natural gas and oil will increase in demand and price. Two methods for increasing natural gas price would be Federal deregulation of wellhead gas and a fuel policy allowing price increases in response to local shortages.more » (DCK)« less

  1. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  2. Clean-Coal Technology By-Products Used in a Highway Embankment Stabilization Demonstration Project

    DTIC Science & Technology

    1994-01-01

    the conventional coal combustion process (Tismach, 1993). -- 0.. 3 The flue gas desulfurization (FGD) material used in this study was produced at...suitable material for stabilizing this slide. 000 Figure 1.3: SR 83 Cross-Section. i0l 11 1.4 Scope and Limitations The disposal of flue gas ...Sciences, Washington, DC. 19. Taha, R., "Environmental and Engineering Properties of Flue Gas Desulfuimzation Gypsum," Preprint. 72nd Annual Meetin

  3. Fort Campbell Childers House: Historic Maintenance and Repair Manual

    DTIC Science & Technology

    2006-09-01

    coal-tar pitch and surfaced with a layer of gravel or slag in a heavy coat of asphalt or coal-tar pitch or finished with a cap sheet; generally used...such as lead, tin, copper, terneplate, and zinc with appropriate chemical methods because their finishes can be easily abraded by blasting methods...tin, copper, terneplate, and zinc with grit blasting which will abrade the surface of the metal. • Using cleaning methods, which alter or damage

  4. Suppression of pyritic sulphur during flotation tests using the bacterium Thiobacillus ferrooxidans.

    PubMed

    Townsley, C C; Atkins, A S; Davis, A J

    1987-07-01

    Environmental concern about sulphur dioxide emissions has led to the examination of the possibility of removing pyritic sulphur from coal prior to combustion during froth flotation, a routine method for coal cleaning at the pit-head. The bacterium Thiobacillus ferrooxidans was effective in leaching 80% and 63% -53 mum pyrite at 2% and 6% pulp density in shake flasks in 240 and 340 h, respectively.The natural floatability of pyrite was significantly reduced in the Hallimond tube following 2.5 min of conditioning in membrane-filtered bacterial liquor prior to flotation. The suppression effect was greatly enhanced in the presence of Thiobacillus ferrooxidans. A bacterial suspension in pH 2.0 distilled water showed 85% suppression, whereas in spent growth liquor this value was 95%. The optimum bacterial density was 3.25 x 10(10) cells/g pyrite in 230-ml distilled water (2% pulp density) in the Hallimond tube. The degree of suppression by the cells was related to particle size but not to pH or temperature. The sulphur content of a synthetic coal/pyrite mixture was reduced from 10.9 to 2.1% by flotation after bacterial preconditioning. It is postulated that pyrite removal in coals which are cleaned by froth flotation could be significantly reduced using a bacterial preconditioning stage with a short residence time of 2.5 min.

  5. Politics, economic distress mark Rmoga sessions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This paper reports that election year energy politics clashed with economic distress at Rocky Mountain Oil and Gas Association's annual meeting in Denver early this month. Energy Sec. James D Watkins used the occasion to hail omnibus energy legislation passed by a House-Senate conference committee just hours before he spoke. But not all producers and refiners in the audience shared his enthusiasm for the energy bill, a hard-won Bush administration goal that many Rmoga members doubt will help this industry much. Several of them privately expressed dismay over Watkins' praise, delivered to a beleaguered oil and gas group, of Departmentmore » of Energy research programs boosting clean coal technology and battery powered vehicles.« less

  6. Landslide remediation on Ohio State Route 83 using clean coal combustion by-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payette, R.; Chen, Xi You; Wolfe, W.

    1995-12-31

    The disposal of flue gas desulfurization (FGD) by-products has become a major concern as issues of emission cleansing and landfill costs continue to rise. Laboratory tests conducted at the Ohio State University have shown that dry FGD by-products possess certain engineering properties that have proven desirable in a number of construction uses. As a follow on to the laboratory program, a field investigation into engineering uses of dry FGD wastes was initiated. In the present work, an FGD by-product was used to reconstruct the failed portion of a highway embankment. The construction process and the stability of the repaired embankmentmore » are examined.« less

  7. 78 FR 50447 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Cleanup...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... for OMB Review; Comment Request; Cleanup Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the... (ICR) proposal; titled, ``Cleanup Program for Accumulations of Coal and Float Coal Dusts, Loose Coal...

  8. Recent experience with the CQE{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, C.D.; Kehoe, D.B.; O`Connor, D.C.

    1997-12-31

    CQE (the Coal Quality Expert) is a software tool that brings a new level of sophistication to fuel decisions by seamlessly integrating the system-wide effects of fuel purchase decisions on power plant performance, emissions, and power generation costs. The CQE technology, which addresses fuel quality from the coal mine to the busbar and the stack, is an integration and improvement of predecessor software tools including: EPRI`s Coal Quality Information System, EPRI`s Coal Cleaning Cost Model, EPRI`s Coal Quality Impact Model, and EPRI and DOE models to predict slagging and fouling. CQE can be used as a stand-alone workstation or asmore » a network application for utilities, coal producers, and equipment manufacturers to perform detailed analyses of the impacts of coal quality, capital improvements, operational changes, and/or environmental compliance alternatives on power plant emissions, performance and production costs. It can be used as a comprehensive, precise and organized methodology for systematically evaluating all such impacts or it may be used in pieces with some default data to perform more strategic or comparative studies.« less

  9. Formulation of low solids coal water slurry from advanced coal cleaning waste fines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, J.J.; Morrison, J.L.; Lambert, A.

    1997-07-01

    GPU Genco, the New York State Electric and Gas Corporation (NYSEG), Penn State University and the Homer City Coal Processing Corporation are conducting characterization and formulation tests to determine the suitability of using minus 325 mesh coal waste fines as a low solids coal water slurry (CWS) co-firing fuel. The fine coal is contained in a centrifuge effluent stream at the recently modified Homer City Coal Preparation Plant. Recovering, thickening and then co-firing this material with pulverized coal is one means of alleviating a disposal problem and increasing the Btu recovery for the adjacent power plant. The project team ismore » currently proceeding with the design of a pilot scale system to formulate the effluent into a satisfactory co-firing fuel on a continuous basis for combustion testing at Seward Station. The ultimate goal is to burn the fuel at the pulverized coal units at the Homer City Generating Station. This paper presents the success to date of the slurry characterization and pilot scale design work. In addition, the paper will update GPU Genco`s current status for the low solids coal water slurry co-firing technology and will outline the company`s future plans for the technology.« less

  10. Addition to the Lewis Chemical Equilibrium Program to allow computation from coal composition data

    NASA Technical Reports Server (NTRS)

    Sevigny, R.

    1980-01-01

    Changes made to the Coal Gasification Project are reported. The program was developed by equilibrium combustion in rocket engines. It can be applied directly to the entrained flow coal gasification process. The particular problem addressed is the reduction of the coal data into a form suitable to the program, since the manual process is involved and error prone. A similar problem in relating the normal output of the program to parameters meaningful to the coal gasification process is also addressed.

  11. Mining (except Oil and Gas) Sector (NAICS 212)

    EPA Pesticide Factsheets

    EPA Regulatory and enforcement information for the mining sector, including metal mining & nonmetallic mineral mining and quarrying. Includes information about asbestos, coal mining, mountaintop mining, Clean Water Act section 404, and abandoned mine lands

  12. Inspection of KCBX Terminals Company, Chicago, Illinois – May 10, 2012

    EPA Pesticide Factsheets

    EPA inspected the petroleum coke (petcoke) facility to investigate a coal dust complaint, and evaluate for compliance with the facility's Federally Enforceable State Operating Permit (FESOP) and the Clean Air Act.

  13. Carbonated Science Cleans Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, Roger; Heldebrant, David; Glezakou, Vand

    Similar to the properties of soda, liquid solvents can efficiently capture and convert carbon dioxide from coal power plants. Researchers at PNNL explain this process and how this method can turn captured carbon into plastic or fuel.

  14. Coal fracturing and heteroatom removal. Annual report, fiscal year 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapienza, R.; Slegeir, W.; Butcher, T.

    1983-09-01

    Coal-water slurry fuels offer a practical, economical method to use coal, replacing the 3 million barrels of oil used per day to fuel utility boilers, industrial heaters, and furnaces in the US. The mineral matter and in some cases the costs of grinding are major impediments to the direct use of this fuel in existing fluid fuel combustors. A process for the simultaneous cleaning and fracturing of a variety of coals has been explored at Brookhaven National Laboratory. This process entails exposure of coal to a carbon dioxide-water solvent system under pressure. Substantial amounts of mineral matter are leached intomore » the liquid phase, significantly lowering the concentrations of alkaline, and alkaline earth metals, and of silica- and alumina-like minerals in the coal. Grindability studies have been conducted in a laboratory ball mill using processed coal. Grinding times for large-size feed coal (1-3/8 to 3/8 in.) are reduced by a factor up to 10 following exposure to CO/sub 2//water. With smaller-feed coal (4 x 8 mesh), however, improvements in grindability are much smaller. An integrated system has been constructed in which coal is ground while under CO/sub 2/ pressure. Significant improvements in grindability have been observed with this system, even with smaller-feed coal. 20 refs., 8 figs., 24 tabs.« less

  15. Federal coal follies: a new program ends (begins) a decade of anxiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J.L.

    1980-01-01

    The history, outline, and implementation of the new Federal Coal Management Program (FCMP) which has preoccupied the Department of Interior during the administrations of at least three presidents. The introduction briefly reviews the coal resource in the United States in general and the Federal coal resource in particular. Part II outlines the history of the Federal coal-leasing program over the decade of the 1970's. This is followed in Part III by a detailed discussion of the new FCMP which has been developed over the last two years and is now in the initial stages of implementation. Part III will focusmore » on the principal differences between the old and new coal programs. Part IV provides a critical review of the new program and discusses recommendations for revisions. Part V concludes that the future of Federal coal leasing may depend on whether the FCMP can generate the timely and defensible data needed to stimulate renewed coal development. 310 references, 6 figures, 2 tables.« less

  16. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  17. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  18. Process control systems at Homer City coal preparation plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shell, W.P.

    1983-03-01

    An important part of process control engineering is the implementation of the basic control system design through commissioning to routine operation. This is a period when basic concepts can be reviewed and improvements either implemented or recorded for application in future systems. The experience of commissioning the process control systems in the Homer City coal cleaning plant are described and discussed. The current level of operating control performance in individual sections and the overall system are also reported and discussed.

  19. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Fort Hood, Texas Site. Project Description,

    DTIC Science & Technology

    1985-07-01

    and Operation 132 6.7.5 Safety 135 6.7.6 System Control Description 136 6.7.6.1 Coal Gasification 136 6.7.6.2 Gas Cooling, Cleaning and Compression...the hydrogen content. The gas is then desulfurized and heated before final polishing and feeding to the fuel cell. Receiving compressed fuel gas and...4 CO Shift 1 Stretford Desulfurizer 3 Gas Compressors 3 Material Handling(3) 3 Subtotal 39 Scheduled Shutdown 14 Total Annual Shutdown 53

  20. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  1. CBTLE Data

    EPA Pesticide Factsheets

    Data used in the manuscript's tables and figures. Most data represent the modeled optimal capacity of the coal-and-biomass-to-liquid fuels-and-electricity (CBTLE) with integrated carbon capture and sequestration (CCS) over a wide range of scenarios.This dataset is associated with the following publication:Aitken, M., D. Loughlin , R. Dodder , and W. Yelverton. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY. Springer-Verlag, New York, NY, USA, 18(2): 573-581, (2015).

  2. Energy Technology.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  3. CIBO frets most about nuts and bolts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-24

    The Environmental Protection Agency may reduce the fuel-emission standards for new boilers because the Council of Industrial Boiler Owners (CIBO) claims the standards assume stacks that are higher than those used for coal-fired boilers. CIBO is unique in concentrating on furnishing technical information rather than on broad policy issues. The group sees fuel utilization rather than fuel supply issues as an area in which it can have the greatest influence. Organized in response to President Carter's 1978 proposals for coal conversion, followed by the Fuel Use Act and the Clean Air Act Amendments, CIBO spokesmen are critical of the conversionmore » emphasis and feel the regulations should concentrate on new equipment. The group's efforts will be directed at changing fuel-use regulations, helping users get exemptions, and finding ways for users to accommodate the regulations. It supports implementation of the Clean Air Act, although it recommends a relaxed timetable. (DCK)« less

  4. Research on PM2.5 emission reduction path of China ‘s electric power industry based on DEA model

    NASA Astrophysics Data System (ADS)

    Jin, Yanming; Yang, Fan; Liu, Jun

    2018-02-01

    Based on the theory of data envelopment analysis, this study constructs the environmental performance evaluation model of the power industry, analyzes the performance of development of clean energy, the implementation of electricity replacement, and the development of coal-fired energy-saving and emission-reducing measures. Put forward technology path to reduce emission in the future. The results show that (1) improving the proportion of coal for power generation, speeding up the replacement of electricity is the key to solve the haze in China. (2) With the photovoltaic and other new energy power generation costs gradually reduced and less limit from thermal energy, by final of “thirteenth five-years plan”, the economy of clean energy will surpass thermal energy-saving emission reduction. (3) After 2025, the economy of the electricity replacement will be able to show.

  5. Development of Improved Iron-Aluminide Filter Tubes and Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, R.R.; Sutton, T.G.; Miller, C.J.

    2008-01-14

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to explore and develop advanced manufacturing techniques to fabricate sintered iron-aluminide intermetallic porous bodies used for gas filtration so as to reduce production costs while maintaining or improving performance in advanced coal gasification and combustion systems. The use of a power turbine fired with coal-derived synthesis gas requires some form of gas cleaning in order to protect turbine and downstream components from degradation by erosion, corrosion, and/or deposition. Hot-gas filtration is one form of cleaning that offers the ability to remove particles from the gases produced by gasification processesmore » without having to substantially cool and, possibly, reheat them before their introduction into the turbine. This technology depends critically on materials durability and reliability, which have been the subject of study for a number of years.« less

  6. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  7. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    USGS Publications Warehouse

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  8. 78 FR 18629 - Notice of Lodging of Proposed Consent Decree Under the Clean Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... ash discharges after BADGER's 2014 operating system, perform other injunctive relief, and pay a $25... with the defendant's discharge of ash from BADGER, a coal- fired, stream-driven ferry that operates...

  9. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion conceptsmore » were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.« less

  10. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  11. Texas Clean Energy Project: Decision Point Application, Section 2: Topical Report - Phase 1, February 2010-October 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, Karl

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the Project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) power plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO 2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into amore » synthetic gas (syngas) that will be cleaned and further treated so that at least 90 percent of the overall carbon entering the IGCC facility will be captured. The clean syngas will then be divided into two highhydrogen (H 2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO 2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the Project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work required to complete the financing of the Project. In general, STCE completed project definition, a front-end, engineering and design study (FEED), applied for and received its Record of Decision (ROD) associated with the NEPA requirements summarized in a detailed Environmental Impact Statement. A topical report covering the results of the FEED is the subject of a separate report submitted to the DOE on January 26, 2012. References to the FEED report are contained herein. In August 2013, STCE executed fixed-price turnkey EPC contracts and previously, in December 2011 a long-term O&M agreement, with industry-leading contractors. Other work completed during Phase 1 includes execution of all commercial input and offtake agreements required for project financing. STCE negotiated long-term agreements for power, CO 2 and urea offtake. A contract for the purchase of coal feedstock from Cloud Peak Energy’s Cordero Rojo mine was executed, as well as necessary agreements (supplementing the tariff) with the Union Pacific Railroad (UPRR) for delivery of the coal to the TCEP site. STCE executed firm agreements for natural gas transportation with ONEOK for long-term water supply with a private landowner. In addition, STCE secured options for critical easements and rights-of-way, completed and updated a transmission study, executed an interconnection agreement and has agreed a target October 31, 2013 financial closing date with debt and conventional and tax equity.« less

  12. Texas Clean Energy Project: Topical Report, Phase 1 - February 2010-December 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, Karl

    2012-11-01

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO 2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into a syntheticmore » gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H 2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO 2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work required to complete the financing of the project. In general, STCE completed project definition, a front-end, engineering and design study (FEED), applied for and received its Record of Decision (ROD) associated with the NEPA requirements summarized in a detailed Environmental Impact Statement. A topical report covering the results of the FEED is the subject of a separate report submitted to the DOE on January 26, 2012. References to the FEED report are contained herein. In December 2011, STCE executed fixed-price turnkey EPC contracts and a long-term O&M agreement with industry-leading contractors.. Other work completed during Phase 1 includes execution of all major commercial input and offtake agreements. STCE negotiated long-term agreements for power, CO 2 and urea offtake. A contract for the purchase of coal feedstock from Cloud Peak Energy’s Cordero Rojo mine was executed, as well as a memorandum of understanding with the Union Pacific Railroad (UPRR) for delivery of the coal to the TCEP site. An MOU for natural gas supply was completed with ONEOK, and a long-term water supply agreement was completed with a private landowner. In addition, STCE secured options for easements and rights-of-way, completed a transmission study, executed an interconnection agreement and devoted substantial effort to debt and conventional and tax equity structuring to position the Project for project financing, currently scheduled for closing on December 31, 2012.« less

  13. Study on systems based on coal and natural gas for producing dimethyl ether

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, L.; Hu, S.Y.; Chen, D.J.

    2009-04-15

    China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systemsmore » with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.« less

  14. High temperature alkali corrosion of ceramics in coal gas: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less

  15. CoalVal-A coal resource valuation program

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined; operating cost per ton; and discounted cash flow cost per ton to mine and process the resources. Costs are calculated as loaded in a unit train, free-on-board the tipple, at a rate of return prescribed by the evaluator. The recoverable resources (in short tons) may be grouped by incremental cost over any range chosen by the user. For example, in the Gillette coalfield evaluation, the discounted cash flow mining cost (at an 8 percent rate of return) and its associated tonnage may be grouped by any applicable increment (for example, $0.10 per ton, $0.20 per ton, and so on) and using any dollar per ton range that is desired (for example, from $4.00 per ton to $15.00 per ton). This grouping ability allows the user to separate the coal reserves from the nonreserve resources and to construct cost curves to determine the effects of coal market fluctuations on the availability of coal for fuel whether for the generation of electricity or for coal-to-liquids processes. Coking coals are not addressed in this report.

  16. The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

    NASA Astrophysics Data System (ADS)

    Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui

    2018-01-01

    With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  18. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation

    PubMed

    Hussain; Dem&idot;rc&idot;; özbayoğlu

    1996-12-25

    There is a growing trend of characterizing coal and coal wastes in order to study the effect of clays present in them during coal washing. Coarse wastes from the Zonguldak Coal Washery, Turkey, were characterized and found to contain kaolinite, illite, and chlorite. These three clays, obtained in almost pure form from various locations in Turkey, have been subjected to X-ray diffraction (XRD) analysis to assess their purity and zeta potential measurements in order to evaluate their properties in terms of their surface charge and point of zero charge (pzc) values. It was found from XRD data that these clays were almost pure and their electrokinetic potential should therefore be representative of their colloidal behavior. All three clay minerals were negatively charged over the range from pH 2.5 to 11. Chlorite and illite have pzc at pH 3 and pH 2.5, respectively, whereas kaolinite has no pzc. The effect of these clays in Zonguldak coal, wastes, and black waters on coal flotation was studied by floating artificial mixtures of Zonguldak clean coal (4.5% ash) and individual clay. The flotation tests on coal/individual clay revealed that each clay influences coal flotation differently according to its type and amount. Illite had the worst effect on coal floated, followed by chlorite and kaolinite. The loss of yield in coal was found to be 18% for kaolinite, 20% for chlorite, and 28% for illite, indicating the worst effect of illite and least for kaolinite during coal flotation.

  19. Research on coal-water fuel combustion in a circulating fluidized bed / Badanie spalania zawiesinowych paliw węglowo-wodnych w cyrkulacyjnej warstwie fluidalnej

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka

    2012-10-01

    In the paper the problem of heavily-watered fuel combustion has been undertaken as the requirements of qualitative coals combusted in power stations have been growing. Coal mines that want to fulfill expectations of power engineers have been forced to extend and modernize the coal enrichment plants. This causes growing quantity of waste materials that arise during the process of wet coal enrichment containing smaller and smaller under-grains. In this situation the idea of combustion of transported waste materials, for example in a hydraulic way to the nearby power stations appears attractive because of a possible elimination of the necessary deep dehydration and drying as well as because of elimination of the finest coal fraction loss arising during discharging of silted water from coal wet cleaning plants. The paper presents experimental research results, analyzing the process of combustion of coal-water suspension depending on the process conditions. Combustion of coal-water suspensions in fluidized beds meets very well the difficult conditions, which should be obtained to use the examined fuel efficiently and ecologically. The suitable construction of the research stand enables recognition of the mechanism of coal-water suspension contact with the inert material, that affects the fluidized bed. The form of this contact determines conditions of heat and mass exchange, which influence the course of a combustion process. The specificity of coal-water fuel combustion in a fluidized bed changes mechanism and kinetics of the process.

  20. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    NASA Astrophysics Data System (ADS)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  1. Characteristics of American coals in relation to their conversion into clean energy fuels. Quarterly technical progress report, July--September 1977. [Coal-fuel oil-water slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, W.; Davis, A.; Walker, P. L.

    1977-12-01

    The Penn State/ERDA Coal Sample Bank was expanded to include 201 new coal samples. A total of 68 characterized coal samples and 115 selected printouts of coal data were supplied upon request to the coal research community. Selected chemical and petrographic properties were statistically analyzed for 119 coal channel samples chosen from the Penn State/ERDA Coal Data Base. Installation of the pressurized laminar flow isotherml reactor has begun. Experiments have continued on the combustion pot; the study of the reactivity of a Koppers Company coke is now complete. Studies show that weight changes associated with preoxidation can be precisely meausredmore » using a TGA apparatus. Water densities determined on 19 coals were lower when measured in the presence of a wetting agent. Study of the effect of reaction temperature on gasification of Saran carbon in air shows one percent platinum loading on Saran carbon increases gasification rates over the entire range of carbon burn-off. Study of the theoretical aspects of combustion of low volatile fuels was resumed. The computer model was expanded to include the effects of heat loss through the furnace walls and its effect on flame temperature profiles. Investigation of the combustion characteristics of coal-oil-water-air fuel mixtures was continued. Only through the use of non-equilibrium experiments can certain important combustion characteristics be studied, and computerized data acquisition is being developed to fully implement such methods.« less

  2. Making of federal coal policy: lessons for public lands management from a failed program, an essay and review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarlock, A.D.

    1985-04-01

    The federal coal leasing program implemented in the 1970s has not achieved its stated objectives and has resulted in a misallocation of resources. As of 1984, federal coal still had not played a major role in meeting either total national energy supply demands or even in meeting total coal supply demands. Federal coal accounted for only 12% of the total US production in 1982. The author notes the program has failed to coordinate coal development with other government objectives such as environmental protection; the program, moreover, has not achieved a satisfactory return to the federal treasury. He feels all threemore » branches of government must share the blame for failure of the program. The Department of the Interior's (USDI) attempts to develop a national coal leasing program failed in part because USDI could not agree on a set of workable and consistent conceptual underpinnings for the program. Administrative attempts also failed because of well-meaning but inept judicial intervention and political and economic events beyond the Department's control. Congress must also bear a good part of the blame. Congress never settled on a consistent coal use policy, and finally, after 1982-83, Congress lost faith in the USDI and attempted to legislate its own federal policy. The failure of the federal government to induce the greater use of federal coal is especially striking because ownership would seem to predict greater control over the use of the resources. 76 references.« less

  3. Alaska coal geology, resources, and coalbed methane potential

    USGS Publications Warehouse

    Flores, Romeo M.; Stricker, Gary D.; Kinney, Scott A.

    2004-01-01

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces. Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines in these two provinces. Alaskan coal resources have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. The identified resources are near existing and planned infrastructure to promote development, transportation, and marketing of this low-sulfur coal. The relatively short distances to countries in the west Pacific Rim make them more exportable to these countries than to the lower 48 States of the United States. Another untapped but potential resource of large magnitude is coalbed methane, which has been estimated to total 1,000 trillion cubic feet (28 trillion cubic meters) by T.N. Smith 1995, Coalbed methane potential for Alaska and drilling results for the upper Cook Inlet Basin: Intergas, May 15 - 19, 1995, Tuscaloosa, University of Alabama, p. 1 - 21.

  4. Greenhouse gas emission reduction: A case study of Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, P.; Munasinghe, M.

    1995-12-31

    In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less

  5. Properties and potential environmental applications of carbon adsorbents from waste tire rubber

    USGS Publications Warehouse

    Lehmann, C.M.B.; Rameriz, D.; Rood, M.J.; Rostam-Abadi, M.

    2000-01-01

    The properties of tire-derived carbon adsorbents (TDCA) produced from select tire chars were compared with those derived from an Illinois coal and pistachio nut shells. Chemical analyses of the TDCA indicated that these materials contain metallic elements not present in coal-and nut shell-derived carbons. These metals, introduced during the production of tire rubber, potentially catalyze steam gasification reactions of tire char. TDCA carbons contained larger meso-and macopore volumes than their counterparts derived from coal and nut shell (on the moisture-and ash-free-basis). Adsorptive properties of the tire-derived adsorbent carbons for air separation, gas storage, and gas clean up were also evaluated and compared with those of the coal-and nut shell derived carbons as well as a commercial activated carbon. The results revealed that TDCA carbons are suitable adsorbents for removing vapor-phase mercury from combustion flue gases and hazardous organic compounds from industrial gas streams.

  6. [Cost-benefit analysis to substituting natural gas for coal project in large Chinese cities].

    PubMed

    Mao, Xianqiang; Peng, Yingdeng; Guo, Xiurui

    2002-09-01

    Since China's large cities were faced with serious coal-smoke pollution with PM10 and SO2 as the main pollutants, natural gas is becoming one of the most attractive clean replacers of coal. To clarify the wide disputation and doubt on the rationality of burning natural gas instead of coal, cost-benefit analysis (CBA) of urban natural gas substitution projects in Beijing and Chongqing was done respectively, in which, the health benefit was carefully estimated with epidemical dose-response function as the main external benefit. The final result shows that in large cities with intensively concentrated population and economic activities, natural gas consumption as municipal civil energy has obvious priority in terms of large environmental benefit from reducing non-point and low-altitude air pollutant concentration. This paper finally recommends that market oriented system reform in natural gas production and retailing system should be considered.

  7. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  8. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  9. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  10. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  11. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  12. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  13. 30 CFR 736.11 - General procedural requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...

  14. 30 CFR 736.11 - General procedural requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...

  15. 30 CFR 736.11 - General procedural requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...

  16. 30 CFR 736.11 - General procedural requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...

  17. 30 CFR 736.11 - General procedural requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... expects coal exploration or surface coal mining and reclamation operations to exist on non-Federal and non... program for regulation of coal exploration and surface coal mining and reclamation operations on non... revise a Federal program for a State, if necessary to further the purposes of the Act and the regulations...

  18. An Investigation Of The Effect Of Particle Size On Oxidation Of Pyrites In Coal.

    NASA Astrophysics Data System (ADS)

    Chan, Paul K.; Frost, David C.

    1986-08-01

    We have used X-ray photoelectron spectroscopy (XPS) to study the variation of surface pyrite density with coal particle size (53 4m - 250 4μm). We also detect and monitor pyrite oxidation to sulfate, an important process influencing the surface-dependency of coal-cleansing methods such as flotation. It is very likely that as coal is crushed as part of the processes employed to rid it of prospective pollutants one eventually reaches a pyrite size which may be called "characteristic". It is this parameter that we examine here. Good correlations are established between (i) the liberation of pyrite and particle size, (ii) surface pyrite/sulfate ratio, and (iii) oxidized and non-oxidized sulfur in a typical Canadian coal. For "non-oxidized", or "fresh" coal, the dispersion of pyrite on the coal surface is inversely proportional to coal particle radius, and the tangents of this curve intersect at a particular particle size (106±5 4μm). Although, for the oxidized coal, the appearance of the curves depend on oxidation time intervals at low temperature with humid air, there is an "optimum" particle size which exhibits maximum surface pyrite. Notably, this "optimum" size corresponds to the tangent's intersection for the non-oxidized coal, and hence the "characteristic" size of constituent pyrite. This should allow prediction of pyrite occurrence, a parameter of paramount interest in coal processing and cleaning technology. Coal surface characterization obtained by XPS after various conditioning steps and during flotation, allow both a functional analysis via the study of chemical shifts and a semi-quantitative analysis based on relative intensity measurements.

  19. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    NASA Astrophysics Data System (ADS)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  20. 40 CFR 70.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (i) Coal cleaning plants (with thermal dryers); (ii) Kraft pulp mills; (iii) Portland cement plants... plants; (xii) Phosphate rock processing plants; (xiii) Coke oven batteries; (xiv) Sulfur recovery plants...) totaling more than 250 million British thermal units per hour heat input; (xxii) Petroleum storage and...

  1. 40 CFR 71.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (i) Coal cleaning plants (with thermal dryers); (ii) Kraft pulp mills; (iii) Portland cement plants... plants; (xii) Phosphate rock processing plants; (xiii) Coke oven batteries; (xiv) Sulfur recovery plants...) totaling more than 250 million British thermal units per hour heat input; (xxii) Petroleum storage and...

  2. Characterization and Recovery of Rare Earths from Coal and By-Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granite, Evan J.; Roth, Elliot; Alvin, Mary Anne

    Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activatedmore » carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a dramatic paradigm shift for coal.« less

  3. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan,T.; Adams,J.; Bender, M.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots ofmore » mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study found the following: (1) There was some correlation between the prevailing wind direction and measured soil and oak leaf concentrations. This correlation was not statistically significant, but higher soil concentrations were generally found in the east and southeast from the plants and lower soil concentrations were found west/southwest from the plants. The prevailing winds are to the east. The Conemaugh plant which was the most southeast of the three plants did have the highest average oak leaf and soil mercury concentrations. Based on emissions, the Keystone plant would be expected to see the highest concentrations as it emitted about 25% more mercury than the other two plants. (2) The results of this study did not turn up strong evidence for large areas (several square miles) of elevated mercury concentrations around the three coal-fired power plants that were tested. This does not mean that there is no effect, there was some evidence of increasing mercury content to the east and south of these plants, however, the trends were not statistically significant suggesting that if the effects exist, they are small.« less

  4. Development of a 5 kW Prototype Coal-Based Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageablemore » carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO 2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonnemacher, G.C.; Killen, D.C.; Weinstein, R.E.

    This paper reports on the results of an US Department of Energy (DOE) conceptual design evaluation. This is for an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). Here, APFBC would repower an existing generation station, the Carolina Power and Light Company's (CP and L) L.V. Sutton steam station. Repowering concepts are presented for APFBC repowering of Unit 2 (226 MWe) and both Units 1 and 2 in combination (340 MWe total). This evaluation found that it is more economical to repower the existing coal-fired generation unit with APFBC than to build newmore » pulverized coal capacity of equivalent output. The paper provides a review of the DOE study and summarizes the design and costs associated with the APFBC concept. A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, JR. steam plant Unit 4. This all-coal technology is under development by DOE and equipment manufacturers. This paper's concept evaluation is for a larger implementation than the Lakeland McIntosh CCT project. The repowering of L.V. Sutton Unit 2 is projected to boost the energy efficiency of the existing unit from its present 32.0% HHV level to an APFBC-repowered energy efficiency of 42.2% HHV (44.1% LHV). A large frame Westinghouse W501F combustion turbine is modified for APFBC use. This produces a 225+ MWe class APFBC. At this size, APFBC has a wide application for repowering many existing units in America. The paper focuses on the design issues, shows how the APFBC power block integrates with the existing site, and gives a brief summary of the resulting system performance and costs.« less

  6. Nonlinear-programming mathematical modeling of coal blending for power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Longhua; Zhou Junhu; Yao Qiang

    At present most of the blending works are guided by experience or linear-programming (LP) which can not reflect the coal complicated characteristics properly. Experimental and theoretical research work shows that most of the coal blend properties can not always be measured as a linear function of the properties of the individual coals in the blend. The authors introduced nonlinear functions or processes (including neural network and fuzzy mathematics), established on the experiments directed by the authors and other researchers, to quantitatively describe the complex coal blend parameters. Finally nonlinear-programming (NLP) mathematical modeling of coal blend is introduced and utilized inmore » the Hangzhou Coal Blending Center. Predictions based on the new method resulted in different results from the ones based on LP modeling. The authors concludes that it is very important to introduce NLP modeling, instead of NL modeling, into the work of coal blending.« less

  7. Poker Flats Mine - Div. of Mining, Land, and Water

    Science.gov Websites

    Lands Coal Regulatory Program Large Mine Permits Mineral Property and Rights Mining Index Land Fishery Water Resources Factsheets Forms banner image of landscape Poker Flats Mine Home Mining Coal Regulatory Program Poker Flats Mine Mining Coal Regulatory Program Info Chickaloon Chuit Watershed Chuitna

  8. 30 CFR 730.12 - Requirements for regulatory programs in States.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...

  9. 30 CFR 730.12 - Requirements for regulatory programs in States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...

  10. 30 CFR 730.12 - Requirements for regulatory programs in States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...

  11. Combustion of Coal-Mule Briquettes / Spalanie Brykietów Z Mułu Węglowego

    NASA Astrophysics Data System (ADS)

    Kijo-Kleczkowska, Agnieszka

    2013-09-01

    Combustion technologies coal-mule fuels create a number of new possibilities for organising combustion processes so that they fulfil contemporary requirements (e.g., in terms of the environment protection- related issues). The paper describes the problems of coal-mule fuel combustion that have acquired a wider significance as the quality requirements of coal combustion in power plants have been growing. Coal mines that want to fulfill expectations of power industry workers have been forced to develop and modernize plants of coal wet cleaning. It all results in the growing amount of waste arising in the process of coal wet cleaning which contains smaller and smaller coal undersizes. In this situation the concept of direct combustion of the above mentioned waste and their co-combustion with other fuels, coal and biomass, seems to be attractive. Biomass is one from the most promising sources of renewable energy. The main aim of the paper is to identify the mechanism and kinetics of combustion of coal-mule fuels and their co- -combustion with coal and biomass in the briquettes form based on extensive experimental research in air. Niekorzystny bilans paliwowy naszego kraju powoduje nadmierne obciążenie środowiska, wywołane emisją CO2, NOx, SO2 i pyłów, a także powiększeniem powierzchni koniecznych na składowanie wciąż narastających stałych odpadów paleniskowych. Górnictwo, od którego energetyka oczekuje coraz lepszego paliwa, musi stosować głębsze wzbogacanie węgla. Powoduje to ciągłą produkcję odpadów w postaci mułów poflotacyjnych. Najlepszą metodą utylizacji tych mułów jest ich spalanie w postaci zawiesin, a także ich współspalanie z innymi paliwami, węglem czy biomasą. Biomasa jest bowiem jednym z najbardziej obiecujących źródeł OZE, a jej współspalanie z paliwami węglowymi znajduje w ostatnich latach coraz szersze zastosowanie zarówno w kraju, jak i na świecie. W tej sytuacji istotne jest prowadzenie badań naukowych, mających na celu identyfikację przebiegu procesu spalania paliw, utworzonych nie tylko z mułów poflotacyjnych, ale również z mieszaniny mułów węglowych oraz pyłów węgla i biomasy. Niniejsza praca podejmuje mechanizm i kinetykę spalania oraz współspalania wspomnianych paliw w postaci brykietów, prowadzonego w strumieniu powietrza

  12. 41 CFR 101-26.602-4 - Procurement of coal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Procurement of coal. 101... PROGRAM 26.6-Procurement Sources Other Than GSA § 101-26.602-4 Procurement of coal. (a) Federal agencies desiring to participate in the Defense Fuel Supply Center coal contracting program for carload delivery...

  13. 41 CFR 101-26.602-4 - Procurement of coal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Procurement of coal. 101... PROGRAM 26.6-Procurement Sources Other Than GSA § 101-26.602-4 Procurement of coal. (a) Federal agencies desiring to participate in the Defense Fuel Supply Center coal contracting program for carload delivery...

  14. 41 CFR 101-26.602-4 - Procurement of coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Procurement of coal. 101... PROGRAM 26.6-Procurement Sources Other Than GSA § 101-26.602-4 Procurement of coal. (a) Federal agencies desiring to participate in the Defense Fuel Supply Center coal contracting program for carload delivery...

  15. 77 FR 71822 - Notice of Invitation-Coal Exploration License Application MTM 103852, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ...] Notice of Invitation--Coal Exploration License Application MTM 103852, MT AGENCY: Bureau of Land... Ambre Energy on a pro rata cost sharing basis in a program for the exploration of coal deposits owned by... program is to gain additional geologic knowledge of the coal underlying the exploration area for the...

  16. 41 CFR 101-26.602-4 - Procurement of coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Procurement of coal. 101... PROGRAM 26.6-Procurement Sources Other Than GSA § 101-26.602-4 Procurement of coal. (a) Federal agencies desiring to participate in the Defense Fuel Supply Center coal contracting program for carload delivery...

  17. 41 CFR 101-26.602-4 - Procurement of coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Procurement of coal. 101... PROGRAM 26.6-Procurement Sources Other Than GSA § 101-26.602-4 Procurement of coal. (a) Federal agencies desiring to participate in the Defense Fuel Supply Center coal contracting program for carload delivery...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfmeyer, J.C.; Jowers, C.; Weinstein, R.E.

    As the power industry moves toward increased competition, low operating costs become increasingly important for continued profitability. This paper provides an overview of the plant concept evaluation of using an emerging coal-fired technology for repowering one of Duke Energy steam generating stations. The paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes the preliminary results. It shows the prospects for APFBC repowering, and discusses how this mightmore » be an attractive option for a wide range of existing power plants, when added baseload coal-fired generation is needed. This paper presents an APFBC concept under development by DOE and equipment manufacturers. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, Jr. steam plant Unit 4. This paper's concept evaluation is for a larger implementation. A Westinghouse W501F combustion turbine modified for APFBC operation is considered for use to produce a 300+MWe class APFBC combined cycle. At this size, APFBC has a wide application for repowering many existing units in America, Here, APFBC would repower an existing generation station, the Duke Energy Company's Dan River steam station. Repowering concepts are presented for APFBC repowering of Unit 3. The existing coal-fired Unit 3 has an output of about 150 MWe. When repowered with APFBC, this unit is boosted to about 280 MWe output, with high-energy efficiency.« less

  19. National coal resource investigations of the United States Geological Survey

    USGS Publications Warehouse

    Wood, Gordon H.

    1977-01-01

    The objective of this report is to provide a record of some of the goals and accomplishments of the coal resource investigations of the U. S. Geological Survey for 1977. Successful completion of these goals will aid the Nation in the years ahead because proper usage of coal resource data may lessen economic displacements resulting from the energy shortage.This report is concerned only with one mineral fuel -- coal -- and only with coal resource investigations in the Geologic Division of the U. S. Geological Survey. Other divisions involved with coal or coal-related work are the Conservation, Water Resources, and Topographic Divisions. It is one of a series of reports on the energy resource studies conducted by the Geological Survey that provide a public record of the objectives, activities, and accomplishments of these programs. Similar reports have been prepared on oil and gas, oil shale, uranium, thorium, and energy-related industrial minerals.This report includes descriptions of the program, each sub-element of the program, individual projects, and a selected list of program publications from 1970-76. It also describes how the program is responsive to Presidential pronouncements and Congressional mandates. The program is cooperative with several Federal bureaus, many state agencies, universities, and industry. This coordination assures that the program supplements the work of these interested groups and is not duplicative.A scientific program such as the coal resource investigations is difficult for the non-involved person to understand solely from the existing reports on various studies made in the program. This report provides an explanation that the scientist, decision maker, personnel of other government agencies, and the layman can use to relate various activities and to gain a better understanding of the relation of coal to the Nation's requirements for energy and of the importance of a carefully planned program on this energy resource.

  20. Tampa Electric Company Polk Power Station IGCC project: Project status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less

  1. 75 FR 69063 - Extension of the Period for Preparation of the Clean Water Act Section 404(c) Final Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... also notified the Department of the Army, the State of West Virginia, Arch Coal, Inc. (the permittee... process described in 40 CFR 231.6, that would prevent the likely unacceptable adverse effects described in...

  2. Back to the FutureGen?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, L.

    2009-04-15

    After years of political wrangling, Democrats may green-light the experimental clean coal power plants. The article relates how the project came to be curtailed, how Senator Dick Durbin managed to protect $134 million in funding for FutureGen in Mattoon, and how once Obama was in office a $2 billion line item to fund a 'near zero emissions power plant(s)' was placed in the Senate version of the Stimulus Bill. The final version of the legislation cut the funding to $1 billion for 'fossil energy research and development'. In December 2008 the FutureGen Alliance and the City of Mattoon spent $6.5more » billion to purchase the plants eventual 440 acre site. A report by the Government Accountability Office (GAO) said that Bush's inaction may have set back clean coal technology in the US by as much as a decade. If additional funding comes through construction of the plant could start in 2010. 1 fig., 1 photo.« less

  3. Sulfur and ash reduction potential and selected chemical and physical properties of United States coals. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.

    1991-02-01

    This report presents the washability and comprehensive characterization results of 184 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Central Region of the United States. This is the second of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is givenmore » for the composited washability data, selected chemical and physical properties and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Central Region coals. Graphical summations are presented by state, section and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 5 tabs.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavoulareas, E.S.; Hardman, R.; Eskinazi, D.

    This report provides the key findings of the Innovative Clean Coal Technology (ICCT) demonstration project at Gulf Power`s Lansing Smith Unit No. 2 and the implications for other tangentially-fired boilers. L. Smith Unit No. 2 is a 180 MW tangentially-fired boiler burning Eastern Bituminous coal, which was retrofitted with Asea Brown Boveri/Combustion Engineering Services` (ABB/CE) LNCFS I, II, and III technologies. An extensive test program was carried-out with US Department of Energy, Southern Company and Electric Power Research Institute (EPRI) funding. The LNCFS I, II, and III achieved 37 percent, 37 percent, and 45 percent average long-term NO{sub x} emissionmore » reduction at full load, respectively (see following table). Similar NO{sub x} reduction was achieved within the control range (100--200 MW). However, below the control point (100 MW), NO{sub x} emissions with the LNCFS technologies increased significantly, reaching pre-retrofit levels at 70 MW. Short-term testing proved that low load NO{sub x} emissions could be reduced further by using lower excess O{sub 2} and burner tilt, but with adversed impacts on unit performance, such as lower steam outlet temperatures and, potentially, higher CO emissions and LOI.« less

  5. A Diamond in the Rough: Carat's Organizational and Administrative Leadership (COAL) Program

    ERIC Educational Resources Information Center

    Brown, Kathleen M.; Schainker, Stanley A.

    2006-01-01

    A diamond is a chunk of coal that stood up under pressure. Carat's Organizational and Administrative Leadership (COAL) program is a diamond in the rough--experiencing strong political pressure from multiple sides. As the state's premiere educational leadership preparation program, expectations are high. While striving to live up to its national…

  6. Eocene Yegua Formation (Claiborne group) and Jackson group lignite deposits of Texas

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; Swanson, Sharon M.; Hackley, Paul C.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    The lignite deposits within the upper Eocene Yegua Formation (Claiborne Group) and the overlying Jackson Group are among the coal resources that were not quantitatively assessed as part of the U.S. Geological Survey's (USGS) National Coal Resource Assessment (NCRA) program in the Gulf Coastal Plain coal province. In the past, these lignite-bearing stratigraphic units often have been evaluated together because of their geographic and stratigraphic proximity (Fisher, 1963; Kaiser, 1974; Kaiser et al., 1980; Jackson and Garner, 1982; Kaiser, 1996) (Figures 1, 2). The term “Yegua-Jackson trend“ is used informally herein for the lignite-bearing outcrops of these Late Eocene deposits in Texas. Lignite beds in the Yegua-Jackson trend generally are higher both in ash yield and sulfur content than those of the underlying Wilcox Group (Figure 2). Recent studies (Senkayi et al., 1987; Ruppert et al., 1994; Warwick et al., 1996, 1997) have shown that some lignite beds within the Yegua-Jackson trend contain partings of volcanic ash and host elevated levels of trace elements that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Amendments of 1990. Lignite beds within the Yegua Formation are thin (less than or equal to 6 ft) and laterally discontinuous in comparison with most Wilcox Group deposits (Ayers, 1989a); in contrast, the Jackson Group lignite beds range up to 12 ft in total thickness and are relatively continuous laterally, extending nearly 32 mi along strike.

  7. Application of the Exergy UCG technology in international UCG projects

    NASA Astrophysics Data System (ADS)

    Blinderman, M. S.

    2017-07-01

    Underground Coal Gasification is a subject of continuing global interest in the energy sector. While the international scenario in UCG is promising, it is deeply desirable that advances in this area are seen in India as well. This is particularly so with the Paris Climate Agreement bringing in more stringent challenges for clean energy development. India has many potential coal basins which may be suitable for UCG deployment. India is in dire need of indigenous source of gaseous and liquid hydrocarbons that could compete with imported products. It is also the country with exceptionally large and diverse coal and lignite resources, large part of which could not be mined due to geological complexity and prohibitive cost. Thus, there is a rationale that the εUCG™ technology plays a decisive role in realizing the potential of Indian coal resources for the benefit of Indian industry and population. This article has been adapted by Dr. Ajay K. Singh from a lecture delivered at the “Workshop on Challenges and Opportunities of Underground Coal Gasification”, Vigyan Bhawan, New Delhi on 14 February 2017.

  8. Process for producing a clean hydrocarbon fuel from high calcium coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindig, J.K.

    A method is described for substantially reducing the amount of at least one insoluble fluoride-forming species selected from the group consisting of Group IA species and Group IIA species. The species is present in a coal feed material comprising: forming a slurry of a coal feed; a fluoride acid in an amount to produce a first molar concentration of free-fluoride-ions; at least one fluoride-complexing species, the total of all fluoride-complexing species in the slurry being present in an amount to produce a second molar concentration, the second molar concentration being at least equal to that amount such that the ratiomore » of the first molar concentration to the second molar concentration is substantially equal to the stoichiometric ratio of fluoride in at least one tightly-bound complexion so as to from tightly-bound complexions with substantially all free-fluoride ions in the slurry to produce a leached coal product and a spent leach liquor; and separating the leached coal product from the spent leach liquor.« less

  9. Coal fly ash as a resource for rare earth elements.

    PubMed

    Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena

    2015-06-01

    Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials.

  10. Experimental evaluation of coal conversion solid waste residuals. Progress report, August 1-October 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neufeld, R. D.; Bern, J.; Erdogan, H.

    1979-11-15

    Activities are underway to investigate basic phenomena that would assist demonstration and commercial sized coal conversion facilities in the environmentally acceptable disposal of process solid waste residuals. The approach taken is to consider only those residuals coming from the conversion technology itself, i.e. from gasification, liquefaction, and hot-clean-up steps as well as residuals from the wastewater treatment train. Residuals from the coal mining and coal grinding steps will not be considered in detail since those materials are being handled in some manner in the private sector. Laboratory evalations have been conducted on solid waste samples of fly ash from anmore » existing Capman gasifier. ASTM-A and EPA-EP leaching procedures have been completed on sieved size fractions of the above wastes. Data indicate that smaller size fractions pose greater contamination potential than do larger size particles with a transition zone occurring at particle sizes of about 0.05 inches in diameter. Ames testing of such residuals is reported. Similar studies are under way with samples of H-Coal solid waste residuals.« less

  11. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  12. Quantitative Modelling of Trace Elements in Hard Coal.

    PubMed

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  13. Quantitative Modelling of Trace Elements in Hard Coal

    PubMed Central

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  14. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  15. Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers

    EPA Science Inventory

    Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

  16. EFFECTS OF FLUE GAS CONSTITUENTS ON MERCURY SPECIATION. (R827649)

    EPA Science Inventory

    Beginning with the 1990 Clean Air Act Amendments, there has been considerable interest in mercury emissions from coal-fired power plants. This past year, the U.S. Environmental Protection Agency (EPA) issued both the Mercury Study Report to Congress and the Study of Hazardous ...

  17. Role of CCTs in the evolving domestic electricity market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grahame, T.J.

    1997-12-31

    The paper summarizes the key points and issues in the role of clean coal technologies in the domestic marketplace. Then suggested solutions to bringing precommercial CCTs to the market are presented. Finally, the outlook for possible actions by government and the private sector are briefly discussed.

  18. MERCURY CONTROL TECHNOLOGY--A REVIEW

    EPA Science Inventory

    The U.S. Environmental Protection Agency has promulgated the Clean Air Mercury Rule (CAMR) to permanently cap and reduce mercury emissions in the U.S. This rule makes the U.S. the first country in the world to regulate mercury emissions from coal-fired power plants. The first p...

  19. Use of geospatial data to predict downstream influence of coal mining in Appalachia

    EPA Science Inventory

    A 2001 Supreme Court decision first called into question whether some headwater streams could be considered jurisdictional under the Clean Water Act. A subsequent decision then required that non-navigable waters must be "relatively permanent" or "possess a significant nexus" to ...

  20. 75 FR 6087 - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... the Office of Science and Technology Policy[, and] the Chair of the Council on Environmental Quality... pollution. Rapid commercial development and deployment of clean coal technologies, particularly carbon... development of safe, affordable, and broadly deployable CCS technologies. We have made the largest Government...

  1. U.S. Port Development and the Expanding World Coal Trade: A Study of Alternatives.

    DTIC Science & Technology

    1982-06-01

    Dredging Program . . ... 70 4. Growth Potential Index . . . . . . . . . . 71 B. SENSITIVITY ANALYSIS . . . . . . . . . . .. . 74 1. Dredging Effect... PROGRAM TO ’:OMPUTE COST AND COAL CAPACITIES ............ .. 95 LIST OPREFRENCES .. . .. .. . . 999 INITIAL DISTRIBUTION LIST .... ....... .. 102 7 LIST...Deepuater Terminal Evaluation Summary ...... 64 Vi. Coal Export Capacities by Port ......... 68 VII. Optimal and Next Best Programs for Various

  2. 30 CFR 77.1705 - First aid training program; retraining of supervisory employees; availability to all miners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false First aid training program; retraining of..., SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1705 First aid..., 1972, each operator of a surface coal mine shall conduct refresher first aid training programs each...

  3. Refining and end use study of coal liquids II - linear programming analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for themore » petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.« less

  4. Enzymatic desulfurization of coal: Third quarterly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis, Judith K.; Kitchell, Judith P.

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ''model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix. In this quarter we obtained important results both with the development of our understanding of the enzyme reaction systems and also with the microbial work at Woods Hole. 12 figs., 11 tabs.

  5. Development and investigation of a selective latex flocculant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, I.N.; Preobrazhenskii, B.P.; Tsyrlov, M.Ya.

    1982-01-01

    Investigations were made on the use of two synthetic latexes as selective flocculants in the flotation cleaning of coal. The most commonly used latex in the industry contained sodium dibutylnaphthalenesulfonate, which is a biologically ''hard'' emulsifier. It was determined that butadiene-styrene latexes may successfully be used as selective coal sludge flocculants. The most efficient was a latex synthesized using biodegradable emulsifiers--potassium soaps of disproportionated rosin with a small quantity of synthetic fatty acids. Also, it was concluded that the values of the ash level in the flotation concentrate and tailings could be controlled by regulating the latex consumption.

  6. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F.

    2012-01-01

    Pennsylvanian coals in the Appalachian Basin host pyrite that is locally enriched in potentially toxic trace elements such as As, Se, Hg, Pb, and Ni. A comparison of pyrite-rich coals from northwestern Alabama, eastern Kentucky, and West Virginia reveals differences in concentrations and mode of occurrence of trace elements in pyrite. Pyrite occurs as framboids, dendrites, or in massive crystalline form in cell lumens or crosscutting veins. Metal concentrations in pyrite vary over all scales, from microscopic to mine to regional, because trace elements are inhomogeneously distributed in the different morphological forms of pyrite, and in the multiple generations of sulfide mineral precipitates. Early diagenetic framboidal pyrite is usually depleted in As, Se, and Hg, and enriched in Pb and Ni, compared to other pyrite forms. In dendritic pyrite, maps of As distribution show a chemical gradient from As-rich centers to As-poor distal branches, whereas Se concentrations are highest at the distal edges of the branches. Massive crystalline pyrite that fills veins is composed of several generations of sulfide minerals. Pyrite in late-stage veins commonly exhibits As-rich growth zones, indicating a probable epigenetic hydrothermal origin. Selenium is concentrated at the distal edges of veins. A positive correlation of As and Se in pyrite veins from Kentucky coals, and of As and Hg in pyrite-filled veins from Alabama coals, suggests coprecipitation of these elements from the same fluid. In the Kentucky coal samples (n = 18), As and Se contents in pyrite-filled veins average 4200 ppm and 200 ppm, respectively. In Alabama coal samples, As in pyrite-filled veins averages 2700 ppm (n = 34), whereas As in pyrite-filled cellular structures averages 6470 ppm (n = 35). In these same Alabama samples, Se averages 80 ppm in pyrite-filled veins, but was below the detection limit in cell structures. In samples of West Virginia massive pyrite, As averages 1700 ppm, and Se averages 270 ppm (n = 24). The highest concentration of Hg (≤ 102 ppm) is in Alabama pyrite veins. Improved detailed descriptions of sulfide morphology, sulfide mineral paragenesis, and trace-element concentration and distribution allow more informed predictions of: (1) the relative rate of release of trace elements during weathering of pyrite in coals, and (2) the relative effectiveness of various coal-cleaning procedures of removing pyrite. For example, trace element-rich pyrite has been shown to be more soluble than stoichiometric pyrite, and fragile fine-grained pyrite forms such as dendrites and framboids are more susceptible to dissolution and disaggregation but less amenable to removal during coal cleaning.

  7. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  8. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  9. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  10. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  11. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  12. Interaction of nickel-based SOFC anodes with trace contaminants from coal-derived synthesis gas

    NASA Astrophysics Data System (ADS)

    Hackett, Gregory Allen

    New and efficient methods of producing electrical energy from natural resources have become an important topic for researchers. Integrated gasification and fuel cell (IGFC) systems offer a fuel-flexible, high-efficiency method of energy generation. Specifically, in coal gasification processes, coal can be changed into a high-quality gaseous fuel suitable for feeding solid oxide fuel cells (SOFCs). However, trace species found in coal synthesis gas (syngas) may have a deleterious effect on the performance of nickel-based SOFC anodes. Generally, the cost of removing these species down to parts per million (ppm) levels is high. The purpose of this research is to determine the highest amount of contaminant that results in a low rate (˜1% per 1000 h) of cell performance degradation, allowing the SOFC to produce usable power for 40,000 hours. The cell performance degradation rate was determined for benzene, naphthalene, and mercury-doped syngas based on species concentration. Experimental data are fitted with degradation models to predict cell lifetime behavior. From these results, the minimum coal syngas cleanup required for these trace materials is determined. It is found that for a final cell voltage of 0.6 V, naphthalene and benzene must be cleaned to 360 ppm and less than 150 ppm, respectively. No additional cleaning is required for mercury beyond established environmental standards. Additionally, a detailed attack and recovery mechanism is proposed for the hydrocarbon species and their interaction with the fuel cell. This mechanism is proposed by considering the type of degradation models predicted and how carbon would interact with the Ni-YSZ anode to justify those models. The mechanism postulates that carbon is diffusing into the nickel structure, creating a metal solution. Once the nickel is saturated, the carbon begins to deposit on the nickel surface, reducing the electrode active area. The formation of metal solutions and the deposition of carbon results in reduced cell productivity.

  13. 30 CFR 735.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...

  14. 30 CFR 735.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...

  15. 30 CFR 735.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...

  16. 40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...

  17. 40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...

  18. 40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...

  19. 40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...

  20. 40 CFR 52.28 - Protection of visibility from sources in nonattainment areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... categories: (A) Coal cleaning plants (with thermal dryers); (B) Kraft pulp mills; (C) Portland cement plants...) Phosphate rock processing plants; (M) Coke oven batteries; (N) Sulfur recovery plants; (O) Carbon black... thereof) totaling more than 250 million British thermal units per hour heat input; (V) Petroleum storage...

  1. 75 FR 68570 - Approval and Disapproval and Promulgation of Air Quality Implementation Plans; Colorado; Revision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... and with current Federal NSR regulations. These definitions include clean coal technology, electric... restrictions on increment consumption, add innovative control technology as an alternative to BACT requirements... initials RACT mean or refer to Reasonably Available Control Technology, and the initials NAAQS mean or...

  2. Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers

    EPA Science Inventory

    Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

  3. TECHNOLOGY INNOVATIONS AND EXPERIENCE CURVES FOR NITROGEN OXIDES CONTROL TECHNOLOGIES

    EPA Science Inventory

    This paper reviews the regulatory history for nitrogen oxides (NOX) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where Nati...

  4. PRELIMINARY PERFORMANCE AND COST ESTIMATES OF MERCURY EMISSION CONTROL OPTIONS FOR ELECTRIC UTILITY BOILERS

    EPA Science Inventory


    The paper discusses preliminary performance and cost estimates of mercury emission control options for electric utility boilers. Under the Clean Air Act Amendments of 1990, EPA had to determine whether mercury emissions from coal-fired power plants should be regulated. To a...

  5. PRELIMINARY ESTIMATES OF PERFORMANCE AND COST OF MERCURY CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS

    EPA Science Inventory

    Under the Clean Air Act Amendments of 1990, the Environmental Protection Agency has determined that regulation of mercury emissions from coal-fired power plants is appropriate and necessary. To aid in this determination, preliminary estimates of the performance and cost of powder...

  6. Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA

    EPA Science Inventory

    Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainman, B.

    The author discusses her thoughts on prospects for an energy policy from this Congress. She doesn`t believe the country will see any big sweeping energy policy acts or even utility deregulation in the next two years. Education on the issues is necessary. The author discusses the impacts for clean coal technologies and recommends continued aggressive work on deployment.

  8. Inside the Black Triangle.

    ERIC Educational Resources Information Center

    Clamp, Alice

    1991-01-01

    The energy policies of four emerging democratic governments in Eastern Europe are individually profiled with respect to the challenge of producing more electrical energy, while creating less pollution and cleaning up the existing environmental disorder. Highlighted is the possible change from the burning of lignite coal to use of nuclear reactors.…

  9. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutzler, M.J.

    Over the next 20 years, the combination of slow growth in the demand for electricity, even slower growth in the need for new capacity, especially baseload capacity, and the competitiveness of new gas-fired technologies limits the market for new coal technologies in the US. In the later years of the 1997 Annual Energy Outlook projections, post-2005, when a significant amount of new capacity is needed to replace retiring plants and meet growing demand, some new coal-fired plants are expected to be built, but new gas-fired plants are expected to remain the most economical choice for most needs. The largest marketmore » for clean coal technologies in the United States may be in retrofitting or repowering existing plants to meet stricter environmental standards, especially over the next 10 years. Key uncertainties include the rate of growth in the demand for electricity and the level of competing fuel prices, particularly natural gas. Higher than expected growth in the demand for electricity and/or relatively higher natural gas prices would increase the market for new coal technologies.« less

  11. Forecasting of a Thermal Condition of Pneumatic Tires of Dump Trucks

    NASA Astrophysics Data System (ADS)

    Kvasova, Anna; Gerike, Boris; Murko, Elena; Skudarnov, Dmitriy

    2017-11-01

    Over the last 10 years the world consumption of coal has grown almost by 50%. Coal is one of the main energy resources capable to satisfy basic energy demands of increasing population and developing world economy. On January 24, 2012 the long-term Coal Industry Development Program for the period till 2030 was approved in Russia. According to this Program coal mining in Kuzbass in 2030 will make 260 million tonns of coal per year. Development of the coal industry is impossible without upgrade of coal production by avoiding inefficient technological, organizational and economic solutions. Off the road (OTR) tires play an important role in ensuring effective, continuous and safe work of mining motor transport.

  12. Pressurized fluidized-bed component test program shows good promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-04-01

    The test program described has involved extensive theoretical and laboratory work since 1976, which culminated in a series of PFBC rig tests at the Coal Utilization Research Laboratories (CURL) in Leatherhead, England, and eventually in the design and construction of a component test facility (CTF) at the Oresund Power Station of Sydkraft in Malmo, Sweden. The rig tests are listed. Those preceding the 1000-hr test in 1979 were carried out with and without cooling tubes in the bed, and with different bed characteristics; the main emphasis was on gas clean-up, combustion efficiency, and emission of sulfur and nitrogen oxides. Inmore » these tests, the exhaust gases from the PFBC were passed through a cyclone train containing two cyclones to remove particulate matter, and then through a static cascade that contained parts of turbine blades from an ASEA STAL GT-120 machine. Good performance data, for the most part, are reported. 4 references, 3 figures.« less

  13. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, F.M.

    1993-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in term of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the thirteenth quarter, wet oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied bymore » Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy to detect functional groups that might be responsible for changing the hydrophobicity of coal samples. Coal samples from the Pennsylvania State Coal Bank were oxidized for 5 hours at room temperature using 10% H{sub 2}O{sub 2} at pH 1.0, 1.0 M HNO{sub 3} or 0.05 M Fe{sub 2}(SO{sub 4}){sub 3} at pH 1.0. Details of the experimental procedure used in the wet oxidation tests were provided in our September 30, 1993 report, along with results of ion-exchange analysis and film flotation tests on as-received and oxidized coal samples. Table II shows the weight percentage of carboxylic and phenolic group oxygen generated by oxidation with different treatments, as determined by ion-exchange. DRIFT spectroscopic analysis was done on as-received and oxidized samples to identify different functionalities directly, to supplement the information on carboxylic and phenolic groups obtained indirectly by ion-exchange methods. The procedure for DRIFT analysis was reported in our June 30, 1993 report.« less

  14. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less

  15. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implicationsmore » of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.« less

  16. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal program. (c) The rules in this part apply to all surface coal mining operations in Oregon... more stringent environmental control and regulation of surface coal mining operations than do the... extent they provide for regulation of surface coal mining and reclamation operations which are exempt...

  17. Options for near-term phaseout of CO(2) emissions from coal use in the United States.

    PubMed

    Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward

    2010-06-01

    The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the root requirements for a clean, emissions-free future.

  18. Sulfur and ash reduction potential and selected chemical and physical properties of United States coals. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.

    1991-06-01

    This report presents the washability and comprehensive characterization results of 247 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Western Region of the United States. Although the Western Region includes Alaska, coal data from this state will often be cited apart from the Western Region data from the lower United States. This is the third of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. Themore » complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties, and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Western Region coals. Graphical summations are presented by state, rank, and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 3 tabs.« less

  19. An overview of the geological controls in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  20. 30 CFR 921.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  1. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  2. 30 CFR 933.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  3. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  4. 30 CFR 921.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  5. 30 CFR 903.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...

  6. 30 CFR 933.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  7. 30 CFR 921.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  8. 30 CFR 903.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...

  9. 30 CFR 922.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  10. 30 CFR 941.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  11. 30 CFR 941.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  12. 30 CFR 905.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  13. 30 CFR 912.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  14. 30 CFR 910.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  15. 30 CFR 903.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...

  16. 30 CFR 939.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  17. 30 CFR 910.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  18. 30 CFR 922.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  19. 30 CFR 933.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  20. 30 CFR 939.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  1. 30 CFR 905.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  2. 30 CFR 922.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  3. 30 CFR 912.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  4. 30 CFR 933.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  5. 30 CFR 939.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  6. 30 CFR 921.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  7. 30 CFR 921.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 921.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  8. 30 CFR 903.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...

  9. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  10. 30 CFR 933.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 933.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  11. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  12. 30 CFR 905.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  13. 30 CFR 942.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  14. 30 CFR 903.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Coal exploration. 903.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, applies to any person who conducts coal exploration. ...

  15. 30 CFR 905.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  16. 30 CFR 912.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  17. 30 CFR 942.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  18. 30 CFR 922.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  19. 30 CFR 910.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  20. 30 CFR 905.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Coal exploration. 905.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  1. 30 CFR 910.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  2. 30 CFR 942.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  3. 30 CFR 912.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  4. 30 CFR 942.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  5. 30 CFR 942.815 - Performance standards-Coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Coal exploration. 942.815... Performance standards—Coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person who conducts coal exploration. ...

  6. 30 CFR 922.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 922.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  7. 30 CFR 937.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 937.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  8. 30 CFR 910.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-coal exploration. 910.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  9. 30 CFR 941.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  10. 30 CFR 939.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  11. 30 CFR 912.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 912.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  12. 30 CFR 941.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  13. 30 CFR 941.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-coal exploration. 941.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  14. 30 CFR 939.815 - Performance standards-coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-coal exploration. 939.815... Performance standards—coal exploration. Part 815 of this chapter, Permanent Program Performance Standards—Coal Exploration, shall apply to any person conducting coal exploration operations. ...

  15. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  16. The suitability of ultrafine coal as an industrial boiler fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barratt, D.J.; Roberts, P.T.

    1989-07-01

    Coal that was finely ground to a mean particle size of 12 /mu/m produced a hotter, shorter flame compared to normal pulverized fuel in a pilot scale combustor. Measurements indicated that, should this fuel be fired in an industrial boiler, the rate of ash deposition on the walls and convection tubes could be low, but that the thin ash deposits that were produced might be more highly insulating and would therefore require more frequent cleaning. A mathematical model, using reactivity and pyrolysis data measured in laboratory-scale apparatus, has been used to predict the heat release rate within a boiler. Thismore » would be sufficiently high to allow a premium-quality finely ground coal to be burned in many boilers originally designed for oil firing, provided that burner mixing patterns were optimized.« less

  17. Supplement a to compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Fifth edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.W.

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generationmore » option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.« less

  19. Research on power source structure optimization for East China Power Grid

    NASA Astrophysics Data System (ADS)

    Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da

    2017-05-01

    The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.

  20. 30 CFR 740.11 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.11... State or Federal regulatory program in subchapter T of this chapter apply to: (1) Coal exploration operations on Federal lands not subject to 43 CFR part 3400, and (2) Surface coal mining and reclamation...

Top