40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.305-94 Clean-fuel fleet vehicle labeling...
National Clean Fleets Partnership (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with localmore » stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.« less
Light-Duty Alternative Fuel Vehicle Rebates Clean Vehicle and Infrastructure Grants Clean Fleet Grants Clean School Bus Program Clean Vehicle Replacement Vouchers Diesel Fuel Blend Tax Exemption Idle Reduction Weight Exemption Natural Gas Vehicle (NGV) Weight Exemption Utility/Private Incentives Plug-In
40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions... fuel vapor emissions which are five or less total grams per test as measured by the current Federal... control devices (canister, purge system, etc.) related to control of evaporative emissions, the fuel vapor...
40 CFR 52.351 - United States Postal Service substitute Clean Fuel Fleet Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... State Implementation Plan, carbon monoxide NAAQS, United States Postal Service substitute clean-fuel... of section 246 of the Clean Air Act for the Denver Metropolitan carbon monoxide nonattainment area.... [66 FR 64758, Dec. 14, 2001] ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steward, Darlene; Sears, Ted
The Energy Policy Act (EPAct) of 1992, with later amendments, was enacted with the goal of reducing U.S. petroleum consumption by building a core market for alternative fuels and vehicles. The U.S. Department of Energy manages three federal programs related to EPAct; the Sustainable Federal Fleets Program, the State and Alternative Fuel Provider Program, and Clean Cities. Federal agencies and State and Alternative Fuel Provider Fleets are required to submit annual reports that document their compliance with the legislation. Clean Cities is a voluntary program aimed at building partnerships and providing technical expertise to encourage cities to reduce petroleum usemore » in transportation. This study reviews the evolution of these three programs in relation to alternative fuel and vehicle markets and private sector adoption of alternative fueled vehicles to assess the impact of the programs on reduction in petroleum use and greenhouse gas emissions both within the regulated fleets and through development of alternative fuel and vehicle markets. The increased availability of alternative fuels and use of alternative fuels in regulated fleets is expected to improve cities' ability to respond to and quickly recover from both local disasters and short- and long-term regional or national fuel supply interruptions. Our analysis examines the benefits as well as potential drawbacks of alternative fuel use for the resiliency of U.S. cities.« less
CleanFleet final report. Volume 7, vehicle emissions
DOT National Transportation Integrated Search
1995-12-01
CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, : was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily : commercial service. Measurements of exhaust and evaporative emissions from CleanFleet va...
National Clean Fleets Partnership (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-01-01
Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.
40 CFR Appendix - Tables to Subpart C of Part 88
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Tables to Subpart C of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program Incentives for the purchase of Inherently Low-Emission Vehicles. Pt. 88, Subpt. C, Tables Tables to Subpart C of Par...
40 CFR Appendix - Tables to Subpart C of Part 88
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Tables to Subpart C of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program Incentives for the purchase of Inherently Low-Emission Vehicles. Pt. 88, Subpt. C, Tables Tables to Subpart C of Par...
40 CFR Appendix - Tables to Subpart C of Part 88
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Tables to Subpart C of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program Incentives for the purchase of Inherently Low-Emission Vehicles. Pt. 88, Subpt. C, Tables Tables to Subpart C of Par...
40 CFR Appendix - Tables to Subpart C of Part 88
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Tables to Subpart C of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program Incentives for the purchase of Inherently Low-Emission Vehicles. Pt. 88, Subpt. C, Tables Tables to Subpart C of Part...
40 CFR Appendix - Tables to Subpart C of Part 88
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Tables to Subpart C of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program Incentives for the purchase of Inherently Low-Emission Vehicles. Pt. 88, Subpt. C, Tables Tables to Subpart C of Par...
Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel
AddThis.com... March 6, 2015 Propane Rolls on as Reliable Fleet Fuel " If we can save the district money alternative fuels program for our buses as a way to save money and clean up the air and environment for our can save the district money and prevent pollution for our kids' sake in the process, I don't see a
Fleet Grants The Texas Commission on Environmental Quality (TCEQ) administers the Texas Clean Fleet Program (TCFP) as part of the Texas Emissions Reduction Plan (TERP). TCFP encourages owners of fleets current application periods, see the TCEQ TERP website. (Reference Senate Bill 1731, 2017, Texas Statutes
CleanFleet final report : executive summary
DOT National Transportation Integrated Search
1995-12-01
CleanFleet, formally known as the South Coast Alternative Fuels Demonstration, : was a comprehensive demonstration of alternative fuel vehicles (AFVs) in daily : commercial service. Between April 1992 and September 1994, five alternative fuels were t...
CleanFleet final report. Volume 2, project design and implementation
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The project evaluated five alternative motor fuels in commercial fleet service over a two-year period. T...
Implementation of alternative bio-based fuels in aviation: The Clean Airports Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shauck, M.E.; Zanin, M.G.
1997-12-31
The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% ofmore » the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.« less
CleanFleet final report. Volume 4, fuel economy
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
40 CFR 88.305-94 - Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for heavy-duty vehicles. 88.305-94 Section 88.305-94 Protection of Environment ENVIRONMENTAL...-94 Clean-fuel fleet vehicle labeling requirements for heavy-duty vehicles. (a) All clean-fuel heavy... LEV, ULEV, or ZEV, and meets all of the applicable requirements of this part 88. (b) All heavy-duty...
40 CFR 52.1073 - Approval status.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following exception: (i) Distributors and retailers of gasoline-ethanol blends as defined by 40 CFR 80.27(d... either the Federal clean fuel fleet program or an alternative substitute program by May 15, 1994. (e)-(g...
40 CFR 52.1073 - Approval status.
Code of Federal Regulations, 2010 CFR
2010-07-01
... following exception: (i) Distributors and retailers of gasoline-ethanol blends as defined by 40 CFR 80.27(d... either the Federal clean fuel fleet program or an alternative substitute program by May 15, 1994. (e)-(g...
CleanFleet final report. Volume 1, summary
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
CleanFleet final report. Volume 6, occupational hygiene
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
CleanFleet final report. Volume 5, employee attitude assessment
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
CleanFleet final report. Volume 3, vehicle maintenance and durability
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
Alternative Fuels Data Center: Publications
report is a summary of the project design and results of the analysis of data collected during the hygiene, emissions, and fleet economics. CleanFleet Final Report Project Design and Implementation, Vol. 2 CleanFleet findings, the design and implementation of the project are summarized. Clean Cities Drive - Fall
Clean Cities case study : Barwood Cab Fleet study summary
DOT National Transportation Integrated Search
1999-05-21
Barwood Cab Fleet Study Summary is the second in a new series called 'Alternative Fuel Information Case Studies', designed to present real-world experiences with alternative fuels to fleet managers and other industry stakeholders.
Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2009-04-01
Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.
Alternative fuelds in urban fleets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, T.
1994-12-31
In this presentation the author addresses four main objectives. They are to: discuss programs that are driving the introduction of alternative fuels into fleet operations in urban areas around the country; define alternative fuels; quantify the present use and future projections on alternative fuel vehicles (AVFs) in the Chicago metropolitan statistical area; and discuss benefits of increased use of alternative fuels in urban areas. Factors which touch on these points include: present domestic dependence on petroleum for autos, with usage exceeding production; the large populations in urban areas which do not meet Clean Air Standards; recent legislative initiatives which givemore » guidance and aid in the adoption of such strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2003-07-01
The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.
Evaluating the impacts of the clean cities program.
Qiu, Shiyong; Kaza, Nikhil
2017-02-01
The Department of Energy's Clean Cities program was created in 1993 to reduce petroleum usage in the transportation sector. The program promotes alternative fuels such as biofuels and fuel-saving strategies such as idle reduction and fleet management through coalitions of local government, non-profit, and private actors. Few studies have evaluated the impact of the program because of its complexity that include interrelated strategies of grants, education and training and diversity of participants. This paper uses a Difference-in-Differences (DiD) approach to evaluate the effectiveness of the program between 1990 and 2010. We quantify the effectiveness of the Clean Cities program by focusing on performance measures such as air quality, number of alternative fueling stations, private vehicle occupancy and transit ridership. We find that counties that participate in the program perform better on all these measures compared to counties that did not participate. Compared to the control group, counties in the Clean Cities program experienced a reduction in days with bad air quality (3.7%), a decrease in automobile commuters (2.9%), an overall increase in transit commuters (2.1%) and had greater numbers of new alternative fueling stations (12.9). The results suggest that the program is a qualified success. Copyright © 2016 Elsevier B.V. All rights reserved.
CleanFleet final report. Volume 8, fleet economics
DOT National Transportation Integrated Search
1995-12-01
The costs that face a fleet operator in implementing alternative motor fuels : into fleet operations are examined. The cost assessment is built upon a list of thirteen cost factors grouped into the three catagories: infrastructure costs, vehicle owni...
10 CFR 490.805 - Application for waiver.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Application for waiver. 490.805 Section 490.805 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... alternative compliance and whether the fleet is in compliance with Clean Air Act vehicle emission standards...
10 CFR 490.805 - Application for waiver.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Application for waiver. 490.805 Section 490.805 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... alternative compliance and whether the fleet is in compliance with Clean Air Act vehicle emission standards...
10 CFR 490.805 - Application for waiver.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Application for waiver. 490.805 Section 490.805 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... alternative compliance and whether the fleet is in compliance with Clean Air Act vehicle emission standards...
10 CFR 490.805 - Application for waiver.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Application for waiver. 490.805 Section 490.805 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... alternative compliance and whether the fleet is in compliance with Clean Air Act vehicle emission standards...
10 CFR 490.805 - Application for waiver.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Application for waiver. 490.805 Section 490.805 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Compliance § 490... alternative compliance and whether the fleet is in compliance with Clean Air Act vehicle emission standards...
40 CFR 85.525 - Applicable standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Exemption of Clean Alternative Fuel Conversions From... prohibition, vehicles/engines that have been converted to operate on a different fuel must meet emission... allowable grouping. Fleet average standards do not apply unless clean alternative fuel conversions are...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.
Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel
UseA> Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels %. For information about this project, contact Ann Arbor Clean Cities Coalition. Download QuickTime Video Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart
National Clean Diesel Campaign (NCDC) The U.S. Environmental Protection Agency established the NCDC to reduce pollution emitted from diesel engines through the implementation of varied control existing diesel fleets, regulations for clean diesel engines and fuels, and regional collaborations and
Case Study - Propane Bakery Delivery Step Vans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, M.; Burnham, A.
2016-04-01
A switch to propane from diesel by a major Midwest bakery fleet showed promising results, including a significant displacement of petroleum, a drop in greenhouse gases and a fuel cost savings of seven cents per mile, according to a study recently completed by the U.S. Department of Energy's Argonne National Laboratory for the Clean Cities program.
Alternative Fuels Data Center: Rightsizing Your Vehicle Fleet to Conserve
reducing fuel use. When rightsizing, fleet managers should evaluate how important each vehicle is to the rentals when needed? Case Study The City of Detroit generated $1 million in revenue working with the Clean should consider soliciting input from drivers when conducting a rightsizing review, as they can be very
Alternative Fuel News, Vol. 4, No. 4
DOT National Transportation Integrated Search
2001-02-22
The Clean Cities network is growing, and more fleets are considering alternative fuels. : Industry old-timers that have been using alternative fuels since the passage of Energy Policy : Act of 1992 are beginning to replace their used alternativ...
Building a Business Case for Compressed Natural Gas in Fleet Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.
2015-03-19
Natural gas is a clean-burning, abundant, and domestically produced source of energy. Compressed natural gas (CNG) has recently garnered interest as a transportation fuel because of these attributes and because of its cost savings and price stability compared to conventional petroleum fuels. The National Renewable Energy Laboratory (NREL) developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG vehicle and CNG fueling infrastructure projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, G.A.; Kerstetter, J.; Lyons, J.K.
1993-06-01
Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive,more » their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.« less
Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy
state has partnered with the U.S. Department of Energy through the Hawaii Clean Energy Initiative to adoption," Larson said. HCC supports the Hawaii Clean Energy Initiative, a partnership between DOE and Hawaii Clean Energy Initiative Honolulu Clean Cities National Clean Fleets Partnership Hybrid and Plug-In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.
Impact of compressed natural gas fueled buses on street pavements
DOT National Transportation Integrated Search
1995-07-01
Federal Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of : 1992 (EPACT), together with other state regulations have encouraged or mandated : transit systems to use alternative fuels to power bus fleets. Among such fuels, : compres...
Clean Cities 2016 Vehicle Buyer's Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.
Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles
Public Utilities operates the largest municipal fleet of natural gas vehicles in Connecticut. For Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct. 28, 2017 with Natural Gas Trucks June 23, 2017 Photo of a bus New Hampshire Cleans up with Biodiesel Buses May
Fuel-Efficient Green Fleets Policy and Fleet Management Program Development The Alabama Green Fleets Review Committee (Committee) established a Green Fleets Policy (Policy) outlining a procedure for managers must classify their vehicle inventory for compliance with the Policy and submit annual plans for
Clean Cities: AFLEET Measures Impacts of Vehicles and Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-12-01
AFLEET is a free tool from the U.S. Department of Energy (DOE) that fleet managers can use to quantify the environmental and economic impacts of new fuels and vehicle technologies. The AFLEET factsheet explains how the tool works and how to access it.
Alternative Fuels Data Center: Coca-Cola Continues to Expand Its Heavy-Duty
Hybrid Fleet in AtlantaA> Coca-Cola Continues to Expand Its Heavy-Duty Hybrid Fleet in Atlanta to information about this project, contact Clean Cities-Georgia. Download QuickTime Video QuickTime (.mov Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up at State
Alternative Fuels Data Center: Los Angeles Public Works Fleet Converts to
electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a Natural GasA> Los Angeles Public Works Fleet Converts to Natural Gas to someone by E-mail Share . For information about this project, contact Los Angeles Clean Cities Coalition. Download QuickTime
Alternative Fuels Data Center: New Hampshire Coalition Helps Devoted
fleet fuel. When you combine the cost savings with the reduction in emissions, you can't beat the Hampshire When news about a propane-related funding opportunity arrived in the inbox of Granite State Clean alternative vehicle fueling in the state," Rebolledo said. "Since that snowy December day when we
Publications | Transportation Research | NREL
Overview Thumbnail image of publication cover Sustainable TransportationPDF This overview fact sheet image of publication cover Alternative Fuels Data CenterPDF Thumbnail image of publication cover Clean CitiesPDF Thumbnail image of publication cover Fleet ToolsPDF Thumbnail image of publication cover Fuels
Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-08-01
Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuelmore » type(s), power source(s), and related information.« less
Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-08-01
Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuelmore » type(s), power source(s), and related information.« less
Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New
as a great example of a viable clean transportation option for similar fleets. " Rebecca Otte commitment to a more sustainable community and serves as a great example of a viable clean transportation , individual bottling companies now operate these vehicles. For example, Coca-Cola Bottling Company United
Alternative Fuels Data Center: Maine Fleets Make Progress with Propane
better for the environment and do our part to clean things up. " Doug Havu Maine School environment and do our part to clean things up," said Mechanics Foreman Doug Havu of Maine School Administrative District No. 6 (MSAD 6), the state's third-largest school system. MSAD 6, located just outside
Alternative Fuels Data Center: Alabama City Leads With Biodiesel and
EthanolA> Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative fleets. For information about this project, contact Alabama Clean Fuels Coalition. Download QuickTime Automotive Magazine Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
...EPA and NHTSA are issuing this joint Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint Final Rule is consistent with the National Fuel Efficiency Policy announced by President Obama on May 19, 2009, responding to the country's critical need to address global climate change and to reduce oil consumption. EPA is finalizing greenhouse gas emissions standards under the Clean Air Act, and NHTSA is finalizing Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended. These standards apply to passenger cars, light-duty trucks, and medium-duty passenger vehicles, covering model years 2012 through 2016, and represent a harmonized and consistent National Program. Under the National Program, automobile manufacturers will be able to build a single light-duty national fleet that satisfies all requirements under both programs while ensuring that consumers still have a full range of vehicle choices. NHTSA's final rule also constitutes the agency's Record of Decision for purposes of its National Environmental Policy Act (NEPA) analysis.
77 FR 14482 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... agencies to use this methodology to determine fleet inventory targets and to prepare fleet management plans.... Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program (EE... DOE receives will be made available on the Federal Energy Management Program's Federal Fleet...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... period within which vehicle manufacturers could comply with the program's fleet average non-methane... year meets the specified phase-in requirements according to the fleet average non- methane hydrocarbon requirement for that year. The fleet average non- methane hydrocarbon emission limits become progressively...
NREL Document Profiles Natural Gas Fueling, Fleet Operation
, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that LNG-powered vehicles program from concept to start-up to present-day operation, describing the vehicle, engine and fueling . The document Waste Management's LNG Truck Fleet Start-Up Experience is one of a series of NREL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
This annual report of the Alternative Fuel Transportation Program, which ensures compliance with DOE regulations covering state government and alternative fuel provider fleets pursuant to the Energy Policy Act of 1992 (EPAct), as amended, provides fleet compliance results for manufacturing year 2014 / fiscal year 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The 1990 Clean Air Act Amendments, in requiring the States to reduce air pollution, resulted in new regulations on gasoline composition, on automobile emissions and mandates on the use of alternative fuels. The 1992 Energy Policy Act includes provisions aiming to reduce energy dependence by increasing the use of alternative, non-oil fuels in certain vehicle fleets. This hearing focus on where development of alternative fuels stands today. Testimony is presented by the following: T. Jorling, NY State Dept. of Environmental Conservation; R.L. Klimisch, American Automobile Manufactures ASS., D. Smith, Chevron USA Products Co., and P. Wuebben, clean fuels officer, Southmore » Coast Air quality Management District.« less
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
10 CFR 490.200 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Purpose and scope. 490.200 Section 490.200 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... duty motor vehicles acquired for State fleets be alternative fueled vehicles. ...
Fleet Management | Climate Neutral Research Campuses | NREL
Fleet Management Fleet Management Research campuses often own and operate vehicles to carry out Sample Project Related Links Fleet Management Options The goal of fleet management within climate action alternative fuel use. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) outlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) regulates covered state government and alternative fuel provider fleets, pursuant to the Energy Policy Act of 1992 (EPAct), as amended. Covered fleets may meet their EPAct requirements through one of two compliance methods: Standard Compliance or Alternative Compliance. For model year (MY) 2015, the compliance rate with this program for the more than 3011 reporting fleets was 100%. More than 294 fleets used Standard Compliance and exceeded their aggregate MY 2015 acquisition requirements by 8% through acquisitions alone. The seven covered fleets that used Alternative Compliance exceeded their aggregate MY 2015 petroleum use reductionmore » requirements by 46%.« less
Alternative Fuels Data Center: Clean Fleet DRIVES
Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4, 2017 Photo of a truck Natural Gas Vehicles Make a Difference in Tennessee Oct. 28, 2017
Transportation Deployment Support | Transportation Research | NREL
initiative complements the NPS Climate Friendly Parks program. Commercial Fleets Through the National Clean clearinghouse of medium- and heavy-duty commercial fleet vehicle operating data for optimizing vehicle improvement. Commercial Vehicle Technology Evaluations NREL conducts real-world evaluations of commercial
Automotive fuel economy program
DOT National Transportation Integrated Search
2002-09-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet and the activities of the National Highway Traffic Safety Administration (NHTSA) during 2001. Included in this report is a section summariz...
Automotive fuel economy program
DOT National Transportation Integrated Search
2003-09-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet and the activities of the National Highway Traffic Safety Administration (NHTSA) during 2002. Included in this report is a section summariz...
Automotive fuel economy program
DOT National Transportation Integrated Search
2005-01-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet during 2004, and the activities of the National Highway Traffic Safety Administration (NHTSA) to date, including a section summarizing curr...
NASA Technical Reports Server (NTRS)
1975-01-01
The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.
Case Study - Propane School Bus Fleets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, M; Burnham, A.
As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’smore » Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.« less
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
7 CFR 2903.2 - Purpose of the program.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM General Information § 2903.2 Purpose of the program. The Biodiesel Fuel Education Program seeks to familiarize public and private vehicle fleet operators, other interested entities, and the public, with the benefits of biodiesel, a relatively new fuel...
Automotive fuel economy program
DOT National Transportation Integrated Search
2004-11-01
The Automotive Fuel Economy Program Annual Update summarizes the fuel economy performance of the vehicle fleet during 2003, and the activities of the National Highway Traffic Safety Administration (NHTSA) to date. Included in this report is a section...
2014-04-01
technologies to improve fleet efficiency goals, and evaluate switching to biodiesel for trucks and vehicles without other alternatives (HCEI 2011...standards and biodiesel usage levels 2020 Goal 50 MGY of renewable fuels 28 working with industry to increase EV market penetration, and...Strategy Reduction Potential Purchase more efficient vehicles 10-20% Promote hybrid technologies 10-20% Evaluate biodiesel switching (freight) TBD
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
10 CFR 490.506 - Alternative fueled vehicle credit transfers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle credit transfers. 490.506 Section 490.506 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.506 Alternative fueled vehicle credit transfers. (a) Any fleet...
NASA Technical Reports Server (NTRS)
1975-01-01
Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
10 CFR 490.201 - Alternative fueled vehicle acquisition mandate schedule.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Alternative fueled vehicle acquisition mandate schedule. 490.201 Section 490.201 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.201 Alternative fueled vehicle acquisition mandate...
40 CFR 88.306-94 - Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the Administrator for an exemption from the post-installation emission test requirements of paragraph... aftermarket conversion certifier's vehicles are subject to the post-installation test requirement of paragraph... Administrator of such revision. A post-installation emissions test for each conversion performed after the...
40 CFR 88.306-94 - Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the Administrator for an exemption from the post-installation emission test requirements of paragraph... aftermarket conversion certifier's vehicles are subject to the post-installation test requirement of paragraph... Administrator of such revision. A post-installation emissions test for each conversion performed after the...
40 CFR 88.306-94 - Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the Administrator for an exemption from the post-installation emission test requirements of paragraph... aftermarket conversion certifier's vehicles are subject to the post-installation test requirement of paragraph... Administrator of such revision. A post-installation emissions test for each conversion performed after the...
40 CFR 88.306-94 - Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the Administrator for an exemption from the post-installation emission test requirements of paragraph... aftermarket conversion certifier's vehicles are subject to the post-installation test requirement of paragraph... Administrator of such revision. A post-installation emissions test for each conversion performed after the...
40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exceed 3.8 grams per brake horsepower-hour. (2) Combined emissions of oxides of nitrogen and nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 3.5 grams per brake horsepower-hour when... nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 2.5 grams per brake...
40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exceed 3.8 grams per brake horsepower-hour. (2) Combined emissions of oxides of nitrogen and nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 3.5 grams per brake horsepower-hour when... nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 2.5 grams per brake...
40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exceed 3.8 grams per brake horsepower-hour. (2) Combined emissions of oxides of nitrogen and nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 3.5 grams per brake horsepower-hour when... nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 2.5 grams per brake...
40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exceed 3.8 grams per brake horsepower-hour. (2) Combined emissions of oxides of nitrogen and nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 3.5 grams per brake horsepower-hour when... nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 2.5 grams per brake...
40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exceed 3.8 grams per brake horsepower-hour. (2) Combined emissions of oxides of nitrogen and nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 3.5 grams per brake horsepower-hour when... nonmethane hydrocarbons (or nonmethane hydrocarbon equivalent) shall not exceed 2.5 grams per brake...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
10 CFR 490.203 - Light Duty Alternative Fueled Vehicle Plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Light Duty Alternative Fueled Vehicle Plan. 490.203 Section 490.203 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.203 Light Duty Alternative Fueled Vehicle Plan. (a) General Provisions...
40 CFR 88.306-94 - Requirements for a converted vehicle to qualify as a clean-fuel fleet vehicle.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exemption from the post-installation emission test requirements of paragraph (c) of this section. If granted...) Sufficient information to demonstrate that complying with the post-installation emission test requirement... are subject to the post-installation test requirement of paragraph (c)(2) of this section. (iii) If...
Alternative Fuels Data Center: New York City Cleans up With Alternative
uses natural gas, biodiesel, and hybrid electric trucks. For information about this project, contact Fleet Drives Smarter with Biodiesel Aug. 26, 2017 Photo of a car Idaho Surges Ahead with Electric Vehicle Charging Aug. 4, 2017 Photo of a truck Cooking Oil Powers Biodiesel Vehicles in Rhode Island July
Freight Wing Trailer Aerodynamics Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sean Graham
2007-10-31
Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wingmore » utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.« less
40 CFR 88.205-94 - California Pilot Test Program Credits Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Program to meet the clean-fuel vehicle sales requirements through the use of credits. Participation in... be generated by any of the following means: (i) Sale of qualifying clean-fuel vehicles earlier than... requirements of paragraph (g) of this section. (ii) Sale of a greater number of qualifying clean-fuel vehicles...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compliance rates for covered state government and alternative fuel provider fleets under the Alternative Fuel Transportation Program (pursuant to the Energy Policy Act or EPAct) are reported for MY 2013/FY 2014 in this publication.
Describing current and potential markets for alternative-fuel vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-26
Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law tomore » emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.« less
Improving aircraft energy efficiency
NASA Technical Reports Server (NTRS)
Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.
1976-01-01
Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.
10 CFR 490.703 - Biodiesel fuel use credit allocation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...
10 CFR 490.703 - Biodiesel fuel use credit allocation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...
10 CFR 490.703 - Biodiesel fuel use credit allocation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...
10 CFR 490.703 - Biodiesel fuel use credit allocation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...
10 CFR 490.703 - Biodiesel fuel use credit allocation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Biodiesel fuel use credit allocation. 490.703 Section 490.703 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.703 Biodiesel fuel use credit allocation. (a) DOE shall allocate to a fleet or...
Missouri Soybean Association Biodiesel Demonstration Project: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, Dale; Hamilton, Jill
The Missouri Soybean Association (MSA) and the National Biodiesel Board (NBB) partnered together to implement the MSA Biodiesel Demonstration project under a United States Department of Energy (DOE) grant. The goal of this project was to provide decision makers and fleet managers with information that could lead to the increased use of domestically produced renewable fuels and could reduce the harmful impacts of school bus diesel exhaust on children. This project was initiated in September 2004 and completed in April 2011. The project carried out a broad range of activities organized under four areas: 1. Petroleum and related industry educationmore » program for fuel suppliers; 2. Fleet evaluation program using B20 with a Missouri school district; 3. Outreach and awareness campaign for school district fleet managers; and 4. Support of ongoing B20 Fleet Evaluation Team (FET) data collection efforts with existing school districts. Technical support to the biodiesel industry was also provided through NBB’s Troubleshooting Hotline. The hotline program was established in 2008 to troubleshoot fuel quality issues and help facilitate smooth implementation of the RFS and is described in greater detail under Milestone A.1 - Promote Instruction and Guidance on Best Practices. As a result of this project’s efforts, MSA and NBB were able to successfully reach out to and support a broad spectrum of biodiesel users in Missouri and New England. The MSA Biodiesel Demonstration was funded through a FY2004 Renewable Energy Resources Congressional earmark. The initial focus of this project was to test and evaluate biodiesel blends coupled with diesel oxidation catalysts as an emissions reduction technology for school bus fleets in the United States. The project was designed to verify emissions reductions using Environmental Protection Agency (EPA) protocols, then document – with school bus fleet experience – the viability of utilizing B20 blends. The fleet experience was expected to support ongoing industry efforts to collect existing data and to increase awareness and knowledge among school district fleet managers. However, three years into the project, the original intent of the engine verification was no longer deemed by equipment manufacturers to be of sufficient economic interest to enter into a partnership. In response, MSA requested a project extension and re-scope to eliminate the aftermarket equipment verification and replace it with a petroleum education program. The revised project maintained four task areas with the following modifications. The first component was directed at increasing national compliance with newly initiated state level fuel blend mandates through a distributor education program. Component two was modified to eliminate the verification element and, instead, document operational data from biodiesel use in a district school bus fleet. Components three and four were unchanged and maintained their purpose of expanding upon the existing knowledge base of biodiesel use in school bus fleets.« less
10 CFR 490.502 - Creditable actions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...
10 CFR 490.502 - Creditable actions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...
10 CFR 490.502 - Creditable actions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...
10 CFR 490.502 - Creditable actions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...
10 CFR 490.502 - Creditable actions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Creditable actions. 490.502 Section 490.502 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle Credit Program § 490.502 Creditable actions. A fleet or covered person becomes entitled to alternative...
How to Cut Costs by Saving School Bus Fuel.
ERIC Educational Resources Information Center
Seiff, Hank
A program started in Washington County, Maryland in 1980 has been successful in saving school bus fuel and bringing down transportation costs incurred by its fleet of 200 buses. Driver training and motivation, as well as a partial transfer to diesel buses, are at the heart of the program. The drivers are taught five fuel saving techniques: cut…
Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys
Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Facebook Tweet about Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Twitter Bookmark Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys Success on Google Bookmark Alternative Fuels
Alternative Fuels Data Center: District of Columbia's Government Fleet Uses
a Wide Variety of Alternative FuelsA> District of Columbia's Government Fleet Uses a Wide Variety Government Fleet Uses a Wide Variety of Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels on Twitter
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
...EPA and NHTSA, on behalf of the Department of Transportation, are issuing this joint proposal to further reduce greenhouse gas emissions and improve fuel economy for light-duty vehicles for model years 2017-2025. This proposal extends the National Program beyond the greenhouse gas and corporate average fuel economy standards set for model years 2012-2016. On May 21, 2010, President Obama issued a Presidential Memorandum requesting that NHTSA and EPA develop through notice and comment rulemaking a coordinated National Program to reduce greenhouse gas emissions of light-duty vehicles for model years 2017- 2025. This proposal, consistent with the President's request, responds to the country's critical need to address global climate change and to reduce oil consumption. NHTSA is proposing Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act, and EPA is proposing greenhouse gas emissions standards under the Clean Air Act. These standards apply to passenger cars, light-duty trucks, and medium- duty passenger vehicles, and represent a continued harmonized and consistent National Program. Under the National Program for model years 2017-2025, automobile manufacturers would be able to continue building a single light-duty national fleet that satisfies all requirements under both programs while ensuring that consumers still have a full range of vehicle choices. EPA is also proposing a minor change to the regulations applicable to MY 2012-2016, with respect to air conditioner performance and measurement of nitrous oxides.
Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas
Santa Fe Metro Fleet Runs on Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Santa Fe Metro Fleet Runs on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Santa Fe Metro Fleet
Code of Federal Regulations, 2011 CFR
2011-01-01
... average of the combined fuel economy of all vehicles in a fleet, which were subject to CAFE. Advanced... loan under this Program. CAFE means the Corporate Average Fuel Economy program of the Energy Policy and... gallon values, as are reported in accordance with section 32904 of title 49, United States Code. If CAFE...
Alternative Fuels Data Center: Fleet Application for Public Transit
Vehicles Public Transit Vehicles to someone by E-mail Share Alternative Fuels Data Center : Fleet Application for Public Transit Vehicles on Facebook Tweet about Alternative Fuels Data Center : Fleet Application for Public Transit Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fleet
Alternative Fuels Data Center: Fleet Applications for Vehicles
Applications for Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fleet Applications for Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fleet Applications for Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fleet Applications for Vehicles on Google
Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daley, R.; Nangle, J.; Boeckman, G.
2014-05-01
Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewablemore » Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.« less
10 CFR 490.505 - Credit accounts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...
10 CFR 490.505 - Credit accounts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...
10 CFR 490.505 - Credit accounts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...
10 CFR 490.505 - Credit accounts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...
10 CFR 490.505 - Credit accounts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Credit accounts. 490.505 Section 490.505 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fueled Vehicle... covered person who obtains an alternative fueled vehicle credit. (b) DOE shall send to each fleet and...
10 CFR 490.705 - Use of credits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...
10 CFR 490.705 - Use of credits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...
10 CFR 490.705 - Use of credits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...
10 CFR 490.705 - Use of credits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...
10 CFR 490.705 - Use of credits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490... the Energy Policy Act of 1992. (c) A fleet or covered person that is a biodiesel alternative fuel... person may not trade or bank biodiesel fuel credits. [64 FR 27174, May 19, 1999, as amended at 66 FR 2210...
Alternative fuel options and costs for use in Kansas and surrounding states
DOT National Transportation Integrated Search
1998-09-01
To meet state and federal mandates, state fleets, federal fleets, and fuel provider fleets must acquire alternatively fueled vehicles (AFVs). The Kansas House Bill 95-2161 exceeds the federal energy policy act regulations for state fleets. AFVs inclu...
Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas
New Hampshire Fleet Revs up With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Twitter Bookmark Alternative Fuels Data Center
Proton exchange membrane fuel cell system diagnosis based on the signed directed graph method
NASA Astrophysics Data System (ADS)
Hua, Jianfeng; Lu, Languang; Ouyang, Minggao; Li, Jianqiu; Xu, Liangfei
The fuel-cell powered bus is becoming the favored choice for electric vehicles because of its extended driving range, zero emissions, and high energy conversion efficiency when compared with battery-operated electric vehicles. In China, a demonstration program for the fuel cell bus fleet operated at the Beijing Olympics in 2008 and the Shanghai Expo in 2010. It is necessary to develop comprehensive proton exchange membrane fuel cell (PEMFC) diagnostic tools to increase the reliability of these systems. It is especially critical for fuel-cell city buses serving large numbers of passengers using public transportation. This paper presents a diagnostic analysis and implementation study based on the signed directed graph (SDG) method for the fuel-cell system. This diagnostic system was successfully implemented in the fuel-cell bus fleet at the Shanghai Expo in 2010.
Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction,
Ethanol Use, Fuel Efficiency County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel , Ethanol Use, Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: County Fleet Goes Big on Idle Reduction, Ethanol Use, Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center
Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative
Fuels in Its Fleet Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative Fuels in Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Blue Ridge Parkway Incorporates Alternative
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the fleet average fuel economy standards in Table I, expressed in miles per... passenger automobile fleet shall comply with the fleet average fuel economy level calculated for that model...
Alternative Fuels Data Center: City of Hoover Fleet Boasts 200-Plus Flex
Quality (CMAQ) Improvement Program. In response, the City of Hoover submitted a proposal to install a flex-fuel vehicles (FFVs) in hopes of reducing emissions and improving the region's air quality. At the : Municipal Fuel: E85 Flex Fuel Vehicles: 212 Infrastructure: Municipal E85 station Motivations: Air quality
Clean Agriculture Clean Agriculture is a voluntary program that promotes the reduction of diesel cleaner fuels. Clean Agriculture is part of the U.S. Environmental Protection Agency's National Clean information, see the Clean Agriculture website. Point of Contact Jennifer Keller National Clean Diesel
U.S. Army Methanol-Fueled Administrative Vehicle Demonstration Program
1989-08-01
for either fuel when compared with published production specifications. iii Also, four Chevrolet vehicles, two each with L-4 engines and two with V-6...With Manufacturer’s Production Specifications ... 217 G CRC Deposit Ratings for Inspected Vehicles ...................... 235 Viii LIST OF ILLUSTRATIONS...vehicles within the Government’s administrative fleet and to stimulate further the production and use of methanol-fueled vehicles. This program was
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.10...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.10...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.104...
Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet
Electrification New Mexico Utility Sparks Change with Fleet Electrification to someone by E -mail Share Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet Electrification on Facebook Tweet about Alternative Fuels Data Center: New Mexico Utility Sparks Change with Fleet
Assessment and Correlation of Customer and Rater Response to Cold-Start and Warmup Driveability
1993-08-01
Customer satisfaction fleet Year N % 1986 13 18 1988 10 14 1987 12 18 1988 12 16 1989 14 19 1990 9 12 1991 3 4 Consumer I Rater Fleet Hydrocarbon fuel...2 4 1991 0 0 Fuel system * Customer satisfaction fleet Fuel system N % Carbureted 19 26 PFI 33 48 1T1 21 29 Consumer I Rater Fleet Hydrooarbon fuel...between the customer fleet and one of the consumer /rater subfleets; these vehicles are included in both places in the tables above. 30 TABLE 2 AVERAGE
Tug fleet and ground operations schedules and controls. Volume 3: Program cost estimates
NASA Technical Reports Server (NTRS)
1975-01-01
Cost data for the tug DDT&E and operations phases are presented. Option 6 is the recommended option selected from seven options considered and was used as the basis for ground processing estimates. Option 6 provides for processing the tug in a factory clean environment in the low bay area of VAB with subsequent cleaning to visibly clean. The basis and results of the trade study to select Option 6 processing plan is included. Cost estimating methodology, a work breakdown structure, and a dictionary of WBS definitions is also provided.
10 CFR 490.3 - Excluded vehicles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...
10 CFR 490.3 - Excluded vehicles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...
10 CFR 490.3 - Excluded vehicles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...
10 CFR 490.3 - Excluded vehicles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...
10 CFR 490.3 - Excluded vehicles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Excluded vehicles. 490.3 Section 490.3 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM General Provisions § 490.3... has a fleet or to calculate alternative fueled vehicle acquisition requirements, the following...
2011-05-01
prepared to acquire 50% of domestic aviation fuel requirements via an alternative fuel blend by 2016 Installation Energy Reduce energy intensity by...FY10 On track to certify fleet on synthetic fuel blend by early 2011 Installation Energy Reduced installation energy intensity nearly 15% since... Winglets Manufacturing Methods Propulsion Integration Alt Fuels Analysis New Efficient Engines Legacy Aircraft Energy Harvesting Weight-optimized
10 CFR 490.205 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...
10 CFR 490.205 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...
10 CFR 490.205 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...
10 CFR 490.205 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...
10 CFR 490.205 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Reporting requirements. 490.205 Section 490.205 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet... of new light duty alternative fueled vehicles that are required to be acquired during the model year...
Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural
Gas and Biodiesel Kansas City Greens Its Fleet With Natural Gas and Biodiesel to someone by E -mail Share Alternative Fuels Data Center: Kansas City Greens Its Fleet With Natural Gas and Biodiesel and Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Kansas City Greens Its Fleet With
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Mark R
2017-09-06
FleetDASH helps federal fleet managers maximize their use of alternative fuel. This presentation explains how the dashboard works and demonstrates the newest capabilities added to the tool. It also reviews complementary online tools available to fleet managers on the Alternative Fuel Data Center.
Medium- and Heavy-Duty Vehicle Field Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth J; Prohaska, Robert S
This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.
An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.
1986-01-01
Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.
Monitoring Report - Automobile Voluntary Fuel Economy Improvement Program
DOT National Transportation Integrated Search
1976-04-01
On October 8, 1974, President Ford announced the goal of a 40% improvement in fuel economy of automobiles to be achieved in the 1980 new car fleet compared to 14.0 MPH for 1974. The Secretary of Transportation was given the lead in developing the pro...
Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers
to Its Fleet Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet on Twitter Bookmark
10 CFR 490.204 - Process for granting exemptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...
10 CFR 490.204 - Process for granting exemptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...
10 CFR 490.204 - Process for granting exemptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...
10 CFR 490.204 - Process for granting exemptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...
76 FR 5427 - TIGGER and Clean Fuels Grant Program Funds
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... will reduce the energy consumption or greenhouse gas emissions of public transportation systems. The... DEPARTMENT OF TRANSPORTATION Federal Transit Administration TIGGER and Clean Fuels Grant Program... Announcement of Project Selections. SUMMARY: The U.S. Department of Transportation's (DOT) Federal Transit...
Cleaning the air and improving health with hydrogen fuel-cell vehicles.
Jacobson, M Z; Colella, W G; Golden, D M
2005-06-24
Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.
Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.; Colella, W. G.; Golden, D. M.
2005-06-01
Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.
Controlled Speed Accessory Drive demonstration program
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1981-01-01
A Controlled Speed Accessory Drive System was examined in an effort to improve the fuel economy of passenger cars. Concept feasibility and the performance of a typical system during actual road driving conditions were demonstrated. The CSAD system is described as a mechanical device which limits engine accessory speeds, thereby reducing parasitic horsepower losses and improving overall vehicle fuel economy. Fuel consumption data were compiled for fleets of GSA vehicles. Various motor pool locations were selected, each representing different climatic conditions. On the basis of a total accumulated fleet usage of nearly three million miles, an overall fuel economy improvement of 6 percent to 7 percent was demonstrated. Coincident chassis dynamometer tests were accomplished on selected vehicles to establish the effect of different accessory drive systems on exhaust emissions, and to evaluate the magnitude of the mileage benefits which could be derived.
48 CFR 970.5223-5 - DOE motor vehicle fleet fuel efficiency.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Contract Clauses for Management and Operating Contracts 970.5223-5 DOE motor vehicle fleet fuel..., insert the following clause in contracts providing for Contractor management of the motor vehicle fleet... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false DOE motor vehicle fleet...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission...
of the following measures: Payment of incentives to customers that install EVSE; Time-of-use rates customers; and Technical assistance programs for government fleets and private organizations. Utilities may
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Violations. 490.206 Section 490.206 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State Fleet Program § 490.206 Violations. Violations of this subpart are subject to investigation and enforcement under subpart...
Clean Cities Now, Vol. 18, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-01-19
This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.
Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With
Propane Delivery Trucks Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks to someone by E-mail Share Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks on Facebook Tweet about Alternative Fuels Data Center: Alpha Baking Company
Airport-Based Alternative Fuel Vehicle Fleets
DOT National Transportation Integrated Search
2001-01-01
Airports represent attractive opportunities for the expanded use of alternative fuel vehicles (AFVs). They are commonly served by dozens of fleets operating thousands of vehicles. These fleets include both ground service equipment such as tugs, tows,...
ERIC Educational Resources Information Center
BRI Systems, Inc., Phoenix, AZ.
This publication is a guide for school districts to reduce pupil transportation costs and save energy. The information presented is based upon: (1) energy saving programs implemented by school districts; (2) government and industry research efforts in fuel economy; (3) the successful experiences of commercial trucking fleets to save fuel; and (4)…
Haugen, Molly J; Bishop, Gary A
2018-05-15
Two California heavy-duty fleets have been measured in 2013, 2015, and 2017 using the On-Road Heavy-Duty Measurement System. The Port of Los Angeles drayage fleet has increased in age by 3.3 model years (4.2-7.5 years old) since 2013, with little fleet turnover. Large increases in fuel-specific particle emissions (PM) observed in 2015 were reversed in 2017, returning to near 2013 levels, suggesting repairs and or removal of high emitting vehicles. Fuel-specific oxides of nitrogen (NO x ) emissions of this fleet have increased, and NO x after-treatment systems do not appear to perform ideally in this setting. At the Cottonwood weigh station in northern California, the fleet age has declined (7.8 to 6 years old) since 2013 due to fleet turnover, significantly lowering the average fuel-specific emissions for PM (-87%), black carbon (-76%), and particle number (-64%). Installations of retrofit-diesel particulate filters in model year 2007 and older vehicles have further decreased particle emissions. Cottonwood fleet fuel-specific NO x emissions have decreased slightly (-8%) during this period; however, newer technology vehicles with selective catalytic reduction systems (SCR) promise an additional factor of 4-5 further reductions in the long-haul fleet emissions as California transitions to an all SCR-equipped fleet.
Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts
Fueling Station Attracts Local Fleets, Turns into Profit Center on Facebook Tweet about Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center on , Turns into Profit Center on Google Bookmark Alternative Fuels Data Center: Indianapolis CNG Fueling
fueled for the fleet to be subject to the regulatory requirements. Under Standard Compliance, the AFVs that may be used toward compliance or banked once the fleet achieves compliance for investments in composition. For more information, visit the EPAct State and Alternative Fuel Provider Fleets website
Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet
Plan into On-Road Reality City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality Plan into On-Road Reality on Facebook Tweet about Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality on Twitter Bookmark Alternative Fuels Data Center
77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... Statistical Tool Web-based reporting system (FAST) for FY 2005. Moreover, section 438.102(b) would require... reflected in FY 2005 FAST data, or (2) the lesser of (a) five percent of total Federal fleet vehicle fuel... event that the Federal fleet's alternative fuel use value for FY 2005 submitted through FAST did not...
COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
COROLLER, P; PLASSAT, G
2003-08-24
Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typicallymore » have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.« less
Challenges and Opportunities of Air Quality Management in Mexico City
NASA Astrophysics Data System (ADS)
Paramo, V.
2013-05-01
The Mexico City Metropolitan Area (MCMA) is located in the central plateau of Mexico and is the capital of the country. Its natural characteristics present favorable conditions for air pollution formation and accumulation: mountains surrounding the city, frequent thermal inversions, high isolation all around the year and weak winds. To these natural conditions, a population of more than 20 million inhabitants, a fleet of 4.5 million vehicles and more than 4 thousands industries, make air quality management a real challenge for governments of the region. Intensive air quality improvement actions and programs began at the end of the 1980's and continued nowadays. Since then criteria air pollutants concentrations have decreased in such a way that currently most of pollutants meet the Mexican air quality standards, except for ozone and particulate matter. Applied measures comprised of fuel quality improvements, fuel replacements, regulations for combustion processes, closing of high polluting refineries and industries, regulations of emissions for new and on road vehicles, mandatory I/M programs for vehicles, circulation restrictions for vehicles (Day without car program), alert program for elevated air pollution episodes, improvement of public transportation, among others. Recent researches (MILAGRO 2006 campaign) found that currently it is necessary to implement emissions reduction actions for Volatile Organic Compounds, particulate matter with a diameter of less than 2.5 micrometers PM2.5 and Nitrogen Oxides, in order to reduce concentrations of ozone and fine particulate matter. Among the new measures to be implemented are: regulations for VOCs emissions in the industry and commercial sectors; regulation of the diesel fleet that includes fleets renewal, filters and particulate traps for in use vehicles and regulation of the cargo fleet; new schemes for reducing the number of vehicles circulating in the city; implementation of non-motorized mobility programs; among others.
Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert
several years. Golden Eagle will convert all fleet vehicles to CNG in their six branch operations Entire Fleet to CNG Golden Eagle Distributors Inc. to Convert Entire Fleet to CNG to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert Entire Fleet
Ohio's first ethanol-fueled light-duty fleet
DOT National Transportation Integrated Search
1998-12-31
In 1996, the State of Ohio established a : project to demonstrate the effectiveness of : ethanol as an alternative to gasoline in : fleet operations. The state purchased and : incorporated a number of flexible-fuel : vehicles (FFVs) into its fleet. F...
DOT National Transportation Integrated Search
2001-08-01
This roadmap explains how your community can join forces with the nationwide network of Clean Cities to increase the use of alternative fuels and alternative fuel vehicles (AFVs). You will learn how the U.S. Department of Energy (DOE) can help your c...
Overview of the U.S. DOE Accident Tolerant Fuel Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton
2013-09-01
The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining ormore » improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative metrics. A companion paper in these proceedings provides an update on the status of establishing these quantitative metrics for accident tolerant LWR fuel.1 The United States FCRD Advanced Fuels Campaign has embarked on an aggressive schedule for development of enhanced accident tolerant LWR fuels. The goal of developing such a fuel system that can be deployed in the U.S. LWR fleet in the next 10 to 20 years supports the sustainability of clean nuclear power generation in the United States.« less
Alternative Fuels Data Center: Tools
Calculator Compare cost of ownership and emissions for most vehicle models. mobile Petroleum Reduction ROI and payback period for natural gas vehicles and infrastructure. AFLEET Tool Calculate a fleet's , hydrogen, or fuel cell infrastructure. GREET Fleet Footprint Calculator Calculate your fleet's petroleum
Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-04-01
Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.
Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets
NASA Astrophysics Data System (ADS)
Haugen, M.; Bishop, G.
2017-12-01
New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver an extensive data repository to quantify on-road vehicle emission trends on individual vehicles as well as categories of vehicles. Here, the 2017 campaign results will be discussed and compared to previous campaigns.
ITS Technologies in Military Wheeled Tactical Vehicles: Status Quo and the Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knee, H.E.
2001-07-02
The U.S. Army operates and maintains the largest trucking fleet in the United States. Its fleet consists of over 246,000 trucks, and it is responsible for buying and developing trucks for all branches of the armed forces. The Army's tactical wheeled vehicle fleet is the logistical backbone of the Army, and annually, the fleet logs about 823 million miles. The fleet consists of a number of types of vehicles. They include eight different families of trucks from the High Mobility Multi-Purpose Wheeled Vehicles to M900 series line haul tractors and special bodies. The average age of all the trucks withinmore » the Army fleet is 15 years, and very few have more than traditional driving instrumentation on-board. Over the past decade, the Department of Transportation's (DOT's) Intelligent Transportation Systems (ITS) Program has conducted research and deployment activities in a number of areas including in-vehicle systems, communication and telematics technologies. Many current model passenger vehicles have demonstrated the assimilation of these technologies to enhance safety and trip quality. Commercial vehicles are also demonstrating many new electronic devices that are assisting in making them safer and more efficient. Moreover, a plethora of new technologies are about to be introduced to drivers that promise greater safety, enhanced efficiency, congestion avoidance, fuel usage reduction, and enhanced trip quality. The U.S. Army has special needs with regard to fleet management, logistics, sustainability, reliability, survivability, and fuel consumption that goes beyond similar requirements within the private industry. In order to effectively apply emerging ITS technologies to the special needs of the U.S. Army, planning for the conduct of the Army's Vehicle Intelligence Program (AVIP) has now commenced. The AVIP will be focused on the conduct of research that: (1) will apply ITS technologies to the special needs of the Army, and (2) will conduct research for special needs wi th regard to vehicle control, driver assistance, integration of vehicle intelligence and robotic technologies, managing effectively the information flow to drivers, enhanced logistics capabilities and sustainability of the Army's fleet during battlefield conditions. This paper will highlight the special needs of the Army, briefly describe two programs, which are embracing ITS technologies to a limited extent, will outline the AVIP, and will provide some insight into future Army vehicle intelligence efforts.« less
advanced lean burn vehicles. Fleets that use fuel blends containing at least 20% biodiesel (B20) may earn Energy Independence and Security Act of 2007, including fleet management plan requirements (Section 142 infrastructure installation requirements (Section 246). For more information, see the Federal Fleet Management
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... EPA that it has adopted amendments to its emission standards for fleets that operate nonroad, diesel..., CARB requested that EPA authorize California to enforce its In-Use Off-Road Diesel-Fueled Fleets... through 2449.3). CARB's regulations require fleets that operate nonroad, diesel-fueled equipment with...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification and...
Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.
Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saulsbury, Bo; Hopson, Dr Janet L; Greene, David
2015-04-01
Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.
Prospects for pipeline delivery of hydrogen as a fuel and as a chemical feedstock
NASA Technical Reports Server (NTRS)
Gregory, D. P.; Biederman, N. P.; Darrow, K. G., Jr.; Konopka, A. J.; Wurm, J.
1976-01-01
The possibility of using hydrogen for storing and carrying energy obtained from nonfossil sources such as nuclear and solar energy is examined. According to the method proposed, these nonfossil raw energy sources will be used to obtain hydrogen from water by three basically distinct routes: (1) electrical generation followed by electrolysis; (2) thermochemical decomposition; and (3) direct neutron or ultraviolet irradiation of hydrogen bearing molecules. The hydrogen obtained will be transmitted in long-distance pipelines, and distributed to all energy-consuming sectors. As a fuel gas, hydrogen has many qualities similar to natural gas and with only minor modifications, it can be transmitted and distributed in the same equipment, and can be burned in the same appliances as natural gas. Hydrogen can also be used as a clean fuel (water is the only combustion product) for automobiles, fleet vehicles, and aircraft.
Clean Cities 2012 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Caley
2013-12-01
The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of themore » Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.« less
Uncertainties in Estimates of Fleet Average Fuel Economy : A Statistical Evaluation
DOT National Transportation Integrated Search
1977-01-01
Research was performed to assess the current Federal procedure for estimating the average fuel economy of each automobile manufacturer's new car fleet. Test vehicle selection and fuel economy estimation methods were characterized statistically and so...
41 CFR 102-34.40 - Who must comply with motor vehicle fuel efficiency requirements?
Code of Federal Regulations, 2011 CFR
2011-01-01
... motor vehicle fuel efficiency requirements? 102-34.40 Section 102-34.40 Public Contracts and Property... with motor vehicle fuel efficiency requirements? (a) Executive agencies operating domestic fleets must comply with motor vehicle fuel efficiency requirements for such fleets. (b) This subpart does not apply...
Alternative Fuels Data Center: Alabama Transportation Data for Alternative
Renewable Energy Laboratory Case Studies Video thumbnail for Alabama Prisons Adopt Propane, Establish Fuel , 2016 Video thumbnail for City of Hoover Fleet Boasts 200-Plus Flex Fuel Vehicles City of Hoover Fleet Boasts 200-Plus Flex Fuel Vehicles May 24, 2013 Video thumbnail for Biodiesel Fuels Education in Alabama
2014-11-01
Industrial Waste Water Treatment Aircraft & Component Paint Removal (ABM & Chemical) Chrome Electroplating Corrosion Treatment Aircraft...Hex Chrome post treatment ) Energy Use; Electrical (& Steam) NDI- Florescent Penetrant Solvent Tank Cleaning Water (& Sanitary) Use...Engineer Corrosion Science & Engineering NAVAIR Jacksonville Phone: (904) 790-6405 Email: john.benfer@navy.mil ASETS Technical Workshop (NOV
75 FR 4359 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
...: Submission for Office of Management and Budget (OMB) review; comment request. SUMMARY: The Department of... ``Annual Alternative Fuel Vehicle Acquisition Report for State and Alternative Fuel Provider Fleets,'' OMB... compliance of regulated fleets with the alternative fueled vehicle acquisition requirements imposed by the...
Trends in auto emissions and gasoline composition.
Sawyer, R F
1993-01-01
The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353
Alternative Fuels Data Center: Happy Cab Fuels Taxi Fleet With CNG
Happy Cab Fuels Taxi Fleet With CNG Find out how a cab company in Omaha, Nebraska, saves money fueling Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels
Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in
Fleet Uses a Wide Variety of Alternative Fuels Dec. 5, 2015 Photo of a Coca-Cola alternative-fuel truck Alternative Fuel Vehicles July 15, 2015 Photo of a bus. Maryland County Fleet Uses Wide Variety of Alternative vehicle Mammoth Cave National Park Uses Only Alternative Fuel Vehicles Dec. 1, 2012 Frito-Lay Delivers
Alternative Fuels Data Center: Propane Mowers Help National Park Cut
vehicle fleet will run on alternative fuels by 2014. With the increased number of AFVs, the park is said that the project has had a positive influence on park staff, other NPS units, local municipality national park in Texas to meet the requirements of the Climate Friendly Parks (CFP) program. CFP is one
JSC Case Study: Fleet Experience with E-85 Fuel
NASA Technical Reports Server (NTRS)
Hummel, Kirck
2009-01-01
JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.
Fleet Purchase and Pricing Agreement Requirements The Colorado state fleet and the Colorado Department of Transportation (CDOT) must purchase natural gas vehicles (NGVs) where natural gas fueling is
to achieve the Replacement Fuel Goal. For more information on the Private and Local Government Fleet Private and Local Government Fleets Under the Energy Policy Act (EPAct) of 1992, the U.S . Department of Energy (DOE) was directed to determine whether private and local government fleets should be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannemann, L.W.
1995-12-31
Austin is the only city in attainment that has chosen to join the Clean Cities program. A recent emissions inventory completed by the City`s Air Quality Program shows that the largest single contributor to Austin`s deteriorating air quality is on-road mobile sources. Implementing the Clean Cities Program is one proactive step they are taking to keep the air clean. Although Austin Clean Cities chose to be fuel neutral they have found that propane and natural gas are the natural choices for them to use. The author was asked to address the potential pitfalls in setting up a Clean Cities program,more » and 20/20 hindsight reveals that Austin had a few housekeeping chores to attend to before starting the real work. There are lots of little details necessary to get an organization like this up and running and then keeping it healthy. These details need to be identified and addressed upfront and before any real work can be done. The advantage is that one gets a network that is able to gather, evaluate and disseminate information, and one gets a clean city.« less
Investigation, quantification, and recommendations : performance of alternatively fueled buses.
DOT National Transportation Integrated Search
2014-08-01
The goal of this project was to continue consistent collection and reporting of data on the performance and costs of alternatively fueled public transit vehicles in the U.S. transit fleet in order to keep the Bus Fuels Fleet Evaluation Tool (BuFFeT; ...
Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter Hill; Michael Penev
2014-08-01
The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.
Long Term Hydrogen Vehicle Fleet Operational Assessment
2011-03-21
Economy (mi/kg) Average Fuel Economy (mi/ gge ) 1 26.9 26.8 2 25.0 24.9 3 23.2 23.1 4 22.5 22.4 5 25.7 25.6 6 33.5 33.4 7 31.7 31.6 8 25.4 25.3 9 21.8...Fleet Fuel Economy was 26.2 mi/kg or 26.1 mi/ gge • The fuel economy of the fleet of H2ICEs was comparable to the standard hybrid-electric gasoline
Fuel savings potential of the NASA Advanced Turboprop Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, J.B. Jr.; Sievers, G.K.
1984-01-01
The NASA Advanced Turboprop (ATP) Program is directed at developing new technology for highly loaded, multibladed propellers for use at Mach 0.65 to 0.85 and at altitudes compatible with the air transport system requirements. Advanced turboprop engines offer the potential of 15 to 30 percent savings in aircraft block fuel relative to advanced turbofan engines (50 to 60 percent savings over today's turbofan fleet). The concept, propulsive efficiency gains, block fuel savings and other benefits, and the program objectives through a systems approach are described. Current program status and major accomplishments in both single rotation and counter rotation propeller technologymore » are addressed. The overall program from scale model wind tunnel tests to large scale flight tests on testbed aircraft is discussed.« less
Construction Clean Construction is a voluntary program that promotes the reduction of diesel exhaust emissions from construction equipment and vehicles by encouraging proper operations and maintenance, use of emissions-reducing technologies, and use of cleaner fuels. Clean Construction is part of
Alternative Fuels Data Center: Maryland County Fleet Uses Wide Variety of
Alternative FuelsA> Maryland County Fleet Uses Wide Variety of Alternative Fuels to someone by E operates a variety of alternative fuel and advanced technology vehicles. Download QuickTime Video QuickTime Magazine Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up
. Employees reduce mobile greenhouse gas emissions generated from commuting to work by biking to work instead infrastructure and programs significantly reduce petroleum use campus-wide via alternative fuel fleet vehicles goals like reducing mobile emissions by participating in alternative work schedules and using
Act (EPAct) of 2005 (Public Law 109-58) provisions related to alternative fuels and vehicles, air for a waiver include the lack of alternative fuel availability and cost restrictions. For more information, visit the Sustainable Federal Fleets website. Section 702 Federal Fleets Incremental Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T.; James P. Meagher; Prasad Apte
2002-12-31
This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less
NREL Evaluates Performance of Fast-Charge Electric Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-16
This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potentialmore » of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.« less
Alternative Fuels Data Center: Maps and Data
emissions comparison of heavy duty vehicles as captured by the Clean Cities Program. Last update February emissions comparison of light duty vehicles as captured by the Clean Cities Program. Last update February
Alternative Fuels Data Center: Maps and Data
gas emissions comparison of heavy duty vehicles as captured by the Clean Cities Program. Last update gas emissions comparison of light duty vehicles as captured by the Clean Cities Program. Last update
Alternative Fuels Data Center: Mass Transit
traveled and fuel used by private vehicles. Vehicle fleet managers, corporate decision makers, and public effective incentives for fleet managers and corporate decision makers to build mass transit ridership
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, R.A.; Yost, D.M.
1995-11-01
A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.
41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?
Code of Federal Regulations, 2011 CFR
2011-01-01
... fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property... average fuel economy standards we must meet? (a) Yes. 49 U.S.C. 32917 and Executive Order 12375 require that each executive agency meet the fleet average fuel economy standards in place as of January 1 of...
41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?
Code of Federal Regulations, 2014 CFR
2014-01-01
... fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property... average fuel economy standards we must meet? (a) Yes. 49 U.S.C. 32917 and Executive Order 12375 require that each executive agency meet the fleet average fuel economy standards in place as of January 1 of...
41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?
Code of Federal Regulations, 2012 CFR
2012-01-01
... fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property... average fuel economy standards we must meet? (a) Yes. 49 U.S.C. 32917 and Executive Order 12375 require that each executive agency meet the fleet average fuel economy standards in place as of January 1 of...
41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property... average fuel economy standards we must meet? (a) Yes. 49 U.S.C. 32917 and Executive Order 12375 require that each executive agency meet the fleet average fuel economy standards in place as of January 1 of...
USCG Pollution Abatement Program : A Preliminary Study of Vessel and Boat Exhaust Emissions
DOT National Transportation Integrated Search
1971-11-30
A preliminary study of exhaust emissions from Coast Guard vessels and boats indicates that the Coast Guard fleet is an insignificant contributor to air pollution on a national and regional basis. Based upon fuel usage data, emission estimates by vess...
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T. Robinson; John Sirman; Prasad Apte
2005-05-01
This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and inmore » International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.« less
Alternative Fuel News: Vol. 3, No. 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NREL
2000-01-10
This final issue of the Alternative Fuel News (AFN) for the 20th century provides updates on specific Clean Cities Program progress and provide a glimpse of what is in store for the future. A national nonprofit organization has been part of the Clean Cities vision for some time, and now it is a reality as National Clean Cities, Inc. (NCC). While Clean Cities coalitions have had some success in securing local private foundation funds for alternative fuel vehicle (AFV) projects in their regions, now with the help of NCC, they can tap into the dollars available from large, national foundations.more » The Clean Cities Game Plan 2000, which is the highlight of the cover story, outlines the strategy for the next year.« less
Integration of energy management concepts into the flight deck
NASA Technical Reports Server (NTRS)
Morello, S. A.
1981-01-01
The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.
Alternative Fuels Data Center: Maryland Transportation Data for Alternative
: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video thumbnail for Baltimore on YouTube Video thumbnail for Maryland County Fleet Uses Wide Variety of Alternative Fuels Maryland /Jt3ftCMissc Video thumbnail for Veolia Transportation Converts Taxi Fleet to Propane Veolia Transportation
49 CFR 535.7 - Averaging, banking, and trading (ABT) program.
Code of Federal Regulations, 2014 CFR
2014-10-01
... averaging set. With the exception of FCC earned for advance technologies as further clarified below, a... transactions. Traded FCC, other than advanced technology credits, may be used by a manufacturer only within the... fleet includes conventional vehicles (gasoline, diesel and alternative fuel) and advanced technology...
49 CFR 535.7 - Averaging, banking, and trading (ABT) program.
Code of Federal Regulations, 2013 CFR
2013-10-01
... averaging set. With the exception of FCC earned for advance technologies as further clarified below, a... transactions. Traded FCC, other than advanced technology credits, may be used by a manufacturer only within the... fleet includes conventional vehicles (gasoline, diesel and alternative fuel) and advanced technology...
Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-03-01
This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal ismore » to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.« less
Clean Cities 2015 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Caley; Singer, Mark
2016-12-01
The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reportsmore » and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterize the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.« less
Air Quality in Mexico City: Policies Implemented for its Improvement
NASA Astrophysics Data System (ADS)
Paramo, V.
2007-12-01
Ozone and suspended particles (PM) are two pollutants in the atmosphere of Mexico City Metropolitan Area (MCMA) that still exceed the recommended Mexican health standards. The other criteria pollutants very seldom exceed their corresponding standards. In 2006, the maximum ozone concentrations were above the health standard (0.11 ppm in 1 hour) during 59 percent of the days for an average of 2.2 hours and 130 points of the Air Quality Index (Índice Metropolitano de la Calidad del Aire - IMECA). In contrast, in 1991, 98 percent of the days exceeded the ozone health standard for an average of 6.6 hours and 200 IMECA points. With regards to PM10, in 2006, 80 percent of the sampled concentrations were below the health standard of 120 µg/m3 in 24 hours. However, the annual health standard of 50 µg/m3 is still exceeded. The air quality management in the MCMA is a difficult task due to several adverse factors. The main one is the large population that increased from nearly 15 million in 1992 to more than 18 million at present. As a result, the urban area grows in the adjoined municipalities of the State of Mexico. The vehicular fleet increases also to almost 4 million and the number of industrial facilities is at present 50,000. Consequently, the fuel consumption is very high. The daily energy consumption is estimated to be 44 million liters of equivalent of gasoline. Despite the fact that the air quality has improved in recent years, the related health standards are still exceeded and therefore it is necessary to continue applying the most cost-effective actions to improve the environment quality. Some actions that have contributed most to the reduction of pollutant emissions are the following: Continuous update of the inspection and maintenance program of the vehicular fleet; substitution of the catalytic converters at the end of their useful life; self-regulation of the diesel fleet; use of alternative fuels; update the No-Driving-Day program; establishment of more stringent emission levels of the gasoline fleet; update the detention of pollutant vehicles program; partial exemption of the inspection and maintenance program for cleaner and or highly efficient vehicles; substitution of 3,000 microbuses, 40,000 taxis and 1,200 buses; commissioning of the first Bus Rapid Transit system; implementation of a program for the emissions reduction for the 300 most polluted industrial facilities; and continuous update of the air quality environmental management programs. To continue improving the air quality in the MCMA, the environmental authorities will continue the implementation of the 2002-2010 Air Quality Improvement Program. In 2007 the Green Program was started, this includes those actions that have proven to be effective reduction of pollutant emissions and incorporates new actions for the reduction of local and global pollutant emissions. The most important of these new actions are: substitution of 9,500 microbuses; renewal of all the taxis fleet; commissioning of 10 Bus Rapid Transit lines; commissioning of Line 12 of the underground system; schedules and routes limitations to the cargo fleet; increase 5 percent the number of non-motorized trips (bicycling and walking); regulation of the private public transport passenger stops; requirement of private schools to provide school transport; regulation of non-occupied taxis in circulation; modifications to the circulation of 350 critical crossing points in the city; adoption of intelligent traffic lights systems; complete substitution of the local government vehicle's fleet; implement the inspection and maintenance of the cargo fleet; introduction of low- sulfur diesel, among other measures.
Alternative Fuels Data Center: Massachusetts Fleet Braun's Express
economy by an estimated 1 mile per gallon (MPG) across Braun's 185 tractor fleet. This equates to 1,500 has collected, the APUs improve overall fuel economy from 5.87 MPG to 6.75 MPG and have a payback Aerodynamics Technologies that improve a vehicle's aerodynamics can provide significant fuel economy
Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In
gas vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus Diego Feb. 2, 2013 Photo of neighborhood electric vehicle Mammoth Cave National Park Uses Only
Alternative Fuels Data Center: EV Battery Recycling
Battery Recycling Find out how one entrepreneur is working on new uses for old plug-in electric vehicle vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5, 2015 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, T. L.; Eudy, L.; Miyasato, M.
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.
40 CFR 86.1867-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under paragraph (a)(1) of...
40 CFR 86.1871-12 - Optional early CO2 credit programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... manufacturer may use such an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under...
High Occupancy Vehicle (HOV) Lane Exemption Through the Clean Pass Program, eligible plug-in number of occupants in the vehicle. Vehicles must display the Clean Pass vehicle sticker, which is . For a list of eligible vehicles and Clean Pass sticker application instructions, see the Clean Pass
Final Scientifc Report - Hydrogen Education State Partnership Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Warren
2012-02-03
Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for statesmore » and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.« less
Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.
Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke
2016-12-01
Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.
Gas detection for alternate-fuel vehicle facilities.
Ferree, Steve
2003-05-01
Alternative fuel vehicles' safety is driven by local, state, and federal regulations in which fleet owners in key metropolitan [table: see text] areas convert much of their fleet to cleaner-burning fuels. Various alternative fuels are available to meet this requirement, each with its own advantages and requirements. This conversion to alternative fuels leads to special requirements for safety monitoring in the maintenance facilities and refueling stations. A comprehensive gas and flame monitoring system needs to meet the needs of both the user and the local fire marshal.
Fleet Conversion in Local Government: Determinants of Driver Fuel Choice for Bi-Fuel Vehicles
ERIC Educational Resources Information Center
Johns, Kimberly D.; Khovanova, Kseniya M.; Welch, Eric W.
2009-01-01
This study evaluates the conversion of one local government's fleet from gasoline to bi-fuel E-85, compressed natural gas, and liquid propane gas powered vehicles at the midpoint of a 10-year conversion plan. This study employs a behavioral model based on the theory of reasoned action to explore factors that influence an individual's perceived and…
Jenn, Alan; Azevedo, Inês M L; Michalek, Jeremy J
2016-03-01
The United States Corporate Average Fuel Economy (CAFE) standards and Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum consumption and GHG emissions from light-duty passenger vehicles. They do so by requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide (CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles (AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold from 2012 through 2025 to help encourage a fleet technology transition. These incentives allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in increased fleet-wide gasoline consumption and emissions. We derive a closed-form expression to quantify these effects. We find that each time an AFV is sold in place of a conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion liters) of gasoline consumed over the vehicles' lifetimes - the largest share of which is due to legacy GHG flex-fuel vehicle credits that expire in 2016. These effects may be 30-40% larger in practice than we estimate here due to optimistic laboratory vehicle efficiency tests used in policy compliance calculations.
NASA Technical Reports Server (NTRS)
1986-01-01
Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, K.
This report covers work the Southwest Research Institute (SwRI) Office of Automotive Engineering has conducted for the U.S. Environmental Protection Agency (EPA), the National Renewable Energy Laboratory (NREL), and the Coordinating Research Council (CRC) in support of the Energy Policy Act of 2005 (EPAct). Section 1506 of EPAct requires EPA to produce an updated fuel effects model representing the 2007 light - duty gasoline fleet, including determination of the emissions impacts of increased renewable fuel use. This report covers the exhaust emissions testing of 15 light-duty vehicles with 27 E0 through E20 test fuels, and 4 light-duty flexible fuel vehiclesmore » (FFVs) on an E85 fuel, as part of the EPAct Gasoline Light-Duty Exhaust Fuel Effects Test Program. This program will also be referred to as the EPAct/V2/E-89 Program based on the designations used for it by the EPA, NREL, and CRC, respectively. It is expected that this report will be an attachment or a chapter in the overall EPAct/V2/E-89 Program report prepared by EPA and NREL.« less
State Vehicle Fleets and Their Potential Acquisition of Alternative Fueled Vehicles Under EPACT 507
DOT National Transportation Integrated Search
1996-01-01
Section 507(o) of the Energy Policy Act requires state governments to purchase : an increasing percentage of alternative fueled vehicles for their light-duty : vehicle (LDV) fleets. This requirement began in model year 1996. To determine : the effect...
Lead (Pb) Hohlraum: Target for Inertial Fusion Energy
Ross, J. S.; Amendt, P.; Atherton, L. J.; Dunne, M.; Glenzer, S. H.; Lindl, J. D.; Meeker, D.; Moses, E. I.; Nikroo, A.; Wallace, R.
2013-01-01
Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction. PMID:23486285
Lead (Pb) hohlraum: target for inertial fusion energy.
Ross, J S; Amendt, P; Atherton, L J; Dunne, M; Glenzer, S H; Lindl, J D; Meeker, D; Moses, E I; Nikroo, A; Wallace, R
2013-01-01
Recent progress towards demonstrating inertial confinement fusion (ICF) ignition at the National Ignition Facility (NIF) has sparked wide interest in Laser Inertial Fusion Energy (LIFE) for carbon-free large-scale power generation. A LIFE-based fleet of power plants promises clean energy generation with no greenhouse gas emissions and a virtually limitless, widely available thermonuclear fuel source. For the LIFE concept to be viable, target costs must be minimized while the target material efficiency or x-ray albedo is optimized. Current ICF targets on the NIF utilize a gold or depleted uranium cylindrical radiation cavity (hohlraum) with a plastic capsule at the center that contains the deuterium and tritium fuel. Here we show a direct comparison of gold and lead hohlraums in efficiently ablating deuterium-filled plastic capsules with soft x rays. We report on lead hohlraum performance that is indistinguishable from gold, yet costing only a small fraction.
Clean Cities Technical Assistance Project (Tiger Teams)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This two-page fact sheet describes Clean Cities' technical assistance (Tiger Teams) capabilities and projects, both completed and ongoing. Tiger Teams are a critical element of the Clean Cities program, providing on-the-ground consultation to help inform program strategies. The knowledge Tiger Team experts gain from these experiences often helps inform other alternative fuels activities, such as needed research, codes and standards revisions, and new training resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaRocque, T.
2001-10-01
This fact sheet provides a question and answer overview of the Clean Cities program including what it is, how it works, the program's accomplishments, and a map of Clean Cities throughout the United States.
78 FR 38021 - Proposed Amendment of Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
...). ACTION: Submission for Office of Management and Budget (OMB) review; comment request. SUMMARY: The... information that will enable DOE to measure the impact and progress of DOE's National Clean Fleets Partnership (Partnership). The Partnership is an initiative through which DOE provides large private-sector fleets with...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, John
2015-04-02
Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy (DOE) and U.S. General Services Administration (GSA) are issuing comprehensive guidance on the federal fleet requirements of Executive Order (E.O.) 13693, Planning for Federal Sustainability in the Next Decade (E.O. 13693), to help federal agencies subject to the executive order develop an overall approach for reducing total fleet greenhouse gas (GHG) emissions and fleet-wide per-mile GHG emissions, and ensure the approach helps these agencies meet their requirements. Three key GHG emissions reduction strategies - right-sizing fleets to mission, increasing fleet fuel efficiency, and displacing petroleum with alternative fuel use - are essential to meeting themore » requirements and are discussed further in this document. This guidance document is intended to help agency Chief Sustainability Officers (CSOs) and headquarters fleet managers craft tailored executable plans that achieve the purpose of E.O. 13693. The guidance will assist agencies in completing the first phase of a comprehensive fleet management framework by identifying the strategies each agency will then implement to meet or exceed its requirements.« less
78 FR 14520 - Proposed Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... information collection request with the Office of Management and Budget. Comments are invited on: (a) Whether... State Government and Alternative Fuel Provider Fleets; (3) Type of Review: renewal; (4) Purpose: the... fleets are in compliance with the alternative fueled vehicle acquisition mandates of sections 501 and 507...
Satisfaction of the Automotive Fleet Fuel Demand and Its Impact on the Oil Refining Industry
DOT National Transportation Integrated Search
1980-12-01
Because virtually all transportation fuels are based on petroleum, it is essential to include petroleum refining in any assessment of potential changes in the transportation system. A number of changes in the automotive fleet have been proposed to im...
An Assessment of Operational Energy Capability Improvement Fund (OECIF) Programs 17-S-2544
2017-09-19
persistently attack key operational energy problems . OECIF themes are summarized in Table 1, and Appendix A includes more detail on the programs within... problems FY 2014 Analytical methods and tools FY 2015 Improving fuel economy for the current tactical ground fleet FY 2016 Increasing the operational...involve a variety of organizations to solve operational energy problems . In FY 2015, the OECIF program received a one-time $14.1M Congressional plus-up
Who Adopts Improved Fuels and Cookstoves? A Systematic Review
Lewis, Jessica J.
2012-01-01
Background: The global focus on improved cookstoves (ICSs) and clean fuels has increased because of their potential for delivering triple dividends: household health, local environmental quality, and regional climate benefits. However, ICS and clean fuel dissemination programs have met with low rates of adoption. Objectives: We reviewed empirical studies on ICSs and fuel choice to describe the literature, examine determinants of fuel and stove choice, and identify knowledge gaps. Methods: We conducted a systematic review of the literature on the adoption of ICSs or cleaner fuels by households in developing countries. Results are synthesized through a simple vote-counting meta-analysis. Results: We identified 32 research studies that reported 146 separate regression analyses of ICS adoption (11 analyses) or fuel choice (135 analyses) from Asia (60%), Africa (27%), and Latin America (19%). Most studies apply multivariate regression methods to consider 7–13 determinants of choice. Income, education, and urban location were positively associated with adoption in most but not all studies. However, the influence of fuel availability and prices, household size and composition, and sex is unclear. Potentially important drivers such as credit, supply-chain strengthening, and social marketing have been ignored. Conclusions: Adoption studies of ICSs or clean energy are scarce, scattered, and of differential quality, even though global distribution programs are quickly expanding. Future research should examine an expanded set of contextual variables to improve implementation of stove programs that can realize the “win-win-win” of health, local environmental quality, and climate associated with these technologies. PMID:22296719
DOT National Transportation Integrated Search
2011-01-01
This report documents the research project Identifying Excessive Vehicle Idling and Opportunities for Off-Road Fuel Tax Credits for : Stationary Operations in the Caltrans Fleet - Phase 1, performed in response to a California Department of Tra...
NASA Astrophysics Data System (ADS)
Zhang, Shaojun; Wu, Ye; Wu, Xiaomeng; Li, Mengliang; Ge, Yunshan; Liang, Bin; Xu, Yueyun; Zhou, Yu; Liu, Huan; Fu, Lixin; Hao, Jiming
2014-06-01
As a pioneer in controlling vehicle emissions within China, Beijing released the Clean Air Action Plan 2013-2017 document in August 2013 to improve its urban air quality. It has put forward this plan containing the most stringent emission control policies and strategies to be adopted for on-road vehicles of Beijing. This paper estimates the historic and future trends and uncertainties in vehicle emissions of Beijing from 1998 to 2020 by applying a new emission factor model for the Beijing vehicle fleet (EMBEV). Our updated results show that total emissions of CO, THC, NOx and PM2.5 from the Beijing vehicle fleet are 507 (395-819) kt, 59.1 (41.2-90.5) kt, 74.7 (54.9-103.9) kt and 2.69 (1.91-4.17) kt, respectively, at a 95% confidence level. This represents significant reductions of 58%, 59%, 31% and 62%, respectively, relative to the total vehicle emissions in 1998. The past trends clearly posed a challenge to NOx emission mitigation for the Beijing vehicle fleet, especially in light of those increasing NOx emissions from heavy-duty diesel vehicles (HDDVs) which have partly offset the reduction benefit from light-duty gasoline vehicles (LDGVs). Because of recently announced vehicle emission controls to be adopted in Beijing, including tighter emissions standards, limitations on vehicle growth by more stringent license control, promotion of alternative fuel technologies (e.g., natural gas) and the scrappage of older vehicles, estimated vehicle emissions in Beijing will continue to be mitigated by 74% of CO, 68% of THC, 56% of NOx and 72% of PM2.5 in 2020 compared to 2010 levels. Considering that many of the megacities in China are facing tremendous pressures to mitigate emissions from on-road vehicles, our assessment will provide a timely case study of significance for policy-makers in China.
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottler, Gary
General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.
AirCheckTexas Drive a Clean Machine program, which provides vehicle replacement assistance for qualified requirements, and how to apply in specific areas, see the AirCheckTexas Drive a Clean Machine website
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.
2014-01-01
Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop amore » characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.« less
NASA Technical Reports Server (NTRS)
Baughcum, Steven L.; Henderson, Stephen C.
1995-01-01
This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT's) on a universal airline network.Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT's. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Puneet; Casey, Dan
This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less
Perspectives on AFVs: State and city government fleet manager survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, P.
1999-02-01
In an effort to reduce national dependence on imported oil and to improve urban air quality, the US Department of Energy (DOE) is promoting the development and deployment of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to develop and conduct projects to evaluate the performance and acceptability of light-duty AFVs compared to similar gasoline vehicles. As part of this effort, NREL has undertaken a number of evaluation projects, including conducting telephone surveys with fleet managers and drivers of AFVs in the federal fleet. This report summarizes themore » results of the survey of state and city government fleet managers.« less
Clean Cities 2010 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.
2012-10-01
This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.
Clean Cities 2011 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.
2012-12-01
This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.
CNG Cylinder Safety - Education, Outreach, and Next Steps (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.; Schroeder, A.
2014-01-01
Mr. Schroeder discussed the work that NREL is performing for the U.S. Department of Transportation on compressed natural gas cylinder end-of-life requirements. CNG vehicles are different from most other vehicles in that the CNG fuel storage cylinders have a pre-determined lifetime that may be shorter than the expected life of the vehicle. The end-of-life date for a cylinder is based on construction and test protocols, and is specific to the construction and material of each cylinder. The end-of-life date is important because it provides a safe margin of error against catastrophic cylinder failure or rupture. The end-of-life dates range frommore » 15 to 25 years from the date of manufacture. NREL worked to develop outreach materials to increase awareness of cylinder end-of-life dates, has provided technical support for individual efforts related to cylinder safety and removal, and also worked with CVEF to document best practices for cylinder removal or inspection after an accident. Mr. Smith discussed the engagement of the DOE Clean Fleets Partners, which were surveyed to identify best practices on managing cylinder inventories and approached to provide initial data on cylinder age in a fleet environment. Both DOE and NREL will continue to engage these fleets and other stakeholders to determine how to best address this issue moving forward.« less
DOT National Transportation Integrated Search
1996-05-01
The first round of emissions testing of light-duty alternative fuel vehicles : placed in the U.S. federal fleet under the provisions of the Alternative Motor : Fuels Act was recently completed. This undertaking included 75 Dodge B250 vans, : of which...
Alternative Fuels Data Center: North Carolina Transportation Data for
) 2,115 Source: BioFuels Atlas from the National Renewable Energy Laboratory Case Studies Video thumbnail CNG Installation a Boost Aug. 19, 2015 Video thumbnail for Biodiesel Offers an Easy Alternative for Fleets Biodiesel Offers an Easy Alternative for Fleets Aug. 18, 2015 Video thumbnail for Blue Skies
Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels
NASA Astrophysics Data System (ADS)
Li, Kun; Wang, Guoqing; Liu, Chang
2018-01-01
As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.
Fuel cell energy service Enron`s commerical program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, M.W.
1996-04-01
Enron, the premier provider of clean fuels worldwide, has launched a unique energy service based on fuel cell technology. The goal of this program is to bring the benefits of fuel cell power to the broad commercial marketplace. Enron`s Energy Service is currently based on a 200 kilowatt phosphoric acid power plant manufactured by ONSI Corporation. This plant is fueled by natural gas or propane, and exhibits superior performance. Enron offers a `no hassle` package that provides customers with immediate benefits with no upfront capital or technical risks. This paper describes Enron`s fuel cell commercial program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Fluga
The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources inmore » light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.« less
CF6 jet engine performance improvement program. Task 1: Feasibility analysis
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1979-01-01
Technical and economic engine improvement concepts selected for subsequent development include: (1) fan improvement; (2) short core exhaust; (3) HP turbine aerodynamic improvement; (4) HP turbine roundness control; (5) HP turbine active clearance control; and (6) cabin air recirculation. The fuel savings for the selected engine modification concepts for the CF6 fleet are estimated.
Study of turbofan engines designed for low energy consumption
NASA Technical Reports Server (NTRS)
Gray, D. E.
1976-01-01
The near-term technology improvements which can reduce the fuel consumed in the JT9D, JT8D, and JT3D turbofans in commercial fleet operation through the 1980's are identified. Projected technology advances are identified and evaluated for new turbofans to be developed after 1985. Programs are recommended for developing the necessary technology.
Telematics Options and Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell
This presentation describes the data tracking and analytical capabilities of telematics devices. Federal fleet managers can use the systems to keep their drivers safe, maintain a fuel efficient fleet, ease their reporting burden, and save money. The presentation includes an example of how much these capabilities can save fleets.
and programs that help meet the requirements of the Clean Air Act by reducing mobile source emissions ), diesel retrofit projects, and alternative fuel vehicles and infrastructure. Projects supported with CMAQ
NASA Technical Reports Server (NTRS)
Knox, C. E.
1984-01-01
A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.
Clean air program : design guidelines for bus transit systems using hydrogen as an alternative fuel
DOT National Transportation Integrated Search
1999-04-01
Alternative fuels such as Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and alcohol fuels (methanol, and ethanol) are already being used in commercial vehicles and transit buses in revenue service. Hydrogen...
41 CFR 102-34.55 - Are there fleet average fuel economy standards we must meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are there fleet average fuel economy standards we must meet? 102-34.55 Section 102-34.55 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL PROPERTY 34-MOTOR VEHICLE MANAGEMENT Obtainin...
What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kay L.; Gonzales, John
2017-10-17
Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factorsmore » to consider when pursuing a conversion, retrofit, or repower option.« less
Ensemble machine learning and forecasting can achieve 99% uptime for rural handpumps
Thomas, Evan A.
2017-01-01
Broken water pumps continue to impede efforts to deliver clean and economically-viable water to the global poor. The literature has demonstrated that customers’ health benefits and willingness to pay for clean water are best realized when clean water infrastructure performs extremely well (>99% uptime). In this paper, we used sensor data from 42 Afridev-brand handpumps observed for 14 months in western Kenya to demonstrate how sensors and supervised ensemble machine learning could be used to increase total fleet uptime from a best-practices baseline of about 70% to >99%. We accomplish this increase in uptime by forecasting pump failures and identifying existing failures very quickly. Comparing the costs of operating the pump per functional year over a lifetime of 10 years, we estimate that implementing this algorithm would save 7% on the levelized cost of water relative to a sensor-less scheduled maintenance program. Combined with a rigorous system for dispatching maintenance personnel, implementing this algorithm in a real-world program could significantly improve health outcomes and customers’ willingness to pay for water services. PMID:29182673
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-30
This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops;more » (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.« less
DOT National Transportation Integrated Search
1996-08-01
Although there are over one thousand transit buses in revenue service in the U.S. that are powered by alternative fuels, there are no comprehensive guidelines for the safe design and operation of alternative fuel facilities and vehicles for transit s...
US Clean Energy Sector and the Opportunity for Modeling and Simulation
NASA Technical Reports Server (NTRS)
Inge, Carole Cameron
2011-01-01
The following paper sets forth the current understanding of the US clean energy demand and opportunity. As clean energy systems come online and technology is developed, modeling and simulation of these complex energy programs provides an untapped business opportunity. The US Department of Defense provides a great venue for developing new technology in the energy sector because it is demanding lower fuel costs, more energy efficiencies in its buildings and bases, and overall improvements in its carbon footprint. These issues coupled with the security issues faced by foreign dependence on oil will soon bring more clean energy innovations to the forefront (lighter batteries for soldiers, alternative fuel for jets, energy storage systems for ships, etc).
DOT National Transportation Integrated Search
1997-03-01
The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including Liquefied Natural Gas (LNG), Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LPG), and Methanol/Ethanol, are already being used. At present, t...
DOT National Transportation Integrated Search
2003-03-01
The use of alternative fuels to power transit buses is steadily increasing. Several fuels, including : Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and : Methanol/Ethanol, are already being used. At presen...
DOT National Transportation Integrated Search
1995-08-01
This is a handbook of safety, health, and the environmental issues of the production, bulk transport, and bult storage of alternative fuels with emphasis on transport and storage. Fuels included are: 1) compressed natural gas, 2) liquefied natural ga...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Program; Petition for Objection to State Operating Permit for Tennessee Valley Authority--Paradise Fossil... for Air Quality to Tennessee Valley Authority (TVA) for its Paradise Fossil Fuel Plant located near... period. Petitioner submitted a petition regarding the Paradise Fossil Fuel Plant on January 9, 2010...
Electric and Hybrid Vehicles Program. Sixteenth annual report to Congress for fiscal year 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
This report describes the progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.
Alternative Fuels Data Center: Newsletters
Offers information on the development and maintenance of electric motors, drives, and related components Fuels Fuel Prices Conserve Fuel Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet
American Fuel Cell Bus Project Evaluation. Second Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew
2015-09-01
This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less
EERE: Alternative Fuels Data Center Home Page
facility safe with a first-of-its-kind CNG Maintenance Facility Modifications Handbook. Find Fleet & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Locate Stations Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. Francfort
2003-11-01
Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine powermore » output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).« less
Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With
Photo of a truck Natural Gas Fuels School Buses and Refuse Trucks in Tulsa, Oklahoma Feb. 18, 2017 Photo of buses Baton Rouge School District Adds Propane Buses to Its Fleet Dec. 23, 2016 photo of a truck Buses to Its Fleet Nov. 11, 2016 photo of a propane school bus Propane Powers School Buses in Tuscaloosa
NASA Technical Reports Server (NTRS)
Kraus, E. F.; Vanabkoude, J. C.
1976-01-01
The fuel saving potential and cost effectiveness of numerous operational and technical options proposed for reducing the fuel consumption of the U.S. commercial airline fleet was examined and compared. The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs and airline profits when implemented in the U.S. domestic and international airline fleets was determined. A forecast estimate was made of the potential fuel savings achievable in the U.S. scheduled air transportation system. Specifically, the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic and international passenger operations were investigated. A design analysis was made of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30.
Alternative Fuels Data Center: Phoenix Utility Fleet Drives Smarter with
electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a BiodieselA> Phoenix Utility Fleet Drives Smarter with Biodiesel to someone by E-mail Share ... Aug. 26, 2017 Phoenix Utility Fleet Drives Smarter with Biodiesel Watch how a utility company in
This December 22, 2016 letter from EPA approves the petition from Gevo, Inc. for butanol produced from corn starch and/or grain sorghum as renewable fuel and in some cases advanced biofuel under the Clean Air Act and the Renewable Fuel Standard Program.
Alternative Fuels Data Center: Propane Fueling Infrastructure Development
availability is the foundation for the acceptance of any fuel. Fleets depend on being able to locate fuel fuel systems and containers in vehicles, and the National Fire Prevention Association's NFPA 58
Alternative Fuels Data Center: Propane
they work, and find information about vehicle availability, conversions, emissions, maintenance, and Fuel Prices Conserve Fuel Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet
Application of Strategic Planning Process with Fleet Level Analysis Methods
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.; Pfaender, Holger; Jimenez, Hernando; Garcia, Elena; Feron, Eric; Bernardo, Jose
2016-01-01
The goal of this work is to quantify and characterize the potential system-wide reduction of fuel consumption and corresponding CO2 emissions, resulting from the introduction of N+2 aircraft technologies and concepts into the fleet. Although NASA goals for this timeframe are referenced against a large twin aisle aircraft we consider their application across all vehicle classes of the commercial aircraft fleet, from regional jets to very large aircraft. In this work the authors describe and discuss the formulation and implementation of the fleet assessment by addressing the main analytical components: forecasting, operations allocation, fleet retirement, fleet replacement, and environmental performance modeling.
Clean Vehicle and Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ Texas Emissions Reduction Plan (TERP). The ERIG Program provides grants for various types of clean air requirements. For more information, including funding availability, see the TCEQ TERP website. (Reference Texas
Energy use and taxation policy in the New Zealand car fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-02-01
The report describes the composition of the New Zealand car fleet and the relationship between design factors, fleet composition, vehicle useage and fuel consumption. The indirect energy content of the vehicle and roadway are discussed. Existing and potential Government policy instruments for promoting fuel economy in the car fleet are discussed and evaluated. The report conclusions favor flat rate sales tax on vehicles regardless of engine size together with an appropriate level of petrol tax in preference to taxation that varies with vehicle size or engine capacity. A review of hire purchase regulations is proposed. Prior to publication of thismore » report the Industries Development Commission Plan for the motor vehicle industry was released which proposes changes to the tariff, taxation and credit purchase regime applying to motor vehicles. These changes are summarized.« less
NASA Technical Reports Server (NTRS)
Baughcum, Steven L.; Henderson, Stephen C.
1998-01-01
This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Spencer; Jeremey Busby; Richard Martineau
2012-10-01
Nuclear power currently provides a significant fraction of the United States’ non-carbon emitting power generation. In future years, nuclear power must continue to generate a significant portion of the nation’s electricity to meet the growing electricity demand, clean energy goals, and ensure energy independence. New reactors will be an essential part of the expansion of nuclear power. However, given limits on new builds imposed by economics and industrial capacity, the extended service of the existing fleet will also be required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uria-Martinez, Rocio; O'Connor, Patrick W.; Johnson, Megan M.
2015-04-30
The U.S. hydropower fleet has been providing clean, reliable power for more than a hundred years. However, no systematic documentation exists of the U.S. fleet and the trends influencing it in recent years. This first-ever Hydropower Market Report seeks to fill this gap and provide industry and policy makers with a quantitative baseline on the distribution, capabilities, and status of hydropower in the United States.
INL receives GreenGov Presidential Award for fleet fuel efficiency improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wold, Scott
Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
Express Permit website. Heavy-Duty Truck and Alternative Fueling Station Incentives - Chicago, IL The Chicago Department of Transportation's (CDOT) Drive Clean Chicago program provides vouchers and grants to operate in the Chicago six-county area at least 75% of the time and fueling stations must be proposed in
In-Use Fleet Evaluation of Fast-Charge Battery Electric Transit Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Kelly, Kenneth; Eudy
2016-06-27
With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2015, NREL launched an in-service evaluation of 12 battery electric buses (BEBs) compared to conventional compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. The study aims to improve understanding of the overall usage and effectiveness of fast-charge BEBs and associated chargingmore » infrastructure in transit operation. To date, NREL researchers have analyzed more than 148,000 km of in-use operational data, including driving and charging events. Foothill Transit purchased the BEBs with grant funding from the Federal Transit Administration's Transit Investments for Greenhouse Gas and Energy Reduction Program.« less
also be eligible for funding if the project will reduce emissions in eligible counties. The North website. Point of Contact Rick Sapienza Clean Transportation Program Manager North Carolina Clean Energy Technology Center, North Carolina State University Phone: (919) 515-2788 cleantransportation@ncsu.edu http
Code of Federal Regulations, 2011 CFR
2011-04-01
... longer be propelled by a clean-burning fuel; (B) The vehicle is used by the taxpayer in a manner... vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal... of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling...
Tracking costs of alternatively fueled buses in Florida : [summary].
DOT National Transportation Integrated Search
2011-01-01
In an effort to address rising fuel costs and environmental concerns, many transit agencies across Florida have introduced alternative fuel technologies to their traditional diesel-powered fleets. Fuel types include biodiesel, compressed natural gas,...
Automotive Fleet Fuel Consumption Model : Fuel For
DOT National Transportation Integrated Search
1978-01-01
The computer model described in this report is a tool for determining the fuel conservation benefits arising from various hypothetical schedules of new car fuel economy standards. (Portions of this document are not fully legible)
CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-01-15
To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunitiesmore » and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.« less
Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of
Assessing the Link between Environmental Concerns and Consumers' Decisions to Use Clean-Air Vehicles
ERIC Educational Resources Information Center
Plax, Timothy G.; Kearney, Patricia; Ross, Ted J.; Jolly, J. Christopher
2008-01-01
A consulting contract with the California Air Resources Board led to a project examining how California drivers' and fleet managers' perceptions, attitudes, and consumer behavior regarding Clean Vehicle Technologies influenced their own energy choices when it came to purchasing vehicles. The consultants examined archival research, conducted focus…
Alternative Fuels Data Center: Strategies to Conserve Fuel
conserve fuel. Idle Reduction Idle Reduction Find ways to save fuel and money by idling less. Driving save money. Parts and Equipment Parts and Equipment Learn about outfitting your fleet's vehicles with
Job Creation and Petroleum Independence with E85 in Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walk, Steve
Protec Fuel Management project objectives are to help design, build, provide, promote and supply biofuels for the greater energy independence, national security and domestic economic growth through job creations, infrastructure projects and supply chain business stimulants. Protec Fuel has teamed up with station owners to convert 5 existing retail fueling stations to include E85 fuel to service existing large number of fleet FFVs and general public FFVs. The stations are located in high flex fuel vehicle locations in the state of TX. Under the project name, “Job Creation and Petroleum Independence with E85 in Texas,” Protec Fuel identified and successfullymore » opened stations strategically located to maximize e85 fueling success for fleets and public. Protec Fuel and industry affiliates and FFV manufacturers are excited about these stations and the opportunities as they will help reduce emissions, increase jobs, economic stimulus benefits, energy independence and petroleum displacement.« less
NASA advanced turboprop research and concept validation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitlow, J.B. Jr.; Sievers, G.K.
1988-01-01
NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.
Applying for and using CMAQ funds
DOT National Transportation Integrated Search
1997-01-01
This guide provides the basic concepts to aid in an alternative fuel vehicle market development program developing an application for Congestion Mitigation and Air Quality (CMAQ) Improvement Program funding. The U.S. Department of Energy's Clean Citi...
The US Department of Energy - investing in clean transport
NASA Astrophysics Data System (ADS)
Chalk, Steven G.; Milliken, JoAnn; Miller, James F.; Venkateswaran, S. R.
The US Department of Energy (DOE), together with six other federal agencies and America's three largest car makers, are jointly investing in the development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient technology for automotive propulsion under the Partnership for a New Generation of Vehicles (PNGV). (PEM is sometimes referred to as `proton exchange membrane'. The correctness, or otherwise, of that interpretation will depend on the mechanism of apparent proton transfer in the membrane implied). It is anticipated that the successful development of PEM fuel cells (and other long-term technologies) to meet automotive requirements will extend beyond the PNGV's 2004 timeframe for achieving 80 miles per gallon in production prototypes. Given the extraordinary promise of large energy, environmental and economic benefits to the nation from fuel cells and other long-term technologies, the PNGV partners will continue to invest in these technologies beyond 2004. The DOE's Transportation Fuel Cells Program has recently announced US$50 million of new contract awards for focused R&D to overcome critical technical barriers such as fuel-flexible fuel processing technology. The progress achieved toward automotive goals through these and past investments will also enable nearer-term application of fuel cells (e.g. in buses). This paper describes the status of the PNGV program and the key role and technical accomplishments of the DOE Transportation Fuel Cells Program. The DOE's recent investments in new fuel cell R&D activities will be discussed.
Alternative Fuels Data Center: E85 Flex Fuel Specification
Flexible-Fuel Automotive Spark-Ignition Engines. Fuel retailers or fleets purchasing E85 should require , there is no concern with carrying over winter fuel into the summer months because flexible-fuel vehicles requirements. D5798-15 Standard Specification for Ethanol Fuel Blends for Flexible-Fuel Automotive Spark
Code of Federal Regulations, 2012 CFR
2012-01-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2011 CFR
2011-01-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... through the Federal Automotive Statistical Tool (FAST), an Internet-based reporting tool. To find out how to submit motor vehicle data to GSA through FAST, consult the instructions from your agency fleet...; and (5) Fuel used. Note to § 102-34.335: The FAST system is also used by agency Fleet Managers to...
Alternative Fuels Data Center: Illinois Transportation Data for Alternative
Version More Illinois Videos on YouTube Video thumbnail for Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks Nov. 2, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-01-30
Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-burning fuel; (B) The vehicle is used by the taxpayer in a manner described in section 50(b); (C) The... vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal... for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. (a) In...
Residual Inequity: Assessing the Unintended Consequences of New York City’s Clean Heat Transition
Carrión, Daniel; Lee, W. Victoria; Hernández, Diana
2018-01-01
Energy policies and public health are intimately intertwined. In New York City, a series of policies, known as the Clean Heat Program (CHP), were designed to reduce air pollution by banning residual diesel fuel oils, #6 in 2015 and #4 by 2030. This measure is expected to yield environmental and public health benefits over time. While there is near-universal compliance with the #6 ban, a substantial number of buildings still use #4. In this paper, geographic analysis and qualitative interviews with stakeholders were used to interrogate the CHP’s policy implementation in Northern Manhattan and the Bronx. A total of 1724 (53%) of all residential residual fuel burning buildings are located in this region. Stakeholders reflected mostly on the need for the program, and overall reactions to its execution. Major findings include that government partnerships with non-governmental organizations were effectively employed. However, weaknesses with the policy were also identified, including missed opportunities for more rapid transitions away from residual fuels, unsuccessful outreach efforts, cost-prohibitive conversion opportunities, and (the perception of) a volatile energy market for clean fuels. Ultimately, this analysis serves as a case study of a unique and innovative urban policy initiative to improve air quality and, consequently, public health. PMID:29324717
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles J.
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
Youinou, Gilles J.
2017-05-04
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
Fleet Compliance Annual Report: Model Year 2015, Fiscal Year 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The U.S. Department of Energy (DOE) regulates covered state government and alternative fuel provider fleets, pursuant to the Energy Policy Act of 1992 (EPAct), as amended. This report details compliance for model year 2015, fiscal year 2016.
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the average fuel economy standards in Table I, expressed in miles per gallon, in... passenger automobile fleet shall comply with the fuel economy level calculated for that model year according...
49 CFR 531.5 - Fuel economy standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PASSENGER AUTOMOBILE AVERAGE FUEL ECONOMY STANDARDS § 531.5 Fuel... automobiles shall comply with the average fuel economy standards in Table I, expressed in miles per gallon, in... passenger automobile fleet shall comply with the fuel economy level calculated for that model year according...
Hydrogen Fuel Cell Electric Vehicle Learning Demonstration | Hydrogen and
Fuel Cells | NREL Fuel Cell Electric Vehicle Learning Demonstration Hydrogen Fuel Cell Electric Vehicle Learning Demonstration Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project-later dubbed the Fuel Cell Electric Vehicle (FCEV) Learning Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2015-01-01
Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.
An evaluation of the LPG vehicles program in the metropolitan area of Mexico City.
Schifter, I; Díaz, L; López-Salinas, E; Rodríguez, R; Avalos, S; Guerrero, V
2000-02-01
The environmental agency in the metropolitan area of Mexico City has launched a program to introduce more energy-efficient modes of transport, one of which is the use of alternative and less polluting fuels. With the perspective in mind, a liquefied petroleum gas (LPG) fleet of vehicles is exempt of the mandatory "one day without a car" program if the emission of pollutants is below the standard authorized for that specific purpose. Today, about 28,000 light-duty vehicles and heavy-duty trucks circulate in the area, most of them as aftermarket converted vehicles. In this work, we evaluated regulated exhaust emission and other parameters on 134 representative vehicles of that fleet. From the data obtained, an estimate of emission factors and their contribution to the global emission in the metropolitan area is provided. It is concluded that more than 95% of the in-use vehicles using LPG presented regulated emissions which exceeded in one or more the environmental regulations values required for certification. The poor maintenance of the vehicles and the type of conversion kit installed could be the culprits of the results obtained.
Alternative Fuels Data Center: Natural Gas Fueling Station Locations
or ZIP code or along a route in the United States. Loading alternative fueling station locator Fleet Rightsizing System Efficiency Locate Stations Search by Location Map a Route Laws & Incentives
NASA Research on General Aviation Power Plants
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Weber, R. J.; Willis, E. A.; Sievers, G. K.
1978-01-01
Propulsion systems are key factors in the design and performance of general aviation airplanes. NASA research programs that are intended to support improvements in these engines are described. Reciprocating engines are by far the most numerous powerplants in the aviation fleet; near-term efforts are being made to lower their fuel consumption and emissions. Longer-term work includes advanced alternatives, such as rotary and lightweight diesel engines. Work is underway on improved turbofans and turboprops.
Alternative Fuel Vehicle Data Browser
The annual data for 2015 about fuel use and the number of vehicles in inventory for four types of alternative fuel vehicle (AFV) fleets: federal government, state governments, transit agencies, and fuel providers, is now available. The data is available through an interactive data viewer.
NASA Technical Reports Server (NTRS)
Traversi, M.; Barbarek, L. A. C.
1979-01-01
Applicable data was categorized and processed according to vehicle usage and trip parameters with consideration of payload (cargo, people, size) and driving cycles. A mission that maximizes the fuel potential savings for the total 1985 vehicle fleet was selected. Mission requirements that have a bearing on conventional and hybrid vehicle performance and characteristics were identified and formulated and a reference ICE vehicle was selected that meets or exceeds all requirements while maintaining within applicable constraints. Specifications for vehicle performance were established based on mission requirements, mission related vehicle characteristics, and fuel consumption.
Low NO sub x heavy fuel combustor concept program
NASA Technical Reports Server (NTRS)
Russell, P.; Beal, G.; Hinton, B.
1981-01-01
A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert partmore » or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
.... Grantees are reminded that the 90% provision for biodiesel buses is not available this year, as the... was highlighted in FTA's January 2012 Apportionment Notice, Section III (C). Biodiesel buses remain...
Methods for nuclear air-cleaning-system accident-consequence assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrae, R.W.; Bolstad, J.W.; Gregory, W.S.
1982-01-01
This paper describes a multilaboratory research program that is directed toward addressing many questions that analysts face when performing air cleaning accident consequence assessments. The program involves developing analytical tools and supportive experimental data that will be useful in making more realistic assessments of accident source terms within and up to the atmospheric boundaries of nuclear fuel cycle facilities. The types of accidents considered in this study includes fires, explosions, spills, tornadoes, criticalities, and equipment failures. The main focus of the program is developing an accident analysis handbook (AAH). We will describe the contents of the AAH, which include descriptionsmore » of selected nuclear fuel cycle facilities, process unit operations, source-term development, and accident consequence analyses. Three computer codes designed to predict gas and material propagation through facility air cleaning systems are described. These computer codes address accidents involving fires (FIRAC), explosions (EXPAC), and tornadoes (TORAC). The handbook relies on many illustrative examples to show the analyst how to approach accident consequence assessments. We will use the FIRAC code and a hypothetical fire scenario to illustrate the accident analysis capability.« less
An evaluation of the hybrid car technology for the Mexico Mega City
NASA Astrophysics Data System (ADS)
Jazcilevich, Aron D.; Reynoso, Agustin Garcia; Grutter, Michel; Delgado, Javier; Ayala, Ulises Diego; Lastra, Manuel Suarez; Zuk, Miriam; Oropeza, Rogelio Gonzalez; Lents, Jim; Davis, Nicole
The introduction of hybrid electric vehicle (HEV) technology in the private car fleet of Mexico City is evaluated in terms of private costs, energy, public health and CO 2 emission benefits. In addition to constructing plausible scenarios for urban expansion, emission, car fleet, and fuel consumption for year 2026 and comparing them with a 2004 base case, a time series is built to obtain accumulated economic benefits. Experimental techniques were used to build a vehicle library for a car simulator that included a Prius 2002, chosen as the HEV technology representative for this work. The simulator is used to estimate the emissions and fuel consumption of the car fleet scenarios. In the context of an urban scenario for year 2026, a complex air quality model obtains the concentrations of criterion pollutants corresponding to these scenarios. Using a technology penetration model, the hybridized fleet starts unfolding in year 2009 reaching to 20% in 2026. In this year, the hybridized fleet resulted in reductions of about 10% of CO 2 emissions, and yielded reductions in daytime mean concentrations of up to 7% in ozone and 3.4% in PM 2.5 compared to the 2004 base case. These reductions are concentrated in the densely populated areas of Mexico City. By building a time series of costs and benefits it is shown that, depending on fuel prices and using a 5% return rate, positive accumulated benefits (CO 2 benefits + energy benefits + public health benefits - private costs) will start generating in year 2015 reaching between 2.8 and 4.5 billion US Dlls in 2026. Another modernized private fleet consisting exclusively of Tier I and II cars did not yield appreciable results, signaling that a change in private car technology towards HEV's is needed to obtain significant accumulated benefits.
A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies
NASA Astrophysics Data System (ADS)
Becker, Keith Frederick
Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post-processing, which does not capture physical interdependencies that may arise at the aircraft-level. The goal of the work that has been conducted here was the development of a methodology to develop surrogate fleet approaches that leverage the capability of physics-based aircraft models and the development of connectivity to fleet-level analysis tools to enable rapid evaluation of fuel burn and emissions metrics. Instead of requiring development of an individual physics-based model for each vehicle in the fleet, the surrogate fleet approaches seek to reduce the number of such models needed while still accurately capturing performance of the fleet. By reducing the number of models, both development time and execution time to generate fleet-level results may also be reduced. The initial steps leading to surrogate fleet formulation were a characterization of the commercial fleet into groups based on capability followed by the selection of a reference vehicle model and a reference set of operations for each group. Next, three potential surrogate fleet approaches were formulated. These approaches include the parametric correction factor approach, in which the results of a reference vehicle model are corrected to match the aggregate results of each group; the average replacement approach, in which a new vehicle model is developed to generate aggregate results of each group, and the best-in-class replacement approach, in which results for a reference vehicle are simply substituted for the entire group. Once candidate surrogate fleet approaches were developed, they were each applied to and evaluated over the set of reference operations. Then each approach was evaluated for their ability to model variations in operations. Finally, the ability of each surrogate fleet approach to capture implementation of different technology suites along with corresponding interdependencies between fuel burn and emissions was evaluated using the concept of a virtual fleet to simulate the technology response of multiple aircraft families. The results of experimentation led to a down selection to the best approach to use to rapidly characterize the performance of the commercial fleet for accurately in the context of acceptability of current fleet evaluation methods. The parametric correction factor and average replacement approaches were shown to be successful in capturing reference fleet results as well as fleet performance with variations in operations. The best-in-class replacement approach was shown to be unacceptable as a model for the larger fleet in each of the scenarios tested. Finally, the average replacement approach was the only one that was successful in capturing the impact of technologies on a larger fleet. These results are meaningful because they show that it is possible to calculate the fuel burn and emissions of a larger fleet with a reduced number of physics-based models within acceptable bounds of accuracy. At the same time, the physics-based modeling also provides the ability to evaluate the impact of technologies on fleet-level fuel burn and emissions metrics. The value of such a capability is that multiple future fleet scenarios involving changes in both aircraft operations and technology levels may now be rapidly evaluated to inform and equip policy makers of the implications of impacts of changes on fleet-level metrics.
Clean Cities 2013 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Singer, M.
2014-10-01
Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programsmore » to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.« less
Clean Cities 2014 Annual Metrics Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Caley; Singer, Mark
Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programsmore » to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2014 Annual Metrics Report.« less
The U.S. EPA's Office of Research and Development operates the Environmental Technology Verification (ETV) program to facilitate the deployment of innovative technologies through performance verification and information dissemination. Congress funds ETV in response to the belief ...
AN OVERVIEW OF HEALTH ISSUES FOR FUEL OXYGENATES
Oxygenates (e.g., methyl tertiary butyl ether [MTBE], ethanol) are required in gasoline in certain areas of the United Stated by the 1990 Clean Air Act Amendments and have also been used to increase gasoline octane since the 1970s. With the introduction of major new fuel program...
Alternative Fuels Data Center: Clean Cities Celebrates 15th Anniversary
Clean Cities Celebrates 15th Anniversary to someone by E-mail Share Alternative Fuels Data Center : Clean Cities Celebrates 15th Anniversary on Facebook Tweet about Alternative Fuels Data Center: Clean Cities Celebrates 15th Anniversary on Twitter Bookmark Alternative Fuels Data Center: Clean Cities
procedures to promote the cost-effective use of non-petroleum fuel vehicles and other fleet efficiency improvements. The policies must strive for the use of non-petroleum based fuels at least 90% of the time when
NASA Technical Reports Server (NTRS)
Coykendall, R. E.; Curry, J. K.; Domke, A. E.; Madsen, S. E.
1976-01-01
Economic studies were conducted for three general fuel conserving options: (1) improving fuel consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22% from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops.
Economic impact of fuel properties on turbine powered business aircraft
NASA Technical Reports Server (NTRS)
Powell, F. D.
1984-01-01
The principal objective was to estimate the economic impact on the turbine-powered business aviation fleet of potential changes in the composition and properties of aviation fuel. Secondary objectives include estimation of the sensitivity of costs to specific fuel properties, and an assessment of the directions in which further research should be directed. The study was based on the published characteristics of typical and specific modern aircraft in three classes; heavy jet, light jet, and turboprop. Missions of these aircraft were simulated by computer methods for each aircraft for several range and payload combinations, and assumed atmospheric temperatures ranging from nominal to extremely cold. Five fuels were selected for comparison with the reference fuel, nominal Jet A. An overview of the data, the mathematic models, the data reduction and analysis procedure, and the results of the study are given. The direct operating costs of the study fuels are compared with that of the reference fuel in the 1990 time-frame, and the anticipated fleet costs and fuel break-even costs are estimated.
40 CFR 610.32 - Test fleet selection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Test fleet selection. 610.32 Section 610.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.32 Test...
40 CFR 610.32 - Test fleet selection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Test fleet selection. 610.32 Section 610.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.32 Test...
40 CFR 610.32 - Test fleet selection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Test fleet selection. 610.32 Section 610.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.32 Test...
40 CFR 610.32 - Test fleet selection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Test fleet selection. 610.32 Section 610.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.32 Test...
40 CFR 610.32 - Test fleet selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Test fleet selection. 610.32 Section 610.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.32 Test...
Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Jason; Salari, Kambiz; Ortega, Jason
2013-09-30
The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operatorsmore » have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade, M.F.; Miguel, A.H.; Seinfeld, J.H.
1995-12-01
Over the past several years, in the Metropolitan Area of Sao Paulo (MASP), ambient ozone concentrations have reached over five times the concentration considered protective of public health by the World Health Organization, with routine occurrence of levels that exceed Brazil`s 1 hour National Ambient Air Quality Standard (160 {mu}g/m{sup 3}). For the past 19 years, ethanol has been used both as fuel (E95) and as gasoline additive (E20G80) in light duty vehicles. This talk will discuss the results of the application of the CIT photochemical airshed model to the February 16-17, 1989 meteorological experiment carried out in the MASP.more » Simulated hourly ozone concentrations for the 1989 vehicular fleet included three cases: (1) the actual fleet (F.95, E20G80, and diesels), (2) a light duty fleet fueled with E95 only, and (3) entirely with gasoline.« less
Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas
Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural
Alternative Fuels Data Center: Ohio Transportation Data for Alternative
Sustainable Fleet Plan into On-Road Reality Jan. 26, 2016 Video thumbnail for Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014
DOT National Transportation Integrated Search
2014-12-03
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...
The benefits of a fast reactor closed fuel cycle in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregg, R.; Hesketh, K.
2013-07-01
The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size,more » so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the fission product will primarily be a function of nuclear energy generated). However, by reprocessing spent fuel, it is possible to immobilise the fission product in a more suitable waste form that has far more superior in-repository performance. (authors)« less
Mandated fuel economy standards as a strategy for improving motor vehicle fuel economy.
DOT National Transportation Integrated Search
1978-10-19
The major domestic motor vehicle manufacturers have projected that their new car fleet average fuel economy will meet the federal mandated fuel economy standard for 1985, of 27.5 miles per gallon. Assuming that these projections hold true, in one dec...
The Story of Ever Diminishing Vehicle Tailpipe Emissions as Observed in the Chicago, Illinois Area.
Bishop, Gary A; Haugen, Molly J
2018-05-15
The University of Denver has collected on-road fuel specific vehicle emissions measurements in the Chicago area since 1989. This nearly 30 year record illustrates the large reductions in light-duty vehicle tailpipe emissions and the remarkable improvements in emissions control durability to maintain low emissions over increasing periods of time. Since 1989 fuel specific carbon monoxide (CO) emissions have been reduced by an order of magnitude and hydrocarbon (HC) emissions by more than a factor of 20. Nitric oxide (NO) emissions have only been collected since 1997 but have seen reductions of 79%. This has increased the skewness of the emissions distribution where the 2016 fleet's 99th percentile contributes ∼3 times more of the 1990 total for CO and HC emissions. There are signs that these reductions may be leveling out as the emissions durability of Tier 2 vehicles in use today has almost eliminated the emissions reduction benefit of fleet turnover. Since 1997, the average age of the Chicago on-road fleet has increased 2 model years and the percentage of passenger vehicles has dropped from 71 to 52% of the fleet. Emissions are now so well controlled that the influence of driving mode has been completely eliminated as a factor for fuel specific CO and NO emissions.
Liquefied Petroleum Gas (Propane) Vehicle and Equipment Incentive - Propane Council of Texas fleets. New dedicated propane vehicles and aftermarket conversions are eligible for an incentive equal to the incremental cost, up to $7,500. Each fleet is limited to $20,000 in total incentive awards
Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles
-sector vehicle fleets are the primary users for most of these fuels and vehicles, but individual conventional fuels and vehicles helps the United States conserve fuel and lower vehicle emissions. Biodiesel , animal fats, or recycled cooking grease for use in diesel vehicles. Icon of a vehicle Diesel Vehicles
High Efficiency, Clean Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald Stanton
2010-03-31
Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast,more » the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.« less
Diesel Retrofit and Idle Reduction Grants The Illinois Clean Diesel Grant Program provides funding districts, businesses, and non-profit organizations to reduce diesel emissions. Funding is available
US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing
NASA Astrophysics Data System (ADS)
Karner, Donald; Francfort, James
The advanced vehicle testing activity (AVTA), part of the US Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modelling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full-size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and internal combustion engine vehicles powered by hydrogen. Currently, the AVTA is conducting a significant evaluation of hybrid electric vehicles (HEVs) produced by major automotive manufacturers. The results are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the 'real world' performance of their hybrid energy systems, particularly the battery. The initial fuel economy of these vehicles has typically been less than that determined by the manufacturer and also varies significantly with environmental conditions. Nevertheless, the fuel economy and, therefore, battery performance, has remained stable over the life of a given vehicle (160 000 miles).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-05-01
Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which the United States Coast Guard Headquarters (USCG HQ)more » could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less
ERIC Educational Resources Information Center
Brantner, Max
1984-01-01
Reports on a northern Illinois school bus fleet converted to propane fuel in 1981 and 1982. Includes tables showing, first, total annual fuel costs before and after conversion and, second, fuel efficiency for 16 buses using propane and three using gasoline. Notes precautions for propane use. (MCG)
Alternative Fuels Data Center: Baltimore-Based Bakery Launches Fleet of
propane would reduce maintenance costs and save us money on fuel compared to diesel and gasoline," Bakery knew that wasting time, money, and fuel was not in the company's best interest. That's why their
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
DOT National Transportation Integrated Search
2017-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
DOT National Transportation Integrated Search
2016-11-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015
DOT National Transportation Integrated Search
2015-12-01
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzenne, Claude; Massara, Simone; Tetart, Philippe
2006-07-01
Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less
46 CFR 199.190 - Operational readiness, maintenance, and inspection of lifesaving equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... each fuel tank must be emptied, cleaned, and refilled with fresh fuel. (2) Each davit, winch, fall, and... required under paragraph (e) of this section. (ii) Maintenance and repair instructions. (iii) A schedule of... planned maintenance program that includes the items listed in that paragraph. (c) Spare parts and repair...
46 CFR 199.190 - Operational readiness, maintenance, and inspection of lifesaving equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... each fuel tank must be emptied, cleaned, and refilled with fresh fuel. (2) Each davit, winch, fall, and... required under paragraph (e) of this section. (ii) Maintenance and repair instructions. (iii) A schedule of... planned maintenance program that includes the items listed in that paragraph. (c) Spare parts and repair...
46 CFR 199.190 - Operational readiness, maintenance, and inspection of lifesaving equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... each fuel tank must be emptied, cleaned, and refilled with fresh fuel. (2) Each davit, winch, fall, and... required under paragraph (e) of this section. (ii) Maintenance and repair instructions. (iii) A schedule of... planned maintenance program that includes the items listed in that paragraph. (c) Spare parts and repair...
46 CFR 199.190 - Operational readiness, maintenance, and inspection of lifesaving equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... each fuel tank must be emptied, cleaned, and refilled with fresh fuel. (2) Each davit, winch, fall, and... required under paragraph (e) of this section. (ii) Maintenance and repair instructions. (iii) A schedule of... planned maintenance program that includes the items listed in that paragraph. (c) Spare parts and repair...
Coal derived fuel gases for molten carbonate fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-11-01
Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less
Guide to alternative fuel vehicle incentives and laws: September 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, C.; O'Connor, K.
1998-12-22
This guide provides information in support of the National Clean Cities Program, which will assist one in becoming better informed about the choices and options surrounding the use of alternative fuels and the purchase of alternative fuel vehicles. The information printed in this guide is current as of September 15, 1998. For recent additions or more up-to-date information, check the Alternative Fuels Data Center Web site at http://www.afdc.doe.gov
DOT National Transportation Integrated Search
2009-12-01
Automobile ownership plays an important role in determining vehicle use, emissions, fuel : consumption, congestion and traffic safety. This work provides new data on ownership decisions : and owner preferences under various scenarios, coupled with ca...
ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES
While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...
High-speed civil transport study: Special factors
NASA Technical Reports Server (NTRS)
1990-01-01
Studies relating to environmental factors associated with high speed civil transports were conducted. Projected total engine emissions for year 2015 fleets of several subsonic/supersonic transport fleet scenarios, discussion of sonic boom reduction methods, discussion of community noise level requirements, fuels considerations, and air traffic control impact are presented.
10 CFR 490.204 - Process for granting exemptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet... requirements and practices of the principal business of the State fleet are not available for purchase or lease... must be accompanied with supporting documentation. (c) Exemptions are granted for one model year only...
Energy Committee (SGEC) will advise the State Energy Manager and the State Fleet Manager about energy the 30% reduction target compared to the 2010 metric ton baseline by 2030. The State Energy Manager , State Fleet Manager, and SGEC have developed performance metrics, and agencies and departments will
educational institution fleet light-duty vehicles purchased must be HEVs or bi-fuel or dedicated AFVs loan fund for AFV acquisitions by state agencies, political subdivisions, and educational institutions
Alternative Fuels Data Center: Telework
for vehicle fleet managers and corporate decision makers to work with employees to conserve fuel . Telecommute Resources These resources can help corporate decision makers develop and support telework
Alternative Fuels Data Center: Disclaimer
fueling infrastructure data to create a comprehensive tool for consumers, fleets, and DOE stakeholders APIs About Project Assistance News & Features Spanish Resources Contacts The AFDC is a resource of
Automotive Stirling engine: Mod 2 design report
NASA Technical Reports Server (NTRS)
Nightingale, Noel P.
1986-01-01
The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.
The Great Green Fleet: The U.S. Navy and Fossil-Fuel Alternatives
2011-01-01
Tennessee at Chattanooga. She has served as a member of the Bataan Expeditionary Strike Group and U.S. Joint Forces Com- mand, completing deployments to...excess energy to the civilian grid. Third, by 2012 the Navy is to have developed a “green” strike group, made up of nuclear- powered carriers, hybrid...first strike group of a future “green fleet.” Fourth, by 2015 the Navy is to cut by half the use of petroleum in its fifty-thousand-vehicle fleet of
Next Generation Environmentally-Friendly Driving Feedback Systems Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Matthew; Boriboonsomsin, Kanok
2014-12-31
The objective of this project is to design, develop, and demonstrate a next-generation, federal safety- and emission-complaint driving feedback system that can be deployed across the existing vehicle fleet and improve fleet average fuel efficiency by at least 2%. The project objective was achieved with the driving feedback system that encourages fuel-efficient vehicle travel and operation through: 1) Eco-Routing Navigation module that suggests the most fuel-efficient route from one stop to the next, 2) Eco-Driving Feedback module that provides sensible information, recommendation, and warning regarding fuel-efficient vehicle operation, and 3) Eco-Score and Eco-Rank module that provides a means for drivingmore » performance tracking, self-evaluation, and peer comparison. The system also collects and stores vehicle travel and operation data, which are used by Algorithm Updating module to customize the other modules for specific vehicles and adapts them to specific drivers over time. The driving feedback system was designed and developed as an aftermarket technology that can be retrofitted to vehicles in the existing fleet. It consists of a mobile application for smart devices running Android operating system, a vehicle on-board diagnostics connector, and a data server. While the system receives and utilizes real-time vehicle and engine data from the vehicle’s controller area network bus through the vehicle’s on-board diagnostic connector, it does not modify or interfere with the vehicle’s controller area network bus, and thus, is in compliance with federal safety and emission regulations. The driving feedback system was demonstrated and then installed on 45 vehicles from three different fleets for field operational test. These include 15 private vehicles of the general public, 15 pickup trucks of the California Department of Transportation that are assigned to individual employees for business use, and 15 shuttle buses of the Riverside Transit Agency that are used for paratransit service. Detailed vehicle travel and operation data including route taken, driving speed, acceleration, braking, and the corresponding fuel consumption, were collected both before and during the test period. The data analysis results show that the fleet average fuel efficiency improvements for the three fleets with the use of the driving feedback system are in the range of 2% to 9%. The economic viability of the driving feedback system is high. A fully deployed system would require capital investment in smart device ($150-$350) and on-board diagnostics connector ($50-$100) as well as paying operating costs for wireless data plan and subscription fees ($20-$30 per month) for connecting to the data server and receiving various system services. For individual consumers who already own a smart device (such as smartphone) and commercial fleets that already use some kind of telematics services, the costs for deploying this driving feedback system would be much lower.« less
Putting On the Brakes to Protect America's Natural Treasures - Continuum
and emission-reducing strategies include: Promoting alternative transportation practices Replacing , natural gas, and electricity Promoting alternative fueling stations Analyzing fleet and fuel-use data to
Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T
2017-12-01
Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies were combined with future market growth scenarios, estimated technology advancements, and best practices to examine the climate benefit of future fuel switching. The analysis indicates the necessary targets of efficiency, methane emissions, market penetration, and best practices necessary to enable a pathway for natural gas to reduce the carbon intensity of the heavy-duty transportation sector.
Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and threatens human health and safety. EPA Pacific Southwest (Region 9) is tapping existing programs and resources to advance the prevention, reduction and clean-up of marine debris in the North Pacific Ocean. EPA Pacific Southwest activities build upon specific recommendations of the Interagency Marine Debris Coordinating Committee by targeting threats and sources of debris and responding to debris impacts. EPA is initiating a three-pronged effort to reduce sources of marine debris, prevent trash from entering the oceans, and assess the human and ecosystem impacts and potential for cleanup.
75 FR 12807 - Agency Information Collection Activity Under OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... and advanced propulsion technologies. The Federal Register notice with a 60-day comment period... program supports the development and deployment of clean fuel and advanced propulsion technologies for...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas... with gasoline-fueled or methanol-fueled engines only. The Administrator does not approve the test... development and application of the requisite technology, giving appropriate consideration to the cost of...
NASA Technical Reports Server (NTRS)
1979-01-01
Results of a study leading to the preliminary design of a five passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis are presented. The study methodology is described. Vehicle characterizations, the mission description, characterization, and impact on potential sales, and the rationale for the selection of the reference internal combustion engine vehicle are presented. Conclusions and recommendations of the mission analysis and performance specification report are included.
Gasoline toxicology: overview of regulatory and product stewardship programs.
Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb
2014-11-01
Significant efforts have been made to characterize the toxicological properties of gasoline. There have been both mandatory and voluntary toxicology testing programs to generate hazard characterization data for gasoline, the refinery process streams used to blend gasoline, and individual chemical constituents found in gasoline. The Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) is the primary tool for the U.S. Environmental Protection Agency (EPA) to regulate gasoline and this supplement presents the results of the Section 211(b) Alternative Tier 2 studies required for CAA Fuel and Fuel Additive registration. Gasoline blending streams have also been evaluated by EPA under the voluntary High Production Volume (HPV) Challenge Program through which the petroleum industry provide data on over 80 refinery streams used in gasoline. Product stewardship efforts by companies and associations such as the American Petroleum Institute (API), Conservation of Clean Air and Water Europe (CONCAWE), and the Petroleum Product Stewardship Council (PPSC) have contributed a significant amount of hazard characterization data on gasoline and related substances. The hazard of gasoline and anticipated exposure to gasoline vapor has been well characterized for risk assessment purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-01-01
... both subpart A and subpart B. Adjusted average fuel economy means a harmonic production weighted average of the combined fuel economy of all vehicles in a fleet, which were subject to CAFE. Advanced... (3) At least 125 percent of the harmonic production weighted average combined fuel economy, for...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011
DOT National Transportation Integrated Search
2011-11-11
his report is the fifth in a series of annual status reports that summarize the progress resulting from fuel cell transit bus demonstrations in the United States and provide a discussion of the achievements and challenges of fuel cell propulsion in t...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012
DOT National Transportation Integrated Search
2012-11-12
This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013
DOT National Transportation Integrated Search
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...
Supply Chain-based Solution to Prevent Fuel Tax Evasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzese, Oscar; Capps, Gary J; Daugherty, Michael
The primary source of funding for the United States transportation system is derived from motor fuel and other highway use taxes. Loss of revenue attributed to fuel-tax evasion has been assessed to be somewhere between $1 billion per year, or approximately 25% of the total tax collected. Any solution that addresses this problem needs to include not only the tax-collection agencies and auditors, but also the carriers transporting oil products and the carriers customers. This paper presents a system developed by the Oak Ridge National Laboratory for the Federal Highway Administration which has the potential to reduce or eliminate manymore » fuel-tax evasion schemes. The solution balances the needs of tax-auditors and those of the fuel-hauling companies and their customers. The technology was deployed and successfully tested during an eight-month period on a real-world fuel-hauling fleet. Day-to-day operations of the fleet were minimally affected by their interaction with this system. The results of that test are discussed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coykendall, R.E.; Curry, J.K.; Domke, A.E.
1976-06-01
Economic studies were conducted for three general fuel-conserving options: (1) improving fuel-consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel-efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22%more » from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops. (Author) (GRA)« less
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
1975 Automotive Characteristics Data Base
DOT National Transportation Integrated Search
1976-10-01
A study of automobile characteristics as a supportive tool for auto energy consumption, fuel economy monitoring, and fleet analysis studies is presented. This report emphasizes the utility of efficient data retrieval methods in fuel economy analysis,...
DOT National Transportation Integrated Search
2009-06-01
The U.S. transportation sector relies almost exclusively on oil; as a result, it causes about a third of the nations greenhouse gas emissions. Advanced technology vehicles powered by alternative fuels, such as electricity and ethanol, are one way ...
Development of Hot Exhaust Emission Factors for Iranian-Made Euro-2 Certified Light-Duty Vehicles.
Banitalebi, Ehsan; Hosseini, Vahid
2016-01-05
Emission factors (EFs) are fundamental, necessary data for air pollution research and scenario implementation. With the vision of generating national EFs of the Iranian transportation system, a portable emission measurement system (PEMS) was used to develop the basic EFs for a statistically significant sample of Iranian gasoline-fueled privately owned light duty vehicles (LDVs) operated in Tehran. A smaller sample size of the same fleet was examined by chassis dynamometer (CD) bag emission measurement tests to quantify the systematic differences between the PEMS and CD methods. The selected fleet was tested over four different routes of uphill highways, flat highways, uphill urban streets, and flat urban streets. Real driving emissions (RDEs) and fuel consumption (FC) rates were calculated by weighted averaging of the results from each route. The activity of the fleet over each route type was assumed as a weighting factor. The activity data were obtained from a Tehran traffic model. The RDEs of the selected fleet were considerably higher than the certified emission levels of all vehicles. Differences between Tehran real driving cycles and the New European Driving Cycle (NEDC) was attributed to the lower loading of NEDC. A table of EFs based on RDEs was developed for the sample fleet.
Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety;more » and bibliography.« less
Natural Gas Vehicle Cylinder Safety, Training and Inspection Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hank Seiff
2008-12-31
Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators andmore » training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.« less
The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massara, Simone; Tetart, Philippe; Lecarpentier, David
2006-07-01
The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less
The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods
DOT National Transportation Integrated Search
2009-08-04
In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...
Self-Scrubbing Coal -- an integrated approach to clean air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, K.E.
1997-12-31
Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceedingmore » boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaClair, Tim; Gao, Zhiming; Fu, Joshua
Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less
LaClair, Tim; Gao, Zhiming; Fu, Joshua; ...
2014-12-01
Quantifying the fuel savings and emissions reductions that can be achieved from truck fuel efficiency technologies for a fleet's specific usage allows the fleet to select a combination of technologies that will yield the greatest operational efficiency and profitability. An accurate characterization of usage for the fleet is critical for such an evaluation; however, short-term measured drive cycle data do not generally reflect overall usage very effectively. This study presents a detailed analysis of vehicle usage in a commercial vehicle fleet and demonstrates the development of a short-duration synthetic drive cycle with measured drive cycle data collected over an extendedmore » period of time. The approach matched statistical measures of the vehicle speed with acceleration history and integrated measured grade data to develop a compressed drive cycle that accurately represents total usage. Drive cycle measurements obtained during a full year from six tractor trailers in normal operations in a less-than-truckload carrier were analyzed to develop a synthetic drive cycle. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. These drive cycle and mass data were analyzed with a tractive energy analysis to quantify the benefits in terms of fuel efficiency and reduced carbon dioxide emissions that can be achieved on Class 8 tractor trailers by using advanced efficiency technologies, either individually or in combination. Although differences exist between Class 8 tractor trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application. Finally, the methodology employed for generating the synthetic drive cycle serves as a rigorous approach to develop an accurate usage characterization that can be used to effectively compress large quantities of drive cycle data.« less
General aviation activity and avionics survey. Annual summary report, CY 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 10.3 percent of the general aviation fleet. A responses rate of 63.7 percent was obtained. Survey results based upon response but are expanded upward to represent the total population. Survey results revealed that during 1985 an estimatedmore » 34.1 million hours of flying time were logged and 88.7 million operations were performed by the 210,654 active general aviation aircraft in the U.S. fleet. The mean annual flight time per aircraft was 158.2 hours. The active aircraft represented about 77.9 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, engine hours, and miles flown estimates, as well as tables for detailed analysis of the avionics capabilities of the general aviation fleet. New to the report this year are estimates of the number of landings, IFR hours flown, and the cost and grade of fuel consumed by the GA fleet.« less
DOT National Transportation Integrated Search
2012-04-01
Ecodriving is a collection of changes to driving behavior and vehicle maintenance designed to impact fuel consumption and greenhouse gas (GHG) emissions in existing vehicles. Because of its promise to improve fuel economy within the existing fleet, e...
Alternative Fuels Data Center: Biodiesel Fueling Stations
Case Studies California Ramps Up Biofuels Infrastructure Green Fueling Station Powers Fleets in Upstate New York New Hampshire Railway Makes Tracks With Biodiesel More Biodiesel Case Studies | All Case Studies Publications 2016 Vehicle Technologies Market Report Biodiesel Handling and Use Guide (Fifth
Tracking costs of alternatively fueled buses in Florida - phase II.
DOT National Transportation Integrated Search
2013-04-01
The goal of this project is to continue collecting and reporting the data on the performance and costs of alternatively fueled public transit vehicles in the state in a consistent manner in order to keep the Bus Fuels Fleet Evaluation Tool (BuFFeT) c...
Dallmann, Timothy R; Harley, Robert A; Kirchstetter, Thomas W
2011-12-15
Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NO(x)) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NO(x) emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.
Alternative Fuel Vehicle Publications | Transportation Research | NREL
from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters Particle Filters. Teresa Alleman, Leslie Eudy, Matt Miyasato, Adewale Oshinuga, Scott Allison, Tom Corcoran
Ultra-Low Sulfur Gasoline Emissions Study
Understanding the effects of gasoline sulfur level on the in-use fleet is important for assessing emissions inventories and impacts of future policy decisions. Test fuels were two non-ethanol gasolines with properties typical of certification fuel.
49 CFR 624.3 - Eligible activities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... clean fuel, biodiesel, hybrid electric, or zero emissions technology buses that exhibit equivalent or superior emissions reductions to existing clean fuel or hybrid electric technologies. (4) The Federal share...) Batteries; (v) Alcohol-based fuels; (vi) Hybrid electric; (vii) Fuel cells; (viii) Clean diesel, to the...
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88...
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpt. B, Tables Tables to Subpart B of Part 88...
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpart B, Tables Tables to Subpart B of Part 88...
40 CFR Appendix - Tables to Subpart B of Part 88
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Tables to Subpart B of Part 88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES California Pilot Test Program State opt-in for the California Pilot Test Program. Pt. 88, Subpart B, Tables Tables to Subpart B of Part 88...
75 FR 1552 - Chemical Facility Anti-Terrorism Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
... Protection Agency RMP--Risk Management Program SSP--Site Security Plan STQ--Screening Threshold Quantity SVA... Protection Agency (EPA) under the Clean Air Act's Risk Management Program (RMP) for counting-- or excluding... Safety, Information, Site Security and Fuels Regulatory Relief Act, Public Law 106-40. Cf. 72 FR 65410...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Recapture of deduction for qualified clean-fuel vehicle property and qualified clean-fuel vehicle refueling property. 1.179A-1 Section 1.179A-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for...
Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL
. Transit Fleets: Current Status 2017, L. Eudy and M. Post (November 2017) Zero Emission Bay Area (ZEBA ) Fuel Cell Bus Demonstration Results: Sixth Report, L. Eudy, M. Post, and M. Jeffers (September 2017 2017) American Fuel Cell Bus Project Evaluation: Third Report, L. Eudy, M. Post, and M. Jeffers (May
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael
In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less
Alternative Fuels Data Center: Natural Gas Vehicle Emissions
, and Policy More Natural Gas Publications | All Publications Tools Vehicle Cost Calculator GREET Fleet Footprint Calculator Heavy-Duty Vehicle Emissions All Tools Vehicle Cost Calculator Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid
Measurement and evaluation of fuels and technologies for passenger rail service in North Carolina.
DOT National Transportation Integrated Search
2012-08-01
The purpose of this project is to measure a baseline for fuel use and emission rates on the rebuilt or replaced engines on each locomotive in the NCDOT Rail Division fleet, using ultra-low sulfur diesel (ULSD) fuel; measure real-world, in-use over...
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010
DOT National Transportation Integrated Search
2010-11-11
This past year has been one of transition for the introduction of fuel cell transit buses. The existing generation of fuel cell buses from Van Hool and UTC Power has continued to operate in service at three transit agencies. At the same time, a new g...
On-road vehicle emission control in Beijing: past, present, and future.
Wu, Ye; Wang, Renjie; Zhou, Yu; Lin, Bohong; Fu, Lixin; He, Kebin; Hao, Jiming
2011-01-01
Beijing, the capital of China, has experienced rapid motorization since 1990; a trend that is likely to continue. The growth in vehicles and the corresponding emissions create challenges to improving the urban air quality. In an effort to reduce the impact of vehicle emissions on urban air quality, Beijing has adopted a number of vehicle emission control strategies and policies since the mid 1990 s. These are classified into seven categories: (1) emission control on new vehicles; (2) emission control on in-use vehicles; (3) fuel quality improvements; (4) alternative-fuel and advanced vehicles; (5) economic policies; (6) public transport; and (7) temporal traffic control measures. Many have proven to be successful, such as the Euro emission standards, unleaded gasoline and low sulfur fuel, temporal traffic control measures during the Beijing Olympic Games, etc. Some, however, have been failures, such as the gasoline-to-LPG taxi retrofit program. Thanks to the emission standards for new vehicles as well as other controls, the fleet-average emission rates of CO, HC, NO(X), and PM(10) by each major vehicle category are decreasing over time. For example, gasoline cars decreased fleet-average emission factors by 12.5% for CO, 10.0% for HC, 5.8% for NO(X), and 13.0% for PM(10) annually since 1995, and such a trend is likely to continue. Total emissions for Beijing's vehicle fleet increased from 1995 to 1998. However, they show a clear and steady decrease between 1999 and 2009. In 2009, total emissions of CO, HC, NO(X), and PM(10) were 845,000 t, 121,000 t, 84,000 t, and 3700 t, respectively; with reductions of 47%, 49%, 47%, and 42%, relative to 1998. Beijing has been considered a pioneer in controlling vehicle emissions within China, similar to the role of California to the U.S. The continued rapid growth of vehicles, however, is challenging Beijing's policy-makers.
Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean Cities provides
Alternative Fuels Data Center: Clean Cities Helps National Parks Model
Sustainable Transportation Clean Cities Helps National Parks Model Sustainable Transportation to someone by E-mail Share Alternative Fuels Data Center: Clean Cities Helps National Parks Model Sustainable Transportation on Facebook Tweet about Alternative Fuels Data Center: Clean Cities Helps National
Technological growth of fuel efficiency in european automobile market 1975–2015
Hu, Kejia; Chen, Yuche
2016-08-29
This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less
Technological growth of fuel efficiency in european automobile market 1975–2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Kejia; Chen, Yuche
This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less
The Key to Greener Fleets - Continuum Magazine | NREL
heavy-duty vehicles. Photo by Dennis Schroeder, NREL Green is more than a color of paint for truck of hybridization. Photo by Dennis Schroeder, NREL One popular tool that NREL has developed is Fleet being run on the chassis dynamometer at the ReFUEL Lab. Photo by Dennis Schroeder, NREL NREL's
Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve
example, is often required for all drivers. Some corporate policies specify maximum driving speeds for lists of equipment or set limitations on the amount of cargo carried in a vehicle. For example, to vehicles needed for routes. For example, fleets may make certain high-traffic routes off limits during
Alternative Fuels Data Center: Memorandums of Understanding-Broadening
to more affordable NGVs for government fleets. In Oklahoma, for example, the post-RFP cost of a Dodge commented. In another example, the Oklahoma Secretary of Energy and Environment held a series of town hall releasing NGV models and providing additional options for consumers and fleets alike. For example, General
Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery
AddThis.com... May 24, 2013 CNG Fleets Aid in Superstorm Recovery " They were working around the clock aftermath, helping with recovery efforts. "They were working around the clock," said Rita Ebert accelerating. As part of GLICCC's efforts to build on the momentum, the coalition is now working with the New
An Integrated Design Approach for Evaluating the Utility and Cost of a Fleet
2015-04-29
biodiesel vehicles. Again the variety of vehicles was small, and the cost was restricted to only operational cost (maintenance, repair and fuel). Fu and...and cost metrics associated with a diesel to biodiesel fleet transition”. Energy Policy, 38(11, SI), NOV, pp. 7451–7456. [15] Fu, L., and Ishkhanov, G
The causes and effects of the Alternative Motor Fuels Act
NASA Astrophysics Data System (ADS)
Liu, Yimin
The corporate average fuel economy (CAFE) standard is the major policy tool to improve the fleet average miles per gallon of automobile manufacturers in the U.S. The Alternative Motor Fuels Act (AMFA) provides special treatment in calculating the fuel economy of alternative fuel vehicles to give manufacturers CAFE incentives to produce more alternative fuel vehicles. AMFA has as its goals an increase in the production of alternative fuel vehicles and a decrease in gasoline consumption and greenhouse gas emissions. This dissertation examines theoretically the effects of the program set up under AMFA. It finds that, under some conditions, this program may actually increase gasoline consumption and greenhouse gas emissions. The dissertation also uses hedonic techniques to examine whether the Alternative Motor Fuels Act (AMFA) has a significant effect on the implicit price of fuel economy and whether the marginal value of vehicle fuel efficiency changes over time. It estimates the change of implicit price in miles per gallon after the production of alternative fuel vehicles (AFVs). Results indicate that every year consumers may evaluate vehicle fuel economy differently, and that since AFVs came to the market, the marginal value of fuel economy from specific companies producing AFVs has decreased. This finding suggests that since the AMFA provides extra Corporate Average Fuel Economy (CAFE) credit for those automakers producing AFVs, the automakers can take advantage of the incentive to produce more profitable conventional vehicles and meet CAFE standards without improving the fleet fuel economy. In this way, manufacturers who produce AFVs are willing to offer a lower price for the fuel economy under the AMFA. Additionally, this paper suggests that the flexible fuel vehicles (FFVs) on the market are not significantly more expensive than comparable conventional vehicles, even if FFVs are also able to run on an alternative fuel and may cost more than conventional vehicles. In other words, consumers may not notice the difference between flexible fuel vehicles and conventional vehicles, or are not willing to pay higher prices for FFVs of the same make and model. When the U.S. House of Representatives passed the Alternative Fuels Motor Act (AMFA) in 1987, the representatives who did not vote outnumbered those who opposed the law. This dissertation uses a bivariate probit model with sample selection to study congressmen's two-step decisions --- whether to vote and then how to vote --- on the bill. Theories of political decision-making are examined and tested by the two-stage congressmen voting procedure, which confirms constituent economic interests, congressmen ideology and interest groups' contributions play important roles in congressmen's decision-making on economic policies. Furthermore, it suggests that ignoring congressmen not voting may lead to biased conclusions or inaccurate estimation of the influences of some factors. This study also compares the results from the two-step process with the results from the sample of congressmen who voted, and calculates the marginal effects bound of every factor on the probability of passing the AMFA.
Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory
rises above set safe levels. However, even if conditions result in a fuel release, an ignition source vehicle tanks are all equipped with PRDs to ensure safe levels of LPG pressure in the tanks, and we are practices for OPDs to ensure they work properly. The US DOE Clean Cities (DOE-CC) program is working with