Sample records for cleaning solvent d-limonene

  1. Compatibility of Halthane 88-3 urethane adhesive with the replacement cleaning solvent D-Limonene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMay, J.D.; Mendoza, B.

    1991-08-01

    D-Limonene, (R)1-methyl-4-isopropenyl-1-cyclohexene, has been identified as a leading replacement for chlorinated solvents traditionally used to clean electrical assemblies and critical components in some phases of weapons production. Unfortunately, d-limonene has a much lower vapor pressure than the chlorinated solvents if replaces (<2 torr at ambient). This makes its complete elimination from cleaned subassemblies potentially difficult, and gives rise to concerns about the compatibility of d-limonene with materials in the warhead. During the past year many WR polymers and adhesives have been surveyed for their compatibility with d-limonene. Preliminary test results obtained at Sandia (Albuquerque) and Allied-Signal (KCD) showed that Aluminum/Halthanemore » 88-3/Aluminum joints were destroyed during exposure to saturated d-limonene vapor. The cause of bond failure appeared to be d-limonene induced swelling of the Halthane polymer. This report describes recent work performed at LLNL to study the swelling behavior and bond strength degradation of Halthane 88-3 resulting from exposure to d-limonene vapor.« less

  2. Aging of D-limonene-cleaned assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somer, T.A.

    1994-04-01

    The performance of 2000 electronic circuit variables was monitored throughout a 5000-hour exposure to + 160{degrees}F. the 2000 variables involve 36 electronic assemblies, cleaned with various solvents, including d-limonene, as a replacement for TCE. The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at + 160{degrees}F, one was cleaned in TCE, one was cleaned in d-limonene, and one was kept in a saturated d-limonene atmosphere. No performance degradation was observed with any of the groups, including the worst case exposure in a saturated d-limonene atmosphere.

  3. Aging of d-Limonene-cleaned assemblies. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somer, T.A.

    1995-08-01

    The performance of 1600 electronic circuit variables was monitored throughout an 8000-hour exposure to +160{degrees}F. The variables involve 36 electronic assemblies, cleaned with various solvents, including d-Limonene, as a replacement for trichloroethylene (TCE). The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at +160{degrees}F, one was cleaned in TCE, one was cleaned in d-Limonene, and one was kept in a saturated d-Limonene atmosphere. No performance degradation was observed with any of the groups, including the worst-case exposure in a saturated d-Limonene atmosphere.

  4. Partitioning of residual D-limonene cleaner vapor among organic materials in weapons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMay, J.D.

    1993-03-01

    D-limonene is a replacement solvent selected by Sandia and Allied-Signal to clean solder flux from electronics assemblies in firesets and programmers. D-limonene is much slower drying than the solvents it has replaced and this has raised concerns that residual quantities of the cleaner could be trapped in the electronics assemblies and eventually carried into warhead assemblies. This paper describes a study designed to evaluate how vapors from residual d-limonene cleaner would be partitioned among typical organic materials in a Livermore device. The goal was to identify possible compatibility problems arising from the use of d-limonene and, in particular, any interactionsmore » it may have with energetic materials. To predict the partitioning behavior of d-limonene, a simple model was developed and its predictions are compared to the experimental findings.« less

  5. Occupational contact dermatitis caused by D-limonene.

    PubMed

    Pesonen, Maria; Suomela, Sari; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Aalto-Korte, Kristiina

    2014-11-01

    Limonene is widely used as a fragrance substance and solvent in cleansing products. Oxidized limonene is a frequent contact allergen among consumers of cosmetics, personal care products, and scented household cleaning products. Less is known about the sources of occupational exposure and occupational contact dermatitis caused by limonene. To report 14 patients with occupational contact allergy to limonene. The patients were examined in 2008-2013. An in-house preparation of oxidized limonene was patch tested as 3% and 5% in petrolatum from 2008 to August 2010, and after this as 3%, 1% and 0.3% pet. From 2012 onwards, a commercial test substance of limonene hydroperoxides was also used. We assessed the patients' occupational and domestic exposure to limonene. Occupational limonene allergy was observed in workers who used limonene-containing machine-cleaning detergents and hand cleansers, and in workers who used limonene-containing surface cleaners and dishwashing liquids similar to those used by consumers. In 3 cases, the occupational limonene allergy resulted from work-related use of limonene-containing, leave-on cosmetic products. Limonene is a frequent occupational sensitizer in hand cleansers and cleaning products. Occupational limonene contact allergy may also be caused by exposure to cosmetic products scented with limonene. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Non-aqueous cleaning solvent substitution

    NASA Technical Reports Server (NTRS)

    Meier, Gerald J.

    1994-01-01

    A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of AlliedSignal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, was selected as the solvent of choice, and it was found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally-safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.

  7. Occupational contact dermatitis to a limonene-based solvent in a histopathology technician.

    PubMed

    Foti, Caterina; Zambonin, Carlo G; Conserva, Anna; Casulli, Claudia; D'Accolti, Lucia; Angelini, Gianni

    2007-02-01

    Recently, D-limonene-based solvents are used as a safe alternative to xylene for histological and cytological application to dissolve paraffin. We report the case of a histopathology technician with a recalcitrant hand contact dermatitis strictly related to the use of a limonene-based solvent agent. Patch tests with SIDAPA (Italian Society of Allergological, Professional and Environmental Dermatology) standard series, limonene-based solvent used by the patient and D- and L-limonene (both oxidized and nonoxidized form) and with Giemsa and methylene blue stains were performed. Patch testing gave positive results to oxidized D- and L-limonene. The patient retired from work and promptly improved and healed the hand eczema. Subsequently, the potential occurrence of limonene oxidation products in the incriminated preparation was investigated using gas chromatography-mass spectrometry. While patch test showed positive reaction to oxidized limonene, chemical analysis failed to detect oxidized limonene in the preparations used by the patient. Considering the strict relation between the use of the preparations and the appearance of symptoms, we can assume that oxidized limonene may be produced during the handling of limonene-based products, especially in the presence of oxidants stains, frequently used in histological laboratories.

  8. Thixotropic Low-Solvent, Non-Hap Wheel Well Cleaner

    DTIC Science & Technology

    1999-09-28

    cleaning composition for cleaning aircraft wheel wells. The cleaning composition broadly comprises from about 0.1 to about 15% of a D- limonene composition...broadly comprises from about 0.1 to about 15% of a D- limonene composition, containing less than 0.5% of a stabilizing anti-oxidant acting as a solvent...well as effective from a cleaning 2Q ß ;s a further object of the present invention to provide a standpoint. D- limonene , a by-product of the

  9. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  10. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOEpatents

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  11. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOEpatents

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  12. The evaluation of potential limonene scavengers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, R.; Ebert, D.; Shepodd, T.J.

    1995-01-01

    This work is the study of different scavengers of limonene. Limonene is a citrus-based, low toxicity, hydrocarbon solvent for cleaning circuit boards and other parts. Though almost all limonene evaporates after cleaning procedures, trace residual limonene would be a concern if allowed to migrate freely through a sealed system. This work was charted to investigate materials that would effectively scavenge and permanently immobilize trace limonene. The requirements of a successful scavenger are the following: it must remove >90% of 30 mg/l limonene from a sealed volume with 3 months, at 20--25 C; it must not release any volatiles over prolongedmore » aging; it must be packaged such that limonene vapors can access the scavenger, but not such that the scavenging medium can migrate; and it must operate in the presence of water, oxygen, pentane, toluene, and carbon dioxide gases. A number of adsorbents were evaluated. Additionally, a scheme for scavenging limonene by chemical reaction was investigated at Sandia. This attempt was not successful. The details of this investigation are found at the end of this report.« less

  13. Determination of d-limonene in adipose tissue by gas chromatography-mass spectrometry

    PubMed Central

    Miller, Jessica A.; Hakim, Iman A.; Thomson, Cynthia; Thompson, Patricia; Chow, H-H. Sherry

    2008-01-01

    We developed a novel method for analyzing d-limonene levels in adipose tissue. Fat samples were subjected to saponification followed by solvent extraction. d-Limonene in the sample extract was analyzed using gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring. Linear calibration curves were established over the mass range of 79.0-2,529 ng d-limonene per 0.1 grams of adipose tissue. Satisfactory within day precision (RSD 6.7 to 9.6%) and accuracy (% difference of −2.7 to 3.8%) and between day precision (RSD 6.0 to 10.7%) and accuracy (% difference of 1.8 to 2.6%) were achieved. The assay was successfully applied to human fat biopsy samples from a d-limonene feeding trial. PMID:18571481

  14. d-Limonene-induced male rat-specific nephrotoxicity: Evaluation of the association between d-limonene and alpha 2u-globulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman-McKeeman, L.D.; Rodriguez, P.A.; Takigiku, R.

    1989-06-15

    d-Limonene is a naturally occurring monoterpene, which when dosed orally, causes a male rat-specific nephrotoxicity manifested acutely as the exacerbation of protein droplets in proximal tubule cells. Experiments were conducted to examine the retention of (/sup 14/C)d-limonene in male and female rat kidney, to determine whether d-limonene or one or more of its metabolites associates with the male rat-specific protein, alpha 2u-globulin, and if so, to identify the bound material. The results indicated that, 24 hr after oral administration of 3 mmol d-limonene/kg, the renal concentration of d-limonene equivalents was approximately 2.5 times higher in male rats than in femalemore » rats. Equilibrium dialysis in the presence or absence of sodium dodecyl sulfate indicated that approximately 40% of the d-limonene equivalents in male rat kidney associated with proteins in a reversible manner, whereas no significant association was observed between d-limonene equivalents and female rat kidney proteins. Association between d-limonene and male rat kidney proteins was characterized by high-performance gel filtration and reverse-phase chromatography. Gel filtration HPLC indicated that d-limonene in male rat kidney is associated with a protein fraction having a molecular weight of approximately 20,000. Separation of alpha 2u-globulin from other kidney proteins by reverse-phase HPLC indicated that d-limonene associated with a protein present only in male rat kidney which was definitively identified as alpha 2u-globulin by amino acid sequencing. The major metabolite associated with alpha 2u-globulin was d-limonene-1,2-oxide. Parent d-limonene was also identified as a minor component in the alpha 2u-globulin fraction.« less

  15. A mechanistic study of limonene oxidation products and pathways following cleaning activities

    NASA Astrophysics Data System (ADS)

    Carslaw, Nicola

    2013-12-01

    Indoor air pollution has caused increasing concern since the 1970s, when the advent of stricter energy efficiency measures lead to increased reports of building related symptoms. Cleaning activities have been linked to adverse health effects indoors, although it is unclear which of the components of cleaning products cause these reported health effects. This paper uses a detailed chemical model for indoor air chemistry, to identify the species formed at the highest concentrations following use of a limonene-based cleaning product. The explicit nature of the chemical mechanism also permits the key pathways to their formation to be identified. The results show that the key species in terms of gas-phase concentration are multi-functional carbonyl species including limonaldehyde, 4-acetyl-1-methyl-1-cyclohexene and other dicarbonyl species. The particle-phase was dominated by peroxide species. The predicted gas-phase concentrations for three limonene-oxidation products were compared to recently published human reference values, but found not to be high enough to cause concern for typical indoor conditions, or under high indoor ozone conditions. However, cleaning products contain a range of terpenes other than limonene, which could also produce some of the secondary products identified here, as well as more common species such as formaldehyde, glyoxal and hydrogen peroxide. A mechanistic pathway analysis shows that the secondary products formed through limonene oxidation indoors depend critically on the competition between ozone and hydroxyl radicals, such that indoor pollutant concentrations and composition could vary widely in different locations for a nominally similar residence and indoor activities. Future studies should focus on aiming to measure multi-functional carbonyl species indoors to help validate models, whilst human reference values are needed for many more relevant species indoors.

  16. Improved synthesis of phosphatidylserine using bio-based solvents, limonene and p-cymene.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Du, Wen-Ying; Wang, Zhao-Yu

    2015-01-01

    The bio-based solvents limonene and p-cymene obtained from citrus waste were innovatively employed as the reaction media for enzymatic synthesis of phosphatidylserine. (R)-(+)-Limonene, which is available in large quantities from citrus waste, and its close derivative p-cymene, are promising green solvents. Herein, they were successfully employed as reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine for phosphatidylserine synthesis for the first time. A 95 % yield of phosphatidylserine was achieved after 12 h and the side-reactions (which are the undesirable hydrolysis of phosphatidylcholine and phosphatidylserine) did not happen. This work presents an alternative strategy for preparing phosphatidylserine that possesses obvious advantages over the traditional processes in terms of high efficiency combined with environmental friendliness.

  17. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  18. d-Limonene

    Integrated Risk Information System (IRIS)

    d - Limonene ; CASRN 5989 - 27 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  19. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress.

    PubMed

    Liu, Jidong; Zhu, Yibo; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2013-07-01

    In the present study, we investigated the mode of cell response induced by D-limonene in Saccharomyces cerevisiae. D-limonene treatment was found to be accompanied by intracellular accumulation of reactive oxygen species (ROS). Since ROS impair cell membranes, an engineered strain with enhanced membrane biosynthesis exhibited a higher tolerance to D-limonene. Subsequent addition of an ROS scavenger significantly reduced the ROS level and alleviated cell growth inhibition. Thus, D-limonene-induced ROS accumulation plays an important role in cell death in S. cerevisiae. In D-limonene-treated S. cerevisiae strains, higher levels of antioxidants, antioxidant enzymes, and nicotinamide adenine dinucleotide phosphate (NADPH) were synthesized. Quantitative real-time PCR results also verified that D-limonene treatment triggered upregulation of genes involved in the antioxidant system and the regeneration of NADPH at the transcription level in S. cerevisiae. These data indicate that D-limonene treatment results in intracellular ROS accumulation, an important factor in cell death, and several antioxidant mechanisms in S. cerevisiae were enhanced in response to D-limonene treatment.

  20. NIOSH Health Hazard Evaluation for d-Limonene

    DTIC Science & Technology

    1993-11-01

    of natural hydrocarbons referred to as terpenes (d-limonene is a monoterpene ). The other form of limonene is called 1-limonene, and a mixture of the...as a flavor and fragrance additive in perfumes, soaps, foods, chewing gum and beverages, and is the most widely distribiit. monoterpene ." 4’ The use of...effect and skin irritation of monocyclic monoterpenes . Drug Des Deliv 6:229-238. 29. Hooser SB, Beasley VR, Everitt J1 [1986]. Effects of an

  1. Development of a Replacement for Trichloroethylene in the Two-Stage Cleaning Process

    DTIC Science & Technology

    1992-12-01

    Auger-Determined Carbon/Iron Ratios of Set 4 ..................... 15 3 Abstract Isopropyl alcohol, d- limonene , and a synthetic mineral spirits were...found to be as clean as those alcohol, d- limonene , and a synthetic cleaned by the standard two-stage mineral spirits,- were chosen to be process...selected, therefore, was to soil test specimens with Another candidate was d- limonene . It has representative soils, clean them by the been extensively

  2. Histopathological and biochemical assessment of d-limonene-induced liver injury in rats.

    PubMed

    Ramos, Carlos Alberto F; Sá, Rita de Cássia da S; Alves, Mateus F; Benedito, Rubens B; de Sousa, Damião P; Diniz, Margareth de Fátima F M; Araújo, Maria Salete T; de Almeida, Reinaldo N

    2015-01-01

    The aim of the present work was to develop a biochemical, histologic and immunohistochemical study about the potential hepatotoxic effect of d-limonene - a component of volatile oils extracted from citrus plants. Blood alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) from d-limonene-treated animals were determined and compared to morphologic hepatic lesions in order to investigate the possible physiopathologic mechanisms involved in the liver toxicity, in experimental animals treated with d-limonene. Wistar rats were randomly divided into seven groups: two control groups (untreated or receiving only vehicle, tween-80); one positive control (vehicle); two experimental groups treated with d-limonene at doses of 25 mg/kg/day and 75 mg/kg/day for 45 days, and two other groups treated with the same doses for 30 days and kept under observation during 30 more days. Biochemical data showed significant reduction in ALT levels in the animals treated with 75 mg/kg of d-limonene. Histological analysis revealed some hepatocyte morphological lesions, including hydropic degeneration, microvesicular steatosis and necrosis, Kupffer cell hyperplasia and incipient fibrosis. By immunohistochemistry, influx of T (CD3+) and cytotoxic (CD8+) lymphocytes was observed in the rats treated with d-limonene at both dose levels. In conclusion, it is possible that d-limonene has been directly responsible for hepatic parenchymal and matrix damage following subchronic treatment with d-limonene.

  3. 40 CFR Appendix A to Subpart T of... - Test of Solvent Cleaning Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... solvent cleaning machine? A. When they are clean B. At any time C. When dripping stops D. Either A or C is.... How do you ensure that parts enter and exit the solvent cleaning machine at the speed required in the.... Measure the time it takes the parts to travel a measured distance. ___ 3. Identify the sources of air...

  4. Water accelerated transformation of d-limonene induced by ultraviolet irradiation and air exposure.

    PubMed

    Li, Li Jun; Hong, Peng; Jiang, Ze Dong; Yang, Yuan Fan; Du, Xi Ping; Sun, Hao; Wu, Li Ming; Ni, Hui; Chen, Feng

    2018-01-15

    d-Limonene is a fragrant chemical that widely exists in aromatic products. Isotopic labelling of water molecules plus GC-MS and GC-PCI-Q-TOF analyses were used to investigate the influence of water molecules on chemical transformation of d-limonene induced by UV irradiation and air exposure. The results showed that the synergistic effect of UV irradiation, air exposure and water presence could facilitate d-limonene transformation into the limonene oxides: p-mentha-2,8-dienols, hydroperoxides, carveols, l-carvone and carvone oxide. UV irradiation, air exposure, or water alone, however, caused negligible d-limonene transformation. With the aid of isotopic labelling of water and oxygen molecules, it was found that water molecules were split into hydrogen radicals and hydroxyl radicals, and the hydrogen radicals, in particular, promoted the transformation reactions. This study has elucidated the mechanism and factors that influence the transformation of d-limonene, which will benefit industries involved in production and storage of d-limonene-containing products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Contact Allergy to Hydroperoxides of Linalool and D-Limonene in a US Population.

    PubMed

    Nath, Neel Som; Liu, Beiyu; Green, Cynthia; Atwater, Amber Reck

    Linalool and D-limonene are common fragrance ingredients that readily oxidize on exposure to air. The resulting hydroperoxides of linalool and D-limonene have been shown to have high frequencies of positive patch test reactions in several European and international studies. The aim of the study was to investigate the prevalence of contact allergy to the hydroperoxides of linalool and D-limonene in a US population. In this retrospective study, 103 patients with suspected fragrance allergy were patch tested to linalool 10% petrolatum (pet), hydroperoxides of linalool 1% pet, D-limonene 10% pet, and/or the hydroperoxides of D-limonene 0.3% pet between July 9, 2014, and October 25, 2016. In this study, the frequency of positive patch test reactions to the hydroperoxides of linalool is 20% (19/96), and the frequency of positive reactions to the hydroperoxides of D-limonene is 8% (7/90). These high frequencies suggest that patch testing to the hydroperoxides of linalool and limonene should be performed in all patients with suspected fragrance allergy.

  6. d-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer.

    PubMed

    Yu, Xiao; Lin, Hongyan; Wang, Yu; Lv, Wenwen; Zhang, Shuo; Qian, Ying; Deng, Xiaobei; Feng, Nannan; Yu, Herbert; Qian, Biyun

    2018-01-01

    d-limonene is a plant extract with widespread application, and it has been recently reported to have antiproliferative and proapoptotic effects on cancer cells. However, the mechanisms by which d-limonene achieves these effects, especially in lung cancer, are not entirely clear. Therefore, the goal of this study was to examine the effects of d-limonene on lung cancer and explore its mechanisms of action. We examined the therapeutic effects of d-limonene on lung cancer cells and in a xenograft animal model by characterizing its effects on the pathways of apoptosis and autophagy. Cell proliferation was measured using the Cell Counting Kit-8, and apoptosis was determined by flow cytometric analysis. Levels of LC3 puncta, an autophagy marker, were analyzed by laser scanning confocal microscopy. Autophagy and apoptosis-related gene expression were assessed by real-time quantitative polymerase chain reaction and Western blot. d-limonene inhibited the growth of lung cancer cells and suppressed the growth of transplanted tumors in nude mice. Expression of apoptosis and autophagy-related genes were increased in tumors after treatment with d-limonene. Furthermore, the use of chloroquine, an autophagy inhibitor, and knockdown of the atg5 gene, suppressed the apoptosis induced by d-limonene. d-limonene may have a therapeutic effect on lung cancer as it can induce apoptosis of lung cancer cells by promoting autophagy.

  7. Effects of d- and l-limonene on the pregnant rat myometrium in vitro.

    PubMed

    Hajagos-Tóth, Judit; Hódi, Ágnes; Seres, Adrienn B; Gáspár, Róbert

    2015-10-01

    To study the effects of d- and l-limonene on pregnant rat myometrial contractility in vitro, and investigate how these effects are modified by other agents. D- and l-limonene (10(-13)-10(-8) M) caused myometrial contraction in a dose-dependent manner. Contractions of uterine rings from 22-day-pregnant rats were measured in an organ bath in the presence of d- or l-limonene (10(-13)-10(-8) M) and nifedipine (10(-8) M), tetraethyl-ammonium (10(-3) M), theophylline (10(-5) M), or paxilline (10(-5) M). Uterine cyclic adenosine monophosphate (cAMP) level was detected by enzyme immunoassay. Oxidative damage was induced by methylglyoxal (3×10(-2) M) and the alteration was measured via noradrenaline (1×10(-9) to 3×10(-5) M) -induced contractions. Pre-treatment with nifedipine (10(-8) M), tetraethylammonium (10(-3) M), and theophylline (10(-5) M) attenuated the contracting effect of d- and l-limonene, while in the presence of paxilline (10(-5) M) d- and l-limonene were ineffective. The two enantiomers decreased the myometrial cAMP level, but after paxilline pretreatment the cAMP level was not altered compared with the control value. Additionally, l-limonene (10(-6) M) diminished consequences of oxidative damage caused by methylglyoxal (3×10(-2) M) on contractility, whereas d-limonene was ineffective. Our findings suggest that l-limonene has an antioxidant effect and that both d-and l-limonene cause myometrial contraction through activation of the A2A receptor and opening of the voltage-gated Ca(2+) channel. It is possible that limonene-containing products increase the pregnant uterus contractility and their use should be avoided during pregnancy.

  8. Effects of d- and l-limonene on the pregnant rat myometrium in vitro

    PubMed Central

    Hajagos-Tóth, Judit; Hódi, Ágnes; Seres, Adrienn B.; Gáspár, Róbert

    2015-01-01

    Aim To study the effects of d- and l-limonene on pregnant rat myometrial contractility in vitro, and investigate how these effects are modified by other agents. D- and l-limonene (10−13-10−8 M) caused myometrial contraction in a dose-dependent manner. Methods Contractions of uterine rings from 22-day-pregnant rats were measured in an organ bath in the presence of d- or l-limonene (10−13-10−8 M) and nifedipine (10−8 M), tetraethyl-ammonium (10−3 M), theophylline (10−5 M), or paxilline (10−5 M). Uterine cyclic adenosine monophosphate (cAMP) level was detected by enzyme immunoassay. Oxidative damage was induced by methylglyoxal (3 × 10−2 M) and the alteration was measured via noradrenaline (1 × 10−9 to 3 × 10−5 M) -induced contractions. Results Pre-treatment with nifedipine (10−8 M), tetraethylammonium (10−3 M), and theophylline (10−5 M) attenuated the contracting effect of d- and l-limonene, while in the presence of paxilline (10−5 M) d- and l-limonene were ineffective. The two enantiomers decreased the myometrial cAMP level, but after paxilline pretreatment the cAMP level was not altered compared with the control value. Additionally, l-limonene (10−6 M) diminished consequences of oxidative damage caused by methylglyoxal (3 × 10−2 M) on contractility, whereas d-limonene was ineffective. Conclusion Our findings suggest that l-limonene has an antioxidant effect and that both d-and l-limonene cause myometrial contraction through activation of the A2A receptor and opening of the voltage-gated Ca2+ channel. It is possible that limonene-containing products increase the pregnant uterus contractility and their use should be avoided during pregnancy. PMID:26526880

  9. Green procedure with a green solvent for fats and oils' determination. Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation.

    PubMed

    Virot, Matthieu; Tomao, Valérie; Ginies, Christian; Visinoni, Franco; Chemat, Farid

    2008-07-04

    Here is described a green and original alternative procedure for fats and oils' determination in oleaginous seeds. Extractions were carried out using a by-product of the citrus industry as extraction solvent, namely d-limonene, instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using microwave energy: at first, extractions are attained using microwave-integrated Soxhlet, followed by the elimination of the solvent from the medium using a microwave Clevenger distillation in the second step. Oils extracted from olive seeds were compared with both conventional Soxhlet and microwave-integrated Soxhlet extraction procedures performed with n-hexane in terms of qualitative and quantitative determination. No significant difference was obtained between each extract allowing us to conclude that the proposed method is effective and valuable.

  10. REPLACING SOLVENT CLEANING WITH AQUEOUS CLEANING

    EPA Science Inventory

    The report documents actions taken by Robert Bosch Corp., Charleston, SC, in replacing the cleaning solvents 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and trichloroethylene (TCE) with aqueous solutions. Bosch has succeeded in eliminating all their CFC-113 use and so f...

  11. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats.

    PubMed

    Wang, Xifeng; Li, Gang; Shen, Wei

    2018-01-01

    Stroke is a leading cause of disability and death world-wide and there is currently a lack of effective treatments for acute stroke. D-Limonene is a common natural monocyclic monoterpene possessing various activities. The present study aimed to evaluate the therapeutic efficacy of D-limonene against ischemia-associated cerebral injury in hypertensive SHRsp rats. Although systolic blood pressure was not altered by ischemia, D-Limonene decreased the systolic blood pressure of SHRsp rats following stroke. Induction of stroke resulted in increased escape latency time, decreased time spent in the target quadrant in the probe trial, decreased capacity to distinguish between familiar objects and novel objects, and increased sensory neglect in the SHRsp rat, however these symptoms were significantly inhibited by D-limonene. D-limonene also decreased the cerebral infarct size in the SHRsp rats following stroke. D-Limonene markedly decreased the mRNA expression of interleukin-1β, monocyte chemoattractant protein-1 and cyclooxygenase-2 in SHRsp rats following stroke. The mRNA expression of vascular endothelial growth factor in the brain of SHRsp rats following stroke was significantly increased by D-Limonene. D-Limonene increased the activities of superoxide dismutase and catalase, decreased the malondialdehyde level, increased glutathione content and reduced the DHE-staining in SHRsp rats following stroke. Overall, inhibition of cerebral inflammation, vascular remodeling and antioxidant activities of D-Limonene may be involved in the protective effects against ischemia-induced damage in SHRsp rats. The present study identified D-Limonene as a potential therapeutic candidate for treatment of stroke-associated cerebral and vascular damage under conditions of hypertension.

  12. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.

    PubMed

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y; Rentzepis, Peter M; Yuan, Joshua S

    2016-12-13

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.

  13. Nonflammable, Nonaqueous, Low Atmospheric Impact, High Performance Cleaning Solvents

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    For many years, chlorofluorocarbon (CFC) and chlorocarbon solvents have played an important part in aerospace operations. These solvents found extensive use as cleaning and analysis (EPA) solvents in precision and critical cleaning. However, CFCs and chlorocarbon solvents have deleterious effects on the ozone layer, are relatively strong greenhouse gases, and some are suspect or known carcinogens. Because of their ozone-depletion potential (ODP), the Montreal Protocol and its amendments, as well as other environmental regulations, have resulted in the phaseout of CFC-113 and 1,1,1-trichloroethane (TCA). Although alternatives have been recommended, they do not perform as well as the original solvents. In addition, some analyses, such as the infrared analysis of extracted hydrocarbons, cannot be performed with the substitute solvents that contain C-H bonds. CFC-113 solvent has been used for many critical aerospace applications. CFC-113, also known as Freon (registered) TF, has been used extensively in NASA's cleaning facilities for precision and critical cleaning, in particular the final rinsing in Class 100 areas, with gas chromatography analysis of rinse residue. While some cleaning can be accomplished by other processes, there are certain critical applications where CFC-113 or a similar solvent is highly cost-effective and ensures safety. Oxygen system components are one example where a solvent compatible with oxygen and capable of removing fluorocarbon grease is needed. Electronic components and precision mechanical components can also be damaged by aggressive cleaning solvents.

  14. Release behavior and stability of encapsulated D-limonene from emulsion-based edible films.

    PubMed

    Marcuzzo, Eva; Debeaufort, Frédéric; Sensidoni, Alessandro; Tat, Lara; Beney, Laurent; Hambleton, Alicia; Peressini, Donatella; Voilley, Andrée

    2012-12-12

    Edible films may act as carriers of active molecules, such as flavors. This possibility confers to them the status of active packaging. Two different film-forming biopolymers, gluten and ι-carrageenans, have been compared. D-Limonene was added to the two film formulations, and its release kinetics from emulsion-based edible films was assessed with HS-SPME. Results obtained for edible films were compared with D-limonene released from the fatty matrix called Grindsted Barrier System 2000 (GBS). Comparing ι-carrageenans with gluten-emulsified film, the latter showed more interesting encapsulating properties: in fact, D-limonene was retained by gluten film during the process needed for film preparation, and it was released gradually during analysis time. D-Limonene did not show great affinity to ι-carrageenans film, maybe due to high aroma compound hydrophobicity. Carvone release from the three different matrices was also measured to verify the effect of oxygen barrier performances of edible films to prevent D-limonene oxidation. Further investigations were carried out by FT-IR and liquid permeability measurements. Gluten film seemed to better protect D-limonene from oxidation. Gluten-based edible films represent an interesting opportunity as active packaging: they could retain and release aroma compounds gradually, showing different mechanical and nutritional properties from those of lipid-based ingredients.

  15. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity

    PubMed Central

    Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao

    2015-01-01

    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food. PMID:26441935

  16. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion.

    PubMed

    Zhang, Zijie; Vriesekoop, Frank; Yuan, Qipeng; Liang, Hao

    2014-05-01

    d-Limonene has been considered to be a safer alternative compared to synthetic antimicrobial food additives. However, its hydrophobic and oxidative nature has limited its application in foods. The purpose of this research was to study effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion and develop a novel antimicrobial delivery system by combining the positive effect of these two antibacterial agents at the same time. By the checkerboard method, both the synergistic and additive effects of d-limonene and nisin were found against four selected food-related microorganisms. Then, d-limonene nanoemulsion with or without nisin was prepared by catastrophic phase inversion method, which has shown good droplet size and stability. The positive effects and outstanding antimicrobial activity of d-limonene nanoemulsion with nisin were confirmed by MICs comparison, scanning electron microscopy and determination of cell constituents released. Overall, the research described in the current article would be helpful in developing a more effective antimicrobial system for the production and preservation of foods. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations

    PubMed Central

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y.; Rentzepis, Peter M.; Yuan, Joshua S.

    2016-01-01

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria. PMID:27911807

  18. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine.

    PubMed

    Zahi, Mohamed Reda; El Hattab, Mohamed; Liang, Hao; Yuan, Qipeng

    2017-04-15

    The objective of this research was to investigate the synergism between ε-polylysine and d-limonene and develop a novel nanoemulsion system by merging the positive effect of these two antimicrobial agents. Results from the checkerboard method showed that ε-polylysine and d-limonene exhibit strong synergistic and useful additive effects against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae. In addition, d-limonene nanoemulsion with the inclusion of ε-polylysine was successfully prepared by high pressure homogenizer technology. Its antimicrobial efficiency was compared with pure d-limonene nanoemulsion by measuring the minimal inhibitory concentration, electronic microscope observation and the leakage of the intercellular constituents. The results demonstrated a wide improvement of the antimicrobial activity of d-limonene nanoemulsion following the inclusion of ε-polylysine. Overall, the current study may have a valuable contribution to make in developing a more efficient antimicrobial system in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOEpatents

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-05-04

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  20. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOEpatents

    Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  1. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  2. Tunable d-Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals.

    PubMed

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2018-01-31

    In order to control d-limonene permeability, cellulose nanocrystals (CNC) were used to regulate starch-based film multiscale structures. The effect of sphere-like cellulose nanocrystal (CS) and rod-like cellulose nanocrystal (CR) on starch molecular interaction, short-range molecular conformation, crystalline structure, and micro-ordered aggregated region structure were systematically discussed. CNC aspect ratio and content were proved to be independent variables to control d-limonene permeability via film-structure regulation. New hydrogen bonding formation and increased hydroxypropyl starch (HPS) relative crystallinity could be the reason for the lower d-limonene permeability compared with tortuous path model approximation. More hydrogen bonding formation, higher HPS relative crystallinity and larger size of micro-ordered aggregated region in CS0.5 and CR2 could explain the lower d-limonene permeability than CS2 and CR0.5, respectively. This study provided new insight for the control of the flavor release from starch-based films, which favored its application in biodegradable food packaging and flavor encapsulation.

  3. Use of limonene in countercurrent chromatography: a green alkane substitute.

    PubMed

    Faure, Karine; Bouju, Elodie; Suchet, Pauline; Berthod, Alain

    2013-05-07

    Counter-current chromatography (CCC) is a preparative separation technique working with the two liquid phases of a biphasic liquid system. One phase is used as the mobile phase when the other, the stationary phase, is held in place by centrifugal fields. Limonene is a biorenewable cycloterpene solvent coming from orange peel waste. It was evaluated as a possible substitute for heptane in CCC separations. The limonene/methanol/water and heptane/methanol/water phase diagrams are very similar at room temperature. The double bonds of the limonene molecule allows for possible π-π interactions with solutes rendering limonene slightly more polar than heptane giving small differences in solute partition coefficients in the two systems. The 24% higher limonene density is a difference with heptane that has major consequences in CCC. The polar and apolar phases of the limonene/methanol/water 10/9/1 v/v have -0.025 g/cm(3) density difference (lower limonene phase) compared to +0.132 g/cm(3) with heptane (upper heptane phase). This precludes the use of this limonene system with hydrodynamic CCC columns that need significant density difference to retain a liquid stationary phase. It is an advantage with hydrostatic CCC columns because density difference is related to the working pressure drop: limonene allows one to work with high centrifugal fields and moderate pressure drop. Limonene has the capability to be a "green" alternative to petroleum-based solvents in CCC applications.

  4. Performance of semi-continuous membrane bioreactor in biogas production from toxic feedstock containing D-Limonene.

    PubMed

    Wikandari, Rachma; Youngsukkasem, Supansa; Millati, Ria; Taherzadeh, Mohammad J

    2014-10-01

    A novel membrane bioreactor configuration containing both free and encased cells in a single reactor was proposed in this work. The reactor consisted of 120g/L of free cells and 120g/L of encased cells in a polyvinylidene fluoride membrane. Microcrystalline cellulose (Avicel) and d-Limonene were used as the models of substrate and inhibitor for biogas production, respectively. Different concentrations of d-Limonene i.e., 1, 5, and 10g/L were tested, and an experiment without the addition of d-Limonene was prepared as control. The digestion was performed in a semi-continuous thermophilic reactor for 75 days. The result showed that daily methane production in the reactor with the addition of 1g/L d-Limonene was similar to that of control. A lag phase was observed in the presence of 5g/L d-Limonene; however, after 10 days, the methane production increased and reached a similar production to that of the control after 15 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A green procedure using ozone for Cleaning-in-Place in the beverage industry.

    PubMed

    Nishijima, Wataru; Okuda, Tetsuji; Nakai, Satoshi; Okada, Mitsumasa

    2014-06-01

    Cleaning-in-Place (CIP) in the beverage industry is typically carried out in production lines with alkaline and acidic solutions with detergents. This cleaning not only produces alkaline and acidic wastewater with detergents but also takes significant time. One of the important targets for CIP is adsorbed odorous compounds on gaskets, hence, we have tried to establish a rapid and green CIP process to remove traces of such compounds, especially d-limonene, an odorous component of orange juice, using two approaches; an ozone cleaning method and a change of gasket material from ethylene propylene diene monomer (EPDM) rubber to silicone rubber. By changing the gasket material from EPDM rubber to silicone rubber, the removability of d-limonene by typical alkaline and acidic cleanings with detergents was improved. However, complete removal of 4 mg g(-1) of d-limonene on both EPDM and silicone gaskets could not be achieved even using a series of conventional cleaning procedures that included alkaline and acidic cleaning for 220 min. Ozone treatment dramatically improved the removability of d-limonene, removing 87% from the EPDM gasket at 60 min and 100% from the silicone gasket at 30 min. The combination of the silicone gasket and ozone treatment resulted in the most effective cleaning. The main removal mechanism for ozone treatment was confirmed to be oxidation by molecular ozone. Effectiveness of changing the gasket material from EPDM rubber to silicone rubber in reducing residual amounts of odorous compounds adsorbed on the gaskets was also confirmed for furfural and 4-vinylguaiacol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Green procedure using limonene in the Dean-Stark apparatus for moisture determination in food products.

    PubMed

    Veillet, Sébastien; Tomao, Valérie; Ruiz, Karine; Chemat, Farid

    2010-07-26

    In the past 10 years, trends in analytical chemistry have turned toward the green chemistry which endeavours to develop new techniques that reduce the influence of chemicals on the environment. The challenge of the green analytical chemistry is to develop techniques that meet the request for information output while reducing the environmental impact of the analyses. For this purpose petroleum-based solvents have to be avoided. Therefore, increasing interest was given to new green solvents such as limonene and their potential as alternative solvents in analytical chemistry. In this work limonene was used instead of toluene in the Dean-Stark procedure. Moisture determination on wide range of food matrices was performed either using toluene or limonene. Both solvents gave similar water percentages in food materials, i.e. 89.3+/-0.5 and 89.5+/-0.7 for carrot, 68.0+/-0.7 and 68.6+/-1.9 for garlic, 64.1+/-0.5 and 64.0+/-0.3 for minced meat with toluene and limonene, respectively. Consequently limonene could be used as a good alternative solvent in the Dean-Stark procedure. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803.

    PubMed

    Zhang, Xiu-Zhen; Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-09-01

    This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24-48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou-Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway.

  8. Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803

    PubMed Central

    Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-01-01

    Abstract This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24–48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou–Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway. PMID:25045784

  9. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  10. Evaluation of Solvent Alternatives for Cleaning of Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Biesinger, Paul; Delgado, Rafael; Antin, Neil

    1999-01-01

    The NASA White Sands Test Facility (WSTF) in a joint program with the Naval Sea Systems Command has evaluated a number of solvents as alternatives to the use of chlorofluorocarbons currently utilized for cleaning of oxygen systems. Particular attention has been given to the cleaning of gauges and instrumentation used in oxygen service, since there have been no identified aqueous alternatives. The requirements identified as selection criteria, include toxicity, physical properties consistent with application, flammability, oxygen compatibility, and cleaning ability. This paper provides a summary of results and recommendations for solvents evaluated to date.

  11. 40 CFR 180.1296 - Terpene Constituents α-terpinene, d-limonene and p-cymene, of the Extract of Chenopodium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-limonene and p-cymene, of the Extract of Chenopodium ambrosioides near ambrosioides as Synthetically..., d-limonene and p-cymene, of the Extract of Chenopodium ambrosioides near ambrosioides as...-terpinene, d-limonene and p-cymene, of the Extract of Chenopodiumambrosioides near ambrosioides as...

  12. Oral administration of d-limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans.

    PubMed

    d'Alessio, Patrizia A; Ostan, Rita; Bisson, Jean-François; Schulzke, Joerg D; Ursini, Matilde V; Béné, Marie C

    2013-07-10

    To further explore the anti-inflammatory properties of d-Limonene. A rat model was used to compare evolution of TNBS (2,5,6-trinitrobenzene sulfonic acid)-induced colitis after oral feeding with d-Limonene compared to ibuprofen. Peripheral levels of TNF-α (Tumor Necrosis Factor alpha) were assessed in all animals. Cell cultures of fibroblasts and enterocytes were used to test the effect of d-Limonene respectively on TNFα-induced NF-κB (nuclear factor-kappa B) translocation and epithelial resistance. Finally, plasmatic inflammatory markers were examined in an observational study of diet supplementation with d-Limonene-containing orange peel extract (OPE) in humans. Administered per os at a dose of 10mg/kg p.o., d-Limonene induced a significant reduction of intestinal inflammatory scores, comparable to that induced by ibuprofen. Moreover, d-Limonene-fed rats had significantly lowered serum concentrations of TNF-α compared to untreated TNBS-colitis rats. The anti-inflammatory effect of d-Limonene also involved inhibition of TNFα-induced NF-κB translocation in fibroblast cultures. The application of d-Limonene on colonic HT-29/B6 cell monolayers increased epithelial resistance. Finally, inflammatory markers, especially peripheral IL-6, markedly decreased upon OPE supplementation of elderly healthy subjects submitted or not to 56 days of dietary supplementation with OPE. In conclusion, d-Limonene indeed demonstrates significant anti-inflammatory effects both in vivo and in vitro. Protective effects on the epithelial barrier and decreased cytokines are involved, suggesting a beneficial role of d-Limonene as diet supplement in reducing inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    PubMed

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  14. d-limonene ameliorates diabetes and its complications in streptozotocin-induced diabetic rats.

    PubMed

    Bacanlı, Merve; Anlar, Hatice Gül; Aydın, Sevtap; Çal, Tuğbagül; Arı, Nuray; Ündeğer Bucurgat, Ülkü; Başaran, A Ahmet; Başaran, Nurşen

    2017-12-01

    It is known that diabetes causes some complications including alterations in lipid profile, hepatic enzyme levels but also it causes oxidative stress. Limonene, a major component of Citrus oils, has important health beneficial effects in lowering the level of oxidative stress due to its antioxidant activity. The aim of this study was to investigate the effects of D-limonene on streptozotocin (STZ)-induced diabetes in Wistar albino rats. For this purpose, DNA damage was evaluated by alkaline comet assay. Changes in the activities of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSHPx) and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), total glutathione (GSH), malondialdehyde (MDA), insulin, total bilirubin and BCA protein, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT), high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol and triglyceride were also evaluated. D-limonene treatment was found to significantly decrease DNA damage, GR enzyme activities and MDA levels and significantly increase GSH levels and CAT, SOD and GSH-Px enzyme activities and altered lipid and liver enzyme parameters in diabetic rats. According to our results, it seems that D-limonene might have a role in the prevention of the complication of diabetes in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Skin permeation of D-limonene-based nanoemulsions as a transdermal carrier prepared by ultrasonic emulsification.

    PubMed

    Lu, Wen-Chien; Chiang, Been-Huang; Huang, Da-Wei; Li, Po-Hsien

    2014-03-01

    Nanoemulsions can be used for transporting pharmaceutical phytochemicals in skin-care products because of their stability and rapid permeation properties. However, droplet size may be a critical factor aiding permeation through skin and transdermal delivery efficiency. We prepared D-limonene nanoemulsions with various droplet sizes by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether under different hydrophilic-lipophilic balance (HLB) values. Droplet size decreased with increasing HLB value. With HLB 12, the droplet size was 23 nm, and the encapsulated ratio peaked at 92.3%. Transmission electron microscopy revealed spherical droplets and the gray parts were D-limonene precipitation incorporated in spherical droplets of the emulsion system. Franz diffusion cell was used to evaluate the permeation of D-limonene nanoemulsion through rat abdominal skin; the permeation rate depended on droplet size. The emulsion with the lowest droplet size (54 nm) achieved the maximum permeation rate. The concentration of D-limonene in the skin was 40.11 μL/cm(2) at the end of 360 min. Histopathology revealed no distinct voids or empty spaces in the epidermal region of permeated rat skin, so the D-limonene nanoemulsion may be a safe carrier for transdermal drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by d-limonene

    PubMed Central

    Lu, Xiao-Guang; Zhan, Li-Bin; Feng, Bing-An; Qu, Ming-Yang; Yu, Li-Hua; Xie, Ji-Hong

    2004-01-01

    AIM: To investigate the effects and mechanism of d-limonene on the growth and metastasis of gastric cancer in vivo. METHODS: Metastatic model simulating human gastric cancer was established by orthotopic implantation of histologically intact human tumor tissue into gastric wall of nude mice. One percent d-limonene was orally administered at dose of 15 ml/kg every other day for seven weeks. Eight weeks after implantation, tumor weight, inhibition rate, apoptotic index (AI), microvessel density (MVD), vascular endothelial growth factor (VEGF), variation of ultrastructure, and the presence of metastasis were evaluated, respectively, after the mice were sacrificed. RESULTS: The tumor weight was significantly reduced in 5-FU group (2.55 ± 0.28 g), d-limonene group (1.49 ± 0.09 g) and combined treatment group (1.48 ± 0.21 g) compared with the control group(2.73 ± 0.23 g, P < 0.05). In 5-FU group, d-limonene group, combined treatment group, the inhibition rates were 2.60%, 47.58% and 46.84% and 0, respectively; AI was (3.31 ± 0.33)%, (8.26 ± 1.21)%, (20.99 ± 1.84)% and (19.34 ± 2.19)%, respectively; MVD was (8.64 ± 2.81), (16.77 ± 1.39), (5.32 ± 4.26) and (5.86 ± 2.27), respectively; VEGF expression was (45.77 ± 4.79), (41.34 ± 5.41), (29.71 ± 8.92) and (28.24 ± 8.55), respectively. The incidences of peritoneal metastasis also decreased significantly in 5-FU group(77.8%), d-limonene group (20.0%) and combined group (22.2%) compared with control group (100%) versus 62.5%, 30% and 22.2%) (P < 0.05). Liver metastasis was also inhibited and the incidences decreased significantly in 5-FU group, d-limonene group and combined group than that in control group (87.5% vs 55.5%, 20.0% and 22.2% respectively) (P < 0.05). The incidence of ascites in control group, 5-FU group, d-limonene group and combined group was 25.0%, 22.2%, 0, 0, respectively and 12.5%, 11.1% 0, 0, with respect to the metastasis rate to other organs. CONCLUSION: d-limonene has antiangiogenic and

  17. A High-Performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from d-Limonene

    PubMed Central

    Nash, Landon D.; Rodriguez, Jennifer N.; Lonnecker, Alexander T.; Raymond, Jeffery E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    Nanocomposite polymers have been prepared using a new sustainable materials synthesis process in which d-Limonene functions simultaneously both as a solvent for recycling polystyrene (PS) waste and as a monomer that undergoes UV-catalyzed thiol-ene polymerization reactions with polythiol co-monomers to afford polymeric products comprised of precipitated PS phases dispersed throughout elastomeric poly(thioether) networks. These blended networks exhibit mechanical properties that greatly exceed those of either polystyrene or the poly(thioether) network homopolymers alone. PMID:24249666

  18. Environmentally compatible hand wipe cleaning solvents

    NASA Technical Reports Server (NTRS)

    Clayton, Catherine P.; Kovach, Michael P.

    1995-01-01

    Several solvents of environmental concern have previously been used for hand wipe cleaning of SRB surfaces, including 1,1,1-trichloroethane, perchloroethylene, toluene, xylene, and MEK. USBI determined the major types of surfaces involved, and qualification requirements of replacement cleaning agents. Nineteen environmentally compatible candidates were tested on 33 material substrates with 26 types of potential surface contaminants, involving over 7,000 individual evaluations. In addition to the cleaning performance evaluation, bonding, compatibility, and corrosion tests were conducted. Results showed that one cleaner was not optimum for all surfaces. In most instances, some of the candidates cleaned better than the 1,1,1-trichloroethane baseline control. Aqueous cleaners generally cleaned better, and were more compatible with nonmetallic materials, such as paints, plastics, and elastomers. Organic base cleaners were better on metal surfaces. Five cleaners have been qualified and are now being implemented in SRB hand wipe cleaning operations.

  19. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands.

    PubMed

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.

  20. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands

    PubMed Central

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores. PMID:26023857

  1. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the

  2. The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark; Lowrey, Nikki

    2012-01-01

    Oxygen systems are susceptible to fires caused by particle and nonvolatile residue (NVR) contaminants, therefore cleaning and verification is essential for system safety. . Cleaning solvents used on oxygen system components must be either nonflammable in pure oxygen or complete removal must be assured for system safety. . CFC -113 was the solvent of choice before 1996 because it was effective, least toxic, compatible with most materials of construction, and non ]reactive with oxygen. When CFC -113 was phased out in 1996, HCFC -225 was selected as an interim replacement for cleaning propulsion oxygen systems at NASA. HCFC-225 production phase-out date is 01/01/2015. HCFC ]225 (AK ]225G) is used extensively at Marshall Space Flight Center and Stennis Space Center for cleaning and NVR verification on large propulsion oxygen systems, and propulsion test stands and ground support equipment. . Many components are too large for ultrasonic agitation - necessary for effective aqueous cleaning and NVR sampling. . Test stand equipment must be cleaned prior to installation of test hardware. Many items must be cleaned by wipe or flush in situ where complete removal of a flammable solvent cannot be assured. The search for a replacement solvent for these applications is ongoing.

  3. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity.

    PubMed

    Jing, Li; Zhang, Yu; Fan, Shengjie; Gu, Ming; Guan, Yu; Lu, Xiong; Huang, Cheng; Zhou, Zhiqin

    2013-09-05

    D-limonene is a major constituent in citrus essential oil, which is used in various foods as a flavoring agent. Recently, d-limonene has been reported to alleviate fatty liver induced by a high-fat diet. Here we determined the preventive and therapeutic effects of d-limonene on metabolic disorders in mice with high-fat diet-induced obesity. In the preventive treatment, d-limonene decreased the size of white and brown adipocytes, lowered serum triglyceride (TG) and fasting blood glucose levels, and prevented liver lipid accumulations in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, d-limonene reduced serum TG, low-density lipoprotein cholesterol (LDL-c) and fasting blood glucose levels and glucose tolerance, and increased serum high-density lipoprotein cholesterol (HDL-c) in obese mice. Using a reporter assay and gene expression analysis, we found that d-limonene activated peroxisome proliferator-activated receptor (PPAR)-α signaling, and inhibited liver X receptor (LXR)-β signaling. Our data suggest that the intake of d-limonene may benefit patients with dyslipidemia and hyperglycemia and is a potential dietary supplement for preventing and ameliorating metabolic disorders. © 2013 Elsevier B.V. All rights reserved.

  4. 40 CFR Appendix A to Subpart T of... - Test of Solvent Cleaning Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Startup, shutdown, off D. None of the above ___ 5. When can parts or parts baskets be removed from the... that solvent drains from them freely. ___ 7. During startup, what must be turned on first, the primary... container C. Store in a bucket D. A or B ___ 11. What types of materials are prohibited from being cleaned...

  5. 40 CFR Appendix A to Subpart T of... - Test of Solvent Cleaning Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Startup, shutdown, off D. None of the above ___ 5. When can parts or parts baskets be removed from the... that solvent drains from them freely. ___ 7. During startup, what must be turned on first, the primary... container C. Store in a bucket D. A or B ___ 11. What types of materials are prohibited from being cleaned...

  6. Solvent Replacement for Hydrochlorofluorocarbon-225 for Cleaning Oxygen System Components

    NASA Technical Reports Server (NTRS)

    Mitchell, M. A.; Lowrey, N. M.

    2017-01-01

    This Technical Memorandum is the result of a 2-year project funded by the Defense Logistics Agency-Aviation, Hazardous Minimization and Green Products Branch, to identify and test two candidate solvents to replace hydrochlorofluorocarbon-225 (HCFC-225) for cleaning oxygen systems. The solvents were also compared to a second solvent composed predominantly of perfluorobutyl iodide (PFBI), which had received limited approval by the United States Air Force (USAF) for hand wipe cleaning of components for aviators’ breathing oxygen systems. The tests performed for this study were based on those reported in AFRL-ML-WP-TR-2003-4040, “The Wipe Solvent Program,” the test program used to qualify Ikon® Solvent P for USAF applications.The study was completed in August 2014, prior to the completion of a more extensive study funded by the NASA Rocket Propulsion Test (RPT) program. The results of the RPT project are reported in NASA/TP-2015-18207, “Replacement of Hydrochlorofluorocarbon–225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems.” The test methods used in this study for nonvolatile residue (NVR) background, materials compatibility, and cleaning effectiveness were different than those used for the RPT project; a smaller set of materials and contaminants were tested. The tests for this study were complementary to and provided supplementary information for the down-selection process during the course of the test program reported in NASA/TP-2015-218207.

  7. Antifibrotic effects of D-limonene (5(1-methyl-4-[1-methylethenyl]) cyclohexane) in CCl4 induced liver toxicity in Wistar rats.

    PubMed

    Ahmad, Sheikh Bilal; Rehman, Muneeb U; Fatima, Bilques; Ahmad, Bilal; Hussain, Ishraq; Ahmad, Sheikh Pervaiz; Farooq, Adil; Muzamil, Showkeen; Razzaq, Rahil; Rashid, Shahzada Mudasir; Ahmad Bhat, Showkat; Mir, Manzoor Ur Rahman

    2018-03-01

    This study was designed to assess the potential antifibrotic effect of D-Limonene-a component of volatile oils extracted from citrus plants. D-limonene is reported to have numerous therapeutic properties. CCl 4 -intduced model of liver fibrosis in Wistar rats is most widely used model to study chemopreventive studies. CCl 4 -intoxication significantly increased serum aminotransferases and total cholesterol these effects were prevented by cotreatment with D-Limonene. Also, CCl 4 -intoxication caused depletion of glutathione and other antioxidant enzymes while D-Limonene preserved them within normal values. Hydroxyproline and malondialdehyde content was increased markedly by CCl 4 treatment while D-Limonene prevented these alterations. Levels of TNF-α, TGF-β, and α-SMA were also assessed; CCl 4 increased the expression of α-SMA, NF-κB and other downstream inflammatory cascade while D-Limonene co-treatment inhibited them. Collectively these findings indicate that D-Limonene possesses potent antifibrotic effect which may be attributed to its antioxidant and anti-inflammatory properties. © 2017 Wiley Periodicals, Inc.

  8. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.

    PubMed

    Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José

    2015-04-01

    d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Solvent cleaning of pole transformers containing PCB contaminated insulating oil.

    PubMed

    Kanbe, H; Shibuya, M

    2001-01-01

    In 1989, it was discovered that the recycled insulation oil in pole transformers for electric power supply was contaminated with trace amounts of polychlorinated biphenyls (PCBs; maximum 50 mg-PCB/kg-insulation oil). In order to remove the PCBs from transformer components using n-hexane as a solvent, we investigated the relationship between progressive stages of dismantling and cleaning results. The results are summarized as follows: (1) Based on the cleaning test results, we made an estimate of the residual PCB amount on iron and copper components. By dismantling the test pole transformers into the "iron core and coil portion" and cleaning the components, we achieved a residual PCB amount that was below the limit of detection (0.05 mg-PCB/kg-material). To achieve a residual PCB amount below the limit of detection for the transformer paper component, it was necessary to cut the paper into pieces smaller than 5 mm. We were unable to achieve a residual PCB amount below the limit of detection for the wood component. (2) Compared to Japan's stipulated limited concentration standard values for PCBs, the results of the cleaning test show that cleaning iron or copper components with PCBs only on their surface with the solvent n-hexane will satisfy the limited concentration standard values when care is taken to ensure the component surfaces have adequate contact with the cleaning solvent.

  10. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene.

    PubMed

    Khoshakhlagh, Khadije; Koocheki, Arash; Mohebbi, Mohebbat; Allafchian, Alireza

    2017-03-15

    In this study, the feasibility of developing Alyssum homolocarpum seed gum (AHSG) nanocapsules containing d-limonene by electrospraying has been investigated. d-limonene emulsions with constant AHSG (0.5% w/w) and various flavor concentrations (10-30% based on gum weight) with 0.1% Tween 20 were electrosprayed at 20kV and 0.1ml/h of flow rate. The effects of key parameters of emulsions (rheological properties, droplet size, surface tension and electrical conductivity) on the morphology of structures have been studied. The morphology of nanocapsules had strong dependency on solution properties. The aggregated irregular shaped nanoparticles were obtained from electrospraying of AHSG solution. After incorporation of 10 and 20% d-limonene, spherical nanocapsules were yielded. However, morphology of nanocapsules changed to nanofibers by increasing the flavor content to 30%. The encapsulation efficiency for 10 and 20% d-limonene loaded nanocapsules was around 87-93%. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were also employed to study the physicochemical characteristics of nanocapsules. These experiments provided evidences that electrosprayed AHSG nanoparticles introduce a novel and efficient carrier for encapsulation of bioactive ingredients. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Limonene: Aroma of innovation in health and disease.

    PubMed

    Vieira, A J; Beserra, F P; Souza, M C; Totti, B M; Rozza, A L

    2018-03-01

    Natural products obtained in dietary components may aid the prevention and treatment of a variety of diseases. Reports in the scientific literature have demonstrated that the consumption of terpenes is a successful alternative in the treatment of several diseases, triggering beneficial biological effects in clinical and preclinical studies. The monoterpene limonene is largely used in alimentary items, cleaning products, and it is one of the most frequent fragrances used in cosmetics formulation. The therapeutic effects of limonene have been extensively studied, proving anti-inflammatory, antioxidant, antinociceptive, anticancer, antidiabetic, antihyperalgesic, antiviral, and gastroprotective effects, among other beneficial effects in health. In this review, we collected, presented, and analyzed evidence from the scientific literature regarding the usage of limonene and its activities and underlying mechanisms involved in combating diseases. The highlighting of limonene applications could develop a useful targeting of innovative research in this field as well as the development of a limonene-based phytomedicine which could be used in a variety of conditions of health and disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Technique for ultrasonic cleaning with volatile solvents eliminates need for hoods or condensers

    NASA Technical Reports Server (NTRS)

    Pipersky, E.

    1969-01-01

    Technique ultrasonically cleans small quantities of small mechanical parts in organic solvents without the need for vapor removal equipment. Parts are placed in a thin plastic bag with the solvent and then suspended in a cleaning tank containing the water-detergent solution.

  13. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    PubMed

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Biotransformation of d-Limonene to (+) trans-Carveol by Toluene-Grown Rhodococcus opacus PWD4 Cells

    PubMed Central

    Duetz, Wouter A.; Fjällman, Ann H. M.; Ren, Shuyu; Jourdat, Catherine; Witholt, Bernard

    2001-01-01

    The toluene-degrading strain Rhodococcus opacus PWD4 was found to hydroxylate d-limonene exclusively in the 6-position, yielding enantiomerically pure (+) trans-carveol and traces of (+) carvone. This biotransformation was studied using cells cultivated in chemostat culture with toluene as a carbon and energy source. The maximal specific activity of (+) trans-carveol formation was 14.7 U (g of cells [dry weight])−1, and the final yield was 94 to 97%. Toluene was found to be a strong competitive inhibitor of the d-limonene conversion. Glucose-grown cells did not form any trans-carveol from d-limonene. These results suggest that one of the enzymes involved in toluene degradation is responsible for this allylic monohydroxylation. Another toluene degrader (Rhodococcus globerulus PWD8) had a lower specific activity but was found to oxidize most of the formed trans-carveol to (+) carvone, allowing for the biocatalytic production of this flavor compound. PMID:11375201

  15. Reactivities of Precision Cleaning Solvents with Hypergolic Propellants

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D.; Delgado, Rafael H.; Williams, James H.

    1999-01-01

    The reactivities of several selected halogenated precision cleaning solvents with hypergolic propellants has been determined by analysis of the rates of formation of halide ion decomposition products. The solvents were Asahiklin AK 225, Asahiklin AK 225 AES, HFE 7100, HFE 7100 DE, Vertrel XF, Vertrel MCA, Vertrel MCA Plus, 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113), and trans-1,2-dichloroethylene (DCE). The propellants were hydrazine (HZ), monomethylhydrazine (MMH), and mixed oxides of nitrogen (MON-3). The Vertrel solvents showed significant reactivity with HZ. All of the solvents except DCE exhibited significant reactivity with MMH, particularly HFE 7100 DE and CFC-113. HFE 7100 DE, Vertrel MCA, and Vertrel MCA Plus also showed significant reactivity with MON-3 oxidizer.

  16. Life of Pennzane and 815Z-Lubricated Instrument Bearings Cleaned with Non-CFC Solvents

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart H.; Jones, William R., Jr.; Predmore, Roamer E.

    1999-01-01

    Life tests were conducted on instrument scanner ball bearings cleaned with 3 types of non-ozone depleting solvents and compared with those cleaned with a conventional CFC-113 (Freon) solvent. The test bearings were lubricated with the standard space oil (Bray 815Z, Fomblin Z25) and a more recent synthetic space oil (Pennzane 2001). Lives with replacement solvents equaled or exceeded those obtained with CFC-113 baseline, indicating that alternate cleaning solvents were acceptable. Pennzane lubricated bearings enjoyed a significant life advantage (>5X) over those lubricated with Bray 815Z oil in these oscillatory gimbal bearing tests. Many of the Pennzane bearings are still exhibiting acceptable torque traces after more than 25,000 hr of test.

  17. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  18. D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats.

    PubMed

    Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat

    2014-04-01

    D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.

  19. Protective Effect of D-Limonene against Oxidative Stress-Induced Cell Damage in Human Lens Epithelial Cells via the p38 Pathway

    PubMed Central

    Bai, Jie; Zheng, Yi; Wang, Gang; Liu, Ping

    2016-01-01

    Oxidative stress, as mediated by ROS, is a significant factor in initiating the development of age-associated cataracts; D-limonene is a common natural terpene with powerful antioxidative properties which occurs naturally in a wide variety of living organisms. It has been shown to have antioxidant effect; we found that D-limonene can effectively prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the inhibitory effects of D-limonene is the inhibition of HLECs apoptosis. In the present study, we used confocal-fluorescence microscopy, flow cytometry analysis, Hoechst staining, H2DCFDA staining, transmission electron microscopy, and immunoblot analysis; the results revealed that slightly higher concentrations of D-limonene (125–1800 μM) reduced the H2O2-induced ROS generation and inhibited the H2O2-induced caspase-3 and caspase-9 activation and decreased the Bcl-2/Bax ratio. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Thus, we conclude that D-limonene could effectively protect HLECs from H2O2-induced oxidative stress and that its antioxidative effect is significant, thereby increasing the cell survival rate. PMID:26682012

  20. Protective Effect of D-Limonene against Oxidative Stress-Induced Cell Damage in Human Lens Epithelial Cells via the p38 Pathway.

    PubMed

    Bai, Jie; Zheng, Yi; Wang, Gang; Liu, Ping

    2016-01-01

    Oxidative stress, as mediated by ROS, is a significant factor in initiating the development of age-associated cataracts; D-limonene is a common natural terpene with powerful antioxidative properties which occurs naturally in a wide variety of living organisms. It has been shown to have antioxidant effect; we found that D-limonene can effectively prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the inhibitory effects of D-limonene is the inhibition of HLECs apoptosis. In the present study, we used confocal-fluorescence microscopy, flow cytometry analysis, Hoechst staining, H2DCFDA staining, transmission electron microscopy, and immunoblot analysis; the results revealed that slightly higher concentrations of D-limonene (125-1800 μM) reduced the H2O2-induced ROS generation and inhibited the H2O2-induced caspase-3 and caspase-9 activation and decreased the Bcl-2/Bax ratio. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Thus, we conclude that D-limonene could effectively protect HLECs from H2O2-induced oxidative stress and that its antioxidative effect is significant, thereby increasing the cell survival rate.

  1. ODC-Free Solvent Implementation for Phenolics Cleaning

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Biegert, Lydia; Lamont, DT; McCool, Alex (Technical Monitor)

    2001-01-01

    During phenolic liner manufacture, resin-impregnated (pre-preg) bias tape of silica, glass, or carbon cloth is tape-wrapped, cured, machined, and then wiped with 1,1,1 tri-chloroethane (TCA) to remove contaminants that may have been introduced during machining and handling. Following the TCA wipe, the machined surface is given a resin wet-coat and over-wrapped with more prepreg and cured. A TCA replacement solvent for these wiping operations must effectively remove both surface contaminants, and sub-surface oils and greases while not compromising the integrity of this interface. Selection of a TCA replacement solvent for phenolic over-wrap interface cleaning began with sub-scale compatibility tests with cured phenolics. Additional compatibility tests included assessment of solvent retention in machined phenolic surfaces. Results from these tests showed that, while the candidate solvent did not degrade the cured phenolics, it was retained in higher concentrations than TCA in phenolic surfaces. This effect was most pronounced with glass and silica cloth phenolics with steep ply angles relative to the wiped surfaces.

  2. Entrapment of a volatile lipophilic aroma compound (d-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus)☆

    PubMed Central

    Fisk, Ian D.; Linforth, Robert; Trophardy, Gil; Gray, David

    2013-01-01

    Oil bodies are natural emulsions that can be extracted from oil seeds and have previously been shown to be stable after spray drying. The aim of the study was to evaluate for the first time if spray dried water-washed oil bodies are an effective carrier for volatile lipophilic actives (the flavour compound d-limonene was used as an example aroma compound). Water-washed oil bodies were blended with maltodextrin and d-limonene and spray dried using a Buchi B-191 laboratory spray dryer. Lipid and d-limonene retention was 89–93% and 24–27%. Samples were compared to processed emulsions containing sunflower oil and d-limonene and stabilised by either lecithin or Capsul. Lecithin and Capsul processed emulsions had a lipid and d-limonene retention of 82–89%, 7.7–9.1% and 48–50%, 55–59% respectively indicating that water-washed oil bodies could retain the most lipids and Capsul could retain the most d-limonene. This indicates that whilst additional emulsifiers may be required for future applications of water-washed oil bodies as carriers of lipophilic actives, oil bodies are excellent agents for lipid encapsulation. PMID:24235784

  3. The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki

    2012-01-01

    To obtain a high degree of cleanliness without risk of corrosion or hazardous reactivity, hydrochlorofluorocarbon (HCFC)-225 is used for cleaning and cleanliness verification of oxygen system components used on NASA fs bipropellant launch vehicles, associated test stands and support equipment. HCFC-225 is a Class II Ozone Depleting Substance (ODS ]II) that was introduced to replace chlorofluorocarbon (CFC)-113, a Class I ODS solvent that is now banned. To meet environmental regulations to eliminate the use of ozone depleting substances, a replacement solvent is required for HCFC ]225 that is effective at removing oils, greases, and particulate from large oxygen system components, is compatible with materials used in the construction of these systems, and is nonflammable and non ]reactive in enriched oxygen environments. A solvent replacement is also required for aviator fs breathing oxygen systems and other related equipment currently cleaned and verified with HCFC ]225 and stockpiled CFC -113. Requirements and challenges in the search for nonflammable replacement solvents are discussed.

  4. A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane.

    PubMed

    Cascant, Mari Merce; Breil, Cassandra; Garrigues, Salvador; de la Guardia, Miguel; Fabiano-Tixier, Anne Silvie; Chemat, Farid

    2017-05-01

    There is a great interest in finding alternatives and green solvents in extraction processes to replace petroleum based solvents. In order to investigate these possibilities, computational methods, as Hansen solubility parameters (HSP) and conductor-like screening model for real solvent (COSMO-RS), were used in this work to predict the solvation power of a series of solvents in salmon fish lipids. Additionally, experimental studies were used to evaluate the performance in lipids extraction using 2-methyltetrahydrofurane, cyclopentyl methyl ether, dimethyl carbonate, isopropanol, ethanol, ethyl acetate, p-cymene and d-limonene compared with hexane. Lipid classes of extracts were obtained by using high performance thin-layer chromatography (HPTLC), whereas gas chromatography with a flame ionization detector (GC/FID) technique was employed to obtain fatty acid profiles. Some differences between theoretical and experimental results were observed, especially regarding the behavior of p-cymene and d-limonene, which separate from the predicted capability. Results obtained from HPTLC indicated that p-cymene and d-limonene extract triglycerides (TAGs) and diglycerides (DAGs) at levels of 73 and 19%, respectively, whereas the other studied extracts contain between 75 and 76% of TAGs and between 16 and 17% of DAGs. Fatty acid profiles, obtained by using GC-FID, indicated that saturated fatty acids (SFAs) between 19.5 and 19.9% of extracted oil, monounsaturated fatty acids (MUFAs) in the range between 43.5 and 44.9%, and PUFAs between 31.2 and 34.6% were extracted. p-Cymene and limonene extracts contained lower percentages than the other studied solvents of some PUFAs due probably to the fact that these unsaturated fatty acids are more susceptible to oxidative degradation than MUFAs. Ethyl acetate has been found to be the best alternative solvent to hexane for the extraction of salmon oil lipids. Graphical Abstract ᅟ.

  5. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    PubMed

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter

  6. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.; Cash, Steve (Technical Monitor)

    2002-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the RSRM (Reusable Solid Rocket Motor) system. Work with a previous generation of rubber equipment at MSFC (Marshall Space Flight Center) in the 1970's had involved the use of ODC's such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  7. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.

    2003-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the Redesigned Solid Rocket Motor (RSRM) system. Work with a previous generation of rubber equipment at MSFC in the 1970's had involved the use of Oxygen Deficient Center (ODC's) such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  8. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractionalmore » emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.« less

  9. Impact of d-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception.

    PubMed

    Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Costell, Elvira; Carbonell, Inmaculada; Rojas, Cristina; Peña, Leandro

    2017-02-15

    Citrus fruits are characterized by a complex mixture of volatiles making up their characteristic aromas, being the d-limonene the most abundant one. However, its role on citrus fruit and juice odor is controversial. Transgenic oranges engineered for alterations in the presence or concentration of few related chemical groups enable asking precise questions about their contribution to overall odor, either positive or negative, as perceived by the human nose. Here, either down- or up-regulation of a d-limonene synthase allowed us to infer that a decrease of as much as 51 times in d-limonene and an increase of as much as 3.2 times in linalool in juice were neutral for odor perception while an increase of only 3 times in ethyl esters stimulated the preference of 66% of the judges. The ability to address these questions presents exciting opportunities to understand the basic principles of selection of food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. EVALUATION OF ALTERNATIVES TO CHLORINATED SOLVENTS FOR METAL CLEANING

    EPA Science Inventory

    This project report details results of investigations into alternatives to chlorinated solvents used for metal degreasing. Three companies participated in this project. The results reported for one company document a situation where the conversion to an aqueous cleaning system ha...

  11. High-oil-load encapsulation of medium-chain triglycerides and D-limonene mixture in modified starch by spray drying.

    PubMed

    Paramita, Vita; Furuta, Takeshi; Yoshii, Hidefumi

    2012-02-01

    Oil mixtures of medium-chain triglycerides (MCT) and D-limonene in mixing ratios from 10 to 100 wt% were encapsulated in modified starch (wall material) by spray drying to produce oil-rich powders. The oil load (mass ratio of oil mixture to wall material) of the infeed emulsion markedly influenced the properties of the infeed liquid and the characteristics of the resulting powder. The viscosity of the infeed liquid and the particle size of the powder exponentially decreased with increasing oil load, while the emulsion droplet size in the infeed liquid increased. In addition, retention of D-limonene during spray drying also decreased markedly with increasing oil load. Irrespective of the different oil loads and concentrations of the wall material, D-limonene retention was well correlated with the emulsion droplet diameter of the infeed liquid. The encapsulation efficiency of the oil mixture exhibited a maximum value (almost 100%) at an oil load between 0.5 and 1.0, before decreasing at higher oil loads. At an oil load of 2.0, the encapsulation efficiency of D-limonene was reduced to almost zero, while around 40% of the initial MCT was encapsulated in the powder. The increase in oil load also led to increased amounts of surface oil of MCT and D-limonene in the resulting powder due to the increasing emulsion droplet diameter of the infeed liquids. This study proposes the microencapsulation of medium-chain triglycerides under high-oil-load conditions by spray drying. The powders prepared by this process provide significant benefits in terms of rapid energy conversion after consumption without accumulation in the body. Important quality factors of the powder products such as the encapsulation efficiency and the amount of surface oil were examined to understand the optimum process conditions for spray drying. © 2012 Institute of Food Technologists®

  12. Physiological and Transcriptional Responses of Saccharomyces cerevisiae to d-Limonene Show Changes to the Cell Wall but Not to the Plasma Membrane

    PubMed Central

    Brennan, Timothy C. R.; Nielsen, Lars K.

    2013-01-01

    Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis. PMID:23542628

  13. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    NASA Technical Reports Server (NTRS)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  14. Pulmonary effects of inhaled limonene ozone reaction products in elderly rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R.; Laumbach, Robert J.; Patel, Kinal J.

    2007-07-15

    d-Limonene is an unsaturated volatile organic chemical found in cleaning products, air fresheners and soaps. It is oxidized by ozone to secondary organic aerosols consisting of aldehydes, acids, oxidants and fine and ultra fine particles. The lung irritant effects of these limonene ozone reaction products (LOP) were investigated. Female F344 rats (2- and 18-month-old) were exposed for 3 h to air or LOP formed by reacting 6 ppm d-limonene and 0.8 ppm ozone. BAL fluid, lung tissue and cells were analyzed 0 h and 20 h later. Inhalation of LOP increased TNF-{alpha}, cyclooxygenase-2, and superoxide dismutase in alveolar macrophages (AM)more » and Type II cells. Responses of older animals were attenuated when compared to younger animals. LOP also decreased p38 MAP kinase in AM from both younger and older animals. In contrast, while LOP increased p44/42 MAP kinase in AM from younger rats, expression decreased in AM and Type II cells from older animals. NF-{kappa}B and C/EBP activity also increased in AM from younger animals following LOP exposure but decreased or was unaffected in Type II cells. Whereas in younger animals LOP caused endothelial cell hypertrophy, perivascular and pleural edema and thickening of alveolar septal walls, in lungs from older animals, patchy accumulation of fluid within septal walls in alveolar sacs and subtle pleural edema were noted. LOP are pulmonary irritants inducing distinct inflammatory responses in younger and older animals. This may contribute to the differential sensitivity of these populations to pulmonary irritants.« less

  15. Improvement of biogas production from orange peel waste by leaching of limonene.

    PubMed

    Wikandari, Rachma; Nguyen, Huong; Millati, Ria; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-01-01

    Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20-40°C with orange peel waste and hexane ratio (w/v) ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m(3) methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel.

  16. Effect of Metarhizium anisopliae (Ascomycete), Cypermethrin, and D-Limonene, Alone and Combined, on Larval Mortality of Rhipicephalus sanguineus (Acari: Ixodidae).

    PubMed

    Prado-Rebolledo, Omar Francisco; Molina-Ochoa, Jaime; Lezama-Gutiérrez, Roberto; García-Márquez, Luis Jorge; Minchaca-Llerenas, Yureida B; Morales-Barrera, Eduardo; Tellez, Guillermo; Hargis, Billy; Skoda, Steven R; Foster, John E

    2017-09-01

    The effect of the fungus Metarhizium anisopliae Ma14 strain, D-limonene, and cypermethrin, alone and combined, on the mortality of Rhipicephalus sanguineus Latreille larvae was evaluated. Eight separate groups with 25 tick larvae were inoculated with the fungus, cypermethrin, and D-limonene, and four groups were used as untreated controls. The groups were inoculated with serial dilutions of each treatment material: for example, conidial concentrations were 1 × 101, 1 × 102, 1 × 103, 1 × 104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108. A complete randomized experimental design was used. Significant differences were obtained between fungal concentrations, with larval mortalities ranging from 29 to 100%; the D-limonene concentrations showed significant differences, with mortalities that ranged from 47.9 to 82.6%, and cypermethrin mortalities ranged from 69.9 to 89.9% when each was applied alone. In the combined application, the serial dilution of the Ma14 fungus plus cypermethrin at 0.1% concentration caused mortalities ranging from 92.9 to 100%; the mix of serially diluted Ma14 plus D-limonene at 0.1% caused mortalities from 10.3 to 100%; and the mix consisting of serially diluted D-limonene plus cypermethrin at 0.1% caused mortalities from 7.4 to 35.9%. Further laboratory and field research could show that these materials, alone and in combinations, are useful in future tick management and control programs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.246 Control of dry... cleaning establishment that uses solvents containing 4 percent or more by volume of any reactive organic...

  18. 40 CFR Table 4 to Subpart Jj of... - Pollutants Excluded From Use in Cleaning and Washoff Solvents

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cleaning and Washoff Solvents 4 Table 4 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL... Cleaning and Washoff Solvents Chemical name CAS No. 4-Aminobiphenyl 92671 Styrene oxide 96093 Diethyl...-chloroethyl) ether) 111444 1,2-Diphenylhydrazine 122667 Toxaphene (chlorinated camphene) 8001352 2,4...

  19. Life of Pennzane and 815Z-Lubricated Instrument Bearings Cleaned with Non-CFC Solvents

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Jones, William; Predmore, Roamer

    1999-01-01

    This report takes the form of two papers: (1) "Life of Pennzane and 815Z-Lubricated Instrument Bearings cleaned with Non-CFC Solvents" and (2) a published paper, entitled "Instrument bearing life with NON-CFC cleaners". Abstract for paper # 1 : Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-1 13 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under flight-like conditions with two space oils. A goal was to gain a better understanding of the lubricant surface chemistry effects with such solvents. A second objective was to obtain well-controlled, full-scale bearing life test data with a relatively new synthetic oil (Pennzane), touted as an improvement to Bray 815Z, an oil with considerable space flight history. The second paper, which serves as an attachment, is abstracted below: Bearings used in spacecraft mechanisms have historically been cleaned with chlorofluorocarbon CFC-113 (Freon) solvents and lubricated with a perfluorinated polyalkylether (PFPE) oils like 815-Z. Little full-scale bearing life test data exists to evaluate the effects of the newer class environmental-friendly bearing cleaners or improved synthetic hydrocarbon space oils like Pennzane. To address the lack of data, a cooperative, bearing life test program was initiated between NASA, Lockheed Martin and MPB. The objective was to obtain comparative long-term, life test data for flight-quality bearings, cleaned with non-CFC solvents versus CFC-1 13 under

  20. Alternative Green Solvents Project

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.

    2012-01-01

    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  1. Effects of limonene on ruminal concentrations, fermentation, and lysine degradation in cattle.

    PubMed

    Samii, S Saed; Wallace, N; Nagaraja, T G; Engstrom, M A; Miesner, M D; Armendariz, C K; Titgemeyer, E C

    2016-08-01

    Previous in vitro data showed that was inhibited by limonene. We further evaluated effects of limonene on growth of in vitro as well as on ruminal concentrations of in vivo. With in vitro cultivation in anaerobic brain-heart infusion broth, limonene decreased growth of . Thymol also reduced growth of , but it was less effective than limonene. Tylosin effectively reduced growth of in vitro. Although the response over fermentation times and concentrations of antimicrobials differed somewhat between tylosin and limonene, the 2 antimicrobial agents yielded similar inhibitory effects on growth of at concentrations ranging from 6 to 24 mg/L. The effects of limonene on ruminal concentration in vivo were tested in 7 ruminally cannulated heifers (225 kg initial BW) used in a 7 × 4 Youden square design. Treatments included: 1) control, 2) limonene at 10 mg/kg diet DM, 3) limonene at 20 mg/kg diet DM, 4) limonene at 40 mg/kg diet DM, 5) limonene at 80 mg/kg diet DM, 6) CRINA-L (a blend of essential oil components) at 180 mg/kg diet DM, and 7) tylosin at 12 mg/kg diet DM. Each period included 11 d with 10 d washouts between periods. Samples of ruminal contents were collected before treatment initiation and after 4, 7, and 10 d of treatment for measuring by the most probable number method using selective culture medium. Limonene linearly decreased ( = 0.03) ruminal concentration, with the lowest concentration achieved with 40 mg of limonene/kg dietary DM. Limonene tended ( ≤ 0.07) to linearly reduce ruminal molar proportions of propionate and valerate while tending to linearly increase ( ≤ 0.10) those of butyrate and 2-methyl butyrate. Limonene did not affect ruminal NH concentrations or degradation rates of lysine. Neither CRINA-L ( = 0.52) nor tylosin ( = 0.19) affected ruminal concentrations. CRINA-L significantly decreased ruminal concentrations of NH and molar proportions of 3-methyl butyrate, whereas tylosin significantly decreased molar proportions of propionate

  2. Attenuation by d-limonene of sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Yano, H; Tatsuta, M; Iishi, H; Baba, M; Sakai, N; Uedo, N

    1999-08-27

    The effects of prolonged administration of d-limonene, a monocyclic monoterpene, on sodium chloride-enhanced induction of gastric carcinogenesis by N-methyl-N'-nitro-N-nitrosoguanidine, the labeling and apoptotic indices, and ornithine decarboxylase (ODC) activity of gastric cancers were investigated in Wistar rats. After 25 weeks of carcinogen treatment, rats were given chow pellets containing 10% sodium chloride and 1% limonene ad libitum. In week 52, the incidence of gastric cancers, the labeling index and ODC activity were significantly higher and the apoptotic index was significantly lower in rats given sodium chlolide than in untreated control rats. However, in rats given both sodium chloride and d-limonene, the incidence of gastric cancers, the labeling index and ODC activity were significantly lower and the apoptotic index was significantly higher than in rats given sodium chloride alone. Our findings suggest that limonene attenuates the gastric carcinogenesis enhanced by sodium chloride via increased apoptosis and decreased ODC activity in gastric cancers. Copyright 1999 Wiley-Liss, Inc.

  3. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene

    PubMed Central

    Wikandari, Rachma; Nguyen, Huong; Millati, Ria; Niklasson, Claes; Taherzadeh, Mohammad J.

    2015-01-01

    Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20–40°C with orange peel waste and hexane ratio (w/v) ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m3 methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel. PMID:25866787

  4. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Chemat, Farid

    2013-04-01

    A new procedure, called Simultaneous Distillation and Extraction Process (SDEP), for lipid extraction from wet microalgae (Nannochloropsis oculata and Dunaliella salina) was reported. This method does not require a pre-drying of the biomass and employs alternative solvents such as d-limonene, α-pinene and p-cymene. This procedure has been compared with Soxhlet extraction (Sox) and Bligh & Dyer method (B&D). For N. oculata, results showed that SDEP-cymene provided similar lipid yields to B&D (21.45% and 23.78%), while SDEP-limonene and pinene provided lower yields (18.73% and 18.75% respectively). For D. salina, SDEP-pinene provided the maximum lipid yield (3.29%) compared to the other solvents, which is quite close to B&D result (4.03%). No significant differences in terms of distribution of lipid classes and fatty acid composition have been obtained for different techniques. Evaluation of energy consumption indicates a substantial saving in the extraction cost by SDEP compared to the conventional extraction technique, Soxhlet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Washing effects of limonene on pesticide residues in green peppers.

    PubMed

    Lu, Hai-Yan; Shen, Yan; Sun, Xing; Zhu, Hong; Liu, Xian-Jin

    2013-09-01

    The presence of pesticide residues in food has caused much concern. The low health risks and environmental impacts of limonene make it a very interesting solvent for use in green chemistry. Washing effects of limonene on pesticide residues of methyl chlorpyrifos, chlorothalonil, chlorpyrifos, fenpropathrin and deltamethrin were investigated in green pepper. Results showed that washing with a low concentration of limonene for 5 min (where LOQ is limit of quantitation) caused 53.67%, limonene for 10 min produced 55.90%, limonene for 5 min was the optimal treatment for elimination of pesticide residues in green pepper, considering effect and treatment time as well as cost. © 2013 Society of Chemical Industry.

  6. Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents

    NASA Technical Reports Server (NTRS)

    Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)

    2001-01-01

    Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.

  7. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction.

    PubMed

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. To construct the limonene synthetic pathway in Yarrowia lipolytica , two genes encoding neryl diphosphate synthase 1 (NDPS1) and limonene synthase (LS) were codon-optimized and heterologously expressed in Y. lipolytica . Furthermore, to maximize limonene production, several genes involved in the MVA pathway were overexpressed, either in different copies of the same gene or in combination. Finally with the optimized pyruvic acid and dodecane concentration in flask culture, a maximum limonene titer and content of 23.56 mg/L and 1.36 mg/g DCW were achieved in the final engineered strain Po1f-LN-051, showing approximately 226-fold increase compared with the initial yield 0.006 mg/g DCW. This is the first report on limonene biosynthesis in oleaginous yeast Y. lipolytica by heterologous expression of codon-optimized tLS and tNDPS1 genes. To our knowledge, the limonene production 23.56 mg/L, is the highest limonene production level reported in yeast. In short, we demonstrate that Y. lipolytica provides a compelling platform for the overproduction of limonene derivatives, and even other monoterpenes.

  8. An overview of NASA testing requirements for alternate cleaning solvents used in liquid and gaseous oxygen environments

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Davis, S. Eddie

    1995-01-01

    The elimination of CFC-containing cleaning solvents for oxygen systems has prompted the development of a number of alternative cleaning solvents that must now be evaluated not only for cleanability, but compatibility as well. NASA Handbook 8060.1(NHB 8060.1) establishes the requirements for evaluation, testing, and selection of materials for use in oxygen rich environments. Materials intended for use in space vehicles, specified test facilities, and ground support equipment must meet the requirements of this document. In addition to the requirements of NHB 8060.1 for oxygen service, alternative cleaning solvents must also be evaluated in other areas (such as corrosivity, non-metals compatibility, non-volatile residue contamination, etc.). This paper will discuss the testing requirements of NHB 8060.1 and present preliminary results from early screening tests performed at Marshall Space Flight Center's Materials Combustion Research Facility.

  9. Growth-arresting Activity of Acmella Essential Oil and its Isolated Component D-Limonene (1, 8 P-Mentha Diene) against Trichophyton rubrum (Microbial Type Culture Collection 296).

    PubMed

    Padhan, Diptikanta; Pattnaik, Smaranika; Behera, Ajaya Kumar

    2017-10-01

    Spilanthes acmella is used as a remedy in toothache complaints by the tribal people of Western part of Odisha, India. The objective of this study was to study the growth-arresting activity of an indigenous Acmella essential oil (EO) ( S. acmella Murr, Asteraceae ) and its isolated component, d-limonene against Trichophyton rubrum (microbial type culture collection 296). The EO was extracted from flowers of indigenous S. acmella using Clevenger's apparatus and analyzed by gas chromatography-mass spectrometry (GC-MS). High pressure liquid chromatography (HPLC) was carried out to isolate the major constituent. The isolated fraction was subjected to fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The antidermatophytic activity was screened for using "disc diffusion" and "slant dilution" method followed by optical, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The molecular dockings were made between d-limonene with cell wall synthesis-related key enzymes (14 methyl deaminase and monooxygenase). The GC-MS analysis EO had inferred the presence of 7 number of major (≥2%) components. The component with highest peak area (%) was found to be 41.02. The HPLC-isolated fraction was identified as d-limonene (1,8 p-Mentha-diene) by FTIR and NMR. Qualitative and quantitative assays had suggested the growth inhibitory activity of Acmella EO and its component. Shrinkage, evacuation, cell wall puncture, and leakage of cellular constituents by the activity of Acmella oil and d-limonene were evidenced from optical, SEM, and TEM studies. The computer simulation had predicted the binding strengths of d-limonene and fluconazole with dermatophyte cell wall enzymes. There could have been synergistic action of all or some of compounds present in indigenous Acmella EO. There was presence of seven number of (d-limonene, ocimene, β-myrcene, cyclohexene, 3-(1, 5-dimethyl-4-hexenyl)-6-methylene,

  10. Fat and fibre interfere with the dramatic effect that nanoemulsified d-limonene has on the heat resistance of Listeria monocytogenes.

    PubMed

    Maté, Javier; Periago, Paula M; Ros-Chumillas, María; Grullón, Coralin; Huertas, Juan Pablo; Palop, Alfredo

    2017-04-01

    The application of d-limonene in form of nanoemulsion has been proved to reduce dramatically the thermal resistance of Listeria monocytogenes in culture media. The present research shows very promising results on the application in food products. The thermal resistance of L. monocytogenes was reduced 90 times when 0.5 mM nanoemulsified d-limonene was added to apple juice. This is the biggest reduction in the heat resistance of a microorganism caused by an antimicrobial described ever. However, no effect was found in carrot juice. A carrot juice system was prepared in an attempt to unravel which juice constituents were responsible for the lack of effect. When fat and fibre were not included in the carrot juice system formulation, the thermal resistance of L. monocytogenes was, again, dramatically reduced in presence of nanoemulsified d-limonene, so these components were shown to interfere with the effect. Once this interaction with food constituents becomes solved, the addition of nanoemulsified antimicrobials would allow to reduce greatly the intensity of the thermal treatments currently applied in the food processing industry. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Biotechnological production of limonene in microorganisms.

    PubMed

    Jongedijk, Esmer; Cankar, Katarina; Buchhaupt, Markus; Schrader, Jens; Bouwmeester, Harro; Beekwilder, Jules

    2016-04-01

    This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.

  12. In vivo immunomodulatory, cumulative skin irritation, sensitization and effect of d-limonene on permeation of 6-mercaptopurine through transdermal drug delivery.

    PubMed

    Chandrashekar, N S; Hiremath, Shobha Rani Rajeev

    2008-04-01

    Using skin as a port for systemic drug administration, transdermal drug delivery has expanded greatly over the last two decades. Our aim was to formulate the single layer drug-in-adhesive transdermal patch for 6-mercaptopurine (6-MP). In vitro permeation study was carried out using modified Franz diffusion cell with and without of different concentration of d-limonene in human cadaver skin. In vivo immunomodulatory was carried out in mice, cumulative skin irritation, sensitization and patch adherence study was done in both mice and human subjects. 6-MP flux increased from 43+/-12.2 microg/cm2h (control) to 162.8+/-32.2 microg/cm2h (6% w/v d-limonene) data was significant (p<0.05), with decrease in the lag time to 35+/-9.3 min compared to control of 90 +/-15.3 min. In vivo immunomodulatory effect was shown in the Balb/c mice with 100 mumol/kg/body wt of animal for 5d (one dose/d) of d-limonene. WBC count of 13469 cells/mm peak was observed on 12th day, bone marrow cells of 26.3 x 10(6) cells/femur and alpha-esterase positive cells of 1259+/-328.4 cells/4000 bone marrow cells. Cumulative skin irritation, sensitisation and patch adherence in animals and human subjects showed no skin irritation and sensitization. Patch adhesion was greater than 90.0% respectively in both human subjects and mice. The percentage of human subjects with adhesive residue was significantly less with scores of zero. d-Limonene proved as good chemical enhancer by increasing in the skin permeability with shortened the lag time. It proved that therapeutic amount of 6-MP can be delivered through transdermal drug delivery.

  13. Air filtration media from electrospun waste high-impact polystyrene fiber membrane

    NASA Astrophysics Data System (ADS)

    Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal

    2018-03-01

    Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.

  14. Comparison of antispasmodic effects of Dracocephalum kotschyi essential oil, limonene and α-terpineol.

    PubMed

    Sadraei, H; Asghari, G; Kasiri, F

    2015-01-01

    Dracocephalum kotschyi is an essential oil containing plant found in Iran. In Iranian traditional medicine, D. kotschyi has been used as antispasmodic and analgesic but so far there is no pharmacological report about its antispasmodic activity. Therefore, the objective of this research was to study antispasmodic activity of the essential oil of D. kotschyi and two of its constituents namely limonene and α-terpineol. The essential oil was obtained from aerial parts of D. kotschyi using hydrodistillation method. The main components found in the essential oil were α-pinene (10%), neral (11%), geraniol (10%), α-citral (12%), limonene (9%) and α-terpineol (1.1%). For antispasmodic studies, a portion of rat ileum was suspended under 1 g tension in Tyrode's solution at 37 °C and gassed with O2. Effect of the D. kotschyi essential oil, limonene and α-terpineol were studied on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The essential oil, in a concentration dependent manner inhibited the response to KCl (IC50=51 ± 8.7 nl/ml), ACh (IC50=19 ± 2.7 nl/ml) and EFS (IC50=15 ± 0.5 nl/ml). Limonene and α-terpineol showed same pattern of inhibitory effect on ileum contraction. Their inhibitory effects were also concentration dependent. However, limonene was more potent than the essential oil while the α-terpineol was less potent than either limonene or the essential oil. From this experiment it was concluded that D. kotschyi essential oil has inhibitory effect on ileum contractions. Limonene contribute a major role in inhibitory effect of the essential oil while α-terpineol has weak antispasmodic activity.

  15. Comparison of antispasmodic effects of Dracocephalum kotschyi essential oil, limonene and α-terpineol

    PubMed Central

    Sadraei, H.; Asghari, G.; Kasiri, F.

    2015-01-01

    Dracocephalum kotschyi is an essential oil containing plant found in Iran. In Iranian traditional medicine, D. kotschyi has been used as antispasmodic and analgesic but so far there is no pharmacological report about its antispasmodic activity. Therefore, the objective of this research was to study antispasmodic activity of the essential oil of D. kotschyi and two of its constituents namely limonene and α-terpineol. The essential oil was obtained from aerial parts of D. kotschyi using hydrodistillation method. The main components found in the essential oil were α-pinene (10%), neral (11%), geraniol (10%), α-citral (12%), limonene (9%) and α-terpineol (1.1%). For antispasmodic studies, a portion of rat ileum was suspended under 1 g tension in Tyrode's solution at 37 °C and gassed with O2. Effect of the D. kotschyi essential oil, limonene and α-terpineol were studied on ileum contractions induced by KCl (80 mM), acetylcholine (ACh, 500 nM) and electrical field stimulation (EFS). The essential oil, in a concentration dependent manner inhibited the response to KCl (IC50=51 ± 8.7 nl/ml), ACh (IC50=19 ± 2.7 nl/ml) and EFS (IC50=15 ± 0.5 nl/ml). Limonene and α-terpineol showed same pattern of inhibitory effect on ileum contraction. Their inhibitory effects were also concentration dependent. However, limonene was more potent than the essential oil while the α-terpineol was less potent than either limonene or the essential oil. From this experiment it was concluded that D. kotschyi essential oil has inhibitory effect on ileum contractions. Limonene contribute a major role in inhibitory effect of the essential oil while α-terpineol has weak antispasmodic activity. PMID:26487887

  16. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  17. Assessment of the Thermodynamic Properties of DL-p-Mentha-1,8-diene, 4-Isopropyl-1-Methylcyclohexene (DL-limonene) by Inverse Gas Chromatography (IGC).

    PubMed

    Farshchi, Negin; Abbasian, Ali; Larijani, Kambiz

    2018-05-10

    Limonene is a colorless liquid hydrocarbon and had been investigated as a plasticizer for many plastics. Prediction of solubility between different materials is an advantage in many ways, one of the most convenient ways to know the compatibility of materials is to determine the degree of solubility of them in each other. The concept of "solubility parameter" can help practitioners in this way.In this study, inverse gas chromatography (IGC) method at infinite dilution was used for determination of the thermodynamic properties of DL-p-mentha-1,8-diene, 4-Isopropyl-1-methylcyclohexene (DL-limonene). The interaction between DL-limonene and 13 solvents were examined in the temperature range of 63-123°C through the assessment of the thermodynamic sorption parameters, the parameters of mixing at infinite dilution, the weight fraction activity coefficient and the Flory-Huggins interaction parameters. Additionally, the solubility parameter for DL-limonene and the temperature dependence of these parameters was investigated as well.Results show that there is a temperature dependence in solubility parameter, which increases by decreasing temperature. However, there were no specific dependence between interaction parameters and temperature, but chemical structure appeared to have a significant effect on them as well as on the type and strength of intermolecular interactions between DL-limonene and investigated solvents. The solubility parameter δ2 of DL-limonene determined to be 19.20 (J/cm3)0.5 at 25°C.

  18. Effect on de-greasing solvents on conductive separable connector shields and semiconductive cable shields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, D.D.; Bolcar, J.P.

    1990-04-01

    A study has been conducted to determine the effects of commercial degreasing solvents on the conductivity of an EPDM separable connector shield and two types of cable shields based on EPR and XLPE, respectively. Solvents tested included a chlorinated solvent based on 1,1,1-trichloroethane and several so-called citrus solvents consisting of the natural terpene, limonene, or blends of limonene with other hydrocarbons. All the solvents significantly degraded the conductivity of the EPR and EPDM materials, but had little effect on the XLPE cable shield. The solvents differed, however, in the extent of their effects, the rate of recovery of conductivity aftermore » removal of the solvent, and the degree to which the original conductivity of the material was restored. The consequences of these results in terms of appropriate field use of these types of solvents by utility personnel are discussed.« less

  19. Plasma Cleaning

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  20. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.

    PubMed

    Lin, Po-Cheng; Saha, Rajib; Zhang, Fuzhong; Pakrasi, Himadri B

    2017-12-13

    Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of isoprenoids has been considered as a promising approach to increase the yield. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid production, computational strain design was conducted by applying the OptForce strain design algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to engineer cyanobacteria for photosynthetic production of isoprenoids.

  1. Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention

    PubMed Central

    Miller, Jessica A.; Pappan, Kirk; Thompson, Patricia A.; Want, Elizabeth J.; Siskos, Alexandros; Keun, Hector C.; Wulff, Jacob; Hu, Chengcheng; Lang, Julie E.; Chow, H-H. Sherry

    2014-01-01

    Limonene is a lipophilic monoterpene found in high levels in citrus peel. Limonene demonstrates anti-cancer properties in preclinical models with effects on multiple cellular targets at varying potency. While of interest as a cancer chemopreventive, the biological activity of limonene in humans is poorly understood. We conducted metabolite profiling in 39 paired (pre/post-intervention) plasma samples from early-stage breast cancer patients receiving limonene treatment (2 g QD) before surgical resection of their tumor. Metabolite profiling was conducted using ultra-performance liquid chromatography (UPLC) coupled to a linear trap quadrupole (LTQ) system and gas chromatography mass spectrometry (GC-MS). Metabolites were identified by comparison of ion features in samples to a standard reference library. Pathway-based interpretation was conducted using the human metabolome database (HMDB) and the MetaCyc database. Of the 397 named metabolites identified, 72 changed significantly with limonene intervention. Class-based changes included significant decreases in adrenal steroids (P’s<0.01), and significant increases in bile acids (P’s≤0.05) and multiple collagen breakdown products (P’s<0.001). The pattern of changes also suggested alterations in glucose metabolism. There were 47 metabolites whose change with intervention was significantly correlated to a decrease in cyclin D1, a cell cycle regulatory protein, in patient tumor tissues (P’s≤0.05). Here, oral administration of limonene resulted in significant changes in several metabolic pathways. Further, pathway-based changes were related to the change in tissue level cyclin D1 expression. Future controlled clinical trials with limonene are necessary to determine the potential role and mechanisms of limonene in the breast cancer prevention setting. PMID:25388013

  2. Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention.

    PubMed

    Miller, Jessica A; Pappan, Kirk; Thompson, Patricia A; Want, Elizabeth J; Siskos, Alexandros P; Keun, Hector C; Wulff, Jacob; Hu, Chengcheng; Lang, Julie E; Chow, H-H Sherry

    2015-01-01

    Limonene is a lipophilic monoterpene found in high levels in citrus peel. Limonene demonstrates anticancer properties in preclinical models with effects on multiple cellular targets at varying potency. While of interest as a cancer chemopreventive, the biologic activity of limonene in humans is poorly understood. We conducted metabolite profiling in 39 paired (pre/postintervention) plasma samples from early-stage breast cancer patients receiving limonene treatment (2 g QD) before surgical resection of their tumor. Metabolite profiling was conducted using ultra-performance liquid chromatography coupled to a linear trap quadrupole system and gas chromatography-mass spectrometry. Metabolites were identified by comparison of ion features in samples to a standard reference library. Pathway-based interpretation was conducted using the human metabolome database and the MetaCyc database. Of the 397 named metabolites identified, 72 changed significantly with limonene intervention. Class-based changes included significant decreases in adrenal steroids (P < 0.01), and significant increases in bile acids (P ≤ 0.05) and multiple collagen breakdown products (P < 0.001). The pattern of changes also suggested alterations in glucose metabolism. There were 47 metabolites whose change with intervention was significantly correlated to a decrease in cyclin D1, a cell-cycle regulatory protein, in patient tumor tissues (P ≤ 0.05). Here, oral administration of limonene resulted in significant changes in several metabolic pathways. Furthermore, pathway-based changes were related to the change in tissue level cyclin D1 expression. Future controlled clinical trials with limonene are necessary to determine the potential role and mechanisms of limonene in the breast cancer prevention setting. ©2014 American Association for Cancer Research.

  3. Limonene hydroperoxide analogues show specific patch test reactions.

    PubMed

    Christensson, Johanna Bråred; Hellsén, Staffan; Börje, Anna; Karlberg, Ann-Therese

    2014-05-01

    The fragrance terpene R-limonene is a very weak sensitizer, but forms allergenic oxidation products upon contact with air. The primary oxidation products of oxidized limonene, the hydroperoxides, have an important impact on the sensitizing potency of the oxidation mixture. One analogue, limonene-1-hydroperoxide, was experimentally shown to be a significantly more potent sensitizer than limonene-2-hydroperoxide in the local lymph node assay with non-pooled lymph nodes. To investigate the pattern of reactivity among consecutive dermatitis patients to two structurally closely related limonene hydroperoxides, limonene-1-hydroperoxide and limonene-2-hydroperoxide. Limonene-1-hydroperoxide, limonene-2-hydroperoxide, at 0.5% in petrolatum, and oxidized limonene 3.0% pet. were tested in 763 consecutive dermatitis patients. Of the tested materials, limonene-1-hydroperoxide gave most reactions, with 2.4% of the patients showing positive patch test reactions. Limonene-2-hydroperoxide and oxidized R-limonene gave 1.7% and 1.2% positive patch test reactions, respectively. Concomitant positive patch test reactions to other fragrance markers in the baseline series were frequently noted. The results are in accordance with the experimental studies, as limonene-1-hydroperoxide gave more positive patch test reactions in the tested patients than limonene-2-hydroperoxide. Furthermore, the results support the specificity of the allergenic activity of the limonene hydroperoxide analogues and the importance of oxidized limonene as a cause of contact allergy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts.

    PubMed

    Wróblewska, Agnieszka

    2014-11-28

    Limonene belongs to a group of very important intermediates used in the production of fine chemicals. This monoterpene compound can be obtained from peels of oranges or lemon which are a (biomass) waste from the orange juice industry. Thus, limonene is a renewable, easy available and a relatively cheap compound. This work presents preliminary studies on the process of limonene epoxidation over zeolite type catalysts such as: TS-1 and Ti-SBA-15. In these studies methanol was used as a solvent and as an oxidizing agent a 60 wt % hydrogen peroxide solution was applied. The activity of each catalyst was investigated for four chosen temperatures (0 °C, 40 °C, 80 °C and 120 °C). The reaction time was changed from 0.5 to 24 h. For each catalyst the most beneficial conditions (the appropriate temperature and the reaction time) have been established. The obtained results were compared and the most active catalyst was chosen. These studies have also shown different possible ways of limonene transformation, not only in the direction of 1,2-epoxylimonene and its corresponding diol, but also in direction of carveol, carvone and perillyl alcohol-compounds with a lot of applications. The possible mechanisms of formation of the allylic oxidation products were proposed.

  5. Limonene enhances the in vitro and in vivo permeation of trimetazidine across a membrane-controlled transdermal therapeutic system.

    PubMed

    Krishnaiah, Yellela S; Al-Saidan, Saleh M

    2008-01-01

    The objective of the study was to design membrane-controlled transdermal therapeutic system (TTS) for trimetazidine. The optimization of (i) concentration of ethanol-water solvent system, (ii) HPMC concentration of drug reservoir and (iii) limonene concentration in 2% w/v HPMC gel was done based on the in vitro permeation of trimetazidine across excised rat epidermis. A limonene-based membrane-controlled TTS of trimetazidine was fabricated and evaluated for its in vivo drug release in rabbit model. The in vitro permeation of trimetazidine from water, ethanol and selected concentrations (25, 50 and 75% v/v) of ethanol-water co-solvent systems showed that 50% v/v of ethanol-water solvent system provided an optimal transdermal flux of 233.1+/-3.8 microg/cm(2.)h. The flux of the drug decreased to 194.1+/-7.4 microg/cm(2.)h on adding 2% w/v of HPMC to ethanolic (50% v/v ethanol-water) solution of trimetazidine. However, on adding selected concentrations of limonene (0, 2, 4, 6 and 8% w/v) to 2% w/v HPMC gel drug reservoir, the flux of the drug increased to 365.5+/-7.1 microg/cm(2.)h. Based on these results, 2% w/v HPMC gel drug reservoir containing 6% w/v of limonene was chosen as an optimal formulation for studying the influence of rate-controlling EVA2825 membrane and adhesive-coated EVA2825 membrane. The flux of the drug across EVA2825 membrane (mean thickness 31.2 microm) decreased to 285.8+/-2.2 microg/cm(2.)h indicating that the chosen membrane was effective as rate-controlling membrane. On applying an adhesive coat (mean thickness 10.2 microm) to EVA2825 membrane, the drug flux further decreased to 212.4+/-2.6 microg/cm(2.)h. However, the flux of the drug across adhesive-coated EVA2825 membrane-rat epidermis composite was 185.9+/-2.9 microg/cm(2.)h, which is about 2-times higher than the desired flux. The fabricated limonene-based TTS patch of trimetazidine showed a mean steady state plasma concentration of 71.5 ng/mL for about 14 h with minimal fluctuation when

  6. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.

  7. Limonene encapsulation in freeze dried gellan systems.

    PubMed

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Human breast tissue disposition and bioactivity of limonene in women with early-stage breast cancer.

    PubMed

    Miller, Jessica A; Lang, Julie E; Ley, Michele; Nagle, Ray; Hsu, Chiu-Hsieh; Thompson, Patricia A; Cordova, Catherine; Waer, Amy; Chow, H-H Sherry

    2013-06-01

    Limonene is a bioactive food component found in citrus peel oil that has shown chemopreventive and chemotherapeutic activities in preclinical studies. We conducted an open-label pilot clinical study to determine the human breast tissue disposition of limonene and its associated bioactivity. We recruited 43 women with newly diagnosed operable breast cancer electing to undergo surgical excision to take 2 grams of limonene daily for two to six weeks before surgery. Blood and breast tissue were collected to determine drug/metabolite concentrations and limonene-induced changes in systemic and tissue biomarkers of breast cancer risk or carcinogenesis. Limonene was found to preferentially concentrate in the breast tissue, reaching high tissue concentration (mean = 41.3 μg/g tissue), whereas the major active circulating metabolite, perillic acid, did not concentrate in the breast tissue. Limonene intervention resulted in a 22% reduction in cyclin D1 expression (P = 0.002) in tumor tissue but minimal changes in tissue Ki67 and cleaved caspase-3 expression. No significant changes in serum leptin, adiponectin, TGF-β1, insulin-like growth factor binding protein-3 (IGFBP-3), and interleukin-6 (IL-6) levels were observed following limonene intervention. There was a small but statistically significant postintervention increase in insulin-like growth factor I (IGF-I) levels. We conclude that limonene distributed extensively to human breast tissue and reduced breast tumor cyclin D1 expression that may lead to cell-cycle arrest and reduced cell proliferation. Furthermore, placebo-controlled clinical trials and translational research are warranted to establish limonene's role for breast cancer prevention or treatment.

  9. Optimisation of α-terpineol production by limonene biotransformation using Penicillium digitatum DSM 62840.

    PubMed

    Tai, Ya-Nan; Xu, Min; Ren, Jing-Nan; Dong, Man; Yang, Zi-Yu; Pan, Si-Yi; Fan, Gang

    2016-02-01

    In this study, (R)-(+)-limonene biotransformation using three fungal strains was compared. Penicillium digitatum DSM 62840 was distinguished for its capacity to transform limonene into α-terpineol with high regioselectivity. Growth kinetics in submerged liquid culture and the effects of growth phase and contact time on biotransformation were studied using this strain. Substrate concentration, co-solvent selection, and cultivation conditions were subsequently optimised. The maximum concentration of α-terpineol (833.93 mg L(-1)) was obtained when the pre-culture medium was in medium log-phase by adding 840 mg L(-1) substrate dissolved in ethanol and cultivation was performed at 24 °C, 150 rpm, and pH 6.0 for 12 h. Addition of small amounts of (R)-(+)-limonene (84 mg L(-1)) at the start of fungal log-phase growth yielded a 1.5-fold yield of α-terpineol, indicating that the enzyme was inducible. Among these three strains tested, P. digitatum DSM 62840 was proved to be an efficient biocatalyst to transform (R)-(+)-limonene to α-terpineol. Further studies revealed that the optimal growth phase for biotransformation was in the medium log phase of this strain. The biotransformation represented a wide tolerance of temperature; α-terpineol concentration underwent no significant change at 8-32 °C. The biotransformation could also be performed using resting cells. © 2015 Society of Chemical Industry.

  10. Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil.

    PubMed

    Mahmoud, Soheil S; Williams, Matthew; Croteau, Rodney

    2004-03-01

    cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.

  11. Cleaning painted surfaces: evaluation of leaching phenomenon induced by solvents applied for the removal of gel residues.

    PubMed

    Casoli, Antonella; Di Diego, Zaira; Isca, Clelia

    2014-12-01

    Cleaning is one of the most important, delicate, and at the same time controversial processes in the conservation treatment of paintings. Although a strict definition of cleaning would be the removal of dirt, grime, or other accretions (surface cleaning), in the conservation field, cleaning is used in the broader meaning to include thinning/removing altered or “unwanted layers” of materials without damaging or altering the physicochemical properties of the surfaces to be preserved. The cleaning of unvarnished paintings is one of the most critical issues that are currently discussed. Several studies exist regarding different cleaning tools, such as gels, soaps, enzymes, ionic liquids, and foams, as well as various dry methods and lasers, but only a few have been performed on the risk associated with the use of water and organic solvents for the cleaning treatments in relation to the original paint binder. The aim of the study is to verify analytically the behavior of water gelling agents during cleaning treatments and the interaction of the following elements: water or organic solvents applied for the removal of gel residues with the original lipid paint binder. For this purpose, the study was conducted on a fragment of canvas painting (sixteenth to seventeenth century) of Soprintendenza per i Beni Storici, Artistici ed Etnoantropologici del Friuli Venezia Giulia (Superintendence for the Historical, Artistic and Ethno-anthropological Heritage of Friuli Venezia Giulia), Udine by means of Fourier transform infrared spectroscopy, gas chromatography/mass spectrometry, and scanning electron microscopy.

  12. Ozone-initiated terpene reaction products in five European offices: replacement of a floor cleaning agent.

    PubMed

    Nørgaard, A W; Kofoed-Sørensen, V; Mandin, C; Ventura, G; Mabilia, R; Perreca, E; Cattaneo, A; Spinazzè, A; Mihucz, V G; Szigeti, T; de Kluizenaar, Y; Cornelissen, H J M; Trantallidi, M; Carrer, P; Sakellaris, I; Bartzis, J; Wolkoff, P

    2014-11-18

    Cleaning agents often emit terpenes that react rapidly with ozone. These ozone-initiated reactions, which occur in the gas-phase and on surfaces, produce a host of gaseous and particulate oxygenated compounds with possible adverse health effects in the eyes and airways. Within the European Union (EU) project OFFICAIR, common ozone-initiated reaction products were measured before and after the replacement of the regular floor cleaning agent with a preselected low emitting floor cleaning agent in four offices located in four EU countries. One reference office in a fifth country did not use any floor cleaning agent. Limonene, α-pinene, 3-carene, dihydromyrcenol, geraniol, linalool, and α-terpineol were targeted for measurement together with the common terpene oxidation products formaldehyde, 4-acetyl-1-methylcyclohexene (4-AMCH), 3-isopropenyl-6-oxo-heptanal (IPOH), 6-methyl-5-heptene-2-one, (6-MHO), 4-oxopentanal (4-OPA), and dihydrocarvone (DHC). Two-hour air samples on Tenax TA and DNPH cartridges were taken in the morning, noon, and in the afternoon and analyzed by thermal desorption combined with gas chromatography/mass spectrometry and HPLC/UV analysis, respectively. Ozone was measured in all sites. All the regular cleaning agents emitted terpenes, mainly limonene and linalool. After the replacement of the cleaning agent, substantially lower concentrations of limonene and formaldehyde were observed. Some of the oxidation product concentrations, in particular that of 4-OPA, were also reduced in line with limonene. Maximum 2 h averaged concentrations of formaldehyde, 4-AMCH, 6-MHO, and IPOH would not give rise to acute eye irritation-related symptoms in office workers; similarly, 6-AMCH, DHC and 4-OPA would not result in airflow limitation to the airways.

  13. Theoretical Investigation of the NO3 Radical Addition to Double Bonds of Limonene

    PubMed Central

    Jiang, Lei; Wang, Wei; Xu, Yi-Sheng

    2009-01-01

    The addition reactions of NO3 to limonene have been investigated using ab initio methods. Six different possibilities for NO3 addition to the double bonds, which correspond to the two C–C double bonds (endocyclic or exocyclic) have been considered. The negative activation energies for the addition of NO3 to limonene are calculated and the energies of NO3-limonene radical adducts are found to be 14.55 to 20.17 kcal mol-1 more stable than the separated NO3 and limonene at the CCSD(T)/6–31G(d) + CF level. The results also indicate that the endocyclic addition reaction is more energetically favorable than the exocyclic one. PMID:19865516

  14. Clean amine solvents economically and online

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J.; Burns, D.

    1995-08-01

    Using electrodialysis technology to clean amine solvents is economically competitive with traditional change-out or ``bleed and feed`` methods, even for small systems, because a unit shutdown is not necessary to perform the process. Electrodialysis also has advantages over other online cleanup processes like ion exchange and vacuum reclamation. Off gases and olefinic and saturate liquefied petroleum gas (LPG) streams generated during operation of fluid catalytic crackers (FCC), cokers and other refinery processing equipment must be treated to remove undesirable components like hydrogen sulfide and carbon dioxide before they can be sold or used in downstream processes. At an Arkansas City,more » Kansas, refinery, a classic amine-based chemical absorbent system is used for this purpose. It comprises two absorbing contacts for gas and two for liquids. The system is charged with an N-methyldiethanolamine (MDEA)-based product that selectively absorbs contaminants. Amine is regenerated by removing contaminants with steam stripping. Lean amine is then recirculated to the absorbers. This case history demonstrates the effectiveness of electrodialysis technology for contaminant removal.« less

  15. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC

    PubMed Central

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E. K.; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D.

    2015-01-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpCL177Q) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. PMID:25934627

  16. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC.

    PubMed

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E K; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D; Mukhopadhyay, Aindrila

    2015-07-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Human breast tissue disposition and bioactivity of limonene in women with early stage breast cancer

    PubMed Central

    Miller, Jessica A.; Lang, Julie E.; Ley, Michele; Nagle, Ray; Hsu, Chiu-Hsieh; Thompson, Patricia A; Cordova, Catherine; Waer, Amy; Chow, H.-H. Sherry

    2013-01-01

    Limonene is a bioactive food component found in citrus peel oil that has demonstrated chemopreventive and chemotherapeutic activities in preclinical studies. We conducted an open label pilot clinical study to determine the human breast tissue disposition of limonene and its associated bioactivity. We recruited forty-three women with newly diagnosed operable breast cancer electing to undergo surgical excision to take 2 grams of limonene daily for 2 – 6 weeks before surgery. Blood and breast tissue were collected to determine drug/metabolite concentrations and limonene-induced changes in systemic and tissue biomarkers of breast cancer risk or carcinogenesis. Limonene was found to preferentially concentrate in the breast tissue, reaching high tissue concentration (mean=41.3 μg/g tissue) while the major active circulating metabolite, perillic acid, did not concentrate in the breast tissue. Limonene intervention resulted in a 22% reduction in cyclin D1 expression (P=0.002) in tumor tissue but minimal changes in tissue Ki67 and cleaved caspase 3 expression. No significant changes in serum leptin, adiponectin, TGF-β1, IGFBP-3 and IL-6 levels were observed following limonene intervention. There was a small but statistically significant post-intervention increase in IGF-1 levels. We conclude that limonene distributed extensively to human breast tissue and reduced breast tumor cyclin D1 expression that may lead to cell cycle arrest and reduced cell proliferation. Further placebo-controlled clinical trials and translational research are warranted to establish limonene’s role for breast cancer prevention or treatment. PMID:23554130

  18. Halogenated Solvent Cleaning Compliance Assistance Memoranda for the National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This page contains three documents, one from 1997, one from 1999, and one from 2001, that provide further clarification on complying with the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Halogenated Solvent Cleaning.

  19. Effect of Metarhizium anisopliae (Ascomycete), Cypermethrin, and D-limonene, alone and combined, on larval mortality of Rhipicephalus sanguineus (Acari: Ixodidae)

    USDA-ARS?s Scientific Manuscript database

    The effect of the fungus Metarhizium anisopliae Ma14 strain, D-limonene and cypermethrin, alone and combined, on the mortality of Rhipicephalus sanguineus larvae was evaluated. Eight groups with 25 tick larvae were inoculated with the fungus, eight groups were treated with cypermethrin, eight groups...

  20. Systemic sclerosis and occupational risk factors: role of solvents and cleaning products.

    PubMed

    Maître, Anne; Hours, Martine; Bonneterre, Vincent; Arnaud, Joëlle; Arslan, Marie Tülin; Carpentier, Patrick; Bergeret, Alain; de Gaudemaris, Régis

    2004-12-01

    To analyze occupational and non-occupational exposure factors suspected of being associated with scleroderma (SSc), with a view to inculpating or excluding certain potentially toxic substances (e.g., solvents), thereby contributing to the recognition of such toxins in the field of occupational health. The study comprised 10 men and 83 women diagnosed with SSc between 1995 and 1999 (American College of Rheumatology criteria) and early SSc, and 206 age and sex matched controls. The SSc registry is all-inclusive in the French administrative departments of Isere and Savoie so controls were randomly selected from the general population (using telephone directories) in these departments to ensure full representation. Exposure factors were analyzed for each subject by a personal questionnaire, and an individual evaluation was carried out by an industrial expert. Data were analyzed by conditional logistical regression adjusting for educational level. Construction workers were at significantly higher risk of contracting SSc; odds ratio (OR) = 4.01 (95% confidence interval 1.14-14.09). Analysis by industrial experts identified exposure to certain toxic substances regularly used by these same workers as risk factors for SSc: cleaning products: OR = 1.66 (0.90-3.08) (both sexes) and OR = 1.71 (0.92-3.20) (women only); solvents: OR = 3.23 (1.58-6.63) (both sexes) and OR = 2.80 (1.28-6.11) (women only); synthetic adhesives: OR 25.36 (1.36-472.28) (on 3 exposed cases). Exposure to either cleaning products or solvents emerged as a risk factor for SSc. Exposure factors should be characterized and results of all studies compared to implement appropriate preventive measures in relevant workplaces.

  1. Positive patch test reactions to oxidized limonene: exposure and relevance.

    PubMed

    Bråred Christensson, Johanna; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Gimenez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2014-11-01

    R-Limonene is a common fragrance terpene found in domestic and industrial products. R-Limonene autoxidizes on air exposure, and the oxidation products can cause contact allergy. In a recent multicentre study, 5.2% (range 2.3-12.1%) of 2900 patients showed a positive patch test reaction to oxidized R-limonene. To study the exposure to limonene among consecutive dermatitis patients reacting to oxidized R-limonene in an international setting, and to assess the relevance of the exposure for the patients' dermatitis. Oxidized R-limonene 3.0% (containing limonene hydroperoxides at 0.33%) in petrolatum was tested in 2900 consecutive dermatitis patients in Australia, Denmark, the United Kingdom, Singapore, Spain, and Sweden. A questionnaire assessing exposure to limonene-containing products was completed. Overall, exposure to products containing limonene was found and assessed as being probably relevant for the patients' dermatitis in 36% of the limonene-allergic patients. In Barcelona and Copenhagen, > 70% of the patients were judged to have had an exposure to limonene assessed as relevant. Oxidized R-limonene is a common fragrance allergen, and limonene was frequently found in the labelling on the patients' products, and assessed as relevant for the patients' dermatitis. A large number of domestic and occupational sources for contact with R-limonene were identified. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Tribological properties of limonene bisphosphonates

    USDA-ARS?s Scientific Manuscript database

    Limonene was chemically modified by reacting it with dialkyl phosphites of varying alkyl structures under inert atmosphere in the presence of free radical initiators. The reaction gave a mixture of mono- and di-adduct products, and was optimized to produce only the diadduct product limonene bisphosp...

  3. Early LC3 lipidation induced by d-limonene does not rely on mTOR inhibition, ERK activation and ROS production and it is associated with reduced clonogenic capacity of SH-SY5Y neuroblastoma cells.

    PubMed

    Berliocchi, Laura; Chiappini, Carlotta; Adornetto, Annagrazia; Gentile, Debora; Cerri, Silvia; Russo, Rossella; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2018-02-01

    d-Limonene is a natural monoterpene abundant in Citrus essential oils. It is endowed with several biological activities, including inhibition of carcinogenesis and promotion of tumour regression. Recently, d-limonene has been shown to modulate autophagic markers in vitro at concentrations found in vivo, in clinical pharmacokinetic studies. Autophagy is an intracellular catabolic process serving as both an adaptive metabolic response and a quality control mechanism. Because autophagy defects have been linked to a wide range of human pathologies, including neurodegeneration and cancer, there is a need for new pharmacological tools to control deregulated autophagy. To better understand the effects of d-limonene on autophagy, to identify the molecular mechanisms through which this monoterpene rapidly triggers LC3 lipidation and to evaluate the role for autophagy in long-term effects of d-limonene. Human SH-SY5Y neuroblastoma, HepG2 hepatocellular carcinoma and MCF7 breast cancer cells were used. Endogenous LC3-II levels were evaluated by western blotting. Autophagic flux assay was performed using bafilomycin A1 and chloroquine. Intracellular distribution of LC3 protein was studied by confocal microscopy analysis of LC3B-GFP transduced cells. Expression of lysosomal-membrane protein LAMP-1 was assessed by immunofluorescence analysis. Phosphorylated levels of downstream substrates of mTOR kinase (p70S6 kinase, 4E-BP1, and ULK1) and ERK were analyzed by western blotting. Production of reactive oxygen species (ROS) was assessed by live confocal microscopy of cells loaded with CellROX ® Green Reagent. Clonogenic assay was used to evaluate the ability of treated cells to proliferate and form colonies. LC3 lipidation promoted by d-limonene correlates with autophagosome formation and stimulation of basal autophagy. LC3 lipidation does not rely on inhibition of mTOR kinase, which instead appears to be transiently activated. In addition, d-limonene rapidly activates ERK and

  4. Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells.

    PubMed

    Russo, Rossella; Cassiano, Maria Gilda Valentina; Ciociaro, Antonella; Adornetto, Annagrazia; Varano, Giuseppe Pasquale; Chiappini, Carlotta; Berliocchi, Laura; Tassorelli, Cristina; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2014-01-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.005-0.03%) to modulate autophagic pathways in human SH-SY5Y neuroblastoma cells. BEO-treated cells show increased LC3II levels and appearance of dot-like formations of endogenous LC3 protein that colocalize with the lysosome marker LAMP-1. Autophagic flux assay using bafilomycin A1 and degradation of the specific autophagy substrate p62 confirmed that the observed increase of LC3II levels in BEO-exposed cells is due to autophagy induction rather than to a decreased autophagosomal turnover. Induction of autophagy is an early and not cell-line specific response to BEO. Beside basal autophagy, BEO also enhanced autophagy triggered by serum starvation and rapamycin indicating that the underlying mechanism is mTOR independent. Accordingly, BEO did not affect the phosphorylation of ULK1 (Ser757) and p70(S6K) (Thr389), two downstream targets of mTOR. Furthermore, induction of autophagy by BEO is beclin-1 independent, occurs in a concentration-dependent manner and is unrelated to the ability of BEO to induce cell death. In order to identify the active constituents responsible for these effects, the two most abundant monoterpenes found in the essential oil, d-limonene (125-750 µM) and linalyl acetate (62.5-375 µM), were individually tested at concentrations comparable to those found in 0.005-0.03% BEO. The same features of stimulated autophagy elicited by BEO were reproduced by D-limonene, which rapidly increases LC3II and reduces p62 levels in a concentration-dependent manner. Linalyl acetate was ineffective in replicating BEO effects; however, it greatly enhanced LC3 lipidation triggered by D-limonene.

  5. Role of D-Limonene in Autophagy Induced by Bergamot Essential Oil in SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Russo, Rossella; Cassiano, Maria Gilda Valentina; Ciociaro, Antonella; Adornetto, Annagrazia; Varano, Giuseppe Pasquale; Chiappini, Carlotta; Berliocchi, Laura; Tassorelli, Cristina; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2014-01-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.005–0.03%) to modulate autophagic pathways in human SH-SY5Y neuroblastoma cells. BEO-treated cells show increased LC3II levels and appearance of dot-like formations of endogenous LC3 protein that colocalize with the lysosome marker LAMP-1. Autophagic flux assay using bafilomycin A1 and degradation of the specific autophagy substrate p62 confirmed that the observed increase of LC3II levels in BEO-exposed cells is due to autophagy induction rather than to a decreased autophagosomal turnover. Induction of autophagy is an early and not cell-line specific response to BEO. Beside basal autophagy, BEO also enhanced autophagy triggered by serum starvation and rapamycin indicating that the underlying mechanism is mTOR independent. Accordingly, BEO did not affect the phosphorylation of ULK1 (Ser757) and p70S6K (Thr389), two downstream targets of mTOR. Furthermore, induction of autophagy by BEO is beclin-1 independent, occurs in a concentration-dependent manner and is unrelated to the ability of BEO to induce cell death. In order to identify the active constituents responsible for these effects, the two most abundant monoterpenes found in the essential oil, d-limonene (125–750 µM) and linalyl acetate (62.5–375 µM), were individually tested at concentrations comparable to those found in 0.005–0.03% BEO. The same features of stimulated autophagy elicited by BEO were reproduced by d-limonene, which rapidly increases LC3II and reduces p62 levels in a concentration-dependent manner. Linalyl acetate was ineffective in replicating BEO effects; however, it greatly enhanced LC3 lipidation triggered by d-limonene

  6. Differential Mechanism of Escherichia coli Inactivation by (+)-Limonene as a Function of Cell Physiological State and Drug's Concentration

    PubMed Central

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2′-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy

  7. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    PubMed

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about

  8. Effects of limonene stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905.

    PubMed

    Hu, Xi; Liu, Yunguo; Zeng, Guangming; Hu, Xinjiang; Wang, Yaqin; Zeng, Xiaoxia

    2014-07-01

    The effects of limonene exposure on the growth of Microcystisaeruginosa and the release of toxic intracellular microcystin (MCY) were tested by evaluating the results obtained from the batch culture experiments with M. aeruginosa FACHB-905. The time series of cell as well as intracellular and extracellular MCY concentrations were evaluated during 5d of the incubation. After exposure to limonene, the number of cells gradually diminished; the net log cell reduction after 5d of the exposure was 3.0, 3.6, and 3.8log when the initial cell densities were set at 1.6×10(7), 1.1×10(6) and 4.1×10(5)cell/mL, respectively. Limonene was found to significantly influence the production and release of MCY. As the limonene exposure could inhibit the increase in the number of cells, the increase in the total MCY concentration in the medium was also inhibited. In the presence of limonene, the intracellular MCY was gradually released into the medium through a gradual reduction in the number of cells. The extracellular MCY concentration in the medium was significantly higher in the limonene-exposed samples than in the control samples, which confirmed that limonene cannot decompose the extracellular MCY. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Limonene inhibits Candida albicans growth by inducing apoptosis.

    PubMed

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  10. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    PubMed Central

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In

  11. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide.

    PubMed

    de Almeida, Antonia Amanda Cardoso; Silva, Renan Oliveira; Nicolau, Lucas Antonio Duarte; de Brito, Tarcísio Vieira; de Sousa, Damião Pergentino; Barbosa, André Luiz Dos Reis; de Freitas, Rivelilson Mendes; Lopes, Luciano da Silva; Medeiros, Jand-Venes Rolim; Ferreira, Paulo Michel Pinheiro

    2017-04-01

    D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P < 0.05). At 75 mg/kg, it suppressed edema provoked by compound 48/80, histamine, prostaglandin E 2 , and serotonin and reduced permeability determined by Evans blue and MPO activity. It also reduced leukocytes, neutrophils, and IL-1β levels in the peritoneal cavity in comparison with carrageenan group (P < 0.05). (+)-Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P < 0.05). Additionally, it enlarged response times to the thermal stimulus after 60 and 90 min. In conclusion, (+)-limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.

  12. Mechanism of Bacterial Inactivation by (+)-Limonene and Its Potential Use in Food Preservation Combined Processes

    PubMed Central

    Espina, Laura; Gelaw, Tilahun K.; de Lamo-Castellví, Sílvia; Pagán, Rafael; García-Gonzalo, Diego

    2013-01-01

    This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits' essential oils, against E. coli. The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: β-sheet proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E. coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered β-sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food preservation, either acting alone or in combination with lethal heat treatments. PMID:23424676

  13. Mechanism of bacterial inactivation by (+)-limonene and its potential use in food preservation combined processes.

    PubMed

    Espina, Laura; Gelaw, Tilahun K; de Lamo-Castellví, Sílvia; Pagán, Rafael; García-Gonzalo, Diego

    2013-01-01

    This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits' essential oils, against E. coli. The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: β-sheet proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E. coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered β-sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food preservation, either acting alone or in combination with lethal heat treatments.

  14. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  15. Biobased lubricant additives derived from limonene

    USDA-ARS?s Scientific Manuscript database

    Limonene is a natural product widely found in many plants as a constituent of “essential oils.” It is commercially produced as a byproduct of the citrus industry from processing of fruits such as oranges, lemons, lime, tangerines, mandarins, and grapefruits. Limonene is a C10 hydrocarbon with a com...

  16. Development of eco-friendly submicron emulsions stabilized by a bio-derived gum.

    PubMed

    Pérez-Mosqueda, Luis María; Ramírez, Pablo; Trujillo-Cayado, Luis Alfonso; Santos, Jenifer; Muñoz, José

    2014-11-01

    Many traditional organic solvents are being gradually replaced by ecofriendly alternatives. D-Limonene is a terpenic (bio)-solvent that fulfils the requirements to be considered a green solvent. D-Limonene sub-micron emulsions suffer from Ostwald ripening destabilization. In this study, we examined the influence of the addition of a natural gum (rosin gum) to D-limonene in order to prevent Ostwald ripening. This contribution deals with the study of emulsions formulated with a mixture of D-limonene and rosin gum as dispersed phase and Pluronic PE9400 as emulsifier. The procedure followed for the development of these formulations was based on the application of product design principles. This led to the optimum ratio rosin gum/D-limonene and subsequently to the optimum surfactant concentration. The combination of different techniques (rheology, laser diffraction and multiple light scattering) was demonstrated to be a powerful tool to assist in the prediction of the emulsions destabilization process. Not only did the addition of rosin gum highly increase the stability of these emulsions by inhibiting the Ostwald ripening, but it also reduced the emulsions droplet size. Thus, we found that stable sub-micron D-limonene-in-water emulsions have been obtained in the range 3-6 wt% Pluronic PE-9400 by means of a single-step rotor/stator homogenizing process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Method for cleaning and passivating a metal surface

    NASA Technical Reports Server (NTRS)

    Alexander, George B. (Inventor); Carpenter, Norman F. (Inventor)

    1976-01-01

    A cleaning solvent useful in the cleaning of metal surfaces, e.g. nickle-iron alloys, contains sulfamic acid, citric acid, a solvent for hydrocarbon residues, and a surfactant. Metal surfaces are cleaned by contacting the surface with the cleaning solvent and then passivated by contact with aqueous solutions of citric acid or sodium nitrite or a combination of the two.

  18. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.

    PubMed

    Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S; Adams, Paul D; Keasling, Jay D; Petzold, Christopher J; Lee, Taek Soon

    2013-09-01

    Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative. © 2013 Elsevier Inc. All rights reserved.

  19. Solvent replacement for green processing.

    PubMed Central

    Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A

    1998-01-01

    The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018

  20. Precision Cleaning of Oxygen Systems and Components

    NASA Technical Reports Server (NTRS)

    McLaughlin, Russell

    2009-01-01

    Currently, NASA uses Dichloropentafluoropropane (HCFC-225), a Class II ozone depleting substance (ODs), to clean contaminated oxygen systems. Starting in 20 15, the Montreal Protocols and Clean Air Act prohibit the production and importation of all hydrochlorofluorocarbons (HCFC), except for limited use in refrigeration applications. Thus, a new non-ozone depleting solvent needs to be developed for use in cleaning. Optimally, such a solvent should also be environmentally benign or green to avoid needing to replace the new solvent with yet another solvent in the future due to other environmental concerns. Work for the first year consisted of two parts. The first part was developing a method of testing the cleaning efficiency of potential solvents. Stainless steel coupons were contaminated with a known weight of various contaminants and contaminant combinations and then immersed in solvent for ten minutes. The coupons were then removed and dried in an oven until all solvent had evaporated. Once dry, the coupons were weighed and the mass of the non-volatile residue (NVR) left on the coupon was determined. The cleaning efficiency of the solvents is reported as percent cleaning, with 100% cleaning being zero NVR left on the test coupon. The second half of the first goal was to use the develop method to perform baseline testing on current solvents. The second part of the work was to begin exploring alternative cleaning solvents. A variety of hydrofluorocarbons (HFCs) were tested. Preliminary testing was also performed with ionic liquids and aqueous surfactant solutions. Once potential solvents were identified, an analysis of the performance and environmental characteristics of each was to be conducted. Four contaminants were specified for use in testing. These are Mil-Spec-H-5606 (5606), a hydraulic fluid, Mil-H-83282B (83282), another hydraulic fluid, diethylhexyl sebacate (Sebacate), and WD-40. The structures of these contaminants are all similar, with long aliphatic

  1. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  2. Non-Volatile Residue (NVR) Contamination from Dry Handling and Solvent Cleaning

    NASA Technical Reports Server (NTRS)

    Sovinski, Marjorie F.

    2009-01-01

    This slide presentation reviews the testing for Non-Volatile Residue contamination transferred to surfaces from handling and solvent cleaning. Included in the presentation is a list of the items tested, formal work instructions dealing with NVR. There is an explanation of the Gravimetric determination method used to test the NVR in a variety of items, i.e., Gloves, Swabs, Garments, Bagging material, film and Wipes. Another method to test for contamination from NVR is the contact transfer method. The use of this method for testing gloves, garments, bagging material and film is explained. Certain equations use in NVR analysis and the use of a database for testing of NVR in consumables are reviewed.

  3. Increasing molecular weight parameters of a helical polymer through polymerization in a chiral solvent.

    PubMed

    Holder, Simon J; Achilleos, Mariliz; Jones, Richard G

    2006-09-27

    In this communication, we will demonstrate that polymerization in a chiral solvent can affect the molecular weight distribution of the product by perturbing the balance of the P and M helical screw senses of the growing chains. Specifically, for the Wurtz-type synthesis of polymethylphenylsilane (PMPS) in either (R) or (S)-limonene, the weight-average molecular weight of the products (average Mw = 80 000) was twice that of PMPS synthesized in (R/S)-limonene (average Mw = 39 200). Peturbation of the helical segmentation along the polymer chains leads to a reduction in the rate of occurrence of a key termination step. This the first time that a chiral solvent has been demonstrated to have such an effect on a polymerization process in affecting molecular weight parameters in contrast to affecting tacticity.

  4. Alternative Solvents through Green Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  5. 40 CFR Table 4 to Subpart Jj of... - Pollutants Excluded From Use in Cleaning and Washoff Solvents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cleaning and Washoff Solvents 4 Table 4 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL... Operations Pt. 63, Subpt. JJ, Table 4 Table 4 to Subpart JJ of Part 63—Pollutants Excluded From Use in... Nickel subsulfide 12035722 Acrylamide 79061 Hexachlorobenzene 118741 Chlordane 57749 1,3-Propane sultone...

  6. 40 CFR Table 4 to Subpart Jj of... - Pollutants Excluded From Use in Cleaning and Washoff Solvents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cleaning and Washoff Solvents 4 Table 4 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL... Operations Pt. 63, Subpt. JJ, Table 4 Table 4 to Subpart JJ of Part 63—Pollutants Excluded From Use in... Nickel subsulfide 12035722 Acrylamide 79061 Hexachlorobenzene 118741 Chlordane 57749 1,3-Propane sultone...

  7. 40 CFR Table 4 to Subpart Jj of... - Pollutants Excluded From Use in Cleaning and Washoff Solvents

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cleaning and Washoff Solvents 4 Table 4 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL... Operations Pt. 63, Subpt. JJ, Table 4 Table 4 to Subpart JJ of Part 63—Pollutants Excluded From Use in... Nickel subsulfide 12035722 Acrylamide 79061 Hexachlorobenzene 118741 Chlordane 57749 1,3-Propane sultone...

  8. The monoterpene limonene in orange peels attracts pests and microorganisms

    PubMed Central

    Rodríguez, Ana; Andrés, Victoria San; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Shimada, Takehiko; Gadea, José; Rodrigo, María; Zacarías, Lorenzo; Palou, Lluís; López, María M.; Castañera, Pedro; Peña, Leandro

    2011-01-01

    Plant volatiles include terpenoids, which are generally involved in plant defense, repelling pests and pathogens and attracting insects for herbivore control, pollination and seed dispersal. Orange fruits accumulate the monoterpene limonene at high levels in the oil glands of their fruit peels. When limonene production was downregulated in orange fruits by the transgenic expression of a limonene synthase (CitMTSE1) in the antisense configuration, these fruits were resistant to the fungus Penicillium digitatum (Pers.) Sacc. and the bacterium Xanthomonas citri subsp. citri and were less attractive to the medfly pest Ceratitis capitata. These responses were reversed when the antisense transgenic orange fruits were treated with limonene. To gain more insight into the role of the limonene concentration in fruit responses to pests and pathogens, we attempted to overexpress CitMTSE1 in the sense configuration in transgenic orange fruits. Only slight increases in the amount of limonene were found in sense transgenic fruits, maybe due to the detrimental effect that excessive limonene accumulation would have on plant development. Collectively, these results suggest that when limonene reaches peak levels as the fruit develops, it becomes a signal for pest and pathogen attraction, which facilitate access to the fruit for pulp consumers and seed dispersers. PMID:22212123

  9. Supersonic gas-liquid cleaning system

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-01-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  10. Supersonic gas-liquid cleaning system

    NASA Astrophysics Data System (ADS)

    Caimi, Raoul E. B.; Thaxton, Eric A.

    1994-02-01

    A system to perform cleaning and cleanliness verification is being developed to replace solvent flush methods using CFC 113 for fluid system components. The system is designed for two purposes: internal and external cleaning and verification. External cleaning is performed with the nozzle mounted at the end of a wand similar to a conventional pressure washer. Internal cleaning is performed with a variety of fixtures designed for specific applications. Internal cleaning includes tubes, pipes, flex hoses, and active fluid components such as valves and regulators. The system uses gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the object to be cleaned. Compressed air or any inert gas may be used to provide the conveying medium for the liquid. The converging-diverging nozzles accelerate the gas-liquid mixture to supersonic velocities. The liquid being accelerated may be any solvent including water. This system may be used commercially to replace CFC and other solvent cleaning methods widely used to remove dust, dirt, flux, and lubricants. In addition, cleanliness verification can be performed without the solvents which are typically involved. This paper will present the technical details of the system, the results achieved during testing at KSC, and future applications for this system.

  11. Used Solvent Testing and Reclamation. Volume 1. Cold-Cleaning Solvents

    DTIC Science & Technology

    1988-12-01

    spectrometer, and specific gravity meter involve buying routine cleaning supplies , and should not exceed $50. Consequently, these methods were...in addition to routine cleaning supplies . The K13V measurement requires periodic supplies of Kauri-butanol solution. TLC analysis requires glass

  12. Used Solvent Testing and Reclamation. Volume 2. Vapor Degreasing and Precision Cleaning Solvents

    DTIC Science & Technology

    1988-12-01

    of 5 to 500 ppm in halogenated solvents using Karl - Fischer reagent. Arbitrary criteria to identify a spent solvent have evolved in various industries... methods of managing waste solvent. Some DOD installations are reclaiming used solvents rather than discarding them. Reclamation is feasible because the...most E E CT E reliable methods for testing solvent quality. Further testing isnecessary for chlorinated solvents to determine the inhibitor con- FEB 24

  13. Theoretical investigations of the gas phase reaction of limonene (C10H16) with OH radical

    NASA Astrophysics Data System (ADS)

    Ranjan Dash, Manas; Rajakumar, B.

    2015-11-01

    The rate coefficients of hydroxyl radical (OH) reaction with limonene were computed using canonical variational transition state theory with small-curvature tunnelling between 275 and 400 K. The geometries and frequencies of all the stationary points are calculated using hybrid density functional theory methods M06-2X and MPWB1K with 6-31+G(d,p), 6-311++G(d,p), and 6-311+G(2df,2p) basis sets. Both addition and abstraction channels of the title reaction were explored. The rate coefficients obtained over the temperature range of 275-400 K were used to derive the Arrhenius expressions: k(T) = 4.06×10-34 T7.07 exp[4515/T] and k(T) = 7.37×10-25 T3.9 exp[3169/T] cm3 molecule-1 s-1 at M06-2X/6-311+G(2df,2p) and MPWB1K/6-311+G(2df,2p) levels of theory, respectively. Kinetic study indicated that addition reactions are major contributors to the total reaction in the studied temperature range. The atmospheric lifetime (τ) of limonene due to its reactions with various tropospheric oxidants was calculated and concluded that limonene is lost in the atmosphere within a few hours after it is released. The ozone production potential of limonene was computed to be (14-18) ppm, which indicated that degradation of limonene would lead to a significant amount of ozone production in the troposphere.

  14. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon the solvent AsahiKlin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  15. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance chlorofluorocarbon-113 was banned, NASA's propulsion test facilities at Marshall Space Flight Center and Stennis Space Center have relied upon the solvent Asahiklin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  16. 40 CFR Table 4 to Subpart Jj of... - Pollutants Excluded From Use in Cleaning and Washoff Solvents

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pollutants Excluded From Use in Cleaning and Washoff Solvents 4 Table 4 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL... Operations Pt. 63, Subpt. JJ, Table 4 Table 4 to Subpart JJ of Part 63—Pollutants Excluded From Use in...

  17. Characterization of biogenic volatile organic compounds (BVOCs) in cleaning reagents and air fresheners in Hong Kong

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Ho, Steven Sai Hang; Ho, Kin Fai; Lee, Shun Cheng; Gao, Yuan; Cheng, Yan; Chan, C. S.

    2011-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. In this study, a solid phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (SPME-GC/MS) method was applied for the determination of BVOCs compositions in three categories of cleaning products including floor cleaners (FC), kitchen cleaners (KC) and dishwashing detergents (DD), and also air fresheners (AF). The analysis results demonstrated that chemical composition and concentration of individual BVOC varied broadly with household products in the view of their different functions and scents as indicated on the labels. The concentration of total BVOCs for sample FC1 was the highest up to 4146.0 μg g -1, followed by FC2 of 264.6 μg g -1, FC4 of 249.3 μg g -1 and FC3 of 139.2 μg g -1. D-limonene was the most abundant detected BVOCs in KC samples with the chemical composition varying from 19.6 ± 1.0 to 1513.0 ± 37.1 μg g -1. For dishwashing detergents, only D-limonene was detected and quantified. The BVOCs compositions of air freshener samples are much more complicated. It was estimated that the consumption of floor cleaners contributed 51% of the total BVOCs amount indoors in Hong Kong, followed by air fresheners 42%, kitchen cleaners 5% and dishwashing detergents 2%.

  18. Machine Cleans And Degreases Without Toxic Solvents

    NASA Technical Reports Server (NTRS)

    Gurguis, Kamal S.; Higginson, Gregory A.

    1993-01-01

    Appliance uses hot water and biodegradable chemicals to degrease and clean hardware. Spray chamber essentially industrial-scale dishwasher. Front door tilts open, and hardware to be cleaned placed on basket-like tray. During cleaning process, basket-like tray rotates as high-pressure "V" jets deliver steam, hot water, detergent solution, and rust inhibitor as required.

  19. Ultra-High Performance Liquid Chromatography (UHPLC) Method for the Determination of Limonene in Sweet Orange (Citrus sinensis) Oil: Implications for Limonene Stability.

    PubMed

    Bernart, Matthew W

    2015-01-01

    The citrus-derived bioactive monoterpene limonene is an important industrial commodity and fragrance constituent. An RP isocratic elution C18 ultra-HPLC (UHPLC) method using a superficially porous stationary phase and photodiode array (PDA) detector has been developed for determining the limonene content of sweet orange (Citrus sinensis) oil. The method is fast with a cycle time of 1.2 min, linear, precise, accurate, specific, and stability indicating, and it satisfies U.S. Pharmacopeia suitability parameters. The method may be useful in its present form for limonene processing, or modified for research on more polar compounds of the terpenome. A forced-degradation experiment showed that limonene is degraded by heat in hydro-ethanolic solution. PDA detection facilitates classification of minor components of the essential oil, including β-myrcene.

  20. Synthesis of High-Impact Polystyrene Fibers using Electrospinning

    NASA Astrophysics Data System (ADS)

    Zulfi, A.; Fauzi, A.; Edikresnha, D.; Munir, M. M.; Khairurrijal

    2017-05-01

    Synthesis of fibers from waste high-impact polystyrene (HIPS) have been successfully done using electrospinning method. The HIPS solutions were made with a single solvent (DMF or d-limonene), a mixed solvent (d-limonene/DMF), and with the addition of acetone to the previously stated solvents. The effects of HIPS concentration, a mix of solvent, and the addition of acetone on the morphology and the diameter of fibers were observed. The morphological change from particles to fibers took place along with the increasing concentration of HIPS in d-limonene. For other precursor solutions using DMF solvent, bead free fibers could be obtained even at low levels. The average diameter of fibers increased along with the increase of the HIPS concentration in DMF. At the concentrations of 15, 20, 25, 30, and 35 wt.%, the average diameters were 1.85, 2.09, 2.66, 3.59, and 7.38 μm, respectively. For the precursor solutions with the combination of different solvents (HIPS/DMF), the existence of beads was influenced by the ratio of solvents. When the ratio of d-limonene/DMF was 75:25, the obtained beaded fibers had a relatively large amount of beads. At the ratio of 50:50, fewer beads were found. Bead-free fibers were finally reached when the ratio of HIPS / DMF was 25:75. The addition of acetone reduced the diameter of the produced fibers. However, too much addition of acetone caused the fibers to be wet. Additionally, the diameter became larger if the addition of acetone surpassed a certain amount of volume.

  1. α-Pinene, 3-carene and d-limonene in indoor air of Polish apartments: the impact on air quality and human exposure.

    PubMed

    Król, Sylwia; Namieśnik, Jacek; Zabiegała, Bożena

    2014-01-15

    Monoterpenes are among most ubiquitous volatile organic compounds (VOCs) to be detected in indoor air. Since the quality of indoor air is considered important for inhabitants' well-being, the present study aimed at investigating impact of human activity on levels of selected monoterpenes applying passive sampling technique followed by thermal desorption and gas chromatography coupled mass spectrometry. One of the objectives of the present work was to identify and characterize main emission sources as well as to investigate relationship between selected monoterpenes in indoor air. Concentration levels obtained for studied monoterpenes varied from 3 μg m(-3) for 3-carene to 1261 μg m(-3) for d-limonene. D-limonene was reported the most abundant of studied monoterpenes in indoor air. The strong correlation observed between monoterpenes suggests that studied compounds originate from same emission sources, while the I/O >1 proves the strong contribution of endogenous emission sources. The in-depth study of day-night fluctuations in concentrations of monoterpenes lead to the conclusion that human presence and specific pattern of behavior strongly influences presence and concentrations of VOCs in indoor environment. The evaluation of human exposure to selected monoterpenes via inhalation of air revealed that infants, toddlers and young children were the highly exposed individuals. © 2013.

  2. ANALYSIS OF SECONDARY ORGANIC AEROSOL COMPOUNDS FROM THE PHOTOOXIDATION OF D-LIMONENE IN THE PRESENCE OF NO X AND THEIR DETECTION IN AMBIENT PM 2.5

    EPA Science Inventory

    Chemical analysis of secondary organic aerosol (SOA) from the photooxidation of a d-limonene/NOx/air mixture was carried out. SOA, generated in a smog chamber, was collected on Zefluor filters. To determine the structural characteristics of the compounds, the filter sample...

  3. Fast-Dissolving, Prolonged Release, and Antibacterial Cyclodextrin/Limonene-Inclusion Complex Nanofibrous Webs via Polymer-Free Electrospinning.

    PubMed

    Aytac, Zeynep; Yildiz, Zehra Irem; Kayaci-Senirmak, Fatma; San Keskin, Nalan Oya; Kusku, Semran Ipek; Durgun, Engin; Tekinay, Turgay; Uyar, Tamer

    2016-10-05

    We have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HPβCD, MβCD, and HPγCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was 1:1 for CD/limonene systems. MβCD/limonene-IC-NF released much more limonene at 37, 50, and 75 °C than HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF because of the greater amount of preserved limonene. Moreover, MβCD/limonene-IC-NF has released only 25% (w/w) of its limonene, whereas HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF released 51 and 88% (w/w) of their limonene in 100 days, respectively. CD/limonene-IC-NFs exhibited high antibacterial activity against E. coli and S. aureus. The water solubility of limonene increased significantly and CD/limonene-IC-NFs were dissolved in water in a few seconds. In brief, CD/limonene-IC-NFs with fast-dissolving character enhanced the thermal stability and prolonged the shelf life along with antibacterial properties could be quite applicable in food and oral care applications.

  4. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    PubMed

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin.

    PubMed

    Bacanlı, Merve; Başaran, A Ahmet; Başaran, Nurşen

    2015-07-01

    Phenolic compounds not only contribute to the sensory qualities of fruits and vegetables but also exhibit several health protective properties. Limonene and naringin are the most popular phenolics found in Citrus plants. In this study, we investigated the antioxidant capacities of limonene and naringin by the trolox equivalent antioxidant capacity (TEAC) assay and the cytotoxic effects by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Chinese hamster fibroblast (V79) cells. The genotoxic potentials of limonene and naringin were evaluated by micronucleus (MN) and alkaline COMET assays in human lymphocytes and V79 cells. Limonene and naringin, were found to have antioxidant activities at concentrations of 2-2000 µM and 5-2000 µM respectively. IC50 values of limonene and naringin were found to be 1265 µM and 9026 µM, respectively. Limonene at the concentrations below 10,000 µM and naringin at the all concentrations studied, have not exerted genotoxic effects in lymphocytes and in V79 cells. Limonene and naringin at all concentrations revealed a reduction in the frequency of MN and DNA damage induced by H2O2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes.

    PubMed

    Bråred Christensson, Johanna; Karlberg, Ann-Therese; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Giménez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2016-05-01

    Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. To investigate concomitant reactions between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark, Singapore, Spain, Sweden, and the United Kingdom. A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients reacting to oxidized R-limonene, 46% reacted to oxidized linalool, whereas 35% of the 200 patients reacting to oxidized linalool also reacted to oxidized R-limonene. The majority of the patients (75%) reacted to only one of the oxidation mixtures, thus supporting the specificity of the reactions. The concomitant reactions to the two fragrance allergens suggest multiple sensitizations, which most likely reflect the exposure to the different fragrance materials in various types of consumer products. This is in accordance with what is generally seen for patch test reactions to fragrance materials. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    NASA Technical Reports Server (NTRS)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  8. Rheological Modification of Reduced Fat Chocolate Induced by the Addition of Limonene

    NASA Astrophysics Data System (ADS)

    Do, T.-A. Line; Vieira, Joselio; Hargreaves, Jeremy; Wolf, Bettina; Mitchell, John

    2008-07-01

    The objective of this study is to understand how the addition of limonene, a low molecular weight hydrophobic compound, to chocolate, leads to a decrease in the viscosity of molten chocolate. Chocolate is a fat (cocoa butter) based dispersion of solids (sugar, cocoa and milk solids). We showed that, by mixing with cocoa butter, limonene decreases the viscosity of chocolate by decreasing the viscosity of its continuous phase, liquid cocoa butter. To understand the functionality of limonene in decreasing the viscosity of cocoa butter (triacylglyceride melt), additional mixtures of cocoa butter and limonene were prepared and their viscosity was measured. The dependence of the viscosity on the ratio of cocoa butter to limonene analyzed using Kay's equation seems to indicate that limonene mixes with and within the cocoa butter triacylglycerides, diluting the fat and leading to a decrease in the overall fat viscosity.

  9. Towards sustainable and safe apparel cleaning methods: A review.

    PubMed

    Troynikov, Olga; Watson, Christopher; Jadhav, Amit; Nawaz, Nazia; Kettlewell, Roy

    2016-11-01

    Perchloroethylene (PERC) is a compound commonly used as a solvent in dry cleaning, despite its severe health and environmental impacts. In recent times chemicals such as hydrocarbons, GreenEarth(®), acetal and liquid carbon dioxide have emerged as less damaging substitutes for PERC, and an even more sustainable water-based wet cleaning process has been developed. We employed a systematic review approach to provide a comprehensive overview of the existing research evidence in the area of sustainable and safe apparel cleaning methods and care. Our review describes traditional professional dry cleaning methods, as well as those that utilise solvents other than PERC, and their ecological attributes. In addition, the new professional wet cleaning process is discussed. Finally, we address the health hazards of the various solvents used in dry cleaning and state-of-the-art solvent residue trace analysis techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Study of the solubility and stability of polystyrene wastes in a dissolution recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Maria Teresa; Gracia, Ignacio; Duque, Gema

    2009-06-15

    Dissolution with suitable solvents is one of the cheapest and more efficient processes for polystyrene waste management. In this work the solubility of polystyrene foams in several solvents benzene, toluene, xylene, tetrahydrofuran, chloroform, 1,3-butanediol, 2-butanol, linalool, geraniol, d-limonene, p-cymene, terpinene, phellandrene, terpineol, menthol, eucalyptol, cinnamaldheyde, nitrobenzene, N,N-dimethylformamide and water has been determined. Experimental results have shown that to develop a 'green process' the constituents of essential oils, d-limonene, p-cymene, terpinene, phellandrene, are the most appropriate solvents. The action of these solvent does not produce any degradation of polymer chains. The solubility of the polymer in the mentioned solvents at differentmore » temperatures has been investigated. The solvent can be easily recycled by distillation.« less

  11. Temporal variation of VOC emission from solvent and water based wood stains

    NASA Astrophysics Data System (ADS)

    de Gennaro, Gianluigi; Loiotile, Annamaria Demarinis; Fracchiolla, Roberta; Palmisani, Jolanda; Saracino, Maria Rosaria; Tutino, Maria

    2015-08-01

    Solvent- and water-based wood stains were monitored using a small test emission chamber in order to characterize their emission profiles in terms of Total and individual VOCs. The study of concentration-time profiles of individual VOCs enabled to identify the compounds emitted at higher concentration for each type of stain, to examine their decay curve and finally to estimate the concentration in a reference room. The solvent-based wood stain was characterized by the highest Total VOCs emission level (5.7 mg/m3) that decreased over time more slowly than those related to water-based ones. The same finding was observed for the main detected compounds: Benzene, Toluene, Ethylbenzene, Xylenes, Styrene, alpha-Pinene and Camphene. On the other hand, the highest level of Limonene was emitted by a water-based wood stain. However, the concentration-time profile showed that water-based product was characterized by a remarkable reduction of the time of maximum and minimum emission: Limonene concentration reached the minimum concentration in about half the time compared to the solvent-based product. According to AgBB evaluation scheme, only one of the investigated water-based wood stains can be classified as a low-emitting product whose use may not determine any potential adverse effect on human health.

  12. Aqueous alternatives for metal and composite cleaning

    NASA Technical Reports Server (NTRS)

    Quitmeyer, Joann

    1994-01-01

    For many years the metalworking industry has cleaned metal and composite substrates with chlorinated solvents. Recently, however, health and disposal related environmental concerns have increased regarding chlorinated solvents, including 1,1,1-trichloroethane, trichloroethylene, methylene chloride, or Freon'. World leaders have instituted a production ban of certain ozone depleting chlorofluorocarbons (CFC's) by 1996. The Occupational Safety and Health Administration (OSHA) has instituted worker vapor exposure limitations for virtually all of the solvents used in solvent-based cleaners. In addition, the United States Environmental Protection Agency (EPA) has defined nearly all solvent-based cleaners as 'hazardous'. Cradle to grave waste responsibility is another reason manufacturers are trying to replace chlorinated solvents in their cleaning processes. Because of these factors, there now is a world wide effort to reduce and/or eliminate the use of chlorinated solvents for industrial cleaning. Waterbased cleaners are among the alternatives being offered to the industry. New technology alkaline cleaners are now available that can be used instead of chlorinated solvents in many cleaning processes. These waterbased cleaners reduce the release of volatile organic compounds (VOC's) by as much as 99 percent. (The definition and method of calculation of VOC's now varies from region to region.) Hazardous waste generation can also be significantly reduced or eliminated with new aqueous technology. This in turn can ease worker exposure restrictions and positively impact the environment. This paper compares the chemical and physical properties of this aqueous cleaners versus chlorinated solvents.

  13. Engineering d-limonene synthase down-regulation in orange fruit induces resistance against the fungus Phyllosticta citricarpa through enhanced accumulation of monoterpene alcohols and activation of defence.

    PubMed

    Rodríguez, Ana; Kava, Vanessa; Latorre-García, Lorena; da Silva, Geraldo J; G Pereira, Rosana; Glienke, Chirlei; Ferreira-Maba, Lisandra S; Vicent, Antonio; Shimada, Takehiko; Peña, Leandro

    2018-03-24

    Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus-growing areas worldwide. The pathogen may infect the fruit for 20-24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d-Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d-limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d-limonene content, an over-accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up-regulation of different pathogenesis-related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases. © 2018 BSPP and John Wiley & Sons Ltd.

  14. Use of Vacuum Degreasing for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard

    2017-01-01

    Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.

  15. Proteins differentially expressed during limonene biotransformation by Penicillium digitatum DSM 62840 were examined using iTRAQ labeling coupled with 2D-LC-MS/MS.

    PubMed

    Zhang, Lu-Lu; Zhang, Yan; Ren, Jing-Nan; Liu, Yan-Long; Li, Jia-Jia; Tai, Ya-Nan; Yang, Shu-Zhen; Pan, Si-Yi; Fan, Gang

    2016-10-01

    This study focused on the differences in protein expression at various periods during limonene biotransformation by Penicillium digitatum DSM 62840. A total of 3644 protein-species were quantified by iTRAQ during limonene biotransformation (0 and 12 h). A total of 643 proteins were differentially expressed, 316 proteins were significantly up-regulated and 327 proteins were markedly down-regulated. GO, COG, and pathway enrichment analysis showed that the differentially expressed proteins possessed catalytic and binding functions and were involved in a variety of cellular and metabolic process. Furthermore, the enzymes involved in limonene transformation might be related to cytochrome P-450. This study provided a powerful platform for further exploration of biotransformation, and the identified proteins provided insight into the mechanism of limonene transformation.

  16. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors.

    PubMed

    Subramenium, Ganapathy Ashwinkumar; Vijayakumar, Karuppiah; Pandian, Shunmugiah Karutha

    2015-08-01

    The present study explores the efficacy of limonene, a cyclic terpene found in the rind of citrus fruits, for antibiofilm potential against species of the genus Streptococcus, which have been deeply studied worldwide owing to their multiple pathogenic efficacy. Limonene showed a concentration-dependent reduction in the biofilm formation of Streptococcus pyogenes (SF370), with minimal biofilm inhibitory concentration (MBIC) of 400 μg ml - 1. Limonene was found to possess about 75-95 % antibiofilm activity against all the pathogens tested, viz. Streptococcus pyogenes (SF370 and 5 clinical isolates), Streptococcus mutans (UA159) and Streptococcus mitis (ATCC 6249) at 400 μg ml - 1 concentration. Microscopic analysis of biofilm architecture revealed a quantitative breach in biofilm formation. Results of a surface-coating assay suggested that the possible mode of action of limonene could be by inhibiting bacterial adhesion to surfaces, thereby preventing the biofilm formation cascade. Susceptibility of limonene-treated Streptococcus pyogenes to healthy human blood goes in unison with gene expression studies in which the mga gene was found to be downregulated. Anti-cariogenic efficacy of limonene against Streptococcus mutans was confirmed, with inhibition of acid production and downregulation of the vicR gene. Downregulation of the covR, mga and vicR genes, which play a critical role in regulating surface-associated proteins in Streptococcus pyogenes and Streptococcus mutans, respectively, is yet further evidence to show that limonene targets surface-associated proteins. The results of physiological assays and gene expression studies clearly show that the surface-associated antagonistic mechanism of limonene also reduces surface-mediated virulence factors.

  17. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2.

    PubMed

    Kiyota, Hiroshi; Okuda, Yukiko; Ito, Michiho; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-09-20

    Isoprenoids, major secondary metabolites in many organisms, are utilized in various applications. We constructed a model photosynthetic production system for limonene, a volatile isoprenoid, using a unicellular cyanobacterium that expresses the plant limonene synthase. This system produces limonene photosynthetically at a nearly constant rate and that can be efficiently recovered using a gas-stripping method. This production does not affect the growth of the cyanobacteria and is markedly enhanced by overexpression of three enzymes in the intrinsic pathway to provide the precursor of limonene, geranyl pyrophosphate. The photosynthetic production of limonene in our system is more or less sustained from the linear to stationary phase of cyanobacterial growth for up to 1 month. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Evaluation of AK-225(R), Vertrel(R) MCA and HFE A 7100 as Alternative Solvents for Precision Cleaning and Verification Technology

    NASA Technical Reports Server (NTRS)

    Melendez, Orlando; Trizzino, Mary; Fedderson, Bryan

    1997-01-01

    The National Aeronautics and Space Administration (NASA), Kennedy Space Center (KSC) Materials Science Division conducted a study to evaluate alternative solvents for CFC-113 in precision cleaning and verification on typical samples that are used in the KSC environment. The effects of AK-225(R), Vertrel(R), MCA, and HFE A 7100 on selected metal and polymer materials were studied over 1, 7 and 30 day test times. This report addresses a study on the compatibility aspects of replacement solvents for materials in aerospace applications.

  19. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  20. DETAILED ANALYSIS OF SOA ORIGINATING FROM THE PHOTOOXIDATION OF D-LIMONENE IN THE PRESENCE OF NO X AND UV LIGHT AND ITS IMPLICATION TO AMBIENT PM 2.5

    EPA Science Inventory

    A detailed analysis was carried out of the aerosol phase originated from the photooxidation of d-limonene in the presence of NOx and artificial light with the analytical emphasis on the identification of oxygenated organic compounds. The major components included six ...

  1. Aqueous Alkaline Cleaners: An Alternative to Organic Solvents

    DTIC Science & Technology

    1993-09-01

    F021, F022, F023, F026, F027, F1028) Spent solvents (FOOl, F002, F003, F004, F005) July 8, 1987 California list wastes (Liquid hazardous wastes...installations and has been successful in developing a recycling program to reclaim spent Stoddard solvent and produce a material that meets Army specifications...metal parts it has cleaned. As the contamination level rises, it depletes the solvent’s effective cleaning power until the solvent becomes " spent

  2. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand

    PubMed Central

    Banaee, Sean; S Que Hee, Shane

    2017-01-01

    Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415

  3. Limonene--A Natural Insecticide.

    ERIC Educational Resources Information Center

    Beatty, Joseph H.

    1986-01-01

    Describes a high school chemistry student's research project in which limonene was isolated from the oil of lemons and oranges. Outlines the students' tests on the use of this chemical as an insecticide. Discusses possible extensions of the exercises based on questions generated by the students. (TW)

  4. Thermal degradation of terpenes: camphene, Δ-carene, limonene, and α -terpinene

    Treesearch

    Gerald W. McGraw; Richard W. Hemingway; Leonard L. Ingram; Catherine S. Canady; William B. McGraw

    1999-01-01

    Emissions from wood dryers have been of some concern for a number of years, and recent policy changes by the Environmental Protection Agency have placed emphasis upon the gaseous emissions that lead to the formation of particulate matter as small as 2.5 l m diameter. In this qualitative study, camphene, D 3 -carene, limonene, and a -terpinene were thermally degraded in...

  5. DEMONSTRATION OF A LIQUID CARBON DIOXIDE PROCESS FOR CLEANING METAL PARTS

    EPA Science Inventory

    The report gives results of a demonstration of liquid carbon dioxide (LCO2) as an alternative to chlorinated solvents for cleaning metal parts. It describes the LCO2 process, the parts tested, the contaminants removed, and results from preliminary laboratory testing and on-site d...

  6. Mirror-symmetry-breaking in poly[(9,9-di-n-octylfluorenyl- 2,7-diyl)-alt-biphenyl] (PF8P2) is susceptible to terpene chirality, achiral solvents, and mechanical stirring.

    PubMed

    Fujiki, Michiya; Kawagoe, Yoshifumi; Nakano, Yoko; Nakao, Ayako

    2013-06-17

    Solvent chirality transfer of (S)-/(R)-limonenes allows the instant generation of optically active PF8P2 aggregates with distinct circular dichroism (CD)/circularly polarized luminescence (CPL) amplitudes with a high quantum yield of 16-20%. The present paper also reports subtle mirror-symmetry-breaking effects in CD-/CPL-amplitude and sign, CD/UV-vis spectral wavelengths, and photodynamics of the aggregates, though the reasons for the anomaly are unsolved. However, these photophysical properties depend on (i) the chemical natures of chiral and achiral molecules when used in solvent quantity, (ii) clockwise and counterclockwise stirring operations, and (iii) the order of addition of limonene and methanol to the chloroform solution.

  7. Space Shuttle Reusable Solid Rocket Motor (RSRM) Hand Cleaning Solvent Replacement at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Keen, Jill M.; DeWeese, Darrell C.; Key, Leigh W.

    1997-01-01

    At Kennedy Space Center (KSC), Thiokol Corporation provides the engineering to assemble and prepare the Space Shuttle Reusable Solid Rocket Motor (RSRM) for launch. This requires hand cleaning over 86 surfaces including metals, adhesives, rubber and electrical insulations, various painted surfaces and thermal protective materials. Due to the phase-out of certain ozone depleting chemical (ODC) solvents, all RSRM hand wipe operations being performed at KSC using l,l,1-trichloroethane (TCA) were eliminated. This presentation summarizes the approach used and the data gathered in the effort to eliminate TCA from KSC hand wipe operations.

  8. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    PubMed

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Toxicological analysis of limonene reaction products using an in vitro exposure system

    PubMed Central

    Anderson, Stacey E.; Khurshid, Shahana S.; Meade, B. Jean; Lukomska, Ewa; Wells, J.R.

    2015-01-01

    Epidemiological investigations suggest a link between exposure to indoor air chemicals and adverse health effects. Consumer products contain reactive chemicals which can form secondary pollutants which may contribute to these effects. The reaction of limonene and ozone is a well characterized example of this type of indoor air chemistry. The studies described here characterize an in vitro model using an epithelial cell line (A549) or differentiated epithelial tissue (MucilAir™). The model is used to investigate adverse effects following exposure to combinations of limonene and ozone. In A549 cells, exposure to both the parent compounds and reaction products resulted in alterations in inflammatory cytokine production. A one hour exposure to limonene + ozone resulted in decreased proliferation when compared to cells exposed to limonene alone. Repeated dose exposures of limonene or limonene + ozone were conducted on MucilAir™ tissue. No change in proliferation was observed but increases in cytokine production were observed for both the parent compounds and reaction products. Factors such as exposure duration, chemical concentration, and sampling time point were identified to influence result outcome. These findings suggest that exposure to reaction products may produce more severe effects compared to the parent compound. PMID:23220291

  10. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  11. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation.

    PubMed

    Joglekar, Madhav M; Panaskar, Shrimant N; Chougale, Ashok D; Kulkarni, Mahesh J; Arvindekar, Akalpita U

    2013-10-01

    Inhibition of protein glycation is known to ameliorate secondary complications in diabetes. In the present study antiglycative properties of limonene, a natural product, were evaluated using BSA as a model protein. AMG (aminoguanidine) was used as a positive control. Measurement of total AGEs (Advanced Glycation End-products) and specific AGEs revealed that limonene could inhibit protein glycation to the extent of 56.3% and 75.1% respectively at 50 μM concentration as against 54.4% and 82.2% by AMG at 1 mM. Congo red binding and CD (Circular Dichroism) analysis revealed inhibition of α-helix to β-sheet transition wherein 18.5% β-sheet structures were observed in glycated BSA (bovine serum albumin) as against 4.9% with limonene. Glycation of protein in the presence of urea was enhanced by 18%, while in the presence of limonene it was reduced by 23% revealing the stabilizing effect of limonene. Electrophoretic mobility was similar to the normal control and a zeta potential value of -12.1 mV as against -15.1 mV in diabetic control was observed. Inhibition of glycation in limonene treated samples was confirmed through LC-MS analysis wherein AGEs such as pentosidine, CML (N(ε)-(carboxymethyl)lysine), CEL (N(ε)-(carboxyethyl)lysine), MOLD (methylglyoxal-lysine dimer) and imidazolone observed in glycated samples were absent in limonene treated samples. PatchDock studies revealed that limonene could bind to the major glycation sites IB, IIA and IIB sub domains and AMG to the IIIA sub domain. Thus limonene is a potent protein glycation inhibitor that prevents protein glycation through a novel mechanism of stabilization of protein structure through hydrophobic interactions.

  12. Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation.

    PubMed

    Willrodt, Christian; Hoschek, Anna; Bühler, Bruno; Schmid, Andreas; Julsing, Mattijs K

    2015-09-01

    Metabolic engineering strategies mark a milestone for the fermentative production of bulk and fine chemicals. Yet, toxic products and volatile reaction intermediates with low solubilities remain challenging. Prominent examples are artificial multistep pathways like the production of perillyl acetate (POHAc) from glucose via limonene. For POHAc, these limitations can be overcome by mixed-culture fermentations. A limonene biosynthesis pathway and cytochrome P450 153A6 (CYP153A6) as regioselective hydroxylase are used in two distinct recombinant E. coli. POHAc formation from glucose in one recombinant cell was hindered by ineffective coupling of limonene synthesis and low rates of oxyfunctionalization. The optimization of P450 gene expression led to the formation of 6.20 ± 0.06 mg gcdw (-1) POHAc in a biphasic batch cultivation with glucose as sole carbon and energy source. Increasing the spatial proximity between limonene synthase and CYP153A6 by a genetic fusion of both enzymes changed the molar limonene/POHAc ratio from 3.2 to 1.6. Spatial separation of limonene biosynthesis from its oxyfunctionalization improved POHAc concentration 3.3-fold to 21.7 mg L(-1) as compared to a biphasic fermentation. Mixed-cultures of E. coli BL21 (DE3) containing the limonene biosynthesis pathway and E. coli MG1655 harboring either CYP153A6, or alternatively a cymene monooxygenase, showed POHAc formation rates of 0.06 or 0.11 U gcdw (-1) , respectively. This concept provides a novel framework for fermentative syntheses involving toxic, volatile, or barely soluble compounds or pathway intermediates. © 2015 Wiley Periodicals, Inc.

  13. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    NASA Astrophysics Data System (ADS)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  14. Fumigant and Repellent Activity of Limonene Enantiomers Against Tribolium confusum du Val.

    PubMed

    Malacrinò, A; Campolo, O; Laudani, F; Palmeri, V

    2016-10-01

    The use of pesticides, as carried out in the last 50 years, caused several negative environmental and human health consequences, leading to the development of alternative techniques to control pests, such as the use of compounds of plant origin. In this study, we assessed the fumigant and repellent activity of both the enantiomers of limonene, a monoterpene usually found in many plant species, against Tribolium confusum du Val. We tested both molecules at different doses, air temperatures, and in absence and presence of flour. R-(+)-limonene resulted more effective than S-(-)-limonene; indeed, it was able to reach 100% of efficacy at a concentration of 85 mg/L air when tested at different temperatures without flour. Data showed a positive relationship between efficacy and temperature, and a negative effect of the presence of debris on the bioactivity of limonene. Furthermore, repellency trials reported a higher activity of R-(+)-limonene compared to the other enantiomer.

  15. Automated clean-up, separation and detection of polycyclic aromatic hydrocarbons in particulate matter extracts from urban dust and diesel standard reference materials using a 2D-LC/2D-GC system.

    PubMed

    Ahmed, Trifa M; Lim, Hwanmi; Bergvall, Christoffer; Westerholm, Roger

    2013-10-01

    A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.

  16. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    PubMed

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10 18 molecules m -2 . Experiments with 18 O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10 12 and 5 × 10 14 molecules cm -3 (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range from

  17. National Emission Standards for Hazardous Air Pollutants (NESHAP): Halogenated Solvent Cleaning - 1993 Proposed Rule and Test Method & Notice of Public Hearing (58 FR 62566)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the November 29, 1993 Proposed Rule and Test Method & Notice of Public Hearing for the National Emission Standards for Hazardous Air Pollutants (NESHAP): Halogenated Solvent Cleaning.

  18. Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function

    PubMed Central

    Jiménez Barbosa, Ingrid Astrid

    2015-01-01

    Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners

  19. Allergy to oxidized limonene and linalool is frequent in the U.K.

    PubMed

    Audrain, H; Kenward, C; Lovell, C R; Green, C; Ormerod, A D; Sansom, J; Chowdhury, M M U; Cooper, S M; Johnston, G A; Wilkinson, M; King, C; Stone, N; Horne, H L; Holden, C R; Wakelin, S; Buckley, D A

    2014-08-01

    The oxidized forms of the fragrance terpenes limonene and linalool are known to cause allergic contact dermatitis. Significant rates of contact allergy to these fragrances have been reported in European studies and in a recent worldwide study. Patch testing to oxidized terpenes is not routinely carried out either in the U.K. or in other centres internationally. To investigate the prevalence of contact allergy to oxidized limonene and linalool in the U.K. Between 1 August 2011 and 31 December 2012, 4731 consecutive patients in 13 U.K. dermatology departments were tested for hydroperoxides of limonene 0·3% pet., hydroperoxides of linalool 1·0% pet., stabilized limonene 10·0% pet. and stabilized linalool 10·0% pet. Doubtful (?+) and equivocal (±) reactions were grouped together as irritant reactions. Two hundred and thirty-seven patients (5·0%) had a positive patch test reaction to hydroperoxides of limonene 0·3% pet. and 281 (5·9%) to hydroperoxides of linalool 1·0% pet. Irritant reactions to one or both oxidized terpenes were found in 242 patients (7·3%). Eleven patients (0·2%) had a positive patch test reaction to the stabilized terpenes alone. This large, multicentre U.K. audit shows a significant rate of allergy to the hydroperoxides of limonene and linalool plus a high rate of irritant reactions. Testing to the oxidized forms alone captures the majority (97·0%; 411 of 422) of positive reactions; testing to nonoxidized terpenes appears to be less useful. We recommend that the hydroperoxides of limonene and linalool be added to an extended baseline patch test series. © 2014 British Association of Dermatologists.

  20. Effects of Foeniculum vulgare essential oil compounds, fenchone and limonene, on experimental wound healing.

    PubMed

    Keskin, I; Gunal, Y; Ayla, S; Kolbasi, B; Sakul, A; Kilic, U; Gok, O; Koroglu, K; Ozbek, H

    2017-01-01

    We investigated the wound healing efficacy of the Foeniculum vulgare compounds, fenchone and limonene, using an excisional cutaneous wound model in rats. An excision wound was made on the back of the rat and fenchone and limonene were applied topically to the wounds once daily, separately or together, for 10 days. Tissue sections from the wounds were evaluated for histopathology. The healing potential was assessed by comparison to an untreated control group and an olive oil treated sham group. We scored wound healing based on epidermal regeneration, granulation tissue thickness and angiogenesis. After day 6, wound contraction with limonene was significantly better than for the control group. Ten days after treatment, a significant increase was observed in wound contraction and re-epithelialization in both fenchone and limonene oil treated groups compared to the sham group. Groups treated with fenchone and with fenchone + limonene scored significantly higher than the control group, but the difference was not statistically significant compared to the olive oil treated group. Our findings support the beneficial effects of fenchone and limonene for augmenting wound healing. The anti-inflammatory and antimicrobial activities of fenchone and limonene oil increased collagen synthesis and decreased the number of inflammatory cells during wound healing and may be useful for treating skin wounds.

  1. Brushless Cleaning of Solar Panels and Windows

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  2. Safety and Feasibility of Topical Application of Limonene as a Massage Oil to the Breast.

    PubMed

    Miller, Jessica A; Thompson, Patricia A; Hakim, Iman A; Lopez, Ana Maria; Thomson, Cynthia A; Chew, Wade; Hsu, Chiu-Hsieh; Chow, H-H Sherry

    2012-10-01

    Limonene, a major component in citrus oil, has demonstrated anti-cancer effects in preclinical mammary cancer models. However, the effective oral dose translates to a human dose that may not be feasible for chronic dosing. We proposed to evaluate topical application of limonene to the breast as an alternative dosing strategy. We conducted a mouse disposition study to determine whether limonene would be bio available in the mammary tissue after topical application. SKH-1 mice received topical or oral administration of limonene in the form of orange oil every day for 4 weeks. Plasma and mammary pads were collected 4 hrs after the final dosing. We also conducted an exploratory clinical study to evaluate the safety and feasibility of topically applied limonene in the form of orange oil to the breast. Healthy women were recruited to apply orange oil containing massage oil to their breasts daily for four weeks. Safety and feasibility were assessed by reported adverse events, clinical labs, and usage compliance. Pre and post-intervention nipple aspirate fluid (NAF) and plasma were collected for limonene concentration determination. The mouse disposition study showed that topical and oral orange oil administration resulted in similar mammary tissue disposition of limonene with no clinical signs of toxicity. In the clinical study, the topical application of limonene containing massage oil to the breast was found to be safe with high levels of usage compliance for daily application, although NAF and plasma limonene concentrations were not significantly changed after the massage oil application. Our studies showed that limonene is bio available in mammary tissue after topical orange oil application in mice and this novel route of administration to the breast is safe and feasible in healthy women.

  3. Safety and Feasibility of Topical Application of Limonene as a Massage Oil to the Breast

    PubMed Central

    Miller, Jessica A.; Thompson, Patricia A.; Hakim, Iman A.; Lopez, Ana Maria; Thomson, Cynthia A.; Chew, Wade; Hsu, Chiu-Hsieh; Chow, H.-H. Sherry

    2013-01-01

    Background Limonene, a major component in citrus oil, has demonstrated anti-cancer effects in preclinical mammary cancer models. However, the effective oral dose translates to a human dose that may not be feasible for chronic dosing. We proposed to evaluate topical application of limonene to the breast as an alternative dosing strategy. Materials and Methods We conducted a mouse disposition study to determine whether limonene would be bio available in the mammary tissue after topical application. SKH-1 mice received topical or oral administration of limonene in the form of orange oil every day for 4 weeks. Plasma and mammary pads were collected 4 hrs after the final dosing. We also conducted an exploratory clinical study to evaluate the safety and feasibility of topically applied limonene in the form of orange oil to the breast. Healthy women were recruited to apply orange oil containing massage oil to their breasts daily for four weeks. Safety and feasibility were assessed by reported adverse events, clinical labs, and usage compliance. Pre and post-intervention nipple aspirate fluid (NAF) and plasma were collected for limonene concentration determination. Results The mouse disposition study showed that topical and oral orange oil administration resulted in similar mammary tissue disposition of limonene with no clinical signs of toxicity. In the clinical study, the topical application of limonene containing massage oil to the breast was found to be safe with high levels of usage compliance for daily application, although NAF and plasma limonene concentrations were not significantly changed after the massage oil application. Conclusions Our studies showed that limonene is bio available in mammary tissue after topical orange oil application in mice and this novel route of administration to the breast is safe and feasible in healthy women. PMID:24236248

  4. Solvent exposure and cognitive function in automotive technicians.

    PubMed

    Bates, Michael N; Reed, Bruce R; Liu, Sa; Eisen, Ellen A; Hammond, S Katharine

    2016-12-01

    Automotive technicians are commonly exposed to organic and chlorinated solvents, particularly through use of cleaning products. Occupational solvent exposures have been associated with deficits in cognitive function but, to our knowledge, no previous studies have investigated automotive technicians. The purpose of the present study was to investigate whether previous exposures to n-hexane, in particular, or general solvents posed a persistent neurotoxic hazard to automotive workers. Enrolled in the study were 830 San Francisco Bay Area automotive repair workers. Each participant underwent a battery of cognitive function tests to investigate central nervous system impairment, with a primary focus on the domains of psychomotor speed, fine motor function, memory and mood. Cognitive test results regressed against estimated hexane and total solvent exposures showed little evidence of associations. Exposures to both solvents and hexane were well below the occupational exposure limits. Our results provide some reassurance about persistent neuropsychological effects in automotive workers who use solvent-based products and those who previously used hexane-containing automotive cleaning products, since this solvent is believed no longer to be used in automotive cleaning products. The lack of observed effect in this study may be attributable to low exposures, or it may reflect improved cognitive function since hexane use in automotive cleaning products was discontinued. However, impacts on results of exposure misclassification and/or the healthy worker survivor effect cannot be discounted. Irrespective of the outcome of this study, the main known neurologic effect of n-hexane is peripheral neuropathy, and such an association in automotive technicians is not excluded by these results. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    PubMed

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Principal component analysis (PCA) of volatile terpene compounds dataset emitted by genetically modified sweet orange fruits and juices in which a D-limonene synthase was either up- or down-regulated vs. empty vector controls.

    PubMed

    Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Peña, Leandro

    2016-12-01

    We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S), down-regulated (AS) or non-altered (EV; control) ("Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception"(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016)) [1]). Data from volatile identification and quantification by HS-SPME and GC-MS were classified by Principal Component Analysis (PCA) individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.

  7. Involvement of transient receptor potential A1 channel in algesic and analgesic actions of the organic compound limonene.

    PubMed

    Kaimoto, T; Hatakeyama, Y; Takahashi, K; Imagawa, T; Tominaga, M; Ohta, T

    2016-08-01

    TRPA1 is a Ca-permeable nonselective cation channel expressed in sensory neurons and acts as a nocisensor. Recent reports show that some monoterpenes, a group of naturally occurring organic compounds, modulate TRP channel activity. Here, we report that limonene, being contained in citrus fruits and mushrooms, shows a unique bimodal action on TRPA1 channel. We examine the effects of limonene on sensory neurons from wild-type, TRPV1- and TRPA1-gene-deficient mice and on heterologously expressed channels in vitro. Molecular determinants were identified with using mutated channels. Cellular excitability is monitored with ratiometric Ca imaging. Nociceptive and analgesic actions of limonene are also examined in vivo. In wild-type mouse sensory neurons, limonene increased the intracellular Ca(2+) concentration ([Ca(2+) ]i ), which was inhibited by selective inhibitors of TRPA1 but not TRPV1. Limonene-responsive neurons highly corresponded to TRPA1 agonist-sensitive ones. Limonene failed to stimulate sensory neurons from the TRPA1 (-/-) mouse. Heterologously expressed mouse TRPA1 was activated by limonene. Intraplantar injection of limonene elicited acute pain, which was significantly less in TRPA1 (-/-) mice. Systemic administration of limonene reduced nociceptive behaviours evoked by H2 O2 . In both heterologously and endogenously expressed TRPA1, a low concentration of limonene significantly inhibited H2 O2 -induced TRPA1 activation. TRPA1 activation by limonene was abolished in H2 O2 -insensitive cysteine-mutated channels. Topically applied limonene stimulates TRPA1, resulting in elicitation of acute pain, but its systemic application inhibits nociception induced by oxidative stress. Because limonene is a safe compound, it may be utilized for pain control due to its inhibition of TRPA1 channels. What does this study add: Limonene, a monoterpene in essential oils of various plants, has been known for its antitumor and anti-inflammatory properties. However, molecular

  8. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media.

    PubMed

    Willrodt, Christian; David, Christian; Cornelissen, Sjef; Bühler, Bruno; Julsing, Mattijs K; Schmid, Andreas

    2014-08-01

    The efficiency and productivity of cellular biocatalysts play a key role in the industrial synthesis of fine and bulk chemicals. This study focuses on optimizing the synthesis of (S)-limonene from glycerol and glucose as carbon sources using recombinant Escherichia coli. The cyclic monoterpene limonene is extensively used in the fragrance, food, and cosmetic industries. Recently, limonene also gained interest as alternative jet fuel of biological origin. Key parameters that limit the (S)-limonene yield, related to genetics, physiology, and reaction engineering, were identified. The growth-dependent production of (S)-limonene was shown for the first time in minimal media. E. coli BL21 (DE3) was chosen as the preferred host strain, as it showed low acetate formation, fast growth, and high productivity. A two-liquid phase fed-batch fermentation with glucose as the sole carbon and energy source resulted in the formation of 700 mg L(org) (-1) (S)-limonene. Specific activities of 75 mU g(cdw) (-1) were reached, but decreased relatively quickly. The use of glycerol as a carbon source resulted in a prolonged growth and production phase (specific activities of ≥50 mU g(cdw) (-1) ) leading to a final (S)-limonene concentration of 2,700 mg L(org) (-1) . Although geranyl diphosphate (GPP) synthase had a low solubility, its availability appeared not to limit (S)-limonene formation in vivo under the conditions investigated. GPP rerouting towards endogenous farnesyl diphosphate (FPP) formation also did not limit (S)-limonene production. The two-liquid phase fed-batch setup led to the highest monoterpene concentration obtained with a recombinant microbial biocatalyst to date. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation

    PubMed Central

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry

    2017-01-01

    Abstract Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography–mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. PMID:29117373

  10. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    PubMed

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  11. Investigation of the oxidation mechanisms of limonene photosensitized by imidazole-2-carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Aregahegn, Kifle; George, Christian

    2013-04-01

    Recent studies have revealed the significant formation of light absorbing materials, including imidazole and imidazole derivatives, in aqueous aerosol mimics in the presence of both ammonium sulphate and glyoxal (Galloway et al. 2009; Yu et al. 2011; Kampf et al. 2012). Besides the potential impact on radiative properties of secondary organic aerosols, our team has shown that imidazole-2-carboxaldehyde (IC) acts as a photosensitizer, initiating aerosols growth in the presence of gaseous limonene and UV/visible light (Aregahegn et al., abstract submitted). This work focuses on the characterisation of the chemical mechanisms leading to this aerosols growth, and on the major products identification. The molecular composition of organic/aqueous solutions exposed to UV/visible light and containing IC and limonene is followed in time by HR-ESI-MS/MS in positive and negative modes. Limonene consumption is followed by HPLC-UV. HR-ESI-MS/MS analyses are performed in parallel on IC/ammonium sulphate aerosols exposed to gaseous limonene and UV/visible light, in particular to assess the relevance of in solution experiments. Besides, the lifetime of the triplet state of IC in aqueous/organic solutions in the presence of different terpenes is monitored by laser photolysis experiments and compared in order to explain the first steps of the photosensitized reaction. First HR-ESI-MS/MS results show the formation of the major "traditional" limonene oxidation products (e.g., coming from gas phase limonene ozonolysis) during the irradiation of organic solutions containing IC and limonene: limononaldehyde, keto-limononaldehyde, limonic acid, limononic acid ... Hundreds of other oxygenated species are however detected, typically with a number of carbon atoms ranging from 4 to 20 and with O/C ratios ranging from 0.2 to 0.7. Monomers and dimers of limonene oxidation products are observed but species with lower carbon numbers than monomeric compounds are predominant. Moreover, and

  12. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    PubMed

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.

  13. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed Central

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-01-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to

  14. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-12-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to

  15. Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Glonek, Karolina; Wróblewska, Agnieszka; Makuch, Edyta; Ulejczyk, Bogdan; Krawczyk, Krzysztof; Wróbel, Rafał. J.; Koren, Zvi C.; Michalkiewicz, Beata

    2017-10-01

    The waste from industrial fruits processing is utilized for the extraction of limonene, a renewable terpene biomass compound obtained from orange peels. This was followed by limonene oxidation, which produces highly useful oxygenated derivatives (carveol, and perillyl alcohol, 1,2-epoxylimonene and its diol). New catalysts were obtained by treating relatively inexpensive commercially available EuroPh and FPV activated carbons with plasma. These catalysts were characterized by the following instrumental methods XRD, sorption of N2 and CO2, SEM, EDS, TEM, XPS, and Raman spectroscopy. The activities of the plasma-treated catalysts were measured in the oxidation of limonene by means of either hydrogen peroxide or t-butyl hydroperoxide as the oxidizing agents. During the oxidation with hydrogen peroxide the new plasma-treated catalysts were more active than their untreated counterparts. This effect was noticeable in the considerable increase in the conversion of limonene. The mechanism explaining this property is proposed, and it takes into account the role of the appropriate functional groups on the surface of the catalysts. This work has shown for the first time that the commercial EuroPh and FPV activated carbons, after having been treated by plasma, are active catalysts for the selective limonene oxidation for the production of value-added industrial products.

  16. Impact of Clean Energy R&D on the U.S. Power Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohoo-Vallett, Paul; Mai, Trieu; Mowers, Matthew

    The U.S. government, along with other governments, private corporations and organizations, invests significantly in research, development, demonstration and deployment (RDD&D) activities in clean energy technologies, in part to achieve the goal of a clean, secure, and reliable energy system. While specific outcomes and breakthroughs resulting from RDD&D investment are unpredictable, it can be instructive to explore the potential impacts of clean energy RDD&D activities in the power sector and to place those impacts in the context of current and anticipated market trends. This analysis builds on and leverages analysis by the U.S. Department of Energy (DOE) titled “Energy CO 2more » Emissions Impacts of Clean Energy Technology Innovation and Policy” (DOE 2017). Similar to DOE (2017), we explore how additional improvements in cost and performance of clean energy technologies could impact the future U.S. energy system; however, unlike the economy-wide modeling used in DOE (2017) our analysis is focused solely on the electricity sector and applies a different and more highly spatially-resolved electric sector model. More specifically, we apply a scenario analysis approach to explore how assumed further advancements in clean electricity technologies would impact power sector generation mix, electricity system costs, and power sector carbon dioxide (CO 2) emissions.« less

  17. Limonene in exhaled breath is elevated in hepatic encephalopathy

    PubMed Central

    O’Hara, M E; Fernández del Río, R; Holt, A; Pemberton, P; Shah, T; Whitehouse, T; Mayhew, C A

    2016-01-01

    Abstract Breath samples were taken from 31 patients with liver disease and 30 controls in a clinical setting and proton transfer reaction quadrupole mass spectrometry (PTR-Quad-MS) used to measure the concentration of volatile organic compounds (VOCs). All patients had cirrhosis of various etiologies, with some also suffering from hepatocellular cancer (HCC) and/or hepatic encephalopathy (HE). Breath limonene was higher in patients with No-HCC than with HCC, median (lower/upper quartile) 14.2 (7.2/60.1) versus 3.6 (2.0/13.7) and 1.5 (1.1/2.3) nmol mol−1 in controls. This may reflect disease severity, as those with No-HCC had significantly higher UKELD (United Kingdom model for End stage Liver Disease) scores. Patients with HE were categorized as having HE symptoms presently, having a history but no current symptoms and having neither history nor current symptoms. Breath limonene in these groups was median (lower/upper quartile) 46.0 (14.0/103), 4.2 (2.6/6.4) and 7.2 (2.0/19.1) nmol mol−1, respectively. The higher concentration of limonene in those with current symptoms of HE than with a history but no current symptoms cannot be explained by disease severity as their UKELD scores were not significantly different. Longitudinal data from two patients admitted to hospital with HE show a large intra-subject variation in breath limonene, median (range) 18 (10–44) and 42 (32–58) nmol mol−1. PMID:27869108

  18. Improved Detection Technique for Solvent Rinse Cleanliness Verification

    NASA Technical Reports Server (NTRS)

    Hornung, S. D.; Beeson, H. D.

    2001-01-01

    The NASA White Sands Test Facility (WSTF) has an ongoing effort to reduce or eliminate usage of cleaning solvents such as CFC-113 and its replacements. These solvents are used in the final clean and cleanliness verification processes for flight and ground support hardware, especially for oxygen systems where organic contaminants can pose an ignition hazard. For the final cleanliness verification in the standard process, the equivalent of one square foot of surface area of parts is rinsed with the solvent, and the final 100 mL of the rinse is captured. The amount of nonvolatile residue (NVR) in the solvent is determined by weight after the evaporation of the solvent. An improved process of sampling this rinse, developed at WSTF, requires evaporation of less than 2 mL of the solvent to make the cleanliness verification. Small amounts of the solvent are evaporated in a clean stainless steel cup, and the cleanliness of the stainless steel cup is measured using a commercially available surface quality monitor. The effectiveness of this new cleanliness verification technique was compared to the accepted NVR sampling procedures. Testing with known contaminants in solution, such as hydraulic fluid, fluorinated lubricants, and cutting and lubricating oils, was performed to establish a correlation between amount in solution and the process response. This report presents the approach and results and discusses the issues in establishing the surface quality monitor-based cleanliness verification.

  19. 75 FR 34673 - Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants: Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Halogenated Solvent Cleaning Machines: State of Rhode Island Department of Environmental Management AGENCY... machines in Rhode Island, except for continuous web cleaning machines. This approval would grant RI DEM the... Halogenated Solvent NESHAP for organic solvent cleaning machines and would make the Rhode Island Department of...

  20. Seasonal Terpene Variation in Needles of Pinus radiata (Pinales: Pinaceae) Trees Attacked by Tomicus piniperda (Coleoptera: Scolytinae) and the Effect of Limonene on Beetle Aggregation.

    PubMed

    Romón, Pedro; Aparicio, Domitila; Palacios, Francisco; Iturrondobeitia, Juan Carlos; Hance, Thierry; Goldarazena, Arturo

    2017-09-01

    Concentrations of four monoterpenes were determined in needles of Pinus radiata (D.Don) (Pinales: Pinaceae) trees that were attacked or nonattacked by Tomicus piniperda (L.) (Coleoptera: Scolytinae). Compounds were identified and quantified by gas chromatography-mass spectrometry. The mean ambient temperature was obtained using climate-recording data loggers. The effect of limonene on field aggregation was also evaluated at three limonene release rates using Lindgren attractant-baited traps and trap logs. Attacked trees produced less α-pinene in March, July, and November than nonattacked trees, less β-pinene in July and November, and less limonene from May to November. Limonene reduced the attraction of T. piniperda to attractant-baited traps and trap logs. Results were linked to better responses to high temperatures, with respect to terpene contents, by the nonattacked trees after the spring attack. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  1. EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT

    EPA Science Inventory

    Solvents used throughout industry are chosen to meet specific technological requirements such as solute solubility, cleaning and degreasing, or being a medium for paints and coatings. With the increasing awareness of the human health effects and environmental risks of solvent use...

  2. EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT

    EPA Science Inventory

    Solvents used throughout industry are chosen to meet specific technological requirements such as solute solubility, cleaning and degreasing, or being a medium for paints and coatings. With the increasing awareness of the human health effects and environmental tisks of solvent use...

  3. Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes.

    PubMed

    Lone, Jameel; Yun, Jong Won

    2016-05-15

    Several dietary compounds that are able to induce the brown fat-like phenotype in white adipocytes have been considered for treatment of obesity due to their ability to increase energy expenditure. Here, we report that limonene induces the brown fat-like phenotype in 3T3-L1 adipocytes by increasing expression of brown adipocyte-specific genes and proteins. Limonene-induced browning in white adipocytes was investigated by determining expression levels of brown fat-specific genes and proteins by real-time RT-PCR, immunoblot analysis, and immunocytochemical staining. Limonene enhanced mitochondrial biogenesis, as evidenced by increased mitochondrial content and immunofluorescent intensity. Limonene also significantly elevated protein levels of HSL, PLIN, p-AMPK, p-ACC, ACO, COX4, CPT1, and CYT C, suggesting its possible role in enhancement of lipolysis and lipid catabolism. Increased expression of PRDM16, UCP1, C/EBPβ, and other brown fat-specific markers by limonene was possibly mediated by activation of β3-adnergenic receptor (β3-AR), as inhibition of β3-AR inhibited up-regulation of brown fat-specific markers. Similarly, limonene-mediated activation of ERK and up-regulation of key brown adipocyte specific markers were eliminated by treatment with ERK antagonist. Taken together, these results suggest that limonene induces browning of 3T3-L1 adipocytes via activation of β3-AR and the ERK signaling pathway. In conclusion, our findings suggest that limonene plays a dual modulatory role in induction of the brown adipocyte-like phenotype as well as promotion of lipid metabolism and thus may have potential therapeutic implications for treatment of obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cleaning With Supercritical CO2

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1990-01-01

    Supercritical carbon dioxide effective industrial cleaning agent. Replaces conventional halocarbon solvents for degreasing parts becoming coated with oil during such manufacturing procedures as forming and machining. Presents none of environmental threats and occupational hazards associated with halocarbon solvents. Spontaneously evaporates after use and leaves no waste to be disposed of. Evaporated gas readily collected and recycled.

  5. United States Air Force Wipe Solvent Testing

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Beeson, Harold D.

    2000-01-01

    The Wright-Patterson Air Force Base (WPAFB), as part of the Air Force Material Command, requested that NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) conduct testing and analyses in support of the United States Air Force Wipe Solvent Development Project. The purpose of the wipe solvent project is to develop an alternative to be used by Air Force flight line and maintenance personnel for the wipe cleaning of oxygen equipment. This report provides material compatibility, liquid oxygen (LOX) mechanical impact, autogenous ignition temperature (AIT), and gauge cleaning test data for some of the currently available solvents that may be used to replace CFC-113 and methyl chloroform. It provides data from previous WSTF test programs sponsored by the Naval Sea Systems Command, the Kennedy Space Center, and other NASA programs for the purpose of assisting WP AFB in identifying the best alternative solvents for validation testing.

  6. 76 FR 20664 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9294-5] Clean Water Act Section 303(d): Availability of List... notice announces the availability of EPA's action identifying water quality limited segments and associated pollutants in Louisiana to be listed pursuant to Clean Water Act Section 303(d), and request for...

  7. 77 FR 27770 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9670-5] Clean Water Act Section 303(d): Availability of List...: This notice announces EPA's decision identifying certain water quality limited waterbodies, and the associated pollutant, in Utah to be listed pursuant to the Clean Water Act Section 303(d)(2), and requests...

  8. Chemical cleaning re-invented: clean, lean and green.

    PubMed

    Hanson, Margaret; Vangeel, Michel

    2014-01-01

    A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed.

  9. Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data

    NASA Astrophysics Data System (ADS)

    Reinscheid, F.; Reinscheid, U. M.

    2016-02-01

    Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.

  10. Effect of limonene on the heterotrophic growth and polyhydroxybutyrate production by Cupriavidus necator H16.

    PubMed

    Guzman Lagunes, F; Winterburn, J B

    2016-12-01

    The inhibitory effect of limonene on polyhydroxybutyrate (PHB) production in Cupriavidus necator H16 was studied. Firstly, results demonstrate the feasibility of using orange juicing waste (OJW) as a substrate for PHB production. An intracellular PHB content of 81.4% (w/w) was attained for a total dry matter concentration of 9.58gL -1 , when the OJW medium was used. Later, a mineral medium designed to mimic the nutrient levels found in the complex medium derived from OJW was used to study the effect of limonene on the production of PHB. Results showed a drop in specific growth rate (μ) of more than 50% when the initial limonene concentration was 2% (v/v) compared to the limonene free medium. This work highlights the importance of a limonene recovery stage prior to fermentation, to maintain levels below 1% (v/v) in the medium, adding value to the OJW and enhancing the fermentation process productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 29 CFR 1915.32 - Toxic cleaning solvents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Surface Preparation and... or more of the following measures to safeguard the health of employees exposed to these solvents. (1...

  12. 29 CFR 1915.32 - Toxic cleaning solvents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Surface Preparation and... or more of the following measures to safeguard the health of employees exposed to these solvents. (1...

  13. Surface Analysis Evaluation of Handwipe Cleaning for the Space Shuttle RSRM

    NASA Technical Reports Server (NTRS)

    Lesley, Michael W.; Anderson, Erin L.; McCool, Alex (Technical Monitor)

    2001-01-01

    In this paper we discuss the role of surface-sensitive spectroscopy (electron spectroscopy for chemical analysis, or ESCA) in the selection of solvents to replace 1,1,1-trichloroethane in handwipe cleaning of bonding surfaces on NASA's Space Shuttle Reusable Solid Rocket Motor (RSRM). Removal of common process soils from a wide variety of metallic and polymeric substrates was characterized. The cleaning efficiency was usually more dependent on the type of substrate being cleaned and the specific process soil than on the solvent used. A few substrates that are microscopically rough or porous proved to be difficult to clean with any cleaner, and some soils were very tenacious and difficult to remove from any substrate below detection limits. Overall, the work showed that a wide variety of solvents will perform at least as well as 1,1,1-trichloroethane.

  14. Characterization of the limonene oxidation products with liquid chromatography coupled to the tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Witkowski, Bartłomiej; Gierczak, Tomasz

    2017-04-01

    Composition of the secondary organic aerosol (SOA) generated during ozonolysis of limonene was investigated with liquid chromatography coupled to the negative electrospray ionization (ESI), quadrupole tandem mass spectrometry (MS/MS) as well as high resolution Time-of-Flight mass spectrometry. Aerosol was generated in the flow-tube reactor. HR-MS/MS analysis allowed for proposing structures for the several up-to-date unknown limonene oxidation products. In addition to the low MW limonene oxidation products, significant quantities of oligomers characterized by elemental compositions: C19H30O5, C18H28O6, C19H28O7, C19H30O7 and C20H34O9 were detected in the SOA samples. It was concluded that these compounds are most likely esters, aldol reaction products and/or hemiacetals. In addition to detailed study of the limonene oxidation products, the reaction time as well as initial ozone concentration impact on the limonene SOA composition was investigated. The relative intensities of the two esters of the limonic acid and 7-hydroxy limononic acid increased as a result of lowering the initial ozone concentration and shortening the reaction time, indicating that esterification may be an important oligomerization pathway during limonene SOA formation.

  15. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    PubMed

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    PubMed

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  17. MINIMIZING POLLUTION IN CLEANING AND DEGREASING OPERATIONS

    EPA Science Inventory

    The objective of this study was to examine approaches to decreasing rates of loss by evaporation and extend@ the useful lifetime of metal-cleaning solvents in service as means to decrease the generation of pollutant emissions and residues from Air Force cleaning and degreasing op...

  18. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Mitchell, M. A.; McMillian, J. H.; Farner, B. R.; Harper, S. A.; Peralta, S. F.; Lowrey, N. M.; Ross, H. R.; Juarez, A.

    2015-01-01

    Since the 1990's, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have used hydrochlorofluorocarbon-225 (HCFC-225), a Class II ozone-depleting substance, to safety clean and verify the cleanliness of large scale propulsion oxygen systems and associated test facilities. In 2012 through 2014, test laboratories at MSFC, SSC, and Johnson Space Center-White Sands Test Facility collaborated to seek out, test, and qualify an environmentally preferred replacement for HCFC-225. Candidate solvents were selected, a test plan was developed, and the products were tested for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Honewell Soltice (TradeMark) Performance Fluid (trans-1-chloro-3,3, 3-trifluoropropene) was selected to replace HCFC-225 at NASA's MSFC and SSC rocket propulsion test facilities.

  19. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.

    PubMed

    Rösch, Carolin; Wissenbach, Dirk K; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2017-07-01

    In indoor air, terpene-ozone reactions can form secondary organic aerosols (SOA) in a transient process. 'Real world' measurements conducted in a furnished room without air conditioning were modelled involving the indoor background of airborne particulate matter, outdoor ozone infiltrated by natural ventilation, repeated transient limonene evaporations, and different subsequent ventilation regimes. For the given setup, we disentangled the development of nucleated, coagulated, and condensed SOA fractions in the indoor air and calculated the time dependence of the aerosol mass fraction (AMF) by means of a process model. The AMF varied significantly between 0.3 and 5.0 and was influenced by the ozone limonene ratio and the background particles which existed prior to SOA formation. Both influencing factors determine whether nucleation or adsorption processes are preferred; condensation is strongly intensified by particulate background. The results provide evidence that SOA levels in natural indoor environments can surpass those known from chamber measurements. An indicator for the SOA forming potential of limonene was found to be limona ketone. Multiplying its concentration (in μg/m 3 ) by 450(±100) provides an estimate of the concentration of the reacted limonene. This can be used to detect a high particle formation potential due to limonene pollution, e.g. in epidemiological studies considering adverse health effects of indoor air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2018-04-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  1. Physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata algae polysaccharide.

    PubMed

    Shao, Ping; Ma, Huiling; Qiu, Qiang; Jing, Weiping

    2016-11-01

    The physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata polysaccharide (UFP) was investigated in this study. Emulsion physical stability was evaluated under different polysaccharide concentrations (1%-5%, wt/wt) and pH values (3.0-11.0). The stability of R-(+)-Limonene emulsions was demonstrated by droplet size distribution, rheological properties, zeta potential and visual phase separation. R-(+)-Limonene emulsions displayed monomodal droplet size distributions, high absolute values of zeta potential and good storage stability when 3% (wt/wt) UFP was used. The rheological properties and stability of R-(+)-Limonene emulsions appeared to be dependent on polysaccharide concentration. The emulsion stability was impacted by pH. Higher zeta potential (-52.6mV) and smaller mean droplet diameter (2.45μm) were achieved in neutral liquid environment (pH 7.0). Extreme acidity caused the flocculation of emulsions, which was manifested as phase separation, while emulsions were quite stable in an alkaline environment. Through comparing the stabilities of emulsions stabilized by different emulsifiers (i.e. UFP, GA and Gelatin), the result suggested that UFP was the best emulsifying agent among them. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. SAGE 2.1: SOLVENT ALTERNATIVES GUIDE: USER'S GUIDE

    EPA Science Inventory

    The guide provides instruction for using the SAGE (Solvent Alternatives GuidE) software system, version 2.1. SAGE recommends solvent replacements in cleaning and degreasing operations. It leads the user through a question-and-answer session. The user's responses allow the system ...

  3. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  4. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isakson, K.; Vessell, A.L.

    1994-07-01

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation,more » and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ``best alternatives``: Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases.« less

  5. Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function.

    PubMed

    Suh, Kwang Sik; Chon, Suk; Choi, Eun Mi

    2017-12-25

    Methylglyoxal (MG) is a potent protein glycating agent and an important precursor of advanced glycation end products, which are involved in the pathogenesis of diabetic osteopathy. In this study, we investigated the effects of limonene on MG-induced damage in osteoblastic MC3T3-E1 cells. Pretreating cells with limonene prevented MG-induced protein adduct formation, tumor necrosis factor alpha and interleukin-6 release, mitochondrial superoxide production, and cardiolipin peroxidation. In addition, limonene increased glyoxalase I activity, and glutathione and heme oxygenase-1 levels in the presence of MG. Pretreatment with limonene prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss, and reduced the levels of adenosine monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ coactivator 1α, and nitric oxide. These results demonstrate that limonene may prevent the development of diabetic osteopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Organic solvents in the pharmaceutical industry.

    PubMed

    Grodowska, Katarzyna; Parczewski, Andrzej

    2010-01-01

    Organic solvents are commonly used in the pharmaceutical industry as reaction media, in separation and purification of synthesis products and also for cleaning of equipment. This paper presents some aspects of organic solvents utilization in an active pharmaceutical ingredient and a drug product manufacturing process. As residual solvents are not desirable substances in a final product, different methods for their removal may be used, provided they fulfill safety criteria. After the drying process, analyses need to be performed to check if amounts of solvents used at any step of the production do not exceed acceptable limits (taken from ICH Guideline or from pharmacopoeias). Also new solvents like supercritical fluids or ionic liquids are developed to replace "traditional" organic solvents in the pharmaceutical production processes.

  7. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    NASA Technical Reports Server (NTRS)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  8. Quantitative Intensity Studies of Three Gas-Phase Monoterpenes in the Infrared: α-PINENE, β-PINENE and D-Limonene

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sams, Robert L.

    2013-06-01

    Monoterpenes are a class of biogenic volatile organic compounds (VOCs) whose general formula is C_{10}H_{16}. Like other VOCs, monoterpenes play an important role in the atmosphere as they are produced by vegetation in large quantities, and have recently been discovered in biomass burning plumes. Absorption coefficients and integrated band intensities are reported in the 600 - 6500 cm^{-1} region for three monoterpenes: α-pinene, β-pinene and d-limonene. The pressure broadened (1 atmosphere N_2) spectra were recorded in a 19.96 cm path length cell with 0.112 cm^{-1} resolution at two temperatures and a minimum of six different partial pressures using a Bruker 66V FTIR. These data are part of the PNNL Spectral Database, which contains quantitative spectra of over 600 molecules. Potential atmospheric applications will be discussed Timothy J. Johnson, Luisa T. M. Profeta, Robert L. Sams, David W. T. Griffith, Robert L. Yokelson Vibrational Spectroscopy {53}(1);97-102 (2010).

  9. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy.

    PubMed

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei

    2014-09-01

    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.

  10. Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less

  11. Electrostatic Hazard Considerations for ODC Solvent Replacement Selection Testing

    NASA Technical Reports Server (NTRS)

    Fairbourn, Brad

    1999-01-01

    ODC solvents are used to clean many critical substrates during solid rocket motor production operations. Electrostatic charge generation incidental to these cleaning operations can pose a major safety issue. Therefore, while determining the acceptability of various ODC replacement cleaners, one aspect of the selection criteria included determining the extent of electric charge generation during a typical solvent cleaning operation. A total of six candidate replacement cleaners, sixteen critical substrates, and two types of cleaning swatch materials were studied in simulated cleaning operations. Charge generation and accumulation effects were investigated by measuring the peak voltage and brush discharging effects associated with each cleaning process combination. In some cases, charge generation was found to be very severe. Using the conductivity information for each cleaner, the peak voltage data could in some cases, be qualitatively predicted. Test results indicated that severe charging effects could result in brush discharges that could potentially result in flash fire hazards when occurring in close proximity to flammable vapor/air mixtures. Process controls to effectively mitigate these hazards are discussed.

  12. Critical Surface Cleaning and Verification Alternatives

    NASA Technical Reports Server (NTRS)

    Melton, Donald M.; McCool, A. (Technical Monitor)

    2000-01-01

    As a result of federal and state requirements, historical critical cleaning and verification solvents such as Freon 113, Freon TMC, and Trichloroethylene (TCE) are either highly regulated or no longer 0 C available. Interim replacements such as HCFC 225 have been qualified, however toxicity and future phase-out regulations necessitate long term solutions. The scope of this project was to qualify a safe and environmentally compliant LOX surface verification alternative to Freon 113, TCE and HCFC 225. The main effort was focused on initiating the evaluation and qualification of HCFC 225G as an alternate LOX verification solvent. The project was scoped in FY 99/00 to perform LOX compatibility, cleaning efficiency and qualification on flight hardware.

  13. Molecular Modeling and Physicochemical Properties of Supramolecular Complexes of Limonene with α- and β-Cyclodextrins.

    PubMed

    Dos Passos Menezes, Paula; Dos Santos, Polliana Barbosa Pereira; Dória, Grace Anne Azevedo; de Sousa, Bruna Maria Hipólito; Serafini, Mairim Russo; Nunes, Paula Santos; Quintans-Júnior, Lucindo José; de Matos, Iara Lisboa; Alves, Péricles Barreto; Bezerra, Daniel Pereira; Mendonça Júnior, Francisco Jaime Bezerra; da Silva, Gabriel Francisco; de Aquino, Thiago Mendonça; de Souza Bento, Edson; Scotti, Marcus Tullius; Scotti, Luciana; de Souza Araujo, Adriano Antunes

    2017-02-01

    This study evaluated three different methods for the formation of an inclusion complex between alpha- and beta-cyclodextrin (α- and β-CD) and limonene (LIM) with the goal of improving the physicochemical properties of limonene. The study samples were prepared through physical mixing (PM), paste complexation (PC), and slurry complexation (SC) methods in the molar ratio of 1:1 (cyclodextrin:limonene). The complexes prepared were evaluated with thermogravimetry/derivate thermogravimetry, infrared spectroscopy, X-ray diffraction, complexation efficiency through gas chromatography/mass spectrometry analyses, molecular modeling, and nuclear magnetic resonance. The results showed that the physical mixing procedure did not produce complexation, but the paste and slurry methods produced inclusion complexes, which demonstrated interactions outside of the cavity of the CDs. However, the paste obtained with β-cyclodextrin did not demonstrate complexation in the gas chromatographic technique because, after extraction, most of the limonene was either surface-adsorbed by β-cyclodextrin or volatilized during the procedure. We conclude that paste complexation and slurry complexation are effective and economic methods to improve the physicochemical character of limonene and could have important applications in pharmacological activities in terms of an increase in solubility.

  14. Separation of Gadolinium (Gd) using Synergic Solvent Mixed Topo-D2EHPA with Extraction Method.

    NASA Astrophysics Data System (ADS)

    Effendy, N.; Basuki, K. T.; Biyantoro, D.; Perwira, N. K.

    2018-04-01

    The main problem to obtain Gd with high purity is the similarity of chemical properties and physical properties with the other rare earth elements (REE) such as Y and Dy, it is necessary to do separation by the extraction process. The purpose of this research to determine the best solvent type, amount of solvent, feed and solvent ratio in the Gd extraction process, to determine the rate order and the value of the rate constant of Gd concentration based on experimental data of aqueous phase concentration as a function of time and to know the effect of temperature on the reaction speed constant. This research was conducted on variation of solvent, amount of solvent, feed and solvent ratio in the extraction process of Gd separation, extraction time to determine the order value and the rate constant of Gd concentration in extraction process based on the aqueous phase concentration data as a function of time, to the rate constant of decreasing concentration of Gd. Based on the calculation results, the solvent composition was obtained with the best feed to separate the rare earth elements Gd in the extraction process is 1 : 4 with 15% concentration of TOPO and 10% concentration of D2EHPA. The separation process of Gd using extraction method by solvent TOPO-D2EHPA 2 : 1 comparison is better than single solvent D2EHPA / TOPO because of the synergistic effect. The rate order of separation process of Gd follows order 1. The Arrhenius Gd equation becomes k = 1.46 x 10-7 exp (-6.96 kcal / mol / RT).

  15. Cleaning of titanium substrates after application in a bioreactor.

    PubMed

    Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C

    2015-03-10

    Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.

  16. Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1995-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.

  17. Trichloroethylene and stoddard solvent reduction alternatives in a small shop. 1989 summer intern report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.J.

    1989-12-31

    Aero Precision Engineering Corp. is a small screw machine shop which produces precision parts for industry located in St. Paul Park, MN. The project focused on identifying satisfactory water-based substitutes for trichloroethylene (TCE) used both as a vapor degreaser and as a cold solvent in a small covered container. At the time of the project, the company used about 500 gallons of trichloroethylene with approximately 165 gallons shipped off site as waste annually. The solvent was used primarily to remove cutting oil and metal chips from production parts. In identifying a standard for evaluating alterantives to the solvent for cleaning,more » it was noted that parts cleaned in the cold bucket were definitely not as clean as those cleaned in the vapor degreaser.« less

  18. Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B.

    PubMed

    Molina, Gustavo; Bution, Murillo L; Bicas, Juliano L; Dolder, Mary Anne Heidi; Pastore, Gláucia M

    2015-05-01

    This study compared the bioconversion process of S-(-)-limonene into limonene-1,2-diol with the already established biotransformation of R-(+)-limonene into α-terpineol using the same biocatalyst in both processes, Fusarium oxysporum 152B. The bioconversion of the S-(-)-isomer was tested on cell permeabilisation under anaerobic conditions and using a biphasic system. When submitted to permeabilisation trials, this biocatalyst has shown a relatively high resistance; still, no production of limonene-1,2-diol and a loss of activity of the biocatalyst were observed after intense cell treatment, indicating a complete loss of cell viability. Furthermore, the results showed that this process can be characterised as an aerobic system that was catalysed by limonene-1,2-epoxide hydrolase, had an intracellular nature and was cofactor-dependent because the final product was not detected by an anaerobic process. Finally, this is the first report to characterise the bioconversion of R-(+)- and S-(-)-limonene by cellular detoxification using ultra-structural analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evaluation of alternatives for trichlorotrifluoroethane (CFC-113) to clean and verify liquid oxygen systems

    NASA Technical Reports Server (NTRS)

    Morris, Michelle L.

    1996-01-01

    NASA Langley Research Center (LARC) investigated several alternatives to the use of tri-chloro-tri-fluoroethane(CFC-113) in oxygen cleaning and verification. Alternatives investigated include several replacement solvents, Non-Destructive Evaluation (NDE) and Total Organic Carbon (TOC) analysis. Among the solvents, 1, 1-dichloro-1-fluoroethane (HCFC 141b) and di-chloro-penta-fluoro-propane (HCFC 225) are the most suitable alternatives for cleaning and verification. However, use of HCFC 141b is restricted, HCFC 225 introduces toxicity hazards, and the NDE and TOC methods of verification are not suitable for processes at LaRC. Therefore, the interim recommendation is to sparingly use CFC-113 for the very difficult cleaning tasks where safety is critical and to use HCFC 225 to clean components in a controlled laboratory environment. Meanwhile, evaluation must continue on now solvents and procedures to find one suited to LaRCs oxygen cleaning needs.

  20. Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation.

    PubMed

    Jo, Wan-Kuen; Kang, Hyun-Jung

    2015-01-01

    This study was conducted under visible-light exposure to investigate the photocatalytic characteristics of a multiwalled carbon nanotube/titania (TiO2) composite nanofiber (MTCN) using a continuous-flow tubular reactor. The MTCN was prepared by a sol-gel process, followed by an electrospinning technique. The photocatalytic decomposition efficiency for limonene on the MTCN was higher than those obtained from reference TiO2 nanofibers or P25 TiO2, and the experimental results agreed well with the Langmuir-Hinshelwood model. The CO concentrations generated during the photocatalysis did not reach levels toxic to humans. The mineralization efficiency for limonene on the MTCN was also higher than that for P25 TiO2. Moreover, the mineralization efficiency obtained using the MTCN increased steeply from 8.3 to 91.1% as the residence time increased from 7.8 to 78.0s, compared to the increase in the decomposition efficiencies for limonene from 90.1 to 99.9%. Three gas-phase intermediates (methacrolein, acetic acid, and limonene oxide) were quantitatively determined for the photocatalysis for limonene over the MTCN, whereas only two intermediates (acetic acid and limonene oxide) were quantitatively determined over P25 TiO2. Other provisional gas-phase intermediates included cyclopropyl methyl ketone and 2-ethylbutanal. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Solvent sensitivity of smart 3D-printed nanocomposite liquid sensor

    NASA Astrophysics Data System (ADS)

    Aliheidari, Nahal; Ameli, Amir; Pötschke, Petra

    2018-03-01

    Fused deposition modeling (FDM) is one of the 3D printing methods that has attracted significant attention. In this method, small and complex samples with nearly no limitation in geometry can be fabricated layer by layer to form end-use parts. This work investigates the liquid sensing behavior of FDM printed flexible thermoplastic polyurethane, TPU filled with multiwalled carbon nanotubes, MWCNTs. The sensing capability of printed TPU-MWCNT was studied as a function of MWCNT content and infill density in response to different solvents, i.e., ethanol, acetone and toluene. The solvents were selected based on their widespread use and importance in medical and industrial applications. U-shaped liquid sensors with 2, 3 and 4wt.% MWCNT content were printed at three different infill densities of 50, 75 and 100%. Solvent sensitivity was then characterized by immersing the sensors in the solvents and measuring the resistance evolution over 25s. The results indicated a sensitivity order of acetone > toluene > ethanol, which was in agreement with the predictions of FloryHiggins solubility equation. For all the solvents, the sensitivity was enhanced as the infill density of the printed samples was decreased. This was attributed to the increased surface area to volume ratio and shortened diffusion paths. The MWCNT content was also observed to have a profound effect on the sensitivity; in samples with partial infill, the sensitivity was found to be inversely proportional to the MWCNT content, such that the highest resistance change was obtained for nanocomposites with the lowest MWCNT content of 2wt.%. For instance, a resistance increase of more than 10 times was obtained in 25 s once TPU-2wt.%MWCNT with 50% infill was tested against acetone. The results of this work reveals that highly sensitive liquid sensors can be fabricated with the aid of 3D printing without the need for complex processing methods.

  2. Supercritical CO2 Cleaning System for Planetary Protection and Contamination Control Applications

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Zhong, Fang; Aveline, David C.; Anderson, Mark S.

    2012-01-01

    Current spacecraft-compatible cleaning protocols involve a vapor degreaser, liquid sonication, and alcohol wiping. These methods are not very effective in removing live and dead microbes from spacecraft piece parts of slightly complicated geometry, such as tubing and loosely fitted nuts and bolts. Contamination control practices are traditionally focused on cleaning and monitoring of particulate and oily residual. Vapor degreaser and outgassing bakeout have not been proven to be effective in removing some less volatile, hydrophilic biomolecules of significant relevance to life detection. A precision cleaning technology was developed using supercritical CO2 (SCC). SCC is used as both solvent and carrier for removing organic and particulate contaminants. Supercritical fluid, like SCC, is characterized by physical and thermal properties that are between those of the pure liquid and gas phases. The fluid density is a function of the temperature and pressure. Its solvating power can be adjusted by changing the pressure or temperature, or adding a secondary solvent such as alcohol or water. Unlike a regular organic solvent, SCC has higher diffusivities, lower viscosity, and lower surface tension. It readily penetrates porous and fibrous solids and can reach hard-to-reach surfaces of the parts with complex geometry. Importantly, the CO2 solvent does not leave any residue. The results using this new cleaning device demonstrated that both supercritical CO2 with 5% water as a co-solvent can achieve cleanliness levels of 0.01 mg/cm2 or less for contaminants of a wide range of hydrophobicities. Experiments under the same conditions using compressed Martian air mix, which consists of 95% CO2, produced similar cleaning effectiveness on the hydrophobic compounds. The main components of the SCC cleaning system are a high-pressure cleaning vessel, a boil-off vessel located downstream from the cleaning vessel, a syringe-type high-pressure pump, a heat exchanger, and a back pressure

  3. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1998-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  4. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.

    1999-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  5. Decoupling production from growth by magnesium sulfate limitation boosts de novo limonene production.

    PubMed

    Willrodt, Christian; Hoschek, Anna; Bühler, Bruno; Schmid, Andreas; Julsing, Mattijs K

    2016-06-01

    The microbial production of isoprenoids has recently developed into a prime example for successful bottom-up synthetic biology or top-down systems biology strategies. Respective fermentation processes typically rely on growing recombinant microorganisms. However, the fermentative production of isoprenoids has to compete with cellular maintenance and growth for carbon and energy. Non-growing but metabolically active E. coli cells were evaluated in this study as alternative biocatalyst configurations to reduce energy and carbon loss towards biomass formation. The use of non-growing cells in an optimized fermentation medium resulted in more than fivefold increased specific limonene yields on cell dry weight and glucose, as compared to the traditional growing-cell-approach. Initially, the stability of the resting-cell activity was limited. This instability was overcome via the optimization of the minimal fermentation medium enabling high and stable limonene production rates for up to 8 h and a high specific yield of ≥50 mg limonene per gram cell dry weight. Omitting MgSO4 from the fermentation medium was very promising to prohibit growth and allow high productivities. Applying a MgSO4 -limitation also improved limonene formation by growing cells during non-exponential growth involving a reduced biomass yield on glucose and a fourfold increase in specific limonene yields on biomass as compared to non-limited cultures. The control of microbial growth via the medium composition was identified as a key but yet underrated strategy for efficient isoprenoid production. Biotechnol. Bioeng. 2016;113: 1305-1314. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Ozone Depleting Chemical (ODC) Replacement - Alternative Cleaning Solvents and Lubricants.

    DTIC Science & Technology

    1995-02-01

    surface. This phenomenon helps to explain why some aqueous based cleaners (such as Daraclean®) can effectively remove fluorinated greases (such as...structurally similar to hydrocarbon oils, waxes, and greases it removes. In some fluorinated greases such as Krytox®, only solvents identically similar to...the contaminant (such as Tribolube®, a fluorinated solvent) effectively dissolves them. Hexane and methanol, being members of different chemical

  7. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  8. Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media.

    PubMed

    Bier, Mário Cesar Jucoski; Medeiros, Adriane Bianchi Pedroni; Soccol, Carlos Ricardo

    2017-02-01

    Aroma and fragrances have high commercial value for use in food, cosmetics and perfumes. The biotransformation of terpenes by microorganisms represents an attractive alternative method for production of flavourings. Endophytic fungi offer a great potential for the production of several groups of compounds; however, few studies have evaluated the biotransformation of limonene. Following preliminary studies on the biotransformation of limonene, submerged fermentation was carried out using an endophytic fungus isolated from Pinus taeda and identified as Phomopsis sp. The presence of several biotransformation products was detected and identified by mass spectrometry (GC-MS). The studied strain showed a divergent metabolic behaviour, as compounds of interest such as α-terpineol, carvone, and limoneno-1,2-diol were produced under different conditions. In addition to the minor metabolites terpinen-4-ol, menthol and carveol, this strain also produced major metabolites, including 0.536 g L -1 carvone and 2.08 g L -1 limonene-1,2-diol in synthetic medium and 2.10 g L -1 limonene-1,2-diol in a natural orange extract medium with single fed-batch, while the cyclic fed-batch resulted in concentrations less than 1 g L -1 . Therefore, our study produced a wide variety of limonene derivatives at a high concentration using a natural medium and a newly isolated endophytic fungal strain. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  10. Reversible Chromatic Response of Polydiacetylene Derivative Vesicles in D2O Solvent.

    PubMed

    Shin, Min Jae; Kim, Jong-Duk

    2016-01-26

    The thermal chromatic sensitivity of polydiacetylenes (PDAs) with 10,12-pentacosadiynoic acid (PCDA) derivatives, which have a hydroxyl group (HEEPCDA) and an amine group (APPCDA), were investigated using D2O and H2O as solvents. The vesicle solution with polymerized HEEPCDA exhibited a reversible chromatic response during the heating and cooling cycle in D2O, but not in H2O. On the other hand, the vesicle solution with the polymerized APPCDA exhibited a reversible chromatic response in H2O during the heating and cooling cycle, but the color of the solution did not change much in D2O. The critical vesicle concentration of HEEPCDA was lower in D2O than in H2O, and the chromatic sensitivity of the polymerized vesicles to temperature was slower in D2O than in H2O. We think that it is due to D2O being a more highly structured solvent than H2O with the hydrogen bonding in D2O stronger than that in H2O.

  11. Solvent dependent triphenylamine based D-(pi-A)n type dye molecules and optical properties.

    PubMed

    Li, Xiaochuan; Son, Young-A; Kim, Young-Sung; Kim, Sung-Hoon; Kun, Jun; Shin, Jong-Il

    2012-02-01

    D-(pi-A)n type dyes of triphenylamine derivatives were synthesized and their absorption and luminescence in different solvents were examined to investigate solvent dependent properties observed for their emissions in solvents with different dielectric constants. The emission wavelengths showed a dramatic blue shift with increasing solvent polarity. The results of molecular orbital calculations by computer simulation, based on Material Studio suite of programs, were found to reasonably account for the spectral properties. Relative levels of HOMO and LUMO were measured and calculated and all derivatives exhibited strong solid fluorescence with distinctively different FWHMs.

  12. Wiltech Component Cleaning and Refurbishment Facility CFC Elimination Plan at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Williamson, Steve; Aman, Bob; Aurigema, Andrew; Melendez, Orlando

    1999-01-01

    The Wiltech Component Cleaning & Refurbishment Facility (WT-CCRF) at NASA Kennedy Space Center performs precision cleaning on approximately 200,000 metallic and non metallic components every year. WT-CCRF has developed a CFC elimination plan consisting of aqueous cleaning and verification and an economical dual solvent strategy for alternative solvent solution. Aqueous Verification Methodologies were implemented two years ago on a variety of Ground Support Equipment (GSE) components and sampling equipment. Today, 50% of the current workload is verified using aqueous methods and 90% of the total workload is degreased aqueously using, Zonyl and Brulin surfactants in ultrasonic baths. An additional estimated 20% solvent savings could be achieved if the proposed expanded use of aqueous methods are approved. Aqueous cleaning has shown to be effective, environmentally friendly and economical (i.e.. cost of materials, equipment, facilities and labor).

  13. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    EPA Science Inventory

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  14. 75 FR 52735 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9189-7] Clean Water Act Section 303(d): Availability of List...: This notice announces the availability of EPA's decision identifying 12 water quality limited waterbodies and associated pollutants in South Dakota to be listed pursuant to the Clean Water Act Section 303...

  15. 33 CFR Appendix D to Part 157 - Example of a Procedure for Dedicated Clean Ballast Tanks Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Dedicated Clean Ballast Tanks Operations D Appendix D to Part 157 Navigation and Navigable Waters COAST... ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Pt. 157, App. D Appendix D to Part 157—Example of a.... (3) Ensure that all valves in the dedicated clean ballast tanks are closed. (d) Before arrival at the...

  16. Essential oils as food eco-preservatives: Model system studies on the effect of temperature on limonene antibacterial activity.

    PubMed

    Hąc-Wydro, Katarzyna; Flasiński, Michał; Romańczuk, Karolina

    2017-11-15

    Antimicrobial properties of essential oils predestine these substances to be used as ecological food preservatives. However, their activity is determined by variety of factors among which external conditions and food properties are highly important. Herein the influence of limonene on artificial membranes was studied to verify the effect of temperature on the incorporation of this compound into model bacterial membrane. The investigations were done on lipid monolayers and the experiments involved the surface pressure-area measurements, penetration studies and Brewster Angle Microscopy analysis. It was found that limonene incorporates into lipid monolayers causing their fluidization. However, the magnitude of alterations depends on limonene concentration, model membrane composition and, for a given composition, on system condensation. Moreover, the influence of limonene is stronger at lower temperatures and, in the light of collected data, this may be a consequence of strong volatility and evaporation of limonene increasing with temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  18. Supersonic Gas-Liquid Cleaning System

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  19. Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica

    PubMed Central

    Ferrara, Maria Antonieta; Almeida, Débora S.; Siani, Antonio C.; Lucchetti, Leonardo; Lacerda, Paulo S.B.; Freitas, André; Tappin, Marcelo R.R.; Bon, Elba P.S.

    2013-01-01

    Perillyl derivatives are increasingly important due to their flavouring and antimicrobial properties as well as their potential as anticancer agents. These terpenoid species, which are present in limited amounts in plants, may be obtained via bioconversion of selected monoterpene hydrocarbons. In this study, seventeen yeast strains were screened for their ability to oxidize the exocyclic methyl group in the p-menthene moiety of limonene into perillic acid. Of the yeast tested, the highest efficiency was observed for Yarrowia lipolytica ATCC 18942. The conversion of R (+)-limonene by Y. lipolytica was evaluated by varying the pH (3 to 8) and the temperature (25 to 30 °C) in a reaction medium containing 0.5% v/v limonene and 10 g/L of stationary phase cells (dry weight). The best results, corresponding to 564 mg/L of perillic acid, were obtained in buffered medium at pH 7.1 that was incubated at 25 °C for 48 h. The stepwise addition of limonene increased the perillic acid concentration by over 50%, reaching 855 mg/L, whereas the addition of glucose or surfactant to the reaction medium did not improve the bioconversion process. The use of Y. lipolytica showed promise for ease of further downstream processing, as perillic acid was the sole oxidised product of the bioconversion reaction. Moreover, bioprocesses using safe and easy to cultivate yeast cells have been favoured in industry. PMID:24688495

  20. Experimental study of the reactions of limonene with OH and OD radicals: kinetics and products.

    PubMed

    Braure, Tristan; Bedjanian, Yuri; Romanias, Manolis N; Morin, Julien; Riffault, Véronique; Tomas, Alexandre; Coddeville, Patrice

    2014-10-09

    The kinetics of the reactions of limonene with OH and OD radicals has been studied using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: OH + C10H16 → products (1), OD + C10H16 → products (2). The rate constants of the title reactions were determined using four different approaches: either monitoring the kinetics of OH (OD) radicals or limonene consumption in excess of limonene or of the radicals, respectively (absolute method), and by the relative rate method using either the reaction OH (OD) + Br2 or OH (OD) + DMDS (dimethyl disulfide) as the reference one and following HOBr (DOBr) formation or DMDS and limonene consumption, respectively. As a result of the absolute and relative measurements, the overall rate coefficients, k1 = (3.0 ± 0.5) × 10(-11) exp((515 ± 50)/T) and k2 = (2.5 ± 0.6) × 10(-11) exp((575 ± 60)/T) cm(3) molecule(-1) s(-1), were determined at a pressure of 1 Torr of helium over the temperature ranges 220-360 and 233-353 K, respectively. k1 was found to be pressure independent over the range 0.5-5 Torr. There are two possible pathways for the reaction between OH (OD) and limonene: addition of the radical to one of the limonene double bonds (reactions 1a and 2a ) and abstraction of a hydrogen atom (reactions 1b and 2b ), resulting in the formation of H2O (HOD). Measurements of the HOD yield as a function of temperature led to the following branching ratio of the H atom abstraction channel: k2b/k2 = (0.07 ± 0.03) × exp((460 ± 140)/T) for T = (253-355) K.

  1. Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.

    2016-11-01

    Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.

  2. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  3. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-base solvent wash paint subcategory. 446.10 Section 446.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash... production of oil-base paint where the tank cleaning is performed using solvents. When a plant is subject to...

  4. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d < 2 nm)

    NASA Astrophysics Data System (ADS)

    Martin, Matthew N.; Li, Dawei; Dass, Amala; Eah, Sang-Kee

    2012-06-01

    An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d < 2 nm, <250 atoms per nanocluster), which takes only 2 min and can be easily reproduced. With two immiscible solvents, gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning.An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d < 2 nm, <250 atoms per nanocluster), which takes only 2 min and can be easily reproduced. With two immiscible solvents, gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning. Electronic supplementary information (ESI) available: Experimental details of gold nanocluster synthesis and mass-spectrometry. See DOI: 10.1039/c2nr30890h

  5. PARIS II THE SEARCH FOR CLEANER SOLVENT REPLACEMENTS FOR RCRA CHEMICALS

    EPA Science Inventory

    Solvents used throughout industry are chosen to meet specific technological requirements such as solute solubility, cleaning and degreasing, or being a medium for paints and coatings. With the growing awareness of the human health effects and environmental risks of solvent use, ...

  6. Sorption of the monoterpenes α-pinene and limonene to carbonaceous geosorbents including biochar.

    PubMed

    Hale, Sarah E; Endo, Satoshi; Arp, Hans Peter H; Zimmerman, Andrew R; Cornelissen, Gerard

    2015-01-01

    The sorption of two monoterpenes, α pinene and limonene to the carbonaceous geosorbents graphite, bituminous coal, lignite coke, biochar and Pahokee peat was quantified. Polyethylene (PE) passive samplers were calibrated for the first time for these compounds by determining the PE-water partitioning coefficients and used as a tool to determine sorption to the carbonaceous geosorbents. Log KPE-water values were 3.49±0.58 for α pinene and 4.08±0.27 for limonene. The sorption of limonene to all materials was stronger than that for α pinene (differences of 0.2-1.3 log units between distribution coefficients for the monoterpenes). Placing Kd values in increasing order for α pinene gave biochar≈Pahokee peat≈bituminous coal≈lignite cokelimonene the order was: Pahokee peat≈biochar≈bituminous coal

  7. Abatement of synthetic landfill gas including limonene by biotrickling filter and membrane biofiltration.

    PubMed

    Hosoglu, Fatih; Fitch, Mark W

    2012-01-01

    In this study, a single silicone rubber membrane biofilter was compared to a lava rock biotrickling filter to examine the aerobic biofiltration of synthetic landfill gas including odorous limonene. The membrane bioreactor and biotrickling filter showed, respectively, maximum elimination capacities of 17 g m(-3) h(-1) and 31.3 g m(-3) h(-1) for limonene and removal efficiencies of 11 % and 18 % for methane. The membrane bioreactor was apparently mass transfer-limited and the biotrickling filter was reaction-limited.

  8. Contamination removal using various solvents and methodologies

    NASA Technical Reports Server (NTRS)

    Jeppsen, J. C.

    1989-01-01

    Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.

  9. Application of a Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities

    DTIC Science & Technology

    2011-11-01

    Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities November 2011 Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2011 4. TITLE AND SUBTITLE Application of a Solvent Emulsion Technology for PCB Removal from Older Structures on DoD Facilities 5a...EASE OF IMPLEMENTATION .......................................................................... 13  3.4  REDUCTION IN PCB CONCENTRATIONS IN TREATED

  10. Contact allergens and irritants in household washing and cleaning products.

    PubMed

    Magnano, Michela; Silvani, Simonetta; Vincenzi, Colombina; Nino, Massimiliano; Tosti, Antonella

    2009-12-01

    Household cleaning products often contain potential allergens and irritants but allergic contact dermatitis from these products in general consumers is rarely reported in the literature. The purpose of this study was to evaluate the presence of irritants and allergens as indicated on the labels or on the product information found on the website of household cleaning products marketed in Italy. We examined the labels and the product information of 291 liquid household washing and cleaning products, including 43 washing-up liquids, 63 laundry detergents, 61 fabric conditioners, 47 spray detergents, and 77 hard surface cleaning products. We obtained the data from the product information found on the websites for 263 products and directly on the product packages for 28 products. For each product we specifically recorded the presence of surfactants, preservatives, and fragrances listed in Annex III of Directive 76/768/EEC. The websites of two Italian brands do not respect EU regulations as they provide product information only with bar codes of the products. Preservatives and fragrances are the main allergens declared in the label of household cleaning products with methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) listed in 35.7% and limonene in 43.6% of the products. Surfactants were listed in 16.5% of the studied products. Our study shows that household cleaning products in Italian market contain several allergens, particularly preservatives and fragrances. For consumers, at least in Italy, it may not be easy to retrieve product information from the website for two widely sold brands. The information had to be taken from the actual package.

  11. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.

    PubMed

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette

    2014-08-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.

  12. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Fiona K.; Work, Victoria H.; Beliaev, Alex S.

    2014-06-19

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially-relevant chemicals. High-titer microbial synthesis of limonene and α- bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L-1 limonene and 0.6 mg L-1 α-bisabolene through heterologous expression of the Mentha spicata L-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either thatmore » dodecane traps large quantities of volatile limonene and α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate and acetate) during nitrogen deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6 to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.« less

  13. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002.

    PubMed

    Davies, Fiona K; Work, Victoria H; Beliaev, Alexander S; Posewitz, Matthew C

    2014-01-01

    The plant terpenoids limonene (C10H16) and α-bisabolene (C15H24) are hydrocarbon precursors to a range of industrially relevant chemicals. High-titer microbial synthesis of limonene and α-bisabolene could pave the way for advances in in vivo engineering of tailor-made hydrocarbons, and production at commercial scale. We have engineered the fast-growing unicellular euryhaline cyanobacterium Synechococcus sp. PCC 7002 to produce yields of 4 mg L(-1) limonene and 0.6 mg L(-1) α-bisabolene through heterologous expression of the Mentha spicatal-limonene synthase or the Abies grandis (E)-α-bisabolene synthase genes, respectively. Titers were significantly higher when a dodecane overlay was applied during culturing, suggesting either that dodecane traps large quantities of volatile limonene or α-bisabolene that would otherwise be lost to evaporation, and/or that continuous product removal in dodecane alleviates product feedback inhibition to promote higher rates of synthesis. We also investigate limonene and bisabolene production in the ΔglgC genetic background, where carbon partitioning is redirected at the expense of glycogen biosynthesis. The Synechococcus sp. PCC 7002 ΔglgC mutant excreted a suite of overflow metabolites (α-ketoisocaproate, pyruvate, α-ketoglutarate, succinate, and acetate) during nitrogen-deprivation, and also at the onset of stationary growth in nutrient-replete media. None of the excreted metabolites, however, appeared to be effectively utilized for terpenoid metabolism. Interestingly, we observed a 1.6- to 2.5-fold increase in the extracellular concentration of most excreted organic acids when the ΔglgC mutant was conferred with the ability to produce limonene. Overall, Synechococcus sp. PCC 7002 provides a highly promising platform for terpenoid biosynthetic and metabolic engineering efforts.

  14. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, Bassam; Daniels, Edward; Libera, Joseph A.

    1999-01-01

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.

  15. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    PubMed

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  16. Gene Discovery for Enzymes Involved in Limonene Modification or Utilization by the Mountain Pine Beetle-Associated Pathogen Grosmannia clavigera

    PubMed Central

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg

    2014-01-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals. PMID:24837377

  17. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking

  18. Limonene reduces hyperalgesia induced by gp120 and cytokines by modulation of IL-1 β and protein expression in spinal cord of mice.

    PubMed

    Piccinelli, Ana Claudia; Morato, Priscila Neder; Dos Santos Barbosa, Marcelo; Croda, Julio; Sampson, Jared; Kong, Xiangpeng; Konkiewitz, Elisabete Castelon; Ziff, Edward B; Amaya-Farfan, Jaime; Kassuya, Cândida Aparecida Leite

    2017-04-01

    We have investigated the antihyperalgesic effects of limonene in mice that received intrathecal injection of gp120. Male Swiss mice received gp120, IL-1β or TNF-α intrathecally or sterile saline as a control. A mechanical sensitivity test was performed at 2 and 3h after the injection. Spinal cord and blood samples were isolated for protein quantification. Intrathecal administration of gp120 increased mechanical sensitivity measured with an electronic Von Frey apparatus, at 2 and 3h after the injections. Limonene administered orally prior to gp120 administration significantly decreased this mechanical sensitivity at 3h after the gp120 injection. In addition, intrathecal injection of gp120 increased IL-1β and IL-10 in serum, and limonene prevented the ability of gp120 to increase these cytokines. Limonene also inhibited TNF-α and IL-1β-induced mechanical hyperalgesia. Western blot assay demonstrated limonene was capable of increasing SOD expression in the cytoplasm of cells from spinal cord at 4h after intrathecal IL-1β injection. These results demonstrate that gp120 causes mechanical hyperalgesia and a peripheral increase in IL-1β and IL-10, and that prior administration of limonene inhibits these changes. Also limonene modulates the activation of SOD expression in the spinal cord after spinal IL-1β application. The ability of limonene to inhibit the mechanical hyperalgesia induced by gp120, TNF-α and IL-1β emphasizes the anti-inflammatory action of limonene, specifically its ability to inhibit cytokine production and its consequences. Copyright © 2016. Published by Elsevier Inc.

  19. Extraction of orange peel's essential oil by solvent-free microwave extraction

    NASA Astrophysics Data System (ADS)

    Qadariyah, Lailatul; Amelia, Prilia Dwi; Admiralia, Cininta; Bhuana, Donny S.; Mahfud, Mahfud

    2017-05-01

    Sweet orange peel (Citrus sinensis) is part of orange plant that contains essential oils. Generally, taking essential oil from orange peel is still using hydrodistillation and steam-hydrodistillation method which still needs solvent and takes a long time to produce high quality essential oil. Therefore, the objectives of this experiment are to study the process of orange peel's essential oil extraction using Solvent Free Microwave Extraction (SFME) and to study the operating condition that effect an optimum yield and quality of the essential oil. In this experiment, extraction process with SFME method goes for 60 minutes at atmospheric pressure. Variables for SFME are: variation of orange peel condition (fresh and dry), ratio orange peel mass to distiller volume (0,1; 0,2; 0,3; 0,4 g/mL), orange peel size (±0,5; ±2; ±3,5 cm width), and microwave power (100, 264, 400 Watt). Moisture content of fresh peel is 71,4% and for dry peel is 17,37% which is obtained by sun drying. The result of this experiment will be analyzed with GC-MS, SEM, density, and miscibility in ethanol 90%. The optimum result obtained from this experiment based on the number of the yield under condition of fresh orange peel is at peel mass/distiller volume 0,1 g/mL, orange peel size ±3,5 cm width, and microwave power 400 Watt, results 1,6738% yield. The result of GC-MS for fresh orange peel shows that the dominant compound is Limonene 54,140% and for dry orange peel is Limonene 59,705%. The density obtained is around 0,8282-0,8530 g/mL and miscibility in ethanol 90% is 1:5.

  20. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PAINT FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash... production of oil-base paint where the tank cleaning is performed using solvents. When a plant is subject to...

  1. Evaluation of control parameters for Spray-In-Air (SIA) aqueous cleaning for shuttle RSRM hardware

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Deweese, C. D.

    1995-01-01

    HD-2 grease is deliberately applied to Shuttle Redesigned Solid Rocket Motor (RSRM) D6AC steel hardware parts as a temporary protective coating for storage and shipping. This HD-2 grease is the most common form of surface contamination on RSRM hardware and must be removed prior to subsequent surface treatment. Failure to achieve an acceptable level of cleanliness (HD-2 calcium grease removal) is a common cause of defect incidence. Common failures from ineffective cleaning include poor adhesion of surface coatings, reduced bond performance of structural adhesives, and failure to pass cleanliness inspection standards. The RSRM hardware is currently cleaned and refurbished using methyl chloroform (1,1,1-trichloroethane). This chlorinated solvent is mandated for elimination due to its ozone depleting characteristics. This report describes an experimental study of an aqueous cleaning system (which uses Brulin 815 GD) as a replacement for methyl chloroform. Evaluation of process control parameters for this cleaner are discussed as well as cleaning mechanisms for a spray-in-air process.

  2. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, B.; Daniels, E.; Libera, J.A.

    1999-03-16

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.

  3. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans.

    PubMed

    Puentes-Cala, Edinson; Liebeke, Manuel; Markert, Stephanie; Harder, Jens

    2018-05-01

    The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprene and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a dithiothreitol:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism ( ctm ) in Castellaniella defragrans and were annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB and CtmAB in E. coli demonstrated that limonene dehydrogenase activity required both subunits carrying each a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest a placement in EC 1

  4. Super Clean, Super Safe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Supersonic Gas/Liquid Cleaning System (SS-GLCS) has applications ranging from cleaning circuit boards to scouring building exteriors. The system does not abrade the surface of the hardware being cleaned, and it requires much lower levels of pressure while using very little water. An alternative to CFC-based solvents, the system mixes air and water from separate pressurized tanks, ejecting the gas- liquid mixture at supersonic speeds from a series of nozzles at the end of a hand-held wand. The water droplets have the kinetic energy to forcibly remove the contaminant material. The system leaves very little fluid that must be handled as contaminated waste. It can be applied in the aerospace, automotive, and medical industries, as well as to circuit boards, electronics, machinery, metals, plastics, and optics. With a nozzle that can be oriented in any direction, the system is adjustable to allow all sides of a part to be cleaned without reorientation. It requires minimal training and is easily moved on built-in casters

  5. Latest technologies on ultrasonic cleaning

    NASA Astrophysics Data System (ADS)

    Hofstetter, Hans U.

    2007-05-01

    UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.

  6. The Economic and Environmental Benefits of Product Substitution for Organic Solvents

    DTIC Science & Technology

    1991-05-01

    ALPHA.TERPINEOL LINALOOL MENTHOL O Figure 3.1 - Molecular Structures of Selected Terpenes?3 20 Commercial grades of d-limonene can cause dermatitis due...Permitted GRAS Limited Menthol Permitted GRAS Limited a-Pinene Permitted GRAS Permitted P-Pinene Permitted GRAS Permitted u-Terpinene Permitted GRAS Not

  7. 6. VIEW OF THE BRIQUETTING PRESS AND CHIP CLEANING HOOD. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF THE BRIQUETTING PRESS AND CHIP CLEANING HOOD. SCRAPS OF ENRICHED URANIUM FROM MACHINING OPERATIONS WERE CLEANED IN A SOLVENT BATH, THEN PRESSED INTO BRIQUETTS. THE BRIQUETTS WERE USED AS FEED MATERIAL FOR THE FOUNDRY. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  8. Implementation of a solvent management program to control paint shop volatile organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floer, M.M.; Hicks, B.H.

    1997-12-31

    The majority of automobile assembly plant volatile organic compound (VOC) emissions are generated from painting operations. Typical paint operations generate more than 90 percent of the total plant emissions and, up to, 50 percent can be released by cleaning sources. Plant practices which contribute to the release of VOC emissions include the cleaning of paint lines and equipment, tanks, spray booths, floors and vehicles. Solvents continue to be the largest contributing source of VOC emissions in an automotive paint shop. To reduce overall VOC emissions, environmental regulations and guidelines were introduced under the Clean Air Act; Pollution Prevention and Wastemore » Minimization programs, Control Techniques, and special air permit conditions. The introduction of these regulations and guidelines has driven industry toward continual refinement of their present cleaning methods while pursuing new techniques and technologies. Industry has also shown a proactive approach by introducing new waterborne and powder coating paint technologies to reduce overall emissions. As new paint technologies are developed and introduced, special attention must be given to the types of materials utilized for cleaning. The development and implementation of a solvent management program allows a facility to standardize a program to properly implement materials, equipment, technologies and work practices to reduce volatile organic compound emissions, meet strict cleaning requirements posed by new paint technologies and produce a vehicle which meets the high quality standards of the customer. This paper will assess the effectiveness of a solvent management program by examining pollution prevention initiatives and data from four different painting operations.« less

  9. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Scherman, Carl; Martin, David

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less

  11. A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Wells, J. R.; Ham, Jason E.

    2014-12-01

    A new method for derivatizing carbonyl compounds is presented. The conversion of a series of dicarbonyls to oximes in aqueous solution and from gas-phase sampling was achieved using O-tert-butylhydroxylamine hydrochloride (TBOX). Some advantages of using this derivatization agent include: aqueous reactions, lower molecular weight oximes, and shortened oxime-formation reaction time. Additionally, the TBOX derivatization technique was used to investigate the carbonyl reaction products from limonene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: 7-hydroxy-6-oxo-3-(prop-1-en-2-yl)heptanal; 3-Isopropenyl-6-oxoheptanal (IPOH), 3-acetyl-6-oxoheptanal (3A6O) and one carbonyl of unknown structure. Using cyclohexane as a hydroxyl (OHrad) radical scavenger, the relative yields (peak area) of the unknown carbonyl, IPOH, and 3A6O were reduced indicating the influence secondary OH radicals have on limonene ozonolysis products. The relative yield of the hydroxy-dicarbonyl based on the chromatogram was unchanged suggesting it is only made by the limonene + O3 reaction. The detection of 3A6O using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

  12. In-Situ Bioremediation of Solvent Saturated Soils Using Methane, Propane, and Butane-Oxidizers

    DTIC Science & Technology

    2000-02-02

    used as a degreasing agent, dry cleaning agent and solvent in various industries. It also can be found in household products such as spot cleaner...solvent widely used in various industries and can be found in many household products . 1,1,1-TCA is considered relatively highly soluble, therefore

  13. 75 FR 26956 - Clean Water Act Section 303(d): Availability of Los Angeles Area Lakes Total Maximum Daily Loads...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... included on the State of California's Section 303(d) list of polluted waters due to water quality impacts... ENVIRONMENTAL PROTECTION AGENCY [FRL-9146-6] Clean Water Act Section 303(d): Availability of Los... nutrient, mercury, chlordane, dieldrin, DDT, PCB, and trash impairments pursuant to Clean Water Act Section...

  14. 75 FR 20351 - Clean Water Act Section 303(d): Availability of One Total Maximum Daily Load (TMDL) in Arkansas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9139-5] Clean Water Act Section 303(d): Availability of One...: Notice of availability. SUMMARY: This notice announces the availability of the administrative record file... in the State of Arkansas under Section 303(d) of the Clean Water Act (CWA). This TMDL was completed...

  15. Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon

    2015-05-26

    Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.

  16. Recommendation to test limonene hydroperoxides 0·3% and linalool hydroperoxides 1·0% in the British baseline patch test series.

    PubMed

    Wlodek, C; Penfold, C M; Bourke, J F; Chowdhury, M M U; Cooper, S M; Ghaffar, S; Green, C; Holden, C R; Johnston, G A; Mughal, A A; Reckling, C; Sabroe, R A; Stone, N M; Thompson, D; Wilkinson, S M; Buckley, D A

    2017-12-01

    There is a significant rate of sensitization worldwide to the oxidized fragrance terpenes limonene and linalool. Patch testing to oxidized terpenes is not routinely carried out; the ideal patch test concentration is unknown. To determine the best test concentrations for limonene and linalool hydroperoxides, added to the British baseline patch test series, to optimize detection of true allergy and to minimize irritant reactions. During 2013-2014, 4563 consecutive patients in 12 U.K. centres were tested to hydroperoxides of limonene in petrolatum (pet.) 0·3%, 0·2% and 0·1%, and hydroperoxides of linalool 1·0%, 0·5% and 0·25% pet. Irritant reactions were recorded separately from doubtful reactions. Concomitant reactions to other fragrance markers and clinical relevance were documented. Limonene hydroperoxide 0·3% gave positive reactions in 241 (5·3%) patients, irritant reactions in 93 (2·0%) and doubtful reactions in 110 (2·4%). Linalool hydroperoxide 1·0% gave positive reactions in 352 (7·7%), irritant reactions in 178 (3·9%) and doubtful reactions in 132 (2·9%). A total of 119 patients with crescendo reactions to 0·3% limonene would have been missed if only tested with 0·1% and 131 patients with crescendo reactions to 1·0% linalool would have been missed if only tested with 0·25%. In almost two-thirds of patients with positive patch tests to limonene and linalool the reaction was clinically relevant. The majority of patients did not react to any fragrance marker in the baseline series. We recommend that limonene hydroperoxides be tested at 0·3% and linalool hydroperoxides at 1·0% in the British baseline patch test series. © 2017 British Association of Dermatologists.

  17. Halogenated Solvent Cleaning: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Learn about the Maximum Achievable Control Technology (MACT) standards for halogenated solvent cleaner. Find the rule history information, federal register citations, legal authority, and additional resources.

  18. Accelerated solvent extraction by using an 'in-line' clean-up approach for multiresidue analysis of pesticides in organic honey.

    PubMed

    Chiesa, Luca Maria; Labella, Giuseppe Federico; Panseri, Sara; Britti, Domenico; Galbiati, Fabrizio; Villa, Roberto; Arioli, Francesco

    2017-05-01

    The worldwide loss of honeybee colonies may be due to their exposure to several contaminants (i.e., pesticides); such contamination may also have impacts on consumers' health. Therefore, it is essential to develop quick and new methods to detect several pesticide residues in honey samples. In this study, the effectiveness of accelerated solvent extraction (ASE) was compared with QuEChERS methods for the analysis of 53 pesticides in organic honey by gas chromatography-triple quadrupole mass spectrometry. Two simple and rapid ASE methods with 'in-line' clean-up were optimised and then compared with QuEChERS. Hexane-ethyl acetate (Hex:EtAc) and Florisil were chosen as extraction solvent and retainer for the first ASE method respectively; acetonitrile and a primary-secondary amine phase (ACN-PSA) were selected for the second ASE method. The methods were validated according to the European Union SANTE/11945/2015 guidelines. The validation parameters showed that QuEChERS and ASE with PSA as retainer had better repeatability than ASE with Hex:EtAc and Florisil. In particular, QuEChERS and ASE (ACN-PSA) showed good recovery, according to the SANTE criteria, for the majority of investigated pesticides. Conversely, when ASE with Hex:EtAc and Florisil was used as the retainer, several compounds showed recoveries lower than the acceptable value of 70%. The ASE in-line method was finally applied to evaluate pesticide concentration in organic honey samples.

  19. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    PubMed

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    PubMed

    Clifford, Robert; Sparks, Michael; Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil

    2016-01-01

    The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Before-after trial. Newly built community hospital. 90 minute training refresher with surface-specific performance results. Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  1. Terpenes as green solvents for extraction of oil from microalgae.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Ginies, Christian; Elmaataoui, Mohamed; Chemat, Farid

    2012-07-09

    Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  2. Antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from Schinus terebinthifolius fruits in a neuropathic pain model.

    PubMed

    Piccinelli, Ana Claudia; Santos, Joyce Alencar; Konkiewitz, Elisabete Castelon; Oesterreich, Silvia Aparecida; Formagio, Anelise Samara Nazari; Croda, Julio; Ziff, Edward Benjamim; Kassuya, Cândida Aparecida Leite

    2015-07-01

    Previous studies have shown that essential oil containing (R)-(+)-limonene and α-phellandrene, extracted from fruits of Schinus terebinthifolius Raddi, exhibit anti-inflammatory activity. This work aimed to verify the antihyperalgesic and antidepressive actions of (R)-(+)-limonene, α-phellandrene, and essential oil from S. terebinthifolius fruits in spared nerve injury (SNI) model of neuropathic pain in rats. In the present work, essential oil from fruits of S. terebinthifolius, as well as the pure (R)-(+)-limonene and α-phellandrene compounds, were assayed for their effects on SNI-induced mechanical and cold hyperalgesia, and depressive-like behavior (immobility in forced swim test) in rats. The locomotor activity was evaluated in open-field test. Oral administration for up to 15 days of essential oil of S. terebinthifolius (100 mg/kg), (R)-(+)-limonene (10 mg/kg), α-phellandrene (10 mg/kg), and also subcutaneous 10 mg/kg dose of ketamine (positive control) significantly inhibited SNI-induced mechanical hyperalgesia and increased immobility in the forced swim test. On the 15th day of oral treatment, α-phellandrene, but neither the essential oil from S. terebinthifolius nor (R)-(+)-limonene, prevented the SNI-induced increase in sensitivity to a cold stimulus. The oral treatment with essential oil (100 mg/kg) or with compounds (10 mg/kg) did not interfere on locomotor activity. Together, the results of the present work show that essential oil of S. terebinthifolius and compounds present in this oil, including (R)-(+)-limonene and α-phellandrene, exhibit antihyperalgesic effects against mechanical hyperalgesia, and are antidepressive, while only α-phellandrene inhibited cold hyperalgesia in SNI rats.

  3. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    PubMed Central

    Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil

    2016-01-01

    Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences. PMID

  4. Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-01-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  5. Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-09-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  6. Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials.

    PubMed

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-01-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  7. 77 FR 20020 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9655-2] Clean Water Act Section 303(d): Availability of List Decisions AGENCY: Environmental Protection Agency. ACTION: Notice of availability. SUMMARY: This notice announces the availability of EPA's Responsiveness Summary Concerning EPA's November 30, 2011, Public Notice...

  8. 75 FR 68783 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9223-5] Clean Water Act Section 303(d): Availability of List Decisions AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This action announces the availability of EPA decisions identifying water quality limited segments and...

  9. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base... the production of oil-base paint where the tank cleaning is performed using solvents. When a plant is... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the oil...

  10. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base... the production of oil-base paint where the tank cleaning is performed using solvents. When a plant is... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the oil...

  11. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base... the production of oil-base paint where the tank cleaning is performed using solvents. When a plant is... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the oil...

  12. Evaluation of HCFC AK 225 Alternatives for Precision Cleaning and Verification

    NASA Technical Reports Server (NTRS)

    Melton, D. M.

    1998-01-01

    Maintaining qualified cleaning and verification processes are essential in an production environment. Environmental regulations have and are continuing to impact cleaning and verification processing in component and large structures, both at the Michoud Assembly Facility and component suppliers. The goal of the effort was to assure that the cleaning and verification proceeds unimpeded and that qualified, environmentally compliant material and process replacements are implemented and perform to specifications. The approach consisted of (1) selection of a Supersonic Gas-Liquid Cleaning System; (2) selection and evaluation of three cleaning and verification solvents as candidate alternatives to HCFC 225 (Vertrel 423 (HCFC), Vertrel MCA (HFC/1,2-Dichloroethylene), and HFE 7100DE (HFE/1,2 Dichloroethylene)); and evaluation of an analytical instrumental post cleaning verification technique. This document is presented in viewgraph format.

  13. Effect of Bearing Cleaning on Long Term Bearing Life

    NASA Technical Reports Server (NTRS)

    Jett, Timothy Raymond; Thom, Robert L.

    1998-01-01

    For many years chlorofluorocarbon (CFC ) based solvents, such as Freon and 1,1,1, Trichloroethane (TCA), were used as bearing cleaning solvents for space mechanisms. The 1995 ban on the production of ozone depleting chemicals (ODC) such as CFCs caused a change to new ODC-free cleaners for the precision bearing cleaning. With this change the question arises what effect if any do these new cleaners have on long term bearing life. The purpose of this study was to evaluate this effect. A one year test using 60 small electrical motors (two bearings per motor) was conducted in a high vacuum environment (2.0* 10(exp -6) torr) at a temperature of 90C. Prior to testing the bearings were cleaned with one of four cleaners. These cleaners included two aqueous based cleaners, a CFC based cleaner and supercritical carbon dioxide. Three space compatible greases were tested. After testing the mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace of each bearing was taken to measure post test wear of the bearings. In addition the bearings were visually examined and analyzed using an optical microscope.

  14. Studies on optimizing in vitro transdermal permeation of ondansetron hydrochloride using nerodilol, carvone, and limonene as penetration enhancers.

    PubMed

    Krishnaiah, Yellela S R; Raju, Vengaladasu; Shiva Kumar, Mantri; Rama, Bukka; Raghumurthy, Vanambattina; Ramana Murthy, Kolapalli V

    2008-01-01

    The present investigation was carried out to formulate a terpene-based hydroxypropyl cellulose (HPC) gel drug reservoir system for its optimal transdermal permeation of ondansetron hydrochloride. The HPC gel formulations containing ondansetron hydrochloride (3% w/w) and selected concentrations of either nerodilol (0% w/w, 1% w/w, 2% w/w, 3% w/w, and 4% w/w), carvone (0% w/w, 2% w/w, 4% w/w, 8% w/w, and 10% w/w), or limonene (0% w/w, 2% w/w, 3% w/w, and 4% w/w) were prepared and subjected to in vitro permeation of the drug across rat epidermis. All the 3 terpene enhancers increased the transdermal permeation of ondansetron hydrochloride. The optimal transdermal permeation was observed with 3% w/w of nerodilol (175.3 +/- 3.1 microg/cm(2.)h), 8% w/w of carvone (87.4 +/- 1.6 microg/cm(2.)h), or 3% w/w of limonene (181.9 +/- 0.9 microg/cm(2.)h). The enhancement ratio (ER) in drug permeability with 3% w/w nerodilol, 8% w/w carvone, and 3% w/w limonene were 21.6, 10.8, and 22.5, respectively, when compared with that obtained without a terpene enhancer (control). However, there was 1.04-, 2.09-, and 2.17-fold increase in the optimal drug flux obtained with carvone, nerodilol, and limonene, respectively, when compared with the desired drug flux (84 microg/cm(2.)h). It was concluded that the HPC gel drug reservoir systems containing either 3% w/w nerodilol or 3% w/w limonene act as optimal formulations for use in the design of membrane-controlled transdermal therapeutic system (TTS) of ondansetron hydrochloride.

  15. Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D3

    PubMed Central

    2017-01-01

    A continuous tandem in-line evaporation–crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.

  16. Cleaning By Blasting With Pellets Of Dry Ice

    NASA Technical Reports Server (NTRS)

    Fody, Jody

    1993-01-01

    Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.

  17. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  18. Comparative Mirror Cleaning Study: 'A Study on Removing Particulate Contamination'

    NASA Technical Reports Server (NTRS)

    Houston, Karrie

    2007-01-01

    The cleanliness of optical surfaces is recognized as an industry-wide concern for the performance of optical devices such as mirrors and telescopes, microscopes and lenses, lasers and interferometers, and prisms and optical filters. However, no standard has been established for optical cleaning and there is no standard definition of a 'clean' optical element. This study evaluates the effectiveness of commonly used optical cleaning techniques based on wafer configuration, contamination levels, and the number and size of removed particles. It is concluded that cleaning method and exposure time play a significant factor in obtaining a high removal percentage. The detergent bath and solvent rinse method displayed an increase in effective removal percentage as the contamination exposure increased. Likewise, CO2 snow cleaning showed a relatively consistent cleaning effectiveness. The results can help ensure mission success to flight projects developed for the NASA Origins Program. Advantages and disadvantages of each of the optical cleaning methods are described.

  19. Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) n.e. Brown.

    PubMed

    do Vale, T Gurgel; Furtado, E Couto; Santos, J G; Viana, G S B

    2002-12-01

    Citral, myrcene and limonene (100 and 200 mg/kg body wt., i.p.), constituents of essential oils from Lippia alba chemotypes, decreased not only the number of crossings but also numbers for rearing and grooming, as measured by the open-field test in mice. Although muscle relaxation detected by the rota rod test was seen only at the highest doses of citral (200 mg/kg body wt.) and myrcene (100 and 200 mg/kg body wt.), this effect was observed even at the lowest dose of limonene (50 mg/kg body wt.). Also, citral and myrcene (100 and 200 mg/kg body wt.) increased barbiturate sleeping time as compared to control. Limonene was also effective at the highest dose, and although citral did not increase the onset of sleep, it increased the duration of sleep, which is indicative of a potentiation of sleeping time. Citral (100 and 200 mg/kg body wt.) increased 2.3 and 3.5 times, respectively, the barbiturate sleeping time in mice. Similar effects were observed for myrcene and limonene at the highest dose (200 mg/kg body wt.) which increased the sleeping time around 2.6 times. In the elevated-plus maze, no effect was detected with citral up to 25 mg/kg body wt., while at a high dose it decreased by 46% the number of entries in the open arms. A smaller but significant effect was detected with limonene (5 mg/kg body wt.). While myrcene (10 mg/kg body wt.) decreased only by 22% the number of entries in the open arms, this parameter was decreased by 48% at the highest dose. Our study showed that citral, limonene and myrcene presented sedative as well as motor relaxant effects. Although only at the highest dose, they also produced a potentiation of the pentobarbital-induced sleeping time in mice, which was more intense in the presence of citral. In addition, neither of them showed an anxiolytic effect, but rather a slight anxiogenic type of effect at the higher doses.

  20. Limonene Arrests Parasite Development and Inhibits Isoprenylation of Proteins in Plasmodium falciparum

    PubMed Central

    Moura, Ivan Cruz; Wunderlich, Gerhard; Uhrig, Maria L.; Couto, Alicia S.; Peres, Valnice J.; Katzin, Alejandro M.; Kimura, Emília A.

    2001-01-01

    Isoprenylation is an essential protein modification in eukaryotic cells. Herein, we report that in Plasmodium falciparum, a number of proteins were labeled upon incubation of intraerythrocytic forms with either [3H]farnesyl pyrophosphate or [3H]geranylgeranyl pyrophosphate. By thin-layer chromatography, we showed that attached isoprenoids are partially modified to dolichol and other, uncharacterized, residues, confirming active isoprenoid metabolism in this parasite. Incubation of blood-stage P. falciparum treated with the isoprenylation inhibitor limonene significantly decreased the parasites' progression from the ring stage to the trophozoite stage and at 1.22 mM, 50% of the parasites died after the first cycle. Using Ras- and Rap-specific monoclonal antibodies, putative Rap and Ras proteins of P. falciparum were immunoprecipitated. Upon treatment with 0.5 mM limonene, isoprenylation of these proteins was significantly decreased, possibly explaining the observed arrest of parasite development. PMID:11502528

  1. Limonene: attractant kairomone for white pine cone beetles (Coleoptera: Scolytidae) in an Eastern white pine seed orchard in Western North Carolina

    Treesearch

    Daniel R. Miller

    2007-01-01

    I report on the attraction of the white pine cone beetle, Canophthorus coniperda (Schwarz) (Coleoptera: Scolytidae), to traps baited with the host monoterpene limonene in western North Carolina. Both (+)- and (-)-limonene attracted male and female cone beetles to Japenese beetle traps in an eastern white pine, Pinus strobus L. seed...

  2. Analyzing Environmental Policies for Chlorinated Solvents with a Model of Markets and Regulations

    DTIC Science & Technology

    1991-01-01

    electronics, aerospace, fabricated metal products, and dry cleaning depend heavily on chlorinated solvents in their production processes . For example...production processes . The second of the model’s components is a group of economic equations that represents all of the solvent substitutions in...Instead, the process for numerically specifying the substitution parameters involves eliciting expert judgments and then normalizing the parameters

  3. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-01

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL-1 was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 104 Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

  4. Non-steady state partitioning of dry cleaning surfactants between tetrachloroethylene (PCE) and water in porous media.

    PubMed

    Hoggan, James L; Bae, Keonbeom; Kibbey, Tohren C G

    2007-08-15

    Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.

  5. Effect of solvent quality on aggregate structures of common surfactants.

    PubMed

    Hollamby, Martin J; Tabor, Rico; Mutch, Kevin J; Trickett, Kieran; Eastoe, Julian; Heenan, Richard K; Grillo, Isabelle

    2008-11-04

    Aggregate structures of two model surfactants, AOT and C12E5 are studied in pure solvents D2O, dioxane-d8 (d-diox) and cyclohexane-d12 (C6D12) as well as in formulated D2O/d-diox and d-diox/C6D12 mixtures. As such these solvents and mixtures span a wide and continuous range of polarities. Small-angle neutron scattering (SANS) has been employed to follow an evolution of the preferred aggregate curvature, from normal micelles in high polarity solvents, through to reversed micelles in low polarity media. SANS has also been used to elucidate the micellar size, shape as well as to highlight intermicellar interactions. The results shed new light on the nature of aggregation structures in intermediate polarity solvents, and point to a region of solvent quality (as characterized by Hildebrand Solubility Parameter, Snyder polarity parameter or dielectric constant) in which aggregation is not favored. Finally these observed trends in aggregation as a function of solvent quality are successfully used to predict the self-assembly behavior of C12E5 in a different solvent, hexane-d14 (C6D14).

  6. Prepsolv (TM): The optimum alternative to 1,1,1-trichloroethane and methyl ethyl ketone for hand-wipe cleaning of aerospace materials

    NASA Technical Reports Server (NTRS)

    Gallagher, R. Scott; Purvis, John A.; Moran, Wade W.

    1995-01-01

    Engineers at Hercules Aerospace, a rocket motor manufacturer in Utah, have worked closely with chemists at Glidco Organics to study the feasibility of using terpenes for zero-residue wipe cleaning. The result of this work is a technological breakthrough, in which the barrier to ultra-low non-volatile residue formation has been broken. After 2 years of development and testing, SCM Glidco Organics has announced the availability of Glidsafe(registered trademark) Prepsolv(TM): a state-of-the-art ultra-low residue terpene wipe cleaning agent that does not require rinsing. Prepsolv(TM) can successfully be used in simple hand-wipe cleaning processes without fear of leaving surface residues. Industry testing has confirmed that Prepsolv(TM) is not only highly effective, but can even be less expensive to use than traditional cleaning solvents like methyl chloroform. This paper addresses the features and benefits of Prepsolv(TM), and presents performance and material compatibility data that characterizes this unique cleaning agent. Since its commercialization, Hercules Aerospace has chosen Prepsolv(TM) as the optimum cleaning agent to replace ozone-depleting solvents in their weapons factory in Magna, UT. Likewise, Boeing has approved Prepsolv(TM) for cleaning components in the manufacture of commercial aircraft at their facilities in Seattle, WA and Wichita, KS. Additional approvals are forthcoming for this uniquely safe and effective solvent.

  7. Research on choleretic effect of menthol, menthone, pluegone, isomenthone, and limonene in DanShu capsule.

    PubMed

    Hu, Guanying; Yuan, Xing; Zhang, Sanyin; Wang, Ruru; Yang, Miao; Wu, Chunjie; Wu, Zhigang; Ke, Xiao

    2015-02-01

    Danshu capsule (DSC) is a medicinal compound in traditional Chinese medicine (TCM). It is commonly used for the treatment of acute & chronic cholecystitis as well as choleithiasis. To study its choleretic effect, healthy rats were randomly divided into DSC high (DSCH, 900mg/kg), medium (DSCM, 450mg/kg), and low (DSCL, 225mg/kg) group, Xiaoyan Lidan tablet (XYLDT, 750mg/kg), and saline group. The bile was collected for 1h after 20-minute stabilization as the base level, and at 1h, 2h, 3h, and 4h after drug administration, respectively. Bile volume, total cholesterol, and total bile acid were measured at each time point. The results revealed that DSC significantly stimulated bile secretion, decreased total cholesterol level and increased total bile acid level. Therefore, it had choleretic effects. To identify the active components contributing to its choleretic effects, five major constituents which are menthol (39.33mg/kg), menthone (18.02mg/kg), isomenthone (8.18mg/kg), pluegone (3.31mg/kg), and limonene (4.39mg/kg) were tested on our rat model. The results showed that menthol and limonene could promote bile secretion when compared to DSC treatment (p > 0.05); Menthol, menthol and limonene could significantly decrease total cholesterol level (p<0.05 or p<0.01) as well as increase total bile acid level (p<0.05 or p<0.01); Isomenthone, as a isomer of menthone, existed slightly choleretic effects; Pluegone had no obvious role in bile acid efflux. These findings indicated that the choleretic effects of DSC may be attributed mainly to its three major constituents: menthol, menthone and limonene. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Supercritical CO2 Cleaning for Planetary Protection and Contamination Control

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Zhong, Fang; Aveline, David; Anderson, Mark; Chung, Shirley; Mennella, Jerami; Schubert, Wayne

    2010-01-01

    We have designed and built a prototype Supercritical CO? Cleaning (SCC) system at JPL. The key features of the system are: 1) the parts inside a high-pressure vessel can be rotated at high speeds; 2) the same thermodynamic condition is maintained during First-In First-Out flushing to keep solvent power constant; and 3) the boil-off during decompression is induced in a separate vessel downstream. Our goal is to demonstrate SCC's ability to remove trace amounts of microbial and organic contaminants down to parts per billion levels from spacecraft material surfaces for future astrobiology missions. The initial cleaning test results showed that SCC can achieve cleanliness levels of 0.01 microgram/cm(sup 2) or less for hydrophobic contaminants such as dioctyl phthalate and silicone and it is less effective in the removal and inactivation of the hydrophilic bacterial spores as expected. However, with the use of a polar co-solvent, the efficacy may improve dramatically. The same results were obtained using liquid CO?. This opens up the possibility of using subcritical cleaning conditions, which may prove to be more compatible with certain spacecraft hardware.

  9. Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA.

    PubMed

    Ohara, Kazuaki; Matsunaga, Etsuko; Nanto, Kazuya; Yamamoto, Kyoko; Sasaki, Kanako; Ebinuma, Hiroyasu; Yazaki, Kazufumi

    2010-01-01

    Metabolic engineering aimed at monoterpene production has become an intensive research topic in recent years, although most studies have been limited to herbal plants including model plants such as Arabidopsis. The genus Eucalyptus includes commercially important woody plants in terms of essential oil production and the pulp industry. This study attempted to modify the production of monoterpenes, which are major components of Eucalyptus essential oil, by introducing two expression constructs containing Perilla frutescens limonene synthase (PFLS) cDNA, whose gene products were designed to be localized in either the plastid or cytosol, into Eucalyptus camaldulensis. The expression of the plastid-type and cytosol-type PFLS cDNA in transgenic E. camaldulensis was confirmed by real-time polymerase chain reaction (PCR). Gas chromatography with a flame ionization detector analyses of leaf extracts revealed that the plastidic and cytosolic expression of PFLS yielded 2.6- and 4.5-times more limonene than that accumulated in wild-type E. camaldulensis, respectively, while the ectopic expression of PFLS had only a small effect on the emission of limonene from the leaves of E. camaldulensis. Surprisingly, the high level of PFLS in Eucalyptus was accompanied by a synergistic increase in the production of 1,8-cineole and alpha-pinene, two major components of Eucalyptus monoterpenes. This genetic engineering of monoterpenes demonstrated a new potential for molecular breeding in woody plants.

  10. The Optical Properties of Limonene Secondary Organic Aerosols: The Role of NO3, OH, and O3 in the Oxidation Processes

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Wang, Weigang; Li, Kun; Li, Junling; Zhou, Li; Wang, Lingshu; Ge, Maofa

    2018-03-01

    Limonene, a typical proxy of monoterpenes emitted from biogenic sources, plays an important role in secondary organic aerosol (SOA) formation. However, the optical properties of SOA generated from limonene under various oxidation pathways remain poorly understood. In this study, we investigate the refractive index (RI) of limonene SOA produced from four oxidation conditions with cavity ring-down spectrometer (CRDS) and photoacoustic extinctiometer operated at 532 and 375 nm. Our results show that there is a significant difference in RI values of SOA produced from NO3 oxidation compared to other oxidation pathways. The mean values of RI of SOA produced from NO3 oxidation, NOx oxidation, OH oxidation with NOx-free, and O3 oxidation experiments are 1.578, 1.469, 1.495, and 1.494 at 532 nm; and 1.591, 1.527, 1.513, and 1.537 at 375 nm, respectively, while no detectable absorption is found in all oxidation conditions. We attribute the high RI values of SOA by NO3 oxidation to two factors: a large proportion of organic nitrates and high-molecular-weight dimers/oligomers in the SOA. Our study results indicate that the nighttime chemistry may significantly influence the optical properties of limonene oxidation products. The RI values of limonene SOA generated under various oxidation conditions at different wavelengths retrieved in our laboratory experiments could help improve the model predictions for evaluating the effect of biogenic SOA on the global radiative forcing as well as climate change.

  11. Effect of Bearing Cleaning on Long Term Bearing Life

    NASA Technical Reports Server (NTRS)

    Jett, Tim; Thom, R. L.

    1999-01-01

    For many years chlorofluorocarbon (CFC) based solvents, such as CFC-113 and 1,1,1, trichloroethane (TCA), were used as bearing cleaning solvents for space mechanism bearings. The 1995 ban on the production of ozone depleting chemicals (ODC) such as CFCs caused a change requiring the use of ODC-free cleaners for precision bearing cleaning. With this change the question arises; what effect if any do these new cleaners have on long term bearing life? The purpose of this study was to evaluate this effect. A one year test using 60 small electrical motors (two bearings per motor) was conducted in a high vacuum environment (2.0 x 10(exp -6) torr) at a temperature of 90 C. Prior to testing the bearings were cleaned with one of four cleaners. These cleaners included two aqueous based cleaners, a CFC based cleaner and supercritical carbon dioxide. Three space compatible greases were tested. After testing, the mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace of each bearing was taken to measure post test wear of the bearings. In addition, the bearings were visually examined and analyzed using an optical microscope.

  12. 76 FR 62061 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9475-4] Clean Water Act Section 303(d): Availability of List... three waterbodies. These three waterbodies were added by EPA because the applicable numeric water... be obtained at EPA Region 6's Web site at http://www.epa.gov/region6/water/npdes/tmdl/index.htm...

  13. Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL.

    PubMed

    Borghi, Monica; Xie, De-Yu

    2016-02-01

    Arabidopsis promoters of genes BANYULS and FRUITFULL are transcribed in Camelina. They triggered the transcription of limonene synthase and induced higher limonene production in seeds and fruits than CaMV 35S promoter. Camelina sativa (Camelina) is an oilseed crop of relevance for the production of biofuels and the plant has been target of a recent and intense program of genetic manipulation aimed to increase performance, seed yield and to modify the fatty acid composition of the oil. Here, we have explored the performance of two Arabidopsis thaliana (Arabidopsis) promoters in triggering transgene expression in Camelina. The promoters of two genes BANYULS (AtBAN pro ) and FRUITFULL (AtFUL pro ), which are expressed in seed coat and valves of Arabidopsis, respectively, have been chosen to induce the expression of limonene synthase (LS) from Citrus limon. In addition, the constitutive CaMV 35S promoter was utilized to overexpress LS in Camelina . The results of experiments revealed that AtBAN pro and AtFUL pro are actively transcribed in Camelina where they also retain specificity of expression in seeds and valves as previously observed in Arabidopsis. LS induced by AtBAN pro and AtFUL pro leads to higher limonene production in seeds and fruits than when the CaMV 35S was used to trigger the expression. In conclusion, the results of experiments indicate that AtBAN pro and AtFUL pro can be successfully utilized to induce the expression of the transgenes of interest in seeds and fruits of Camelina.

  14. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both NASA and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. This presentation summarizes the tests performed, results, and lessons learned. It also demonstrates the benefits of cross-agency collaboration in a time of limited resources.

  15. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  16. KEY NON-PROCESS SOLVENT USES TARGETED AS POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The paper discusses an EPA assessment of non-process solvent emissions from 15 industrial and commercial source categories in support of the Consumer and Commercial Products Report to Congress which was mandated in Section 183(e) of the Clean Air Act Amendments of 1990. hese prod...

  17. Biofiltration of solvent vapors from air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps andmore » flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.« less

  18. Extraction, Scrub, and Strip Test Results for the Salt Waste Processing Facility Caustic Side Solvent Extraction Solvent Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D( Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D( Cs) measured 12.5, exceeding the required value of 8. This value is consistent with resultsmore » from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D( Cs) results.« less

  19. Extraction, scrub, and strip test results for the salt waste processing facility caustic side solvent extraction solvent example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previousmore » ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less

  20. 75 FR 71431 - Clean Water Act Section 303(d): Availability of List Decisions Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9230-1] Clean Water Act Section 303(d): Availability of List... Availability. SUMMARY: This action corrects a Federal Register notice that published on November 9, 2010 at 75 FR 68783 announcing the availability of EPA decisions identifying water quality limited segments and...

  1. Recent progress in heteronuclear long-range NMR of complex carbohydrates: 3D H2BC and clean HMBC.

    PubMed

    Meier, Sebastian; Petersen, Bent O; Duus, Jens Ø; Sørensen, Ole W

    2009-11-02

    The new NMR experiments 3D H2BC and clean HMBC are explored for challenging applications to a complex carbohydrate at natural abundance of (13)C. The 3D H2BC experiment is crucial for sequential assignment as it yields heteronuclear one- and two-bond together with COSY correlations for the (1)H spins, all in a single spectrum with good resolution and non-informative diagonal-type peaks suppressed. Clean HMBC is a remedy for the ubiquitous problem of strong coupling induced one-bond correlation artifacts in HMBC spectra of carbohydrates. Both experiments work well for one of the largest carbohydrates whose structure has been determined by NMR, not least due to the enhanced resolution offered by the third dimension in 3D H2BC and the improved spectral quality due to artifact suppression in clean HMBC. Hence these new experiments set the scene to take advantage of the sensitivity boost achieved by the latest generation of cold probes for NMR structure determination of even larger and more complex carbohydrates in solution.

  2. Isolation and identification of floral attractants from a nectar plant for the dried bean beetle, Acanthoscelides obtectus (Coleoptera: Chrysomelidae, Bruchinae).

    PubMed

    Vuts, József; Woodcock, Christine M; Caulfield, John C; Powers, Stephen J; Pickett, John A; Birkett, Michael A

    2018-03-08

    The response of virgin females of the legume pest Acanthoscelides obtectus (Coleoptera: Bruchidae) to headspace extracts of volatiles collected from flowers of a nectar plant, Daucus carota, was investigated using behaviour (four-arm olfactometry) and coupled gas chromatography-electroantennography (GC-EAG). Odours from inflorescences were significantly more attractive to virgin female beetles than clean air. Similarly, a sample of volatile organic compounds (VOCs) collected by air entrainment (dynamic headspace collection) was more attractive to beetles than a solvent control. In coupled GC-EAG experiments with beetle antennae and the VOC extract, six components showed EAG activity. Using coupled GC-mass spectrometry (GC-MS) and GC peak enhancement with authentic standards, the components were identified as α-pinene (S:R 16:1), sabinene, myrcene, limonene (S:R 1:3), terpinolene and (S)-bornyl acetate. Females preferred the synthetic blend of D. carota EAG-active volatiles to the solvent control in bioassays. When compared directly, odours of D. carota inflorescences elicited stronger positive behaviour than the synthetic blend. This is the first report of behaviourally active volatiles linked to pollen location for A. obtectus, and development of the six-component blend is being pursued, which could underpin the design of semiochemical-based field management approaches against this major pest of stored products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    PubMed

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  4. Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate.

    PubMed

    Ruiz, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats, Xavier

    2016-12-01

    The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential and the methane production rate using batch anaerobic tests. The methods tested were based on removal (biological pretreatment by fungi) or recovery (steam distillation and ethanol extraction) of limonene. All the treatments decreased the concentration of limonene in orange peel, with average efficiencies of 22%, 44% and 100% for the biological treatment, steam distillation and ethanol extraction, respectively. By-products from limonene biodegradation by fungi exhibited an inhibitory effect also, not making interesting the biological pretreatment. The methane potential and production rate of the treated orange peel increased significantly after applying the recovery strategies, which separated and recovered simultaneously other inhibitory components of the citrus essential oil. Apart from the high recovery efficiency of the ethanol extraction process, it presented a favourable energy balance. © The Author(s) 2016.

  5. The Denaturation Transition of DNA in Mixed Solvents

    PubMed Central

    Hammouda, Boualem; Worcester, David

    2006-01-01

    The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The “melting” transition temperature was found to be 94°C for 4% mass fraction DNA/d-water and 38°C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 Å across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains. PMID:16815902

  6. Causes of death among laundry and dry cleaning workers.

    PubMed Central

    Blair, A; Decoufle, P; Grauman, D

    1979-01-01

    To make a preliminary determination as to whether a potential health hazard exists for workers exposed to dry cleaning solvents (carbon tetrachloride, trichloroethylene, and tetrachloroethylene), we analyzed the causes of death of 330 deceased laundry and dry cleaning workers by the proportionate mortality method. The increased risk for malignant neoplasms resulted primarily from an excess of lung and cervical cancer and slight excesses of leukemia and liver cancer. Although the number of deaths was small, the increased risk of cancer noted in this investigation underscores the need for additional epidemiologic studies of this occupational group. PMID:434285

  7. Pondering the monoterpene composition of Pinus serotina Michx.: can limonene be used as a chemotaxonomic marker for the identification of old turpentine stumps?

    Treesearch

    Thomas L. Eberhardt; Jolie M. Mahfouz; Philip M. Sheridan

    2010-01-01

    Wood samples from old turpentine stumps in Virginia were analyzed by GC-MS to determine if the monoterpene compositions could be used for species identification. Given that limonene is reported to be the predominant monoterpene for pond pine (Pinus serotina Michx.), low relative proportions of limonene in these samples appeared to suggest that these...

  8. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    PubMed

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, γ-terpinene, β-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. R-Limonene metabolism in humans and metabolite kinetics after oral administration.

    PubMed

    Schmidt, Lukas; Göen, Thomas

    2017-03-01

    We studied the R-limonene (LMN) metabolism and elimination kinetics in a human in vivo study. Four volunteers were orally exposed to a single LMN dose of 100-130 µg kg -1 bw. In each case, one pre-exposure and subsequently all 24 h post-exposure urine samples were collected. From two subjects, blood samples were drawn up to 5 h after exposure. The parent compound was analysed in blood using headspace GC-MS. The metabolites cis- and trans-carveol (cCAR), perillyl alcohol (POH), perillic acid (PA), limonene-1,2-diol (LMN-1,2-OH), and limonene-8,9-diol (LMN-8,9-OH) were quantified in both blood and urine using GC-PCI-MS/MS. Moreover, GC-PCI-MS full-scan experiments were applied for identification of unknown metabolites in urine. In both matrices, metabolites reached maximum concentrations 1-2 h post-exposure followed by rapid elimination with half-lives of 0.7-2.5 h. In relation to the other metabolites, LMN-1,2-OH was eliminated slowest. Nonetheless, overall renal metabolite elimination was completed within the 24-h observation period. The metabolite amounts excreted via urine corresponded to 0.2 % (cCAR), 0.2 % (tCAR), <0.1 % (POH), 2.0 % (PA), 4.3 % (LMN-1,2-OH), and 32 % (LMN-8,9-OH) of the orally administered dose. GC-PCI-MS full-scan analyses revealed dihydroperillic acid (DHPA) as an additional LMN metabolite. DHPA was estimated to account for 5 % of the orally administered dose. The study revealed that human LMN metabolism proceeds fast and is characterised by oxidation mainly of the exo-cyclic double bond but also of the endo-cyclic double bond and of the methyl side chain. The study results may support the prediction of the metabolism of other terpenes or comparable chemical structures.

  10. Validation of Alternative to Ozone-Depleting Chemicals Used in Oxygen Line Cleaning

    DTIC Science & Technology

    2006-07-01

    concentration in air purge stream is continuously below 600 ppm ASTM G88 Leak testing B-1B mock-up and actual 2.9 To be determined from system...to determine the effectiveness of the solvent: the solvent chosen, its concentration , and the shear stress exerted on the surface by the cleaning...operators must be trained in its use. 11 3.0 DEMONSTRATION DESIGN 3.1 PERFORMANCE OBJECTIVES The objective for this project was to produce a

  11. Influence of the composition of aqueous dimethylsulfoxide solvent on thermodynamics of complexing between 18-crown-6-ether and D,L-alanine

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.

    2012-07-01

    Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.

  12. Chemical composition and acaricidal activity of the essential oil of Baccharis dracunculifolia De Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae).

    PubMed

    de Assis Lage, Tiago Coelho; Montanari, Ricardo Marques; Fernandes, Sergio Antonio; de Oliveira Monteiro, Caio Márcio; de Oliveira Souza Senra, Tatiane; Zeringota, Viviane; da Silva Matos, Renata; Daemon, Erik

    2015-01-01

    Baccharis dracunculifolia DC (common name "alecrim-do-campo" in Brazil) is a plant with widespread distribution in South America that is the botanical origin of green propolis. The aim of this study was to evaluate the chemical composition and acaricidal activity of the essential oil of B. dracunculifolia and its constituents nerolidol and limonene on unengorged larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). The essential oil yield was 0.8% of dry mass and the major constituents were nerolidol (22.3%), germacrene D (7.2%), limonene (6.9%), β-pinene (6.7) and bicyclogermacrene (6.5%). The acaricidal activity of the essential oil and the pure compounds nerolidol and (R)-(+)-limonene were assessed in the laboratory through the modified larval packet test (LPT) and the female immersion test (FIT). In the LPT, the essential oil and nerolidol were both active, causing more than 90% mortality at concentrations from 15.0 and 10.0 mg mL(-1), respectively, whereas (R)-(+)-limonene was not active. In the FIT, the oil and nerolidol caused reduction in the quantity and quality of eggs produced, with control percentages of 96.3% and 90.3% at concentrations of 60.0 and 50.0 mg mL(-1), respectively. It can be concluded that the essential oil obtained from the aerial parts of B. dracunculifolia and its major component nerolidol have high activity on R. microplus larvae and engorged females. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. 75 FR 17917 - Clean Water Act Section 303(d): Final Agency Action on Seven Total Maximum Daily Loads (TMDLs) in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9135-1] Clean Water Act Section 303(d): Final Agency Action... the Clean Water Act (CWA). Documents from the administrative record file for the seven TMDLs... Oxygen. 010401 East Atchafalaya Mercury. Basin and Morganza Floodway South to Interstate 10 Canal. 010501...

  14. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME II: PROCESS OVERVIEW

    EPA Science Inventory

    This volume presents initial results of a study to identify the issues and barriers associated with retrofitting existing solvent-based equipment to accept waterbased adhesives as part of an EPA effort to improve equipment cleaning in the coated and laminated substrate manufactur...

  15. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.

    PubMed

    Willrodt, Christian; Halan, Babu; Karthaus, Lisa; Rehdorf, Jessica; Julsing, Mattijs K; Buehler, Katja; Schmid, Andreas

    2017-02-01

    The efficiency of biocatalytic reactions involving industrially interesting reactants is often constrained by toxification of the applied biocatalyst. Here, we evaluated the combination of biologically and technologically inspired strategies to overcome toxicity-related issues during the multistep oxyfunctionalization of (R)-(+)-limonene to (R)-(+)-perillic acid. Pseudomonas putida GS1 catalyzing selective limonene oxidation via the p-cymene degradation pathway and recombinant Pseudomonas taiwanensis VLB120 were evaluated for continuous perillic acid production. A tubular segmented-flow biofilm reactor was used in order to relieve oxygen limitations and to enable membrane mediated substrate supply as well as efficient in situ product removal. Both P. putida GS1 and P. taiwanensis VLB120 developed a catalytic biofilm in this system. The productivity of wild-type P. putida GS1 encoding the enzymes for limonene bioconversion was highly dependent on the carbon source and reached 34 g L tube -1  day -1 when glycerol was supplied. More than 10-fold lower productivities were reached irrespective of the applied carbon source when the recombinant P. taiwanensis VLB120 harboring p-cymene monooxygenase and p-cumic alcohol dehydrogenase was used as biocatalyst. The technical applicability for preparative perillic acid synthesis in the applied system was verified by purification of perillic acid from the outlet stream using an anion exchanger resin. This concept enabled the multistep production of perillic acid and which might be transferred to other reactions involving volatile reactants and toxic end-products. Biotechnol. Bioeng. 2017;114: 281-290. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Cleaning of optical surfaces by excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Mann, K.; Wolff-Rottke, B.; Müller, F.

    1996-04-01

    The effect of particle removal from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way to clean future very large telescope (VLT) mirrors [1]. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be restored, in particular when an additional solvent film on the sample surface is applied.

  17. Hazardous substances in frequently used professional cleaning products.

    PubMed

    Gerster, Fabian Melchior; Vernez, David; Wild, Pascal Pierre; Hopf, Nancy Brenna

    2014-01-01

    A growing number of studies have identified cleaners as a group at risk for adverse health effects of the skin and the respiratory tract. Chemical substances present in cleaning products could be responsible for these effects. Currently, only limited information is available about irritant and health hazardous chemical substances found in cleaning products. We hypothesized that chemical substances present in cleaning products are known health hazardous substances that might be involved in adverse health effects of the skin and the respiratory tract. We performed a systematic review of cleaning products used in the Swiss cleaning sector. We surveyed Swiss professional cleaning companies (n = 1476) to identify the most used products (n = 105) for inclusion. Safety data sheets (SDSs) were reviewed and hazardous substances present in cleaning products were tabulated with current European and global harmonized system hazard labels. Professional cleaning products are mixtures of substances (arithmetic mean 3.5 +/- 2.8), and more than 132 different chemical substances were identified in 105 products. The main groups of chemicals were fragrances, glycol ethers, surfactants, solvents; and to a lesser extent, phosphates, salts, detergents, pH-stabilizers, acids, and bases. Up to 75% of products contained irritant (Xi), 64% harmful (Xn) and 28% corrosive (C) labeled substances. Hazards for eyes (59%) and skin (50%), and hazards by ingestion (60%) were the most reported. Cleaning products potentially give rise to simultaneous exposures to different chemical substances. As professional cleaners represent a large workforce, and cleaning products are widely used, it is a major public health issue to better understand these exposures. The list of substances provided in this study contains important information for future occupational exposure assessment studies.

  18. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed.

    PubMed

    Ma, Bingxin; Ban, Xiaoquan; Huang, Bo; He, Jingsheng; Tian, Jun; Zeng, Hong; Chen, Yuxin; Wang, Youwei

    2015-01-01

    This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease.

  19. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed

    PubMed Central

    Huang, Bo; He, Jingsheng; Tian, Jun; Zeng, Hong; Chen, Yuxin; Wang, Youwei

    2015-01-01

    This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease. PMID:26133771

  20. Bio-Inspired Self-Cleaning Surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  1. Methods for recovering a polar solvent from a fluid stream contaminated with at least one polar impurity

    DOEpatents

    Ginosar, Daniel M.; Wendt, Daniel S.

    2012-11-13

    A method of removing a polar solvent from a fluid volume contaminated with at least one polar impurity, such as a free fatty acid, is provided. The method comprises providing a fluid volume that includes at least one polar impurity dissolved in at least one solvent. The fluid volume is contacted with an expanding gas to remove the at least one solvent. The expanding gas may be dissolved into the at least one solvent in the fluid volume to form a gas-expanded solvent. The immiscibility of the polar impurities in the gas-expanded solvent enables separation of the polar impurities from the gas-expanded solvent. After separation of the polar impurities, at least one of the temperature and pressure may be reduced to separate the solvent from the expanding gas such that the clean solvent may be reused.

  2. A Role for 2-Methyl Pyrrole in the Browning of 4-Oxopentanal and Limonene Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aiona, Paige K.; Lee, Hyun Ji; Lin, Peng

    “Brown Carbon” (BrC) is a type of organic particulate matter that absorbs visible and near ultraviolet radiation. Reactions of carbonyls in secondary organic aerosol (SOA) produced from limonene with ammonia (NH3) or ammonium sulfate (AS) are known to produce BrC with a distinctive absorption band at 500 nm. Although the general mechanism for this process has been proposed in previous studies, the specific molecular structures of the light-absorbing species remain unclear. This study examined the browning processes occurring in aqueous solutions of AS and 4-oxopentanal (4-OPA), which has a 1,4-dicarbonyl structural motif present in many limonene SOA compounds. The reactionmore » of 4-OPA with AS in a bulk aqueous solution produces a 2-methyl pyrrole (2-MP) intermediate, which is not a strong light absorber by itself, but can react further with carbonyl compounds leading to the eventual formation of BrC chromophores. The direct involvement of 2-MP in the browning process was demonstrated by reacting 2-MP with 4-OPA and with limonene SOA, both of which produced BrC chromophores with distinctive absorption bands at visible wavelengths. The formation of BrC in reaction of 4-OPA with AS and ammonium nitrate (AN) was found to be accelerated by evaporation of the solution suggesting an important role of the dehydration processes in BrC formation from 1,4- dicarbonyls. 4-OPA was also found to produce BrC in aqueous reactions with a broad spectrum of amino acids and amines. The results suggest that 4-OPA may be the smallest atmospherically relevant compound capable of browning by the same mechanism as limonene SOA.« less

  3. The FEM Simulation on End Mill of Plastic Doors and Windows Corner Cleaning Based on Deform-3D

    NASA Astrophysics Data System (ADS)

    Li, Guoping; Huang, Zhenyong; Wang, Xiaohui

    2017-12-01

    In the plastic doors and windows corner cleaning process, the rotating speed, the feed rate and the milling cutter diameter are the main factors that affect the efficiency and quality of the of corner cleaning. In this paper, SolidWorks will be used to establish the 3D model of end mills, and use Deform-3D to research the end mill milling process. And using orthogonal experiment design method to analyze the effect of rotating speed, the feed rate and the milling cutter diameter on the axial force variation, and to get the overall trend of axial force and the selection of various parameters according to the influence of axial force change. Finally, simulate milling experiment used to get the actual axial force data to verify the reliability of the FEM simulation model. And the conclusion obtained in this paper has important theoretical value in improving the plastic doors and windows corner cleaning efficiency and quality.

  4. Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes

    PubMed Central

    Cruz, Silvia L; Balster, Robert L; Woodward, John J

    2000-01-01

    We have previously shown that toluene dose-dependently inhibits recombinant N-methyl-D-aspartate (NMDA) receptors at micromolar concentrations. This inhibition was rapid, almost complete and reversible. The NR1/2B combination was the most sensitive receptor subtype tested with an IC50 value for toluene of 0.17 mM. We now report on the effects of other commonly abused solvents (benzene, m-xylene, ethylbenzene, propylbenzene, 1,1,1-trichlorethane (TCE) and those of a convulsive solvent, 2,2,2-trifluoroethyl ether (flurothyl), on NMDA-induced currents measured in Xenopus oocytes expressing NR1/2A or NR1/2B receptor subtypes. All of the alkylbenzenes and TCE produced a reversible inhibition of NMDA-induced currents that was dose- and subunit-dependent. The NR1/2B receptor subtype was several times more sensitive to these compounds than the NR1/2A subtype. The convulsant solvent flurothyl had no effect on NMDA responses in oocytes but potently inhibited ion flux through recombinant GABA receptors expressed in oocytes. Overall, these results suggest that abused solvents display pharmacological selectivity and that NR1/2B NMDA receptors may be an important target for the actions of these compounds on the brain. PMID:11090101

  5. Biomethanization of citrus waste: Effect of waste characteristics and of storage on treatability and evaluation of limonene degradation.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Pastore, Carlo; Di Iaconi, Claudio

    2018-06-01

    This study proposes the evaluation of the suitability of mesophilic anaerobic digestion as a simple technology for the treatment of the citrus waste produced by small-medium agro-industrial enterprises involved in the transformation of Citrus fruits. Two different stocks of citrus peel waste were used (i.e., fresh and stored citrus peel waste), to evaluate the influence of waste composition (variability in the type of processed Citrus fruits) and of storage (potentially necessary to operate the anaerobic digester continuously over the whole year due to the seasonality of the production) on anaerobic degradation treatability. A thorough characterization of the two waste types has been performed, showing that the fresh one has a higher solid and organic content, and that, in spite of the similar values of oil fraction amounts, the two stocks are significantly different in the composition of essential oils (43% of limonene and 34% of linalyl acetate in the fresh citrus waste and 20% of limonene and 74% of linalyl acetate in the stored citrus waste). Contrarily to what observed in previous studies, anaerobic digestion was successful and no reactor acidification occurred. No inhibition by limonene and linalyl acetate even at the maximum applied organic load value (i.e., 2.72 gCOD waste /gVS inoculum ) was observed in the treatment of the stored waste, with limonene and linalyl acetate concentrations of 104 mg/l and 385 mg/l, respectively. On the contrary, some inhibition was detected with fresh citrus peel waste when the organic load increased from 2.21 to 2.88 gCOD waste /gVS inoculum , ascribable to limonene at initial concentration higher than 150 mg/l. A good conversion into methane was observed with fresh peel waste, up to 0.33  [Formula: see text] at the highest organic load, very close to the maximum theoretical value of 0.35 [Formula: see text] , while a lower efficiency was achieved with stored peel waste, with a reduction down to 0.24  [Formula: see

  6. Total NMR assignments of new [C7-O-C7'']-biflavones from leaves of the limonene-carvone chemotype of Lippia alba (Mill) N. E. Brown.

    PubMed

    Barbosa, Francisco Geraldo; Lima, Mary Anne Sousa; Silveira, Edilberto Rocha

    2005-04-01

    Phytochemical analysis of leaves of the limonene-carvone chemotype of Lippia alba led to the isolation of two biflavonoids with a new structural pattern with an ether linkage: 5,5''-dihydroxy-6,4',6'',3''',4'''-pentamethoxy-[C(7)--O--C(7'')]-biflavone (1) and 4',4,5,5''-tetrahydroxy-6,6'',3'''-trimethoxy-[C(7)--O--C(7'')]-biflavone (2). Structural elucidation of the new compounds was established on the basis of spectral data, through the use of 1D NMR and several 2D shift correlated NMR pulse sequences (COSY, HMQC, HMBC and NOESY). Copyright (c) 2005 John Wiley & Sons, Ltd

  7. Microwave-promoted catalyst- and solvent-free aza-Diels-Alder reaction of aldimines with 6-[2-(dimethylamino)vinyl]-1,3-dimethyluracil.

    PubMed

    Sarma, Rupam; Sarmah, Manas M; Prajapati, Dipak

    2012-02-17

    A microwave-promoted aza-Diels-Alder reaction between 6-[2-(dimethylamino)vinyl]-1,3-dimethyluracil and aldimines has been developed for the construction of dihydropyrido[4,3-d]pyrimidines. Urea is effectively employed as an environmentally benign source of ammonia in the absence of any catalyst or solvent. The key step in the reaction is in situ generation and trapping of the reactive aldimine formed from urea and aldehyde by the diene system of the uracil. The reaction is clean, and excellent yields are obtained in a matter of a few minutes.

  8. Extending the solvent-free MALDI sample preparation method.

    PubMed

    Hanton, Scott D; Parees, David M

    2005-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important technique to characterize many different materials, including synthetic polymers. MALDI mass spectral data can be used to determine the polymer average molecular weights, repeat units, and end groups. One of the key issues in traditional MALDI sample preparation is making good solutions of the analyte and the matrix. Solvent-free sample preparation methods have been developed to address these issues. Previous results of solvent-free or dry prepared samples show some advantages over traditional wet sample preparation methods. Although the results of the published solvent-free sample preparation methods produced excellent mass spectra, we found the method to be very time-consuming, with significant tool cleaning, which presents a significant possibility of cross contamination. To address these issues, we developed an extension of the solvent-free method that replaces the mortar and pestle grinding with ball milling the sample in a glass vial with two small steel balls. This new method generates mass spectra with equal quality of the previous methods, but has significant advantages in productivity, eliminates cross contamination, and is applicable to liquid and soft or waxy analytes.

  9. Anodic Oxidation of Furans in Aprotic Solvents.

    DTIC Science & Technology

    1984-01-06

    dissolved in 70 mL acetonitrile (0.003% water , K.F. titration) containing 0.1 M tetra-n-butyl ammonium tetrafluoroborate (TBAF). The solution was...solvent evaporated on a rotary evaporator at 25°C ( water bath temperature). The residue was extracted with 3 x 20 mL portions of diethylether, and the...results for a clean electrode in the same solution after presaturation with oxygen. To make the film conductive for the electrolyses , the voltage was

  10. The reorganization energy of electron transfer in nonpolar solvents: Molecular level treatment of the solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leontyev, I.V.; Tachiya, M.

    The intermolecular electron transfer in a solute pair consisting of pyrene and dimethylaniline is investigated in a nonpolar solvent, n-hexane. The earlier elaborated approach [M. Tachiya, J. Phys Chem. 97, 5911 (1993)] is used; this method provides a physically relevant background for separating inertial and inertialess polarization responses for both nonpolarizable and polarizable molecular level simulations. The molecular-dynamics technique was implemented for obtaining the equilibrium ensemble of solvent configurations. The nonpolar solvent, n-hexane, was treated in terms of OPLS-AA parametrization. Solute Lennard-Jones parameters were taken from the same parametrization. Solute charge distributions of the initial and final states were determinedmore » using ab initio level [HF/6-31G(d,p)] quantum-chemical calculations. Configuration analysis was performed explicitly taking into account the anisotropic polarizability of n-hexane. It is shown that the Gaussian law well describes calculated distribution functions of the solvent coordinate, therefore, the rate constant of the ET reaction can be characterized by the reorganization energy. Evaluated values of the reorganization energies are in a range of 0.03-0.11 eV and significant contribution (more then 40% of magnitude) comes from anisotropic polarizability. Investigation of the reorganization energy {lambda} dependence on the solute pair separation distance d revealed unexpected behavior. The dependence has a very sharp peak at the distance d=7 A where solvent molecules are able to penetrate into the intermediate space between the solute pair. The reason for such behavior is clarified. This new effect has a purely molecular origin and cannot be described within conventional continuum solvent models.« less

  11. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    PubMed

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  12. High Resolution 4-D Spectroscopy with Sparse Concentric Shell Sampling and FFT-CLEAN

    PubMed Central

    Coggins, Brian E.; Zhou, Pei

    2009-01-01

    SUMMARY Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise. PMID:18853260

  13. Modeling of temperature-induced near-infrared and low-field time-domain nuclear magnetic resonance spectral variation: chemometric prediction of limonene and water content in spray-dried delivery systems.

    PubMed

    Andrade, Letícia; Farhat, Imad A; Aeberhardt, Kasia; Bro, Rasmus; Engelsen, Søren Balling

    2009-02-01

    The influence of temperature on near-infrared (NIR) and nuclear magnetic resonance (NMR) spectroscopy complicates the industrial applications of both spectroscopic methods. The focus of this study is to analyze and model the effect of temperature variation on NIR spectra and NMR relaxation data. Different multivariate methods were tested for constructing robust prediction models based on NIR and NMR data acquired at various temperatures. Data were acquired on model spray-dried limonene systems at five temperatures in the range from 20 degrees C to 60 degrees C and partial least squares (PLS) regression models were computed for limonene and water predictions. The predictive ability of the models computed on the NIR spectra (acquired at various temperatures) improved significantly when data were preprocessed using extended inverted signal correction (EISC). The average PLS regression prediction error was reduced to 0.2%, corresponding to 1.9% and 3.4% of the full range of limonene and water reference values, respectively. The removal of variation induced by temperature prior to calibration, by direct orthogonalization (DO), slightly enhanced the predictive ability of the models based on NMR data. Bilinear PLS models, with implicit inclusion of the temperature, enabled limonene and water predictions by NMR with an error of 0.3% (corresponding to 2.8% and 7.0% of the full range of limonene and water). For NMR, and in contrast to the NIR results, modeling the data using multi-way N-PLS improved the models' performance. N-PLS models, in which temperature was included as an extra variable, enabled more accurate prediction, especially for limonene (prediction error was reduced to 0.2%). Overall, this study proved that it is possible to develop models for limonene and water content prediction based on NIR and NMR data, independent of the measurement temperature.

  14. Hazardous substances in frequently used professional cleaning products

    PubMed Central

    Gerster, Fabian Melchior; Vernez, David; Wild, Pascal Pierre; Hopf, Nancy Brenna

    2014-01-01

    Background: A growing number of studies have identified cleaners as a group at risk for adverse health effects of the skin and the respiratory tract. Chemical substances present in cleaning products could be responsible for these effects. Currently, only limited information is available about irritant and health hazardous chemical substances found in cleaning products. We hypothesized that chemical substances present in cleaning products are known health hazardous substances that might be involved in adverse health effects of the skin and the respiratory tract. Methods: We performed a systematic review of cleaning products used in the Swiss cleaning sector. We surveyed Swiss professional cleaning companies (n = 1476) to identify the most used products (n = 105) for inclusion. Safety data sheets (SDSs) were reviewed and hazardous substances present in cleaning products were tabulated with current European and global harmonized system hazard labels. Results: Professional cleaning products are mixtures of substances (arithmetic mean 3.5±2.8), and more than 132 different chemical substances were identified in 105 products. The main groups of chemicals were fragrances, glycol ethers, surfactants, solvents; and to a lesser extent, phosphates, salts, detergents, pH-stabilizers, acids, and bases. Up to 75% of products contained irritant (Xi), 64% harmful (Xn) and 28% corrosive (C) labeled substances. Hazards for eyes (59%) and skin (50%), and hazards by ingestion (60%) were the most reported. Conclusions: Cleaning products potentially give rise to simultaneous exposures to different chemical substances. As professional cleaners represent a large workforce, and cleaning products are widely used, it is a major public health issue to better understand these exposures. The list of substances provided in this study contains important information for future occupational exposure assessment studies. PMID:24804339

  15. Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an Fe(II) complex revealed by 2D IR spectroscopy.

    PubMed

    Brookes, Jennifer F; Slenkamp, Karla M; Lynch, Michael S; Khalil, Munira

    2013-07-25

    The vibrational dephasing dynamics of the nitrosyl stretching vibration (ν(NO)) in sodium nitroprusside (SNP, Na2[Fe(CN)5NO]·2H2O) are investigated using two-dimensional infrared (2D IR) spectroscopy. The ν(NO) in SNP acts as a model system for the nitrosyl ligand found in metalloproteins which play an important role in the transportation and detection of nitric oxide (NO) in biological systems. We perform a 2D IR line shape study of the ν(NO) in the following solvents: water, deuterium oxide, methanol, ethanol, ethylene glycol, formamide, and dimethyl sulfoxide. The frequency of the ν(NO) exhibits a large vibrational solvatochromic shift of 52 cm(-1), ranging from 1884 cm(-1) in dimethyl sulfoxide to 1936 cm(-1) in water. The vibrational anharmonicity of the ν(NO) varies from 21 to 28 cm(-1) in the solvents used in this study. The frequency-frequency correlation functions (FFCFs) of the ν(NO) in SNP in each of the seven solvents are obtained by fitting the experimentally obtained 2D IR spectra using nonlinear response theory. The fits to the 2D IR line shape reveal that the spectral diffusion time scale of the ν(NO) in SNP varies from 0.8 to 4 ps and is negatively correlated with the empirical solvent polarity scales. We compare our results with the experimentally determined FFCFs of other charged vibrational probes in polar solvents and in the active sites of heme proteins. Our results suggest that the vibrational dephasing dynamics of the ν(NO) in SNP reflect the fluctuations of the nonhomogeneous electric field created by the polar solvents around the nitrosyl and cyanide ligands. The solute solvent interactions occurring at the trans-CN ligand are sensed through the π-back-bonding network along the Fe-NO bond in SNP.

  16. Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy G. Garn; David H. Meikrantz; Nick R. Mann

    2008-09-01

    Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a widemore » range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.« less

  17. Low extractable wipers for cleaning space flight hardware

    NASA Technical Reports Server (NTRS)

    Tijerina, Veronica; Gross, Frederick C.

    1986-01-01

    There is a need for low extractable wipers for solvent cleaning of space flight hardware. Soxhlet extraction is the method utilized today by most NASA subcontractors, but there may be alternate methods to achieve the same results. The need for low non-volatile residue materials, the history of soxhlet extraction, and proposed alternate methods are discussed, as well as different types of wipers, test methods, and current standards.

  18. Optimizing surface finishing processes through the use of novel solvents and systems

    NASA Astrophysics Data System (ADS)

    Quillen, M.; Holbrook, P.; Moore, J.

    2007-03-01

    As the semiconductor industry continues to implement the ITRS (International Technology Roadmap for Semiconductors) node targets that go beyond 45nm [1], the need for improved cleanliness between repeated process steps continues to grow. Wafer cleaning challenges cover many applications such as Cu/low-K integration, where trade-offs must be made between dielectric damage and residue by plasma etching and CMP or moisture uptake by aqueous cleaning products. [2-5] Some surface sensitive processes use the Marangoni tool design [6] where a conventional solvent such as IPA (isopropanol), combines with water to provide improved physical properties such as reduced contact angle and surface tension. This paper introduces the use of alternative solvents and their mixtures compared to pure IPA in removing ionics, moisture, and particles using immersion bench-chemistry models of various processes. A novel Eastman proprietary solvent, Eastman methyl acetate is observed to provide improvement in ionic, moisture capture, and particle removal, as compared to conventional IPA. [7] These benefits may be improved relative to pure IPA, simply by the addition of various additives. Some physical properties of the mixtures were found to be relatively unchanged even as measured performance improved. This report presents our attempts to cite and optimize these benefits through the use of laboratory models.

  19. PWR steam generator chemical cleaning, Phase I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the searchmore » sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.« less

  20. Water Quality Criteria for Colored Smokes: Solvent Yellow 33

    DTIC Science & Technology

    1987-11-01

    Y . ’~ ~% d .’ 4’ . TABLE 4. DISTRIBUTION OF [1 4 C]-SOLVENT YELLOW 33 IN RATS 1 hr AFTER- EXPOSURE TO SOLVENT YELLOW 33 (SY) OR SOLVENT YELLOW 33...have shown that some individuals react strongly Lo this dye. The repeat insult patch test is used most often. The subjects receive five to ten exposures...70 Neutrophils Control 5 ± 2 0 ± 0 7 ± 3 3( lO cells/g) Exposed 1300 ± 130 d 470 ± i 0 0d 290 ± 50 d a. Adapted from Henderson et al. 1985b. b. Values

  1. Clean Air Act Guidelines and Standards for Solvent Use and Surface Coating Industry

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the solvent use and surface coating industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  2. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil

    PubMed Central

    Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.

    2015-01-01

    Abstract A polysulfide material was synthesized by the direct reaction of sulfur and d‐limonene, by‐products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur‐limonene polysulfide resulted in a color change. These properties motivate application in next‐generation environmental remediation and mercury sensing. PMID:26481099

  3. Acaricidal activity of essential oils from Lippia alba genotypes and its major components carvone, limonene, and citral against Rhipicephalus microplus.

    PubMed

    Peixoto, Magna Galvão; Costa-Júnior, Livio Martins; Blank, Arie Fitzgerald; Lima, Aldilene da Silva; Menezes, Thays Saynara Alves; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Cavalcanti, Sócrates Cabral de Holanda; Bacci, Leandro; Arrigoni-Blank, Maria de Fátima

    2015-05-30

    The goal of the present study was to evaluate the acaricidal potential of Lippia alba essential oil, citral chemotypes (LA-10 and LA-44 genotypes) and carvone chemotypes (LA-13 and LA-57 genotypes), as well as purified citral and enantiomers of carvone and limonene. Efficacy against Rhipicephalus microplus was assessed by the larval packet and the engorged female immersion tests. Citral chemotypes had greater larvicidal activity than carvone chemotypes, and this was further supported by larvicidal and adulticidal activity of purified citral with LC50 values of 7.0 and 29.8 mg/mL, respectively. While purified enantiomers of carvone exhibited greater larvicidal activity than those of limonene, enantioselectivity of limonene was observed with R-(+) displaying significantly higher efficacy (LC50 of 31.2mg/mL) than S-(-) (LC50 of 54.5mg/mL). The essential oils and purified compounds were much less toxic toward engorged adult females, with the exception of citral, and this may be due to limited cuticular penetration. Published by Elsevier B.V.

  4. MP2, DFT-D, and PCM study of the HMB-TCNE complex: Thermodynamics, electric properties, and solvent effects

    NASA Astrophysics Data System (ADS)

    Kysel, Ondrej; Budzák, Scaronimon; Medveď, Miroslav; Mach, Pavel

    Geometry, thermodynamic, and electric properties of the pi-EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6-31G* and, partly, DFT-D/6-31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB-TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10-10 m and the corresponding BSSE corrected interaction energy is -51.3 kJ mol-1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2-TCNE and HMB-TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10-10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06-3.16 × 10-10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB-TCNE complex formation in gas phase are: DeltaH0 = -61.59 kJ mol-1, DeltaSc0 = -143 J mol-1 K-1, DeltaG0 = -18.97 kJ mol-1, and K = 2,100 dm3 mol-1. Experimental data, however, measured in CCl4 are significantly lower: DeltaH0 = -34 kJ mol-1, DeltaSc0 = -70.4 J mol-1 K-1, DeltaG0 = -13.01 kJ mol-1, and K = 190 dm3 mol-1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol-1 which is very close to our PCM value 6.5 kJ mol-1. MP2/6-31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6-31G* study supplemented by DFT-D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of pi

  5. Clean Energy Business Plan Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  6. Different Roles of Endo- and Exo-cyclic Double Bonds in Limonene Ozonolysis System: Effect of Water and OH Radical Scavengers

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Li, H.; Chen, Z.

    2017-12-01

    Limonene, as an important monoterpene, has a high emission rate both from biogenic and anthropogenic sources. Its doubly unsaturated structure leads to a high potential for secondary organic aerosol formation and a detailed understanding of roles of endo- and exo-cyclic double bonds in limonene ozonolysis is in urgent need. This study provided new insights into the mechanism and effect of both unsaturated bonds oxidation. A low and a high ratio set of [O3]/[limonene] experiments in the presence or absence of OH scavenger (2-butanol or cyclohexane) in the relative humidity (RH) range of 0-90% were conducted. Molar yields of hydrogen peroxide (H2O2) and hydromethyl hydroperoxide (HMHP) both increased rapidly as RH rose from 0 to 50%, then reached a plateau above 70% RH, while peroxyformic acid (PFA) and peroxyacetic acid (PAA) kept increasing with RH. The ozonolysis of exocyclic double bonds showed larger capacity for producing these peroxides than endocyclic ones, resulting in significantly higher yields of H2O2, HMHP, PFA and PAA in limonene ozonolysis than α-pinene when ozone was sufficient. The SOA mass fraction of total peroxides was 50% at high [O3]/[limonene] ratio, whereas only 12% at low ratio. The gas-particle partitioning coefficient of undetected peroxides rose up from (0.8-2.0)×10-3m3μg-1 at 0% RH to (4.0-5.2)×10-3m3μg-1 at 90% RH, indicating some water-dependent channels contributed low-volatility peroxides formation. A box model was employed to simulate the reaction system, and the results obviously underestimated the yield of H2O2, whilst overestimated the yield of undetected peroxides. It is interesting to note that SOA produced at high [O3]/[limonene] ratio could generate considerable amount of H2O2 in the aqueous phase, which may be another source of H2O2 in cloud drops. To elucidate the mechanism further, the yield of OH radicals formed from endocyclic double bonds was found to be about 3 times larger than that from exocyclic double bonds

  7. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry.

    PubMed

    Castro-Puyana, María; Herrero, Miguel; Urreta, Iratxe; Mendiola, Jose A; Cifuentes, Alejandro; Ibáñez, Elena; Suárez-Alvarez, Sonia

    2013-05-01

    A novel experimental design was used to optimize the extraction of carotenoids from Neochloris oleoabundans using pressurized liquid extraction with food-grade solvents such as ethanol and limonene. Experimental factors, including the extraction temperature and the solvent composition, were optimized using a three-level factorial design. The response variables extraction yield and total amount of carotenoids were assessed. The statistical analysis of the results provided mathematical models to predict the behavior of the responses as a function of the factors involved in the process. The optimum conditions predicted by the model developed in this study were 112 °C as the extraction temperature and 100% ethanol as the extraction solvent. Chemical characterization of the extracts obtained was performed by means of high-performance liquid chromatography-tandem mass spectrometry. The results obtained demonstrated that, under certain growth conditions (photoautotrophically cultured in a medium supplemented with 0.3 g L(-1) KNO3), N. oleoabundans accumulated significant total amounts of the carotenoids (from 57.4 to 120.2 mg carotenoids per gram of extract depending on the extraction conditions), mainly lutein, cantaxanthin, zeaxanthin, and astaxanthin monoesters and diesters.

  8. Density of α-pinene, Β-pinene, limonene, and essence of turpentine

    NASA Astrophysics Data System (ADS)

    Tavares Sousa, A.; Nieto de Castro, C. A.

    1992-03-01

    Densities of ga-pinene, Β-pinene, limonene, and essence of turpentine have been measured at 293.15, 298.15, 303.15, 308.15, and 313.15 K, at atmospheric pressure, with a mechanical oscillator densimeter. Benzene and cyclohexane were used as calibration fluids. The precision is of the order of 0.01 kg · m-3, while the accuracy is estimated to be 0.1%. A linear representation of the variation of the density with temperature reproduces the experimental data within 0.2%.

  9. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures.

    PubMed

    Bodkhe, Sampada; Turcot, Gabrielle; Gosselin, Frederick P; Therriault, Daniel

    2017-06-21

    Development of a 3D printable material system possessing inherent piezoelectric properties to fabricate integrable sensors in a single-step printing process without poling is of importance to the creation of a wide variety of smart structures. Here, we study the effect of addition of barium titanate nanoparticles in nucleating piezoelectric β-polymorph in 3D printable polyvinylidene fluoride (PVDF) and fabrication of the layer-by-layer and self-supporting piezoelectric structures on a micro- to millimeter scale by solvent evaporation-assisted 3D printing at room temperature. The nanocomposite formulation obtained after a comprehensive investigation of composition and processing techniques possesses a piezoelectric coefficient, d 31 , of 18 pC N -1 , which is comparable to that of typical poled and stretched commercial PVDF film sensors. A 3D contact sensor that generates up to 4 V upon gentle finger taps demonstrates the efficacy of the fabrication technique. Our one-step 3D printing of piezoelectric nanocomposites can form ready-to-use, complex-shaped, flexible, and lightweight piezoelectric devices. When combined with other 3D printable materials, they could serve as stand-alone or embedded sensors in aerospace, biomedicine, and robotic applications.

  10. Field Demonstration for P-D-680 Solvent Replacement (Part II)

    DTIC Science & Technology

    1998-05-12

    jo \\ Ji o < s NJ £. ° 8? Q- 3* £?. «" «< o Ö- 8" 03 O C O ~ e O 3 re *i re re w8 g 3 2> 8 = er ^ o 3 ^ fS Ni O...34 3 3. 3. n_ £ 2. O 2- e. re Z. 2 3 v! 3 oso,o,<f)( ji «s S?3re-t930.Q3^. «o.03rt3-3c"o=; 1 » < 3 -•■n O -t33^c«^3ga3 re...soWfirtH T^ skd uiEita, ox^fifk^. 4. KrflTjTS, SAFETY 0? ALTERATIVE F-D-S80 SOLVENT Have you, cr did you have knowledge of ethers

  11. Stereochemistry and solvent role in protein folding: nuclear magnetic resonance and molecular dynamics studies of poly-L and alternating-L,D homopolypeptides in dimethyl sulfoxide.

    PubMed

    Srivastava, Kinshuk Raj; Kumar, Anil; Goyal, Bhupesh; Durani, Susheel

    2011-05-26

    The competing interactions folding and unfolding protein structure remain obscure. Using homopolypeptides, we ask if poly-L structure may have a role. We mutate the structure to alternating-L,D stereochemistry and substitute water as the fold-promoting solvent with methanol and dimethyl sulfoxide (DMSO) as the fold-denaturing solvents. Circular dichroism and molecular dynamics established previously that, while both isomers were folded in water, the poly-L isomer was unfolded and alternating-L,D isomer folded in methanol. Nuclear magnetic resonance and molecular dynamics establish now that both isomers are unfolded in DMSO. We calculated energetics of folding-unfolding equilibrium with water and methanol as solvents. We have now calculated interactions of unfolded polypeptide structures with DMSO as solvent. Methanol was found to unfold and water fold poly-L structure as a dielectric. DMSO has now been found to unfold both poly-L and alternating-L,D structures by strong solvation of peptides to disrupt their hydrogen bonds. Accordingly, we propose that while linked peptides fold protein structure with hydrogen bonds they unfold the structure electrostatically due to the stereochemical effect of the poly-L structure. Protein folding to ordering of peptide hydrogen bonds with water as canonical solvent may thus involve two specific and independent solvent effects-one, strong screening of electrostatics of poly-L linked peptides, and two, weak dipolar solvation of peptides. Correspondingly, protein denaturation may involve two independent solvent effects-one, weak dielectric to unfold poly-L structure electrostatically, and two, strong polarity to disrupt peptide hydrogen bonds by solvation of peptides.

  12. 1D helical cadmium coordination polymers containing hydrazide ligand: The role of solvent and molar ratio

    NASA Astrophysics Data System (ADS)

    Notash, Behrouz

    2018-03-01

    Three new cadmium coordination polymers, [Cd(L)(NO3)2CH3OH]n, 1, {[Cd(L)2(NO3)]NO3}n, 2 and {[Cd(L)2(NO3)]NO3.H2O}n3, which L is nicotinohydrazide have been synthesized and characterized by spectroscopic methods as well as single crystal X-ray diffraction. Compounds 1-3 have been synthesized by changing solvent and metal-to-ligand ratio. X-ray crystallography showed that compounds 1-3 have different 1D helical structural motif. Semi-flexible nature of L ligand causes to syn-syn conformation which leading to form 1D helical chains coordination polymers. Compounds 2 and 3 were synthesized under the same reaction conditions with similar molar ratio, but using different solvent system. These compounds are pseudopolymorph which differs in the presence or absence of water molecule in their crystal packing. Hirshfeld surface analysis of the structures 1-3 have been performed and find the percent of participation of intermolecular interactions in the crystal packing of compounds.

  13. Bringing Catalysis with Gold Nanoparticles in Green Solvents to Graduate Level Students

    ERIC Educational Resources Information Center

    Raghuwanshi, Vikram Singh; Wendt, Robert; O'Neill, Maeve; Ochmann, Miguel; Som, Tirtha; Fenger, Robert; Mohrmann, Marie; Hoell, Armin; Rademann, Klaus

    2017-01-01

    We demonstrate here a novel laboratory experiment for the synthesis of gold nanoparticles (AuNPs) by using a low energy gold-sputtering method together with a modern, green, and biofriendly deep eutectic solvent (DES). The strategy is straightforward, economical, ecofriendly, rapid, and clean. It yields uniform AuNPs of 5 nm in diameter with high…

  14. Development of novel purifiers with appropriate functional groups based on solvent polarities at bulk filtration

    NASA Astrophysics Data System (ADS)

    Kohyama, Tetsu; Kaneko, Fumiya; Ly, Saksatha; Hamzik, James; Jaber, Jad; Yamada, Yoshiaki

    2017-03-01

    Weak-polar solvents like PGMEA (Propylene Glycol Monomethyl Ether Acetate) or CHN (Cyclohexanone) are used to dissolve hydrophobic photo-resist polymers, which are challenging for traditional cleaning methods such as distillation, ion-exchange resins service or water-washing processes. This paper investigated two novel surface modifications to see their effectiveness at metal removal and to understand the mechanism. The experiments yielded effective purification methods for metal reduction, focusing on solvent polarities based on HSP (Hansen Solubility Parameters), and developing optimal purification strategies.

  15. Ionic cleaning after wave solder and before conformal coat

    NASA Astrophysics Data System (ADS)

    Nguygen, Tochau N.; Sutherland, Thomas H.

    An account is given of efforts made by a military electronics manufacturer to upgrade product reliability in response to the printed writing board (PWB) ionic cleanliness requirements recently set out in MIL-P-28809 Rev. A. These requirements had to be met both after wave soldering, involving the immediate removal of ionically active RA flux, and immediately before conformal coating, in order to remove the less active RMA flux and bonding contaminants. Attention is given to the results of a test program which compared the effectiveness with which five different solvents and two (batch and conveyorized vapor degreasing) cleaning methods cleaned representative PWBs containing many components. Alcohol-containing fluorocarbon blends were adequate, but the most densely packed PWBs required a supplemental water rinse.

  16. Green technology approach towards herbal extraction method

    NASA Astrophysics Data System (ADS)

    Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che

    2015-05-01

    The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.

  17. Global Organics LLC d/b/a/ BioFlora; Proposed Settlement of Clean Water Act Class I Administrative Penalty

    EPA Pesticide Factsheets

    Public Notice of Proposed Settlement of Clean Water Act Class I Administrative Penalty Matter and Opportunity to Comment In the Matter of Global Organics, LLC d/b/a/ BioFlora, Docket Number CWA-09-2018-0008.

  18. Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures.

    PubMed

    Salabat, Alireza; Eastoe, Julian; Mutch, Kevin J; Tabor, Rico F

    2008-02-15

    The effect of solvent on stability of water-in-oil microemulsions has been studied with AOT (sodium bis(2-ethylhexyl)sulfosuccinate) and different solvent mixtures of n-heptane, toluene and dodecane. Dynamic light scattering DLS was used to monitor the apparent diffusion coefficient D(A) and effective microemulsion droplet diameter on changing composition of the solvent. Interdroplet attractive interactions, as indicated by variations in D(A), can be tuned by formulation of appropriate solvent mixtures using heptane, toluene, and dodecane. In extreme cases, solvent mixtures can be used to induce phase transitions in the microemulsions. Aggregation and stability of model AOT-stabilized silica nanoparticles in different solvents were also investigated to explore further these solvent effects. For both systems the state of aggregation can be correlated with the effective molecular volume of the solvent V(mol)(eff) mixture.

  19. Tetrachloroethylene Exposure and Bladder Cancer Risk: A Meta-Analysis of Dry-Cleaning-Worker Studies

    PubMed Central

    Vlaanderen, Jelle; Straif, Kurt; Ruder, Avima; Blair, Aaron; Hansen, Johnni; Lynge, Elsebeth; Charbotel, Barbara; Loomis, Dana; Kauppinen, Timo; Kyyronen, Pentti; Pukkala, Eero; Weiderpass, Elisabete

    2014-01-01

    Background: In 2012, the International Agency for Research on Cancer classified tetrachloroethylene, used in the production of chemicals and the primary solvent used in dry cleaning, as “probably carcinogenic to humans” based on limited evidence of an increased risk of bladder cancer in dry cleaners. Objectives: We assessed the epidemiological evidence for the association between tetrachloroethylene exposure and bladder cancer from published studies estimating occupational exposure to tetrachloroethylene or in workers in the dry-cleaning industry. Methods: Random-effects meta-analyses were carried out separately for occupational exposure to tetrachloroethylene and employment as a dry cleaner. We qualitatively summarized exposure–response data because of the limited number of studies available. Results: The meta-relative risk (mRR) among tetrachloroethylene-exposed workers was 1.08 (95% CI: 0.82, 1.42; three studies; 463 exposed cases). For employment as a dry cleaner, the overall mRR was 1.47 (95% CI: 1.16, 1.85; seven studies; 139 exposed cases), and for smoking-adjusted studies, the mRR was 1.50 (95% CI: 0.80, 2.84; 4 case–control studies). Conclusions: Our meta-analysis demonstrates an increased risk of bladder cancer in dry cleaners, reported in both cohort and case–control studies, and some evidence for an exposure–response relationship. Although dry cleaners incur mixed exposures, tetrachloroethylene could be responsible for the excess risk of bladder cancer because it is the primary solvent used and it is the only chemical commonly used by dry cleaners that is currently identified as a potential bladder carcinogen. Relatively crude approaches in exposure assessment in the studies of “tetrachloroethylene-exposed workers” may have attenuated the relative risks. Citation: Vlaanderen J, Straif K, Ruder A, Blair A, Hansen J, Lynge E, Charbotel B, Loomis D, Kauppinen T, Kyyronen P, Pukkala E, Weiderpass E, Guha N. 2014. Tetrachloroethylene exposure

  20. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function.

    PubMed

    Zhang, Zhi-Hui; Wang, Hu-Jun; Liang, Yun-Hong; Li, Xiu-Juan; Ren, Lu-Quan; Cui, Zhen-Quan; Luo, Cheng

    2018-03-01

    Superhydrophobic surfaces have great potential for application in self-cleaning and oil/water separation. However, the large-scale practical applications of superhydrophobic coating surfaces are impeded by many factors, such as complicated fabrication processes, the use of fluorinated reagents and noxious organic solvents and poor mechanical stability. Herein, we describe the successful preparation of a fluorine-free multifunctional coating without noxious organic solvents that was brushed, dipped or sprayed onto glass slides and stainless-steel meshes as substrates. The obtained multifunctional superhydrophobic and superoleophilic surfaces (MSHOs) demonstrated self-cleaning abilities even when contaminated with or immersed in oil. The superhydrophobic surfaces were robust and maintained their water repellency after being scratched with a knife or abraded with sandpaper for 50 cycles. In addition, stainless-steel meshes sprayed with the coating quickly separated various oil/water mixtures with a high separation efficiency (>93%). Furthermore, the coated mesh maintained a high separation efficiency above 95% over 20 cycles of separation. This simple and effective strategy will inspire the large-scale fabrication of multifunctional surfaces for practical applications in self-cleaning and oil/water separation.

  1. Isothermal Crystallization Behavior of Cocoa Butter at 17 and 20 °C with and without Limonene.

    PubMed

    Rigolle, Annelien; Goderis, Bart; Van Den Abeele, Koen; Foubert, Imogen

    2016-05-04

    Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable β' crystals. At 20 °C, an α-mediated β' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated β' nucleation at 20 °C, resulting in a slower crystallization process.

  2. Pluronic lecithin organogel (PLO) of diltiazem hydrochloride: effect of solvents/penetration enhancers on ex vivo permeation.

    PubMed

    Parhi, Rabinarayan; Suresh, Podilam; Pattnaik, Subasini

    2016-06-01

    In the present study, pluronic lecithin organogel (PLO) of diltiazem hydrochloride (DZH) was developed by taking different ratios of organic phase to aqueous phase (1:3, 1:4, and 1:5) with varying concentration of soya lecithin (20, 30, and 40 % w/w) in organic phase (isopropyl myristate, IPM) and pluronic (20, 25, and 30 % w/w) in aqueous phase, respectively, and characterized for in vitro parameters and ex vivo permeation study. The results of in vitro parameters were found to be within permissible limit and all the PLOs were physically stable at refrigeration and ambient temperature. The influence of phase ratio and different concentrations of soya lecithin on DZH release from the PLOs was found to be significant (p < 0.05), whereas the influences of different concentrations of pluronic were insignificant. The effect of different solvents/penetration enhancers viz. IPM, propylene glycol (PG), dimethyl sulphoxide (DMSO), and D-limonene, in combination and alone, on the permeation of DZH across the dorsal skin of rat was studied. Among all, formulation containing IPM (PLO6) exhibited highest flux of 147.317 μg/cm(2)/h. Furthermore, histopathology section of treated skin sample illustrated that lipid bilayer disruption was the mechanism for the DZH permeation. The above results indicated that PLO6 may serve as a promising alternative delivery system for DZH in the effective treatment of hypertension.

  3. A first French assessment of population exposure to tetrachloroethylene from small dry-cleaning facilities.

    PubMed

    Chiappini, L; Delery, L; Leoz, E; Brouard, B; Fagault, Y

    2009-06-01

    Used as a solvent in the dry-cleaning industry, tetrachloroethylene (C(2)Cl(4)) can be a pollutant of residential indoor air, which can cause long-term harmful exposures because of its neurotoxicity and probable carcinogenicity. In France, dry-cleaning facilities are integrated in urban environments (shopping malls, residential buildings) and can contribute to C(2)Cl(4) exposure for customers and residents. This exploratory work presents the results from five studies carried out in one shopping mall and four residential buildings housing a dry-cleaning facility. These studies involved dry-cleaning machines fitted with a Carbon Adsorber and unfitted, with or without Air Exhaust System. Samples were collected in the cleaning facilities and in the apartments located above with passive samplers allowing measurement of time-integrated concentrations on a 7 days sampling period. It has obviously shown the degradation of indoor air quality in these environments and underlined the contributing role of the machine technology and ventilation system on the amount of released C(2)Cl(4) in the indoor air. To temper these results, it must be pointed out that some parameters (building insulation, amount of solvent used...) which would influence C(2)Cl(4) fugitive release have not been quantified and should be looked at in further studies. In France, dry-cleaning facilities are frequently integrated in urban environments (large shopping malls or residential buildings) and can significantly contribute to tetrachloroethylene (C(2)Cl(4)) population exposure. The amount of fugitive releases in these environments depends on several parameters such as the dry-cleaning machine technology (fitted or unfitted with a carbon adsorber) and the ventilation (air exhaust system). To reduce C(2)Cl(4) exposure in residential buildings and other indoor environments with on-site dry cleaners, carbon adsorber unequipped machine should be replaced by newer technology and dry cleaners should be

  4. Comparative study on in vitro activities of citral, limonene and essential oils from Lippia citriodora and L. alba on yellow fever virus.

    PubMed

    Gómez, Luz Angela; Stashenko, Elena; Ocazionez, Raquel Elvira

    2013-02-01

    The aim of this study was to compare the antiviral activities in vitro of citral, limonene and essential oils (EOs) from Lippia citriodora and L. alba on the replication of yellow fever virus (YFV). Citral and EOs were active before and after virus adsorption on cells; IC50 values were between 4.3 and 25 microg/mL and SI ranged from 1.1 to 10.8. Results indicate that citral could contribute to the antiviral activity of the L. citriodora EO. Limonene was not active and seemed to play an insignificant role in the antiviral activity of the examined EOs.

  5. The use of household cleaning products during pregnancy and lower respiratory tract infections and wheezing during early life.

    PubMed

    Casas, Lidia; Zock, Jan Paul; Carsin, Anne Elie; Fernandez-Somoano, Ana; Esplugues, Ana; Santa-Marina, Loreto; Tardón, Adonina; Ballester, Ferran; Basterrechea, Mikel; Sunyer, Jordi

    2013-10-01

    To evaluate the effects of household use of cleaning products during pregnancy on infant wheezing and lower respiratory tract infections (LRTI). In four prospective Spanish birth cohorts (n = 2,292), pregnant women reported the use of household cleaning products. When infants were 12-18 months old, current cleaning product use and infant's wheezing and LRTI were reported. Cohort-specific associations between the use of specific products and respiratory outcomes were evaluated using multivariable regression analyses and estimates were combined using random-effects meta-analyses. The period prevalence of LRTI was higher when sprays (combined odds ratio (OR) = 1.29; 95 % confidence interval (CI) 1.04-1.59) or air fresheners (OR = 1.29; CI 1.03-1.63) were used during pregnancy. The odds of wheezing increased with spray (OR = 1.37; CI 1.10-1.69) and solvent (OR = 1.30; CI 1.03-1.62) use. The associations between spray and air freshener use during pregnancy and both outcomes remained apparent when these products were not used after pregnancy. Nevertheless, the estimates were higher when post-natal exposure was included. The use of cleaning sprays, air fresheners and solvents during pregnancy may increase the risk of wheezing and infections in the offspring.

  6. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials

  7. Large-Area Atomic Oxygen Facility Used to Clean Fire-Damaged Artwork

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Steuber, Thomas J.; Sechkar, Edward A.

    2000-01-01

    In addition to completely destroying artwork, fires in museums and public buildings can soil a displayed artwork with so much accumulated soot that it can no longer be used for study or be enjoyed by the public. In situations where the surface has not undergone extensive charring or melting, restoration can be attempted. However, soot deposits can be very difficult to remove from some types of painted surfaces, particularly when the paint is fragile or flaking or when the top surface of the paint binder has been damaged. Restoration typically involves the use of organic solvents to clean the surface, but these solvents may cause the paint layers to swell or leach out. Also, immersion of the surface or swabbing during solvent cleaning may move or remove pigment through mechanical contact, especially if the fire damage extends into the paint binder. A noncontact technique of removing organic deposits from surfaces was developed out of NASA research on the effects of oxygen atoms on various materials. Atomic oxygen is present in the atmosphere surrounding the Earth at the altitudes where satellites typically orbit. It can react chemically with surface coatings or deposits that contain carbon. In the reaction, the carbon is converted to carbon monoxide and some carbon dioxide. Water vapor is also a byproduct of the reaction if the surface contains carbon-hydrogen bonds. To study this reaction, NASA developed Earth-based facilities to produce atomic oxygen for material exposure and testing. A vacuum facility designed and built by the Electro-Physics Branch of the NASA Glenn Research Center at Lewis Field to provide atomic oxygen over a large area for studying reactions in low Earth orbit has been used to successfully clean several full-size paintings. (This facility can accommodate paintings up to 1.5 by 2.1 m. The atomic oxygen plasma is produced between two large parallel aluminum plates using a radiofrequency power source operating at roughly 400 W. Atomic oxygen is

  8. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.

    PubMed

    Lee, Hochan; Lee, Gayeon; Jeon, Jonggu; Cho, Minhaeng

    2012-01-12

    IR probes have been extensively used to monitor local electrostatic and solvation dynamics. Particularly, their vibrational frequencies are highly sensitive to local solvent electric field around an IR probe. Here, we show that the experimentally measured vibrational frequency shifts can be inversely used to determine local electric potential distribution and solute-solvent electrostatic interaction energy. In addition, the upper limits of their fluctuation amplitudes are estimated by using the vibrational bandwidths. Applying this method to fully deuterated N-methylacetamide (NMA) in D(2)O and examining the solvatochromic effects on the amide I' and II' mode frequencies, we found that the solvent electric potential difference between O(═C) and D(-N) atoms of the peptide bond is about 5.4 V, and thus, the approximate solvent electric field produced by surrounding water molecules on the NMA is 172 MV/cm on average if the molecular geometry is taken into account. The solute-solvent electrostatic interaction energy is estimated to be -137 kJ/mol, by considering electric dipole-electric field interaction. Furthermore, their root-mean-square fluctuation amplitudes are as large as 1.6 V, 52 MV/cm, and 41 kJ/mol, respectively. We found that the water electric potential on a peptide bond is spatially nonhomogeneous and that the fluctuation in the electrostatic peptide-water interaction energy is about 10 times larger than the thermal energy at room temperature. This indicates that the peptide-solvent interactions are indeed important for the activation of chemical reactions in aqueous solution.

  9. 75 FR 8698 - Clean Water Act Section 303(d): Availability of Ten Total Maximum Daily Loads (TMDLs) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9118-5] Clean Water Act Section 303(d): Availability of Ten...: Notice of availability. SUMMARY: This notice announces the availability for comment on the administrative... Smith, Environmental Protection Specialist, Water Quality Protection Division, U.S. Environmental...

  10. 76 FR 80366 - Clean Water Act Section 303(d): Availability of One Total Maximum Daily Load (TMDL) in Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9610-6] Clean Water Act Section 303(d): Availability of One...: Notice of availability. SUMMARY: This notice announces the availability for comment on the administrative..., Environmental Protection Specialist, Water Quality Protection Division, U.S. Environmental Protection Agency...

  11. An evaluation of alternative cleaning methods for removing an organic contaminant from a stainless steel part

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.L.

    1996-08-01

    As of December 1995, the manufacture of Freon, along with many other chlorofluorocarbons (CFCs), was prohibited by the Clean Air Act of 1990 (CAA). The ban of CFC solvents has forced manufacturers across the country to search for alternative metal cleaning techniques. The objective of this study was to develop a thorough, scientific based approach for resolving one specific manufacturer`s problem of removing organic contamination from a stainless steel part. This objective was accomplished with an approach that involved: (1) defining the problem, (2) identifying the process constraints, (3) researching alternate cleaning methods, (4) researching applicable government regulations, (5) performingmore » a scientific evaluation and (6) drawing conclusions.« less

  12. 3D printed cat tongue is a self-cleaning, tangle-teasing brush

    NASA Astrophysics Data System (ADS)

    Noel, Alexis; Hu, David

    A cat's tongue is covered in an array of spines called papillae. These spines are thought to be used in grooming and rasping meat from bones of prey, although no mechanism has been given. We use high-speed video to film a cat grooming. We show that the spines on the tongue act as low pass filters for tangles in hair. The tongue itself is highly elastic, while the spines are rigid. We 3D print a cat tongue mimic and show that the nonlinear force applied by the spines helps to increase efficacy of grooming. The tongue also provides frictional anisotropy with backward-facing spines, allowing for self-cleaning properties post-groom.

  13. Solvent dependent photophysical properties of dimethoxy curcumin

    NASA Astrophysics Data System (ADS)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  14. The successful of finite element to invent particle cleaning system by air jet in hard disk drive

    NASA Astrophysics Data System (ADS)

    Jai-Ngam, Nualpun; Tangchaichit, Kaitfa

    2018-02-01

    Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.

  15. Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    Honeycomb structures are commonly employed as load- and force-bearing structures as they are structurally strong and lightweight. Manufacturing processes for heat-molded composite honeycomb structures commence with the placement of pre-impregnated composite layups over metal mandrels. To prevent permanent bonding between the composite layup and the metal mandrels, an agent, known as a mold release agent, is used. Mold release agents allow the molded composite material to be removed from mandrels after a heat-forming process. Without a specific removal process, mold release agents may continue to adhere to the surface of the composite material, thereby affecting the bonding of other materials that may come into contact with the composite surface in later stages of processing A constituent common to commercially available household cleaning agents is employed for the removal of mold release agents common to the manufacturing of heat-formed composite materials. The reliability of the solvent has been proven by the longevity and reliability of commercial household cleaners. At the time of this reporting, no one has attempted using constituent for this purpose. The material to be cleaned is immersed in the solution, vertically removed so that the solution is allowed to drain along cell walls and into a solvent bath, and then placed on a compressed airflow table for drying.

  16. Organic solvent exposure and depressive symptoms among licensed pesticide applicators in the Agricultural Health Study

    PubMed Central

    Siegel, Miriam; Starks, Sarah E.; Sanderson, Wayne T.; Kamel, Freya; Hoppin, Jane A.; Gerr, Fred

    2017-01-01

    Purpose Although organic solvents are often used in agricultural operations, neurotoxic effects of solvent exposure have not been extensively studied among famers. The current analysis examined associations between questionnaire-based metrics of organic solvent exposure and depressive symptoms among farmers. Methods Results from 692 male Agricultural Health Study participants were analyzed. Solvent type and exposure duration were assessed by questionnaire. An “ever-use” variable and years of use categories were constructed for exposure to gasoline, paint/lacquer thinner, petroleum distillates, and any solvent. Depressive symptoms were ascertained with the Center for Epidemiologic Studies Depression Scale (CES-D); scores were analyzed separately as continuous (0-60) and dichotomous (<16 versus ≥16) variables. Multivariate linear and logistic regression models were used to estimate crude and adjusted associations between measures of solvent exposure and CES-D score. Results Forty-one percent of the sample reported some solvent exposure. The mean CES-D score was 6.5 (SD=6.4; median=5; range=0 – 44); 92% of the sample had a score below 16. After adjusting for covariates, statistically significant associations were observed between ever-use of any solvent, long duration of any solvent exposure, ever-use of gasoline, ever-use of petroleum distillates, and short duration of petroleum distillate exposure and continuous CES-D score (p<0.05). Although nearly all associations were positive, fewer statistically significant associations were observed between metrics of solvent exposure and the dichotomized CES-D variable. Conclusions Solvent exposures were associated with depressive symptoms among farmers. Efforts to limit exposure to organic solvents may reduce the risk of depressive symptoms among farmers. PMID:28702848

  17. Conservation of artists' acrylic emulsion paints: XPS, NEXAFS and ATR-FTIR studies of wet cleaning methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.

    Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less

  18. Conservation of artists' acrylic emulsion paints: XPS, NEXAFS and ATR-FTIR studies of wet cleaning methods

    DOE PAGES

    Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.; ...

    2014-02-17

    Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less

  19. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  20. Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhu, Minghua; Zhao, Hongxia; Xia, Deming; Du, Juan; Xie, Huaijun; Chen, Jingwen

    2018-08-30

    An accelerated solvent extraction (ASE) with in-cell clean-up method coupled to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 21 antibiotics in sea cucumber. The analytes include 10 sulfonamides, 4 fluoroquinolones, 3 amphenicols, 2 beta-lactams, 1 lincosamide and trimethoprim. Optimal parameters of ASE method were obtained at 80 °C, 1 static cycle of 5 min with methanol/acetonitrile (1/1, v/v) using 2 g of C18 as adsorbent. Recoveries at 50.1-129.2% were achieved with RSD under 20%. Method detection limits ranged from 0.03 to 2.9 μg kg -1 . Compared to the reported ultrasound-assisted extraction method, the proposed method offered comparable extraction efficiency for sulfonamides from sea cucumber, but higher for other categories of antibiotics. This validated method was then successfully applied to sea cucumber samples and 9 antibiotics were detected with the highest concentration up to 57.7 μg kg -1 for norfloxacin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Richard; Pless, Jacquelyn; Arent, Douglas J.

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort ismore » needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.« less

  2. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, Terry D.; Beller, Laurence S.; Clark, Michael L.; Klingler, Kerry M.

    1997-01-01

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus are also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container.

  3. Method and apparatus for processing a test sample to concentrate an analyte in the sample from a solvent in the sample

    DOEpatents

    Turner, T.D.; Beller, L.S.; Clark, M.L.; Klingler, K.M.

    1997-10-14

    A method of processing a test sample to concentrate an analyte in the sample from a solvent in the sample includes: (a) boiling the test sample containing the analyte and solvent in a boiling chamber to a temperature greater than or equal to the solvent boiling temperature and less than the analyte boiling temperature to form a rising sample vapor mixture; (b) passing the sample vapor mixture from the boiling chamber to an elongated primary separation tube, the separation tube having internal sidewalls and a longitudinal axis, the longitudinal axis being angled between vertical and horizontal and thus having an upper region and a lower region; (c) collecting the physically transported liquid analyte on the internal sidewalls of the separation tube; and (d) flowing the collected analyte along the angled internal sidewalls of the separation tube to and pass the separation tube lower region. The invention also includes passing a turbulence inducing wave through a vapor mixture to separate physically transported liquid second material from vaporized first material. Apparatus is also disclosed for effecting separations. Further disclosed is a fluidically powered liquid test sample withdrawal apparatus for withdrawing a liquid test sample from a test sample container and for cleaning the test sample container. 8 figs.

  4. The Sequential Probability Ratio Test: An efficient alternative to exact binomial testing for Clean Water Act 303(d) evaluation.

    PubMed

    Chen, Connie; Gribble, Matthew O; Bartroff, Jay; Bay, Steven M; Goldstein, Larry

    2017-05-01

    The United States's Clean Water Act stipulates in section 303(d) that states must identify impaired water bodies for which total maximum daily loads (TMDLs) of pollution inputs into water bodies are developed. Decision-making procedures about how to list, or delist, water bodies as impaired, or not, per Clean Water Act 303(d) differ across states. In states such as California, whether or not a particular monitoring sample suggests that water quality is impaired can be regarded as a binary outcome variable, and California's current regulatory framework invokes a version of the exact binomial test to consolidate evidence across samples and assess whether the overall water body complies with the Clean Water Act. Here, we contrast the performance of California's exact binomial test with one potential alternative, the Sequential Probability Ratio Test (SPRT). The SPRT uses a sequential testing framework, testing samples as they become available and evaluating evidence as it emerges, rather than measuring all the samples and calculating a test statistic at the end of the data collection process. Through simulations and theoretical derivations, we demonstrate that the SPRT on average requires fewer samples to be measured to have comparable Type I and Type II error rates as the current fixed-sample binomial test. Policymakers might consider efficient alternatives such as SPRT to current procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Impaired colour vision in workers exposed to organic solvents: A systematic review.

    PubMed

    Betancur-Sánchez, A M; Vásquez-Trespalacios, E M; Sardi-Correa, C

    2017-01-01

    To evaluate recent evidence concerning the relationship between the exposure to organic solvents and the impairment of colour vision. A bibliographic search was conducted for scientific papers published in the last 15 years, in the LILACS, PubMed, Science Direct, EBSCO, and Cochrane databases that included observational studies assessing the relationship between impairment in colour vision and exposure to organic solvents. Eleven studies were selected that were performed on an economically active population and used the Lanthony D-15 desaturated test (D-15d), measured the exposure to organic solvents, and included unexposed controls. It was found that there is a statistically significant relationship between the exposure to organic solvents and the presence of an impairment in colour vision. The results support the hypothesis that exposure to organic solvents could induce acquired dyschromatopsia. The evaluation of colour vision with the D-15d test is simple and sensitive for diagnosis. More studies need to be conducted on this subject in order to better understand the relationship between impaired colour vision and more severe side effects caused by this exposure. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Hammes, Julia; Le Breton, Michael; Kant Pathak, Ravi; Hallquist, Mattias

    2018-04-01

    The gas-phase nitrate radical (NO3⚫) initiated oxidation of limonene can produce organic nitrate species with varying physical properties. Low-volatility products can contribute to secondary organic aerosol (SOA) formation and organic nitrates may serve as a NOx reservoir, which could be especially important in regions with high biogenic emissions. This work presents the measurement results from flow reactor studies on the reaction of NO3⚫ with limonene using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-ToF-CIMS) combined with a Filter Inlet for Gases and AEROsols (FIGAERO). Major condensed-phase species were compared to those in the Master Chemical Mechanism (MCM) limonene mechanism, and many non-listed species were identified. The volatility properties of the most prevalent organic nitrates in the produced SOA were determined. Analysis of multiple experiments resulted in the identification of several dominant species (including C10H15NO6, C10H17NO6, C8H11NO6, C10H17NO7, and C9H13NO7) that occurred in the SOA under all conditions considered. Additionally, the formation of dimers was consistently observed and these species resided almost completely in the particle phase. The identities of these species are discussed, and formation mechanisms are proposed. Cluster analysis of the desorption temperatures corresponding to the analyzed particle-phase species yielded at least five distinct groupings based on a combination of molecular weight and desorption profile. Overall, the results indicate that the oxidation of limonene by NO3⚫ produces a complex mixture of highly oxygenated monomer and dimer products that contribute to SOA formation.

  7. Acid-catalyzed condensed-phase reactions of limonene and terpineol and their impacts on gas-to-particle partitioning in the formation of organic aerosols.

    PubMed

    Li, Yong Jie; Cheong, Gema Y L; Lau, Arthur P S; Chan, Chak K

    2010-07-15

    We investigated the condensed-phase reactions of biogenic VOCs with C double bond C bonds (limonene, C(10)H(16), and terpineol, C(10)H(18)O) catalyzed by sulfuric acid by both bulk solution (BS) experiments and gas-particle (GP) experiments using a flow cell reactor. Product analysis by gas chromatography-mass spectrometry (GC-MS) showed that cationic polymerization led to dimeric and trimeric product formation under conditions of relative humidity (RH) <20% (in the GP experiments) and a sulfuric acid concentration of 57.8 wt % (in the BS experiments), while hydration occurred under conditions of RH > 20% (in the GP experiments) and sulfuric acid concentrations of 46.3 wt % or lower (in the BS experiments). Apparent partitioning coefficients (K(p,rxn)) were estimated from the GP experiments by including the reaction products. Only under extremely low RH conditions (RH < 5%) did the values of K(p,rxn) ( approximately 5 x 10(-6) m(3)/microg for limonene and approximately 2 x 10(-5) m(3)/microg for terpineol) substantially exceed the physical partitioning coefficients (K(p) = 6.5 x 10(-8) m(3)/microg for limonene and =2.3 x 10(-6) m(3)/microg for terpineol) derived from the absorptive partitioning theory. At RH higher than 5%, the apparent partitioning coefficients (K(p,rxn)) of both limonene and terpineol were in the same order of magnitude as the K(p) values derived from the absorptive partitioning theory. Compared with other conditions including VOC concentration and degree of neutralization (by ammonium) of acidic particles, RH is a critical parameter that influences both the reaction mechanisms and the uptake ability (K(p,rxn) values) of these processes. The finding suggests that RH needs to be considered when taking the effects of acid-catalyzed reactions into account in estimating organic aerosol formation from C double bond C containing VOCs.

  8. RESIDUAL RISK ASSESSMENT: HALOGENATED SOLVENTS

    EPA Science Inventory

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Halogenated Solvent Degreasing Facilities. These assessments utilize existing models and d...

  9. Planar solid phase extraction clean-up for pesticide residue analysis in tea by liquid chromatography-mass spectrometry.

    PubMed

    Oellig, Claudia; Schwack, Wolfgang

    2012-10-19

    Efficient clean-up is indispensable for preventing matrix effects in multi-residue analysis of pesticides in food by liquid and gas chromatography (LC and GC) coupled to mass spectrometry (MS). High-throughput planar solid phase extraction (HTpSPE) was recently introduced as a new clean-up concept in residue analysis of pesticides in fruit and vegetables (C. Oellig, W. Schwack, 2011 [45]). Thin-layer chromatography (TLC) was used to completely separate pesticides from matrix compounds and to focus them into a sharp zone, followed by extraction of the target zone by the TLC-MS interface. As rather challenging matrices, tea samples were chosen in this study. Besides chlorophylls and polyphenols, high amount of caffeine is co-extracted resulting in strong matrix effects both in LC-MS and GC-MS. The former HTpSPE procedure was adapted to initial extracts of green and black tea resulting in colorless extracts nearly free of matrix effects and interferences, as shown for seven chemically representative pesticides (acetamiprid, penconazole, azoxystrobin, chlorpyrifos, pirimicarb, fenarimol, and mepanipyrim). LC-MS/MS calibration curves obtained in the range of 0.002-0.5 mg/kg from matrix-matched standards and solvent standards were nearly identical and demonstrated the effectiveness of clean-up by HTpSPE. Mean recoveries determined by LC-MS/MS against solvent standards at spiking levels of 0.01 and 0.1 mg/kg ranged between 72 and 114% with relative standard deviations (RSDs) of 0.7-4.7% (n=4), while LC-MS measurements of tea samples spiked at 1 mg/kg provided recoveries of 81-104% with RSDs of 1.2-4.9% (n=6). Using LC-MS/MS, the method showed high sensitivity with signal-to-noise ratios>10 for concentrations below 0.002 mg/kg. HTpSPE of one sample was done in a few minutes, while numerous samples were cleaned in parallel at minimal costs with very low sample and solvent consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    NASA Astrophysics Data System (ADS)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  11. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    PubMed Central

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  12. Polymer Film Dewetting by Water/Surfactant/Good-Solvent Mixtures: A Mechanistic Insight and Its Implications for the Conservation of Cultural Heritage.

    PubMed

    Baglioni, Michele; Montis, Costanza; Chelazzi, David; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2018-06-18

    Aqueous nanostructured fluids (NSFs) have been proposed to remove polymer coatings from the surface of works of art; this process usually involves film dewetting. The NSF cleaning mechanism was studied using several techniques that were employed to obtain mechanistic insight on the interaction of a methacrylic/acrylic copolymer (Paraloid B72) film laid on glass surfaces and several NSFs, based on two solvents and two surfactants. The experimental results provide a detailed picture of the dewetting process. The gyration radius and the reduction of the T g of Paraloid B72 fully swollen in the two solvents is larger for propylene carbonate than for methyl ethyl ketone, suggesting higher mobility of polymer chains for the former, while a nonionic alcohol ethoxylate surfactant was more effective than sodium dodecylsulfate in favoring the dewetting process. FTIR 2D imaging showed that the dewetting patterns observed on model samples are also present on polymer-coated mortar tiles when exposed to NSFs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution whenmore » the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.« less

  14. 75 FR 43160 - Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9179-3 ] Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the final agency action on one TMDL established by...

  15. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by

  16. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  17. Morphological control in polymer solar cells using low-boiling-point solvent additives

    NASA Astrophysics Data System (ADS)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  18. Clean Air Act, TRI drive emission reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, K.

    1994-06-22

    When asked to rank priority environmental engineering projects, many chemical firms put emissions reduction first. The chief motivators are the need to comply with rules governing major sources of hazardous air pollutants (HAPS) under the Clean Air Act Amendments of 1990 (CAA), along with the need to reduce the volumes of chemicals on EPA`s Toxics Release Inventory (TRI). Deep-welling of toxics is getting special attention as the practice adds considerably to TRI numbers. {open_quotes}We want to eliminate our air toxics so that we can get entirely out of the [CAA] Maximum Achievable Control Technology (MACT) requirements,{close_quotes} says Thomas Zosel, manager/pollutionmore » prevention programs for 3M (St. Paul, MN). He estimates that 3M`s 1993 total research expenditures for environmental improvements were at least $200 million, out of an annual research budget of a little more than $1 billion. And, he says, the spending level is not expected to drop. Among its many efforts, 3M is striving to move away from solvents in all of its processes. To help reach that goal, the company developed a {open_quotes}waste measurement metric{close_quotes} that calculates the wastes produced by each of the company`s 50 operating divisions. In the case of Magic Tape, the company eliminated solvent emission by switching to a water-based adhesive that does not require a solvent.« less

  19. Solvent effect on the conformation of Benzil

    NASA Astrophysics Data System (ADS)

    Pawelka, Z.; Koll, A.; Zeegers-Huyskens, Th.

    2001-10-01

    The conformation of benzil is investigated by PM3 and density functional theory (B3LYP) combined with the 6-31G(d,p) basis set. The variation of the relative energy with the Odbnd C-Cdbnd O torsion angle indicates only one rather flat minimum, reflecting the flexibility of the benzil molecule. The dipole moment is measured in several organic solvents of various polarity and the IR and Raman spectra investigated in the Cdbnd O stretching region in the same solvents. The torsional Odbnd C-Cdbnd O angle is evaluated from the dipolar and vibrational data. The results indicate that, in all the solvents, benzil is in a skewed conformation, the cisoid conformation being slightly favoured when the polarity of the solvent increases. The contribution of electrostatic and specific interactions to the reduction of the torsional angle is discussed.

  20. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  1. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    NASA Astrophysics Data System (ADS)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  2. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, Jerald A.

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  3. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOEpatents

    Britten, J.A.

    1997-08-26

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  4. Conformation of repaglinide: A solvent dependent structure

    NASA Astrophysics Data System (ADS)

    Chashmniam, Saeed; Tafazzoli, Mohsen

    2017-09-01

    Experimental and theoretical conformational study of repaglinide in chloroform and dimethyl sulfoxide was investigated. By applying potential energy scanning (PES) at B3LYP/6-311++g** and B3LYP-D3/6-311++g** level of theory on rotatable single bonds, four stable conformers (R1-R4) were identified. Spin-spin coupling constant values were obtained from a set of 2D NMR spectra (Hsbnd H COSY, Hsbnd C HMQC and Hsbnd C HMBC) and compared to its calculated values. Interestingly, from 1HNMR and 2D-NOESY NMR, it has been found that repaglinide structure is folded in CDCl3 and cause all single bonds to rotate at an extremely slow rate. On the other hand, in DMSO-d6, with strong solvent-solute intermolecular interactions, the single bonds rotate freely. Also, energy barrier and thermodynamic parameters for chair to chair interconversion was measured (13.04 kcal mol-1) in CDCl3 solvent by using temperature dynamic NMR.

  5. 3D investigation on polystyrene colloidal crystals by floatage self-assembly with mixed solvent via synchrotron radiation x-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao

    2017-06-01

    The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.

  6. Spiking solvent, humidity and their impact on 2,4-D and 2,4-DCP extractability from high humic matter content soils.

    PubMed

    Merini, Luciano Jose; Cuadrado, Virginia; Giulietti, Ana María

    2008-05-01

    The 2,4-dichlorophenoxyacetic acid (2,4-D) is a hormone-like herbicide widely used in agriculture. Although its half life in soil is approximately two weeks, the thousands of tons introduced in the environment every year represent a risk for human health and the environment. Considering the toxic properties of this compound and its degradation products, it is important to assess and monitor the 2,4-D residues in agricultural soils. Furthermore, experiments of phyto/bioremediation are carried out to find economic and environmental friendly tools to restore the polluted soils. Accordingly, it is essential to accurately measure the amount of 2,4-D and its metabolites in soils. There is evidence that 2,4-D extraction from soil samples seriously depends on the physical and chemical properties of the soil, especially in those soils with high content of humic acids. The aim of this work was to assess the variables that influence the recovery and subsequent analysis of 2,4-D and its main metabolite (2,4-dichlorophenol) from those soils samples. The results showed that the recovery efficiency depends on the solvent and method used for the extraction, the amount and kind of solvent used for dissolving the herbicide and the soil water content at the moment of spiking. An optimized protocol for the extraction and quantification of 2,4-D and its main metabolite from soil samples is presented.

  7. High-Resolution Mass Spectrometric Analysis of Secondary Organic Aerosol Produced by Ozonation of Limonene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia

    2008-02-08

    Secondary organic aerosol (SOA) particles formed from the ozone-initiated oxidation of limonene are characterized by high-resolution electrospray ionization mass spectrometry in both the positive and negative ion modes. The mass spectra reveal a large number of both monomeric (m/z < 300) and oligomeric (m/z > 300) products of oxidation. A combination of high resolving power (m/Δm ~60,000) and Kendrick mass defect analysis makes it possible to unambiguously determine the composition for hundreds of individual compounds in SOA samples. Van Krevelen analysis shows that the SOA compounds are heavily oxidized, with average O:C ratios of 0.43 and 0.50 determined from themore » positive and negative ion mode spectra, respectively. An extended reaction mechanism for the formation of the first generation SOA molecular components is proposed. The mechanism includes known isomerization and addition reactions of the carbonyl oxide intermediates generated during the ozonation of limonene, and numerous isomerization pathways for alkoxy radicals resulting from the decomposition of unstable carbonyl oxides. The isomerization reactions yield numerous products with a progressively increasing number of alcohol and carbonyl groups, whereas C-C bond scission reactions in alkoxy r