NASA Technical Reports Server (NTRS)
Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.
1998-01-01
Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.
NASA Technical Reports Server (NTRS)
Caruso, Salvadore V.
1999-01-01
Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.
AEROSPACE NESHAP GUIDANCE: PAINTING AND DEPAINTING ALTERNATIVES FOR SELECTED DOD OPERATIONS
This project was sponsored by the DOD's Strategic Environmental Research and Development program (SERDP) and conducted by the EPA's Clean Processes and Products Branch at the NRMRL. In support of SERDP's objective of developing environmental solutions that improve mission readine...
Hydrogenation of maleic anhydride to g-butyrolactone over Pd/Al2O3 catalyst under supercritical carbondioxide medium
Unnikrishnan R. Pillai and Endalkachew Sahle-Demessie
National Risk Management Research laboratory (NRMRL), Clean Processes Branch, MS 443, United States...
January 16, 2009 letter from Kenneth E. Pate, VP of Safety and Risk Management of A & R Transport, Inc. to EPA Clean Water Enforcement Branch, about an Information Request about the Section 308 of the Clean Water Act, discharge of pefluorinated compounds.
Evaluating the Impact of Environmentally Friendly Cleaners on System Readiness
2001-04-05
branches of the armed services. USAEC and ATC are currently leading a multi-agency initiative to comprehensively test several cleaning products and...34 Any panel with pitting was given a severity rating of 4. Some cleaning products tested to date have had difficulty meeting the criterion for sandwich...DOD agencies will be able to better preserve readiness, save money and avoid bad decisions by knowing which alternative cleaning products meet its
Decibel: The Relational Dataset Branching System
Maddox, Michael; Goehring, David; Elmore, Aaron J.; Madden, Samuel; Parameswaran, Aditya; Deshpande, Amol
2017-01-01
As scientific endeavors and data analysis become increasingly collaborative, there is a need for data management systems that natively support the versioning or branching of datasets to enable concurrent analysis, cleaning, integration, manipulation, or curation of data across teams of individuals. Common practice for sharing and collaborating on datasets involves creating or storing multiple copies of the dataset, one for each stage of analysis, with no provenance information tracking the relationships between these datasets. This results not only in wasted storage, but also makes it challenging to track and integrate modifications made by different users to the same dataset. In this paper, we introduce the Relational Dataset Branching System, Decibel, a new relational storage system with built-in version control designed to address these shortcomings. We present our initial design for Decibel and provide a thorough evaluation of three versioned storage engine designs that focus on efficient query processing with minimal storage overhead. We also develop an exhaustive benchmark to enable the rigorous testing of these and future versioned storage engine designs. PMID:28149668
Pauli, B; Althaus, S; Von Tscharner, C
1975-08-01
Migrating fourth-stage larvae of Strongylus vulgaris, a parasite of equines, damage the intima of the anterior mesenteric artery and its larger branches and induce thrombus formation on the injured sites. As the time of larval passage through each of these branches has been exactly determined in earlier experiments, the aim of the present studies is to contribute to a more complete understanding of repair mechanisms in the process of time after thrombotic vascular injuries. five foals were separated individually to specially cleaned stables and given anthelmintic treatment till the age of one year. One foal was infected per os with 350, the second with 500 and the remaining three with 1,000 third-stage larvae of Strongylus vulgaris...
US Army Research Laboratory Lightweight and Specialty Metals Branch Research and Development (FY14)
2015-04-01
LSMB’s vision is to be the leading metals research and development facility for the US Army, which is achieved by attracting and retaining world-class...servicemen and women. 1.2 LSMB Vision The LSMB vision is to be the leading metals research and development facility for the US Army. This vision is achieved...determining the effect from the combined processing of coating and cleaning was crucial to reducing the risk associated with replacing cadmium . In this
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities.
Tan, Chuan Fu; Ong, Wei Li; Ho, Ghim Wei
2015-07-28
Utilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges. The desirable characteristics of conductive flexible piezoelectrode in conjunction with pronounced light scattering of hierarchical structure originate intrinsically from the elaborate design yet facile synthesis of BHS. This self-powered photocatalysis system could potentially be used as H2 generator and water treatment system to produce clean energy and water resources.
Liu, Yuanyuan; Li, Yu; Liu, Change; Sun, Yuanshao; Hu, Qingxi
2016-01-01
Vascularization plays a crucial role in the regeneration of different damaged or diseased tissues and organs. Vascularized networks bring sufficient nutrients and oxygen to implants and receptors. However, the fabrication of engineered structures with branched micro-channels (ESBM) is still the main technological barrier. To address this problem, this paper introduced a novel method for fabricating ESBM; the manufacturability and feasibility of this method was investigated. A triaxial nozzle with automatic cleaning function was mounted on a homemade 3D bioprinter to coaxially extrude sodium alginate (NaAlg) and calcium chloride (CaCl2) to form the hollow hydrogel fibers. With the incompleteness of cross-linking and proper trimming, ESBM could be produced rapidly. Different concentrations of NaAlg and CaCl2 were used to produce ESBM, and mechanical property tests were conducted to confirm the optimal material concentration for making the branched structures. Cell media could be injected into the branched channel, which showed a good perfusion. Fibroblasts were able to maintain high viability after being cultured for a few days, which verified the non-cytotoxicity of the gelation and fabrication process. Thus, hollow hydrogel fibers were proved to be a potential method for fabricating micro-channels for vascularization. PMID:27965729
Solvent Replacement for Hydrochlorofluorocarbon-225 for Cleaning Oxygen System Components
NASA Technical Reports Server (NTRS)
Mitchell, M. A.; Lowrey, N. M.
2017-01-01
This Technical Memorandum is the result of a 2-year project funded by the Defense Logistics Agency-Aviation, Hazardous Minimization and Green Products Branch, to identify and test two candidate solvents to replace hydrochlorofluorocarbon-225 (HCFC-225) for cleaning oxygen systems. The solvents were also compared to a second solvent composed predominantly of perfluorobutyl iodide (PFBI), which had received limited approval by the United States Air Force (USAF) for hand wipe cleaning of components for aviators’ breathing oxygen systems. The tests performed for this study were based on those reported in AFRL-ML-WP-TR-2003-4040, “The Wipe Solvent Program,” the test program used to qualify Ikon® Solvent P for USAF applications.The study was completed in August 2014, prior to the completion of a more extensive study funded by the NASA Rocket Propulsion Test (RPT) program. The results of the RPT project are reported in NASA/TP-2015-18207, “Replacement of Hydrochlorofluorocarbon–225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems.” The test methods used in this study for nonvolatile residue (NVR) background, materials compatibility, and cleaning effectiveness were different than those used for the RPT project; a smaller set of materials and contaminants were tested. The tests for this study were complementary to and provided supplementary information for the down-selection process during the course of the test program reported in NASA/TP-2015-218207.
NASA Technical Reports Server (NTRS)
Predmore, Roamer; Woods, Claudia; Hovanec, Andrew
1997-01-01
In response to the elimination of production of several Ozone Depleting Chemicals (ODCs) which have been widely used in successful space flight mechanism cleaning and lubricating procedures, GSFC developed and implemented an overall philosophy of mitigating the risks to flight hardware during the transition phase to ODC-Free cleaning procedures. One leg of that philosophy is the initiation of a several tier testing program which will deliver increasing amounts of information over the next few years, starting with original surface analysis comparisons between ODC and various ODC-Free cleaning technologies. The other leg is the stockpiling of an appropriate amount of ODC solvents such that all short term GSFC missions will be able to stay with or revert to heritage cleaning and lubricating procedures in the face of life issues. While tribological testing, mechanism life testing and space-flight experience will ultimately bring us into the 21st century with environmentally friendly means of cleaning long-life precision mechanism components, many satellites will be launched over the next few years with a number of important tribological questions unanswered. In order to prepare for this challenge, the Materials Engineering Branch in cooperation with the Electromechanical Branch launched an intensive review of all ongoing missions. The failure risk was determined for each long-life mechanism based on a number of parameters, including a comparison of flight solvents used to clean the heritage/life test hardware. Also studied was the ability of the mechanism manufacturers to stockpile ODCs based on state laws and company policies. A stockpiling strategy was constructed based on this information and subsequently implemented. This paper provides an overview of the GSFC ODC elimination risk mitigation philosophy as well as a detailed examination of the development of the ODC stockpiling plan.
Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W
2014-10-01
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...
2014-06-07
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
NASA Technical Reports Server (NTRS)
Predmore, Roamer; LeBoeuf, Claudia; Hovanec, Andrew
1997-01-01
In response to the elimination of production of several Ozone Depleting Chemicals (ODC's) which have been widely used in successful space flight mechanism cleaning and lubricating procedures, GSFC developed and implemented an overall philosophy of mitigating the risks to flight hardware during the transition phase to ODC-free cleaning procedures. The short term leg of the philosophy was the stockpiling of an appropriate amount of ODC solvents such that all short term GSFC missions will be able to stay with or revert to heritage cleaning and lubricating procedures in the face of life issues. The long-term leg of that philosophy was the initiation of a several tier testing program that will deliver increasing amounts of information over the next few years, starting with accelerated lubricant life tests that compare lubricant life on surfaces cleaned with ODC solvents with lubricant life on surfaces cleaned with ODC-free solvents. While tribological testing, mechanism life testing and space-flight experience will ultimately bring us into the 21st century with environmentally friendly means of cleaning long-life precision mechanism components, many satellites will be launched over the next few years before a number of important tribological questions can be answered. In order to prepare for this challenge, the Materials Engineering Branch in cooperation with the Electromechanical Branch launched an intensive review of all ongoing missions. The failure risk was determined for each long-life lubricated mechanism based on a number of parameters, including 4 comparison of flight solvents used to clean the heritage/life test hardware. Also studied was the ability of the mechanism manufacturers to stockpile ODC's based on state laws and company policies. A stockpiling strategy was constructed based on this information and subsequently implemented. This paper provides an overview of the GSFC ODC elimination risk mitigation philosophy as well as a detailed examination of the development of the ODC stockpiling plan.
Nickels, Janet S.; Bobbie, Ronald J.; Lott, Dan F.; Martz, Robert F.; Benson, Peter H.; White, David C.
1981-01-01
Metals exposed to rapidly flowing seawater are fouled by microbes that increase heat transfer resistance. In this study, results of biochemical test methods quantitatively relating the biomass and community structure of the microfouling film on aluminum and titanium to heat transfer resistance across the metal surface during three cycles of free fouling and manual brushing showed that cleaning accelerates the rate of fouling measured as the loss of heat transfer efficiency and as microfouling film biomass. The results also showed that the rate of fouling, measured as an increase in heat transfer resistance, is faster on titanium than on aluminum but that the titanium surface is more readily cleaned. In three cycles of free fouling and cleaning with a stiff-bristle nylon brush, the free-fouling communities re-forming on aluminum became enriched in bacteria containing short-branched fatty acids as the cycling progressed. The free-fouling community on titanium revealed an increasingly diverse morphology under scanning electron microscopy that was enriched in a portion of the microeucaryotes. Brushing removed most of the biomass, but left a residual community that was relatively enriched in a portion of the bacterial assembly containing cyclopropane fatty acids on aluminum and in a more diverse community on the titanium surface. The residual communities left after cleaning of titanium revealed an increase in bacteria with short-branched fatty acids and in microeucaryotes as cleaning continued. No significant changes occurred in the residual microbial community structure left on aluminum with cleaning; it was, again, less diverse than that remaining on titanium. The residual communities secreted a twofold-larger amount of extracellular polymer, measured as the ratio of total organic carbon to lipid phosphate, than did the free-fouling community on both surfaces. Images PMID:16345798
Burrows, G. E.; Meagher, P. F.; Heady, R. D.
2007-01-01
Background and Aims The branch-base xylem structure of the endangered Wollemia nobilis was anatomically investigated. Wollemia nobilis is probably the only extant tree species that produces only first-order branches and where all branches are cleanly abscised. An investigation was carried out to see if these unusual features might influence branch-base xylem structure and water supply to the foliage. Methods The xylem was sectioned at various distances along the branch bases of 6-year-old saplings. Huber values and relative theoretical hydraulic conductivities were calculated for various regions of the branch base. Key Results The most proximal branch base featured a pronounced xylem constriction. The constriction had only 14–31 % (average 21 %) of the cross-sectional area and 20–42 % (average 28 %) of the theoretical hydraulic conductivity of the more distal branch xylem. Wollemia nobilis had extremely low Huber values for a conifer. Conclusions The branch-base xylem constriction would appear to facilitate branch abscission, while the associated Huber values show that W. nobilis supplies a relatively large leaf area through a relatively small diameter ‘pipe’. It is tempting to suggest that the pronounced decline of W. nobilis in the Tertiary is related to its unusual branch-base structure but physiological studies of whole plant conductance are still needed. PMID:17272303
Richard M. Godman
1992-01-01
Thin too much the first time and you are likely to get a surge of epicormic sprouts. These small branches that can mar a clean bole and cause serious degrade often develop profusely in pole and small sawtimber before and after initial thinning, particularly under even-age management.
Treatment of surfaces with low-energy electrons
NASA Astrophysics Data System (ADS)
Frank, L.; Mikmeková, E.; Lejeune, M.
2017-06-01
Electron-beam-induced deposition of various materials from suitable precursors has represented an established branch of nanotechnology for more than a decade. A specific alternative is carbon deposition on the basis of hydrocarbons as precursors that has been applied to grow various nanostructures including masks for subsequent technological steps. Our area of study was unintentional electron-beam-induced carbon deposition from spontaneously adsorbed hydrocarbon molecules. This process traditionally constitutes a challenge for scanning electron microscopy practice preventing one from performing any true surface studies outside an ultrahigh vacuum and without in-situ cleaning of samples, and also jeopardising other electron-optical devices such as electron beam lithographs. Here we show that when reducing the energy of irradiating electrons sufficiently, the e-beam-induced deposition can be converted to e-beam-induced release causing desorption of hydrocarbons and ultimate cleaning of surfaces in both an ultrahigh and a standard high vacuum. Using series of experiments with graphene samples, we demonstrate fundamental features of e-beam-induced desorption and present results of checks for possible radiation damage using Raman spectroscopy that led to optimisation of the electron energy for damage-free cleaning. The method of preventing carbon contamination described here paves the way for greatly enhanced surface sensitivity of imaging and substantially reduced demands on vacuum systems for nanotechnological applications.
Román, Laura; Martínez, Mario M; Rosell, Cristina M; Gómez, Manuel
2017-08-01
Extrusion is an increasingly used type of processing which combined with enzymatic action could open extended possibilities for obtaining clean label modified flours. In this study, native and extruded maize flours were modified using branching enzyme (B) and a combination of branching enzyme and maltogenic α-amylase (BMA) in order to modulate their hydrolysis properties. The microstructure, pasting properties, in vitro starch hydrolysis and resistant starch content of the flours were investigated. Whereas BMA treatment led to greater number of holes on the granule surface in native samples, B and BMA extruded samples showed rougher surfaces with cavities. A reduction in the retrogradation trend was observed for B and BMA native flours, in opposition to the flat pasting profile of their extruded counterparts. The glucose release increased gradually for native flours as the time of reaction did, whereas for extruded flours a fast increase of glucose release was observed during the first minutes of reaction, and kept till the end, indicating a greater accessibility to their porous structure. These results suggested that, in enzymatically treated extruded samples, changes produced at larger hierarchical levels in their starch structure could have masked a slowdown in the starch digestion properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Biosorption: current perspectives on concept, definition and application.
Fomina, Marina; Gadd, Geoffrey Michael
2014-05-01
Biosorption is a physico-chemical and metabolically-independent process based on a variety of mechanisms including absorption, adsorption, ion exchange, surface complexation and precipitation. Biosorption processes are highly important in the environment and conventional biotreatment processes. As a branch of biotechnology, biosorption has been aimed at the removal or recovery of organic and inorganic substances from solution by biological material which can include living or dead microorganisms and their components, seaweeds, plant materials, industrial and agricultural wastes and natural residues. For decades biosorption has been heralded as a promising cost-effective clean-up biotechnology. Despite significant progress in our understanding of this complex phenomenon and a dramatic increase in publications in this research area, commercialization of biosorption technologies has been limited so far. This article summarizes existing knowledge on various aspects of the fundamentals and applications of biosorption and critically reviews the obstacles to commercial success and future perspectives. Copyright © 2014 Elsevier Ltd. All rights reserved.
DEVELOPING TOOLS TO ASSESS THE ECOLOGICAL CONDITION OF THE NATION'S AQUATIC SYSTEMS
The Aquatic Monitoring and Bioassement Branch (AMBB) at the Environmental Protection Agency's Western Ecology Division leads ORD's research on monitoring freshwater aquatic systems. This work is in response to the Clean Water Act (CWA, Section 305b) that requires EPA to report bi...
76 FR 20906 - Approval and Promulgation of Air Quality Implementation Plans; Indiana
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... Promulgation of Air Quality Implementation Plans; Indiana AGENCY: Environmental Protection Agency (EPA). ACTION... Clean Air Act. Indiana submitted revisions to the particulate matter (PM) and sulfur dioxide (SO 2...: Douglas Aburano, Chief, Control Strategies Section, Air Programs Branch (AR-18J), U.S. Environmental...
Evidence for self-cleaning in gecko setae
NASA Astrophysics Data System (ADS)
Hansen, W. R.; Autumn, K.
2005-01-01
A tokay gecko can cling to virtually any surface and support its body mass with a single toe by using the millions of keratinous setae on its toe pads. Each seta branches into hundreds of 200-nm spatulae that make intimate contact with a variety of surface profiles. We showed previously that the combined surface area of billions of spatulae maximizes van der Waals interactions to generate large adhesive and shear forces. Geckos are not known to groom their feet yet retain their stickiness for months between molts. How geckos manage to keep their feet clean while walking about with sticky toes has remained a puzzle until now. Although self-cleaning by water droplets occurs in plant and animal surfaces, no adhesive has been shown to self-clean. In the present study, we demonstrate that gecko setae are a self-cleaning adhesive. Geckos with dirty feet recovered their ability to cling to vertical surfaces after only a few steps. Self-cleaning occurred in arrays of setae isolated from the gecko. Contact mechanical models suggest that self-cleaning occurs by an energetic disequilibrium between the adhesive forces attracting a dirt particle to the substrate and those attracting the same particle to one or more spatulae. We propose that the property of self-cleaning is intrinsic to the setal nanostructure and therefore should be replicable in synthetic adhesive materials in the future. adhesion | contact mechanics | locomotion | reptilia | nanotechnology
Code of Federal Regulations, 2013 CFR
2013-07-01
... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production chambers... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...
Visualization of flow during cleaning process on a liquid nanofibrous filter
NASA Astrophysics Data System (ADS)
Bílek, P.
2017-10-01
This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.
Aqueous cleaning and verification processes for precision cleaning of small parts
NASA Technical Reports Server (NTRS)
Allen, Gale J.; Fishell, Kenneth A.
1995-01-01
The NASA Kennedy Space Center (KSC) Materials Science Laboratory (MSL) has developed a totally aqueous process for precision cleaning and verification of small components. In 1990 the Precision Cleaning Facility at KSC used approximately 228,000 kg (500,000 lbs) of chlorofluorocarbon (CFC) 113 in the cleaning operations. It is estimated that current CFC 113 usage has been reduced by 75 percent and it is projected that a 90 percent reduction will be achieved by the end of calendar year 1994. The cleaning process developed utilizes aqueous degreasers, aqueous surfactants, and ultrasonics in the cleaning operation and an aqueous surfactant, ultrasonics, and Total Organic Carbon Analyzer (TOCA) in the nonvolatile residue (NVR) and particulate analysis for verification of cleanliness. The cleaning and verification process is presented in its entirety, with comparison to the CFC 113 cleaning and verification process, including economic and labor costs/savings.
Chapel branch creek TMDL development: integrating TMDL development with implementation
T.M. Williams; D.M. Amatya; D.R. Hitchcock; N. Levine; E.N. Mihalik
2007-01-01
South Carolina assured the USEPA "The State intends to achieve waste load and load allocation reductions in 303(d) listed waters in order to achieve the water quality goals of the Clean Water Act. This includes waters impaired solely or primarily by NPS sources. For each such water, a TMDL will be established that includes specific recommendations for reducing...
Northeastern Area State and Private Forestry At a Glance
Northeastern Area, State & Private Forestry USDA Forest Service
2006-01-01
The State and Private Forestry branch of the USDA Forest Service promotes sustainable management of non-Federal forest lands, which make up two-thirds of the forests in the United States. This work supports the Forest Service?s role as steward of the Nation?s forests and ensures that private forests yield public benefits. Among these benefits are clean air, drinking...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... and H.P. Wright Library Branch. The Final EIS/EIR is available at the Corps' Web site: http://www.spl... includes a draft general conformity determination (see Section 3.2, Section 4.7 and Appendix D.7), pursuant to Section 176(c) of the Clean Air Act. A general conformity determination is necessary because...
Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems
NASA Technical Reports Server (NTRS)
Mitchell, Mark A.; Lowrey, Nikki M.
2015-01-01
Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.
NASA Technical Reports Server (NTRS)
Mitchell, Mark A.; Lowrey, Nikki M.
2015-01-01
Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...
Cleaning Process Development for Metallic Additively Manufactured Parts
NASA Technical Reports Server (NTRS)
Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark
2014-01-01
Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...
The Role of African-American Musicians in the Integration of the United States Navy
ERIC Educational Resources Information Center
Drane, Gregory
2015-01-01
The service of blacks in the U.S. military can be traced back to the Revolutionary War. However, up to the end of World War I, African Americans in military branches were relegated to cooking and cleaning duties. As the United States prepared to enter World War II, pressure to admit African Americans into full service in the military increased due…
ASRM process development in aqueous cleaning
NASA Technical Reports Server (NTRS)
Swisher, Bill
1992-01-01
Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.
NASA Astrophysics Data System (ADS)
Bílek, Petr; Hrůza, Jakub
2018-06-01
This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.
Regenerating using aqueous cleaners with ozone and electrolysis
NASA Technical Reports Server (NTRS)
Mcginness, Michael P.
1994-01-01
A new process converts organic oil and grease contaminates in used water based cleaners into synthetic surfactants. This permits the continued use of a cleaning solution long after it would have been dumped using previously known methods. Since the organic soils are converted from contaminates to cleaning compounds the need for frequent bath dumps is totally eliminated. When cleaning solutions used in aqueous cleaning systems are exhausted and ready for disposal, they will always contain the contaminates removed from the cleaned parts and drag-in from prior cleaning steps. Even when the cleaner is biodegradable these contaminants will frequently cause the waste cleaning solution to be a hazardous waste. Chlorinated solvents are rapidly being replaced by aqueous cleaners to avoid the new ozone-depletion product-labeling-law. Many industry standard halocarbon based solvents are being completely phased out of production, and their prices have nearly tripled. Waste disposal costs and cradle-to-grave liability are also major concerns for industry today. This new process reduces the amount of water and chemicals needed to maintain the cleaning process. The cost of waste disposal is eliminated because the water and cleaning compounds are reused. Energy savings result by eliminating the need for energy currently used to produce and deliver fresh water and chemicals as well as the energy used to treat and destroy the waste from the existing cleaning processes. This process also allows the cleaning bath to be maintained at the peak performance of a new bath resulting in decreased cycle times and decreased energy consumption needed to clean the parts. This results in a more efficient and cost effective cleaning process.
Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems
NASA Technical Reports Server (NTRS)
Lowrey, Nikki M.; Mitchell, Mark A.
2015-01-01
Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both NASA and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. This presentation summarizes the tests performed, results, and lessons learned. It also demonstrates the benefits of cross-agency collaboration in a time of limited resources.
Probing new physics via the B(s)0→μ(+)μ- effective lifetime.
De Bruyn, Kristof; Fleischer, Robert; Knegjens, Robert; Koppenburg, Patrick; Merk, Marcel; Pellegrino, Antonio; Tuning, Niels
2012-07-27
We have recently seen new upper bounds for B(s)(0)→μ(+)μ(-), a key decay to search for physics beyond the standard model. Furthermore a nonvanishing decay width difference ΔΓ(s) of the B(s) system has been measured. We show that ΔΓ(s) affects the extraction of the B(s)(0)→μ(+)μ(-) branching ratio and the resulting constraints on the new physics parameter space and give formulas for including this effect. Moreover, we point out that ΔΓ(s) provides a new observable, the effective B(s)(0)→μ(+)μ(-) lifetime τ(μ(+)μ(-)), which offers a theoretically clean probe for new physics searches that is complementary to the branching ratio. Should the B(s)(0)→μ(+)μ(-) branching ratio agree with the standard model, the measurement of τ(μ(+)μ(-)), which appears feasible at upgrades of the Large Hadron Collider experiments, may still reveal large new physics effects.
NASA Technical Reports Server (NTRS)
Rudolph, H.; Mckoy, V.; Dixit, S. N.; Huo, W. M.
1988-01-01
Results are presented for the rotationally resolved photoelectron spectra resulting from a (2 + 1) one-color resonant enhanced multiphoton ionization (REMPI) of NO via the rotationally clean S21(11.5) and mixed S11(15.5) + R21(15.5) branches of the 0-0 transition in the D-X band. The calculations were done in the fixed-nuclei frozen core approximation. The resulting photoionization spectra, convoluted with a Lorentzian detection function, agree qualitatively with experimental results of Viswanathan et al. (1986) and support their conclusion that the nonspherical nature of the molecular potential creates a substantial l-mixing in the continuum, which in turn leads to the intense Delta N = 0 peak. The rather strong photoelectron energy dependence of the rotational branching ratios of the D 2Sigma(+) S21(11.5) line was investigated and compared to the weak energy dependence of the A 2Sigma(+) R22(21.5) line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Ella; Bellum, John; Kletecka, Damon
We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less
Field, Ella; Bellum, John; Kletecka, Damon
2014-11-06
We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less
NASA Astrophysics Data System (ADS)
Omega, Dousmaris; Andika, Aditya
2017-12-01
This paper discusses the results of a research conducted on the production process of an Indonesian pharmaceutical company. The company is experiencing low performance in the Overall Equipment Effectiveness (OEE) metric. The OEE of the company machines are below world class standard. The machine that has the lowest OEE is the filler machine. Through observation and analysis, it is found that the cleaning process of the filler machine consumes significant amount of time. The long duration of the cleaning process happens because there is no structured division of jobs between cleaning operators, differences in operators’ ability, and operators’ inability in utilizing available cleaning equipment. The company needs to improve the cleaning process. Therefore, Critical Path Method (CPM) analysis is conducted to find out what activities are critical in order to shorten and simplify the cleaning process in the division of tasks. Afterwards, The Maynard Operation and Sequence Technique (MOST) method is used to reduce ineffective movement and specify the cleaning process standard time. From CPM and MOST, it is obtained the shortest time of the cleaning process is 1 hour 28 minutes and the standard time is 1 hour 38.826 minutes.
Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons
Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William
2010-01-01
Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636
Integrated, flexible, and rapid geophysical surveying
NASA Astrophysics Data System (ADS)
Miller, S. F.; McGinnis, L. D.; Thompson, M. D.; Tome, C.
Aberdeen Proving Ground (APG) is currently managing a comprehensive Installation Restoration Program involving more than 360 solid-waste managing units contained within 13 study areas. The Edgewood area and two landfills in the Aberdeen area appear on the National Priority List under the Comprehensive Environmental Response, Compensation, and Liability Act. Therefore, APG has entered into an interagency agreement with the US Environmental Protection Agency to address the listed areas. The West Branch of the Canal Creek area, located within the Edgewood area, is one of the areas that requires a Source Definition Study because there is an ongoing release of volatile organic compounds into the creek. A report prepared in 1989 included a list of 29 potentially contaminated buildings in the Edgewood area. Sixteen of the buildings contain known contaminants, nine buildings contain unknown contaminants, and four of the buildings are potentially clean. The EAI report recommended that a sampling and monitoring program be established to verify contamination levels in and around each building. Thirteen of the potentially contaminated buildings are in the West Branch of the Canal Creek area and are potential sources of volatile organic compounds. Operations have ceased, and the buildings have been abandoned, but processing equipment, sumps, drains, ventilation systems, and underground storage tanks remain. These appurtenances may contain liquid, solid, or vapor contaminants of unknown nature.
Wilhelm, Nadja; Perle, Nadja; Simmoteit, Robert; Schlensak, Christian; Wendel, Hans P.; Avci-Adali, Meltem
2014-01-01
Surgical instruments are often strongly contaminated with patients' blood and tissues, possibly containing pathogens. The reuse of contaminated instruments without adequate cleaning and sterilization can cause postoperative inflammation and the transmission of infectious diseases from one patient to another. Thus, based on the stringent sterility requirements, the development of highly efficient, validated cleaning processes is necessary. Here, we use for the first time synthetic single-stranded DNA (ssDNA_ODN), which does not appear in nature, as a test soiling to evaluate the cleaning efficiency of routine washing processes. Stainless steel test objects were coated with a certain amount of ssDNA_ODN. After cleaning, the amount of residual ssDNA_ODN on the test objects was determined using quantitative real-time PCR. The established method is highly specific and sensitive, with a detection limit of 20 fg, and enables the determination of the cleaning efficiency of medical cleaning processes under different conditions to obtain optimal settings for the effective cleaning and sterilization of instruments. The use of this highly sensitive method for the validation of cleaning processes can prevent, to a significant extent, the insufficient cleaning of surgical instruments and thus the transmission of pathogens to patients. PMID:24672793
Cleaning process for EUV optical substrates
Weber, Frank J.; Spiller, Eberhard A.
1999-01-01
A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... air conditioning wastes are not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but... from cleaning [with or without chemical cleaning compounds] any metal process equipment including, but...
Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1995-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.
Preliminary Results of Cleaning Process for Lubricant Contamination
NASA Astrophysics Data System (ADS)
Eisenmann, D.; Brasche, L.; Lopez, R.
2006-03-01
Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.
Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudduth, Christie; Vitali, Jason; Keefer, Mark
The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the factmore » that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.« less
Cleaning Processes across NASA Centers
NASA Technical Reports Server (NTRS)
Hammond, John M.
2010-01-01
All significant surfaces of the hardware must be pre-cleaned to remove dirt, grit, scale, corrosion, grease, oil and other foreign matter prior to any final precision cleaning process. Metallic parts shall be surface treated (cleaned, passivated, pickled and/or coated) as necessary to prevent latent corrosion and contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormond, Thomas K.; Scheer, Adam M.; Nimlos, Mark R.
2015-07-16
The thermal decomposition of cyclopentadienone (C5H4-O) has been studied in a flash pyrolysis continuous flow microreactor. Passing dilute samples of o-phenylene sulfite (C6H4O2SO) in He through the microreactor at elevated temperatures yields a relatively clean source of C5H4-O. The pyrolysis of C5H4-O was investigated over the temperature range 1000-2000 K.
Evaluation of HCFC AK 225 Alternatives for Precision Cleaning and Verification
NASA Technical Reports Server (NTRS)
Melton, D. M.
1998-01-01
Maintaining qualified cleaning and verification processes are essential in an production environment. Environmental regulations have and are continuing to impact cleaning and verification processing in component and large structures, both at the Michoud Assembly Facility and component suppliers. The goal of the effort was to assure that the cleaning and verification proceeds unimpeded and that qualified, environmentally compliant material and process replacements are implemented and perform to specifications. The approach consisted of (1) selection of a Supersonic Gas-Liquid Cleaning System; (2) selection and evaluation of three cleaning and verification solvents as candidate alternatives to HCFC 225 (Vertrel 423 (HCFC), Vertrel MCA (HFC/1,2-Dichloroethylene), and HFE 7100DE (HFE/1,2 Dichloroethylene)); and evaluation of an analytical instrumental post cleaning verification technique. This document is presented in viewgraph format.
High-density plasma deposition manufacturing productivity improvement
NASA Astrophysics Data System (ADS)
Olmer, Leonard J.; Hudson, Chris P.
1999-09-01
High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.
The control of branching morphogenesis
Iber, Dagmar; Menshykau, Denis
2013-01-01
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663
Clean-up and disposal process of polluted sediments from urban rivers.
He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C
2001-10-01
In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.
Laser Ablation Cleaning of Self-Reacting Friction Stir Weld Seam Surfaces: A Preliminary Evaluation
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C. K.; Brooke, S. A.; Parry, Q.; Lowrey, N. M.
2014-01-01
Anodized aluminum panels were cleaned by three lasers at three separate sites with a view to determining whether more economical laser cleaning might supplant current manual cleaning methods for preparation of surfaces to be welded by the self-reacting friction stir process. Uncleaned panels yielded welds exhibiting residual oxide defect (ROD) and failing at very low stresses along the trace of the weld seam. Manually cleaned panels yielded welds without ROD; these welds failed at nominal stress levels along an angled fracture surface not following the weld seam trace. Laser cleaned panels yielded welds failing at intermediate stress levels. The inadequacy of the laser cleaning processes leaves questions: Was the anodized aluminum test too stringent to represent actual cleaning requirements? Were the wrong laser cleaning techniques/parameters used for the study? Is the laser cleaning mechanism inadequate for effective preweld surface cleaning?
Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1984-12-01
A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...
Heudorf, U; Gasteyer, S; Samoiski, Y; Voigt, K
2012-08-01
Due to the Infectious Disease Prevention Act, public health services in Germany are obliged to check the infection prevention in hospitals and other medical facilities as well as in nursing homes. In Frankfurt/Main, Germany, standardized control visits have been performed for many years. In 2011 focus was laid on cleaning and disinfection of surfaces. All 41 nursing homes were checked according to a standardized checklist covering quality of structure (i.e. staffing, hygiene concept), quality of process (observation of the cleaning processes in the homes) and quality of output, which was monitored by checking the cleaning of fluorescent marks which had been applied some days before and should have been removed via cleaning in the following days before the final check. In more than two thirds of the homes, cleaning personnel were salaried, in one third external personnel were hired. Of the homes 85% provided service clothing and all of them offered protective clothing. All homes had established hygiene and cleaning concepts, however, in 15% of the homes concepts for the handling of Norovirus and in 30% concepts for the handling of Clostridium difficile were missing. Regarding process quality only half of the processes observed, i.e. cleaning of hand contact surfaces, such as handrails, washing areas and bins, were correct. Only 44% of the cleaning controls were correct with enormous differences between the homes (0-100%). The correlation between quality of process and quality of output was significant. There was good quality of structure in the homes but regarding quality of process and outcome there was great need for improvement. This was especially due to faults in communication and coordination between cleaning personnel and nursing personnel. Quality outcome was neither associated with the number of the places for residents nor with staffing. Thus, not only quality of structure but also quality of process and outcome should be checked by the public health services.
Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente
NASA Technical Reports Server (NTRS)
Rogers, Jan; Finckenor, Miria; Nehls, Mary
2016-01-01
The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.
Cleaning of parts for new manufacturing and parts rebuilding
NASA Astrophysics Data System (ADS)
Doherty, Jeff
1994-06-01
Parts cleaning is the largest single expense, and the most time consuming activity, in rebuilding and new manufacturing. On average, 25% to 40% of the total labor and overhead burden is spent on cleaning. EPA and OSHA pressures add to the burden by making some methods and chemicals obsolete. Some of the processes and chemicals in current use will be curtailed and or outlawed in the future. How can a shops and industries make long term decisions or capital investments in cleaning and process improvements when the government keeps changing its rules? At the MART Corporation in Saint Louis, Missouri, we manufacture a line of cabinet-style batch cleaning machines known as Power Washers. Twenty years ago MART invented and patented the Power Washer process, a cleaning method that recycles wash solution and blasts contaminates as they are washed off the more heavily contaminated parts. Since the initial invention MART has continued to R&D the washing process and develop ancillary systems that comply with EPA and OSHA regulations. For applications involving new industrial parts or items requiring specification cleaned surfaces. MART provides filtration and solution conditioning systems, part drying operations, and triple rinsing. Units are available in stainless steel or higher alloys. We are not alone in the washer manufacturing business. You have many choices of cleaning solutions (no pun intended) which will perform in your operations and yield good results. As a manufacturer, we are interested in your success with our equipment. We have all heard the horror stories of companies having selected inappropriate cleaning systems and or processes which then brought the company to its knees, production wise. Assembly, appearance, warranty, and performance shortcomings of finished products can often be directly related to the cleaning process and its shortcomings.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2017-12-01
Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.
Maxillary Sinusitis Caused by Actinomucor elegans
Davel, Graciela; Featherston, Patricia; Fernández, Anibal; Abrantes, Ruben; Canteros, Cristina; Rodero, Laura; Sztern, Carlos; Perrotta, Diego
2001-01-01
We report the first case of maxillary sinusitis caused by Actinomucor elegans in an 11-year-old patient. Histopathological and mycological examinations of surgical maxillary sinuses samples showed coenocytic hyphae characteristic of mucoraceous fungi. The fungi recovered had stolons and rhizoids, nonapophyseal and globose sporangia, and whorled branched sporangiophores and was identified as A. elegans. After surgical cleaning and chemotherapy with amphotericin B administered intravenously and by irrigation, the patient became asymptomatic and the mycological study results were negative. PMID:11158140
12 CFR 28.21 - Service of process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Service of process. 28.21 Section 28.21 Banks... Federal Branches and Agencies of Foreign Banks § 28.21 Service of process. A foreign bank operating at any Federal branch or agency is subject to service of process at the location of the Federal branch or agency. ...
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...
Risk assessment and management of Chlamydia psittaci in poultry processing plants.
Deschuyffeleer, Thomas P G; Tyberghien, Laurens F V; Dickx, Veerle L C; Geens, Tom; Saelen, Jacques M M M; Vanrompay, Daisy C G; Braeckman, Lutgard A C M
2012-04-01
Chlamydia psittaci causes respiratory disease in poultry and can be transmitted to humans. Historical outbreaks of psittacosis in poultry workers indicated the need for higher awareness and an efficient risk assessment and management. This group reviewed relevant previous research, practical guidelines, and European directives. Subsequently, basic suggestions were made on how to assess and manage the risk of psittacosis in poultry processing plants based on a classical four-step approach. Collective and personal protective measures as well as the role of occupational medicine are described. Despite the finding that exposure is found in every branch, abattoir workstations seem to be associated with the highest prevalence of psittacosis. Complete eradication is difficult to achieve. Ventilation, cleaning, hand hygiene, and personal protective equipment are the most important protective measures to limit and control exposure to C. psittaci. Adequate information, communication, and health surveillance belong to the responsibilities of the occupational physician. Future challenges lay in the rigorous reporting of infections in both poultry and poultry workers and in the development of an avian and human vaccine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-09-28
The five-acre Stamina Mills site is a former textile weaving and finishing facility in North Smithfield, Providence County, Rhode Island. A portion of the site is within the 100-year floodplain and wetland area of the Branch River. The manufacturing process used cleaning solvents, acids, bases and dyes for coloring, pesticides for moth proofing, and plasticizers to coat fabrics. Mill process wastes were placed in a landfill onsite. EPA initiated three removal actions from 1984 to 1990, including an extension of the municipal water supply to residents obtaining water from the affected aquifer; and treatment of two underground and one above-groundmore » storage tanks, followed by offsite disposal. The Record of Decision (ROD) provides a final remedy and addresses both source control and management of contaminated ground water migration at the site. The primary contaminants of concern affecting the soil, debris, sediment, and ground water are VOCs including TCE and PCE; other organics including pesticides; and metals including chromium.« less
Positron line radiation from halo WIMP annihilations as a dark matter signature
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Wilczek, Frank
1989-01-01
We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.
Integrated, flexible, and rapid geophysical surveying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.F.; McGinnis, L.D.; Thompson, M.D.
1993-01-01
Aberdeen Proving Ground (APG), in the state of Maryland (Figure 1), is currently managing a comprehensive Installation Restoration Program involving more than 360 solid-waste managing units contained within 13 study areas. The Edgewood area and two landfills in the Aberdeen area appear on the National Priority List under the Comprehensive Environmental Response, Compensation, and Liability Act. Therefore, APG has entered into an interagency agreement with the US Environmental Protection Agency to address the listed areas. The West Branch of the Canal Creek area (Figure 1), located within the Edgewood area, is one of the areas that requires a Source Definitionmore » Study because there is an ongoing release of volatile organic compounds into the creek. A report prepared by EAI Corporation (1989) included a list of 29 potentially contaminated buildings in the Edgewood area. Sixteen of the buildings contain known contaminants, nine buildings contain unknown contaminants, and four of the buildings are potentially clean. The EAI report recommended that a sampling and monitoring program be established to verify contamination levels in and around each building. Thirteen of the potentially contaminated buildings are in the West Branch of the Canal Creek area and are potential sources of volatile organic compounds. Operations have ceased and the buildings have been abandoned, but processing equipment, sumps, drains, ventilation systems, and underground storage tanks remain. These appurtenances may contain liquid, solid, or vapor contaminants of unknown nature.« less
Integrated, flexible, and rapid geophysical surveying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.F.; McGinnis, L.D.; Thompson, M.D.
1993-03-01
Aberdeen Proving Ground (APG), in the state of Maryland (Figure 1), is currently managing a comprehensive Installation Restoration Program involving more than 360 solid-waste managing units contained within 13 study areas. The Edgewood area and two landfills in the Aberdeen area appear on the National Priority List under the Comprehensive Environmental Response, Compensation, and Liability Act. Therefore, APG has entered into an interagency agreement with the US Environmental Protection Agency to address the listed areas. The West Branch of the Canal Creek area (Figure 1), located within the Edgewood area, is one of the areas that requires a Source Definitionmore » Study because there is an ongoing release of volatile organic compounds into the creek. A report prepared by EAI Corporation (1989) included a list of 29 potentially contaminated buildings in the Edgewood area. Sixteen of the buildings contain known contaminants, nine buildings contain unknown contaminants, and four of the buildings are potentially clean. The EAI report recommended that a sampling and monitoring program be established to verify contamination levels in and around each building. Thirteen of the potentially contaminated buildings are in the West Branch of the Canal Creek area and are potential sources of volatile organic compounds. Operations have ceased and the buildings have been abandoned, but processing equipment, sumps, drains, ventilation systems, and underground storage tanks remain. These appurtenances may contain liquid, solid, or vapor contaminants of unknown nature.« less
Cleaning conveyor belts in the chicken-cutting area of a poultry processing plant with 45°c water.
Soares, V M; Pereira, J G; Zanette, C M; Nero, L A; Pinto, J P A N; Barcellos, V C; Bersot, L S
2014-03-01
Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45°C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45°C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, B.E.
1995-04-01
A cross-functional team of process, product, quality, material, and design lab engineers was assembled to develop an environmentally friendly cleaning process for leadless chip carrier assemblies (LCCAs). Using flush and filter testing, Auger surface analysis, GC-Mass spectrophotometry, production yield results, and electrical testing results over an extended testing period, the team developed an aqueous cleaning process for LCCAs. The aqueous process replaced the Freon vapor degreasing/ultrasonic rinse process.
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
.... 361.8 provides the regulations for the cleaning of imported seed and processing of certain Canadian... with Canada that allows U.S. companies that import seed for cleaning or processing to enter into... Canadian seed and screenings, seed cleaning/processing facility personnel, and Canadian Food Inspection...
Finite-size scaling of survival probability in branching processes
NASA Astrophysics Data System (ADS)
Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro
2015-04-01
Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G (y ) =2 y ey /(ey-1 ) , with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...
40 CFR 423.11 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...
Occupational deaths and injuries by the types of street cleaning process.
Jeong, Byung Yong
2017-03-01
This study aims to obtain an overall picture of occupational injuries by the types of street cleaning process. Three hundred and fifty-four injured persons were analyzed in terms of the company size and details of the injured persons and accidents. Results show that 'roadway cleaning' was the most common type of cleaning process for injuries, followed by 'sidewalk cleaning,' 'going/returning to work by bike' and 'lifting/carrying.' The findings also show that most accidents which occur when 'going/returning to work by bike' are in the form of traffic accidents, while in other processes they happen most often in the form of slips. Most of the accidents related to 'lifting/carrying' affected workers in their 50s or younger while other processes had a large portion of injured persons in their 50s or older. The findings of this study can be used as baseline data for preventative policies.
Ultrasonic cleaning: Fundamental theory and application
NASA Technical Reports Server (NTRS)
Fuchs, F. John
1995-01-01
This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.
On extreme events for non-spatial and spatial branching Brownian motions
NASA Astrophysics Data System (ADS)
Avan, Jean; Grosjean, Nicolas; Huillet, Thierry
2015-04-01
We study the impact of having a non-spatial branching mechanism with infinite variance on some parameters (height, width and first hitting time) of an underlying Bienaymé-Galton-Watson branching process. Aiming at providing a comparative study of the spread of an epidemics whose dynamics is given by the modulus of a branching Brownian motion (BBM) we then consider spatial branching processes in dimension d, not necessarily integer. The underlying branching mechanism is either a binary branching model or one presenting infinite variance. In particular we evaluate the chance p(x) of being hit if the epidemics started away at distance x. We compute the large x tail probabilities of this event, both when the branching mechanism is regular and when it exhibits very large fluctuations.
The successful of finite element to invent particle cleaning system by air jet in hard disk drive
NASA Astrophysics Data System (ADS)
Jai-Ngam, Nualpun; Tangchaichit, Kaitfa
2018-02-01
Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.
ArF halftone PSM cleaning process optimization for next-generation lithography
NASA Astrophysics Data System (ADS)
Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok
2000-07-01
ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.
NASA Astrophysics Data System (ADS)
Varanasi, Rao; Mesawich, Michael; Connor, Patrick; Johnson, Lawrence
2017-03-01
Two versions of a specific 2nm rated filter containing filtration medium and all other components produced from high density polyethylene (HDPE), one subjected to standard cleaning, the other to specialized ultra-cleaning, were evaluated in terms of their cleanliness characteristics, and also defectivity of wafers processed with photoresist filtered through each. With respect to inherent cleanliness, the ultraclean version exhibited a 70% reduction in total metal extractables and 90% reduction in organics extractables compared to the standard clean version. In terms of particulate cleanliness, the ultraclean version achieved stability of effluent particles 30nm and larger in about half the time required by the standard clean version, also exhibiting effluent levels at stability almost 90% lower. In evaluating defectivity of blanket wafers processed with photoresist filtered through either version, initial defect density while using the ultraclean version was about half that observed when the standard clean version was in service, with defectivity also falling more rapidly during subsequent usage of the ultraclean version compared to the standard clean version. Similar behavior was observed for patterned wafers, where the enhanced defect reduction was primarily of bridging defects. The filter evaluation and actual process-oriented results demonstrate the extreme value in using filtration designed possessing the optimal intrinsic characteristics, but with further improvements possible through enhanced cleaning processes
Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.
Ahmad, I; Tansel, B; Mitrani, J D
2001-12-01
Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.
Adhesion and transfer of polytetrafluoroethylene to tungsten studied by field ion microscopy
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1972-01-01
Mechanical contacts between polytetrafluoroethylene (PTFE) and tungsten field ion tips were made in situ in the field ion microscope. Both load and force of adhesion were measured for varying contact times and for clean and contaminated tungsten tips. Strong adhesion between the PTFE and clean tungsten was observed at contact times greater than 2.5 min (forces of adhesion were greater than three times the load). For times less than 2.5 min, the force of adhesion was immeasurably small. The increase in adhesion with contact time after 2.5 min can be attributed to the increase in true contact area by creep of PTFE. No adhesion was measurable at long contact times with contaminated tungsten tips. Neon field ion micrographs taken after the contacts show many linear and branched arrays which appear to represent PTFE that remains adhered to the surface even at the high electric fields required for imaging.
NASA Astrophysics Data System (ADS)
Kerber, L. O.; Nardiello, D.; Ortolani, S.; Barbuy, B.; Bica, E.; Cassisi, S.; Libralato, M.; Vieira, R. G.
2018-01-01
Bulge globular clusters (GCs) with metallicities [Fe/H] ≲ ‑1.0 and blue horizontal branches are candidates to harbor the oldest populations in the Galaxy. Based on the analysis of HST proper-motion-cleaned color–magnitude diagrams in filters F435W and F625W, we determine physical parameters for the old bulge GCs NGC 6522 and NGC 6626 (M28), both with well-defined blue horizontal branches. We compare these results with similar data for the inner halo cluster NGC 6362. These clusters have similar metallicities (‑1.3 ≤ [Fe/H] ≤ ‑1.0) obtained from high-resolution spectroscopy. We derive ages, distance moduli, and reddening values by means of statistical comparisons between observed and synthetic fiducial lines employing likelihood statistics and the Markov chain Monte Carlo method. The synthetic fiducial lines were generated using α-enhanced BaSTI and Dartmouth stellar evolutionary models, adopting both canonical (Y ∼ 0.25) and enhanced (Y ∼ 0.30–0.33) helium abundances. RR Lyrae stars were employed to determine the HB magnitude level, providing an independent indicator to constrain the apparent distance modulus and the helium enhancement. The shape of the observed fiducial line could be compatible with some helium enhancement for NGC 6522 and NGC 6626, but the average magnitudes of RR Lyrae stars tend to rule out this hypothesis. Assuming canonical helium abundances, BaSTI and Dartmouth models indicate that all three clusters are coeval, with ages between ∼12.5 and 13.0 Gyr. The present study also reveals that NGC 6522 has at least two stellar populations, since its CMD shows a significantly wide subgiant branch compatible with 14% ± 2% and 86% ± 5% for first and second generations, respectively. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.
NASA Astrophysics Data System (ADS)
Zhu, Xiaolu; Yang, Hao
2017-12-01
The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miftakov, V
The BABAR experiment at SLAC provides an opportunity for measurement of the Standard Model parameters describing CP violation. A method of measuring the CKM matrix element |V{sub cb}| using Inclusive Semileptonic B decays in events tagged by a fully reconstructed decay of one of the B mesons is presented here. This mode is considered to be one of the most powerful approaches due to its large branching fraction, simplicity of the theoretical description and very clean experimental signatures. Using fully reconstructed B mesons to flag B{bar B} event we were able to produce the spectrum and branching fraction for electronmore » momenta P{sub C.M.S.} > 0.5 GeV/c. Extrapolation to the lower momenta has been carried out with Heavy Quark Effective Theory. The branching fractions are measured separately for charged and neutral B mesons. For 82 fb{sup -1} of data collected at BABAR we obtain: BR(B{sup {+-}} {yields} X e{bar {nu}}) = 10.63 {+-} 0.24 {+-} 0.29%, BR(B{sup 0} {yields} X e{bar {nu}}) = 10.68 {+-} 0.34 {+-} 0.31%, averaged BR(B {yields} X e{bar {nu}}) = 10.65 {+-} 0.19 {+-} 0.27%, ratio of Branching fractions BR(B{sup {+-}})/BR(B{sup 0}) = 0.996 {+-} 0.039 {+-} 0.015 (errors are statistical and systematic, respectively). They also obtain V{sub cb} = 0.0409 {+-} 0.00074 {+-} 0.0010 {+-} 0.000858 (errors are: statistical, systematic and theoretical).« less
Fluorescent Penetrant INSPECTION—CLEANING Study Update
NASA Astrophysics Data System (ADS)
Eisenmann, D.; Brasche, L.
2009-03-01
Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.
Estimating the Propagation of Interdependent Cascading Outages with Multi-Type Branching Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Ju, Wenyun; Sun, Kai
In this paper, the multi-type branching process is applied to describe the statistics and interdependencies of line outages, the load shed, and isolated buses. The offspring mean matrix of the multi-type branching process is estimated by the Expectation Maximization (EM) algorithm and can quantify the extent of outage propagation. The joint distribution of two types of outages is estimated by the multi-type branching process via the Lagrange-Good inversion. The proposed model is tested with data generated by the AC OPA cascading simulations on the IEEE 118-bus system. The largest eigenvalues of the offspring mean matrix indicate that the system ismore » closer to criticality when considering the interdependence of different types of outages. Compared with empirically estimating the joint distribution of the total outages, good estimate is obtained by using the multitype branching process with a much smaller number of cascades, thus greatly improving the efficiency. It is shown that the multitype branching process can effectively predict the distribution of the load shed and isolated buses and their conditional largest possible total outages even when there are no data of them.« less
Ehlinger, M; Rapp, E; Cognet, J-M; Clavert, P; Bonnomet, F; Kahn, J-L; Kempf, J-F
2005-05-01
We conducted an anatomic study of the transverse branch of the dorsal ulnar nerve to describe its morphology and position in relation to arthroscopic exploration portals. Forty-five non-side-matched anatomic specimens of unknown age and gender were preserved in formol. The dorsal branch of the ulnar nerve was identified and dissected proximally to distally in order to reveal the different terminal branches. The morphometric analysis included measurement of the length and diameter of the transverse branch and measurement of wrist width. We also measured the smallest distance between the transverse branch and the ulnar styloid process, and between the branch and usual arthroscopic portals (4-5, 6R, 6U) in the axis of the forearm. The transverse branch was inconstant. It was found in 12 of the 45 dissection specimens (27%). In two-thirds of the specimens, the branch ran over less than 50% of the wrist width, tangentially to the radiocarpal joint. Mean nerve diameter was 1 mm. It was found 5-6 mm from the ulnar styloid process and was distal to it in 83% of the specimens. The dissections demonstrated two anatomic variants. Type A corresponded to a branch running distally to the ulnar styloid process, parallel to the joint line (10/12 specimens). Type B exhibited a trajectory proximal to the ulnar styloid process, crossing the ulnar head (2/12 specimens). The relations with the arthroscopic portals (4-5, 6R, 6U) showed that the mean distance from the branch to the portal was 3.75 mm for the 4-5 portal (distally in 11/12 specimens), 3.68 mm for the 6R portal (distally in 10/12 specimens), and 4.83 mm for the 6U portal (distally in 7 specimens and proximally in 5). To our knowledge, there has been only one report specifically devoted to this transverse branch. Two other reports simply mention its existence. According to the literature, the transverse branch of the dorsal ulnar nerve occurs in 60-80% of the cases. We found two anatomic variations different than those described in the literature. Based on our findings and data reported previously, we propose a new classification, describing two main types. In Type 1, the transverse branch arises proximally to the ulnar styloid process;type 1A and type IB are described in relation to the direction of the branch. In Type II, the branch arises distally to the ulnar styloid process;type IIA and type IIB again being described in relation to the direction of the branch. On the tangential trajectory over the radiocarpal joint, the morphometric data show a zone of risk described by a rectangle measuring 10 mm wide (6 mm distal and 4 mm proximal to the ulnar styloid process) and covering 50% of the wrist width. The relations with arthroscopic portals describe a zone of risk corresponding to a 5-7 mm radius circle centered on the portals (4-5, 6R, 6U), which includes 83% of the transverse branches.
Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service
NASA Technical Reports Server (NTRS)
Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul
1997-01-01
The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.
Development of a Replacement for Trichloroethylene in the Two-Stage Cleaning Process
1992-12-01
Auger-Determined Carbon/Iron Ratios of Set 4 ..................... 15 3 Abstract Isopropyl alcohol, d- limonene , and a synthetic mineral spirits were...found to be as clean as those alcohol, d- limonene , and a synthetic cleaned by the standard two-stage mineral spirits,- were chosen to be process...selected, therefore, was to soil test specimens with Another candidate was d- limonene . It has representative soils, clean them by the been extensively
Fogging technique used to coat magnesium with plastic
NASA Technical Reports Server (NTRS)
Mroz, T. S.
1967-01-01
Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.
SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules
Lysko, Daniel E.; Putt, Mary
2014-01-01
Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713
NASA Astrophysics Data System (ADS)
Yuanyuan, Zhang
The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.
ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E; Neil Davis, N; Renee Spires, R
2008-01-17
The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store thismore » stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.« less
Surface cleaning for negative electron affinity GaN photocathode
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang
2012-10-01
In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.
Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System
NASA Technical Reports Server (NTRS)
Parrish, Lewis M.
2009-01-01
NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.
Camilleri-Rumbau, M S; Masse, L; Dubreuil, J; Mondor, M; Christensen, K V; Norddahl, B
2016-01-01
Swine manure is a valuable source of nitrogen, phosphorus and potassium. After solid-liquid separation, the resulting swine wastewater can be concentrated by reverse osmosis (RO) to produce a nitrogen-potassium rich fertilizer. However, swine wastewater has a high fouling potential and an efficient cleaning strategy is required. In this study, a semi-commercial farm scale RO spiral-wound membrane unit was fouled while processing larger volumes of swine wastewater during realistic cyclic operations over a 9-week period. Membrane cleaning was performed daily. Three different cleaning solutions, containing SDS, SDS+EDTA and NaOH were compared. About 99% of the fouling resistance could be removed by rinsing the membrane with water. Flux recoveries (FRs) above 98% were achieved for all the three cleaning solutions after cleaning. No significant differences in FR were found between the cleaning solutions. The NaOH solution thus is a good economical option for cleaning RO spiral-wound membranes fouled with swine wastewater. Soaking the membrane for 3 days in permeate water at the end of each week further improved the FR. Furthermore, a fouling resistance model for predicting the fouling rate, permeate flux decay and cleaning cycle periods based on processing time and swine wastewater conductivity was developed.
Boyce, Angela; Piterina, Anna V; Walsh, Gary
2010-10-01
The potential suitability of 10 commercial protease and lipase products for cleaning-in-place (CIP) application in the dairy industry was investigated on a laboratory scale. Assessment was based primarily on the ability of the enzymes to remove an experimentally generated milk fouling deposit from stainless steel (SS) panels. Three protease products were identified as being most suitable for this application on the basis of their cleaning performance at 40 °C, which was comparable to that of the commonly used cleaning agent, 1% NaOH at 60 °C. This was judged by quantification of residual organic matter and protein on the SS surface after cleaning and analysis by laser scanning confocal microscopy (LSCM). Enzyme activity was removed/inactivated under conditions simulating those normally undertaken after cleaning (rinsing with water, acid circulation, sanitation). Preliminary process-scale studies strongly suggest that enzyme-based CIP achieves satisfactory cleaning at an industrial scale. Cost analysis indicates that replacing caustic-based cleaning procedures with biodegradable enzymes operating at lower temperatures would be economically viable. Additional potential benefits include decreased energy and water consumption, improved safety, reduced waste generation, greater compatibility with wastewater treatment processes and a reduction in the environmental impact of the cleaning process.
Contamination control and assay results for the Majorana Demonstrator ultra clean components
NASA Astrophysics Data System (ADS)
Christofferson, C. D.; Abgrall, N.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Rouf, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
2018-01-01
The Majorana Demonstrator is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The Demonstrator has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.
Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel
2015-06-01
In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.
Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin
2017-01-01
Abstract The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. PMID:28338887
Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin; Liu, Chao
2017-07-01
The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. © The Author (2017). Published by Oxford University Press.
77 FR 14830 - Notice of Lodging of Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-13
... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby... Clean Air Act, 42 U.S.C. 7413(b). Defendant processes aluminum scrap and dross to produce various secondary aluminum products, a process that results in emissions of regulated air pollutants, including...
Automated carbon dioxide cleaning system
NASA Technical Reports Server (NTRS)
Hoppe, David T.
1991-01-01
Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.
[Study on assistant cleaning of ultrasound for the ultrafiltration membrane].
Zhang, Guojun; Liu, Zhongzhou
2003-11-01
The effects of ultrasounds with different frequency on membrane performance were investigated in this paper. The experimental results show that there were nearly no effects of 20 W ultrasound on membrane retention coefficient, but it decreased seriously when the ultrasound power was above 30 W. On the basis of these results, low frequency ultrasound (20 W) was introduced to assist the chemical cleaning in the ultrafiltration process of wastewater from bank note printing works. The cleaning time could be shortened from 20-30 min to 5 min by the ultra-liberation and ultra-blend effects of ultrasound, therefore, the cleaning efficiency was highly improved. However, the fouling substances could not be cleaned entirely in the simple physical cleaning process by SEM analysis.
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
Materials Science Clean Room Facility at Tulane University (Final Technical Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altiero, Nicholas
2010-09-30
The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.
An improved method for polarimetric image restoration in interferometry
NASA Astrophysics Data System (ADS)
Pratley, Luke; Johnston-Hollitt, Melanie
2016-11-01
Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.
Towards sustainable and safe apparel cleaning methods: A review.
Troynikov, Olga; Watson, Christopher; Jadhav, Amit; Nawaz, Nazia; Kettlewell, Roy
2016-11-01
Perchloroethylene (PERC) is a compound commonly used as a solvent in dry cleaning, despite its severe health and environmental impacts. In recent times chemicals such as hydrocarbons, GreenEarth(®), acetal and liquid carbon dioxide have emerged as less damaging substitutes for PERC, and an even more sustainable water-based wet cleaning process has been developed. We employed a systematic review approach to provide a comprehensive overview of the existing research evidence in the area of sustainable and safe apparel cleaning methods and care. Our review describes traditional professional dry cleaning methods, as well as those that utilise solvents other than PERC, and their ecological attributes. In addition, the new professional wet cleaning process is discussed. Finally, we address the health hazards of the various solvents used in dry cleaning and state-of-the-art solvent residue trace analysis techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware
NASA Technical Reports Server (NTRS)
Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.
2014-01-01
Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.
Surface cleaning and pure nitridation of GaSb by in-situ plasma processing
NASA Astrophysics Data System (ADS)
Gotow, Takahiro; Fujikawa, Sachie; Fujishiro, Hiroki I.; Ogura, Mutsuo; Chang, Wen Hsin; Yasuda, Tetsuji; Maeda, Tatsuro
2017-10-01
A clean and flat GaSb surface without native oxides has been attained by H2 plasma cleaning and subsequent in-situ N2 plasma nitridation process at 300 oC. The mechanisms of thermal desorption behavior of native oxides on GaSb have been studied by thermal desorption spectroscopy (TDS) analysis. The suitable heat treatment process window for preparing a clean GaSb surface is given. Auger electron spectroscopy (AES) analysis indicates that native oxides were completely removed on the GaSb surface after H2 plasma exposure and the pure nitridation of the clean GaSb surface was obtained at a relatively low temperature of 300 °C. This pure nitridation of GaSb have a possibility to be used as a passivation layer for high quality GaSb MOS devices.
Chemical cleaning/disinfection and ageing of organic UF membranes: a review.
Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P
2014-06-01
Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions, cleaning/disinfection/aging agents/conditions/protocols. The third and last part will be developed the parameters, methods and ways of characterization at our disposal and commonly used to develop and implement membrane cleaning and/or ageing studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL
NASA Astrophysics Data System (ADS)
Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.
2017-03-01
It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.
Evaluation of pressurized water cleaning systems for hardware refurbishment
NASA Technical Reports Server (NTRS)
Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.
1995-01-01
Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'
Kweon, Tae Dong; Kim, Ji Young; Lee, Hye Yeon; Kim, Myung Hwa; Lee, Youn-Woo
2014-01-01
Cervical medial branch blocks are used to treat patients with chronic neck pain. The aim of this study was to clarify the anatomical aspects of the cervical medial branches to improve the accuracy and safety of radiofrequency denervation. Twenty cervical specimens were harvested from 20 adult cadavers. The anatomical parameters of the C4-C7 cervical medial branches were measured. The 3-dimensional computed tomography reconstruction images of the bone were also analyzed. Based on cadaveric analysis, most of the cervical dorsal rami gave off 1 medial branch; however, the cervical dorsal rami gave off 2 medial branches in 27%, 15%, 2%, and 0% at the vertebral level C4, C5, C6, and C7, respectively. The diameters of the medial branches varied from 1.0 to 1.2 mm, and the average distance from the notch of inferior articular process to the medial branches was about 2 mm. Most of the bifurcation sites were located at the medial side of the posterior tubercle of the transverse process. On the analysis of 3-dimensional computed tomography reconstruction images, cervical medial branches (C4 to C6) passed through the upper 49% to 53% of a line between the tips of 2 consecutive superior articular processes (anterior line). Also, cervical medial branches passed through the upper 28% to 35% of a line between the midpoints of 2 consecutive facet joints (midline). The present anatomical study may help improve accuracy and safety during radiofrequency denervation of the cervical medial branches.
ERIC Educational Resources Information Center
Clark, Bob
2006-01-01
Green cleaning is gaining momentum. It is a method of cleaning and maintaining facilities that is friendly to the environment and healthful for students and staff. The process uses environmentally friendly and nontoxic cleaning products and practices that must be third-party-certified. Using green cleaning practices and products can result in…
The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...
NASA Technical Reports Server (NTRS)
Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.
1997-01-01
Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor degreasing process.
Ion-Deposited Polished Coatings
NASA Technical Reports Server (NTRS)
Banks, B. A.
1986-01-01
Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.
Non-aqueous cleaning solvent substitution
NASA Technical Reports Server (NTRS)
Meier, Gerald J.
1994-01-01
A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of AlliedSignal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, was selected as the solvent of choice, and it was found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally-safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.
NASA Astrophysics Data System (ADS)
Langan, John
1996-10-01
The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)
Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling
Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A
2014-01-01
Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286
Dynamic wavefront creation for processing units using a hybrid compactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less
Development of megasonic cleaning for silicon wafers
NASA Technical Reports Server (NTRS)
Mayer, A.
1980-01-01
A cleaning and drying system for processing at least 2500 three in. diameter wafers per hour was developed with a reduction in process cost. The system consists of an ammonia hydrogen peroxide bath in which both surfaces of 3/32 in. spaced, ion implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of megasonic transducers. The wafers are dried in the novel room temperature, high velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis.
Chu, Shaogang; Letcher, Robert J
2009-06-01
Perfluorooctane sulfonate (PFOS) is found globally as an environmental contaminant and is highly bioaccumulative in exposed biota including humans. However, there is a dearth of environmental information on the isomeric profile of PFOS, especially in biological samples, which requires suitable analysis methods for the identification and quantification of ultratrace amounts. In the present study, a novel method was developed that incorporates clean up by solid-phase extraction (SPE) WAX cartridges and in-port derivatization-gas chromatography-mass spectrometry (GC/MS) to identify and quantitatively determine linear PFOS (L-PFOS) and branched (monotrifluoromethyl and bistrifluoromethyl) isomers in PFOS technical product and in environmentally relevant biological samples. Tetrabutylammonium hydroxide (TBAH) was used for derivatization via an in situ pyrolytic alkylation reaction that occurred in the GC injector and generated butyl PFOS isomer derivatives. In addition to L-PFOS, ten branched PFOS isomers were identified in the technical product. The environmental relevance of branched PFOS isomers in addition to L-PFOS was evidenced by the presence of six branched and L-PFOS in representative herring gull and double-crested cormorant egg, and polar bear liver and plasma samples from the Great Lakes and Arctic, respectively. For all PFOS isomers in the technical product and biota samples the method demonstrated high sensitivity with the limit of detection (LOD) ranging from 0.05 to 0.25 ng/mL, with exception of L-PFOS where the LOD was 1.46 ng/mL. For the biotic samples, the method detection limits (MDLs) were slightly higher than the LODs and ranged from 0.09 to 0.46 ng/g wet weight (w.w.) with exception of L-PFOS (MDL = 6.87 ng/g w.w.).
Latest technologies on ultrasonic cleaning
NASA Astrophysics Data System (ADS)
Hofstetter, Hans U.
2007-05-01
UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning... the cleaning water subcategory are processes where water comes in contact with the plastic product for... equipment, such as molds and mandrels, that contact the plastic material for the purpose of cleaning the...
The Specific Features of design and process engineering in branch of industrial enterprise
NASA Astrophysics Data System (ADS)
Sosedko, V. V.; Yanishevskaya, A. G.
2017-06-01
Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.
2007-04-10
In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
2007-04-10
In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
NASA Principal Center for Review of Clean Air Act Regulations
NASA Technical Reports Server (NTRS)
Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)
2002-01-01
The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.
Optimization and analysis of NF3 in situ chamber cleaning plasmas
NASA Astrophysics Data System (ADS)
Ji, Bing; Yang, James H.; Badowski, Peter R.; Karwacki, Eugene J.
2004-04-01
We report on the optimization and analysis of a dilute NF3 in situ plasma-enhanced chemical vapor deposition chamber cleaning plasma for an Applied Materials P-5000 DxL chamber. Using design of experiments methodology, we identified and optimized operating conditions within the following process space: 10-15 mol % NF3 diluted with helium, 200-400 sccm NF3 flow rate, 2.5-3.5 Torr chamber pressure, and 950 W rf power. Optical emission spectroscopy and Fourier transform infrared spectroscopy were used to endpoint the cleaning processes and to quantify plasma effluent emissions, respectively. The results demonstrate that dilute NF3-based in situ chamber cleaning can be a viable alternative to perfluorocarbon-based in situ cleans with added benefits. The relationship between chamber clean time and fluorine atom density in the plasma is also investigated.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
Staying sticky: contact self-cleaning of gecko-inspired adhesives.
Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-05-06
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.
Staying sticky: contact self-cleaning of gecko-inspired adhesives
Mengüç, Yiğit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-01-01
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load–drag–unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible. PMID:24554579
Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, Edward; Spires, Renee; Davis, Neil
2009-02-11
At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full advantage of the many CORD-UV{reg_sign} benefits, performance demonstration testing was initiated using available SRS sludge simulant. The demonstration testing confirmed that ECC is a viable technology, as it can dissolve greater than 90% of the sludge simulant and destroy greater than 90% of the oxalates. Additional simulant and real waste testing are planned.« less
Molina, Manuel; Mota, Manuel; Ramos, Alfonso
2015-01-01
This work deals with mathematical modeling through branching processes. We consider sexually reproducing animal populations where, in each generation, the number of progenitor couples is determined in a non-predictable environment. By using a class of two-sex branching processes, we describe their demographic dynamics and provide several probabilistic and inferential contributions. They include results about the extinction of the population and the estimation of the offspring distribution and its main moments. We also present an application to salmonid populations.
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
15 CFR 30.70 - Violation of the Clean Diamond Trade Act.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...
Machine Cleans And Degreases Without Toxic Solvents
NASA Technical Reports Server (NTRS)
Gurguis, Kamal S.; Higginson, Gregory A.
1993-01-01
Appliance uses hot water and biodegradable chemicals to degrease and clean hardware. Spray chamber essentially industrial-scale dishwasher. Front door tilts open, and hardware to be cleaned placed on basket-like tray. During cleaning process, basket-like tray rotates as high-pressure "V" jets deliver steam, hot water, detergent solution, and rust inhibitor as required.
Effect of SPM-based cleaning POR on EUV mask performance
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.
2011-11-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.
NASA Technical Reports Server (NTRS)
Hartfield, Roy
1996-01-01
Raman scattering is a powerful technique for quantitatively probing high temperature and high speed flows. However, this technique has typically been limited to clean hydrogen flames because of the broadband fluorescence interference which occurs in hydrocarbon flames. Fluorescence can also interfere with the Raman signal in clean hydrogen flames when broadband UV lasers are used as the scattering source. A solution to this problem has been demonstrated. The solution to the fluorescence interference lies in the fact that the vibrational Q-branch Raman signal is highly polarized for 90 deg. signal collection and the fluorescence background is essentially unpolarized. Two basic schemes are available for separating the Raman from the background. One scheme involves using a polarized laser and collecting a signal with both horizontal and vertical laser polarizations separately. The signal with the vertical polarization will contain both the Raman and the fluorescence while the signal with the horizontal polarization will contain only the fluorescence. The second scheme involves polarization discrimination on the collection side of the optical setup. For vertical laser polarization, the scattered Q-branch Raman signal will be vertically polarized; hence the two polarizations can be collected separately and the difference between the two is the Raman signal. This approach has been used for the work found herein and has the advantage of allowing the data to be collected from the same laser shot(s). This makes it possible to collect quantitative Raman data with single shot resolution in conditions where interference cannot otherwise be eliminated.
Branching processes in disease epidemics
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet
Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a model of infectious diseases where a `reservoir' of infection exists that infects a susceptible host population at a constant rate. The final chapter of the thesis describes a general framework of modeling infectious diseases in a network of populations using multitype branching processes.
Laser cleaning of steel for paint removal
NASA Astrophysics Data System (ADS)
Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.
2010-11-01
Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.
Implementation of environmentally compliant cleaning and insulation bonding for MNASA
NASA Technical Reports Server (NTRS)
Hutchens, Dale E.; Keen, Jill M.; Smith, Gary M.; Dillard, Terry W.; Deweese, C. Darrell; Lawson, Seth W.
1995-01-01
Historically, many subscale and full-scale rocket motors have employed environmentally and physiologically harmful chemicals during the manufacturing process. This program examines the synergy and interdependency between environmentally acceptable materials for solid rocket motor insulation applications, bonding, corrosion inhibiting, painting, priming, and cleaning, and then implements new materials and processes in subscale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of modified-NASA materials test motor (MNASA) components and identify alternate materials and/or processes following NASA Operational Environmental Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin, and insulation case bonding using ozone depleting chemical (ODC) compliant primers and adhesives.
NASA Astrophysics Data System (ADS)
Park, J.-H.; Jung, W.; Cho, D.; Seo, J.-T.; Moon, Y.; Woo, S. H.; Lee, C.; Park, C.-Y.; Ahn, J. R.
2013-10-01
The clean removal of a poly(methyl methacrylate) (PMMA) film on graphene has been an essential part of the process of transferring chemical vapor deposited graphene to a specific substrate, influencing the quality of the transferred graphene. Here we demonstrate that the clean removal of PMMA can be achieved by a single heat-treatment process without the chemical treatment that was adopted in other methods of PMMA removal. The cleanness of the transferred graphene was confirmed by four-point probe measurements, synchrotron radiation x-ray photoemission spectroscopy, optical images, and Raman spectroscopy.
CPICOR{trademark}: Clean power from integrated coal-ore reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintrell, R.; Miller, R.N.; Harbison, E.J.
1997-12-31
The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needsmore » of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.« less
Rudimentary Cleaning Compared to Level 300A
NASA Technical Reports Server (NTRS)
Arpin, Christina Y. Pina; Stoltzfus, Joel
2012-01-01
A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, A.
2014-04-27
One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was amore » significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.« less
40 CFR 463.21 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...
40 CFR 463.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...
40 CFR 463.20 - Applicability; description of the cleaning water subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with shaping...
Study of discharge cleaning process in JIPP T-2 Torus by residual gas analyzer
NASA Astrophysics Data System (ADS)
Noda, N.; Hirokura, S.; Taniguchi, Y.; Tanahashi, S.
1982-12-01
During discharge cleaning, decay time of water vapor pressure changes when the pressure reaches a certain level. A long decay time observed in the later phase can be interpreted as a result of a slow deoxidization rate of chromium oxide, which may dominate the cleaning process in this phase. Optimization of plasma density for the cleaning is discussed comparing the experimental results on density dependence of water vapor pressure with a result based on a zero dimensional calculation for particle balance. One of the essential points for effective cleaning is the raising of the electron density of the plasma high enough that the dissociation loss rate of H2O is as large as the sticking loss rate. A density as high as 10 to the 11th power/cu cm is required for a clean surface condition where sticking probability is presumed to be around 0.5.
Chemical cleaning re-invented: clean, lean and green.
Hanson, Margaret; Vangeel, Michel
2014-01-01
A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed.
Jackson, Lauren S; Al-Taher, Fadwa M; Moorman, Mark; DeVries, Jonathan W; Tippett, Roger; Swanson, Katherine M J; Fu, Tong-Jen; Salter, Robert; Dunaif, George; Estes, Susan; Albillos, Silvia; Gendel, Steven M
2008-02-01
Food allergies affect an estimated 10 to 12 million people in the United States. Some of these individuals can develop life-threatening allergic reactions when exposed to allergenic proteins. At present, the only successful method to manage food allergies is to avoid foods containing allergens. Consumers with food allergies rely on food labels to disclose the presence of allergenic ingredients. However, undeclared allergens can be inadvertently introduced into a food via cross-contact during manufacturing. Although allergen removal through cleaning of shared equipment or processing lines has been identified as one of the critical points for effective allergen control, there is little published information on the effectiveness of cleaning procedures for removing allergenic materials from processing equipment. There also is no consensus on how to validate or verify the efficacy of cleaning procedures. The objectives of this review were (i) to study the incidence and cause of allergen cross-contact, (ii) to assess the science upon which the cleaning of food contact surfaces is based, (iii) to identify best practices for cleaning allergenic foods from food contact surfaces in wet and dry manufacturing environments, and (iv) to present best practices for validating and verifying the efficacy of allergen cleaning protocols.
Development of clean coal and clean soil technologies using advanced agglomeration techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignasiak, B.; Ignasiak, T.; Szymocha, K.
1990-01-01
Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)
Tug fleet and ground operations schedules and controls. Volume 3: Program cost estimates
NASA Technical Reports Server (NTRS)
1975-01-01
Cost data for the tug DDT&E and operations phases are presented. Option 6 is the recommended option selected from seven options considered and was used as the basis for ground processing estimates. Option 6 provides for processing the tug in a factory clean environment in the low bay area of VAB with subsequent cleaning to visibly clean. The basis and results of the trade study to select Option 6 processing plan is included. Cost estimating methodology, a work breakdown structure, and a dictionary of WBS definitions is also provided.
Gresik, Edward W; Koyama, Noriko; Hayashi, Toru; Kashimata, Masanori
2009-01-01
Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, N.; Lorcet, H.; Beauchamp, F.
2012-07-01
Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, amore » functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)« less
NASA Astrophysics Data System (ADS)
Keen, Jill M.; Hutchens, D. E.; Smith, G. M.; Dillard, T. W.
1994-06-01
MNASA, a quarter-scale space shuttle solid rocket motor, has historically been processed using environmentally and physiologically harmful chemicals. This program draws from previous testing done in support of full-scale manufacturing and examines the synergy and interdependency between environmentally acceptable materials for Solid Rocket Motor insulation applications, bonding, corrosion inhibiting, painting, priming and cleaning; and then implements new materials and processes in sub-scale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of MNASA components and identify alternate materials and/or processes following NASA Operational Environment Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin and insulation case bonding using ODC compliant primers and adhesives.
Spatial mapping and quantification of developmental branching morphogenesis.
Short, Kieran; Hodson, Mark; Smyth, Ian
2013-01-15
Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it. As a consequence, although many developmentally important genes are proposed to influence branching morphogenesis, we have no way of objectively assessing their individual contributions to this process. We report the development of a method for accurately quantifying many aspects of branching morphogenesis and we demonstrate its application to the study of organ development. As proof of principle we have employed this approach to analyse the developing mouse lung and kidney, describing the spatial characteristics of the branching ureteric bud and pulmonary epithelia. To demonstrate further its capacity to profile unrecognised genetic contributions to organ development, we examine Tgfb2 mutant kidneys, identifying elements of both developmental delay and specific spatial dysmorphology caused by haplo-insufficiency for this gene. This technical advance provides a crucial resource that will enable rigorous characterisation of the genetic and environmental factors that regulate this essential and evolutionarily conserved developmental mechanism.
[Effect of manual cleaning and machine cleaning for dental handpiece].
Zhou, Xiaoli; Huang, Hao; He, Xiaoyan; Chen, Hui; Zhou, Xiaoying
2013-08-01
Comparing the dental handpiece' s cleaning effect between manual cleaning and machine cleaning. Eighty same contaminated dental handpieces were randomly divided into experimental group and control group, each group contains 40 pieces. The experimental group was treated by full automatic washing machine, and the control group was cleaned manually. The cleaning method was conducted according to the operations process standard, then ATP bioluminescence was used to test the cleaning results. Average relative light units (RLU) by ATP bioluminescence detection were as follows: Experimental group was 9, control group was 41. The two groups were less than the recommended RLU value provided by the instrument manufacturer (RLU < or = 45). There was significant difference between the two groups (P < 0.05). The cleaning quality of the experimental group was better than that of control group. It is recommended that the central sterile supply department should clean dental handpieces by machine to ensure the cleaning effect and maintain the quality.
Precision Cleaning - Path to Premier
NASA Technical Reports Server (NTRS)
Mackler, Scott E.
2008-01-01
ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.
SURVEY OF AIR AND GAS CLEANING OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenthaler, A.C.
1959-09-01
An informative summary of air and gas cleaning operations in the Chemicai Processing Department of the Hanfor Atomic Products Operation, Richland, Washington, is presented. Descriptlons of the fundamental components of cleaning systems, their applications, and cost information are included. (R.G.G.)
CLEANING OF FLUE GASES FROM WASTE COMBUSTORS
The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...
ENVIRONMENTALLY FRIENDLIER ALTERNATIVES TO ORGANIC SYNTHESES
An overview of the research activity at the USEPA AWBERC Research Center in general and the Sustainable Technology Division with specific reference to clean process development will be presented. Several examples of clean and efficient chemical processes will be highlighted that ...
Heat Transfer Processes Linking Fire Behavior and Tree Mortality
NASA Astrophysics Data System (ADS)
Michaletz, S. T.; Johnson, E. A.
2004-12-01
Traditional methods for predicting post-fire tree mortality employ statistical models which neglect the processes linking fire behavior to physiological mortality mechanisms. Here we present a physical process approach which predicts tree mortality by linking fireline intensity with lateral (vascular cambium) and apical (vegetative bud) meristem necrosis. We use a linefire plume model with independently validated conduction and lumped capacitance heat transfer analyses to predict lethal meristem temperatures in tree stems, branches, and buds. These models show that meristem necrosis in large diameter (Bi ≥ 0.3) stems/branches is governed by meristem height, bark thickness, and bark water content, while meristem necrosis in small diameter (Bi < 0.3) branches/buds is governed by meristem height, branch/bud size, branch/bud water content, and foliage architecture. To investigate effects of interspecfic variation in these properties, we compare model results for Picea glauca (Moench) Voss and Pinus contorta Loudon var. latifolia Engelm. at fireline intensities from 50 to 3000 kWm-1. Parameters are obtained from allometric models which relate stem/branch diameter to bark thickness and height, as well as bark and bud water content data collected in the southern Canadian Rocky Mountains. Variation in foliage architecture is quantified using forced convection heat transfer coefficients measured in a laminar flow wind tunnel at Re from 100 to 2000, typical for branches/buds in a linefire plume. Results indicate that in unfoliated stems/branches, P. glauca meristems are more protected due to thicker bark, whereas in foliated branches/buds, P. contorta meristems are more protected due to larger bud size and foliage architecture.
NASA Technical Reports Server (NTRS)
Pickett, Lorri A. (Editor)
1995-01-01
Topics covered include: Risk assessment of hazardous materials, Automated systems for pollution prevention and hazardous materials elimination, Study design for the toxicity evaluation of ammonium perchlorate, Plasma sprayed bondable stainless surface coatings, Development of CFC-free cleaning processes, New fluorinated solvent alternatives to ozone depleting solvents, Cleaning with highly fluorinated liquids, Biotreatment of propyleneglycol nitrate by anoxic denitrification, Treatment of hazardous waste with white rot fungus, Hydrothermal oxidation as an environmentally benign treatment technology, Treatment of solid propellant manufacturing wastes by base hydrolysis, Design considerations for cleaning using supercritical fluid technology, and Centrifugal shear carbon dioxide cleaning.
Assessment of disinfection of hospital surfaces using different monitoring methods1
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos, Aires Garcia
2015-01-01
OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process. PMID:26312634
Assessment of disinfection of hospital surfaces using different monitoring methods.
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos Junior, Aires Garcia
2015-01-01
to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.
Simple model of inhibition of chain-branching combustion processes
NASA Astrophysics Data System (ADS)
Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.
2017-11-01
A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.
Wang, Jing; Gao, Yan; Wang, Qing-shan; Zhang, Yan; Rong, Li; Wang, Jiu
2014-08-01
To evaluate the cleaning effect of the C-shaped canal treated by manual K file and ProTaper rotary endodontic file combined with ultrasonic cleaning, and find a better cleaning program for the C-shaped root canal. Fifty mandibular second molars were randomly divided into 5 groups: K file group, K file+ultrasonic rinsing group, ProTaper group, ProTaper+ultrasonic rinsing group and the control group. After initial shaping and cleaning, the mandibular second molars were soaked in formalin and stained. Under microscopy, the cleaning rate of necrotic tissue and cutting area were observed and analyzed. The data was processed with SPSS 17.0 software package. The cleaning rates of the treated groups were significantly higher than that of the control group (P<0.05); In each treatment group, the cleaning rate of the apex was significantly lower than that of the crown and central part (P<0.05); The cutting score of ProTaper+ultrasonic cleaning group was lower than that of the other treatment groups; The cutting score of the K file+ultrasonic rinsing group was significantly lower than that of the K file group (P<0.05); The cutting score and cleaning rate were negatively correlated (r=-0.712, P=0.000 ), the linear regression was the cleaning rate =98.325-4.325 × wall cutting score (R=0.454, P<0.05). In the process of shaping and cleaning of C-shaped canal, it is recommended that the ProTaper nickel-titanium rotary endodontic file should be chosen to clean the top of the taproot pipe and combined with ultrasonic rinsing to achieve better results.
Cleaning of titanium substrates after application in a bioreactor.
Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C
2015-03-10
Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
NASA Astrophysics Data System (ADS)
Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon
For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.
Hazardous Waste: Cleanup and Prevention.
ERIC Educational Resources Information Center
Vandas, Steve; Cronin, Nancy L.
1996-01-01
Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)
Pelletier, Mathew G
2008-02-08
One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU) as an alternative to thePC's traditional use of the central processing unit (CPU). The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit "GPU", for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC's central processing unit "CPU", wasgained. The new parallel algorithm operating on the GPU was able to process a 1024x1024image in less than 17ms. At this improved speed, the image processing system's performance should now be sufficient to provide a system that would be capable of realtimefeed-back control that is in tight cooperation with the cleaning equipment.
New electrostatic coal cleaning method cuts sulfur content by 40%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-12-01
An emission control system that electrically charges pollutants and coal particles promises to reduce sulfur 40% at half the cost. The dry coal cleaning processes offer superior performance and better economics than conventional flotation cleaning. Advanced Energy Dynamics, Inc. (AED) is developing both fine and ultra fine processes which increase combustion efficiency and boiler reliability and reduced operating costs. The article gives details from the performance tests and comparisons and summarizes the economic analyses. 4 tables.
NATO/CCMS PILOT STUDY ON CLEAN PRODUCTS & PROCESSES
Led by the United States, represented by the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, the Pilot Study on Clean Products and Processes was instituted to create an international forum where current trends, developments, and expert...
Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2001-01-01
The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.
Results Of Automating A Photolithography Cell In A Clean Tunnel
NASA Astrophysics Data System (ADS)
June, David H.
1987-01-01
A prototype automated photobay was installed in an existing fab area utilizing flexible material handling techniques within a clean tunnel. The project objective was to prove design concepts of automated cassette-to-cassette handling within a clean tunnel that isolated operators from the wafers being processed. Material handling was by monorail track transport system to feed cassettes to pick and place robots. The robots loaded and unloaded cassettes of wafers to each of the various pieces of process equipment. The material handling algorithms, recipe downloading and statistical process control functions were all performed by custom software on the photobay cell controller.
Green Solvents for Precision Cleaning
NASA Technical Reports Server (NTRS)
Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul
2013-01-01
Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the moderate processing conditions of 323 K, 13.8 MPa, 30 min and 750 rpm.
Otolith Trace Element Chemistry of Juvenile Black Rockfish
NASA Astrophysics Data System (ADS)
Hardin, W.; Bobko, S. J.; Jones, C. M.
2002-12-01
In the summer of 1997 we collected young-of -the-year (YOY) black rockfish, Sebastes melanops, from floating docks and seagrass beds in Newport and Coos Bay, Oregon. Otoliths were extracted from randomly selected fish, sectioned and polished under general laboratory conditions, and cleaned in a class 100 clean room. We used Laser Ablation - Inductively Coupled Mass Spectrometry (LA-ICPMS) to analyze elemental composition of the estuarine phase of the otoliths. While we observed differences in Mn/Ca ratios between the two estuaries, there was no statistical difference in otolith trace element chemistry ratios between estuaries using MANOVA. To determine if laboratory processing of otoliths might have impeded us from detecting differences in otolith chemistry, we conducted a second experiment. Right and left otoliths from 10 additional Coos Bay fish were randomly allocated to two processing methods. The first method was identical to our initial otolith processing, sectioning and polishing under normal laboratory conditions. In the second method, polishing was done in the clean room. For both methods otoliths went through a final cleaning in the clean room and analyzed with LA-ICPMS. While we did not detect statistical differences in element ratios between the two methods, otoliths polished outside the clean room had much higher variances. This increased variance might have lowered our ability to detect differences in otolith chemistry between estuaries. Based on our results, we recommend polishing otoliths under clean room conditions to reduce contamination.
The pleural curtain of the camel (Camelus dromedarius).
Buzzell, Gerald R; Kinne, Joerg; Tariq, Saeed; Wernery, Ulrich
2010-10-01
The visceral pleura of the camel (Camelus dromedarius) possesses a fibrous curtain of pleural threads or extensions along its basal margins, which extends into the pleural cavity of the costophrenic recesses. These threads are lined by mesothelium and have a core or stroma, which is largely collagenous. Small threads are avascular and nearly acellular. In larger proximal threads, blood vessels in the stroma are often arranged in a branching network, with irregular endothelia surrounded by several incomplete basal laminae. Lymphocytes and other inflammatory cell types aggregate in the stroma near blood vessels. The threads are lined by typical mesothelium except in patches close to the main pleural surface. These patches consist of layers of loosely applied cells with numerous cellular processes and features suggestive of phagocytosis. The position of the pleural curtain in the costophrenic recess and the presence of possibly phagocytotic cells suggest that the pleural curtain stirs, samples, and cleans the pleural fluid. The pleural curtain appears to be a feature of camelids and has also been seen in giraffes. Copyright © 2010 Wiley-Liss, Inc.
Surface Analysis Evaluation of Handwipe Cleaning for the Space Shuttle RSRM
NASA Technical Reports Server (NTRS)
Lesley, Michael W.; Anderson, Erin L.; McCool, Alex (Technical Monitor)
2001-01-01
In this paper we discuss the role of surface-sensitive spectroscopy (electron spectroscopy for chemical analysis, or ESCA) in the selection of solvents to replace 1,1,1-trichloroethane in handwipe cleaning of bonding surfaces on NASA's Space Shuttle Reusable Solid Rocket Motor (RSRM). Removal of common process soils from a wide variety of metallic and polymeric substrates was characterized. The cleaning efficiency was usually more dependent on the type of substrate being cleaned and the specific process soil than on the solvent used. A few substrates that are microscopically rough or porous proved to be difficult to clean with any cleaner, and some soils were very tenacious and difficult to remove from any substrate below detection limits. Overall, the work showed that a wide variety of solvents will perform at least as well as 1,1,1-trichloroethane.
Electrostatic Hazard Considerations for ODC Solvent Replacement Selection Testing
NASA Technical Reports Server (NTRS)
Fairbourn, Brad
1999-01-01
ODC solvents are used to clean many critical substrates during solid rocket motor production operations. Electrostatic charge generation incidental to these cleaning operations can pose a major safety issue. Therefore, while determining the acceptability of various ODC replacement cleaners, one aspect of the selection criteria included determining the extent of electric charge generation during a typical solvent cleaning operation. A total of six candidate replacement cleaners, sixteen critical substrates, and two types of cleaning swatch materials were studied in simulated cleaning operations. Charge generation and accumulation effects were investigated by measuring the peak voltage and brush discharging effects associated with each cleaning process combination. In some cases, charge generation was found to be very severe. Using the conductivity information for each cleaner, the peak voltage data could in some cases, be qualitatively predicted. Test results indicated that severe charging effects could result in brush discharges that could potentially result in flash fire hazards when occurring in close proximity to flammable vapor/air mixtures. Process controls to effectively mitigate these hazards are discussed.
Validation of cleaning method for various parts fabricated at a Beryllium facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Cynthia M.
This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic berylliummore » disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.« less
NASA Astrophysics Data System (ADS)
Sentis, M. L.; Delaporte, Ph; Marine, W.; Uteza, O.
2000-06-01
The laser ablation performed with an automated excimer XeCl laser unit is used for large surface cleaning. The study focuses on metal surfaces that are oxidised and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The unit contains an XeCl laser, the beam delivery system, the particle collection cell, and the system for real-time control of cleaning processes. The interaction of laser radiation with a surface is considered, in particular, the surface damage caused by cleaning radiation. The beam delivery system consists of an optical fibre bundle of 5 m long and allows delivering 150 W at 308 nm for laser surface cleaning. The cleaning process is controlled by analysing in real time the plasma electric field evolution. The system permits the cleaning of 2 to 6 m2 h-1 of oxides with only slight substrate modifications.
NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES
The proposed objective of the NATO/CCMS Pilot on clean products and processes is to facilitate further gains in pollution prevention, waste minimization, and design for the environment. It is anticipated that the free exchange of knowledge, experience, data, and models will fost...
SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM
The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...
Automated processing of endoscopic surgical instruments.
Roth, K; Sieber, J P; Schrimm, H; Heeg, P; Buess, G
1994-10-01
This paper deals with the requirements for automated processing of endoscopic surgical instruments. After a brief analysis of the current problems, solutions are discussed. Test-procedures have been developed to validate the automated processing, so that the cleaning results are guaranteed and reproducable. Also a device for testing and cleaning was designed together with Netzsch Newamatic and PCI, called TC-MIC, to automate processing and reduce manual work.
Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.
1979-01-01
A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.
Classification of buildings mold threat using electronic nose
NASA Astrophysics Data System (ADS)
Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk
2017-07-01
Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.
Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials
NASA Astrophysics Data System (ADS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-09-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials.
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard
2014-01-01
Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning. PMID:25071813
Qualification of local advanced cryogenic cleaning technology for 14nm photomask fabrication
NASA Astrophysics Data System (ADS)
Taumer, Ralf; Krome, Thorsten; Bowers, Chuck; Varghese, Ivin; Hopkins, Tyler; White, Roy; Brunner, Martin; Yi, Daniel
2014-10-01
The march toward tighter design rules, and thus smaller defects, implies stronger surface adhesion between defects and the photomask surface compared to past generations, thereby resulting in increased difficulty in photomask cleaning. Current state-of-the-art wet clean technologies utilize functional water and various energies in an attempt to produce similar yield to the acid cleans of previous generations, but without some of the negative side effects. Still, wet cleans have continued to be plagued with issues such as persistent particles and contaminations, SRAF and feature damages, leaving contaminants behind that accelerate photo-induced defect growth, and others. This paper details work done through a design of experiments (DOE) utilized to qualify an improved cryogenic cleaning technology for production in the Advanced Mask Technology Center (AMTC) advanced production lines for 20 and 14 nm processing. All work was conducted at the AMTC facility in Dresden, Germany utilizing technology developed by Eco-Snow Systems and RAVE LLC for their cryogenic local cleaning VC1200F platform. This system uses a newly designed nozzle, improved gaseous CO2 delivery, extensive filtration to remove hydrocarbons and minimize particle adders, and other process improvements to overcome the limitations of the previous generation local cleaning tool. AMTC has successfully qualified this cryogenic cleaning technology and is currently using it regularly to enhance production yields even at the most challenging technology nodes.
NET: a new framework for the vectorization and examination of network data.
Lasser, Jana; Katifori, Eleni
2017-01-01
The analysis of complex networks both in general and in particular as pertaining to real biological systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools that provide fast and efficient means for the processing and quantification of biological networks like Drosophila tracheoles or leaf venation patterns: the Network Extraction Tool ( NET ) to extract data and the Graph-edit-GUI ( GeGUI ) to visualize and modify networks. NET is especially designed for high-throughput semi-automated analysis of biological datasets containing digital images of networks. The framework starts with the segmentation of the image and then proceeds to vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the quality of the extracted data the framework produces a graph in which the network is represented only by its nodes and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the network properties, such as the number of nodes or total network length. Other, more complex metrics can be calculated by importing the vectorized network to specialized network analysis packages. GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from microscopy images of Drosophila tracheoles. The networks extracted by NET closely approximate the network depicted in the original image. NET is fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches. Additionally GeGUI allows easy handling and visualization of the networks.
9 CFR 590.515 - Egg cleaning operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Egg cleaning operations. 590.515... EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.515 Egg cleaning operations. (a) The following requirements shall...
9 CFR 590.515 - Egg cleaning operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Egg cleaning operations. 590.515... EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.515 Egg cleaning operations. (a) The following requirements shall...
Risk in cleaning: chemical and physical exposure.
Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H
1998-04-23
Cleaning is a large enterprise involving a large fraction of the workforce worldwide. A broad spectrum of cleaning agents has been developed to facilitate dust and dirt removal, for disinfection and surface maintenance. The cleaning agents are used in large quantities throughout the world. Although a complex pattern of exposure to cleaning agents and resulting health problems, such as allergies and asthma, are reported among cleaners, only a few surveys of this type of product have been performed. This paper gives a broad introduction to cleaning agents and the impact of cleaning on cleaners, occupants of indoor environments, and the quality of cleaning. Cleaning agents are usually grouped into different product categories according to their technical functions and the purpose of their use (e.g. disinfectants and surface care products). The paper also indicates the adverse health and comfort effects associated with the use of these agents in connection with the cleaning process. The paper identifies disinfectants as the most hazardous group of cleaning agents. Cleaning agents contain evaporative and non-evaporative substances. The major toxicologically significant constituents of the former are volatile organic compounds (VOCs), defined as substances with boiling points in the range of 0 degree C to about 400 degrees C. Although laboratory emission testing has shown many VOCs with quite different time-concentration profiles, few field studies have been carried out measuring the exposure of cleaners. However, both field studies and emission testing indicate that the use of cleaning agents results in a temporal increase in the overall VOC level. This increase may occur during the cleaning process and thus it can enhance the probability of increased short-term exposure of the cleaners. However, the increased levels can also be present after the cleaning and result in an overall increased VOC level that can possibly affect the indoor air quality (IAQ) perceived by occupants. The variety and duration of the emissions depend inter alia on the use of fragrances and high boiling VOCs. Some building materials appear to increase their VOC emission through wet cleaning and thus may affect the IAQ. Particles and dirt contain a great variety of both volatile and non-volatile substances, including allergens. While the volatile fraction can consist of more than 200 different VOCs including formaldehyde, the non-volatile fraction can contain considerable amounts (> 0.5%) of fatty acid salts and tensides (e.g. linear alkyl benzene sulphonates). The level of these substances can be high immediately after the cleaning process, but few studies have been conducted concerning this problem. The substances partly originate from the use of cleaning agents. Both types are suspected to be airway irritants. Cleaning activities generate dust, mostly by resuspension, but other occupant activities may also resuspend dust over longer periods of time. Personal sampling of VOCs and airborne dust gives higher results than stationary sampling. International bodies have proposed air sampling strategies. A variety of field sampling techniques for VOC and surface particle sampling is listed.
NASA Astrophysics Data System (ADS)
Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan
2010-10-01
This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.
Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng
2017-10-01
This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsujimoto; Shigeyama; Yoshii
2000-03-01
We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms=20 M middle dot in circle, a unique feature in the observed distribution of [Ba/Mg] versus [Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -3.7=&sqbl0;Mg&solm0;H&sqbr0;=-2.3, with two distinct processes. The first branch, which we call the y-branch, is associated with the production of Ba and Mg from individual massive supernovae. The derived mass of Ba synthesized in SNe II is 8.5x10-6 M middle dot in circle for Mms=20 M middle dot in circle and 4.5x10-8 M middle dot in circle for Mms=25 M middle dot in circle. We conclude that SNe II with Mms approximately 20 M middle dot in circle are the dominant source of r-process nucleosynthesis in the early Galaxy. An SN-induced chemical evolution model with this Mms-dependent Ba yield creates the y-branch, reflecting the different nucleosynthesis yields of [Ba/Mg] for each SN II with Mms greater, similar20 M middle dot in circle. The second branch, which we call the i-branch, is associated with the elemental abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms<20 M middle dot in circle that do not synthesize r-process elements, and it applies to stars with observed Mg abundances in the range &sqbl0;Mg&solm0;H&sqbr0;<-2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II that are associated with stars of progenitor mass Mms=20 M middle dot in circle are infertile sources for the production of r-process elements. We predict the existence of this i-branch for other r-process elements, such as europium (Eu), to the extent that their production site is in common with Ba.
40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...
40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...
40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...
40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...
40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...
Collodion-reinforcement and plasma-cleaning of target foils
NASA Astrophysics Data System (ADS)
Stoner, John O.
2002-03-01
The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed.
The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Croomes, Scott D. (Technical Monitor)
2002-01-01
Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.
Environmental monitoring of the orbiter payload bay and Orbiter Processing Facilities
NASA Technical Reports Server (NTRS)
Bartelson, D. W.; Johnson, A. M.
1985-01-01
Contamination control in the Orbiter Processing Facility (OPF) is studied. The clean level required in the OPF is generally clean, which means no residue, dirt, debris, or other extraneous contamination; various methods of maintaining this level of cleanliness are described. The monitoring and controlling of the temperature, relative humidity, and air quality in the OPF are examined. Additional modifications to the OPF to improve contamination control are discussed. The methods used to maintain the payload changeout room at a level of visually clean, no particulates are to be detected by the unaided eye, are described. The payload bay (PLB) must sustain the cleanliness level required for the specific Orbiter's mission; the three levels of clean are defined as: (1) standard, (2) sensitive, and (3) high sensitive. The cleaning and inspection verification required to achieve the desired cleanliness level on a variety of PLB surface types are examined.
Characterization of Laser Cleaning of Artworks
Marczak, Jan; Koss, Andrzej; Targowski, Piotr; Góra, Michalina; Strzelec, Marek; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Ostrowski, Roman; Rycyk, Antoni
2008-01-01
The main tasks of conservators of artworks and monuments are the estimation and analysis of damages (present condition), object conservation (cleaning process), and the protection of an object against further degradation. One of the physical methods that is becoming more and more popular for dirt removal is the laser cleaning method. This method is non-contact, selective, local, controlled, self-limiting, gives immediate feedback and preserves even the gentlest of relief - the trace of a paintbrush. Paper presents application of different, selected physical sensing methods to characterize condition of works of art as well as laser cleaning process itself. It includes, tested in our laboratories, optical surface measurements (e.g. colorimetry, scatterometry, interferometry), infrared thermography, optical coherent tomography and acoustic measurements for “on-line” evaluation of cleaning progress. Results of laser spectrometry analyses (LIBS, Raman) will illustrate identification and dating of objects superficial layers. PMID:27873884
78 FR 41025 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... that import seed for cleaning or processing, to enter into compliance agreements with APHIS. This... other information activities to enable the importation of seeds for cleaning and processing so that they...: Imported Seed and Screening. OMB Control Number: 0579-0124. Summary of Collection: The United States...
40 CFR 463.21 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.21... usage flow rate” for a plant with more than one plastics molding and forming process that uses cleaning... process and comes in contact with the plastic product over a period of one year. ...
NASA Technical Reports Server (NTRS)
Sechkar, Edward A.; Stueber, Thomas J.; Rutledge, Sharon K.
2000-01-01
Atomic oxygen generated in ground-based research facilities has been used to not only test erosion of candidate spacecraft materials but as a noncontact technique for removing organic deposits from the surfaces of artwork. NASA has patented the use of atomic oxygen to remove carbon-based soot contamination from fire-damaged artwork. The process of cleaning soot-damaged paintings with atomic oxygen requires exposures for variable lengths of time, dependent on the condition of a painting. Care must be exercised while cleaning to prevent the removal of pigment. The cleaning process must be stopped as soon as visual inspection or surface reflectance measurements indicate that cleaning is complete. Both techniques rely on optical comparisons of known bright locations against known dark locations on the artwork being cleaned. Difficulties arise with these techniques when either a known bright or dark location cannot be determined readily. Furthermore, dark locations will lighten with excessive exposure to atomic oxygen. Therefore, an automated test instrument to quantitatively characterize cleaning progression was designed and developed at the NASA Glenn Research Center at Lewis Field to determine when atomic oxygen cleaning is complete.
Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Ostermeyer, Christiane
2014-01-01
Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted Achromobacter species 3, when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%). Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation. Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential. PMID:24653973
Xu, Jason; Minin, Vladimir N
2015-07-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.
Xu, Jason; Minin, Vladimir N.
2016-01-01
Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377
Blel, Walid; Dif, Mehdi; Sire, Olivier
2015-05-15
Reprocessing soiled cleaning-in-place (CIP) solutions has large economic and environmental costs, and it would be cheaper and greener to recycle them. In food industries, recycling of CIP solutions requires a suitable green process engineered to take into account the extreme physicochemical conditions of cleaning while not altering the process efficiency. To this end, an innovative treatment process combining adsorption-coagulation with flocculation was tested on multiple recycling of acid and basic cleaning solutions. In-depth analysis of time-course evolutions was carried out in the physicochemical properties (concentration, surface tension, viscosity, COD, total nitrogen) of these solutions over the course of successive regenerations. Cleaning and disinfection efficiencies were assessed based on both microbiological analyses and organic matter detachment and solubilization from fouled stainless steel surfaces. Microbiological analyses using a resistant bacterial strain (Bacillus subtilis spores) highlighted that solutions regenerated up to 20 times maintained the same bactericidal efficiency as de novo NaOH solutions. The cleanability of stainless steel surfaces showed that regenerated solutions allow better surface wettability, which goes to explain the improved detachment and solubilization found on different types of organic and inorganic fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Kim, Jinsu; Lowe, Jeff; Dattilo, Davide; Koh, Soowan; Choi, Jun Yeol; Dietze, Uwe; Shoki, Tsutomu; Kim, Byung Gook; Jeon, Chan-Uk
2015-10-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. SPM (Sulfuric acid peroxide mixture) which has been extensively used for acid cleaning of photomask and wafer has serious drawback for EUV mask cleaning. It shows severe film loss of tantalum-based absorber layers and limited removal efficiency of EUV-generated carbon contaminants on EUV mask surface. Here, we introduce such novel cleaning chemicals developed for EUV mask as almost film loss free for various layers of the mask and superior carbon removal performance. Combinatorial chemical screening methods allowed us to screen several hundred combinations of various chemistries and additives under several different process conditions of temperature and time, eventually leading to development of the best chemistry selections for EUV mask cleaning. Recently, there have been many activities for the development of EUV pellicle, driven by ASML and core EUV scanner customer companies. It is still important to obtain film-loss free cleaning chemicals because cleaning cycle of EUV mask should be much faster than that of optic mask mainly due to EUV pellicle lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality changes and film losses during 50 cleaning cycles using new chemicals as well as particle and carbon contaminant removal characteristics. We have observed that the performance of new chemicals developed is superior to current SPM or relevant cleaning chemicals for EUV mask cleaning and EUV mask lifetime elongation.
NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES (PHASE I) 2000 ANNUAL REPORT, NUMBER 242
This annual report presents the proceedings of the Third Annual NATO/CCMS pilot study meeting in Copenhagen, Denmark. Guest speakers focused on efforts in the area of research of clean products and processes, life cycle analysis, computer tools and pollution prevention.
NATO CCMS PILOT STUDY ON CLEAN PRODUCTS AND PROCESSES -(PHASE I) - 2002 ANNUAL REPORT
The annual report summarizes the activities of the NATO CCMS Pilot Study on clean products and processes for 2002, including the proceedings of the 2002 annual meeting held in Vilnius, Lithuania. The report presents a wealth of information on cleaner production activities in ove...
DEMONSTRATION OF A LIQUID CARBON DIOXIDE PROCESS FOR CLEANING METAL PARTS
The report gives results of a demonstration of liquid carbon dioxide (LCO2) as an alternative to chlorinated solvents for cleaning metal parts. It describes the LCO2 process, the parts tested, the contaminants removed, and results from preliminary laboratory testing and on-site d...
Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids
USDA-ARS?s Scientific Manuscript database
Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...
Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.
Piotrowski-Daspit, Alexandra S; Nelson, Celeste M
2016-07-10
The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.
NASA Astrophysics Data System (ADS)
Abdel-Kareem, Omar; Harith, M. A.
2008-07-01
Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.
Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi
2015-01-01
Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057
Cleaning By Blasting With Pellets Of Dry Ice
NASA Technical Reports Server (NTRS)
Fody, Jody
1993-01-01
Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.
2007-04-11
KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton
2007-04-11
KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton
Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector
NASA Astrophysics Data System (ADS)
Evdokimov, O. A.; Piralishvili, Sh A.; Veretennikov, S. V.; Elkes, A. A.
2017-11-01
The main ways of cleaning the fuel injectors and the circuits of jet and vortex ejectors used for pumping gas, liquid and two-phase media, as well as for evacuation of enclosed spaces are analyzed. The possibility of organizing the process of pumping the liquid out of the fuel injection manifold secondary circuit using a vortex ejector is shown experimentally. The regimes of manifold evacuation at various inlet liquid pressure values are studied. The technology of carbon cleaning fuel injectors using a washing liquid at various working process parameters is tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M., Zimring,; Hoffman, I.; Fuller, M.
The Federal Housing Finance Agency (FHFA) regulates Fannie Mae, Freddie Mac, and the 12 Federal Home Loan Banks (the government-sponsored enterprises - GSEs). On July 6, 2010, FHFA and the Office of the Comptroller of the Currency (OCC) concluded that Property Assessed Clean Energy (PACE) programs 'present significant safety and soundness concerns' to the housing finance industry. This statement came after a year of discussions with state and federal agencies in which PACE, a novel mechanism for financing energy efficiency and renewable energy improvements, has gone from receiving support from the White House, canonization as one of Scientific American's 'Worldmore » Changing Ideas' and legislative adoption in 24 states to questionable relevance, at least in the residential sector. Whether PACE resumes its expansion as an innovative tool for financing energy efficiency and clean generation depends on outcomes in each of the three branches of government - discussions on a PACE pilot phase among federal agencies, litigation in federal court, and legislation in Congress - all highly uncertain. This policy brief addresses the practical impacts of these possible outcomes on existing and emerging PACE programs across the United States and potential paths forward.« less
Guidelines for qualifying cleaning and verification materials
NASA Technical Reports Server (NTRS)
Webb, D.
1995-01-01
This document is intended to provide guidance in identifying technical issues which must be addressed in a comprehensive qualification plan for materials used in cleaning and cleanliness verification processes. Information presented herein is intended to facilitate development of a definitive checklist that should address all pertinent materials issues when down selecting a cleaning/verification media.
Method for removing metals from a cleaning solution
Deacon, Lewis E.
2002-01-01
A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.
The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...
Idea Bank: Does Your Health Depend on a Clean Instrument?
ERIC Educational Resources Information Center
Gutoff, Olivia W.
2011-01-01
Music teachers have a responsibility to give detailed instruction on the regular cleaning of brass and wind instruments because of new, compelling research. Recent findings reinforce the importance of teaching proper instrument cleaning. Serious health consequences can be avoided by making instrument care an integral part of the educative process.…
Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-08-01
Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S. P.N.; Peterson, G. R.
Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluationsmore » are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.« less
Röhm-Rodowald, Ewa; Jakimiak, Bozenna; Chojecka, Agnieszka; Zmuda-Baranowska, Magdalena; Kanclerski, Krzysztof
2012-01-01
Effective decontamination of instruments is a key element of infection control and the provision of high quality in dental care. The aim of the study was to evaluate the efficiency of decontamination procedures including cleaning, disinfection and sterilization of re-usable instruments in dental practices in Poland. The efficiency of disinfection and sterilization processes have been evaluated on the results of the questionnaires. The following information were taken into account: setting where disinfection and sterilization had been performed, preparation of dental equipment for sterilization (disinfection, washing and cleaning, packaging), the types of autoclaves and used types of sterilization cycles, routine monitoring and documentation of sterilization processes, treatment of handpieces and the frequency of surface decontamination. Data were collected from 43 dental practices (35 dental offices and 8 clinics). Disinfection and cleaning processes were performed manually in 63% of dental offices and ultrasonic baths were used in 53% of settings. Washer disinfectors were used in 23% of dental practices: in every researched clinic and in a few dental offices. All sterilization processes were performed in steam autoclaves, mainly in small steam sterilizers (81%). Dental handpieces were sterilized in 72% of practices, but only 33% of them performed sterilization in recommended cycle B. Sterilization processes were monitored with chemical indicators in 33% of practices. Biological monitoring of the processes was carried out at different intervals. Incorrect documentation of instruments and surfaces decontamination was recorded in several settings. There is still a need for improvement of decontamination processes in dental practice in Poland. Areas for improvement include: replacement of manual cleaning and disinfection processes with automatic processes, sterilization of dental handpieces after each patient, monitoring of a sterilization process with chemical and biological indicators. Reported incorrect procedures in decontamination of medical devices performed by questioned dentists and lack or inadequate response to asked questions indicate the lack of adequate knowledge about decontamination. Personnel who performs decontamination processes should be continuously trained.
Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C. J.; Reboul, S. H.; Wiersma, B. J.
2013-11-08
A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.
Taguchi Experimental Design for Cleaning PWAs with Ball Grid Arrays
NASA Technical Reports Server (NTRS)
Bonner, J. K.; Mehta, A.; Walton, S.
1997-01-01
Ball grid arrays (BGAs), and other area array packages, are becoming more prominent as a way to increase component pin count while avoiding the manufacturing difficulties inherent in processing quad flat packs (QFPs)...Cleaning printed wiring assemblies (PWAs) with BGA components mounted on the surface is problematic...Currently, a low flash point semi-aqueous material, in conjunction with a batch cleaning unit, is being used to clean PWAs. The approach taken at JPL was to investigate the use of (1) semi-aqueous materials having a high flash point and (2) aqueous cleaning involving a saponifier.
Method for removal of beryllium contamination from an article
Simandl, Ronald F.; Hollenbeck, Scott M.
2012-12-25
A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.
Megasonic cleaning strategy for sub-10nm photomasks
NASA Astrophysics Data System (ADS)
Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent
2016-10-01
One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.
Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.
Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L
2010-09-22
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mechanical vs. manual cleaning of hospital beds: a prospective intervention study.
Hopman, J; Nillesen, M; de Both, E; Witte, J; Teerenstra, S; Hulscher, M; Voss, A
2015-06-01
Cleaning regimens for hospital beds were evaluated in the context of a rising prevalence of highly resistant micro-organisms and increasing financial pressure on healthcare systems. Dutch hospitals have to choose between standardized, mechanical bed-washers advised in national guidance and manual cleaning. To evaluate the quality of mechanical and manual bed-cleaning regimens. The multi-faceted analysis of bed-cleaning regimens consisted of three steps. In Step 1, the training of the domestic service team was evaluated. In Step 2, the cleaning quality of manual and mechanical regimens was assessed. Soiled beds, obtained at random, from different departments were evaluated using microbiological analysis (N = 40) and ATP (N = 20). ATP and microbiological contamination were measured in five predetermined locations on all beds. In Step 3, manual cleaning was introduced over a two-month pilot study at the surgical short-stay unit, and beds from other departments were processed according to the 'gold standard' mechanical cleaning. ATP levels were evaluated in three locations on 300 beds after cleaning. Training was found to improve the quality of cleaning significantly. Mechanical cleaning resulted in significantly lower ATP levels than manual cleaning. Mechanical cleaning shows less variation and results in consistently lower ATP levels than manual cleaning. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
The effect of federal health policy on occupational medicine.
McCunney, R J; Cikins, W
1990-01-01
All three branches of the federal government affect occupational medicine. Notable examples include: 1) the Department of Transportation ruling (1988) requiring drug testing in diverse areas of the transportation industry (executive branch); 2) the Workplace Drug Act (1988) calling for organizations to have a policy towards drug and alcohol abuse (legislative branch); and 3) the Supreme Court ruling on the constitutionality of drug testing in the transportation industry (1989) and that infectious diseases are a handicap in accordance with the 1973 Federal Rehabilitation Act (1987). The executive branch plays a major role in occupational medicine primarily through the Occupational Safety and Health Administration (OSHA), which issues standards based on a rule making process; the executive branch can also affect occupational medicine indirectly, as evidenced by President Reagan's Executive Order 12291 calling for Office of Management and Budget oversight of regulatory initiatives. The legislative branch enacts laws, conducts hearings, and requests reports on the operations of federal agencies. The judicial branch addresses occupational health issues when people affected by an executive ruling want to challenge the ruling; or in the case of the Supreme Court, when deliberating an issue over which two circuit courts of appeal have come to divergent opinions. The Occupational Medicine profession can participate in the political process through awareness of proposed legislation and by responding accordingly with letters, resolutions, or testimony. Similar options exist within the executive branch by participating in the rule-making process. A representative of the Governmental Affairs Committee, through periodic visits with key Washington representatives, can keep members of the American College of Occupational Medicine informed about federal legislative and regulatory activities. In appropriate cases, the organization can then take a formal position on governmental activities that affect the speciality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, S.R.
1987-02-01
The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less
Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process
Balachandran, Uthamalingam
1996-01-01
A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.
Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process
Balachandran, U.
1996-06-04
A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.
da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru
2015-05-04
The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8 days). At 7°C, the counts of E. faecalis and E. faecium were below 2 log10 CFU/cm(2). For the temperatures of 25 and 39°C, after 1 day, the counts of E. faecalis and E. faecium were 5.75 and 6.07 log10 CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4 log10 CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Burnett; Harold Vance
2007-08-31
The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texasmore » A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.« less
Chen, Huiting; Reinhard, Martin; Nguyen, Viet Tung; Gin, Karina Yew-Hoong
2016-02-01
Uncertainty about the extent to which contaminant sorption by suspended solids and bed sediments is irreversible is a major impediment for modeling and managing the water quality of surface water resources. This study examined reversible and irreversible sorption of several perfluorinated compounds (PFCs) to bed sediments from an urban reservoir. PFCs investigated include C4, C6, C8, C9 and C10 perfluoroalkanoate homologues (PFBA, PFHxA, PFOA, PFNA and PFDA, respectively) and perfluorooctane and hexane sulfonate (PFOS and PFHxS, respectively). Although sorption branches of the PFOS, PFNA and PFDA isotherms were nearly linear (implying a partitioning-like process), desorption experiments indicated that a fraction of the sorbed PFCs were entrapped and resistant to desorption. The hysteretic desorption branches were approximately linear. Irreversibility increased with chain length and was nearly complete for PFDA (thermodynamic irreversibility index (TII) 0.98). For the weakly sorbing PFOA and PFHxS, sorption was largely reversible. Data suggest that (1) for the strongly sorbing PFCs, e.g. PFNA, PFDA and PFOS, bed sediments acted predominantly as irreversible sinks, (2) aqueous concentrations of the moderately sorbing PFCs (PFOA and PFHxS) are buffered by reversibly sorbing suspended solids, and (3) the short-chain PFCs (PFBA and PFHxA) are not significantly sorbed and therefore not expected to be significantly influenced by sediment transport. Situations in which highly contaminated particles entering relatively clean water bodies, equilibrium is approached from the reverse (desorption) direction. For irreversibly sorbed contaminants field-based K(D) values will be higher than the K(D) values derived from laboratory sorption data obtained from forward sorption experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Final Report of NATO/SPS Pilot Study on Clean Products and Processes (Phase I and II)
Early in 1998 the NATO Committee for Challenges to Modern Society (SPS) (Science for Peace and Security) approved the Pilot Study on Clean Products and Processes for an initial period of five years. The pilot was to provide a forum for member country representatives to discuss t...
NASA Technical Reports Server (NTRS)
Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy
1999-01-01
The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.
NASA Astrophysics Data System (ADS)
Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.
2012-03-01
Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.
Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates
NASA Technical Reports Server (NTRS)
White, Gary L.
1997-01-01
CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.
9 CFR 590.547 - Albumen flake process drying operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...
9 CFR 590.547 - Albumen flake process drying operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...
9 CFR 590.547 - Albumen flake process drying operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...
9 CFR 590.547 - Albumen flake process drying operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...
Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour
2000-01-01
A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the state line were dominantly cow and horse with one ribotype from bird. Escherichia coli was detected in only one well sample. Bacterial ribotypes in water from that upgradient well indicated human and dog feces as sources for bacteria, and that on site wastewater treatment may not always be adequate in these highly permeable soils. Greater concentrations of nitrate in Cave Springs Branch and O'Brien Spring relative to the poultry-processing plant wastewater outfall may be due, in part, to conversion of ammonia from poultry processing plant wastewater. The poultry-processing plant wastewater outfall sample collected in March 2000 contained greater concentrations of ammonia and total organic nitrogen plus ammonia than the spring, stream, and well samples collected during August 1999. Cave Springs Branch and Honey Creek contributed approximately equal loads of nitrogen to Honey Creek below the confluence and the greatest loads of nitrogen were introduced to Cave Springs Branch by the poultry processing plant wastewater outfall and O'Brien Spring. Nitrate concentrations in upgradient well samples ranged from 0.38 to 4.60 milligrams per liter, indicating that there are sources of ground-water nitrogen other than Cave Springs Branch, such as animal waste, fertilizer, or human waste. Nitrogen compounds in water from wells downgradient of Cave Springs Branch may be from Cave Springs Branch, fertilizers, animal waste, or human waste.
Turing mechanism underlying a branching model for lung morphogenesis.
Xu, Hui; Sun, Mingzhu; Zhao, Xin
2017-01-01
The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.
Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process
Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.
2010-01-01
Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477
Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J
2016-06-01
Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Shear stress cleaning for surface departiculation
NASA Technical Reports Server (NTRS)
Musselman, R. P.; Yarbrough, T. W.
1986-01-01
A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.
Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System
NASA Technical Reports Server (NTRS)
Thaxton, Eric A.; Caimi, Raoul E. B.
1995-01-01
Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.
Absolute measurement of hadronic branching fractions of the Ds+ meson.
Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L
2008-04-25
The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.
Absolute Measurement of Hadronic Branching Fractions of the Ds+ Meson
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.
2008-04-01
The branching fractions of Ds± meson decays serve to normalize many measurements of processes involving charm quarks. Using 298pb-1 of e+e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight Ds± decays with a double tag technique. In particular we determine the branching fraction B(Ds+→K-K+π+)=(5.50±0.23±0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K-K+π+ decay mode.
2007-04-10
The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
Investigation of photolithography process on SPOs for the Athena mission
NASA Astrophysics Data System (ADS)
Massahi, S.; Girou, D. A.; Ferreira, D. D. M.; Christensen, F. E.; Jakobsen, A. C.; Shortt, B.; Collon, M.; Landgraf, B.
2015-09-01
As part of the ongoing effort to optimize the throughput of the Athena optics we have produced mirrors with a state-of-the-art cleaning process. We report on the studies related to the importance of the photolithographic process. Pre-coating characterization of the mirrors has shown and still shows photoresist remnants on the SiO2- rib bonding zones, which influences the quality of the metallic coating and ultimately the mirror performance. The size of the photoresist remnants is on the order of 10 nm which is about half the thickness of final metallic coating. An improved photoresist process has been developed including cleaning with O2 plasma in order to remove the remaining photoresist remnants prior to coating. Surface roughness results indicate that the SiO2-rib bonding zones are as clean as before the photolithography process is performed.
Véliz, Elena; Vergara, Teresa; Pearcy, Mercedes; Dabanch, Jeannette
Introduction Dental care has become a challenge for healthcare associated infection prevention programs, since the environment, within other factors, plays an important role in the transmission chain. Materials and Methods An intervention program was designed for the Dental Unit of Hospital Militar de Santiago, between years 2014 and 2015. The program contemplated 3 stages: diagnostic, intervention and evaluation stage. Objective To improve the safety of critical surfaces involved in dental healthcare. Results During the diagnostic stage, the cleaning and disinfection process was found to be deficient. The most contaminated critical surface was the instrument holder unit, then the clean area and lamp handle. The surfaces that significantly reduced their contamination, after the intervention, were the clean area and the instrument carrier unit. Conclusion Training in the processes of cleaning and disinfecting surfaces and dental equipment is one of the cost-effective strategies in preventing healthcare-associated infections (HCAI), with simple and easy-to-apply methods.
Evaluation of control parameters for Spray-In-Air (SIA) aqueous cleaning for shuttle RSRM hardware
NASA Technical Reports Server (NTRS)
Davis, S. J.; Deweese, C. D.
1995-01-01
HD-2 grease is deliberately applied to Shuttle Redesigned Solid Rocket Motor (RSRM) D6AC steel hardware parts as a temporary protective coating for storage and shipping. This HD-2 grease is the most common form of surface contamination on RSRM hardware and must be removed prior to subsequent surface treatment. Failure to achieve an acceptable level of cleanliness (HD-2 calcium grease removal) is a common cause of defect incidence. Common failures from ineffective cleaning include poor adhesion of surface coatings, reduced bond performance of structural adhesives, and failure to pass cleanliness inspection standards. The RSRM hardware is currently cleaned and refurbished using methyl chloroform (1,1,1-trichloroethane). This chlorinated solvent is mandated for elimination due to its ozone depleting characteristics. This report describes an experimental study of an aqueous cleaning system (which uses Brulin 815 GD) as a replacement for methyl chloroform. Evaluation of process control parameters for this cleaner are discussed as well as cleaning mechanisms for a spray-in-air process.
Measuring quality indicators in the operating room: cleaning and turnover time.
Jericó, Marli de Carvalho; Perroca, Márcia Galan; da Penha, Vivian Colombo
2011-01-01
This exploratory-descriptive study was carried out in the Surgical Center Unit of a university hospital aiming to measure time spent with concurrent cleaning performed by the cleaning service and turnover time and also investigated potential associations between cleaning time and the surgery's magnitude and specialty, period of the day and the room's size. The sample consisted of 101 surgeries, computing cleaning time and 60 surgeries, computing turnover time. The Kaplan-Meier method was used to analyze time and Pearson's correlation to study potential correlations. The time spent in concurrent cleaning was 7.1 minutes and turnover time was 35.6 minutes. No association between cleaning time and the other variables was found. These findings can support nurses in the efficient use of resources thereby speeding up the work process in the operating room.
76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
...EPA is streamlining the process by which manufacturers of clean alternative fuel conversion systems may demonstrate compliance with vehicle and engine emissions requirements. Specifically, EPA is revising the regulatory criteria for gaining an exemption from the Clean Air Act prohibition against tampering for the conversion of vehicles and engines to operate on a clean alternative fuel. This final rule creates additional compliance options beyond certification that protect manufacturers of clean alternative fuel conversion systems against a tampering violation, depending on the age of the vehicle or engine to be converted. The new options alleviate some economic and procedural impediments to clean alternative fuel conversions while maintaining environmental safeguards to ensure that acceptable emission levels from converted vehicles are sustained.
Lyzohub, V H; Zaval's'ka, T V; Savchenko, O V; Tyravs'ka, Iu V
2013-01-01
Branched-chain amino acids play the key role in many metabolism processes in organism generally and in cardiovascular protection. It was discovered its importance in mitochondrial biogenesis, antioxidant and antiaging processes, its antihypertension and antiarrhythmic effects, its role in obesity and diabetes mellitus.
Gervais, Louis; Casanova, Jordi
2011-04-01
Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here, we establish the relative contributions of the Drosophila homologues of FGF [Branchless (BNL)] and SRF [Blistered (BS)] in terminal tracheal branching. Conversely to an extended view, we show that BNL triggers terminal branching initiation in a DSRF-independent mechanism and that DSRF transcription induced by BNL signalling is required to maintain terminal branch elongation. Moreover, we report that increased and continuous FGF signalling can trigger tracheal cells to develop full-length terminal branches in the absence of DSRF transcription. Our results indicate that DSRF acts as an amplifying step to sustain the progression of terminal branch elongation even in the wild-type conditions of FGF signalling.
Environmental information translated into Korean covers topics including nail salons, dry-cleaning, drinking water, fish consumption, asthma, cleaning and disinfecting foot spa basins, pesticides, and professional fabricare processes.
Payload canister transporter in VPF clean room
NASA Technical Reports Server (NTRS)
1984-01-01
Payload canister transporter in Vertical Processing Facility (VPF) Clean Room loaded with Earth Radiation Budget Satellite (ERBS), Large Format Camera (LFC) and Orbital Refueling System (ORS) for STS-41G mission.
Designing and Testing of Self-Cleaning Recirculating Zebrafish Tanks.
Nema, Shubham; Bhargava, Yogesh
2016-08-01
Maintenance of large number of zebrafish in captive conditions is a daunting task. This can be eased by the use of recirculating racks with self-cleaning zebrafish tanks. Commercially available systems are costly, and compatibility of intercompany products has never been investigated. Although various cost-effective designs and methods of construction of custom-made recirculating zebrafish racks are available in literature, the design of self-cleaning zebrafish tanks is still not available. In this study, we report the design and method of construction of the self-cleaning unit, which can be fitted in any zebrafish tank. We validated the design by investigating sediment cleaning process in rectangular and cylindrical tank geometries using time lapse imaging. Our results suggest that for both tank geometries, the tanks fitted with self-cleaning unit provided superior sediment cleaning than the tanks fitted with overflow-drain unit. Although the self-cleaning unit could clean the sediment completely from both geometries over prolonged period, the cleaning of sediments was faster in the cylindrical tank than the rectangular tank. In conclusion, cost and efforts of zebrafish maintenance could be significantly reduced through the installation of our self-cleaning unit in any custom-made zebrafish tank.
Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, M.W.
1991-02-01
Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)
Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean
2009-01-01
Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.
NASA Astrophysics Data System (ADS)
Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.
2015-12-01
The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims Branch watershed at Savannah River Site.
USDA-ARS?s Scientific Manuscript database
A number of hydro-entangled cotton nonwoven fabrics were produced on commercial equipment, using UltraCleanTM Cotton (T.J. Beall Company). Polypropylene “sock” filters were used in the production trials to clean the effluent water for recycling it in the hydro-entanglement process. After each trial ...
NATO/CCMS PILOT STUDY CLEAN PRODUCTS AND PROCESSES (PHASE II) 2003 ANNUAL REPORT
The 6th annual meeting of the NATO CCMS Pilot Study, Clean Products and Processes, was held in Cetraro, Italy, from May 11 to 15, 2003. This was also the first meeting of its Phase II study. 24 country representatives attended this meeting. This meeting was very ably run by th...
NASA Technical Reports Server (NTRS)
Gordon, Gail
2012-01-01
The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.
Petroleum storage tank cleaning using commercial microbial culture products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, D.R.; Entzeroth, L.C.; Timmis, A.
1995-12-31
The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during themore » treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.« less
On the technological development of cotton primary processing, using a new drying-purifying unit
NASA Astrophysics Data System (ADS)
Agzamov, M. M.; Yunusov, S. Z.; Gafurov, J. K.
2017-10-01
The article reflects feasibility study of conducting research on technological development of cotton primary processing with the modified parameters of drying and cleaning process for small litter. As a result of theoretical and experimental research, drying and purifying unit is designed, in which in the existing processes a heat source, exhaust fans, a dryer drum, a peg-drum cleaner of cotton and the vehicle transmitting raw cotton from the dryer to the purifier will be excluded. The experience has shown that when a drying-purifying unit is installed (with eight wheels) purifying effect on the small litter of 34%, ie cleaning effect is higher than of that currently in operation 1XK drum cleaner. According to the research patent of RU UZ FAP 00674 “Apparatus for drying and cleaning fibrous material” is received.
Cleaning, disinfection and sterilization of surface prion contamination.
McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E
2013-12-01
Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Self-Cleaning Tubular-Membrane Module
NASA Technical Reports Server (NTRS)
Sarbolouki, M. N.
1983-01-01
Tubular membranes made self-cleaning with aid of flow reversing valve. Sponge balls scrub membrane surfaces as they travel inside membrane tubes. A four-way flow-reversal valve automatically reverses flow in tubes at preset intervals so sponge balls reciprocate along tubes. Baskets at ends of tubes prevent sponges from escaping. Automatic cleaning feature added to existing membrane processing equipment with minimal modifications.
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Wiesner, S.
2017-03-01
The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.
2007-04-10
In clean room C of Astrotech's Payload Processing Facility, a worker wears a "bunny suit," or clean-room attire, next to the Dawn spacecraft, which will be unbagged and undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beutelman, H.P.; Lawrence, A.
1999-07-01
Edwards Air Force Base (AFB), located in the Mojave Desert of southern California, is required to comply with environmental requirements for air pollution emissions, hazardous waste disposal, and clean water. The resources required to meet these many compliance requirements represents an ever increasing financial burden to the base, and to the Department of Defense. A recognized superior approach to environmental management is to achieve compliance through a proactive pollution prevention (P2) program which mitigates, and when possible, eliminates compliance requirements and costs, while at the same time reducing pollution released to the environment. At Edwards AFB, the Environmental Management Officemore » P2 Branch developed and implemented a strategy that addresses this concept, better known as Compliance Through Pollution Prevention (CTP2). At the 91st AWMA Annual Meeting and Exhibition, Edwards AFB presented a paper on its strategy and implementation of its CTP2 concept. Part of that strategy and implementation included accomplishment of process specific focused P2 opportunity assessments (OAs). Starting in 1998, Edwards AFB initiated a CTP2 OA project where OAs were targeted on those operational processes, identified as compliance sites, that contributed most to the compliance requirements and costs at Edwards AFB. The targeting of these compliance sites was accomplished by developing a compliance matrix that prioritized processes in accordance with an operational risk management approach. The Edwards AFB CTP2 PPOA project is the first of its kind within the Air Force Material Command, and is serving as a benchmark for establishment of the CTP2 OA process.« less
Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Powers, Charles E.
2009-01-01
This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.
Interfacial properties and coal cleaning in the LICADO process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, S.M.B.
1986-01-01
The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less
NASA Astrophysics Data System (ADS)
Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang
2010-03-01
A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.
Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation
Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya
2015-01-01
The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888
Spectroscopic Monitoring of the Laser Cleaning Applied to Ancient Marbles from Mediterranean Areas
NASA Astrophysics Data System (ADS)
Lazic, V.; Colao, F.; Fantoni, R.; Fiorani, L.; Palucci, A.; Striber, J.; Santagata, A.; Morone, A.; Spizzicchino, V.
Laser Induced Breakdown Spectroscopy (LIBS) analysis by Nd:YAG laser emitting at 355nm were performed on different clean and dirty surfaces of marble fragments collected from ancient quarries in Greece, Turkey and Italy, in order to determine semi-quantitavely the atomic composition of the bulk material and encrustation. The method here developed for element concentrations retrieval could be applied during laser cleaning process to supply the information about the effective crust composition at different depths and the point where the process should be interrupted. The knowledge of the crust composition along successive layers is also important for determining the restoration procedures. The elements measured in the encrustations, such as Si, Al, Ca, C, Ti, Mn, Mg, Na, Ba, Sr and Cu are also present in the bulk, but at different concentrations whose determination allows for the process monitoring. The only element here observed in the crusts and not detected in the bulk materials is Chromium, whose progressive disappearance from LIBS spectra could be used as another indicator of the laser cleaning effectiveness. On a sample from Turkey also Vanadium was detected in the encrustation. The present LIBS measuring method was validated by SEM-EDX and ICP analyses. The clean marble surface and encrustations were further analysed by Laser Induced Fluorescence (LIF), which could be used as an alternative technique for the on-line control of the cleaning effectiveness. Better discrimination between dirty and clean marble surface was obtained when 266nm excitation was applied instead of 355 nm. Characteristic LIF spectral signatures allows for the discrimination between different type of the natural stones, even under the water.
MIT Clean Energy Prize: Final Technical Report May 12, 2010 - May 11, 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Chris; Campbell, Georgina; Salony, Jason
2011-08-09
The MIT Clean Energy Prize (MIT CEP) is a venture creation and innovation competition to encourage innovation in the energy space, specifically with regard to clean energy. The Competition invited student teams from any US university to submit student-led ventures that demonstrate a high potential of successfully making clean energy more affordable, with a positive impact on the environment. By focusing on student ventures, the MIT CEP aims to educate the next generation of clean energy entrepreneurs. Teams receive valuable mentoring and hard deadlines that complement the cash prize to accelerate development of ventures. The competition is a year-long educationalmore » process that culminates in the selection of five category finalists and a Grand Prize winner and the distribution of cash prizes to each of those teams. Each entry was submitted in one of five clean energy categories: Renewables, Clean Non-Renewables, Energy Efficiency, Transportation, and Deployment.« less
Tokunaga self-similarity arises naturally from time invariance
NASA Astrophysics Data System (ADS)
Kovchegov, Yevgeniy; Zaliapin, Ilya
2018-04-01
The Tokunaga condition is an algebraic rule that provides a detailed description of the branching structure in a self-similar tree. Despite a solid empirical validation and practical convenience, the Tokunaga condition lacks a theoretical justification. Such a justification is suggested in this work. We define a geometric branching process G (s ) that generates self-similar rooted trees. The main result establishes the equivalence between the invariance of G (s ) with respect to a time shift and a one-parametric version of the Tokunaga condition. In the parameter region where the process satisfies the Tokunaga condition (and hence is time invariant), G (s ) enjoys many of the symmetries observed in a critical binary Galton-Watson branching process and reproduces the latter for a particular parameter value.
Observing Holliday junction branch migration one step at a time
NASA Astrophysics Data System (ADS)
Ha, Taekjip
2004-03-01
During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.
Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Clean Heat: A Technical Response to a Policy Innovation
Hernández, Diana
2017-01-01
New York City clean heat policies were enacted to improve air quality, especially reducing exposure to black carbon, particulate matter and sulfur that are linked to environmental degradation and various health risks. This policy measure specifically called for the phase out of residual oil and adoption of cleaner burning fuel sources through boiler conversions in commercial and residential properties throughout the city. This paper describes the process of clean heat technology adoption within the innovative clean heat policy context demonstrating its thorough compliance and discussing implications for scalability in other urban settings. PMID:29657663
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This document presents an outline for a 135-hour course designed to familiarize the beginning student with the basic concepts common to aircraft materials and processes, together with the requirements of proper cleaning and corrosion control as outlined by the Federal Aviation Agency. The aviation airframe and powerplant maintenance technician is…
Cleaning and Cleanliness Measurement of Additive Manufactured Parts
NASA Technical Reports Server (NTRS)
Mitchell, Mark A.; Edwards, Kevin; Fox, Eric; Boothe, Richard
2017-01-01
Additive Manufacturing processes allow for the manufacture of complex three dimensional components that otherwise could not be manufactured. Post treatment processes require the removal of any remnant bulk powder that may become entrapped within small cavities and channels within a component. This project focuses on several gross cleaning methods and the verification metrics associated with additive manufactured parts for oxygen propulsion usage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... parts per trillion (ppt), sample weight of 1000 g, IS spiking level of 1 ppt, final extraction volume of... previously used and the date on which their use ceased in each process at the plant; (3) Formulations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... cleaning and replacement. (a) Wastes from wood preserving processes at plants that do not resume or... parts per trillion (ppt), sample weight of 1000 g, IS spiking level of 1 ppt, final extraction volume of... previously used and the date on which their use ceased in each process at the plant; (3) Formulations...
Use of Vacuum Degreasing for Precision Cleaning
NASA Technical Reports Server (NTRS)
Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard
2017-01-01
Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.
Summary of sessions on nuclear astrophysics
NASA Astrophysics Data System (ADS)
Rolfs, C.
In the minds of some there exists the patronizing belief that nuclear physics is a mature science. The same is not believed about nuclear astrophysics, which has been an active branch of astrophysics for over fifty years, but is now in the midst of an exciting revival in experimental and theoretical research around the world. The ultimate goal is to understand how nuclear processes generate the energy of stars over their lifetimes and, in doing so, synthesize heavier elements from the primordial hydrogen and helium produced in the Big Bang, which led to the expanding universe. Impressive progress has been made in this goal and this was rewarded. However, there are major puzzles, such as the solar neutrino problem to name just one, which challenge the fundaments of the field. To solve these problems, new nuclear physics data are needed employing novel experimental techniques such as radioactive ion beams and underground accelerator facilities. Without such new data, much of the work done so far will - in an optimistic view - be incomplete and - in a pessimistic view - be possibly wrong. Thus, new data do not represent a fine structure information or a cleaning-up job, but they represent the major next step in this exciting field&
A numerical study on high-pressure water-spray cleaning for CSP reflectors
NASA Astrophysics Data System (ADS)
Anglani, Francesco; Barry, John; Dekkers, Willem
2016-05-01
Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of nozzles, standoff distance, jet pressure and jet impingement angle in order to identify effective and efficient cleaning procedures to restore collectors' reflectance, decrease turbulence and improve CST plant efficiency. Results show that the forces generated over the flat target surface are proportional to the inlet pressure and to the water velocity over the surface, and that the shear stresses decrease as the standoff distance increases.
EPA collaborated with the The National Association of Clean Air Agencies (NACAA/ECOs) SIP Reform Work Group to minimize federal and state burden in developing SIPs, but ensure the plans effectiveness in complying with the Clean Air Act.
9 CFR 590.542 - Spray process drying operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...
9 CFR 590.542 - Spray process drying operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...
9 CFR 590.542 - Spray process drying operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...
9 CFR 590.542 - Spray process drying operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...
9 CFR 590.542 - Spray process drying operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...
21 CFR 211.182 - Equipment cleaning and use log.
Code of Federal Regulations, 2010 CFR
2010-04-01
... individual equipment logs that show the date, time, product, and lot number of each batch processed. If... maintenance (or, if the cleaning and maintenance is performed using automated equipment under § 211.68, just...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning... determined that there are insignificant quantities of toxic pollutants in cleaning process wastewaters after...
ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Fink, S.
2011-03-07
The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of themore » chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were measured by different methods, and the differences in the fraction removed are not statistically significant. (10) Chemical cleaning removed 10-50% of the barium, chromium, iron, magnesium, manganese, and silicon. (11) Chemical cleaning removed only {approx}1% of the nickel.« less
Federal budget process: An overview
NASA Astrophysics Data System (ADS)
Frizzell, Virgil A., Jr.
Much geophysical research funding originates from the federal government, and many who obtain federal funding consider the executive branch to be its source. In fact, the federal budget results from a complex ballet between the executive and legislative branches. Because it is both little understood and essential to our work, this report will review the fundamentals of the three-year budgetary process.The Constitution assigns the power of the purse to the Congress. Before the 1920s, executive branch agencies and departments submitted their own separate budgets to Congress, and deliberate planning and priority setting was minimal. In 1921 Congress empowered the president to submit an executive branch budget reflecting his priorities for the next fiscal year. Following this protocol, former President Reagan submitted his budget for Fiscal Year 1990 in January, and President Bush outlined his FY'90 priorities in February.
Bally, Florence; Serra, Christophe A; Brochon, Cyril; Hadziioannou, Georges
2011-11-15
Polymerization reactions can benefit from continuous-flow microprocess in terms of kinetics control, reactants mixing or simply efficiency when high-throughput screening experiments are carried out. In this work, we perform for the first time the synthesis of branched macromolecular architecture through a controlled/'living' polymerization technique, in tubular microreactor. Just by tuning process parameters, such as flow rates of the reactants, we manage to generate a library of polymers with various macromolecular characteristics. Compared to conventional batch process, polymerization kinetics shows a faster initiation step and more interestingly an improved branching efficiency. Due to reduced diffusion pathway, a characteristic of microsystems, it is thus possible to reach branched polymers exhibiting a denser architecture, and potentially a higher functionality for later applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blount, Gerald; Thibault, Jeffrey; Millings, Margaret
The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and Hmore » Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent environmental remediation projects tend to be managed under tri-party agreement (DOE, Environmental Protection Agency, and SCDHEC) through the Federal Facilities Agreement. During 25 years of environmental remediation SRS has stabilized and capped seepage basins, and consolidated and capped waste units and burial grounds in the GSA. Groundwater activities include: pump and treat systems in the groundwater, installation of deep subsurface barrier systems to manage groundwater flow, in situ chemical treatments in the groundwater, and captured contaminated groundwater discharges at the surface for management in a forest irrigation system. Over the last 25 years concentrations of contaminants in the aquifers beneath the GSA and in surface water streams in the GSA have dropped significantly. Closure of 65 waste sites and 4 RCRA facilities has been successfully accomplished. Wastes have been successfully isolated in place beneath a variety of caps and cover systems. Environmental clean-up has progressed to the stage where most of the work involves monitoring, optimization, and maintenance of existing remedial systems. Many lessons have been learned in the process. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. SRS operated two very large pump and treat systems at the F and H Seepage Basins to attempt to limit the release of tritium to Fourmile Branch, a tributary of the Savannah River. The systems were designed to extract contaminated acidic groundwater, remove all contamination except tritium (not possible to remove the tritium from the water), and inject the tritiated groundwater up-gradient of the source area and the plume. The concept was to increase the travel time of the injected water for radioactive decay of the tritium. The two systems were found to be non-effective and potentially mobilizing more contamination. SRS invested approximately $50 million in construction and approximately $100 million in 6 years of operation. The H Seepage Basin pump and treat system was replaced by a series of subsurface barriers that alters the groundwater velocity; the F Seepage Basin pump and treat system was replaced by subsurface barriers forming a funnel and gate augmented by chemical treatment within the gates. These replacement systems are mostly passive and cost approximately $13 million to construct, and have reduced the tritium flux to Fourmile Branch, in these plumes, by over 70%. SRS manages non-acidic tritiated groundwater releases to Fourmile Branch from the southwest plume of the MWMF with a forest irrigation system. Tritiated water is captured with a sheetpile dam below the springs that caused releases to Fourmile Branch. Water from the irrigation pond is pumped to a filter plant prior to irrigation of approximately 26 hectares of mixed forest and developing pine plantation. SRS has almost achieved a 70% reduction in tritium flux to the Branch from this plume. The system cost approximately $5 million to construct with operation cost of approximately $500K per year. In conclusion, many lessons have been learned in 25 years of relatively aggressive remedial activities in the GSA. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. In water management situations with non-accumulative contaminants (tritium, VOCs, etc.) irrigation in a forest setting can be very effective.« less
Parirokh, Masoud; Asgary, Saeed; Eghbal, Mohammad Jafar
2005-08-01
This study was carried out to investigate metallic and non-metallic debris remaining on endodontic files after ultrasonic cleaning and autoclave processing. Forty-eight unused rotary and hand endodontic files, including eight different brands, were tested. Instruments were cleaned with ultrasound, autoclaved and before and after each step were observed by scanning electron microscopy (SEM). Adherent debris was analysed by energy-dispersive X-ray analysis (EDXA). All of the instruments before ultrasound cleaning were contaminated with metallic and non-metallic debris. Although most non-metallic debris was removed by ultrasonic cleaning, most of the metallic debris remained even after the final step of sterilization.
Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning
NASA Technical Reports Server (NTRS)
Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.; Cash, Steve (Technical Monitor)
2002-01-01
NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the RSRM (Reusable Solid Rocket Motor) system. Work with a previous generation of rubber equipment at MSFC (Marshall Space Flight Center) in the 1970's had involved the use of ODC's such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.
Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning
NASA Technical Reports Server (NTRS)
Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.
2003-01-01
NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the Redesigned Solid Rocket Motor (RSRM) system. Work with a previous generation of rubber equipment at MSFC in the 1970's had involved the use of Oxygen Deficient Center (ODC's) such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo
2018-02-01
We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.
Karim, Abdool Z
2009-01-01
The regional processing centre at Sunnybrook Health Sciences Centre recently faced the substantial challenge of increasing cleaning capacity to meet the current workload and anticipated future demand without increasing its operating budget. The solution, upgrading its cleaning and decontamination system to a highly automated system, met both objectives. An analysis of the impact of the change found that the new system provided additional benefits, including improved productivity and cleaning quality; decreased costs; reduced water, electricity and chemical use; improved worker safety and morale; and decreased overtime. Investing in innovative technology improved key departmental outcomes while meeting institutional environmental and cost savings objectives.
Wang, Lu; Dembecki, Jill; Jaffe, Neil E; O'Mara, Brian W; Cai, Hui; Sparks, Colleen N; Zhang, Jian; Laino, Sarah G; Russell, Reb J; Wang, Michelle
2013-09-20
Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy prolongs resin life time and consistently delivers high purity drug products. Copyright © 2013 Elsevier B.V. All rights reserved.
Surface preparation of Ti-3Al-2.5V alloy tubes for welding using a fiber laser
NASA Astrophysics Data System (ADS)
Kumar, Aniruddha; Gupta, Mool C.
2009-11-01
Ti-3Al-2.5V tubes are widely used in aircraft hydraulic systems. Meticulous surface preparation before welding is necessary to obtain a sound weld involving these alloy tubes. Conventionally this is done by cleaning with environmentally malign toxic chemicals, such as, hydrofluoric acid and nitric acid. This paper describes the laser-cleaning process of the surface of these tubes with a fiber laser as a preparation for pulsed gas tungsten arc welding and results obtained. A simple one-dimensional heat equation has been solved to evaluate the temperature profile of the irradiated surface. It is shown that surface preparation by laser cleaning can be an environmentally friendly alternative process by producing acceptable welds with laser-processed tubes.
NASA Astrophysics Data System (ADS)
Jang, Sa-Han
Galton-Watson branching processes of relevance to human population dynamics are the subject of this thesis. We begin with an historical survey of the invention of the invention of this model in the middle of the 19th century, for the purpose of modelling the extinction of unusual surnames in France and Britain. We then review the principal developments and refinements of this model, and their applications to a wide variety of problems in biology and physics. Next, we discuss in detail the case where the probability generating function for a Galton-Watson branching process is a geometric series, which can be summed in closed form to yield a fractional linear generating function that can be iterated indefinitely in closed form. We then describe the matrix method of Keyfitz and Tyree, and use it to determine how large a matrix must be chosen to model accurately a Galton-Watson branching process for a very large number of generations, of the order of hundreds or even thousands. Finally, we show that any attempt to explain the recent evidence for the existence thousands of generations ago of a 'mitochondrial Eve' and a 'Y-chromosomal Adam' in terms of a the standard Galton-Watson branching process, or indeed any statistical model that assumes equality of probabilities of passing one's genes to one's descendents in later generations, is unlikely to be successful. We explain that such models take no account of the advantages that the descendents of the most successful individuals in earlier generations enjoy over their contemporaries, which must play a key role in human evolution.
Robinson, Nicholas P
2013-01-01
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
Disassortativity of random critical branching trees
NASA Astrophysics Data System (ADS)
Kim, J. S.; Kahng, B.; Kim, D.
2009-06-01
Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.
NASA Astrophysics Data System (ADS)
Yoo, Seung Hwa; Joh, Han-Ik; Lee, Sungho
2017-04-01
Porous carbon nanofibers (PCNFs) with CNF branches (PCNF/bCNF) were synthesized by a simple heat treatment method. Conventional methods to synthesize this unique structure usually follow a typical route, which consists of CNF preparation, catalyst deposition, and secondary CNF growth. In contrast, our method utilized a one-step carbonization process of polymer nanofibers, which were electrospun from a one-pot solution consisted of polyacrylonitrile, polystyrene (PS), and iron acetylacetonate. Various structures of PCNF/CNF were synthesized by changing the solution composition and molecular weight of PS. It was verified that the content and molecular weight of PS were critical for the growth of catalyst particles and subsequent growth of CNF branches. The morphology, phase of catalyst, and carbon structure of PCNF/bCNF were analyzed at different temperature steps during carbonization. It was found that pores were generated by the evaporation of PS and the catalyst particles were formed on the surface of PCNF at 700 °C. The gases originated from the evaporation of PS acted as a carbon source for the growth of CNF branches that started at 900 °C. Finally, when the carbonization process was finished at 1200 °C, uniform and abundant CNF branches were formed on the surface of PCNF.
Plasma cleaning of nanoparticles from EUV mask materials by electrostatics
NASA Astrophysics Data System (ADS)
Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.
2008-03-01
Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel, A.; Khan, T.A.; Sharma, D.K.
The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents,more » keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.« less
Wang, Caixia; Chen, Yuanyuan; Yang, Feng; Ren, Jie; Yu, Xin; Wang, Jiani; Sun, Siyu
2016-08-01
The present study aimed to assess the efficacy of computer-based endoscope cleaning and disinfection using a hospital management information system (HMIS). A total of 2,674 gastroscopes were eligible for inclusion in this study. For the processes of disinfection management, the gastroscopes were randomly divided into 2 groups: gastroscope disinfection HMIS (GD-HMIS) group and manual group. In the GD-HMIS group, an integrated circuit card (IC card) chip was installed to monitor and record endoscope cleaning and disinfection automatically and in real time, whereas the endoscope cleaning and disinfection in the manual group was recorded manually. The overall disinfection progresses for both groups were recorded, and the total operational time was calculated. For the GD-HMIS group, endoscope disinfection HMIS software was successfully developed. The time to complete a single session of cleaning and disinfecting on a gastroscope was 15.6 minutes (range, 14.3-17.2 minutes) for the GD-HMIS group and 21.3 minutes (range, 20.2-23.9 minutes) for the manual group. Failure to record information, such as the identification number of the endoscope, occasionally occurred in the manual group, which affected the accuracy and reliability of manual recording. Computer-based gastroscope cleaning and disinfection using a hospital management information system could monitor the process of gastroscope cleaning and disinfection in real time and improve the accuracy and reliability, thereby ensuring the quality of gastroscope cleaning and disinfection. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pierre, Cynthia; Torkelson, John
2009-03-01
A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).
Plastics processing: statistics, current practices, and evaluation.
Cooke, F
1993-11-01
The health care industry uses a huge quantity of plastic materials each year. Much of the machinery currently used, or supplied, for plastics processing is unsuitable for use in a clean environment. In this article, the author outlines the reasons for the current situation and urges companies to re-examine their plastic-processing methods, whether performed in-house or subcontracted out. Some of the factors that should be considered when evaluating plastics-processing equipment are outlined to assist companies in remaining competitive and complying with impending EC regulations on clean room standards for manufacturing areas.
NASA Technical Reports Server (NTRS)
Keen, Jill M.; Evans, Kurt B.; Schiffman, Robert L.; Deweese, C. Darrell; Prince, Michael E.
1995-01-01
Experimental design testing was conducted to identify critical parameters of an aqueous spray process intended for cleaning solid rocket motor metal components (steel and aluminum). A two-level, six-parameter, fractional factorial matrix was constructed and conducted for two cleaners, Brulin 815 GD and Diversey Jettacin. The matrix parameters included cleaner temperature and concentration, wash density, wash pressure, rinse pressure, and dishwasher type. Other spray parameters: nozzle stand-off, rinse water temperature, wash and rinse time, dry conditions, and type of rinse water (deionized) were held constant. Matrix response testing utilized discriminating bond specimens (fracture energy and tensile adhesion strength) which represent critical production bond lines. Overall, Jettacin spray cleaning was insensitive to the range of conditions tested for all parameters and exhibited bond strengths significantly above the TCA test baseline for all bond lines tested. Brulin 815 was sensitive to cleaning temperature, but produced bond strengths above the TCA test baseline even at the lower temperatures. Ultimately, the experimental design database was utilized to recommend process parameter settings for future aqueous spray cleaning characterization work.
Zhang, Liyong; Zhang, Penghui; Wang, Meng; Yang, Kai; Liu, Junliang
2016-09-01
The processes and effects of coagulation-ultrafiltration (C-UF) and coagulation sedimentation-ultrafiltration (CS-UF) process used in the treatment of Dalangdian Reservoir water were compared. The experiment data indicated that 99% of turbidity removal and basically 100% of microorganism and algae removal were achieved in both C-UF and CS-UF process. The organic removal effect of CS-UF? process was slightly better than C-UF process. However, the organic removal effect under different processes was not obvious due to limitation of ultrafiltration membrane aperture. Polyaluminium chloride was taken as a coagulant in water plant. The aluminum ion removal result revealed that coagulant dosage was effectively saved by using membrane technology during megathermal high algae laden period. Within the range of certain reagent concentration and soaking time, air-water backwashing of every filtration cycle of membrane was conducted to effectively reduce membrane pollution. Besides, maintenance cleaning was conducted every 60 min. whether or not restorative cleaning was conducted depends on the pollution extent. After cleaning, recovery of membrane filtration effect was obvious.
Guidance on Streamlining the SIP Process
EPA collaborated with the The National Association of Clean Air Agencies (NACAA/ECOs) SIP Reform Work Group to minimize federal and state burden in developing SIPs, but ensure the plans effectiveness in complying with the Clean Air Act.
NASA Technical Reports Server (NTRS)
Pugel, D. E. (Betsy); Rummel, J. D.; Conley, Catharine
2017-01-01
Much like keeping your teeth clean, where you brush away biofilms that your dentist calls "plaque," there are various methods to clean spaceflight hardware of biological contamination, known as biological reduction processes. Different approaches clean your hardware's "teeth" in different ways and with different levels of effectiveness. We know that brushing at home with a simple toothbrush is convenient and has a different level of impact vs. getting your teeth cleaned at the dentist. In the same way, there are some approaches to biological reduction that may require simple tools or more complex implementation approaches (think about sonicating or just soaking your dentures, vs. brushing them). There are also some that are more effective for different degrees of cleanliness and still some that have materials compatibility concerns. In this article, we review known and NASA-certified approaches for biological reduction, pointing out materials compatibility concerns and areas where additional research is needed.
NASA Technical Reports Server (NTRS)
Pugel, D.E. (Betsy); Rummel, J. D.; Conley, C. A.
2017-01-01
Much like keeping your teeth clean, where you brush away biofilms that your dentist calls plaque, there are various methods to clean spaceflight hardware of biological contamination, known as biological reduction processes. Different approaches clean your hardwares teeth in different ways and with different levels of effectiveness. We know that brushing at home with a simple toothbrush is convenient and has a different level of impact vs. getting your teeth cleaned at the dentist. In the same way, there are some approaches to biological reduction that may require simple tools or more complex implementation approaches (think about sonicating or just soaking your dentures, vs. brushing them). There are also some that are more effective for different degrees of cleanliness and still some that have materials compatibility concerns. In this article, we review known and NASA-certified approaches for biological reduction, pointing out materials compatibility concerns and areas where additional research is needed.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee dressed in a "bunny suit," standard clean room apparel, disposes of some waste material into a container designated for the purpose. The apparel is designed to cover the hair, clothing and shoes of employees entering a clean room to prevent particulate matter from contaminating the space flight hardware being stored or processed in the room. The suit and container are both part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
Pascual-Font, Arán; Cubillos, Luis; Vázquez, Teresa; McHanwell, Steve; Sañudo, José R; Maranillo, Eva
2016-05-01
It has been generally accepted that the branches of the internal branch of the superior laryngeal nerve to the interarytenoid muscle are exclusively sensory. However, some experimental studies have suggested that these branches may contain motor axons, and therefore that the interarytenoid muscle is supplied by both the superior and recurrent laryngeal nerves. The aim of this work was to determine whether motor axons to the interarytenoid muscles are present in both laryngeal nerves. Basic research. Twelve human internal branches of the superior laryngeal nerve were dissected, and its branches to the interarytenoid muscle were removed and processed for choline-acetyltransferase immunohistochemistry, a method not used previously in studying the nerve fiber composition of the laryngeal nerves. The internal branch of the superior laryngeal nerve divided into two to five branches to the interarytenoid muscle. All branches contained motor axons, with the proportion of motor axons varying from 6% to 31%. The present study confirms that the internal branch of the superior laryngeal nerve provides a motor innervation to the interarytenoid muscles. N/A. Laryngoscope, 126:1117-1122, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.
2014-03-01
Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.
Contamination removal using various solvents and methodologies
NASA Technical Reports Server (NTRS)
Jeppsen, J. C.
1989-01-01
Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.
Origin of Broad Visible Emission from Branched Polysilane and Polygermane Chains
NASA Astrophysics Data System (ADS)
Watanabe, Akira; Sato, Takaaki; Matsuda, Minoru
2001-11-01
The emission properties of branched polysilane and polygermane are studied using time-resolved emission spectroscopy. As branched polymers, the organosilicon cluster (OSI) and organogermanium cluster (OGE) are investigated, which are prepared from tetrachlorosilane and tetrachlorogermane, respectively, and have a hyperbranched structure. The broad visible emissions of OSI and OGE are explained by the energy diagram based on a configuration coordinate model, and the excited states are attributed to a localized state around the branching point. The molecular orbital (MO) calculation suggested the formation of a localized state by the distortion around the branching point in the excited state. The potential barrier for the nonradiative relaxation process was determined from the temperature dependence of the emission lifetime.
Seiffert, Gary; Sutcliffe, Chris
2015-01-01
Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906
Online PH measurement technique in seawater desalination
NASA Astrophysics Data System (ADS)
Wang, Haibo; Wu, Kaihua; Hu, Shaopeng
2009-11-01
The measurement technology of pH is essential in seawater desalination. Glass electrode is the main pH sensor in seawater desalination. Because the internal impedance of glass electrode is high and the signal of pH sensor is easy to be disturbed, a signal processing circuit with high input impedance was designed. Because of high salinity of seawater and the characteristic of glass electrode, ultrasonic cleaning technology was used to online clean pH sensor. Temperature compensation was also designed to reduce the measurement error caused by variety of environment temperature. Additionally, the potential drift of pH sensor was analyzed and an automatic calibration method was proposed. In order to online monitor the variety of pH in seawater desalination, three operating modes were designed. The three modes are online monitoring mode, ultrasonic cleaning mode and auto-calibration mode. The current pH in seawater desalination was measured and displayed in online monitoring mode. The cleaning process of pH sensor was done in ultrasonic cleaning mode. The calibration of pH sensor was finished in auto-calibration mode. The result of experiments showed that the measurement technology of pH could meet the technical requirements for desalination. The glass electrode could be promptly and online cleaned and its service life was lengthened greatly.
NASA Astrophysics Data System (ADS)
Zhu, Tao; Ren, Ji-Rong; Mo, Shu-Fan
2009-12-01
In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(vec x, t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the “exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the “exclusion principle" is also protected by topology.
2007-04-10
In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.
Tri-Service Construction Guide Specifications
1992-04-01
Equipment 11474 NN 9102 11757 Radiographic Darkroom Equipment 11476 VA 8202 11471 Revolving Darkroom Doors 11494 VA 8201 11491 Hydrotherapy Equipment...11494 NN 9102 11716 Hydrotherapy Equipment 11500 CE 9105 11500 Air Pollution Control 11500 NS 9103 13255 Cleaning for Process Piping Systems 11600 NN...Doors (11471) 4 11494 - Hydrotherapy Equipment (11491) 0 0 11500 - Air Pollution Control 0 11500 - Cleaning for Process Piping Systems (13255) 0 11600
Superlinear scaling of offspring at criticality in branching processes
NASA Astrophysics Data System (ADS)
Saichev, A.; Sornette, D.
2014-01-01
For any branching process, we demonstrate that the typical total number rmp(ντ) of events triggered over all generations within any sufficiently large time window τ exhibits, at criticality, a superlinear dependence rmp(ντ)˜(ντ)γ (with γ >1) on the total number ντ of the immigrants arriving at the Poisson rate ν. In branching processes in which immigrants (or sources) are characterized by fertilities distributed according to an asymptotic power-law tail with tail exponent 1<γ ⩽2, the exponent of the superlinear law for rmp(ντ) is identical to the exponent γ of the distribution of fertilities. For γ >2 and for standard branching processes without power-law distribution of fertilities, rmp(ντ)˜(ντ)2. This scaling law replaces and tames the divergence ντ /(1-n) of the mean total number R¯t(τ) of events, as the branching ratio (defined as the average number of triggered events of first generation per source) tends to 1. The derivation uses the formalism of generating probability functions. The corresponding prediction is confirmed by numerical calculations, and an heuristic derivation enlightens its underlying mechanism. We also show that R¯t(τ) is always linear in ντ even at criticality (n =1). Our results thus illustrate the fundamental difference between the mean total number, which is controlled by a few extremely rare realizations, and the typical behavior represented by rmp(ντ).
Hopman, J; Hakizimana, B; Meintjes, W A J; Nillessen, M; de Both, E; Voss, A; Mehtar, S
2016-01-01
Hospital-associated infections (HAIs) are more frequently encountered in low- than in high-resource settings. There is a need to identify and implement feasible and sustainable approaches to strengthen HAI prevention in low-resource settings. To evaluate the biological contamination of routinely cleaned mattresses in both high- and low-resource settings. In this two-stage observational study, routine manual bed cleaning was evaluated at two university hospitals using adenosine triphosphate (ATP). Standardized training of cleaning personnel was achieved in both high- and low-resource settings. Qualitative analysis of the cleaning process was performed to identify predictors of cleaning outcome in low-resource settings. Mattresses in low-resource settings were highly contaminated prior to cleaning. Cleaning significantly reduced biological contamination of mattresses in low-resource settings (P < 0.0001). After training, the contamination observed after cleaning in both the high- and low-resource settings seemed comparable. Cleaning with appropriate type of cleaning materials reduced the contamination of mattresses adequately. Predictors for mattresses that remained contaminated in a low-resource setting included: type of product used, type of ward, training, and the level of contamination prior to cleaning. In low-resource settings mattresses were highly contaminated as noted by ATP levels. Routine manual cleaning by trained staff can be as effective in a low-resource setting as in a high-resource setting. We recommend a multi-modal cleaning strategy that consists of training of domestic services staff, availability of adequate time to clean beds between patients, and application of the correct type of cleaning products. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
New cleaning technologies advance coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onursal, B.
1984-05-01
Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.
Weld Wire Investigation Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, M.A.
1999-03-22
After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Perkins, Bradford G; Nesbitt, David J
2007-08-09
Energy transfer dynamics at the gas-liquid interface have been probed with a supersonic molecular beam of CO2 and a clean perfluorinated-liquid surface in vacuum. High-resolution infrared spectroscopy measures both the rovibrational state populations and the translational distributions for the scattered CO2 flux. The present study investigates collision dynamics as a function of incident angle (thetainc = 0 degrees, 30 degrees, 45 degrees, and 60 degrees), where column-integrated quantum state populations are detected along the specular-scattering direction (i.e., thetascat approximately thetainc). Internal state rovibrational and Doppler translational distributions in the scattered CO2 yield clear evidence for nonstatistical behavior, providing quantum-state-resolved support for microscopic branching of the gas-liquid collision dynamics into multiple channels. Specifically, the data are remarkably well described by a two-temperature model, which can be associated with both a trapping desorption (TD) component emerging at the surface temperature (Trot approximately TS) and an impulsive scattering (IS) component appearing at hyperthermal energies (Trot > TS). The branching ratio between the TD and IS channels is found to depend strongly on thetainc, with the IS component growing dramatically with increasingly steeper angle of incidence.
ERIC Educational Resources Information Center
Science Activities, 1995
1995-01-01
Presents a Project WET water education activity. By attempting to remove contaminants from "wastewater," students gain an appreciation for what is involved in providing clean drinking water. Students describe the process for treating wastewater and become familiar with nontoxic household cleaning methods. (LZ)
Xue, Peipei; Zeng, Fanfan; Duan, Qiuhong; Xiao, Juanjuan; Liu, Lin; Yuan, Ping; Fan, Linni; Sun, Huimin; Malyarenko, Olesya S; Lu, Hui; Xiu, Ruijuan; Liu, Shaoqing; Shao, Chen; Zhang, Jianmin; Yan, Wei; Wang, Zhe; Zheng, Jianyong; Zhu, Feng
2017-06-01
Branched-chain amino acids catabolism plays an important role in human cancers. Colorectal cancer is the third most commonly diagnosed cancer in males and the second in females, and the new global incidence is over 1.2 million cases. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme in branched-chain amino acids catabolism, which plays an important role in many serious human diseases. Here we investigated that abnormal branched-chain amino acids catabolism in colorectal cancer is a result of the disease process, with no role in disease initiation; BCKDK is widely expressed in colorectal cancer patients, and those patients that express higher levels of BCKDK have shorter survival times than those with lower levels; BCKDK promotes cell transformation or colorectal cancer ex vivo or in vivo. Mechanistically, BCKDK promotes colorectal cancer by enhancing the MAPK signaling pathway through direct MEK phosphorylation, rather than by branched-chain amino acids catabolism. And the process above could be inhibited by a BCKDK inhibitor, phenyl butyrate. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging
Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff
2013-01-01
Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935
Fernández Del Río, R; O'Hara, M E; Pemberton, P; Whitehouse, T; Mayhew, C A
2016-10-12
Isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether), C 3 H 2 ClF 5 O, is a commonly used inhalation anaesthetic. Using a proton transfer reaction mass spectrometer (PTR-MS) we have detected isoflurane in the breath of patients several weeks following major surgery. That isoflurane is detected in the breath of patients so long after being anaesthetised raises questions about when cognitive function has fully returned to a patient. Temporal profiles of isoflurane concentrations in breath are presented for five patients (F/M 3/2, mean age 50 years, min-max 36-58 years) who had undergone liver transplant surgery. In addition, results from a headspace analysis of isoflurane are presented so that the product ions resulting from the reactions of H 3 O + with isoflurane in PTR-MS could be easily identified in the absence of the complex chemical environment of breath. Six product ions were identified. In order of increasing m/z (using the 35 Cl isotope where appropriate) these are [Formula: see text] (m/z 51), CHFCl + (m/z 67), CF 3 CHCl + (m/z 117), C 3 F 4 OCl + (m/z 163), C 3 H 2 F 4 OCl + (m/z 165), and C 3 F 4 OCl + H 2 O (m/z 183). No protonated parent was detected. For the headspace study both clean air and CO 2 enriched clean air (4% CO 2 ) were used as buffer gases in the drift tube of the PTR-MS. The CO 2 enriched air was used to determine if exhaled breath would affect the product ion branching ratios. Importantly no significant differences were observed, and therefore for isoflurane the product ion distributions determined in a normal air mixture can be used for breath analysis. Given that PTR-MS can be operated under different reduced electric fields (E/N), the dependence of the product ion branching percentages for isoflurane on E/N (96-138 Td) are reported.
NASA Astrophysics Data System (ADS)
Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.
2013-12-01
The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.
Arginine-glycine-aspartic acid functional branched semi-interpenetrating hydrogels.
Plenderleith, Richard A; Pateman, Christopher J; Rodenburg, Cornelia; Haycock, John W; Claeyssens, Frederik; Sammon, Chris; Rimmer, Stephen
2015-10-14
For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require post-processing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography.
Surface Analysis of the Laser Cleaned Metal Threads
NASA Astrophysics Data System (ADS)
Sokhan, M.; Hartog, F.; McPhail, D.
The laser cleaning of the tarnished silver threads was carried out using Nd:YAG laser radiation at IR (1064 nm) and visible wavelengths (532 nm). The preliminary tests were made on the piece of silk with the silver embroidery with the clean and tarnished areas. FIBS and SIMS analysis were used for analysing the condition of the surface before and after laser irradiation. It was found that irradiation below 0.4 J/cm-2 and higher than 1.0 J/cm-2 fluences aggravates the process of tarnishing and leads to the yellowing effect. The results of preliminary tests were used for finding the optimum cleaning regime for the laser cleaning of the real museum artefact: "Women Riding Jacket" dated to the beginning of 18th century.
Strengthening Clean Energy Technology Cooperation under the UNFCCC: Steps toward Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, R.; de Coninck, H.; Dhar, S.
2010-08-01
Development of a comprehensive and effective global clean technology cooperation framework will require years of experimenting and evaluation with new instruments and institutional arrangements before it is clear what works on which scale and in which region or country. In presenting concrete examples, this paper aims to set the first step in that process by highlighting successful models and innovative approaches that can inform efforts to ramp up clean energy technology cooperation. This paper reviews current mechanisms and international frameworks for global cooperation on clean energy technologies, both within and outside of the UNFCCC, and provides selected concrete options formore » scaling up global cooperation on clean energy technology RD&D, enabling environment, and financing.« less
A study of blood contamination of Siqveland matrix bands.
Lowe, A H; Bagg, J; Burke, F J T; MacKenzie, D; McHugh, S
2002-01-12
AIMS To use a sensitive forensic test to measure blood contamination of used Siqveland matrix bands following routine cleaning and sterilisation procedures in general dental practice. Sixteen general dental practices in the West of Scotland participated. Details of instrument cleaning procedures were recorded for each practice. A total of 133 Siqveland matrix bands were recovered following cleaning and sterilisation and were examined for residual blood contamination by the Kastle-Meyer test, a well-recognised forensic technique. Ultrasonic baths were used for the cleaning of 62 (47%) bands and retainers and the remainder (53%) were hand scrubbed prior to autoclaving. Overall, 21% of the matrix bands and 19% of the retainers gave a positive Kastle-Meyer test, indicative of residual blood contamination, following cleaning and sterilisation. In relation to cleaning method, 34% of hand-scrubbed bands and 32% of hand-scrubbed retainers were positive for residual blood by the Kastle-Meyer test compared with 6% and 3% respectively of ultrasonically cleaned bands and retainers (P < 0.001). If Siqveland matrix bands are re-processed in the assembled state, then adequate pre-sterilisation cleaning cannot be achieved reliably. Ultrasonic baths are significantly more effective than hand cleaning for these items of equipment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romm, J.J.
Many American companies have found that saving energy and cutting pollution dramatically improves the bottom line. But beyond these gains, businesses that launch energy efficiency programs to save money are often astonished to discover unforeseen benefits: energy efficient lighting, heating, cooling, motors, and industrial processes can increase worker productivity, decrease absenteeism, and improve the quality of work performed. Profits created by the jump in worker productivity can exceed energy savings by a factor of ten. Energy efficiency and pollution prevention represent the next wave in manufacturing, following the quality revolution launched by the Japanese in the 1960s. Unless America leadsmore » the lean and clean revolution, economic health will be undermined as other countries develop clean processes and products and US companies suffer competitively. Also, developing countries will leapfrog their wasteful model and buy products and manufacturing processes from foreign firms already practicing lean and clean.« less
Formation mechanism of the photomask blanks material related haze
NASA Astrophysics Data System (ADS)
Kim, Jung-Jin; Choi, Junyoul; Koh, Soowan; Kim, Minho; Lee, Jiyoung; Lee, Han-Shin; Kim, Byung Gook; Jeon, Chan-uk
2016-05-01
We have observed a new type haze of which formation deviates from the generally accepted models with respect to the size, shape, and removability by chemicals. It has very small size of 50~100nm and are crowded around the cell boundary, while the typical haze doesn't prefer a special region on mask in the majority of cases. It is hard to remove by general cleaning, while the typical haze is easily removed by general cleaning process and even de-ionized water. It is confirmed that the source of the haze is blank material related ions which are formed by chemical etching of blanks during mask cleaning process or the photomask blanks itself.
Magnetic pulse cleaning of products
NASA Astrophysics Data System (ADS)
Smolentsev, V. P.; Safonov, S. V.; Smolentsev, E. V.; Fedonin, O. N.
2016-04-01
The article deals with the application of a magnetic impact for inventing new equipment and methods of cleaning cast precision blanks from fragile or granular thickened surface coatings, which are difficult to remove and highly resistant to further mechanical processing. The issues relating to a rational use of the new method for typical products and auxiliary operations have been studied. The calculation and design methods have been elaborated for load-carrying elements of the equipment created. It has been shown, that the application of the magnetic pulse method, combined with a low-frequency vibration process is perspective at enterprises of general and special machine construction, for cleaning lightweight blanks and containers, used for transporting bulk goods.
QFD analysis of RSRM aqueous cleaners
NASA Technical Reports Server (NTRS)
Marrs, Roy D.; Jones, Randy K.
1995-01-01
This paper presents a Quality Function Deployment (QFD) analysis of the final down-selected aqueous cleaners to be used on the Redesigned Solid Rocket Motor (RSRM) program. The new cleaner will replace solvent vapor degreasing. The RSRM Ozone Depleting Compound Elimination program is discontinuing the methyl chloroform vapor degreasing process and replacing it with a spray-in-air aqueous cleaning process. Previously, 15 cleaners were down-selected to two candidates by passing screening tests involving toxicity, flammability, cleaning efficiency, contaminant solubility, corrosion potential, cost, and bond strength. The two down-selected cleaners were further evaluated with more intensive testing and evaluated using QFD techniques to assess suitability for cleaning RSRM case and nozzle surfaces in preparation for adhesive bonding.
Bioinspired superhydrophobic, self-cleaning and low drag surfaces
NASA Astrophysics Data System (ADS)
Bhushan, Bharat
2013-09-01
Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.
JPRS Report. Soviet Union, EKO: Economics & Organization of Industrial Production No. 7, July 1987.
1987-12-03
to the question of the interest in plasma equip- ment in various branches of the national economy. Plasma processes occupy a leading position among...the principally new technologies that are based on process - ing concentrated flows of energy. Even today there are more than 50 of them. An entire...branch of chemistry has been formed—plasma chemistry, for which it is typical to have processes with an average mass temperature of the working gas
Lowering the environmental impact of high-kappa/ metal gate stack surface preparation processes
NASA Astrophysics Data System (ADS)
Zamani, Davoud
ABSTRACT Hafnium based oxides and silicates are promising high-κ dielectrics to replace SiO2 as gate material for state-of-the-art semiconductor devices. However, integrating these new high-κ materials into the existing complementary metal-oxide semiconductor (CMOS) process remains a challenge. One particular area of concern is the use of large amounts of HF during wet etching of hafnium based oxides and silicates. The patterning of thin films of these materials is accomplished by wet etching in HF solutions. The use of HF allows dissolution of hafnium as an anionic fluoride complex. Etch selectivity with respect to SiO2 is achieved by appropriately diluting the solutions and using slightly elevated temperatures. From an ESH point of view, it would be beneficial to develop methods which would lower the use of HF. The first objective of this study is to find new chemistries and developments of new wet etch methods to reduce fluoride consumption during wet etching of hafnium based high-κ materials. Another related issue with major environmental impact is the usage of large amounts of rinsing water for removal of HF in post-etch cleaning step. Both of these require a better understanding of the HF interaction with the high-κ surface during the etching, cleaning, and rinsing processes. During the rinse, the cleaning chemical is removed from the wafers. Ensuring optimal resource usage and cycle time during the rinse requires a sound understanding and quantitative description of the transport effects that dominate the removal rate of the cleaning chemicals from the surfaces. Multiple processes, such as desorption and re-adsorption, diffusion, migration and convection, all factor into the removal rate of the cleaning chemical during the rinse. Any of these processes can be the removal rate limiting process, the bottleneck of the rinse. In fact, the process limiting the removal rate generally changes as the rinse progresses, offering the opportunity to save resources. The second objective of this study is to develop new rinse methods to reduce water and energy usage during rinsing and cleaning of hafnium based high-κ materials in single wafer-cleaning tools. It is necessary to have a metrology method which can study the effect of all process parameters that affect the rinsing by knowing surface concentration of contaminants in patterned hafnium based oxides and silicate wafers. This has been achieved by the introduction of a metrology method at The University of Arizona which monitors the transport of contaminant concentrations inside micro- and nano- structures. This is the only metrology which will be able to provide surface concentration of contaminants inside hafnium based oxides and silicate micro-structures while the rinsing process is taking place. The goal of this research is to study the effect of various process parameters on rinsing of patterned hafnium based oxides and silicate wafers, and modify a metrology method for end point detection.
40 CFR 761.372 - Specific requirements for relatively clean surfaces.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Specific requirements for relatively clean surfaces. 761.372 Section 761.372 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...
Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge
Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.
2006-04-11
Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.
NASA Technical Reports Server (NTRS)
Morris, Michelle L.
1996-01-01
NASA Langley Research Center (LARC) investigated several alternatives to the use of tri-chloro-tri-fluoroethane(CFC-113) in oxygen cleaning and verification. Alternatives investigated include several replacement solvents, Non-Destructive Evaluation (NDE) and Total Organic Carbon (TOC) analysis. Among the solvents, 1, 1-dichloro-1-fluoroethane (HCFC 141b) and di-chloro-penta-fluoro-propane (HCFC 225) are the most suitable alternatives for cleaning and verification. However, use of HCFC 141b is restricted, HCFC 225 introduces toxicity hazards, and the NDE and TOC methods of verification are not suitable for processes at LaRC. Therefore, the interim recommendation is to sparingly use CFC-113 for the very difficult cleaning tasks where safety is critical and to use HCFC 225 to clean components in a controlled laboratory environment. Meanwhile, evaluation must continue on now solvents and procedures to find one suited to LaRCs oxygen cleaning needs.
NASA Astrophysics Data System (ADS)
Tan, Samantha H.; Chen, Ning; Liu, Shi; Wang, Kefei
2003-09-01
As part of the semiconductor industry "contamination-free manufacturing" effort, significant emphasis has been placed on reducing potential sources of contamination from process equipment and process equipment components. Process tools contain process chambers and components that are exposed to the process environment or process chemistry and in some cases are in direct contact with production wafers. Any contamination from these sources must be controlled or eliminated in order to maintain high process yields, device performance, and device reliability. This paper discusses new nondestructive analytical methods for quantitative measurement of the cleanliness of metal, quartz, polysilicon and ceramic components that are used in process equipment tools. The goal of these new procedures is to measure the effectiveness of cleaning procedures and to verify whether a tool component part is sufficiently clean for installation and subsequent routine use in the manufacturing line. These procedures provide a reliable "qualification method" for tool component certification and also provide a routine quality control method for reliable operation of cleaning facilities. Cost advantages to wafer manufacturing include higher yields due to improved process cleanliness and elimination of yield loss and downtime resulting from the installation of "bad" components in process tools. We also discuss a representative example of wafer contamination having been linked to a specific process tool component.
VESGEN Software for Mapping and Quantification of Vascular Regulators
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.
2012-01-01
VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.
CFD Modelling of Local Hemodynamics in Intracranial Aneurysms Harboring Arterial Branches.
Krylov, Vladimir; Grigoryeva, Elena; Dolotova, Daria; Blagosklonova, Evgenia; Gavrilov, Andrey
2017-01-01
The main cause of non-traumatic subarachnoid haemorrhage is an intracranial aneurysm's rupture. The choice of treatment approach is exceptionally difficult in cases of aneurysms with additional branches on the aneurysm's dome or neck. The impact of the arterial branches on local hemodynamics is still unclear and controversial question. At the same time, up-to-date methods of image processing and mathematical modeling provide a way to investigate the hemodynamic environment of aneurysms. The paper discusses hemodynamic aspects of aneurysms harboring arterial branch through the use of patient-specific 3D models and computational fluid dynamics (CFD) methods. The analysis showed that the presence of the arterial branches has a great influence on flow streamlines and wall shear stress, particularly for side wall aneurysm.
Lu, Nan; Xu, Zhaohe; Meng, Bingnan; Sun, Yuhan; Zhang, Jiangtao; Wang, Shaoming; Li, Yun
2014-04-21
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.
REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Koopman, D.
2009-08-01
A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previousmore » review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that scored highly in the SEE should be studied to evaluate long term potential. One of the AOP's (UV/O{sub 3}/Solids Separator) is currently being implemented by the SRS liquid waste organization for use in tank heel chemical cleaning. (4) Corrosion Issues: A program will be needed to address potential corrosion issues from the use of low molarity mineral acids and mixtures of oxalic/mineral acids in the waste tanks for short durations. The addition of corrosion inhibitors to the acids to reduce corrosion rates should be investigated.« less
The critical domain size of stochastic population models.
Reimer, Jody R; Bonsall, Michael B; Maini, Philip K
2017-02-01
Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.
Branching-ratio approximation for the self-exciting Hawkes process
NASA Astrophysics Data System (ADS)
Hardiman, Stephen J.; Bouchaud, Jean-Philippe
2014-12-01
We introduce a model-independent approximation for the branching ratio of Hawkes self-exciting point processes. Our estimator requires knowing only the mean and variance of the event count in a sufficiently large time window, statistics that are readily obtained from empirical data. The method we propose greatly simplifies the estimation of the Hawkes branching ratio, recently proposed as a proxy for market endogeneity and formerly estimated using numerical likelihood maximization. We employ our method to support recent theoretical and experimental results indicating that the best fitting Hawkes model to describe S&P futures price changes is in fact critical (now and in the recent past) in light of the long memory of financial market activity.
Interactive Design and Visualization of Branched Covering Spaces.
Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene
2018-01-01
Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.
The sensory but not muscular pelvic nerve branch is necessary for parturition in the rat.
Martínez-Gómez, M; Cruz, Y; Pacheco, P; Aguilar-Roblero, R; Hudson, R
1998-03-01
In the rat the pelvic nerve consists of a viscerocutaneous (sensory) branch which receives information from pelvic viscera and the midline perineal region, and a somatomotor (muscular) branch which innervates the ilio- and pubococcygeous muscles. To investigate the contribution of these branches to the parturition process, the length of gestation and course of delivery were closely monitored in 43 pregnant, Wistar-strain rats randomly assigned to five groups: untreated control animals, animals in which the somatomotor branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals in which the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals treated similarly to the previous group but with young delivered by C-section at term, and sham-operated controls. Sectioning the viscerocutaneous branch seriously disrupted parturition and resulted in major dystocia and a high percentage of stillbirths in all females. In contrast, sectioning the somatomotor branch had no apparent effect on parturition and no significant differences were found between females of this group and sham or control dams on any of the measures recorded. It is concluded that the viscerocutaneous branch of the pelvic nerve is vital for the normal course of parturition in the rat but that the somatomotor branch plays little role, if any.
Dynamics of sustained use and abandonment of clean cooking systems: lessons from rural India
NASA Astrophysics Data System (ADS)
Chalise, Nishesh; Kumar, Praveen; Priyadarshini, Pratiti; Yadama, Gautam N.
2018-03-01
Clean cooking technologies—ranging from efficient cookstoves to clean fuels—are widely deployed to reduce household air pollution and alleviate adverse health and climate consequences. Although much progress has been made on the technical aspects, sustained and proper use of clean cooking technologies by populations with the most need has been problematic. Only by understanding how clean cooking as an intervention is embedded within complex community processes can we ensure its sustained implementation. Using a community-based system dynamics approach, we engaged two rural communities in co-creating a dynamic model to explain the processes influencing the uptake and transition to sustained use of biogas (an anaerobic methane digester), a clean fuel and cooking technology. The two communities provided contrasting cases: one abandoned biogas while the other continues to use it. We present a system dynamics simulation model, associated analyses, and experiments to understand what factors drive transition and sustained use. A central insight of the model is community processes influencing the capacity to solve technical issues. Model analysis shows that families begin to abandon the technology when it takes longer to solve problems. The momentum in the community then shifts from a determination to address issues with the cooking technology toward caution in further adhering to it. We also conducted experiments using the simulation model to understand the impact of interventions aimed at renewing the use of biogas. A combination of theoretical interventions, including repair of non-functioning biogas units and provision of embedded technical support in communities, resulted in a scenario where the community can continue using the technology even after support is retracted. Our study also demonstrates the utility of a systems approach for engaging local stakeholders in delineating complex community processes to derive significant insights into the dynamic feedback mechanisms involved in the sustained use of biogas by the poor.
Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.
Merk, B; Litskevich, D; Gregg, R; Mount, A R
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofflemire, Benjamin M.; Gosnell, Natalie M.; Mathieu, Robert D.
2014-10-01
The open cluster NGC 6791 has been the focus of much recent study due to its intriguing combination of old age and high metallicity (∼8 Gyr, [Fe/H] = +0.30), as well as its location within the Kepler field. As part of the WIYN Open Cluster Study, we present precise (σ = 0.38 km s{sup –1}) radial velocities for proper motion candidate members of NGC 6791 from Platais et al. Our survey, extending down to g' ∼ 16.8, is comprised of the evolved cluster population, including blue stragglers, giants, and horizontal branch stars. Of the 280 proper-motion-selected stars above our magnitudemore » limit, 93% have at least one radial velocity measurement and 79% have three measurements over the course of at least 200 days, sufficient for secure radial-velocity-determined membership of non-velocity-variable stars. The Platais et al. proper motion catalog includes 12 anomalous horizontal branch candidates blueward of the red clump, of which we find only 4 to be cluster members. Three fall slightly blueward of the red clump and the fourth is consistent with being a blue straggler. The cleaned color-magnitude diagram shows a richly populated red giant branch and a blue straggler population. Half of the blue stragglers are in binaries. From our radial velocity measurement distribution, we find the cluster's radial velocity dispersion to be σ {sub c} = 0.62 ± 0.10 km s{sup –1}. This corresponds to a dynamical mass of ∼4600 M {sub ☉}.« less
40 CFR 761.369 - Pre-cleaning the surface.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Pre-cleaning the surface. 761.369 Section 761.369 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... steel products such as coiled wire, rods, and tubes in discrete batches or bundles. (b) The term continuous means those alkaline cleaning operations which process steel products other than in discrete... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420...
EFFECTS OF NATURAL CYCLIC VARIATIONS ON CONTAMINATED FATE AND TRANSPORT
The studies provide the scientific community with a greater understanding of the physiochemical processes of sediment-contaminant interaction. A primary consideration in sediment clean-up is when to stop, or how clean is acceptable. Present mathematical models assume that ...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenger, Andreas
2009-01-01
The study of processes involving flavour-changing neutral currents provides a particularly promising probe for New Physics beyond the Standard Model of particle physics. These processes are forbidden at tree level and proceed through loop processes, which are strongly suppressed in the Standard Model. Cross-sections for these processes can be significantly enhanced by contributions from new particles as they are proposed in most extentions of the Standard Model. This thesis presents searches for two flavour-changing neutral current decays, B± ! K±μ+μ- and B0 d ! K¤μ+μ-. The analysis was performed on 4.1 fb-1 of data collected by the DØ detector inmore » Run II of the Fermilab Tevatron. Candidate events for the decay B± ! K±μ+μ- were selected using a multi-variate analysis technique and the number of signal events determined by a fit to the invariant mass spectrum. Normalising to the known branching fraction for B± ! J/ÃK±, a branching fraction of B(B± ! K± μ+μ-) = 6.45 ± 2.24 (stat) ± 1.19 (syst) × 10-7 (1) was measured. The branching fraction for the decay B0 d ! K¤μ+μ- was determined in a similar way. Normalizing to the known branching fraction for B0 d ! J/ÃK¤, a branching fraction of B(B0 d ! K¤ μ+μ-) = 11.15 ± 3.05 (stat) ± 1.94 (syst) × 10-7 (2) was measured. All measurements are in agreement with the Standard Model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson-Nichols, M.J.; Egidi, P.V.; Roemer, E.K.
2000-09-01
f I The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficialmore » use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m3 of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain wi th 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity.« less
NASA Technical Reports Server (NTRS)
Himmel, R. P.
1975-01-01
Various hybrid processing steps, handling procedures, and materials are examined in an attempt to identify sources of contamination and to propose methods for the control of these contaminants. It is found that package sealing, assembly, and rework are especially susceptible to contamination. Moisture and loose particles are identified as the worst contaminants. The points at which contaminants are most likely to enter the hybrid package are also identified, and both general and specific methods for their detection and control are developed. In general, the most effective controls for contaminants are: clean working areas, visual inspection at each step of the process, and effective cleaning at critical process steps. Specific methods suggested include the detection of loose particles by a precap visual inspection, by preseal and post-seal electrical testing, and by a particle impact noise test. Moisture is best controlled by sealing all packages in a clean, dry, inert atmosphere after a thorough bake-out of all parts.
Packaging system with cleaning channel and method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Lu
A packaging structure and method for surface mount integrated circuits reduces electrochemical migration (ECM) problems by including one or more cleaning channels to effectively and efficiently remove flux residue that may otherwise remain lodged in gaps between the surface mount package and the printed circuit board. A cleaning channel may be formed along a bottom surface of the surface mount package (i.e., the surface facing the printed circuit board), or along a portion of a top surface of the printed circuit board. In either case, the inclusion of a cleaning channel enlarges the gap between the bottom surface of themore » surface mount package and the printed circuit board and creates a path for contaminants to be flushed out during a cleaning process.« less
Implementing AORN recommended practices for environmental cleaning.
Allen, George
2014-05-01
In recent years, researchers have developed an increasing awareness of the role of the environment in the development of health care-associated infections. AORN's "Recommended practices for environmental cleaning" is an evidence-based document that provides specific guidance for cleaning processes, for the selection of appropriate cleaning equipment and supplies, and for ongoing education and quality improvement. This updated recommended practices document has an expanded focus on the need for health care personnel to work collaboratively to accomplish adequately thorough cleanliness in a culture of safety and mutual support. Perioperative nurses, as the primary advocates for patients while they are being cared for in the perioperative setting, should help ensure that a safe, clean environment is reestablished after each surgical procedure. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity
NASA Astrophysics Data System (ADS)
Sarmiento, L. G.; Rudolph, D.
2016-07-01
With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piper, L G; Taylor, R L
This report summarizes progress during the second quarterly period of the subject contract. The methods available for the production of excited electronic states following azide decomposition are summarized. It is concluded that an experiment designed to study the kinetics of and branching ratios for electronically excited products from azide radicals reactions will be most productive in elucidating excitation mechanisms for potential chemical lasers. A flow reactor is described in which these studies may be undertaken. The major feature of this apparatus is a clean azide radical source based upon the thermal decomposition of solid, ionic azides. The contruction of themore » experimental apparatus has been started.« less
NASA Astrophysics Data System (ADS)
Luo, Bingwei; Deng, Yuan; Wang, Yao; Shi, Yongming; Cao, Lili; Zhu, Wei
2013-09-01
Three dimensional CdTe hierarchical nanotrees are initially prepared by a simple one-step magnetron sputtering method without any templates or additives. The CdTe hierarchical nanotrees are constructed by the spear-like vertical trunks and horizontal branches with the diameters of about 100 nm at bottom and became cuspidal on the top. The particular nanostructure imparts these materials superhydrophobic property, and this property can be preserved after placing in air for 90 days, and is stable even after the ultraviolet light and X-ray irradiation, respectively. This study provides a simple strategy to achieve superhydrophobic properties for CdTe materials at lower temperature, which opens a new potential for CdTe solar cell with self-cleaning property.
KSC technicians inspect TDRS-C, an STS-26 payload, in VPF clean room
NASA Technical Reports Server (NTRS)
1988-01-01
Kennedy Space Center (KSC) clean-suited technicians inspect tracking and data relay satellite C (TDRS-C) in KSC's Vertical Processing Facility (VPF) clean room. TDRS-C is the primary satellite payload aboard STS-26 Discovery, Orbiter Vehicle (OV) 103. TDRS-C will relay data from low Earth orbiting spacecraft, and air-to-ground voice communications and television from Space Shuttle orbiters when operational. View provided by KSC with alternate number KSC-88PC-363.
Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris
2017-01-01
Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
Efficiency of surface cleaning by a glow discharge for plasma spraying coating
NASA Astrophysics Data System (ADS)
Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.
2016-06-01
The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.
A dynamic processes study of PM retention by trees under different wind conditions.
Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan
2018-02-01
Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solvent replacement for green processing.
Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A
1998-01-01
The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018
Wet particle source identification and reduction using a new filter cleaning process
NASA Astrophysics Data System (ADS)
Umeda, Toru; Morita, Akihiko; Shimizu, Hideki; Tsuzuki, Shuichi
2014-03-01
Wet particle reduction during filter installation and start-up aligns closely with initiatives to reduce both chemical consumption and preventative maintenance time. The present study focuses on the effects of filter materials cleanliness on wet particle defectivity through evaluation of filters that have been treated with a new enhanced cleaning process focused on organic compounds reduction. Little difference in filter performance is observed between the two filter types at a size detection threshold of 60 nm, while clear differences are observed at that of 26 nm. It can be suggested that organic compounds can be identified as a potential source of wet particles. Pall recommends filters that have been treated with the special cleaning process for applications with a critical defect size of less than 60 nm. Standard filter products are capable to satisfy wet particle defect performance criteria in less critical lithography applications.
NASA Astrophysics Data System (ADS)
Bay, Hamed Hosseini; Patino, Daisy; Mutlu, Zafer; Romero, Paige; Ozkan, Mihrimah; Ozkan, Cengiz S.
2016-02-01
Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering material which not only serves this purpose, but can also be altered for other applications to preserve natural resources, a facile template-free process is suggested to fabricate a superporous, superhydrophobic ultra-thin graphite sponge. Moreover, the process is designed to be inexpensive and scalable. The fabricated sponge can be used to clean up different types of oil, organic solvents, toxic and corrosive contaminants. This versatile microstructure can retain its functionality even when pulverized. The sponge is applicable for targeted sorption and collection due to its ferromagnetic properties. We hope that such a cost-effective process can be embraced and implemented widely.
Satoh, Motoaki; Sakaguchi, Masayuki; Kobata, Masakazu; Sakaguchi, Yoko; Tanizawa, Haruna; Miura, Yuri; Sasano, Ryoichi; Nakanishi, Yutaka
2003-02-01
We studied the effect of cleaning and cooking on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice. The rice had been sprayed in a paddy field in Wakayama city, with 3 kinds of pesticide application protocols: spraying once at the usual concentration of pesticides, repeated spraying (3 times) with the usual concentration of pesticides and spraying once with 3 times the usual concentration of pesticides. The residue levels of pesticide decreased during the rice cleaning process. Silafluofen, which has a higher log Pow value, remained in the hull of the rice. Fenobucarb, which has a lower log Pow value, penetrated inside the rice. The residue concentration of pesticide in polished rice was higher than that in pre-washed rice processed ready for cooking. During the cooking procedure, the reduction of pesticides in polished rice was higher than that in brown rice.
Cadaveric Study of the Articular Branches of the Shoulder Joint.
Eckmann, Maxim S; Bickelhaupt, Brittany; Fehl, Jacob; Benfield, Jonathan A; Curley, Jonathan; Rahimi, Ohmid; Nagpal, Ameet S
This cadaveric study investigated the anatomic relationships of the articular branches of the suprascapular (SN), axillary (AN), and lateral pectoral nerves (LPN), which are potential targets for shoulder analgesia. Sixteen embalmed cadavers and 1 unembalmed cadaver, including 33 shoulders total, were dissected. Following dissections, fluoroscopic images were taken to propose an anatomical landmark to be used in shoulder articular branch blockade. Thirty-three shoulders from 17 total cadavers were studied. In a series of 16 shoulders, 16 (100%) of 16 had an intact SN branch innervating the posterior head of the humerus and shoulder capsule. Suprascapular sensory branches coursed laterally from the spinoglenoid notch then toward the glenohumeral joint capsule posteriorly. Axillary nerve articular branches innervated the posterolateral head of the humerus and shoulder capsule in the same 16 (100%) of 16 shoulders. The AN gave branches ascending circumferentially from the quadrangular space to the posterolateral humerus, deep to the deltoid, and inserting at the inferior portion of the posterior joint capsule. In 4 previously dissected and 17 distinct shoulders, intact LPNs could be identified in 14 (67%) of 21 specimens. Of these, 12 (86%) of 14 had articular branches innervating the anterior shoulder joint, and 14 (100%) of 14 LPN articular branches were adjacent to acromial branches of the thoracoacromial blood vessels over the superior aspect of the coracoid process. Articular branches from the SN, AN, and LPN were identified. Articular branches of the SN and AN insert into the capsule overlying the glenohumeral joint posteriorly. Articular branches of the LPN exist and innervate a portion of the anterior shoulder joint.
Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction
NASA Astrophysics Data System (ADS)
Jang, Youn Jeong; Jang, Ji-Wook; Choi, Sun Hee; Kim, Jae Young; Kim, Ju Hun; Youn, Duck Hyun; Kim, Won Yong; Han, Suenghoon; Sung Lee, Jae
2015-04-01
Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode.Highly efficient tree branch-shaped CuO photocathodes are fabricated using the hybrid microwave annealing process with a silicon susceptor within 10 minutes. The unique hierarchical, one-dimensional structure provides more facile charge transport, larger surface areas, and increased crystallinity and crystal ordering with less defects compared to irregular-shaped CuO prepared by conventional thermal annealing. As a result, the photocathode fabricated with the tree branch-shaped CuO produces an unprecedently high photocurrent density of -4.4 mA cm-2 at 0 VRHE under AM 1.5 G simulated sunlight compared to -1.44 mA cm-2 observed for a photocathode fabricated by thermal annealing. It is also confirmed that stoichiometric hydrogen and oxygen are produced from photoelectrochemical water splitting on the tree branch-shaped CuO photocathode and a platinum anode. Electronic supplementary information (ESI) available: The detailed schematic diagram for the HMA process, XRD results, the temperature profile during HMA, derivative XANES results, TEM images, J-V curves, lists of previously reported copper oxide photocathode, and parameters extracted from EIS. See DOI: 10.1039/c5nr00208g
Zhang, Fengjiao; Hu, Yunbin; Schuettfort, Torben; Di, Chong-an; Gao, Xike; McNeill, Christopher R; Thomsen, Lars; Mannsfeld, Stefan C B; Yuan, Wei; Sirringhaus, Henning; Zhu, Daoben
2013-02-13
Substituted side chains are fundamental units in solution processable organic semiconductors in order to achieve a balance of close intermolecular stacking, high crystallinity, and good compatibility with different wet techniques. Based on four air-stable solution-processed naphthalene diimides fused with 2-(1,3-dithiol-2-ylidene)malononitrile groups (NDI-DTYM2) that bear branched alkyl chains with varied side-chain length and different branching position, we have carried out systematic studies on the relationship between film microstructure and charge transport in their organic thin-film transistors (OTFTs). In particular synchrotron measurements (grazing incidence X-ray diffraction and near-edge X-ray absorption fine structure) are combined with device optimization studies to probe the interplay between molecular structure, molecular packing, and OTFT mobility. It is found that the side-chain length has a moderate influence on thin-film microstructure but leads to only limited changes in OTFT performance. In contrast, the position of branching point results in subtle, yet critical changes in molecular packing and leads to dramatic differences in electron mobility ranging from ~0.001 to >3.0 cm(2) V(-1) s(-1). Incorporating a NDI-DTYM2 core with three-branched N-alkyl substituents of C(11,6) results in a dense in-plane molecular packing with an unit cell area of 127 Å(2), larger domain sizes of up to 1000 × 3000 nm(2), and an electron mobility of up to 3.50 cm(2) V(-1) s(-1), which is an unprecedented value for ambient stable n-channel solution-processed OTFTs reported to date. These results demonstrate that variation of the alkyl chain branching point is a powerful strategy for tuning of molecular packing to enable high charge transport mobilities.
NASA Astrophysics Data System (ADS)
Yanlei, Li; Yuling, Liu; Chenwei, Wang; Yue, Li
2016-08-01
The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a critical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor in the copper CMP slurry, is the primary source for the formation of organic contaminants. The presence of BTA can degrade the electrical properties and reliability of ICs which needs to be removed by using an effective cleaning solution. In this paper, an alkaline cleaning solution was proposed. The alkaline cleaning solution studied in this work consists of a chelating agent and a nonionic surfactant. The removal of BTA was characterized by contact angle measurements and potentiodynamic polarization studies. The cleaning properties of the proposed cleaning solution on a 300 mm copper patterned wafer were also quantified, total defect counts after cleaning was studied, scanning electron microscopy (SEM) review was used to identify types of BTA to confirm the ability of cleaning solution for BTA removal. All the results reveal that the chelating agent can effectively remove the BTA residual, nonionic surfactant can further improve the performance. Project supported by the Natural Science Foundation of Hebei Province, China (No. F2015202267) and the Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology (No. 2015007).
DOT National Transportation Integrated Search
2009-01-01
Emissions from mobile sources, such as automobiles and trucks, contribute to air quality degradation and can threaten public health and the environment. Under the Clean Air Act, the Environmental Protection Agency (EPA) regulates these emissions. The...
DOT National Transportation Integrated Search
2009-01-16
Emissions from mobile sources, such as automobiles and trucks, contribute to air : quality degradation and can threaten public health and the environment. Under the : Clean Air Act, the Environmental Protection Agency (EPA) regulates these emissions....
DOT National Transportation Integrated Search
2009-01-16
Emissions from mobile sources, such as automobiles and trucks, contribute to air quality degradation and can threaten public health and the environment. Under the Clean Air Act, the Environmental Protection Agency (EPA) regulates these emissions. The...
WATER AS A REACTION MEDIUM FOR CLEAN CHEMICAL PROCESSES.
Green chemistry is a rapid developing new field that provides us a pro-active avenue for the sustainable development of future science and technologies. When designed properly, clean chemical technology can be developed in water as a reaction media. The technologies generated f...
NASA Astrophysics Data System (ADS)
Watanabe, Naoya; Kikuchi, Hidekazu; Yanagisawa, Azusa; Shimamoto, Haruo; Kikuchi, Katsuya; Aoyagi, Masahiro; Nakamura, Akio
2017-07-01
A high-yield via-last through silicon via (TSV) process has been developed using notchless Si etching and wet cleaning of the first metal layer. In this process, the notching was suppressed by optimizing the deep Si etching conditions and wet cleaning was performed using an organic alkaline solution to remove reaction products generated by the etchback step on the first metal layer. By this process, a number of small TSVs (TSV diameter: 6 µm TSV depth: 22 µm number of TSVs: 20,000/chip) could be formed uniformly on an 8-in. wafer. The electrical characteristics of small TSVs formed by this via-last TSV process were investigated. The TSV resistance determined by four-terminal measurements was approximately 24 mΩ. The leakage current between the TSV and the Si substrate was 2.5 pA at 5 V. The TSV capacitance determined using an inductance-capacitance-resistance (LCR) meter was 54 fF, while the TSV yield determined from TSV chain measurements was high (83%) over an 8-in. wafer.
Perioperative hair removal: A review of best practice and a practice improvement opportunity.
Spencer, Maureen; Barnden, Marsha; Johnson, Helen Boehm; Fauerbach, Loretta Litz; Graham, Denise; Edmiston, Charles E
2018-06-01
The current practice of perioperative hair removal reflects research-driven changes designed to minimize the risk of surgical wound infection. An aspect of the practice which has received less scrutiny is the clean-up of the clipped hair. This process is critical. The loose fibers represent a potential infection risk because of the micro-organisms they can carry, but their clean-up can pose a logistical problem because of the time required to remove them. Research has demonstrated that the most commonly employed means of clean-up, the use of adhesive tape or sticky mitts, can be both ineffective and time-consuming in addition to posing an infection risk from cross-contamination. Recently published research evaluating surgical clippers fitted with a vacuum-assisted hair collection device highlights the potential for significant practice improvement in the perioperative hair removal clean-up process. These improvements include not only further mitigation of potential infection risk but also substantial OR time and cost savings.
NASA Astrophysics Data System (ADS)
Zhao, Wanqin; Yu, Zhishui
2018-06-01
Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.
Abrasive blast cleaning method for the renewal of worn-out acceleration tubes
NASA Astrophysics Data System (ADS)
Bartha, L.; Koltay, E.; Mórik, Gy.
1996-04-01
The degradation of the electrical properties of acceleration tubes emerging with performance time is known to be assigned mainly to impurities and surface breakdown tracks appearing on the inner surface of the insulators. Consequently, a radical treatment for removing the surface layer may result in a renewal of the tube. An abrasive blast cleaning procedure has been used on a set of worn-out acceleration tube units. The cleaned tube exhibited its original electrical characteristics and it has been used for more than 4000 h of operation up to the maximum rated voltage of our 5 MV electrostatic accelerator without any observable degradation. XRF and PIXE analytical measurements performed on used and blast-treated insulators as well as on electrode and pump oil samples reveal the contribution of elementary processes in the acceleration tube to the ageing of the tube and indicate the effectness of the blasting process used for the re-establishment of clean surface conditions.
The FEM Simulation on End Mill of Plastic Doors and Windows Corner Cleaning Based on Deform-3D
NASA Astrophysics Data System (ADS)
Li, Guoping; Huang, Zhenyong; Wang, Xiaohui
2017-12-01
In the plastic doors and windows corner cleaning process, the rotating speed, the feed rate and the milling cutter diameter are the main factors that affect the efficiency and quality of the of corner cleaning. In this paper, SolidWorks will be used to establish the 3D model of end mills, and use Deform-3D to research the end mill milling process. And using orthogonal experiment design method to analyze the effect of rotating speed, the feed rate and the milling cutter diameter on the axial force variation, and to get the overall trend of axial force and the selection of various parameters according to the influence of axial force change. Finally, simulate milling experiment used to get the actual axial force data to verify the reliability of the FEM simulation model. And the conclusion obtained in this paper has important theoretical value in improving the plastic doors and windows corner cleaning efficiency and quality.
Vere-Jones' self-similar branching model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saichev, A.; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095; Sornette, D.
2005-11-01
Motivated by its potential application to earthquake statistics as well as for its intrinsic interest in the theory of branching processes, we study the exactly self-similar branching process introduced recently by Vere-Jones. This model extends the ETAS class of conditional self-excited branching point-processes of triggered seismicity by removing the problematic need for a minimum (as well as maximum) earthquake size. To make the theory convergent without the need for the usual ultraviolet and infrared cutoffs, the distribution of magnitudes m{sup '} of daughters of first-generation of a mother of magnitude m has two branches m{sup '}
Informing Mexico's Distributed Generation Policy with System Advisor Model (SAM) Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aznar, Alexandra Y; Zinaman, Owen R; McCall, James D
The Government of Mexico recognizes the potential for clean distributed generation (DG) to meaningfully contribute to Mexico's clean energy and emissions reduction goals. However, important questions remain about how to fairly value DG and foster inclusive and equitable market growth that is beneficial to investors, electricity ratepayers, electricity distributors, and society. The U.S. National Renewable Energy Laboratory (NREL) has partnered with power sector institutions and stakeholders in Mexico to provide timely analytical support and expertise to help inform policymaking processes on clean DG. This document describes two technical assistance interventions that used the System Advisor Model (SAM) to inform Mexico'smore » DG policymaking processes with a focus on rooftop solar regulation and policy.« less
Machining and brazing of accelerating RF cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodke, S.R.; Barnwal, Rajesh; Mondal, Jayant, E-mail: ghodke_barc@yahoo.co.in
2014-07-01
BARC has developed 2856 MHz accelerating cavities for 6 MeV, 9 MeV and 10 MeV RF Linac. New vendors are developed for mass production of accelerating cavity for future projects. New vendors are developing for diamond turning machining, cleaning and brazing processes. Fabrication involved material testing, CNC diamond turning of cavity, cavity cleaning and brazing. Before and after brazing resonance frequency (RF) of cavity was checked with vector network analyser (VNA). A power feed test setup is also fabricated to test power feed cavity before brazing. This test setup will be used to find out assembly performance of power feedmore » cavity and its coupler. This paper discusses about nano machining, cleaning and brazing processes of RF cavities. (author)« less
Hard metal exposures. Part 1: Observed performance of three local exhaust ventilation systems.
Guffey, S E; Simcox, N; Booth, D W; Hibbard, R; Stebbins, A
2000-04-01
Not every ventilation system performs as intended; much can be learned when they do not. The purpose of this study was to compare observed initial performance to expected levels for three saw-reconditioning shop ventilation systems and to characterize the changes in performance of the systems over a one-year period. These three local exhaust ventilation systems were intended to control worker exposures to cobalt, cadmium, and chromium during wet grinding, dry grinding, and welding/brazing activities. Prior to installation the authors provided some design guidance based on Industrial Ventilation, a Manual of Recommended Practice. However, the authors had limited influence on the actual installation and operation and no line authority for the systems. In apparent efforts to cut costs and to respond to other perceived needs, the installed systems deviated from the specifications used in pressure calculations in many important aspects, including adding branch ducts, use of flexible ducts, the choice of fans, and the construction of some hoods. After installation of the three systems, ventilation measurements were taken to determine if the systems met design specifications, and worker exposures were measured to determine effectiveness. The results of the latter will be published as a companion article. The deviations from design and maintenance failures may have adversely affected performance. From the beginning to the end of the study period the distribution of air flow never matched the design specifications for the systems. The observed air flows measured within the first month of installation did not match the predicated design air flows for any of the systems, probably because of the differences between the design and the installed system. Over the first year of operation, hood air flow variability was high due to inadequate cleaning of the sticky process materials which rapidly accumulated in the branch ducts. Poor distribution of air flows among branch ducts frequently produced individual hood air flows that were far below specified design levels even when the total air flow through that system was more than adequate. To experienced practitioners, it is not surprising that deviations from design recommendations and poor maintenance would be associated with poor system performance. Although commonplace, such experiences have not been documented in peer-reviewed publications to date. This publication is a first step in providing that documentation.
Analysis of 2H-Evaporator Acid Cleaning Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Diprete, D.; Edwards, T.
The 2H-Evaporator acid cleaning solution samples were analyzed by SRNL to determine a composition for the scale present in the evaporator before recent acid cleaning. Composite samples were formed from the solution samples from the two acid cleaning cycles. The solution composition was converted to a weight percent scale solids basis under an assumed chemical composition. The scale composition produced from the acid cleaning solution samples indicates a concentration of 6.85 wt% uranium. An upper bound, onesided 95% confidence interval on the weight percent uranium value may be given as 6.9 wt% + 1.645 × 0.596 wt% = 7.9 wt%.more » The comparison of the composition from the current acid cleaning solutions with the composition of recent scale samples along with the thermodynamic modeling results provides reasonable assurance that the sample results provide a good representation of the overall scale composition in the evaporator prior to acid cleaning. The small amount of scale solids dissolved in the 1.5 M nitric acid during the evaporator cleaning process likely produced only a small amount of precipitation based on modeling results and the visual appearance of the samples.« less
Alfa, Michelle J; Olson, Nancy
2014-02-01
Because automated instrument washer-disinfectors (WD) are widely used in health care to reprocess a variety of medical instruments, we developed a study to compare 3 cleaning indicators to determine whether they detected suboptimal temperature, time, enzymatic detergent, and fluid action in a washer-disinfector. The Miele WD was used for this comparison. One optimal cycle and 14 cycles with suboptimal enzymatic detergent, cleaning time, temperature, or inactive spray arms were evaluated. The cleaning indicators evaluated included the following: Pinnacle Monitor for Automated Enzymatic Cleaning Process (PNCL), Wash-Checks (WC), and TOSI. The scoring system for all 3 indicators was harmonized to a common scale. Soiled tweezers were included in each cycle evaluated. The PNCL, TOSI, and WC cleaning indicators showed significantly more failures at 40°C compared with 60°C (100% vs 0% for PNCL, 17% vs 0% for TOSI, and 60% vs 22% for WC, respectively). There were significantly more failures at suboptimal temperatures with a 2- versus 4-minute cycle (100% vs 0% for PNCL, 17% vs 0% for TOSI, and 17% vs 0% for WC, respectively, for 40°C cycles). Despite suboptimal cleaning cycles, all soiled tweezers looked clean. All 3 cleaning indicators responded to suboptimal WD conditions; however, the PNCL was the most affected by alterations in the cycle conditions evaluated. In simulated use testing, cleaning indicators provided a more sensitive audit tool compared with visual inspection of soiled instruments after automated cleaning. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
[Problems of world outlook and methodology of science integration in biological studies].
Khododova, Iu D
1981-01-01
Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.
Cash efficiency for bank branches.
Cabello, Julia García
2013-01-01
Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.
Zhao, Min; Tian, Dehu; Shao, Xinzhong; Li, Dacun; Li, Jianfeng; Liu, Jingda; Zhao, Liang; Li, Hailei; Wang, Xiaolei; Zhang, Wentong; Wu, Jinying; Yuan, Zuoxiong
2013-07-01
To study the anatomical basis of micro transverse flap pedicled with the superfical palmar branch of radial artery from the palmar wrist for using this free flap to repair soft tissue defect of the finger. Thirty-eight fresh upper limb specimens (22 males and 16 females; aged 26-72 years with an average of 36 years; at left and right sides in 19 limbs respectively) were dissected and observed under operating microscope. Two specimens were made into casting mould of artery with bones, and 2 specimens were injected with red emulsion in radial artery. Thirty-four specimens were injected with 1% gentian violet solution in the superfical palmar branch of the radial artery. A transverse oval flap in the palmar wrist was designed, the axis of the flap was the distal palmar crease. The origin, distribution, and anastomosis of the superfical palmar branch of the radial artery were observed. The superficial palmar branch of the radial artery was constantly existed, it usually arises from the main trunk of the radial artery, 1.09-3.60 cm to proximal styloid process of radius. There were about 2-5 branches between the origin and the tubercle of scaphoid bone. The origin diameter was 1.00-3.00 mm, and the distal diameter at the styloid process of radius was 1.00-2.90 mm. The venous return of flap passed through 2 routes, and the innervations of the flap mainly from the palmar cutaneous branch of the median nerve. The area of the flap was 4 cm x 2 cm-6 cm x 2 cm. The origin and courses of the superficial palmar branch of the radial artery is constant, and its diameter is similar to that of the digital artery. A transverse oval flap pedicled with the superfical palmar branch of radial artery in the palmar wrist can be designed to repair defects of the finger.
3D PIC-MCC simulations of positive streamers in air gaps
NASA Astrophysics Data System (ADS)
Jiang, M.; Li, Y.; Wang, H.; Liu, C.
2017-10-01
Simulation of positive streamer evolution is important for understanding the microscopic physical process in discharges. Simulations described in this paper are done using a 3D Particle-In-Cell, Monte-Carlo-Collision code with photoionization. Three phases of a positive streamer evolution, identified as initiation, propagation, and branching are studied during simulations. A homogeneous electric field is applied between parallel-flat electrodes forming a millimeter air gap to make simulations and analysis more simple and general. Free electrons created by the photoionization process determine initiation, propagation, and branching of the streamers. Electron avalanches form a positive streamer tip, when the space charge of ions at the positive tip dominates the local electric field. The propagation of the positive tip toward a cathode is the result of combinations of the positive tip and secondary avalanches ahead of it. A curved feather-like channel is formed without obvious branches when the electric field between electrodes is 50 kV/cm. However, a channel is formed with obvious branches when the electric field increases up to 60 kV/cm. In contrast to the branches around a sharp needle electrode, branches near the flat anode are formed at a certain distance away from it. Simulated parameters of the streamer such as diameter, maximum electric field, propagation velocity, and electron density at the streamer tip are in a good agreement with those published earlier.
Phenomenological picture of fluctuations in branching random walks
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Munier, S.
2014-10-01
We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.
Damage Tolerance Assessment Branch
NASA Technical Reports Server (NTRS)
Walker, James L.
2013-01-01
The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunge, G., E-mail: gilles.cunge@cea.fr; Petit-Etienne, C.; Davydova, A.
Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp{sup 2}-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here,more » we show that a high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures.« less
Bacterial contamination of ex vivo processed PBPC products under clean room conditions.
Ritter, Markus; Schwedler, Joachim; Beyer, Jörg; Movassaghi, Kamran; Mutters, Reinier; Neubauer, Andreas; Schwella, Nimrod
2003-11-01
Patients undergoing high-dose radio- and/or chemotherapy and autologous or allogeneic PBPC transplantation are at high risk for infections owing to profound immunosuppression. In this study, the rate of microbial contamination of ex vivo processed PBPC products was analyzed, comparing preparation under clean room conditions to standard laboratory conditions. After implementation of good manufacturing practice conditions in the two participating institutions, the microbial contamination rate of 366 PBPC harvests from 198 patients was determined under certified clean room conditions (Group A) from 2000 until 2002. To investigate influence of improved environmental conditions along with other parameters, this set of samples was compared with a historical control set of 1413 PBPC products, which have been processed ex vivo under a clean bench in a regular laboratory room and were harvested from 626 patients (Group B) from 1989 until 2000. In Group B microbial contamination was found in 74 PBPC products (5.2%) from 57 patients. In Group A microbial growth was detected in 3 leukapheresis products (0.8%) from 3 patients. After exclusion of PBPC products, which were probably contaminated before manipulation, statistical analysis showed a significant difference (chi2= 10.339; p < 0.001). These data suggest an impact of clean room conditions on the bacterial contamination rate of PBPC products. To identify confounding variables, variables like technique of leukapheresis, culture methodology, and microbial colonization of central venous catheters were taken into account. Further variables might be identified in following studies.
Hardware cleanliness methodology and certification
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Lash, Thomas J.; Rawls, J. Richard
1995-01-01
Inadequacy of mass loss cleanliness criteria for selection of materials for contamination sensitive uses, and processing of flight hardware for contamination sensitive instruments is discussed. Materials selection for flight hardware is usually based on mass loss (ASTM E-595). However, flight hardware cleanliness (MIL 1246A) is a surface cleanliness assessment. It is possible for materials (e.g. Sil-Pad 2000) to pass ASTM E-595 and fail MIL 1246A class A by orders of magnitude. Conversely, it is possible for small amounts of nonconforming material (Huma-Seal conformal coating) to not present significant cleanliness problems to an optical flight instrument. Effective cleaning (precleaning, precision cleaning, and ultra cleaning) and cleanliness verification are essential for contamination sensitive flight instruments. Polish cleaning of hardware, e.g. vacuum baking for vacuum applications, and storage of clean hardware, e.g. laser optics, is discussed. Silicone materials present special concerns for use in space because of the rapid conversion of the outgassed residues to glass by solar ultraviolet radiation and/or atomic oxygen. Non ozone depleting solvent cleaning and institutional support for cleaning and certification are also discussed.
Sztuczka, Ewa; Jackowski, Marek; Żukowska, Wioletta
2016-09-01
Wound healing is a complex and time-phased process. The occurrence of numerous negative conditions as well as external factors have a significant influence on the risk of potential complications. Preparing the patient for surgery, attention should be paid to a number of factors determining the proper healing process. The aim of the study was to compare the results of the early period of surgical wound healing process with access via laparotomy using techniques, which are self-adaptive sutures and mechanical staplers used for skin closure. The study included 120 patients divided into three groups, according to the degree of wound continence, in accordance with the CDC (Center for Disease Control and Prevention). Exclusion criteria based on objective analysis were applied for patients with a higher risk of complications. In all cases the skin layer was closed with monofilament suture or single-patient use stapler. A ten-day observation of the wound healing process was implemented. The study was randomized. In the case of patients groups identified as a "Clean Wound" and " Clean / Infected Wound" no significant differences were discovered. In the group "Contaminated/Infected Wound" significantly higher percentage of wound-healing complications were reported (p < 0.05) for which monofilament sutures was used. The study showed, that mechanical stapler is recommended for contaminated/infected surgical wounds due to significantly lower risk of complications. In the case of wounds divided as a "Clean" and "Clean/Infected" type of suturing material has no significant effect on wound healing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.
Development of Self-Cleaning Denim Fabrics
NASA Astrophysics Data System (ADS)
Uğur, Ş. S.; Sarıışık, A. M.; Çavuşlar, E.; Ertek, M.
2017-10-01
Denim fabrics coated with TiO2 nanolayers for self-cleaning properties by using a continuous layer-by-layer method. Nanolayer coated denim fabrics washed with an enzyme process for aging affect. Fabrics were analyzed with SEM-EDX and XPS measurements. Self-cleaning properties of the nanolayer deposited denim fabrics were tested according to red wine stain against to Suntest visible light irradiation after 72 h. And also, some physical (air permeability, tensile strength) and color (color difference and rubbing fastness) properties were evaluated.
1999-02-01
Cleaning Rules to Shipyards SDO\\SECT1 1-1 1. Introduction Background The Federal Clean Water Act (CWA) established a program to restore and maintain the...2-1 2. MP&M Rulemaking Process EPA Categorical Discharge Standards Program The Clean Water Act established a program to restore and... microfiltration and reverse osmosis. • Oil and grease content is used as a surrogate for monitoring toxic organics. • The technical and financial
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2005-07-01
Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.
NASA Technical Reports Server (NTRS)
Bankaitis, H.; Schueller, C. F.
1972-01-01
The oxygen system cleaning specifications drawn from 23 industrial and government sources are presented along with cleaning processes employed for meeting these specifications, and recommended postcleaning inspection procedures for establishing the cleanliness achieved. Areas of agreement and difference in the specifications, procedures, and inspection are examined. Also, the lack of clarity or specificity will be discussed. This absence of clarity represents potential safety hazards due to misinterpretation. It can result in exorbitant expenditures of time and money in satisfying unnecessary requirements.
Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning
NASA Astrophysics Data System (ADS)
Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi
2011-11-01
Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle has been removed from returned masks (after long term usage/exposure in the wafer fab), requires a very aggressive SPM wet clean, that drastically reduces the available budget for mask properties (CD, phase/transmission). We show that CO2aerosol cleaning can be utilized to remove the bulk of the glue residue effectively, while preserving the mask properties. This application required a differently designed nozzle to impart the required removal force for the sticky glue residue. A new nozzle was developed and qualified that resulted in PRE in the range of 92-98%. Results also include data on a patterned mask that was exposed in a lithography stepper in a wafer production environment. On EUV mask, our group has experimentally demonstrated that 50 CO2 cleaning cycles of Ru film on the EUV Front-side resulted in no appreciable reflectivity change, implying that no degradation of the Ru film occurs.
78 FR 78384 - Notice of Filing of Proposed Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... the Clean Air Act, 42 U.S.C. 7412(r)(1), with respect to two of its titanium and zirconium processing... zirconium, or 2.4 million pounds, being stored at facilities in New Cumberland and Weirton, WV by December...
Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud
Packard, Adam; Georgas, Kylie; Michos, Odyssé; Riccio, Paul; Cebrian, Cristina; Combes, Alexander N.; Ju, Adler; Ferrer-Vaquer, Anna; Hadjantonakis, Anna-Katerina; Zong, Hui; Little, Melissa H.; Costantini, Frank
2013-01-01
Summary The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Though development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term “mitosis-associated cell dispersal”. Pre-mitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; while one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis. PMID:24183650
NASA Technical Reports Server (NTRS)
1989-01-01
"Peen Plating," a NASA developed process for applying molybdenum disulfide, is the key element of Techniblast Co.'s SURFGUARD process for applying high strength solid lubricants. The process requires two machines -- one for cleaning and one for coating. The cleaning step allows the coating to be bonded directly to the substrate to provide a better "anchor." The coating machine applies a half a micron thick coating. Then, a blast gun, using various pressures to vary peening intensities for different applications, fires high velocity "media" -- peening hammers -- ranging from plastic pellets to steel shot. Techniblast was assisted by Rural Enterprises, Inc. Coating service can be performed at either Techniblast's or a customer's facility.
Waterless Clothes-Cleaning Machine
NASA Technical Reports Server (NTRS)
Johnson, Glenn; Ganske, Shane
2013-01-01
A waterless clothes-cleaning machine has been developed that removes loose particulates and deodorizes dirty laundry with regenerative chemical processes to make the clothes more comfortable to wear and have a fresher smell. This system was initially developed for use in zero-g, but could be altered for 1-g environments where water or other re sources are scarce. Some of these processes include, but are not limited to, airflow, filtration, ozone generation, heat, ultraviolet light, and photocatalytic titanium oxide.
2007-04-11
KENNEDY SPACE CENTER, FLA. -- The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton
Mishra, Anu; Butola, Bhupendra Singh
2018-01-19
In this article, the deposition of TiO 2 on cotton fabric using sol-gel technique has been described. Various process routes (pad-dry-cure, pad-dry-hydrothermal and pad-dry-solvothermal) were examined to impart a stable coating of TiO 2 on fabric. The role of precursor concentration, process temperature and time of treatment were studied to aim at a wash durable, UV protective and self-cleaning property in the treated fabric. EDX and ICP-MS techniques were used to examine the add-on percentage of TiO 2 on cotton fabrics treated via different routes. It has been found that the TiO 2 remains largely amorphous and nondurable if it is given a short thermal treatment. To convert the deposited TiO 2 to its anatase crystal form, a prolonged hydrothermal treatment for at least 3 h needs to be given. TiO 2 deposition levels of less than 0.1% were found to be effective in imparting reasonable degree of UV protection and self-cleaning property to the cotton fabric. The self-cleaning ability of the treated fabric against coffee stain was also studied and was found to be related to the process route and the deposition levels of TiO 2 . © 2018 The American Society of Photobiology.
Sehulster, Lynne M
2015-09-01
Healthcare professionals have questions about the infection prevention effectiveness of contemporary laundry processes for healthcare textiles (HCTs). Current industrial laundry processes achieve microbial reductions via physical, chemical, and thermal actions, all of which result in producing hygienically clean HCTs. European researchers have demonstrated that oxidative laundry additives have sufficient potency to meet US Environmental Protection Agency benchmarks for sanitizers and disinfectants. Outbreaks of infectious diseases associated with laundered HCTs are extremely rare; only 12 such outbreaks have been reported worldwide in the past 43 years. Root cause analyses have identified inadvertent exposure of clean HCTs to environmental contamination (including but not limited to exposure to dust in storage areas) or a process failure during laundering. To date, patient-to-patient transmission of infection has not been associated with hygienically clean HCTs laundered in accordance with industry process standards. Occupationally acquired infection involved mishandling of soiled HCTs and failure to use personal protective equipment properly. Laboratory studies of antimicrobial treatments for HCTs demonstrate a wide range of activity from 1 to 7 log10 reduction of pathogens under various experimental conditions. Clinical studies are needed to evaluate potential use of these treatments for infection prevention. Microbiological testing of clean HCTs for certification purposes is now available in the United States. Key features (eg, microbial sampling strategy, numbers of textiles sampled) and justification of the testing are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erga, O.; Finborud, A.
Cost-effective FGD processes with high SO{sub 2} removal efficiencies are required for fossil-fired power plants. With high-sulfur fuel, conventional limestone processes are less ideal, and regenerative processes with SO{sub 2} recovery may offer important advantages. The Elsorb process, which is being developed by the Norwegian company Elkem Technology a.s., is a regenerable SO{sub 2} recovery process which operates on the principle of chemical absorption followed by regeneration by evaporation. The process is based on the use of a chemical stable sodium phosphate buffer in high concentration. It combines high cleaning efficiency with high cyclic absorption capacity, moderate energy requirement, andmore » very little oxidation losses. The process produces SO{sub 2} (g) which can be converted into liquid SO{sub 2}, sulfuric acid or elemental sulfur. The Elsorb process has been pilot tested on flue gas from a coal-fired boiler with very promising results, concerning cleaning efficiency and oxidation losses of SO{sub 2}. The first commercial Elsorb plant has been installed for treating incinerated Claus tail gas. Preliminary data regarding cleaning efficiency are in accordance with the pilot tests. However, unexpected high consumption of make-up chemicals were encountered. The existing incinerator is now to be modified. Complete data for the Elsorb plant should be available later this year. 1 fig.« less
Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list
Litskevich, D.; Gregg, R.; Mount, A. R.
2018-01-01
The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604
Cleaning and dewatering fine coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad
Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also bemore » used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.« less
Johnson, M A; Primack, P D; Loushine, R J; Craft, D W
1997-01-01
Ninety-two new endodontic files were randomly assigned to five groups with varying parameters of contamination, cleaning method, and sterilization (steam or chemical). Files were instrumented in bovine teeth to accumulate debris and a known contaminant, Bacillus stearothermophilus. Positive controls produced growth on both T-soy agar plates and in T-soy broth. Negative controls and experimental files (some with heavy debris) failed to produce growth. The results showed that there was no significant difference between contaminated files that were not cleaned before sterilization and contaminated files that were cleaned before sterilization. Bioburden present on endodontic files does not appear to affect the sterilization process.
NASA Astrophysics Data System (ADS)
Weon, Byung Mook; Stewart, Peter S.
2014-11-01
Aging is an inevitable process in living systems. Here we show how clean foams age with time through sequential coalescence events: in particular, foam aging resembles biological aging. We measure population dynamics of bubbles in clean foams through numerical simulations with a bubble network model. We demonstrate that death rates of individual bubbles increase exponentially with time, independent on initial conditions, which is consistent with the Gompertz mortality law as usually found in biological aging. This consistency suggests that clean foams as far-from-equilibrium dissipative systems are useful to explore biological aging. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.
Partial branch and bound algorithm for improved data association in multiframe processing
NASA Astrophysics Data System (ADS)
Poore, Aubrey B.; Yan, Xin
1999-07-01
A central problem in multitarget, multisensor, and multiplatform tracking remains that of data association. Lagrangian relaxation methods have shown themselves to yield near optimal answers in real-time. The necessary improvement in the quality of these solutions warrants a continuing interest in these methods. These problems are NP-hard; the only known methods for solving them optimally are enumerative in nature with branch-and-bound being most efficient. Thus, the development of methods less than a full branch-and-bound are needed for improving the quality. Such methods as K-best, local search, and randomized search have been proposed to improve the quality of the relaxation solution. Here, a partial branch-and-bound technique along with adequate branching and ordering rules are developed. Lagrangian relaxation is used as a branching method and as a method to calculate the lower bound for subproblems. The result shows that the branch-and-bound framework greatly improves the resolution quality of the Lagrangian relaxation algorithm and yields better multiple solutions in less time than relaxation alone.
Jonathan, M C; van Brussel, M; Scheffers, M S; Kabel, M A
2015-11-05
In the conversion of starch to fermentable glucose for bioethanol production, hydrolysis of amylopectin by α-amylases and glucoamylases is the slowest step. In this process, α-1,6-branched gluco-oligosaccharides accumulate and are slowly degraded. Glucoamylases that are able to degrade such branched oligosaccharides faster are economically beneficial. This research aimed at the isolation and characterisation of branched gluco-oligosaccharides produced from amylopectin digestion by α-amylase, to be used as substrates for comparing their degradation by glucoamylases. Branched gluco-oligosaccharides with a DP between five and twelve were purified using size exclusion chromatography. These structures were characterised after labelling with 2-aminobenzamide using UHPLC-MS(n) analysis. Further, the purified oligosaccharides were used to evaluate the mode-of-action of a glucoamylase from Hypocrea jecorina. The enzyme cleaves the α-1,4-linkage adjacent to the α-1,6-linkage at a lower rate than that of α-1,4-linkages in linear oligosaccharides. Hence, the branched gluco-oligosaccharides are a suitable substrate to evaluate glucoamylase activity on branched structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Composite Overview and Composite Aerocover Overview
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad
2014-01-01
Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC
Aryee, Samuel; Walumbwa, Fred O; Seidu, Emmanuel Y M; Otaye, Lilian E
2012-03-01
We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance.
Intralaryngeal neuroanatomy of the recurrent laryngeal nerve of the rabbit
Ryan, Stephen; McNicholas, Walter T; O'Regan, Ronan G; Nolan, Philip
2003-01-01
We undertook this study to determine the detailed neuroanatomy of the terminal branches of the recurrent laryngeal nerve (RLN) in the rabbit to facilitate future neurophysiological recordings from identified branches of this nerve. The whole larynx was isolated post mortem in 17 adult New Zealand White rabbits and prepared using a modified Sihler's technique, which stains axons and renders other tissues transparent so that nerve branches can be seen in whole mount preparations. Of the 34 hemi-laryngeal preparations processed, 28 stained well and these were dissected and used to characterize the neuroanatomy of the RLN. In most cases (23/28) the posterior cricoarytenoid muscle (PCA) was supplied by a single branch arising from the RLN, though in five PCA specimens there were two or three separate branches to the PCA. The interarytenoid muscle (IA) was supplied by two parallel filaments arising from the main trunk of the RLN rostral to the branch(es) to the PCA. The lateral cricoarytenoid muscle (LCA) commonly received innervation from two fine twigs branching from the RLN main trunk and travelling laterally towards the LCA. The remaining fibres of the RLN innervated the thyroarytenoid muscle (TA) and comprised two distinct branches, one supplying the pars vocalis and the other branching extensively to supply the remainder of the TA. No communicating anastomosis between the RLN and superior laryngeal nerve within the larynx was found. Our results suggest it is feasible to make electrophysiological recordings from identified terminal branches of the RLN supplying laryngeal adductor muscles separate from the branch or branches to the PCA. However, the very small size of the motor nerves to the IA and LCA suggests that it would be very difficult to record selectively from the nerve supply to individual laryngeal adductor muscles. PMID:12739619
Debarment or suspension of a participant in a program by one agency has government-wide, reciprocal effect. Contact the Office of Grants and Debarment Suspension and Debarment staff for questions or concerns.
DOT National Transportation Integrated Search
2010-06-01
The present study is an integral part of a : broader study focused on the design and : implementation of self-cleaning culverts, i.e., : configurations that prevent the formation of : sediment deposits after culvert construction or : cleaning. Sedime...
Project CLEAN: Safe, Sanitary School Restrooms. Fastback.
ERIC Educational Resources Information Center
Keating, Tom
After introducing the problem of unsafe, dirty public school restrooms, this publication describes Project CLEAN (Citizens, Learners, and Educators Against Neglect), an effort to improve the safety, cleanliness, and hygiene of student restrooms in public schools. The Project builds a five-step, school-by-school communication process that includes:…