Plasma cleaning of nanoparticles from EUV mask materials by electrostatics
NASA Astrophysics Data System (ADS)
Lytle, W. M.; Raju, R.; Shin, H.; Das, C.; Neumann, M. J.; Ruzic, D. N.
2008-03-01
Particle contamination on surfaces used in extreme ultraviolet (EUV) mask blank deposition, mask fabrication, and patterned mask handling must be avoided since the contamination can create significant distortions and loss of reflectivity. Particles on the order of 10nm are problematic during MLM mirror fabrication, since the introduced defects disrupt the local Bragg planes. The most serious problem is the accumulation of particles on surfaces of patterned blanks during EUV light exposure, since > 25nm particles will be printed without an out-of-focus pellicle. Particle contaminants are also a problem with direct imprint processes since defects are printed every time. Plasma Assisted Cleaning by Electrostatics (PACE) works by utilizing a helicon plasma as well as a pulsed DC substrate bias to charge particle and repel them electrostatically from the surface. Removal of this nature is a dry cleaning method and removes contamination perpendicular from the surface instead of rolling or sweeping the particles off the surface, a benefit when cleaning patterned surfaces where contamination can be rolled or trapped between features. Also, an entire mask can be cleaned at once since the plasma can cover the entire surface, thus there is no need to focus in on an area to clean. Sophisticated particle contamination detection system utilizing high power laser called DEFCON is developed to analyze the particle removal after PACE cleaning process. PACE has shown greater than 90 % particle removal efficiencies for 30 to 220 nm PSL particles on ruthenium capped quartz. Removal results for silicon surfaces and quartz surfaces show similar removal efficiencies. Results of cleaning 80 nm PSL spheres from silicon substrates will be shown.
Self-cleaning of Surfaces: the Role of Surface Wettability and Dust Types
NASA Astrophysics Data System (ADS)
Quan, Yun-Yun; Zhang, Li-Zhi; Qi, Rong-Hui; Cai, Rong-Rong
2016-12-01
The self-cleaning property is usually connected to superhydrophobic surfaces (SHSs) where the dust particles can be easily removed by the rolling motion of droplets. It seems that superhydrophobicity (its durability is questionable nowadays) is a necessity. However here, it is disclosed that self-cleaning can also be realized on an ordinary surface by droplet impinging. The effects of surface wettability and the types of dust particles are considered. The self-cleaning is realized by two steps: (1) the pickup of particles by the water-air interface of an impinging droplet, (2) the release of the impinging droplets from the surface. It can be observed that only the trailing edges of the droplets can pick up particles when the droplets recoil from the inclined surfaces. The hydrophilic surface can also achieve self-cleaning under some conditions. This interesting finding may be helpful for the successful implementation of self-cleaning with common surfaces.
The successful of finite element to invent particle cleaning system by air jet in hard disk drive
NASA Astrophysics Data System (ADS)
Jai-Ngam, Nualpun; Tangchaichit, Kaitfa
2018-02-01
Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.
Shear stress cleaning for surface departiculation
NASA Technical Reports Server (NTRS)
Musselman, R. P.; Yarbrough, T. W.
1986-01-01
A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.
Self-cleaning efficiency of artificial superhydrophobic surfaces.
Bhushan, Bharat; Jung, Yong Chae; Koch, Kerstin
2009-03-03
The hierarchical structured surface of the lotus (Nelumbo nucifera, Gaertn.) leaf provides a model for the development of biomimetic self-cleaning surfaces. On these water-repellent surfaces, water droplets move easily at a low inclination of the leaf and collect dirt particles adhering to the leaf surface. Flat hydrophilic and hydrophobic, nanostructured, microstructured, and hierarchical structured superhydrophobic surfaces were fabricated, and a systematic study of wettability and adhesion properties was carried out. The influence of contact angle hysteresis on self-cleaning by water droplets was studied at different tilt angles (TA) of the specimen surfaces (3 degrees for Lotus wax, 10 degrees for n-hexatriacontane, as well as 45 degrees for both types of surfaces). At 3 degrees and 10 degrees TA, no surfaces were cleaned by moving water applied onto the surfaces with nearly zero kinetic energy, but most particles were removed from hierarchical structured surfaces, and a certain amount of particles were captured between the asperities of the micro- and hierarchical structured surfaces. After an increase of the TA to 45 degrees (larger than the tilt angles of all structured surfaces), as usually used for industrial self-cleaning tests, all nanostructured surfaces were cleaned by water droplets moving over the surfaces followed by hierarchical and microstructures. Droplets applied onto the surfaces with some pressure removed particles residues and led to self-cleaning by a combination of sliding and rolling droplets. Geometrical scale effects were responsible for superior performance of nanostructured surfaces.
Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate
Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua
2013-01-01
The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277
Self-cleaning of superhydrophobic surfaces by spontaneously jumping condensate drops
NASA Astrophysics Data System (ADS)
Wisdom, Katrina; Watson, Jolanta; Watson, Gregory; Chen, Chuan-Hua
2012-11-01
The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a new self-cleaning mechanism, whereby condensate drops spontaneously jump upon coalescence on a superhydrophobic surface, and the merged drop self-propels away from the surface along with the contaminants. The jumping-condensate mechanism is shown to autonomously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by external wind flow. Our findings offer new insights for the development of self-cleaning materials.
Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis
NASA Technical Reports Server (NTRS)
Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.
2008-01-01
Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].
Cleaning of nanopillar templates for nanoparticle collection using PDMS
NASA Astrophysics Data System (ADS)
Merzsch, S.; Wasisto, H. S.; Waag, A.; Kirsch, I.; Uhde, E.; Salthammer, T.; Peiner, E.
2011-05-01
Nanoparticles are easily attracted by surfaces. This sticking behavior makes it difficult to clean contaminated samples. Some complex approaches have already shown efficiencies in the range of 90%. However, a simple and cost efficient method was still missing. A commonly used silicone for soft lithography, PDMS, is able to mold a given surface. This property was used to cover surface-bonded particles from all other sides. After hardening the PDMS, particles are still embedded. A separation of silicone and sample disjoins also the particles from the surface. After this procedure, samples are clean again. This method was first tested with carbon particles on Si surfaces and Si pillar samples with aspect ratios up to 10. Experiments were done using 2 inch wafers, which, however, is not a size limitation for this method.
Tan, Xin; Chai, Jiajue; Zhang, Xiaogang; Chen, Jiawei
2011-12-01
This study focuses on the description of the static forces in CO2-H2O and CO2-H2O-IPA cleaning solutions with a separate fluid phase entrapped between nano-scale copper particles and a silicon surface. Calculations demonstrate that increasing the pressure of the cleaning system decreases net adhesion force (NAF) between the particle and silicon. The NAF of a particle for in CO2-H2O-IPA system is less than that in CO2-H2O system, suggesting that the particles enter into bulk layer more easily as the CO2-H2O cleaning system is added IPA.
A method for preparation and cleaning of uniformly sized arsenopyrite particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A
The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150–250 μm. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from themore » surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.« less
A method for preparation and cleaning of uniformly sized arsenopyrite particles
Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A; ...
2014-10-11
The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150–250 μm. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from themore » surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.« less
Megasonic cleaning strategy for sub-10nm photomasks
NASA Astrophysics Data System (ADS)
Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent
2016-10-01
One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.
Surface preparation of substances for continuous convective assembly of fine particles
Rossi, Robert
2003-01-01
A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.
Investigation of aluminum surface cleaning using cavitating fluid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim
This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer ismore » placed closer to metal surface, but also at larger (120 mm) distances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Charles E.; Ciancio, Elizabeth J.; Keyes, Katharine A.
2009-11-01
Particulate contamination on the surface of SRF cavities limits their performance via the enhanced generation of field-emitted electrons. Considerable efforts are expended to actively clean and avoid such contamination on niobium surfaces. The protocols in active use have been developed via feedback from cavity testing. This approach has the risk of over-conservatively ratcheting an ever increasing complexity of methods tied to particular circumstances. A complementary and perhaps helpful approach is to quantitatively assess the effectiveness of candidate methods at removing intentional representative particulate contamination. Toward this end, we developed a standardized contamination protocol using water suspensions of Nb{sub 2}O{sub 5}more » and SS 316 powders applied to BCP’d surfaces of standardized niobium samples yielding particle densities of order 200 particles/mm{sup 2}. From these starting conditions, controlled application of high pressure water rinse, ultrasonic cleaning, or CO{sub 2} snow jet cleaning was applied and the resulting surfaces examined via SEM/scanning EDS with particle recognition software. Results of initial parametric variations of each will be reported.« less
Interfacial properties and coal cleaning in the LICADO process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, S.M.B.
1986-01-01
The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less
Sun, Sijia; Deng, Tongrong; Ding, Hao; Chen, Ying; Chen, Wanting
2017-11-03
In order to improve the dispersion of nano-TiO₂ particles and enhance its self-cleaning properties, including photocatalytic degradation of pollutants and surface hydrophilicity, we prepared nano-TiO₂-coated SiO₂ microsphere composite self-cleaning materials (SiO₂-TiO₂) by co-grinding SiO₂ microspheres and TiO₂ soliquid and calcining the ground product. The structure, morphology, and self-cleaning properties of the SiO₂-TiO₂ were characterized. The characterization results showed that the degradation efficiency of methyl orange by SiO₂-TiO₂ was 97%, which was significantly higher than that obtained by pure nano-TiO₂. The minimum water contact angle of SiO₂-TiO₂ was 8°, indicating strong hydrophilicity and the good self-cleaning effect. The as-prepared SiO₂-TiO₂ was characterized by the nano-TiO₂ particles uniformly coated on the SiO₂ microspheres and distributed in the gap among the microspheres. The nano-TiO₂ particles were in an anatase phase with the particle size of 15-20 nm. The nano-TiO₂ particles were combined with SiO₂ microspheres via the dehydroxylation of hydroxyl groups on their surfaces.
Mechanisms of single bubble cleaning.
Reuter, Fabian; Mettin, Robert
2016-03-01
The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off γ that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising γ. Copyright © 2015 Elsevier B.V. All rights reserved.
Visualization of flow during cleaning process on a liquid nanofibrous filter
NASA Astrophysics Data System (ADS)
Bílek, P.
2017-10-01
This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.
Cleaning and dewatering fine coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad
Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also bemore » used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.« less
Evidence for self-cleaning in gecko setae
NASA Astrophysics Data System (ADS)
Hansen, W. R.; Autumn, K.
2005-01-01
A tokay gecko can cling to virtually any surface and support its body mass with a single toe by using the millions of keratinous setae on its toe pads. Each seta branches into hundreds of 200-nm spatulae that make intimate contact with a variety of surface profiles. We showed previously that the combined surface area of billions of spatulae maximizes van der Waals interactions to generate large adhesive and shear forces. Geckos are not known to groom their feet yet retain their stickiness for months between molts. How geckos manage to keep their feet clean while walking about with sticky toes has remained a puzzle until now. Although self-cleaning by water droplets occurs in plant and animal surfaces, no adhesive has been shown to self-clean. In the present study, we demonstrate that gecko setae are a self-cleaning adhesive. Geckos with dirty feet recovered their ability to cling to vertical surfaces after only a few steps. Self-cleaning occurred in arrays of setae isolated from the gecko. Contact mechanical models suggest that self-cleaning occurs by an energetic disequilibrium between the adhesive forces attracting a dirt particle to the substrate and those attracting the same particle to one or more spatulae. We propose that the property of self-cleaning is intrinsic to the setal nanostructure and therefore should be replicable in synthetic adhesive materials in the future. adhesion | contact mechanics | locomotion | reptilia | nanotechnology
Cleaning of optical surfaces by excimer laser radiation
NASA Astrophysics Data System (ADS)
Mann, K.; Wolff-Rottke, B.; Müller, F.
1996-04-01
The effect of particle removal from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way to clean future very large telescope (VLT) mirrors [1]. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be restored, in particular when an additional solvent film on the sample surface is applied.
Genesis Ultrapure Water Megasonic Wafer Spin Cleaner
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Stansbery, Eileen K.; Calaway, Michael J.; Rodriquez, Melissa C.
2013-01-01
A device removes, with high precision, the majority of surface particle contamination greater than 1-micron-diameter in size from ultrapure semiconductor wafer materials containing implanted solar wind samples returned by NASA's Genesis mission. This cleaning device uses a 1.5-liter/minute flowing stream of heated ultrapure water (UPW) with 1- MHz oscillating megasonic pulse energy focused at 3 to 5 mm away from the wafer surface spinning at 1,000 to 10,000 RPM, depending on sample size. The surface particle contamination is removed by three processes: flowing UPW, megasonic cavitations, and centripetal force from the spinning wafer. The device can also dry the wafer fragment after UPW/megasonic cleaning by continuing to spin the wafer in the cleaning chamber, which is purged with flowing ultrapure nitrogen gas at 65 psi (.448 kPa). The cleaner also uses three types of vacuum chucks that can accommodate all Genesis-flown array fragments in any dimensional shape between 3 and 100 mm in diameter. A sample vacuum chuck, and the manufactured UPW/megasonic nozzle holder, replace the human deficiencies by maintaining a consistent distance between the nozzle and wafer surface as well as allowing for longer cleaning time. The 3- to 5-mm critical distance is important for the ability to remove particles by megasonic cavitations. The increased UPW sonication time and exposure to heated UPW improve the removal of 1- to 5-micron-sized particles.
Sun, Sijia; Deng, Tongrong; Ding, Hao; Chen, Ying; Chen, Wanting
2017-01-01
In order to improve the dispersion of nano-TiO2 particles and enhance its self-cleaning properties, including photocatalytic degradation of pollutants and surface hydrophilicity, we prepared nano-TiO2-coated SiO2 microsphere composite self-cleaning materials (SiO2–TiO2) by co-grinding SiO2 microspheres and TiO2 soliquid and calcining the ground product. The structure, morphology, and self-cleaning properties of the SiO2–TiO2 were characterized. The characterization results showed that the degradation efficiency of methyl orange by SiO2–TiO2 was 97%, which was significantly higher than that obtained by pure nano-TiO2. The minimum water contact angle of SiO2–TiO2 was 8°, indicating strong hydrophilicity and the good self-cleaning effect. The as-prepared SiO2–TiO2 was characterized by the nano-TiO2 particles uniformly coated on the SiO2 microspheres and distributed in the gap among the microspheres. The nano-TiO2 particles were in an anatase phase with the particle size of 15–20 nm. The nano-TiO2 particles were combined with SiO2 microspheres via the dehydroxylation of hydroxyl groups on their surfaces. PMID:29099774
NASA Astrophysics Data System (ADS)
Sentis, M. L.; Delaporte, Ph; Marine, W.; Uteza, O.
2000-06-01
The laser ablation performed with an automated excimer XeCl laser unit is used for large surface cleaning. The study focuses on metal surfaces that are oxidised and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The unit contains an XeCl laser, the beam delivery system, the particle collection cell, and the system for real-time control of cleaning processes. The interaction of laser radiation with a surface is considered, in particular, the surface damage caused by cleaning radiation. The beam delivery system consists of an optical fibre bundle of 5 m long and allows delivering 150 W at 308 nm for laser surface cleaning. The cleaning process is controlled by analysing in real time the plasma electric field evolution. The system permits the cleaning of 2 to 6 m2 h-1 of oxides with only slight substrate modifications.
Staying sticky: contact self-cleaning of gecko-inspired adhesives.
Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-05-06
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.
Staying sticky: contact self-cleaning of gecko-inspired adhesives
Mengüç, Yiğit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin
2014-01-01
The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load–drag–unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible. PMID:24554579
Removal of dust particles from metal-mirror surfaces by excimer-laser radiation
NASA Astrophysics Data System (ADS)
Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.
1995-07-01
The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.
Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
Lee, Jongho; Fearing, Ronald S
2012-10-30
Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.
Particulate Removal Using a CO2 Composite Spray Cleaning System
NASA Technical Reports Server (NTRS)
Chen, Nicole; Lin, Ying; Jackson, David; Chung, Shirley
2016-01-01
The Planetary Protection surface cleanliness requirements for potential Mars Sample Return hardware that would come in contact with Martian samples may be stricter than previous missions. The Jet Propulsion Laboratory has developed a new technology that will enable us to remove sub-micron size particles from critical hardware surfaces. A hand-held CO2 composite cleaning system was tested to verify its cleaning capabilities. This convenient, portable device can be used in cleanrooms for cleaning after rework or during spacecraft integration and assembly. It is environmentally safe and easy to use. This cleaning concept has the potential to be further developed into a robotic cleaning device on a Mars Lander to be used to clean sample acquisition or sample handling devices in situ. Contaminants of known sizes and concentrations, such as fluorescent microspheres and spores were deposited on common spacecraft material surfaces. The cleaning efficiency results will be presented and discussed.
Control and characterization of textured, hydrophobic ionomer surfaces
NASA Astrophysics Data System (ADS)
Wang, Xueyuan
Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The surfaces after CVD of silane exhibited water contact angle of 152° and the water droplet stuck to the surfaces without falling even when tilted upside down. This kind of sticky superhydrophobic surface would have potential applications in no-loss transport of liquid, and cleaning robots.
Study of energy parameters of machine parts of water-ice jet cleaning applications
NASA Astrophysics Data System (ADS)
Prezhbilov, A. N.; Burnashov, M. A.
2018-03-01
The reader will achieve a benchmark understanding of the essence of cleaning for the removal of contaminants from machine elements by means of cryo jet/water-ice jet with particles prepared beforehand. This paper represents the classification of the most common contaminants appearing on the surfaces of machine elements after a long-term service. The conceptual contribution of the paper is to represent a thermo-physical model of contaminant removal by means of a water ice jet. In conclusion, it is evident that this study has shown the dependencies between the friction force of an ice particle with an obstacle (contamination), a dimensional change of an ice particle in the cleaning process and the quantity of heat transmitted to an ice particle.
Sugiyama, Toshiko; Kameyama, Atsushi; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki
2017-06-01
This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words: CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness.
Sugiyama, Toshiko; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki
2017-01-01
Background This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). Material and Methods After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Results Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Conclusions Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words:CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness. PMID:28638554
NASA Astrophysics Data System (ADS)
Niu, Longfei; Liu, Hao; Miao, Xinxiang; Lv, Haibing; Yuan, Xiaodong; Zhou, Hai; Yao, Caizhen; Zhou, Guorui; Li, Qin
2017-05-01
The cleaning mechanism of optical surface particle contaminants in the light pneumatic tube was simulated based on the static equations and JKR model. Cleaning verification experiment based on air knife sweeping system and on-line monitoring system in high power laser facility was set up in order to verify the simulated results. Results showed that the removal ratio is significantly influenced by sweeping velocity and angle. The removal ratio can reach to 94.3% by using higher input pressure of the air knife, demonstrating that the air knife sweeping technology is useful for maintaining the surface cleanliness of optical elements, and thus guaranteeing the long-term stable running of the high power laser facility.
The Relationship of the Silicon Surface Roughness and Gate Oxide Integrity in NH4OH/H2O2 Mixtures
NASA Astrophysics Data System (ADS)
Meuris, M.; Verhaverbeke, S.; Mertens, P. W.; Heyns, M. M.; Hellemans, L.; Bruynseraede, Y.; Philipossian, A.
1992-11-01
In this study some recent findings on the cleaning action of the NH4OH/H2O2 (SC1) step in a pre-gate oxidation cleaning (RCA cleaning) are given. An important parameter in this mixture is the NH4OH/H2O2 ratio. The Fe contamination on the silicon surface after this cleaning step is found to increase upon decreasing the NH4OH/H2O2 ratio. This can be attributed to the incorporation of Fe in the chemical oxide, grown by the hydrogen peroxide. The particle removal efficiency of the cleaning step is found to decrease upon decreasing the NH4OH/H2O2 ratio. On the other hand, using a lower NH4OH concentration results in a less severe silicon surface roughening. It is demonstrated in this study that the NH4OH/H2O2 ratio during the SC1 step of the cleaning is the determining parameter for the breakdown properties of a gate oxide. A (0.25/1/5) NH4OH/H2O2/H2O mixture at 75°C in our experimental conditions is suggested to be the best compromise between particle removal and surface roughness during the SC1 step.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
Novel Transport Characterizations in Layered Two-Dimensional Materials and Bulk Chalcogenides
NASA Astrophysics Data System (ADS)
Pennypacker, Sam
We present a case study (September 20 - October 13, 2015) of synergistic, multi-instrument observations of aerosols, clouds and the marine boundary layer (MBL) at the Eastern North Atlantic (ENA) ARM site centered on a period of exceptionally low (20 - 50 cm-3) surface accumulation mode (0.1 - 1 mum) aerosol particle number concentrations. We divide the case study into three regimes (high, clean and ultra-clean) based on daily median number concentrations, and compare finer resolution (hourly or less) observations between these regimes. The analysis focuses on the possibility of using these ultra-clean events to study pristine conditions in the remote MBL, as well as examining evidence for a recently proposed conceptual model for the large-scale depletion of CCN-sized particles in post-frontal air masses. Relative to the high and clean regimes, the ultra-clean regime tends to exhibit significantly fewer particles between 0.1 and 0.4 mum in diameter and a relatively increased prevalence of larger accumulation mode particles. In addition, supermicron particles tend to dominate total scattering in the ultra-clean regime, and there is little evidence for absorbing aerosol. These observations are more in line with a heavily scavenged but natural marine aerosol population and minimal contribution from continental sources such as anthropogenic pollution, biomass burning or dust. The air masses with the consistently lowest accumulation mode aerosol number concentrations are largely dominated by heavily drizzling clouds with high liquid water path (LWP) cores, deep decoupled boundary layers, open cellular organization and notable surface forcing of sub-cloud turbulence, even at night. We end with a discussion of the implications of this work the second aerosol indirect effect and pristine conditions in the remote MBL.
Removal of dust particles from metal mirror surfaces by excimer laser radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, K.; Wolff-Rottke, B.; Mueller, F.
1995-12-31
The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope (VLT) mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence,more » being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.« less
Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water
NASA Astrophysics Data System (ADS)
Yamashita, Tatsuya; Ando, Keita
2015-11-01
In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.
Qualification of local advanced cryogenic cleaning technology for 14nm photomask fabrication
NASA Astrophysics Data System (ADS)
Taumer, Ralf; Krome, Thorsten; Bowers, Chuck; Varghese, Ivin; Hopkins, Tyler; White, Roy; Brunner, Martin; Yi, Daniel
2014-10-01
The march toward tighter design rules, and thus smaller defects, implies stronger surface adhesion between defects and the photomask surface compared to past generations, thereby resulting in increased difficulty in photomask cleaning. Current state-of-the-art wet clean technologies utilize functional water and various energies in an attempt to produce similar yield to the acid cleans of previous generations, but without some of the negative side effects. Still, wet cleans have continued to be plagued with issues such as persistent particles and contaminations, SRAF and feature damages, leaving contaminants behind that accelerate photo-induced defect growth, and others. This paper details work done through a design of experiments (DOE) utilized to qualify an improved cryogenic cleaning technology for production in the Advanced Mask Technology Center (AMTC) advanced production lines for 20 and 14 nm processing. All work was conducted at the AMTC facility in Dresden, Germany utilizing technology developed by Eco-Snow Systems and RAVE LLC for their cryogenic local cleaning VC1200F platform. This system uses a newly designed nozzle, improved gaseous CO2 delivery, extensive filtration to remove hydrocarbons and minimize particle adders, and other process improvements to overcome the limitations of the previous generation local cleaning tool. AMTC has successfully qualified this cryogenic cleaning technology and is currently using it regularly to enhance production yields even at the most challenging technology nodes.
Numerical Study of High-Speed Droplet Impact on Surfaces and its Physical Cleaning Effects
NASA Astrophysics Data System (ADS)
Kondo, Tomoki; Ando, Keita
2015-11-01
Spurred by the demand for cleaning techniques of low environmental impact, one favors physical cleaning that does not rely on any chemicals. One of the promising candidates is based on water jets that often involve fission into droplet fragments and collide with target surfaces to which contaminant particles (often micron-sized or even smaller) stick. Hydrodynamic force (e.g., shearing and lifting) arising from the droplet impact will play a role to remove the particles, but its detailed mechanism is still unknown. To explore the role of high-speed droplet impact in physical cleaning, we solve compressible Navier-Stokes equations with a finite volume method that is designed to capture both shocks and material interfaces in accurate and robust manners. Water hammer and shear flow accompanied by high-speed droplet impact at a rigid wall is simulated to evaluate lifting force and rotating torque, which are relevant to the application of particle removal. For the simulation, we use the numerical code recently developed by Computational Flow Group lead by Tim Colonius at Caltech. The first author thanks Jomela Meng for her help in handling the code during his stay at Caltech.
Contact Activation of Blood Plasma and Factor XII by Ion-exchange Resins
Yeh, Chyi-Huey Josh; Dimachkie, Ziad O.; Golas, Avantika; Cheng, Alice; Parhi, Purnendu; Vogler, Erwin A.
2011-01-01
Sepharose ion-exchange particles bearing strong Lewis acid/base functional groups (sulfopropyl, carboxymethyl, quarternary ammonium, dimethyl aminoethyl, and iminodiacetic acid) exhibiting high plasma protein adsorbent capacities are shown to be more efficient activators of blood factor XII in neat-buffer solution than either hydrophilic clean-glass particles or hydrophobic octyl sepharose particles ( FXII→surfaceactivatorFXIIa; a.k.a autoactivation, where FXII is the zymogen and FXIIa is a procoagulant protease). In sharp contrast to the clean-glass standard of comparison, ion-exchange activators are shown to be inefficient activators of blood plasma coagulation. These contrasting activation properties are proposed to be due to the moderating effect of plasma-protein adsorption on plasma coagulation. Efficient adsorption of blood plasma proteins unrelated to the coagulation cascade impedes FXII contacts with ion-exchange particles immersed in plasma, reducing autoactivation, and causing sluggish plasma coagulation. By contrast, plasma proteins do not adsorb to hydrophilic clean glass and efficient autoactivation leads directly to efficient activation of plasma coagulation. It is also shown that competitive-protein adsorption can displace FXIIa adsorbed to the surface of ion-exchange resins. As a consequence of highly-efficient autoactivation and FXIIa displacement by plasma proteins, ion-exchange particles are slightly more efficient activators of plasma coagulation than hydrophobic octyl sepharose particles that do not bear strong Lewis acid/base surface functionalities but to which plasma proteins adsorb efficiently. Plasma proteins thus play a dual role in moderating contact activation of the plasma coagulation cascade. The principal role is impeding FXII contact with activating surfaces but this same effect can displace FXIIa from an activating surface into solution where the protease can potentiate subsequent steps of the plasma coagulation cascade. PMID:21982294
Flows, strains, and the formation of joints in oblique collision of metal plates
NASA Astrophysics Data System (ADS)
Shtertser, A. A.; Zlobin, B. S.
2015-09-01
The processes of high-velocity oblique collision of metal plates which lead to the formation of their joints (seizure) are considered. It is found that the cleaning of the plate surface necessary for seizure results from a jet flow (particle stream), whose source is at least one of the welded materials or an interlayer of ductile material located in the initial region of collision. It is shown that additional cleaning may occur due to the emergence of rotating microregions in intense gradient flows localized in the joint area; seizure on cleaned surfaces is due to reduction of the surface energy of the system.
Physical cleaning by bubbly streaming flow in an ultrasound field
NASA Astrophysics Data System (ADS)
Yamashita, Tatsuya; Ando, Keita
2017-11-01
Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.
Alamri, Haleema; Al-Shahrani, Abdullah; Bovero, Enrico; Khaldi, Turki; Alabedi, Gasan; Obaid, Waleed; Al-Taie, Ihsan; Fihri, Aziz
2018-03-01
Inspired by the self-cleaning lotus leaf, a facile method of fabricating superhydrophobic silica coated magnetite nanoparticles using a cost-effective process is presented in this work. The structural characterizations and magnetic properties of the obtained core-shell magnetic nanoparticles were characterized by means of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). TEM analysis revealed that the particles present flower-like dendrimeric fibers morphology. The particles were uniformly dispersed on the surface of an epoxy resin coating with the purpose to increase the roughness and reduce the surface energy of the surface. The resulting superhydrophobic surface provides robust water-repellent surface under harsh conditions, thanks to its self-cleaning characteristic. The superhydrophobicity of this surface was confirmed based on the measurements of a water contact angle around 175°, which surpasses the theoretical limit of the superhydrophobicity. The simplicity and the cost-effectiveness of the process developed in this study appears to be a promising route for the preparation of other magnetic superhydrophobic organic-inorganic hybrid materials that would be beneficial in a wide variety of applications. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rios, Pablo Fabian
Self-cleaning surfaces have received a great deal of attention, both in research and commercial applications. Transparent and non-transparent self-cleaning surfaces are highly desired. The Lotus flower is a symbol of purity in Asian cultures, even when rising from muddy waters it stays clean and untouched by dirt. The Lotus leaf "self-cleaning" surface is hydrophobic and rough, showing a two-layer morphology. While hydrophobicity produces a high contact angle, surface morphology reduces the adhesion of dirt and water to the surface, thus water drops slide easily across the leaf carrying the dirt particles with them. Nature example in the Lotus-effect and extensive scientific research on related fields have rooted wide acceptance that high hydrophobicity can be obtained only by a proper combination of surface chemistry and roughness. Most researchers relate hydrophobicity to a high contact angle. However, the contact angle is not the only parameter that defines liquid-solid interactions. An additional parameter, the sliding angle, related to the adhesion between the liquid drop and the solid surface is also important in cases where liquid sliding is involved, such as self-cleaning applications. In this work, it is postulated that wetting which is related to the contact angle, and interfacial adhesion, which is related to the sliding angle, are interdependent phenomena and have to be considered simultaneously. A variety of models that relate the sliding angle to forces developed along the contact line between a liquid drop and a solid surface have been proposed in the literature. A new model is proposed here that quantifies the drop sliding phenomenon, based also on the interfacial adhesion across the contact area of the liquid/solid interface. The effects of roughness and chemical composition on the contact and sliding angles of hydrophobic smooth and rough surfaces were studied theoretically and experimentally. The validity of the proposed model was investigated and compared with the existing models. Ultra-hydrophobic non-transparent and transparent coatings for potential self-cleaning applications were produced using hydrophobic chemistry and different configurations of roughening micro and nano-particles, however they present low adhesion and durability. Durability and stability enhancement of such coatings was attempted and improved by different methods.
Hot gas filter and system assembly
Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael
1999-01-01
A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.
Hot gas filter and system assembly
Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.
1999-08-31
A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.
NASA Astrophysics Data System (ADS)
Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.
2012-03-01
Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.
2006-01-01
The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.
Harast, D.G.
1984-01-27
A method of brazing comprises sand blasting the surfaces of the components to be brazed with particles of a brazing material to clean the surfaces and to embed brazing material in the surfaces, applying the brazing material to the surfaces, and heating the brazing material to form a brazement between the components.
Seidl, M; Da, G; Ausset, P; Haenn, S; Géhin, E; Moulin, L
2016-04-01
Climate change and increasing demography press local authorities to look after affordable water resources and replacement of drinking water for city necessities like street and pavement cleaning by more available raw water. Though, the substitution of drinking by non-drinking resources demands the evaluation of sanitary hazards. This article aims therefore to evaluate the contribution of cleaning water to the overall exposure of city dwellers in case of wet pavement cleaning using crossed physical, chemical and biological approaches. The result of tracer experiments with fluorescein show that liquid water content of the cleaning aerosol produced is about 0.24 g m(-3), rending possible a fast estimation of exposure levels. In situ analysis of the aerosol particles indicates a significant increase in particle number concentration and particle diameter, though without change in particle composition. The conventional bacterial analysis using total coliforms as tracer suggests that an important part of the contamination is issued from the pavement. The qPCR results show a more than 20-fold increase of background genome concentration for Escherichia coli and 10-fold increase for Enterococcus but a negligible contribution of the cleaning water. The fluorescence analysis of the cleaning aerosol confirms the above findings identifying pavement surface as the major contributor to aerosol organic load. The physical, chemical and microbiological approaches used make it possible to describe accurately the cleaning bioaerosol and to identify the existence of significantly higher levels of all parameters studied during the wet pavement cleaning. Though, the low level of contamination and the very short time of passage of pedestrian in the zone do not suggest a significant risk for the city dwellers. As the cleaning workers remain much longer in the impacted area, more attention should be paid to their chronic exposure.
Influence of contamination on bonding to zirconia ceramic.
Yang, Bin; Scharnberg, Michael; Wolfart, Stefan; Quaas, Anne C; Ludwig, Klaus; Adelung, Rainer; Kern, Matthias
2007-05-01
The purpose of this study was to investigate the influences of contaminations and cleaning methods on bonding to dental zirconia ceramic. After saliva immersion and using silicone disclosing agent, airborne-particle abraded ceramic specimens were cleaned with isopropanol (AL), acetone (AC), 37% phosphoric acid (PA), additional airborne-particle abrasion (AA), or only with water rinsing (SS). Airborne-particle abraded specimens without contaminations (CL) were used as control group. For chemical analysis specimens of all groups were examined with X-ray photoelectron spectroscopy (XPS). Plexiglas tubes filled with composite resin were bonded to ceramic specimens using a phosphate-monomer containing composite luting resin. After 3-day water storage, tensile bond strengths (TBS) were tested. XPS analysis of group SS showed the presence of saliva and silicone (Si) contamination on the surface. The ratios of carbon/zirconium and oxygen/zirconium for groups PA and AA were comparable to those ratios obtained for group CL, indicating the removal of the organic saliva contamination. Airborne-particle abrasion and acetone completely removed Si contamination from ceramic surfaces. Isopropanol had little cleaning effect on the two contaminants. TBS (median +/- standard deviation) in MPa of the groups SS (11.6 +/- 3.1), AL (10.0 +/- 2.9), and AC (13.0 +/- 2.8) were statistically lower than those of groups PA (33.6 +/- 5.5), AA (40.1 +/- 3.6), and CL (47.0 +/- 8.1) (p < 0.001), while no differences were found in TBS between groups AA and CL (p > 0.5). Contamination significantly reduced bond strengths to zirconia ceramic. Airborne-particle abrasion was the most effective cleaning method.
NASA Astrophysics Data System (ADS)
Bílek, Petr; Hrůza, Jakub
2018-06-01
This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.
ERIC Educational Resources Information Center
Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.
2017-01-01
Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of "Applied Field Sensitive Process Technologies" requiring an external field to…
Laser cleaning of steel for paint removal
NASA Astrophysics Data System (ADS)
Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.
2010-11-01
Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.
Dynamic self-cleaning in gecko setae via digital hyperextension
Hu, Shihao; Lopez, Stephanie; Niewiarowski, Peter H.; Xia, Zhenhai
2012-01-01
Gecko toe pads show strong adhesion on various surfaces yet remain remarkably clean around everyday contaminants. An understanding of how geckos clean their toe pads while being in motion is essential for the elucidation of animal behaviours as well as the design of biomimetic devices with optimal performance. Here, we test the self-cleaning of geckos during locomotion. We provide, to our knowledge, the first evidence that geckos clean their feet through a unique dynamic self-cleaning mechanism via digital hyperextension. When walking naturally with hyperextension, geckos shed dirt from their toes twice as fast as they would if walking without hyperextension, returning their feet to nearly 80 per cent of their original stickiness in only four steps. Our dynamic model predicts that when setae suddenly release from the attached substrate, they generate enough inertial force to dislodge dirt particles from the attached spatulae. The predicted cleaning force on dirt particles significantly increases when the dynamic effect is included. The extraordinary design of gecko toe pads perfectly combines dynamic self-cleaning with repeated attachment/detachment, making gecko feet sticky yet clean. This work thus provides a new mechanism to be considered for biomimetic design of highly reuseable and reliable dry adhesives and devices. PMID:22696482
Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.
Ahmad, I; Tansel, B; Mitrani, J D
2001-12-01
Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.
Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics
NASA Astrophysics Data System (ADS)
Xu, Quan; Wan, Yiyang; Hu, Travis Shihao; Liu, Tony X.; Tao, Dashuai; Niewiarowski, Peter H.; Tian, Yu; Liu, Yue; Dai, Liming; Yang, Yanqing; Xia, Zhenhai
2015-11-01
Geckos have the extraordinary ability to prevent their sticky feet from fouling while running on dusty walls and ceilings. Understanding gecko adhesion and self-cleaning mechanisms is essential for elucidating animal behaviours and rationally designing gecko-inspired devices. Here we report a unique self-cleaning mechanism possessed by the nano-pads of gecko spatulae. The difference between the velocity-dependent particle-wall adhesion and the velocity-independent spatula-particle dynamic response leads to a robust self-cleaning capability, allowing geckos to efficiently dislodge dirt during their locomotion. Emulating this natural design, we fabricate artificial spatulae and micromanipulators that show similar effects, and that provide a new way to manipulate micro-objects. By simply tuning the pull-off velocity, our gecko-inspired micromanipulators, made of synthetic microfibers with graphene-decorated micro-pads, can easily pick up, transport, and drop-off microparticles for precise assembling. This work should open the door to the development of novel self-cleaning adhesives, smart surfaces, microelectromechanical systems, biomedical devices, and more.
Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces
NASA Technical Reports Server (NTRS)
Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.
2012-01-01
The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.
Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng
2017-06-07
A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.
Hotoda, S; Aoyama, T; Sato, A; Yamamura, Y; Nakajima, K; Nakamura, K; Sato, H; Iga, T
1999-12-01
We quantitatively studied factors influencing the environment cleanliness for intravenous hyperalimentation (IVH) admixing. The environment cleanliness was evaluated by measuring the counts of particles (> 0.5 micron) and bacteria floating in 1 ft3 of the air inside the clean room (23.6 m3) and in the clean bench built in the department of pharmacy, The University of Tokyo Hospital in 1998. The number of particles at the center of the clean room during IVH admixing by 4 pharmacists was higher than that at the medicine passing area (150 +/- 50/ft3 vs. 260 +/- 60/ft3; mean +/- S.D., n = 12). The cleanliness inside the clean room was improved as the measurement point became higher from the floor (600 +/- 180/ft3, 150 +/- 50/ft3, and 35 +/- 15/ft3 at 50, 100, and 150 cm height, respectively) and the number of persons working inside the room decreased. The changes in the counts of floating bacteria were similar to that of floating particles under the same conditions. In addition the effect of disinfection on the counts of bacteria was clearly observed. When the cleanliness of the room became lower by turning off the air conditioning, the particle counts inside the clean bench became lower along with the distance from the front glass becoming deeper (i.e., 1400 +/- 550/ft3, 140 +/- 70/ft3, and 40 +/- 30/ft3 at 0, 5, and 15 cm, respectively). From these lines of evidence, the following items were suggested in order to maintain the environment cleanliness for IVH admixing. First, the number of persons residing in the clean room should be kept to be minimum. Second, the clean bench should be set up in the center of the clean room. Finally IVH admixing operation should be performed at more than 15 cm depth inside the front glass surface of the clean bench. Moreover, the effect of mopping-up of the clean room with 0.1% benzethonium chloride clearly demonstrated the importance of disinfection on a routine basis.
Producing lasting amphiphobic building surfaces with self-cleaning properties
NASA Astrophysics Data System (ADS)
Facio, Dario S.; Carrascosa, Luis A. M.; Mosquera, María J.
2017-06-01
Nowadays, producing building surfaces that prevent water and oil uptake and which present self-cleaning activity is still a challenge. In this study, amphiphobic (superhydrophobic and oleophobic) building surfaces were successfully produced. A simple and low-cost process was developed, which is applicable to large-scale building surfaces, according the following procedure: (1) by spraying a SiO2 nanocomposite which produces a closely-packed nanoparticle uniform topography; (2) by functionalizing the previous coating with a fluorinated alkoxysilane, producing high hydrophobicity and oleophobicity. The formation of a Cassie-Baxter regime, in which air pockets could be trapped between the aggregates of particles, was confirmed by topographic study. The building surface demonstrated an excellent self-cleaning performance. Finally, the surface presented lasting superhydrophobicity with high stability against successive attachment/detachment force cycles. This high durability can be explained by the effective grafting of the silica nanocomposite coating skeleton with the substrate, and with the additional fluorinated coating produced by condensation reactions.
Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces
NASA Astrophysics Data System (ADS)
Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.
2017-11-01
The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.
NASA Astrophysics Data System (ADS)
Horvath, J.; Moffatt, S.
1991-04-01
Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.
NASA Astrophysics Data System (ADS)
Lv, Chongjiang; Wang, Huaiyuan; Liu, Zhanjian; Zhang, Wenbo; Wang, Chijia; Tao, Ruifeng; Li, Meiling; Zhu, Yanji
2018-03-01
A sturdy self-cleaning and anticorrosion superhydrophobic coating based on poly(phenylene sulfide) (PPS) matrix has been successfully fabricated by combination of sol-gel and spraying technology without using any fluorine materials. The prepared coating possessed excellent superhydrophobicity with the water contact angle (WCA) (161 ± 1.2)° and slide angle (SA) (2 ± 1.5)°, which was ascribed to the synergistic effect of low-surface energy material amino silicon oil (ASO) and the binary potassium titanate whisker-silica (PTW-SiO2) composite particles formed by in-situ growth of SiO2 on modified PTW via sol-gel. Moreover, The PPS/ASO/PTW-SiO2 superhydrophobic coating exhibited decent self-cleaning property with clean surface even after 100 times immersion in muddy solution. The abrasion test demonstrated that the mechanical stability of prepared coating was about 2 times of the pure PPS coating. Simultaneously, the potentiodynamic polarization and electrochemical impedance spectroscopy testified the excellent corrosion resistance of prepared coating with the performance of lower corrosion current (1.289 × 10-10 A/cm2) and high protection efficiency (99.999%) even after immersion in 3.5 wt.% NaCl solution for 28 days. It is believed that this sturdy self-cleaning and anti-corrosion superhydrophobic coating might have a promising application prospect in industry.
Effects of sandblasting and silica-coating procedures on pure titanium.
Kern, M; Thompson, V P
1994-10-01
Silica coating titanium improves chemomechanical bonding. Sandblasting is recommended as a pretreatment to thermal silica coating (Silicoater MD) or as part of a tribochemical silica coating process (Rocatec). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and composition changes in pure titanium. Volume loss of titanium was similar to values reported for base alloys and does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in the titanium after sandblasting and the alumina content increased to a range of 27.5-39.3 wt% as measured by EDS. Following tribochemical silica coating, a layer of small silica particles remained on the surface, increasing the silica content to a range of 17.9-19.5 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, suggesting firm attachment of most of the alumina and silica to the titanium surface. Silica content following thermal silica coating treatment increased only slightly from the sandblasted specimen to 1.4 wt%. The silica layer employed by these silica coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests and for developing methods to optimize resin bonding. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica coated titanium should improve resin bonding as loose surface particles are removed without relevant changes in composition.
Sassoni, Enrico; D’Amen, Eros; Roveri, Norberto
2018-01-01
To prevent soiling of marble exposed outdoors, the use of TiO2 nano-particles has been proposed in the literature by two main routes, both raising durability issues: (i) direct application to marble surface, with the risk of particle leaching by rainfall; (ii) particle incorporation into inorganic or organic coatings, with the risk of organic coating degradation catalyzed by TiO2 photoactivity. Here, we investigated the combination of nano-TiO2 and hydroxyapatite (HAP), previously developed for marble protection against dissolution in rain and mechanical consolidation. HAP-TiO2 combination was investigated by two routes: (i) sequential application of HAP followed by nano-TiO2 (“H+T”); (ii) simultaneous application by introducing nano-TiO2 into the phosphate solution used to form HAP (“HT”). The self-cleaning ability was evaluated before and after prolonged exposure to simulated rain. “H+T” and “HT” coatings exhibited much better resistance to nano-TiO2 leaching by rain, compared to TiO2 alone. In “H+T” samples, TiO2 nano-particles adhere better to HAP (having flower-like morphology and high specific surface area) than to marble. In “HT” samples, thanks to chemical bonds between nano-TiO2 and HAP, the particles are firmly incorporated in the HAP coating, which protects them from leaching by rain, without diminishing their photoactivity and without being degraded by them. PMID:29360789
NASA Technical Reports Server (NTRS)
Barnett, Donald M.
1995-01-01
Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.
ELM induced divertor heat loads on TCV
NASA Astrophysics Data System (ADS)
Marki, J.; Pitts, R. A.; Horacek, J.; Tskhakaya, D.; TCV Team
2009-06-01
Results are presented for heat loads at the TCV outer divertor target during ELMing H-mode using a fast IR camera. Benefitting from a recent surface cleaning of the entire first wall graphite armour, a comparison of the transient thermal response of freshly cleaned and untreated tile surfaces (coated with thick co-deposited layers) has been performed. The latter routinely exhibit temperature transients exceeding those of the clean ones by a factor ˜3, even if co-deposition throughout the first days of operation following the cleaning process leads to the steady regrowth of thin layers. Filaments are occasionally observed during the ELM heat flux rise phase, showing a spatial structure consistent with energy release at discrete toroidal locations in the outer midplane vicinity and with individual filaments carrying ˜1% of the total ELM energy. The temporal waveform of the ELM heat load is found to be in good agreement with the collisionless free streaming particle model.
Comparative Mirror Cleaning Study: 'A Study on Removing Particulate Contamination'
NASA Technical Reports Server (NTRS)
Houston, Karrie
2007-01-01
The cleanliness of optical surfaces is recognized as an industry-wide concern for the performance of optical devices such as mirrors and telescopes, microscopes and lenses, lasers and interferometers, and prisms and optical filters. However, no standard has been established for optical cleaning and there is no standard definition of a 'clean' optical element. This study evaluates the effectiveness of commonly used optical cleaning techniques based on wafer configuration, contamination levels, and the number and size of removed particles. It is concluded that cleaning method and exposure time play a significant factor in obtaining a high removal percentage. The detergent bath and solvent rinse method displayed an increase in effective removal percentage as the contamination exposure increased. Likewise, CO2 snow cleaning showed a relatively consistent cleaning effectiveness. The results can help ensure mission success to flight projects developed for the NASA Origins Program. Advantages and disadvantages of each of the optical cleaning methods are described.
Hasei, Tomohiro; Watanabe, Tetsushi; Hirayama, Teruhisa
2006-11-24
We developed a sensitive analytical method and an efficient clean-up method to quantify 3,6-dinitrobenzo[e]pyrene (3,6-DNBeP) in surface soil and airborne particles. After purification using a silica gel column and two reversed-phase columns, 3,6-DNBeP was reduced to 3,6-diaminobenzo[e]pyrene by a catalyst column and analyzed by high-performance liquid chromatography (HPLC) with a fluorescence detector. 3,6-DNBeP was detected in all of the soil samples and airborne particles examined. The concentration of 3,6-DNBeP in surface soil and airborne particles was determined in the ranges of 347-5007 pg/g of soil and 137-1238 fg/m3, respectively.
Evidence of a rolling motion of a microparticle on a silicon wafer in a liquid environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiwek, Simon; Stark, Robert W., E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de; Dietz, Christian, E-mail: stark@csi.tu-darmstadt.de, E-mail: dietz@csi.tu-darmstadt.de
2016-05-21
The interaction of micro- and nanometer-sized particles with surfaces plays a crucial role when small-scale structures are built in a bottom-up approach or structured surfaces are cleaned in the semiconductor industry. For a reliable quantification of the interaction between individual particles and a specific surface, however, the motion type of the particle must be known. We developed an approach to unambiguously distinguish between sliding and rolling particles. To this end, fluorescent particles were partially bleached in a confocal laser scanning microscope to tailor an optical inhomogeneity, which allowed for the identification of the characteristic motion pattern. For the manipulation, themore » water flow generated by a fast moving cantilever-tip of an atomic force microscope enabled the contactless pushing of the particle. We thus experimentally evidenced a rolling motion of a micrometer-sized particle directly with a fluorescence microscope. A similar approach could help to discriminate between rolling and sliding particles in liquid flows of microfluidic systems.« less
Genesis Solar Wind Collector Cleaning Assessment: Update on 60336 Sample Case Study
NASA Technical Reports Server (NTRS)
Goreva, Y. S.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J.; Burnett, D. S.; Allton, J. H.; Kuhlman, K. R.; Woolum, D.
2015-01-01
To maximize the scientific return of Genesis Solar Wind return mission it is necessary to characterize and remove a crash-derived particle and thin film surface contamination. A small subset of Genesis mission collector fragments are being subjected to extensive study via various techniques. Here we present an update on the sample 60336, a Czochralski silicon (Si-CZ) based wafer from the bulk array (B/C). This sample has undergone multiple cleaning steps (see the table below): UPW spin wash, aggressive chemical cleanings (including aqua regia, hot xylene and RCA1), as well as optical and chemical (EDS, ToF-SIMS) imaging. Contamination appeared on the surface of 60336 after the initial 2007 UPW cleaning. Aqua regia and hot xylene treatment (8/13/2013) did little to remove contaminants. The sample was UPW cleaned for the third time and imaged (9/16/13). The UPW removed the dark stains that were visible on the sample. However, some features, like "the Flounder" (a large, 100 micron feature in Fig. 1b) appeared largely intact, resisting all previous cleaning efforts. These features were likely from mobilized adhesive, derived from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. To remove this contamination, an RCA step 1 organic cleaning (RCA1) was employed. Although we are still uncertain on the nature of the Flounder and why it is resistant to UPW and aqua regia/hot xylene treatment, we have found RCA1 to be suitable for its removal. It is likely that the glue from sticky pads used during collector recovery may have been a source for resistant organic contamination [9]; however [8] shows that UPW reaction with crash-derived organic contamination does not make particle removal more difficult.
Transfer of molybdenum disulfide to various metals
NASA Technical Reports Server (NTRS)
Barton, G. C.; Pepper, S. V.
1977-01-01
Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.
Krause, Michael; Geer, William; Swenson, Lonie; Fallah, Payam; Robbins, Coreen
2006-08-01
The basis for some common gypsum wallboard mold remediation practices was examined. The bottom inch of several gypsum wallboard panels was immersed in bottled drinking water; some panels were coated and others were untreated. The panels were examined and tested for a period of 8 weeks. This study investigated: (a) whether mold growth, detectable visually or with tape lift samples, occurs within 1 week on wet gypsum wallboard; (b) the types, timing, and extent of mold growth on wet gypsum wallboard; (c) whether mold growth is present on gypsum wallboard surfaces 6 inches from visible mold growth; (d) whether some commonly used surface treatments affect the timing of occurrence and rate of mold growth; and (e) if moldy but dried gypsum wallboard can be cleaned with simple methods and then sealed with common surface treatments so that residual mold particles are undetectable with typical surface sampling techniques. Mold growth was not detected visually or with tape lift samples after 1 week on any of the wallboard panels, regardless of treatment, well beyond the 24-48 hours often mentioned as the incubation period. Growth was detected at 2 weeks on untreated gypsum. Penicillium, Cladosporium, and Acremonium were early colonizers of untreated panels. Aspergillus, Epicoccum, Alternaria, and Ulocladium appeared later. Stachybotrys was not found. Mold growth was not detected more than 6 inches beyond the margin of visible mold growth, suggesting that recommendations to remove gypsum wallboard more than 1 foot beyond visible mold are excessive. The surface treatments resulted in delayed mold growth and reduced the area of mold growth compared with untreated gypsum wallboard. Results showed that simple cleaning of moldy gypsum wallboard was possible to the extent that mold particles beyond "normal trapping" were not found on tape lift samples. Thus, cleaning is an option in some situations where removal is not feasible or desirable. In cases where conditions are not similar to those of this study, or where large areas may be affected, a sample area could be cleaned and tested to verify that the cleaning technique is sufficient to reduce levels to background or normal trapping. These results are generally in agreement with laboratory studies of mold growth on, and cleaning of, gypsum wallboard.
Process to restore obliterated serial numbers on metal surfaces
NASA Technical Reports Server (NTRS)
Young, S. G.; Parker, B.; Chisum, W. J.
1974-01-01
Metal smeared into grooves of serial numbers by grinding or filing can be cleaned out by process called cavitation. Ultrasonic vibrator generates very high frequency vibrations in water which create millions of microscopic bubbles. Cavitation bubbles impact metal surface at thousands of pounds per square inch pressure. Metal particles filling grooves are broken away.
Kern, M; Thompson, V P
1993-05-01
Silica-coating alloys improves chemo-mechanical bonding. Sandblasting is recommended as pretreatment to thermal silica-coating or as part of a tribochemical silica-coating process. This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and compositional changes in noble (AuAgCu) and base alloys (NiCr and CoCr). Volume loss was statistically significantly higher in the noble as compared to the base alloys but does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in all alloys after sandblasting and the alumina content increased to a range of 14 to 37 wt% as measured by EDS. Following tribochemical silica-coating, a layer of small silica particles remained on the surface, increasing the silica content to between 12 and 20 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, thus suggesting firm attachment of the major part of alumina and silica to the alloy surface. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica-coated alloys might improve resin bonding as loose surface particles are removed without relevant changes in composition. Silica content following thermal silica-coating treatment increased only slightly from the sandblasted specimen. The silica layer employed by these silica-coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests which will possibly optimize resin bonding. Further research is needed to characterize the outermost surface layers after these treatments and the exact location of adhesive failures.
Membrane cleaning with ultrasonically driven bubbles.
Reuter, Fabian; Lauterborn, Sonja; Mettin, Robert; Lauterborn, Werner
2017-07-01
A laboratory filtration plant for drinking water treatment is constructed to study the conditions for purely mechanical in situ cleaning of fouled polymeric membranes by the application of ultrasound. The filtration is done by suction of water with defined constant contamination through a membrane module, a stack of five pairs of flat-sheet ultrafiltration membranes. The short cleaning cycle to remove the cake layer from the membranes includes backwashing, the application of ultrasound and air flushing. A special geometry for sound irradiation of the membranes parallel to their surfaces is chosen. Two frequencies, 35kHz and 130kHz, and different driving powers are tested for their cleaning effectiveness. No cleaning is found for 35kHz, whereas good cleaning results are obtained for 130kHz, with an optimum cleaning effectiveness at moderate driving powers. Acoustic and optic measurements in space and time as well as analytical considerations and numerical calculations reveal the reasons and confirm the experimental results. The sound field is measured in high resolution and bubble structures are high-speed imaged on their nucleation sites as well as during their cleaning work at the membrane surface. The microscopic inspection of the membrane surface after cleaning shows distinct cleaning types in the cake layer that are related to specific bubble behaviour on the membrane. The membrane integrity and permeate quality are checked on-line by particle counting and turbidity measurement of the permeate. No signs of membrane damage or irreversible membrane degradation in permeability are detected and an excellent water permeate quality is retained. Copyright © 2017 Elsevier B.V. All rights reserved.
Source Term Model for Fine Particle Resuspension from Indoor Surfaces
2008-02-01
0.144: calcula 5.16: c Particle Lycopodium spores Bacillus atrophaeus spores Latex particles dp (μm) 27.8 0.91 0.509, 1.019 ρp (kg/m3) 1000 1000...and transport, spreading of crop diseases by fungal spores , cleaning of electronic chips, handling of toxic powders, transmission of human dis- eases...governmental functions. Airborne CB agents released in one section of a building travel via the building’s heating, ventilating, and air-conditioning ( HVAC
Risk in cleaning: chemical and physical exposure.
Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H
1998-04-23
Cleaning is a large enterprise involving a large fraction of the workforce worldwide. A broad spectrum of cleaning agents has been developed to facilitate dust and dirt removal, for disinfection and surface maintenance. The cleaning agents are used in large quantities throughout the world. Although a complex pattern of exposure to cleaning agents and resulting health problems, such as allergies and asthma, are reported among cleaners, only a few surveys of this type of product have been performed. This paper gives a broad introduction to cleaning agents and the impact of cleaning on cleaners, occupants of indoor environments, and the quality of cleaning. Cleaning agents are usually grouped into different product categories according to their technical functions and the purpose of their use (e.g. disinfectants and surface care products). The paper also indicates the adverse health and comfort effects associated with the use of these agents in connection with the cleaning process. The paper identifies disinfectants as the most hazardous group of cleaning agents. Cleaning agents contain evaporative and non-evaporative substances. The major toxicologically significant constituents of the former are volatile organic compounds (VOCs), defined as substances with boiling points in the range of 0 degree C to about 400 degrees C. Although laboratory emission testing has shown many VOCs with quite different time-concentration profiles, few field studies have been carried out measuring the exposure of cleaners. However, both field studies and emission testing indicate that the use of cleaning agents results in a temporal increase in the overall VOC level. This increase may occur during the cleaning process and thus it can enhance the probability of increased short-term exposure of the cleaners. However, the increased levels can also be present after the cleaning and result in an overall increased VOC level that can possibly affect the indoor air quality (IAQ) perceived by occupants. The variety and duration of the emissions depend inter alia on the use of fragrances and high boiling VOCs. Some building materials appear to increase their VOC emission through wet cleaning and thus may affect the IAQ. Particles and dirt contain a great variety of both volatile and non-volatile substances, including allergens. While the volatile fraction can consist of more than 200 different VOCs including formaldehyde, the non-volatile fraction can contain considerable amounts (> 0.5%) of fatty acid salts and tensides (e.g. linear alkyl benzene sulphonates). The level of these substances can be high immediately after the cleaning process, but few studies have been conducted concerning this problem. The substances partly originate from the use of cleaning agents. Both types are suspected to be airway irritants. Cleaning activities generate dust, mostly by resuspension, but other occupant activities may also resuspend dust over longer periods of time. Personal sampling of VOCs and airborne dust gives higher results than stationary sampling. International bodies have proposed air sampling strategies. A variety of field sampling techniques for VOC and surface particle sampling is listed.
A numerical study on high-pressure water-spray cleaning for CSP reflectors
NASA Astrophysics Data System (ADS)
Anglani, Francesco; Barry, John; Dekkers, Willem
2016-05-01
Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of nozzles, standoff distance, jet pressure and jet impingement angle in order to identify effective and efficient cleaning procedures to restore collectors' reflectance, decrease turbulence and improve CST plant efficiency. Results show that the forces generated over the flat target surface are proportional to the inlet pressure and to the water velocity over the surface, and that the shear stresses decrease as the standoff distance increases.
2015-01-01
PURPOSE To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. MATERIALS AND METHODS A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non-quantitatively. RESULTS All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. CONCLUSION The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented. PMID:25932314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambilla, Sara; Speckart, Scott; Brown, Michael J.
Particles deposited on an outdoor surface can be resuspended by wind gusts, become airborne, and be inhaled if small enough. If toxic or infectious, these particles may be dangerous for the populace health. It is therefore important to determine under which weather conditions a deposit of particle could be resuspended to implement the best response actions and plan clean-up. To this scope, one needs to consider the competing forces acting on the particle keeping it attached to the surface (gravity and adhesion) or trying to remove it (aerodynamic forces, i.e., lift and drag). Here, this article reviews the current understandingmore » of the aforementioned forces for colloidal spherical particles and extends the existing theories to rod-shaped particles, representative for instance of Bacillus spores. In particular, for the adhesion force, the Derjaguin approximation was used and the adhesion force was computed from the radii of curvature of the particle and the surface at the point of closest approach. For the aerodynamic forces, we re-derived the equations for the drag and lift forces accounting for the shape of the particle. Both smooth and rough surfaces will be discussed, the former as idealized cases, the latter as more representative of real outdoor surfaces.« less
Brambilla, Sara; Speckart, Scott; Brown, Michael J.
2017-07-26
Particles deposited on an outdoor surface can be resuspended by wind gusts, become airborne, and be inhaled if small enough. If toxic or infectious, these particles may be dangerous for the populace health. It is therefore important to determine under which weather conditions a deposit of particle could be resuspended to implement the best response actions and plan clean-up. To this scope, one needs to consider the competing forces acting on the particle keeping it attached to the surface (gravity and adhesion) or trying to remove it (aerodynamic forces, i.e., lift and drag). Here, this article reviews the current understandingmore » of the aforementioned forces for colloidal spherical particles and extends the existing theories to rod-shaped particles, representative for instance of Bacillus spores. In particular, for the adhesion force, the Derjaguin approximation was used and the adhesion force was computed from the radii of curvature of the particle and the surface at the point of closest approach. For the aerodynamic forces, we re-derived the equations for the drag and lift forces accounting for the shape of the particle. Both smooth and rough surfaces will be discussed, the former as idealized cases, the latter as more representative of real outdoor surfaces.« less
NASA Astrophysics Data System (ADS)
Koster, N. B.; Molkenboer, F. T.; van Veldhoven, E.; Oostrom, S.
2011-04-01
We report on our findings on EUVL reticle contamination removal, inspection and repair. We show that carbon contamination can be removed without damage to the reticle by our plasma process. Also organic particles, simulated by PSL spheres, can be removed from both the surface of the absorber as well as from the bottom of the trenches. The particles shrink in size during the plasma treatment until they are vanished. The determination of the necessary cleaning time for PSL spheres was conducted on Ru coated samples and the final experiment was performed on our dummy reticle. Finally we show that the Helium Ion Microscope in combination with a Gas Injection System is capable of depositing additional lines and squares on the reticle with sufficient resolution for pattern repair.
Surface modification to waveguides
Timberlake, John R.; Ruzic, David N.; Moore, Richard L.; Cohen, Samuel A.; Manos, Dennis M.
1983-01-01
A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.
Self-propulsion of dew drops on lotus leaves: a potential mechanism for self cleaning.
Watson, Gregory S; Gellender, Marty; Watson, Jolanta A
2014-01-01
This study shows that condensation on the hierarchically structured lotus leaf can facilitate self-propulsion of water droplets off the surface. Droplets on leaves inclined at high angles can be completely removed from the surface by self-propulsion with the assistance of gravity. Due to the small size of mobile droplets, light breezes may also fully remove the propelled droplets, which are typically projected beyond the boundary layer of the leaf cuticle. Moreover the self-propelled droplets/condensate were able to remove contaminants (eg silica particles) from the leaf surface. The biological significance of this process may be associated with maintaining a healthy cuticle surface when the action of rain to clean the surface via the lotus effect is not possible (due to no precipitation). Indeed, the native lotus plants in this study were located in a region with extended time periods (several months) without rain. Thus, dew formation on the leaf may provide an alternative self-cleaning mechanism during times of drought and optimise the functional efficiency of the leaf surface as well as protecting the surface from long term exposure to pathogens such as bacteria and fungi.
Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding
NASA Astrophysics Data System (ADS)
Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing
2018-04-01
A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.
An electrical sensor for long-term monitoring of ultrafine particles in workplaces
NASA Astrophysics Data System (ADS)
Lanki, Timo; Tikkanen, Juha; Janka, Kauko; Taimisto, Pekka; Lehtimäki, Matti
2011-07-01
Pegasor Oy Ltd. (Finland) has developed a diffusion charging measurement device that enables continuous monitoring of fine particle concentration at a low initial and lifecycle cost. The innovation, for which an international process and apparatus patent has been applied for, opens doors for monitoring nanoparticle concentrations in workplaces. The Pegasor Particle Sensor (PPS) operates by electrostatically charging particles passing through the sensor and then measuring the current caused by the charged particles as they leave the sensor. The particles never touch the sensor and so never accumulate on its surfaces or need to be cleaned off. The sensor uses an ejector pump to draw a constant sample flow into the sensing area where it is mixed with the clean, charged pump flow air (provided by an external source). The sample flow containing charged particles passes through the sensor. The current generated by the charge leaving the detection volume is measured and related to the particle surface area. This system is extremely simple and reliable - no contact, no moving parts, and all critical parts of the sensor are constantly cleaned by a stream of fresh, filtered air. Due to the ejector pump, the sample flow, and respectively the sensor response is independent of the flow and pressure conditions around the sampling inlet. Tests with the Pegasor Particle Sensor have been conducted in a laboratory, and at a workplace producing nanoparticles for glass coatings. A new measurement protocol has been designed to ensure that process workers are not exposed to unusually high nanoparticle concentrations at any time during their working day. One sensor is placed inside the process line, and a light alarm system indicates the worker not to open any protective shielding or ventilation systems before concentration inside has reached background levels. The benefits of PPS in industrial hygiene are that the same monitoring technology can be used at the source as well as at the worker breathing zone. Up to eight sensors can be installed in series for centralized monitoring of the whole process in real time.
NASA Technical Reports Server (NTRS)
Schneider, Horst W. (Inventor)
1981-01-01
Cleaning devices are described which include a vacuum cleaner nozzle with a sharp rim for directing incoming air down against the floor; a vacuum cleaner wherein electrostatically charged brushes that brush dirt off a floor, are electrically grounded to remove charges that could tend to hold dirt to the brushes; a vacuum cleaner head having slots that form a pair of counter-rotating vortices, and that includes an outlet that blows a stream of air at the floor region which lies between the vortices; a cleaning device that sweeps a group of brushes against the ground along a first direction, and then sweeps them along the same ground area but in a second direction angled from the first by an amount such as 90.degree., to sweep up particles lying in crevices extending along any direction; a device that gently cleans a surface to remove bacteria for analysis, including an inclined wall along which cleaning fluid flows onto the surface, a vacuum chamber for drawing in the cleaning fluid, and a dividing wall spaced slightly from the surface to separate the fluid source from the vacuum cleaner chamber; and a device for providing pulses of pressured air including a chamber to which pressured air is supplied, a ball that circulates around the chamber to repeatedly close an outlet, and an air source that directs air circumferentially to move the ball around the chamber.
NASA Astrophysics Data System (ADS)
Bixler, Gregroy D.
In this thesis, first presented is an overview of inorganic-fouling and biofouling which is generally undesirable for many medical, marine, and industrial applications. A survey of nature's flora and fauna are studied in order to discover new antifouling methods that could be mimicked for engineering applications. New antifouling methods will presumably incorporate a combination of physical and chemical controls. Presented are mechanisms and experimental results focusing on laminar and turbulent drag reducing shark skin inspired riblet surfaces. This includes new laser etched and riblet film samples for closed channel drag using water, oil, and air as well as in wind tunnel. Also presented are mechanisms and experimental results focusing on the newly discovered rice and butterfly wing effect surfaces. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions, wettability, viscosity, and velocity. Hierarchical liquid repellent coatings combining nano- and micro-sized features and particles are utilized to recreate or combine various effects. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Discussion is provided along with new conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for medical, marine, and industrial applications.
Study of discharge cleaning process in JIPP T-2 Torus by residual gas analyzer
NASA Astrophysics Data System (ADS)
Noda, N.; Hirokura, S.; Taniguchi, Y.; Tanahashi, S.
1982-12-01
During discharge cleaning, decay time of water vapor pressure changes when the pressure reaches a certain level. A long decay time observed in the later phase can be interpreted as a result of a slow deoxidization rate of chromium oxide, which may dominate the cleaning process in this phase. Optimization of plasma density for the cleaning is discussed comparing the experimental results on density dependence of water vapor pressure with a result based on a zero dimensional calculation for particle balance. One of the essential points for effective cleaning is the raising of the electron density of the plasma high enough that the dissociation loss rate of H2O is as large as the sticking loss rate. A density as high as 10 to the 11th power/cu cm is required for a clean surface condition where sticking probability is presumed to be around 0.5.
Cleaning Robot for Solar Panels in Solar Power Station
NASA Astrophysics Data System (ADS)
Hang, Lu-Bin; Shen, Cheng-Wei; Bian, Huai-Qiang; Wang, Yan
2016-05-01
The dust particles on solar panel surface have been a serious problem for the photovoltaic industry, a new monorail-tracked robot used for automatic cleaning of solar panel is presented in this paper. To meet the requirement of comprehensive and stable cleaning of PV array, the monorail-tracked pattern of robot is introduced based on the monorail structure technique. The running and striding mechanism are designed for mobility of robot on the solar panels. According to the carrying capacity and water circulation mechanism, a type of self-cleaning device with filtering system is developed. Combined with the computer software and communications technology, the control system is built in this robot, which can realize the functions of autonomous operation, positioning and monitoring. The application of this developed cleaning robot can actualize the Industrialization of automatic cleaning for PV components and have wide market prospect.
NASA Astrophysics Data System (ADS)
Mazumder, Malay; Yellowhair, Julius; Stark, Jeremy; Heiling, Calvin; Hudelson, John; Hao, Fang; Gibson, Hannah; Horenstein, Mark
2014-10-01
Large-scale solar plants are mostly installed in semi-arid and desert areas. In those areas, dust layer buildup on solar collectors becomes a major cause for energy yield loss. Development of transparent electrodynamic screens (EDS) and their applications for self-cleaning operation of solar mirrors are presented with a primary focus on the removal dust particles smaller than 30 µm in diameter while maintaining specular reflection efficiency < 90%. An EDS consists of thin rectangular array of parallel transparent conducting electrodes deposited on a transparent dielectric surface. The electrodes are insulated from each other and are embedded within a thin transparent dielectric film. The electrodes are activated using three-phase high-voltage pulses at low current (< 1 mA/m2 ). The three-phase electric field charges the deposited particles, lifts them form the substrate by electrostatic forces and propels the dust layer off of the collector's surface by a traveling wave. The cleaning process takes less than 2 minutes; needs energy less than 1 Wh/m2 without requiring any water or manual labor. The reflection efficiency can be restored > 95% of the original clean-mirror efficiency. We briefly present (1) loss of specular reflection efficiency as a function of particle size distribution of deposited dust, and (2) the effects of the electrode design and materials used for minimizing initial loss of specular reflectivity in producing EDS-integrated solar mirrors. Optimization of EDS by using a figure of merit defined by the ratio of dust removal efficiency to the initial loss of specular reflection efficiency is discussed.
Scaling of titanium implants entrains inflammation-induced osteolysis
Eger, Michal; Sterer, Nir; Liron, Tamar; Kohavi, David; Gabet, Yankel
2017-01-01
With millions of new dental and orthopedic implants inserted annually, periprosthetic osteolysis becomes a major concern. In dentistry, peri-implantitis management includes cleaning using ultrasonic scaling. We examined whether ultrasonic scaling releases titanium particles and induces inflammation and osteolysis. Titanium discs with machined, sandblasted/acid-etched and sandblasted surfaces were subjected to ultrasonic scaling and we physically and chemically characterized the released particles. These particles induced a severe inflammatory response in macrophages and stimulated osteoclastogenesis. The number of released particles and their chemical composition and nanotopography had a significant effect on the inflammatory response. Sandblasted surfaces released the highest number of particles with the greatest nanoroughness properties. Particles from sandblasted/acid-etched discs induced a milder inflammatory response than those from sandblasted discs but a stronger inflammatory response than those from machined discs. Titanium particles were then embedded in fibrin membranes placed on mouse calvariae for 5 weeks. Using micro-CT, we observed that particles from sandblasted discs induced more osteolysis than those from sandblasted/acid-etched discs. In summary, ultrasonic scaling of titanium implants releases particles in a surface type-dependent manner and may aggravate peri-implantitis. Future studies should assess whether surface roughening affects the extent of released wear particles and aseptic loosening of orthopedic implants. PMID:28059080
Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang
2011-03-01
Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.
Surface modification to waveguides
Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.
1982-06-16
A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.
Nanoscale thin film growth of Au on Si(111)-7 × 7 surface by pulsed laser deposition method
NASA Astrophysics Data System (ADS)
Yokotani, Atsushi; Kameyama, Akihiro; Nakayoshi, Kohei; Matsunaga, Yuta
2017-03-01
To obtain important information for fabricating atomic-scale Au thin films that are used for biosensors, we have observed the morphology of Au particles adsorbed on a Si(111)-7 × 7 surface, which is supposed to be the initial stage of Au atomistic thin film formation. Au particles were adsorbed on the clean Si surface using a PLD method, and the adsorbed particles were observed using a scanning tunneling microscope. As the number of laser shots was increased in the PLD method, the size of the adsorbed particle became larger. The larger particles seemed to form clusters, which are aggregations of particles in which each particle is distinguished, so we call this type of cluster a film-shaped cluster. In this work, we have mainly analyzed this type of cluster. As a result the film-shaped clusters were found to have a structure of nearly monoatomic layers. The particles in the clusters were gathered closely in roughly a 3-fold structure with an inter particle distance of 0.864 nm. We propose a model for the cluster structure by modifying Au(111) face so that each observed particle consists of three Au atoms.
Borris, Matthias; Österlund, Heléne; Marsalek, Jiri; Viklander, Maria
2016-12-15
Laboratory leaching experiments were performed to study the potential of coarse street sediments (i.e. >250μm) to release dissolved and particulate-bound heavy metals (i.e. Cd, Cr, Cu, Ni, Pb and Zn) during rainfall/runoff. Towards this end, street sediments were sampled by vacuuming at seven sites in five Swedish cities and the collected sediments were characterized with respect to their physical and chemical properties. In the laboratory, the sediments were combined with synthetic rainwater and subject to agitation by a shaker mimicking particle motion during transport by runoff from street surfaces. As a result of such action, coarse street sediments were found to release significant amounts of heavy metals, which were predominantly (up to 99%) in the particulate bound phase. Thus, in dry weather, coarse street sediments functioned as collectors of fine particles with attached heavy metals, but in wet weather, metal burdens were released by rainfall/runoff processes. The magnitude of such releases depended on the site characteristics (i.e. street cleaning and traffic intensity), particle properties (i.e. organic matter content), and runoff characteristics (pH, and the duration of, and energy input into, sediment/water agitation). The study findings suggest that street cleaning, which preferentially removes coarser sediments, may produce additional environmental benefits by also removing fine contaminated particles attached to coarser materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Percent area coverage through image analysis
NASA Astrophysics Data System (ADS)
Wong, Chung M.; Hong, Sung M.; Liu, De-Ling
2016-09-01
The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.
Huang, Jingda; Lyu, Shaoyi
2017-01-01
It is a challenge for a superhydrophobic coating to overcome the poor robustness and the rough surface structure that is usually built using inorganic particles that are difficult to degrade. In this study, a robust superhydrophobic coating is facilely prepared by using commercial biodegradable lignin-coated cellulose nanocrystal (L-CNC) particles after hydrophobic modification to build rough surface structures, and by choosing two different adhesives (double-sided tape and quick-setting epoxy) to support adhesion between the L-CNC particles and the substrates. In addition to excellent self-cleaning and water repellence properties, the resulting coatings show outstanding mechanical strength and durability against sandpaper abrasion, finger-wipe, knife-scratch, water jet, UV radiation, high temperature, and acidic and alkali solutions, possessing a wide application prospect. PMID:28906449
Yu, T; Zhang, X Y; Wang, Z X; Li, B; Zheng, Y X; Bin, P
2017-06-20
Objective: To evaluate the viability of gasoline engine exhaust (GEE) with different particle sizes on human lung cell line BEAS-2B in vitro by air-liquid interface (ALI) . Methods: GEE were collected with a Tedlar bag and their particulate matter (PM) number, surface and mass concentration in three kind of GEE (filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter) were measured by two type of particle size spectrometer including TSI-3321 and SMPS-3938. Five groups were included, which divided into blank control group, clean air group, filtered automobile exhaust group, non-filtered automobile exhaust group and motorcycle exhaust without three-way catalytic converter group. Except the blank control group, BEAS-2B cells, cultured on the surface of Transwells, were treated with clean air or GEE by ALI method at a flow rate of 25 ml/min, 37 ℃ for 60 min in vitro . CCK-8 cytotoxicity test kit was used to determine the cell relative viability of BEAS-2B cells. Results: In the filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter, high concentrations of fine particles can be detected, but the coarse particles only accounted for a small proportion, and the sequence of PM concentration was motorcycle exhaust without three-way catalytic converter group> non-filtered automobile exhaust group> filtered automobile exhaust group ( P <0.001) . Compared with the clean air group, the cell relative viability in the 3 GEE-exposed groups were significantly lower ( P <0.001) . Among the comparisons of GEE exposure groups with different particle size spectra, the sequence of the cell relative viability was filtered automobile exhaust group >non-filtered automobile exhaust group> motorcycle exhaust without three-way catalytic converter group ( P <0.001) . When took the clean air control group as a reference, the mean of the cell relative viability in the filtered automobile exhaust group, non-filtered automobile exhaust group and motorcycle exhaust without three-way catalytic converter group, was decreased by 26.34%, 36.00% and 49.59%, respectively. Conclusion: GEE with different particle size spectra could induce different levels of toxic effects to the human lung cells BEAS-2B by ALI. After lowering the concentration of particles in the GEE and using the three-way catalytic converter could obviously improve the survival rate of lung cells.
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
Automated imprint mask cleaning for step-and-flash imprint lithography
NASA Astrophysics Data System (ADS)
Singh, Sherjang; Chen, Ssuwei; Selinidis, Kosta; Fletcher, Brian; McMackin, Ian; Thompson, Ecron; Resnick, Douglas J.; Dress, Peter; Dietze, Uwe
2009-03-01
Step-and-Flash Imprint Lithography (S-FIL) is a promising lithography strategy for semiconductor manufacturing at device nodes below 32nm. The S-FIL 1:1 pattern transfer technology utilizes a field-by-field ink jet dispense of a low viscosity liquid resist to fill the relief pattern of the device layer etched into the glass mask. Compared to other sub 40nm CD lithography methods, the resulting high resolution, high throughput through clustering, 3D patterning capability, low process complexity, and low cost of ownership (CoO) of S-FIL makes it a widely accepted technology for patterned media as well as a promising mainstream option for future CMOS applications. Preservation of mask cleanliness is essential to avoid risk of repeated printing of defects. The development of mask cleaning processes capable of removing particles adhered to the mask surface without damaging the mask is critical to meet high volume manufacturing requirements. In this paper we have presented various methods of residual (cross-linked) resist removal and final imprint mask cleaning demonstrated on the HamaTech MaskTrack automated mask cleaning system. Conventional and non-conventional (acid free) methods of particle removal have been compared and the effect of mask cleaning on pattern damage and CD integrity is also studied.
Practical Guide for Flame Bending of Pipe
1991-08-01
cleaned. This surface inspection should be in the form of either a dye penetrant or magnetic particle inspection depending on the base material type...fairly accurate and marked on the pipe with a permanent marks-a-lot black ink pen, chalk, soapstone , or other marker which endures flame temperatures...orifice tip. The area to be heated was Magnetic Particle (MT) Inspected any heating and after the final heat. The MT inspectionssatisfactory. prior to Were
NASA Astrophysics Data System (ADS)
Wang, Yuying; Zhang, Fang; Li, Zhanqing; Tan, Haobo; Xu, Hanbing; Ren, Jingye; Zhao, Jian; Du, Wei; Sun, Yele
2017-04-01
A series of strict emission control measures was implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate the anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0-8.5 % during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5-10.5 %. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant nonvolatile (NV) mode throughout the day, suggesting a more externally mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) as particle sizes increased during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation analysis of the number fractions of NH and NV particles, we found that a higher number fraction of hydrophobic and volatile particles during the emission control period.
Self-Cleaning Ceramic Tiles Produced via Stable Coating of TiO₂ Nanoparticles.
Shakeri, Amid; Yip, Darren; Badv, Maryam; Imani, Sara M; Sanjari, Mehdi; Didar, Tohid F
2018-06-13
The high photocatalytic power of TiO₂ nanoparticles has drawn great attention in environmental and medical applications. Coating surfaces with these particles enables us to benefit from self-cleaning properties and decomposition of pollutants. In this paper, two strategies have been introduced to coat ceramic tiles with TiO₂ nanoparticles, and the self-cleaning effect of the surfaces on degradation of an organic dye under ultraviolent (UV) exposure is investigated. In the first approach, a simple one-step heat treatment method is introduced for coating, and different parameters of the heat treatment process are examined. In the second method, TiO₂ nanoparticles are first aminosilanized using (3-Aminopropyl)triethoxysilane (APTES) treatment followed by their covalently attachment onto CO₂ plasma treated ceramic tiles via N -(3-Dimethylaminopropyl)- N ′-ethylcarbodiimide hydrochloride (EDC) and N -Hydroxysuccinimide (NHS) chemistry. We monitor TiO₂ nanoparticle sizes throughout the coating process using dynamic light scattering (DLS) and characterize developed surfaces using X-ray photoelectron spectroscopy (XPS). Moreover, hydrophilicity of the coated surfaces is quantified using a contact angle measurement. It is shown that applying a one-step heat treatment process with the optimum temperature of 200 °C for 5 h results in successful coating of nanoparticles and rapid degradation of dye in a short time. In the second strategy, the APTES treatment creates a stable covalent coating, while the photocatalytic capability of the particles is preserved. The results show that coated ceramic tiles are capable of fully degrading the added dyes under UV exposure in less than 24 h.
Ellison, J. McK.
1965-01-01
Particles constitute an important part of air pollution, and their behaviour when suspended in air is very different from that of gas molecules: in particular, the mechanisms by which they become deposited on surfaces are different, and consequently the methods normally used for removing particles from the air, either for sampling or for cleaning it, rely mainly on mechanisms that do not enter into the behaviour of gas molecules. These mechanisms are described, and the ways in which they affect the problems of air pollution and its measurement are discussed. ImagesFIG. 8 PMID:14315713
Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys
NASA Astrophysics Data System (ADS)
Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs
2018-02-01
Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.
ArF halftone PSM cleaning process optimization for next-generation lithography
NASA Astrophysics Data System (ADS)
Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok
2000-07-01
ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.
NASA Astrophysics Data System (ADS)
Wang, Yuying; Zhang, Fang; Li, Zhanqing
2017-04-01
A series of strict emission control measures were implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely, the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0%-8.5% during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5%-10.5%. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly-hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant non-volatile (NV) mode throughout the day, suggesting a more externally-mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation analysis of the number fractions of NH and NV particles, we found that a higher number fraction of hydrophobic and volatile particles during the emission control period.
2014-04-01
added to a pre- weighed 125-ml low density polyethylene (LDPE) bottle. The particles were digested with 1.0 ml of concentrated trace metal grade (TMG...consideration to ensure completion of operations. 33 9. REFERENCES Breault, R. F., K. P. Smith, and J. R. Sorenson. 2005. “ Residential Street...of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff.” Caltrans CTSW-RT-03-059.73.15. California Department of
Demonstration/Validation of a Surface Cleaning Control to Mitigate Storm Water Metal Contaminants
2014-04-01
added to a pre- weighed 125-ml low density polyethylene (LDPE) bottle. The particles were digested with 1.0 ml of concentrated trace metal grade (TMG...Sorenson. 2005. “ Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical- and Vacuum-Type...Bay, and M. Kayhanian. 2003. “A Review of the Contaminants and Toxicity Associated with Particles in Stormwater Runoff.” Caltrans CTSW-RT-03-059.73.15
Characterization of an acoustic cavitation bubble structure at 230 kHz.
Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2011-03-01
A generic bubble structure in a 230 kHz ultrasonic field is observed in a partly developed standing wave field in water. It is characterized by high-speed imaging, sonoluminescence recordings, and surface cleaning tests. The structure has two distinct bubble populations. Bigger bubbles (much larger than linear resonance size) group on rings in planes parallel to the transducer surface, apparently in locations of driving pressure minima. They slowly rise in a jittering, but synchronous way, and they can have smaller satellite bubbles, thus resembling the arrays of bubbles observed by Miller [D. Miller, Stable arrays of resonant bubbles in a 1-MHz standing-wave acoustic field, J. Acoust. Soc. Am. 62 (1977) 12]. Smaller bubbles (below and near linear resonance size) show a fast "streamer" motion perpendicular to and away from the transducer surface. While the bigger bubbles do not emit light, the smaller bubbles in the streamers show sonoluminescence when they pass the planes of high driving pressure. Both bubble populations exhibit cleaning potential with respect to micro-particles attached to a glass substrate. The respective mechanisms of particle removal, though, might be different. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Fei; Wang, Qun; Yan, Qishe; Jiang, Nan; Wei, Junhua; Wei, Zhiyuan; Yin, Shasha
2018-04-01
There was a significant snowfall event in North China from November 23 to 25 in 2015. Considering that most of the bare surface and road dust were covered by snow, the effect of dust and soil could be ignored. Atmospheric particle samples were collected in Zhengzhou, China during a haze event from November 28 to December 4, 2015. To better understand the formation and evolution of this hazy event, the size distribution, particle number, composition of particles and meteorological parameters were measured and analyzed. Results show that the meteorological conditions played an important role in the occurrence and elimination of this event. The hourly fine particle matter (PM2.5) concentration was positively correlated with relative humidity (r = 0.84, p < 0.01) but negatively correlated with wind speed (r = - 0.62, p < 0.01). The particle mass concentrations peaked at the sizes of 1.0 to 1.6 μm on hazy days, however, the total particle number concentrations on hazy days were lower than those on clean days. The median diameter of the number concentration during hazy days was approximately 60 nm, whereas it was 26 nm on clean days. Two new particle formation processes were observed on the clean days both. The proportion of secondary inorganic ions (SO42 -, NO3- and NH4+) on hazy days was higher than that on clean days. The higher NH4+ concentration in this case may be contributed by traffic and coal-power emission. Crustal matter accounted for 2.4% in PM2.5 on hazy days, and it confirmed that the contribution of dust emission source was negligible during this event. The ratios of NO3-/SO42 - ranging from 0.41 to 0.67 indicated the relative importance of stationary combustion. The ratios of OC/EC varied from 2.73 to 3.42 and indicated the presence of secondary organic carbon. Effective haze mitigation should enforce pollutant control measures for primary emission (dust) and secondary aerosol gaseous precursor (NH3, NO2 and SO2).
Klebanoff, Leonard E.; Torczynski, John R.; Geller, Anthony S.; ...
2015-03-27
An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitlymore » analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. Furthermore, the bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone.« less
Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
Hansen, Thomas W; Delariva, Andrew T; Challa, Sivakumar R; Datye, Abhaya K
2013-08-20
Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental understanding of catalyst sintering is very important for achieving clean energy and a clean environment, and for efficient chemical conversion processes with atom selectivity. Scientists have proposed two mechanisms for sintering of nanoparticles: particle migration and coalescence (PMC) and Ostwald ripening (OR). PMC involves the mobility of particles in a Brownian-like motion on the support surface, with subsequent coalescence leading to nanoparticle growth. In contrast, OR involves the migration of adatoms or mobile molecular species, driven by differences in free energy and local adatom concentrations on the support surface. In this Account, we divide the process of sintering into three phases. Phase I involves rapid loss in catalyst activity (or surface area), phase II is where sintering slows down, and phase III is where the catalyst may reach a stable performance. Much of the previous work is based on inferences from catalysts that were observed before and after long term treatments. While the general phenomena can be captured correctly, the mechanisms cannot be determined. Advancements in the techniques of in situ TEM allow us to observe catalysts at elevated temperatures under working conditions. We review recent evidence obtained via in situ methods to determine the relative importance of PMC and OR in each of these phases of catalyst sintering. The evidence suggests that, in phase I, OR is responsible for the rapid loss of activity that occurs when particles are very small. Surprisingly, very little PMC is observed in this phase. Instead, the rapid loss of activity is caused by the disappearance of the smallest particles. These findings are in good agreement with representative atomistic simulations of sintering. In phase II, sintering slows down since the smallest particles have disappeared. We now see a combination of PMC and OR, but do not fully understand the relative contribution of each of these processes to the overall rates of sintering. In phase III, the particles have grown large and other parasitic phenomena, such as support restructuring, can become important, especially at high temperatures. Examining the evolution of particle size and surface area with time, we do not see a stable or equilibrium state, especially for catalysts operating at elevated temperatures. In conclusion, the recent literature, especially on in situ studies, shows that OR is the dominant process causing the growth of nanoparticle size. Consequently, this leads to the loss of surface area and activity. While particle migration could be controlled through suitable structuring of catalyst supports, it is more difficult to control the mobility of atomically dispersed species. These insights into the mechanisms of sintering could help to develop sinter-resistant catalysts, with the ultimate goal of designing catalysts that are self-healing.
Plipat, Nottasorn; Spicknall, Ian H; Koopman, James S; Eisenberg, Joseph Ns
2013-12-17
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment. We constructed and analyzed a deterministic environmental compartmental model of MRSA fate, transport, and exposure between two hypothetical hospital rooms: one with a colonized patient, shedding MRSA; another with an uncolonized patient, susceptible to exposure. Healthcare workers (HCWs), acting solely as vectors, spread MRSA from one patient room to the other. Although porous surfaces became highly contaminated, their low transfer efficiency limited the exposure dose to HCWs and the uncolonized patient. Conversely, the high transfer efficiency of nonporous surfaces allows greater MRSA transfer when touched. In the colonized patient's room, HCW exposure occurred more predominantly through the indirect (patient to surfaces to HCW) mode compared to the direct (patient to HCW) mode. In contrast, in the uncolonized patient's room, patient exposure was more predominant in the direct (HCW to patient) mode compared to the indirect (HCW to surfaces to patient) mode. Surface wiping decreased MRSA exposure to the uncolonized patient more than daily surface decontamination. This was because wiping allowed higher cleaning frequency and cleaned more total surface area per day. Environmental cleaning should be considered as an integral component of MRSA infection control in hospitals. Given the previously under-appreciated role of surface contamination in MRSA transmission, this intervention mode can contribute to an effective multiple barrier approach in concert with hand hygiene.
Mahler, V; Erfurt-Berge, C; Schiemann, S; Michael, S; Egloffstein, A; Kuss, O
2010-04-01
In occupational fields with exposure to grease, oil, metal particles, coal, black lead or soot, cleansing formulations containing abrasive bodies (e.g. refined walnut shell, corn, wood, plastic or pumice) are used. These may constitute an irritant per se. As an alternative, hydrogenated castor oil (also known as castor wax) beads have been developed as dirt-binding particles. A polar surface contributes to their mechanical cleaning effects in removal of oily grime. Standardized examination of the in vivo effects upon the skin barrier of castor wax beads in comparison with abrasive bodies and pure detergent. Three cleansing preparations - (i) detergent, (ii) detergent containing castor wax beads, (iii) detergent containing walnut shell powder - were each repetitively applied in vivo (four times daily for 3 weeks), mimicking workplace conditions, in 30 healthy volunteers (15 with and 15 without an atopic skin diathesis) and compared vs. (iv) no treatment. The treatment effects upon the skin barrier were monitored by repeated measurements of functional parameters [transepidermal water loss (TEWL), redness] and surface topography. After a 3-week treatment, a significant global treatment effect (P < 0.0001) was found in the atopic group concerning TEWL as indicator for barrier function. A significantly higher TEWL and increasing erythema in the area treated with detergent containing walnut shell powder reflected its irritant effect compared with castor wax beads dispensed in the identical detergent. Cleaning properties of the two formulas were comparably superior to detergent alone. Castor wax beads constitute a novel nonirritating alternative for abrasive cleaning of recalcitrant oily skin contamination appropriate for individuals with an atopic skin diathesis in a three-step programme of occupational skin protection. As the skin barrier may additionally be influenced by the composition of dirt and use of skin protection and skin care measures under real workplace conditions, this component may now be used and examined further in different occupations.
Implications of Adhesion Studies for Dust Mitigation on Thermal Control Surfaces
NASA Technical Reports Server (NTRS)
Gaier, James R.; Berkebile, Stephen P.
2012-01-01
Experiments measuring the adhesion forces under ultrahigh vacuum conditions (10 (exp -10) torr) between a synthetic volcanic glass and commonly used space exploration materials have recently been described. The glass has a chemistry and surface structure typical of the lunar regolith. It was found that Van der Waals forces between the glass and common spacecraft materials was negligible. Charge transfer between the materials was induced by mechanically striking the spacecraft material pin against the glass plate. No measurable adhesion occurred when striking the highly conducting materials, however, on striking insulating dielectric materials the adhesion increased dramatically. This indicates that electrostatic forces dominate over Van der Waals forces under these conditions. The presence of small amounts of surface contaminants was found to lower adhesive forces by at least two orders of magnitude, and perhaps more. Both particle and space exploration material surfaces will be cleaned by the interaction with the solar wind and other energetic processes and stay clean because of the extremely high vacuum (10 (exp -12) torr) so the atomically clean adhesion values are probably the relevant ones for the lunar surface environment. These results are used to interpret the results of dust mitigation technology experiments utilizing textured surfaces, work function matching surfaces and brushing. They have also been used to reinterpret the results of the Apollo 14 Thermal Degradation Samples experiment.
Planetary quarantine. Space research and technology
NASA Technical Reports Server (NTRS)
1973-01-01
The impact of satisfying satellite quarantine constraints on outer planet missions and spacecraft design are studied by considering the effects of planetary radiation belts, solar wind radiation, and space vacuum on microorganism survival. Post launch recontamination studies evaluate the effects of mission environments on particle distributions on spacecraft surfaces and effective cleaning and decontamination techniques.
Cleaning and Cleanliness Measurement of Additive Manufactured Parts
NASA Technical Reports Server (NTRS)
Mitchell, Mark A.; Raley, Randy
2016-01-01
The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surfaces of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The methods for establishing objective cleanliness acceptance limits will be discussed.
ODS - modified TiO2 nanoparticles for the preparation of self-cleaning superhydrophobic coating
NASA Astrophysics Data System (ADS)
Kokare, Ashvini M.; Sutar, Rajaram S.; Deshmukh, S. G.; Xing, Ruimin; Liu, Shanhu; Latthe, Sanjay S.
2018-05-01
Rolling water drops takes off dust particles from lotus leaf showing self-cleaning performance. Self-cleaning effect has great importance in industry as well as in daily life. The present paper describes the preparation of self-cleaning superhydrophobic coating through simple and low cost dip coating technique. The prepared superhydrophobic surface enact as lotus leaf. Firstly TiO2 nanoparticles were dispersed in ethanol and different concentration of octadecyltrichlorosilane (ODS) was added in TiO2 dispersion. The effect of number of deposition layer on the wettability of the coating was studied. The coating prepared from five deposition layers showed contact angle higher than 150° and sliding angle less than 10°. The superhydrophobicity increases with increasing concentration of ODS. The hierarchical rough morphology which is preferable for superhydrophobicity was obtained. The prepared coatings were stable against water jet impact and showed repellent towards colored and muddy water. Such superhydrophobic coating can find enormous scope in self-cleaning application.
Self-cleaning geopolymer concrete - A review
NASA Astrophysics Data System (ADS)
Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor
2016-06-01
Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.
Superhydrophobic Surface Coatings for Microfluidics and MEMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branson, Eric D.; Singh, Seema; Houston, Jack E.
2006-11-01
Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow inmore » a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4« less
NASA Astrophysics Data System (ADS)
Mallinson, Christopher F.
Beryllium is an important metal in the nuclear industry for which there are no suitable replacements. It undergoes localised corrosion at the site of heterogeneities in the metal surface. Corrosion pits are associated with a range of second phase particles. To investigate the role of these particles in corrosion, a safe experimental protocol was established using an aluminium alloy as a corrosion material analogue. The 7075-T6 alloy had not previously been investigated using the experimental methodology used in this thesis. This work led to the development of the experimental methodology and safe working practices for handling beryllium. The range and composition of the second phase particles present in S-65 beryllium billet were identified using a combination of SEM, AES, EDX and WDX. Following the identification of a range of particles with various compositions, including the AlFeBe4 precipitate which has been previously associated with corrosion, the location of the particles were marked to enable their repeated study. Attention was focused on the microchemistry in the vicinity of second phase particles, as a function of immersion time in pH 7, 0.1 M NaCl solution. The corrosion process associated with different particles was followed by repeatedly relocating the particles to perform analysis by means of SEM, AES and EDX. The use of traditional chlorinated vapour degreasing solvents on beryllium was investigated and compared to two modern commercially available cleaning solutions designed as drop-in replacements. This work expanded the range of solvents suitable for cleaning beryllium and validated the conclusions from previous thermodynamic modelling. Additionally, a new experimental methodology has been developed which enables the acquisition of chemical state information from the surface of micron scale features. This was applied to sub-micron copper and iron particles, as well as a copper intermetallic.
Mossotti, Victor G.; Eldeeb, A. Raouf; Fries, Terry L.; Coombs, Mary Jane; Naude, Virginia N.; Soderberg, Lisa; Wheeler, George S.
2002-01-01
This report describes a scientific investigation of the effects of eight different cleaning techniques on the Berkshire Lee marble component of the facade of the East Center Pavilion at Philadelphia City Hall; the study was commissioned by the city of Philadelphia. The eight cleaning techniques evaluated in this study were power wash (proprietary gel detergent followed by water rinse under pressure), misting (treatment with potable, nebulized water for 24-36 hours), gommage (proprietary Thomann-Hanry low-pressure, air-driven, small-particle, dry abrasion), combination (gommage followed by misting), Armax (sodium bicarbonate delivered under pressure in a water wash), JOS (dolomite powder delivered in a low-pressure, rotary-vortex water wash), laser (thermal ablation), and dry ice (powdered-dry-ice abrasion delivered under pressure). In our study approximately 160 cores were removed from the building for laboratory analysis. We developed a computer program to analyze scanning-electron-micrograph images for the microscale surface roughness and other morphologic parameters of the stone surface, including the near-surface fracture density of the stone. An analysis of more than 1,100 samples cut from the cores provided a statistical basis for crafting the essential elements of a reduced-form, mixed-kinetics conceptual model that represents the deterioration of calcareous stone in terms of self-organized soiling and erosion patterns. This model, in turn, provided a basis for identifying the variables that are affected by the cleaning techniques and for evaluating the extent to which such variables influence the stability of the stone. The model recognizes three classes of variables that may influence the soiling load on the stone, including such exogenous environmental variables as airborne moisture, pollutant concentrations, and local aerodynamics, and such endogenous stone variables as surface chemistry and microstructure (fracturing, roughness, and so on). This study showed that morphologic variables on the mesoscale to macroscale are not generally affected by the choice of a cleaning technique. The long-term soiling pattern on the building is independent of the cleaning technique applied. This study also showed that soluble salts do not play a significant role in the deterioration of Berkshire Lee marble. Although salts were evident in cracks and fissures of the heavily soiled stone, such salts did not penetrate the surface to a depth of more than a few hundred micrometers. The criteria used to differentiate the cleaning techniques were ultimately based on the ability of each technique to remove soiling without altering the texture of the stone surface. This study identified both the gommage and JOS techniques as appropriate for cleaning ashlar surfaces and the combination technique as appropriate for cleaning highly carved surfaces at the entablatures, cornices, and column capitals.
Particle control near reticle and optics using showerhead
Delgado, Gildardo R.; Chilese, Frank; Garcia, Rudy; Torczynski, John R.; Geller, Anthony S.; Rader, Daniel J.; Klebanoff, Leonard E.; Gallis, Michail A.
2016-01-26
A method and an apparatus to protect a reticle against particles and chemicals in an actinic EUV reticle inspection tool are presented. The method and apparatus utilizes a pair of porous metal diffusers in the form of showerheads to provide a continual flow of clean gas. The main showerhead bathes the reticle surface to be inspected in smoothly flowing, low pressure gas, isolating it from particles coming from surrounding volumes. The secondary showerhead faces away from the reticle and toward the EUV illumination and projection optics, supplying them with purge gas while at the same time creating a buffer zone that is kept free of any particle contamination originating from those optics.
Contamination removal by CO2 jet spray
NASA Astrophysics Data System (ADS)
Peterson, Ronald V.; Bowers, Charles W.
1990-11-01
Studies on the effectiveness of the jet flush in removing particle fallout and Arizona-standard fine dust on polished optical substrates have been carried out at ambient pressure and vacuum. These studies have shown that the CO2 jet flush is a viable method for removing contaminants from optical surfaces with no damage to the surface. The studies also show that the jet flush has potential for use as an on-orbit cleaning device for space optics.
NASA Astrophysics Data System (ADS)
Roh, H. S.; Kang, Y. C.; Park, H. D.; Park, S. B.
Y2O3:Eu phosphor particles were prepared by large-scale spray pyrolysis. The morphological control of Y2O3:Eu particles in spray pyrolysis was attempted by adding polymeric precursors to the spray solution. The effect of composition and amount of polymeric precursors on the morphology, crystallinity and photoluminescence characteristics of Y2O3:Eu particles was investigated. Particles prepared from a solution containing polyethylene glycol (PEG) with an average molecular weight of 200 had a hollow structure, while those prepared from solutions containing adequate amounts of citric acid (CA) and PEG had a spherical shape, filled morphology and clean surfaces after post-treatment at high temperature. Y2O3:Eu particles prepared from an aqueous solution with no polymeric precursors had a hollow structure and rough surfaces after post-treatment. The phosphor particles prepared from solutions with inadequate amounts of CA and/or PEG also had hollow and/or fragmented structures. The particles prepared from the solution containing 0.3 M CA and 0.3 M PEG had the highest photoluminescence emission intensity, which was 56% higher than that of the particles prepared from aqueous solution without polymeric precursors.
Optimizing surface finishing processes through the use of novel solvents and systems
NASA Astrophysics Data System (ADS)
Quillen, M.; Holbrook, P.; Moore, J.
2007-03-01
As the semiconductor industry continues to implement the ITRS (International Technology Roadmap for Semiconductors) node targets that go beyond 45nm [1], the need for improved cleanliness between repeated process steps continues to grow. Wafer cleaning challenges cover many applications such as Cu/low-K integration, where trade-offs must be made between dielectric damage and residue by plasma etching and CMP or moisture uptake by aqueous cleaning products. [2-5] Some surface sensitive processes use the Marangoni tool design [6] where a conventional solvent such as IPA (isopropanol), combines with water to provide improved physical properties such as reduced contact angle and surface tension. This paper introduces the use of alternative solvents and their mixtures compared to pure IPA in removing ionics, moisture, and particles using immersion bench-chemistry models of various processes. A novel Eastman proprietary solvent, Eastman methyl acetate is observed to provide improvement in ionic, moisture capture, and particle removal, as compared to conventional IPA. [7] These benefits may be improved relative to pure IPA, simply by the addition of various additives. Some physical properties of the mixtures were found to be relatively unchanged even as measured performance improved. This report presents our attempts to cite and optimize these benefits through the use of laboratory models.
NASA Astrophysics Data System (ADS)
Sayyah, Arash
Particulate contamination of the optical surfaces of solar collectors, often called "soiling", can have a significant deteriorating impact on energy yield due to the absorption and scattering of incident light. Soiling has more destructive effect on concentrated solar systems than on flat-plate photovoltaic panels, as the former are incapable of converting scattered sunlight. The first part of this thesis deals with the soiling losses of flat-plate photovoltaic (PV), concentrated solar power (CSP), and concentrated photovoltaic (CPV) systems in operation in several regions of the world. Influential parameters in dust accumulation losses, as well as different cleaning mechanisms in pursuit of restoring the efficiency of soiled systems, have been thoroughly investigated. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, the concept of automatic dust removal using the electrostatic forces of electrodynamic screen (EDS) technology is in a developmental stage and on its way toward commercialization. This thesis provides comprehensive analytical solutions for the electric potential and electric field distribution in EDS devices having different configurations. Numerical simulations developed using finite element analysis (FEA) software have corroborated the analytical solutions which can easily be embedded into software programs for particle trajectory simulations while also providing flexibility and generality in the study on the effect of different parameters of the EDS on the electric field and ensuing dust-removal performance. Evaluation and comparison of different repelling and attracting forces exerted on dust particles is of utmost importance to a detailed analysis of EDS performance in dust removal. Hence, the balance of electrostatic and adhesion forces, including van der Waals and capillary forces, have received significant attention in this dissertation. Furthermore, different numerical analyses have been conducted to investigate the potential causes of observed failures of EDS prototypes that functioned well in a laboratory environment but failed after outdoor exposure. Experimental studies form the last two chapters of this dissertation. Different tests have been conducted on an EDS sample integrated with a PV cell to restore the efficiency of the cell after dust deposition. In order to evaluate the performance of the EDS in dust-particle removal, we have studied the particle size distribution on the EDS surface after each dust deposition and EDS cleaning cycle using a custom-built dust-deposition analyzer. Furthermore, we have pursued several experiments to examine how the geometric and operational EDS parameters affect particle charge via charge-to-mass-ratio measurements.
Kuwayama, Toshihiro; Ruehl, Chris R; Kleeman, Michael J
2013-12-17
Toxicology studies indicate that inhalation of ultrafine particles (Dp < 0.1 μm) causes adverse health effects, presumably due to their large surface area-to-volume ratio that can drive heterogeneous reactions. Epidemiological associations between ultrafine particles and health effects, however, have been difficult to identify due to the lack of appropriate long-term monitoring and exposure data. The majority of the existing ultrafine particle epidemiology studies are based on exposure to particle number, although an independent analysis suggests that ultrafine particle mass (PM0.1) correlates better with particle surface area. More information is needed to characterize PM0.1 exposure to fully evaluate the health effects of ultrafine particles using epidemiology. The present study summarizes 1 year of daily PM0.1 chemistry and source apportionment at Sacramento, CA, USA. Positive matrix factorization (PMF) was used to resolve PM0.1 source contributions from old-technology diesel engines, residential wood burning, rail, regional traffic, and brake wear/road dust. Diesel PM0.1 and total PM0.1 concentrations were reduced by 97 and 26%, respectively, as a result of the adoption of cleaner diesel technology. The strong linear correlation between PM0.1 and particle surface area in central California suggests that the adoption of clean diesel engines reduced particle surface area by similar amounts. PM0.1 sulfate reduction occurred as a result of reduced primary particle surface area available for sulfate condensation. The current study demonstrates the capability of measuring PM0.1 source contributions over a 12 month period and identifies the extended benefits of emissions reduction efforts for diesel engines on ambient concentrations of primary and secondary PM0.1.
Detection of metal residues on bone using SEM-EDS. Part I: Blunt force injury.
Pechníková, Markéta; Porta, Davide; Mazzarelli, Debora; Rizzi, Agostino; Drozdová, Eva; Gibelli, Daniele; Cattaneo, Cristina
2012-11-30
Previous studies have indicated that metal particles remain on bone after sharp force injury or gunshot and that their detection by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) could greatly help in tool identification. However, the presence of metal particles on bone surfaces in the context of blunt force trauma has never been assessed experimentally. For this reason the present paper represents an experimental study of the behaviour of metal residues on bone following blunt force injury. Ten fresh sub-adult bovine metatarsal bones were manually cleaned of soft tissues. They were then struck by metal bars (copper, iron or aluminium) on the external surface of the mid-diaphysis. All blunt metal instruments used in this study left a sign in the form of single particles, a smear or a powder-like deposit on the bone surface. The residues of all three metal implements were detected on the bone surface, 0.3-10 mm from the fracture border. The presence of metal particles was confirmed in all samples struck with iron and copper and in two of six aluminium samples; no particles were detected on the negative control. Chemical composition of residues highly corresponded with the composition of applied bars. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
13. EQUIPMENT USED IN CLEAN ROOM (102), INCLUDING ROYCO PARTICLE ...
13. EQUIPMENT USED IN CLEAN ROOM (102), INCLUDING ROYCO PARTICLE COUNTER (LEFT) AND STEREOSCOPE FOR MANUAL PARTICLE COUNTING (RIGHT) - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...
2017-07-27
To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less
Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
Grinshpun, S A; Mainelis, G; Trunov, M; Adhikari, A; Reponen, T; Willeke, K
2005-08-01
Numerous techniques have been developed over the years for reducing aerosol exposure in indoor air environments. Among indoor air purifiers of different types, ionic emitters have gained increasing attention and are presently used for removing dust particles, aeroallergens and airborne microorganisms from indoor air. In this study, five ionic air purifiers (two wearable and three stationary) that produce unipolar air ions were evaluated with respect to their ability to reduce aerosol exposure in confined indoor spaces. The concentration decay of respirable particles of different properties was monitored in real time inside the breathing zone of a human manikin, which was placed in a relatively small (2.6 m3) walk-in chamber during the operation of an ionic air purifier in calm air and under mixing air condition. The particle removal efficiency as a function of particle size was determined using the data collected with a size-selective optical particle counter. The removal efficiency of the more powerful of the two wearable ionic purifiers reached about 50% after 15 min and almost 100% after 1.5 h of continuous operation in the chamber under calm air conditions. In the absence of external ventilation, air mixing, especially vigorous one (900 CFM), enhanced the air cleaning effect. Similar results were obtained when the manikin was placed inside a partial enclosure that simulated an aircraft seating configuration. All three stationary ionic air purifiers tested in this study were found capable of reducing the aerosol concentration in a confined indoor space. The most powerful stationary unit demonstrated an extremely high particle removal efficiency that increased sharply to almost 90% within 5-6 min, reaching about 100% within 10-12 min for all particle sizes (0.3-3 microm) tested in the chamber. For the units of the same emission rate, the data suggest that the ion polarity per se (negative vs. positive) does not affect the performance but the ion emission rate does. The effects of particle size (within the tested range) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria) as well as the effects of the manikin's body temperature and its breathing on the ionic purifier performance were either small or insignificant. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when used inside confined spaces with a relatively high surface-to-volume ratio. Ionic air purifiers have become increasingly popular for removing dust particles, aeroallergens and airborne microorganisms from indoor air in various settings. While the indoor air cleaning effect, resulting from unipolar and bipolar ion emission, has been tested by several investigators, there are still controversial claims (favorable and unfavorable) about the performance of commercially available ionic air purifiers. Among the five tested ionic air purifiers (two wearable and three stationary) producing unipolar air ions, the units with a higher ion emission rate provided higher particle removal efficiency. The ion polarity (negative vs. positive), the particle size (0.3-3 microm) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria), as well as the body temperature and breathing did not considerable affected the ionization-driven particle removal. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when they are used inside confined spaces with a relatively high surface-to-volume ratio (such as automobile cabins, aircraft seating areas, bathrooms, cellular offices, small residential rooms, and animal confinements). Based on our experiments, we proposed that purifiers with a very high ion emission rate be operated in an intermittent mode if used indoors for extended time periods. As the particles migrate to and deposit on indoor surfaces during the operation of ionic air purifiers, some excessive surface contamination may occur, which introduces the need of periodic cleaning these surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullin, I.Sh.; Bragin, V.E.; Bykanov, A.N.
Gas discharge plasma modification of polymer materials and metals is one of the known physical approaches for improving of materials biocompatibility in ophthalmology and surgery. The surface treatment in RF discharges can be effectively realized in the discharge afterglow and in the discharge region itself too. This modification method is more convenient and produces more uniform surfaces in comparison with other discharge types. The carried out experiments and published up to now results show that interaction of UV radiation, fluxes of ions, electrons and metastable particles with material`s surface changes chemical composition and surface structure. The exerting of these agentsmore » on the sample surface produces the following effects. There are processes of physical and plasma-chemical surface etching producing effective surface cleaning of different types of contaminations. It may be surface contaminations by hydrocarbons because of preliminary surface contacts with biological or physical bodies. It may be surface contaminations caused by characteristic properties of chemical technology too. There is a surface layer with thickness from some angstroms up to few hundreds of angstroms. The chemical content and structure of this layer is distinguished from the bulk polymer properties. The presence of such {open_quotes}technological{close_quotes} contaminations produces the layer of material substantially differing from the base polymer. The basic layer physical and chemical properties for example, gas permeation rate may substantially differ from the base polymer. Attempts to clean the surface from these contaminations by chemical methods (solutions) have not been successful and produced contaminations of more deep polymer layers. So the plasma cleaning is the most profitable method of polymer treatment for removing the surface contaminations. The improving of wettability occurs during this stage of treatment.« less
On Release of Microbe-Laden Particles from Mars Landers
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth
2006-01-01
A paper presents a study in which rates of release of small particles from Mars lander spacecraft into the Martian atmosphere were estimated from first principles. Because such particles can consist of, or be laden with, terrestrial microbes, the study was undertaken to understand their potential for biological contamination of Mars. The study included taking account of forces and energies involved in adhesion of particles and of three mechanisms of dislodgement of particles from the surface of a Mars lander: wind shear, wind-driven impingement of suspended dust, and impingement of wind-driven local saltating sand particles. Wind shear was determined to be effective in dislodging only particles larger than about 10 microns and would probably be of limited interest because such large particles could be removed by pre-flight cleaning of the spacecraft, and their number on the launched spacecraft would thus be relatively small. Dislodgement by wind-driven dust was found to be characterized by an adhesion half-life of the order of 10,000 years judged to be too long to be of concern. Dislodgement by saltating sand particles, including skirts of dust devils, was found to be of potential importance, depending on the sizes of the spacecraft-attached particles and characteristics of both Mars sand-particle and spacecraft surfaces.
Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Pan, Chen; Liu, Zirui; Liu, Xiaohui; Duan, Qing; Liu, Xuan; Wang, Yuesi
2014-08-15
In this paper we investigate a severe pollution episode that occurred in the Yangtze River Delta (YRD) region in January 2013. The episode was caused by the combination of anthropogenic emissions and unusual atmospheric circulation, the depression of strong cold air activities and the very unfavorable dispersion. The episode contained three haze events (haze1: Jan. 4-9, haze2: Jan. 10-13, and haze3: Jan. 14-16). In Nanjing, aerosol size distributions from 10nm to 10 μm and chemical components of single particles from 0.2 to 2 μm were measured with a Wide Range Particle Spectrometer (WPS) and a Single Particle Aerosol Mass Spectrometer (SPAMS), respectively. The results indicate that the mean PM2.5 concentrations in the YRD region were greater than 110 μg·m(-3). The highest PM2.5 concentration of 175.6 μg·m(-3) occurred in Nanjing; the other cities had values in the range of 110.8-147.3 μg·m(-3). The average PM2.5 concentrations were 58.3, 122.7, 145.4 and 154.7 μg·m(-3) on clean and haze1, haze2 and haze3 days, respectively. The highest PM2.5 values of 416.5, 415.5 and 300.5 μg·m(-3) in Nanjing occurred during the three haze events. The spectra of the aerosol number concentrations had unimodal distributions on clean and haze days. The maximum surface area peaks were located at 0.5-0.7 μm and had values of 419, 1397, 1309 and 1378 μm(2)·cm(-3)·nm(-1) on clean and haze1, haze2 and haze3 days, respectively. The number concentrations of biomass/biofuel burning-containing particles (biomass), organic carbon-containing particles (OC), elemental carbon-containing particles (EC), nitrate-containing particles (nitrate) and sulfate-containing particles (sulfate) increased significantly during the haze events. The chemical components of the aerosols during the haze1 and haze2 events were similar to those on clean days, and variations were caused by local particle accumulations under poor diffusion conditions. The high EC particle concentration of 24.76% during the haze3 event was impacted by the pollutants transported from surrounding cities. In addition, the different chemical components showed distinct size distributions. Copyright © 2014 Elsevier B.V. All rights reserved.
Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model
NASA Astrophysics Data System (ADS)
Gantt, B.; Bash, J. O.; Kelly, J.
2014-12-01
Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.
Direct observation of small cluster mobility and ripening
NASA Technical Reports Server (NTRS)
Heinemann, K.; Poppa, H.
1976-01-01
Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single-crystalline thin graphite substrates have been studied by in situ transmission electron microscopy (TEM) under controlled environmental conditions in the temperature range from 25 to 450 C. It was possible to monitor all stages of the experiments by TEM observation of the same specimen area. Slow Ostwald ripening was found to occur over the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility. This was concluded from in situ observations of individual particles during annealing and from measurements of cluster size distributions, cluster number densities, area coverages, and mean cluster diameters.
An Investigation Of The Effect Of Particle Size On Oxidation Of Pyrites In Coal.
NASA Astrophysics Data System (ADS)
Chan, Paul K.; Frost, David C.
1986-08-01
We have used X-ray photoelectron spectroscopy (XPS) to study the variation of surface pyrite density with coal particle size (53 4m - 250 4μm). We also detect and monitor pyrite oxidation to sulfate, an important process influencing the surface-dependency of coal-cleansing methods such as flotation. It is very likely that as coal is crushed as part of the processes employed to rid it of prospective pollutants one eventually reaches a pyrite size which may be called "characteristic". It is this parameter that we examine here. Good correlations are established between (i) the liberation of pyrite and particle size, (ii) surface pyrite/sulfate ratio, and (iii) oxidized and non-oxidized sulfur in a typical Canadian coal. For "non-oxidized", or "fresh" coal, the dispersion of pyrite on the coal surface is inversely proportional to coal particle radius, and the tangents of this curve intersect at a particular particle size (106±5 4μm). Although, for the oxidized coal, the appearance of the curves depend on oxidation time intervals at low temperature with humid air, there is an "optimum" particle size which exhibits maximum surface pyrite. Notably, this "optimum" size corresponds to the tangent's intersection for the non-oxidized coal, and hence the "characteristic" size of constituent pyrite. This should allow prediction of pyrite occurrence, a parameter of paramount interest in coal processing and cleaning technology. Coal surface characterization obtained by XPS after various conditioning steps and during flotation, allow both a functional analysis via the study of chemical shifts and a semi-quantitative analysis based on relative intensity measurements.
Vapor etching of nuclear tracks in dielectric materials
Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.
2000-01-01
A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.
Zhang, Changlin; Oliaee, Shirin Norooz; Hwang, Sang Youp; Kong, Xiangkai; Peng, Zhenmeng
2016-01-13
Mass production of shape-controlled platinum group metal (PGM) and alloy nanoparticles is of high importance for their many fascinating properties in catalysis, electronics, and photonics. Despite of successful demonstrations at milligram scale using wet chemistry syntheses in many fundamental studies, there is still a big gap between the current methods and their real applications due to the complex synthetic procedures, scale-up difficulty, and surface contamination problem of the made particles. Here we report a generic wet impregnation method for facile, surfactant-free, and scalable preparation of nanoparticles of PGMs and their alloys on different substrate materials with controlled particle morphology and clean surface, which bridges the outstanding properties of these nanoparticles to practical important applications. The underlying particle growth and shape formation mechanisms were investigated using a combination of ex situ and in situ characterizations and were attributed to their different interactions with the applied gas molecules.
Lei, Hao; Jones, Rachael M; Li, Yuguo
2017-01-18
Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions - whole room cleaning and wipe cleaning of touched surfaces - were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted cleaning of high-touch surfaces, such as by a wipe or cloth containing disinfectant.
Velocity Dependence of the Kinetic Friction of Nanoparticles
NASA Astrophysics Data System (ADS)
Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre
2010-03-01
The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)
NASA Astrophysics Data System (ADS)
Zhao, Nan; Fei, Xiao; Cheng, Xiaonong; Yang, Juan
2017-09-01
Recently, silver nanoparticles decorated with graphene and graphene oxide (GO) sheets can be employed as surface-enhanced Raman scattering (SERS) substrates. However, their SERS activity on macromolecular compound detection is all one-time process. In order to solve this issue and decrease the cost of routine SERS detection, silver/silver chloride (Ag/AgCl) with photocatalytic activity under visible light was introduced. In this study, a novel, simple and clean approach is carried out for synthesis of the Ag/AgCl/GO composite. The Ag/AgCl colloidal solution is obtained by hydrothermal method and then mixed with GO solution to obtain the Ag/AgCl/GO composite using a facile electrostatic self-assembly method. Results showed that the Ag/AgCl/GO composite has the optimized SERS activity to Rhodamine 6G molecules with the maximum enhancement factor value of 3.8×107. Furthermore, the Ag/AgCl particles with high efficient and stable photocatalytic activity under visible light lead to an outstanding self-cleaning property of the Ag/AgCl/GO composite.
Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I
2014-05-01
Membrane fouling is one of the main drawbacks of ultrafiltration technology during the treatment of dye-containing effluents. Therefore, the optimization of the membrane cleaning procedure is essential to improve the overall efficiency. In this work, a study of the factors affecting the ultrasound-assisted cleaning of an ultrafiltration ceramic membrane fouled by dye particles was carried out. The effect of transmembrane pressure (0.5, 1.5, 2.5 bar), cross-flow velocity (1, 2, 3 ms(-1)), ultrasound power level (40%, 70%, 100%) and ultrasound frequency mode (37, 80 kHz and mixed wave) on the cleaning efficiency was evaluated. The lowest frequency showed better results, although the best cleaning performance was obtained using the mixed wave mode. A Box-Behnken Design was used to find the optimal conditions for the cleaning procedure through a response surface study. The optimal operating conditions leading to the maximum cleaning efficiency predicted (32.19%) were found to be 1.1 bar, 3 ms(-1) and 100% of power level. Finally, the optimized response was compared to the efficiency of a chemical cleaning with NaOH solution, with and without the use of ultrasound. By using NaOH, cleaning efficiency nearly triples, and it improves up to 25% by adding ultrasound. Copyright © 2013 Elsevier B.V. All rights reserved.
Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water.
Persson, Frank; Långmark, Jonas; Heinicke, Gerald; Hedberg, Torsten; Tobiason, John; Stenström, Thor-Axel; Hermansson, Malte
2005-10-01
Biofiltration of surface water was examined using granular activated carbon (GAC) and expanded clay (EC). Particle removal was 60-90%, measured by flow cytometry, which enabled discrimination between total- and autofluorescent particles (microalgae) in size ranges of 0.4-1 and 1-15 microm, and measured by on-line particle counting. Total particles were removed at a higher degree than autofluorescent particles. The biofilters were also challenged with 1 microm fluorescent microspheres with hydrophobic and hydrophilic surface characteristics and bacteriophages (Salmonella typhimurium 28B). Added microspheres were removed at 97-99% (hydrophobic) and 85-89% (hydrophilic) after 5 hydraulic residence times (HRT) and microspheres retained in the biofilter media were slowly detaching into the filtrate for a long time after the addition. Removal of bacteriophages (5 HRT) was considerably lower at 40-59%, and no long-lasting detachment was observed. A comparison of experimental data with theoretical predictions for removal of particles in clean granular media filters revealed a similar or higher removal of particles around 1 microm in size than predicted, while bacteriophages were removed at a similar or lesser extent than predicted. The results highlight the selectivity and dynamic behaviour of the particle removal processes and have implications for operation and microbial risk assessment of a treatment train with biofilters as pre-treatment.
NASA Astrophysics Data System (ADS)
Cindoruk, S. Sıddık; Tasdemir, Yücel
2014-04-01
Atmospheric deposition is a significant pollution source leading to contamination of remote and clean sites, surface waters and soils. Since persistent organic pollutants (POPs) stay in atmosphere without any degradation, they can be transported and deposited to clean surfaces. Organochlorine pesticides are an important group of POPs which have toxic and harmful effects to living organisms and environment. Therefore, atmospheric deposition levels and characteristics are of importance to determine the pollution quantity of water and soil surfaces in terms of POPs. This study reports the distribution quantities of atmospheric deposition including bulk, dry, wet and air-water exchange of particle and gas phase OCPs as a result of 1-year sampling campaign. Atmospheric deposition distribution showed that the main mechanism for OCPs deposition is wet processes with percentage of 69 of total deposition. OCP compounds' deposition varied according to atmospheric concentration and deposition mechanism. HCH compounds were dominant pesticide species for all deposition mechanisms. HCH deposition constituted the 65% of Σ10OCPs.
Computational study of a self-cleaning process on superhydrophobic surface
NASA Astrophysics Data System (ADS)
Farokhirad, Samaneh
All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance beyond the boundary layer of the surface can be accomplished with a surface-parallel shear flow. This thesis presents an investigation of the physics involved in the mechanism of coalescence-induced self-propelled jumping of droplet with and without particle presence, through the use of numerical simulation. (Abstract shortened by ProQuest.).
RF plasma cleaning of silicon substrates with high-density polyethylene contamination
NASA Astrophysics Data System (ADS)
Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.
2018-01-01
Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.
Effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance
NASA Astrophysics Data System (ADS)
Dietze, Uwe; Dress, Peter; Waehler, Tobias; Singh, Sherjang; Jonckheere, Rik; Baudemprez, Bart
2011-03-01
Extreme Ultraviolet Lithography (EUVL) is considered the leading lithography technology choice for semiconductor devices at 16nm HP node and beyond. However, before EUV Lithography can enter into High Volume Manufacturing (HVM) of advanced semiconductor devices, the ability to guarantee mask integrity at point-of-exposure must be established. Highly efficient, damage free mask cleaning plays a critical role during the mask manufacturing cycle and throughout the life of the mask, where the absence of a pellicle to protect the EUV mask increases the risk of contamination during storage, handling and use. In this paper, we will present effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance, which employs an intelligent, holistic approach to maximize Mean Time Between Cleans (MBTC) and extend the useful life span of the reticle. The data presented will demonstrate the protection of the capping and absorber layers, preservation of pattern integrity as well as optical and mechanical properties to avoid unpredictable CD-linewidth and overlay shifts. Experiments were performed on EUV blanks and pattern masks using various process conditions. Conditions showing high particle removal efficiency (PRE) and minimum surface layer impact were then selected for durability studies. Surface layer impact was evaluated over multiple cleaning cycles by means of UV reflectivity metrology XPS analysis and wafer prints. Experimental results were compared to computational models. Mask life time predictions where made using the same computational models. The paper will provide a generic overview of the cleaning sequence which yielded best results, but will also provide recommendations for an efficient in-fab mask maintenance scheme, addressing handling, storage, cleaning and inspection.
Effect of surface treatment on retention of glass-fiber endodontic posts.
Balbosh, Ali; Kern, Matthias
2006-03-01
The effects of surface treatment on the retention of prefabricated fiber-reinforced epoxy resin posts are not well understood because most studies measure retention shortly after cementation, without artificial aging. The purpose of this study was to evaluate the effect of surface treatment on the retention of glass-fiber endodontic posts luted with resin cement and subjected to artificial aging. Thirty-two single-rooted teeth were selected, the coronal aspect of each tooth was removed, and the remaining root received endodontic therapy. Specimens were then divided into 4 groups (n = 8). Post spaces were prepared to a depth of 10 mm by using ISO 90 rotary instruments. The tapered posts received 1 of 4 surface treatments: cleaning with alcohol (Alc), cleaning with alcohol and conditioning with ED-Primer material (Alc-ED), airborne-particle abrasion (Air), or airborne-particle abrasion and conditioning with ED-Primer material (Air-ED). All posts were luted with a composite resin luting agent (Panavia F) after conditioning the canal dentin with autopolymerizing dentin primer (ED-Primer) and without acid etching of the canal dentin. After cementation, the specimens were stored in water at 37 degrees C for 30 days and subjected to simulated aging conditions consisting of 7500 thermal cycles (5 degrees C/55 degrees C) and 300,000 mechanical loading cycles with 30 N. Retention (N) of the posts was measured with a universal testing machine with a crosshead speed of 2 mm/min. The data were analyzed using 1-way ANOVA and the Tukey HSD test (alpha = .05). The dislodged posts were also examined microscopically at x8 and x20 magnification to evaluate the mode of failure. The mean retentive values (N) and SDs of the test groups were as follows: Alc, 375.9 +/- 85.0; Alc-ED, 421.2 +/- 46.8; Air, 534.8 +/- 65.8; and Air-ED, 555.8 +/- 86.9. Airborne-particle-abraded posts had significantly higher retention compared with nonabraded posts (P < .001). Treating the post's surface with ED-Primer material prior to cementation had no significant effect on retention. The failure mode was purely adhesive at the resin cement-post interface for all nonabraded posts. A mixed failure mode, adhesive at the resin cement-dentin interface, at the resin cement-post interface, and cohesive in the resin cement, was observed for airborne-particle-abraded posts. Treating the surface of the posts with ED-Primer material before cementation with Panavia F cement produced no significant improvement in the retention of the posts. Airborne-particle abrasion of the surface of the post significantly improved the retention.
Radio-Frequency Plasma Cleaning of a Penning Malmberg Trap
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III; Martin, James; Pearson, J. Boise; Lewis, Raymond
2005-01-01
Radio-frequency-generated plasma has been demonstrated to be a promising means of cleaning the interior surfaces of a Penning-Malmberg trap that is used in experiments on the confinement of antimatter. {Such a trap was reported in Modified Penning-Malmberg Trap for Storing Antiprotons (MFS-31780), NASA Tech Briefs, Vol. 29, No. 3 (March 2005), page 66.} Cleaning of the interior surfaces is necessary to minimize numbers of contaminant atoms and molecules, which reduce confinement times by engaging in matter/antimatter-annihilation reactions with confined antimatter particles. A modified Penning-Malmberg trap like the one described in the cited prior article includes several collinear ring electrodes (some of which are segmented) inside a tubular vacuum chamber, as illustrated in Figure 1. During operation of the trap, a small cloud of charged antiparticles (e.g., antiprotons or positrons) is confined to a spheroidal central region by means of a magnetic field in combination with DC and radiofrequency (RF) electric fields applied via the electrodes. In the present developmental method of cleaning by use of RF-generated plasma, one evacuates the vacuum chamber, backfills the chamber with hydrogen at a suitable low pressure, and uses an RF-signal generator and baluns to apply RF voltages to the ring electrodes. Each ring is excited in the polarity opposite that of the adjacent ring. The electric field generated by the RF signal creates a discharge in the low-pressure gas. The RF power and gas pressure are adjusted so that the plasma generated in the discharge (see Figure 2) physically and chemically attacks any solid, liquid, and gaseous contaminant layers on the electrode surfaces. The products of the physical and chemical cleaning reactions are gaseous and are removed by the vacuum pumps.
Mouse Cleaning Apparatus and Method
NASA Technical Reports Server (NTRS)
Williams, Glenn L. (Inventor)
2005-01-01
The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.
NASA Technical Reports Server (NTRS)
Kendall, B. R. F.
1985-01-01
Charged-particle fluxes from breakdown events were studied. Methods to measure mass spectra and total emitted flux of neutral particles were developed. The design and construction of the specialized mass spectrometer was completed. Electrical breakdowns were initiated by a movable blunt contact touching the insulating surface. The contact discharge apparatus was used for final development of two different high-speed recording systems and for measurements of the composition of the materials given off by the discharge. It was shown that intense instantaneous fluxes of neutral particles were released from the sites of electrical breakdown events. A laser micropulse mass analyzer showed that visible discoloration at breakdown sites were correllated with the presence of iron on the polymer side of the film, presumably caused by punch-through to the Inconel backing. Kapton samples irradiated by an oxygen ion beam were tested. The irradiated samples were free of surface hydrocarbon contamination but otherwise behaved in the same way as the Kapton samples tested earlier. Only the two samples exposed to oxygen ion bombardment were relatively clean. This indicates an additional variable that should be considered when testing spacecraft materials in the laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby
To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.
Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less
Engineering tunable bio-inspired polymeric coatings for amphiphobic fibrous materials
NASA Astrophysics Data System (ADS)
Oyola-Reynoso, Stephanie
Chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolysable moieties in the presence of physisorbed water. In the following chapters, we demonstrate that using alkyltrichlorosilanes (trivalent [3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound polymeric particles. We infer that the presence of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane, prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2-201.4 g/m2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from 70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, cardboard houses can be rendered self-cleaning or tolerant to surface running water. Each of the chapters below supports the mechanism via a series of applications, material characterization, and/or, smart engineering.
Desorption of SVOCs from Heated Surfaces in the Form of Ultrafine Particles.
Wallace, Lance A; Ott, Wayne R; Weschler, Charles J; Lai, Alvin C K
2017-02-07
Ultrafine particles (UFP) produced by electric heating of stoves and metal cooking pans, absent food, have been hypothesized to be created from a surface film of semivolatile organic compounds (SVOCs) sorbed from the surrounding air. This study tests that hypothesis by size-resolved measurements extending the lower range of the UFP studied from 10 to 2.3 nm, and including other surfaces (glass, aluminum, and porcelain). Heating glass Petri dishes or squares of aluminum foil to about 350-400 °C for 4-6 min removed all sorbed organic substances completely. Subsequent exposure of these "clean" Petri dishes and foil squares to indoor air in two different residences for successively longer periods (1 h to 281 days), followed by heating the materials for 4-6 min, indicated a strong relationship of the number, size distribution, and mass of the UFP to the time exposed. Estimates of the accumulation rate of SVOCs on surfaces were similar to those in studies of organic film buildup on indoor windows. Transfer of skin oils by touching the glass or foil surfaces, or after washing the glass surface with detergent and bare hands, was also observed, with measured particle production comparable with that produced by long-term exposure to indoor air.
Verifying mixing in dilution tunnels How to ensure cookstove emissions samples are unbiased
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Daniel L.; Rapp, Vi H.; Caubel, Julien J.
A well-mixed diluted sample is essential for unbiased measurement of cookstove emissions. Most cookstove testing labs employ a dilution tunnel, also referred to as a “duct,” to mix clean dilution air with cookstove emissions before sampling. It is important that the emissions be well-mixed and unbiased at the sampling port so that instruments can take representative samples of the emission plume. Some groups have employed mixing baffles to ensure the gaseous and aerosol emissions from cookstoves are well-mixed before reaching the sampling location [2, 4]. The goal of these baffles is to to dilute and mix the emissions stream withmore » the room air entering the fume hood by creating a local zone of high turbulence. However, potential drawbacks of mixing baffles include increased flow resistance (larger blowers needed for the same exhaust flow), nuisance cleaning of baffles as soot collects, and, importantly, the potential for loss of PM2.5 particles on the baffles themselves, thus biasing results. A cookstove emission monitoring system with baffles will collect particles faster than the duct’s walls alone. This is mostly driven by the available surface area for deposition by processes of Brownian diffusion (through the boundary layer) and turbophoresis (i.e. impaction). The greater the surface area available for diffusive and advection-driven deposition to occur, the greater the particle loss will be at the sampling port. As a layer of larger particle “fuzz” builds on the mixing baffles, even greater PM2.5 loss could occur. The micro structure of the deposited aerosol will lead to increased rates of particle loss by interception and a tendency for smaller particles to deposit due to impaction on small features of the micro structure. If the flow stream could be well-mixed without the need for baffles, these drawbacks could be avoided and the cookstove emissions sampling system would be more robust.« less
Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.
Chen, Dong; Weavers, Linda K; Walker, Harold W
2006-02-01
In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.
Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives.
Abusomwan, Uyiosa A; Sitti, Metin
2014-10-14
Contact self-cleaning of gecko-inspired synthetic adhesives with mushroom-shaped tips has been demonstrated recently using load-drag-unload cleaning procedures similar to that of the natural animal. However, the underlying mechanics of contact cleaning has yet to be fully understood. In this work, we present a detailed experiment of contact self-cleaning that shows that rolling is the dominant mechanism of cleaning for spherical microparticle contaminants, during the load-drag-unload procedure. We also study the effect of dragging rate and normal load on the particle rolling friction. A model of spherical particle rolling on an elastomer fibrillar adhesive interface is developed and agrees well with the experimental results. This study takes us closer to determining design parameters for achieving self-cleaning fibrillar adhesives.
NASA Astrophysics Data System (ADS)
Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh
2016-11-01
Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.
Analysis of particulates on tape lift samples
NASA Astrophysics Data System (ADS)
Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling
2014-09-01
Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Kuhlman, K. R.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J. G.; Burnett, D. S.; Woolum, D. S.
2015-01-01
The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used.
Friberg, B; Lindgren, M; Karlsson, C; Bergström, A; Friberg, S
2002-04-01
A mobile screen (0.5 x 0.4 m) producing ultra-clean exponential LAF (air-flow central zone 0.6 m/s and peripheral zone 0.4 m/s) was investigated as an addition to conventional turbulent/mixing operating room ventilation. The evaluation was performed during strictly standardized sham operations reflecting conditions during major surgery. The study consisted of a pilot experiment designed to give high counts of sedimenting aerobic colony forming units (cfu). In a second main study, recording dust particles, air-borne and sedimenting aerobic cfu, the screen was associated with optimal operating room clothing. In the pilot experiment the use of the screen resulted in a substantial reduction of sedimenting bacteria from 3835-4940 to 0-390 cfu/m(2)/h. In the main study, the use of the additional LAF reduced the surface contamination from 416-329 to 7-78 cfu/m(2)/h up to 1.6 m from the screen (P=0.001-0.0001). Measured in the wound area the screen reduced the air counts of bacteria from 9-14 to 0.2-0.4 cfu/m(3) (P=0.008-0.0001) and a marked reduction of air-borne dust particles was recorded (P=0.007-0.009). In conclusion, the additional mobile LAF screen reduced the counts of aerobic air-borne and sedimenting bacteria-carrying particles as well as dust particles to the levels gained with complete ultra-clean LAF room ventilation. Thus, the screen might prove a valuable addition to operating room ventilation as well as in other areas where asepsis is essential. Copyright 2002 The Hospital Infection Society.
Plasma cleaning of ITER edge Thomson scattering mock-up mirror in the EAST tokamak
NASA Astrophysics Data System (ADS)
Yan, Rong; Moser, Lucas; Wang, Baoguo; Peng, Jiao; Vorpahl, Christian; Leipold, Frank; Reichle, Roger; Ding, Rui; Chen, Junling; Mu, Lei; Steiner, Roland; Meyer, Ernst; Zhao, Mingzhong; Wu, Jinhua; Marot, Laurent
2018-02-01
First mirrors are the key element of all optical and laser diagnostics in ITER. Facing the plasma directly, the surface of the first mirrors could be sputtered by energetic particles or deposited with contaminants eroded from the first wall (tungsten and beryllium), which would result in the degradation of the reflectivity. The impurity deposits emphasize the necessity of the first mirror in situ cleaning for ITER. The mock-up first mirror system for ITER edge Thomson scattering diagnostics has been cleaned in EAST for the first time in a tokamak using radio frequency capacitively coupled plasma. The cleaning properties, namely the removal of contaminants and homogeneity of cleaning were investigated with molybdenum mirror insets (25 mm diameter) located at five positions over the mock-up plate (center to edge) on which 10 nm of aluminum oxide, used as beryllium proxy, were deposited. The cleaning efficiency was evaluated using energy dispersive x-ray spectroscopy, reflectivity measurements and x-ray photoelectron spectroscopy. Using argon or neon plasma without magnetic field in the laboratory and with a 1.7 T magnetic field in the EAST tokamak, the aluminum oxide films were homogeneously removed. The full recovery of the mirrors’ reflectivity was attained after cleaning in EAST with the magnetic field, and the cleaning efficiency was about 40 times higher than that without the magnetic field. All these results are promising for the plasma cleaning baseline scenario of ITER.
Shi, Xiaofei; Chen, Rui; Huo, Lingling; Zhao, Lin; Bai, Ru; Long, Dingxin; Pui, David Y H; Rang, Weiqing; Chen, Chunying
2015-12-01
Indoor air quality has great impact on the human health. An increasing number of studies have shown that printers could release particulate matters and pose adverse effects on indoor air quality. In this study, a thorough investigation was designed to assess the aerosol printer particle total number concentration (TNC) and size distribution in normal office environment, one copy center, and a clean chamber. Particle analyzers, SMPS, OPS, and CPC3007 were used to monitor the total printing process. In normal office environment, 37 laser printers out of all surveyed 55 printers were classified as high particle emitters. Comparing to laser printers, 5 inkjet printers showed no particle emission. Particle emission level in a copy center increased slightly with TNC elevating to about 2 times of the aerosol background. Simulating test in a clean chamber indicated that printer-emitted particles were dominated by particles in nanoscale (diameter of particle, D(p) < 100 nm). These particles in a sealed clean chamber attenuated so slowly that it still held at high level with the concentration of 1.5 x 10(4) particles/cm3 after printing for 2.5 hours. Our present results demonstrate that printers indeed release particulates which keeping at a high concentration level in the indoor environment. Special care should be taken to this kind of widely applied machines and effective controls of particle emission at printing processes are necessary.
Surface cleaning for negative electron affinity GaN photocathode
NASA Astrophysics Data System (ADS)
Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang
2012-10-01
In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.
The discoloration of the Taj Mahal due to particulate carbon and dust deposition.
Bergin, M H; Tripathi, S N; Jai Devi, J; Gupta, T; Mckenzie, M; Rana, K S; Shafer, M M; Villalobos, Ana M; Schauer, J J
2015-01-20
The white marble domes of the Taj Mahal are iconic images of India that attract millions of visitors every year. Over the past several decades the outer marble surfaces of the Taj Mahal have begun to discolor with time and must be painstakingly cleaned every several years. Although it has been generally believed that the discoloration is in some way linked with poor air quality in the Agra region, the specific components of air pollution responsible have yet to be identified. With this in mind, ambient particulate matter (PM) samples were collected over a one-year period and found to contain relatively high concentrations of light absorbing particles that could potentially discolor the Taj Mahal marble surfaces, that include black carbon (BC), light absorbing organic carbon (brown carbon, BrC), and dust. Analyses of particles deposited to marble surrogate surfaces at the Taj Mahal indicate that a large fraction of the outer Taj Mahal surfaces are covered with particles that contain both carbonaceous components and dust. We have developed a novel approach that estimates the impact of these deposited particles on the visible light surface reflectance, which is in turn used to estimate the perceived color by the human eye. Results indicate that deposited light absorbing dust and carbonaceous particles (both BC and BrC from the combustion of fossil fuels and biomass) are responsible for the surface discoloration of the Taj Mahal. Overall, the results suggest that the deposition of light absorbing particulate matter in regions of high aerosol loading are not only influencing cultural heritage but also the aesthetics of both natural and urban surfaces.
Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, M.D.
2005-06-01
Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for predictionmore » of particle generation such that an effective operational strategy can be devised to facilitate worker protection.« less
Tastepe, Ceylin S; Liu, Yuelian; Visscher, Corine M; Wismeijer, Daniel
2013-11-01
The aim of this study was to evaluate the cleaning efficiency on intraorally contaminated titanium discs by using calcium phosphate and air powder abrasive (APA) treatment. The modification of titanium surface (SLA) was evaluated and compared with the conventional air powder abrasive methods and phosphoric acid. This treatment modality might give new perspectives for peri-implant surface treatment. A total of 36 SLA surface titanium discs were kept in the human mouth for 48 h by 14 volunteers. The intraorally contaminated discs were stained with erythrosine dye to make the biofilm visible. Discs were randomly assigned to one of the six groups: APA without powder-only water and air (Control). APA with Hydroxylapatite (HA). APA with Hydroxylapatite and Calcium Phosphate (HA + TCP). APA with Titanium Dioxide (TiO2). APA with EMS Soft Subgingival powder (EMS). Phosphoric Acid. Light microscope photos were taken during the treatment. Following the cleaning, the residual biofilm, surface changes, and surface chemical content were evaluated using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). A systematic random sampling protocol and a point counting method were applied for the quantitative evaluation of the remaining biofilm. Multiple comparisons within and between groups are performed by Kruskall Wallis test and if significant Mann-Whitney U-test as post hoc testing is applied. The significance level was P < 0.05. All methods with the exception of phosphoric acid could decrease the initial amount of biofilm significantly. Among all air powder abrasive treatments, the HA + TCP group showed the best results with 99% biofilm removal, followed by HA and EMS powders. The cleaning method caused minimal changes to the surface structure. With the exception of the control group, all air powder applications caused sharp edges around the grooves in the implant surface to be rounded. TiO2 powder caused less change than HA and HA + TCP. Phosphoric acid did not cause a visible surface change on the SEM photos. Powder particles remnants were observed on and impacted in the titanium surface. In the HA and HA + TCP group, a Ca content was observed varying between 2% and 5%. In the control group, saliva and biofilm-related elements were observed. Using the air powder abrasive method with calcium phosphate powders on contaminated titanium discs, an efficient implant cleaning and surface modification can be achieved. This method should be further improved as it has possible potential to be used as an implant surface treatment method for implants involved with peri-implantitis. © 2012 John Wiley & Sons A/S.
Investigating Catalytic Properties of Composite Nanoparticle Assemblies
2001-11-01
electrode surfaces, were found to be catalytically active towards electrooxidation of CO and MeOH upon activation. The activation involved partial removal...to proceed under stirring at room temperature for 4 hours. producing a dark-brown solution of DT-encapsulated nanoparticles that was then cleaned in... ethanol or used in the heating treatment. Processing. Highly-monodispersed Au particles (5.3 ±0.3 nm) were prepared by thermally activated treatment of
Wave-front propagation of rinsing flows on rotating semiconductor wafers
NASA Astrophysics Data System (ADS)
Frostad, John M.; Ylitalo, Andy; Walls, Daniel J.; Mui, David S. L.; Fuller, Gerald G.
2016-11-01
The semiconductor manufacturing industry is migrating to a cleaning technology that involves dispersing cleaning solutions onto a rotating wafer, similar to spin-coating. Advantages include a more continuous overall fabrication process, lower particle level, no cross contamination from the back side of a wafer, and less usage of harsh chemicals for a lower environmental impact. Rapid rotation of the wafer during rinsing can be more effective, but centrifugal forces can pull spiral-like ribbons of liquid radially outward from the advancing wave-front where particles can build up, causing higher instances of device failure at these locations. A better understanding of the rinsing flow is essential for reducing yield losses while taking advantage of the benefits of rotation. In the present work, high-speed video and image processing are used to study the dynamics of the advancing wave-front from an impinging jet on a rotating substrate. The flow-rate and rotation-speed are varied for substrates coated with a thin layer of a second liquid that has a different surface tension than the jet liquid. The difference in surface tension of the two fluids gives rise to Marangoni stresses at the interface that have a significant impact on the rinsing process, despite the extremely short time-scales involved.
APPARATUS FOR CLEANING GASES WITH ELECTROSTATICALLY CHARGED PARTICLES
Johnstone, H.F.
1960-02-01
An apparatus is described for cleaning gases with the help of electrostatically charged pellets. The pellets are blown past baffles in a conduit and into the center of a rotuting body of the gas to be cleaned. The pellets are charged electrostatically by impinging on the baffles. The pellets collect the particles suspended in the gas in their passage from the center of the rotating body to its edge.
Cleaning and Cleanliness Measurement of Additive Manufactured Parts
NASA Technical Reports Server (NTRS)
Welker, Roger W.; Mitchell, Mark A.
2015-01-01
The successful acquisition and utilization of piece parts and assemblies for contamination sensitive applications requires application of cleanliness acceptance criteria. Contamination can be classified using many different schemes. One common scheme is classification as organic, ionic and particulate contaminants. These may be present in and on the surface of solid components and assemblies or may be dispersed in various gaseous or liquid media. This discussion will focus on insoluble particle contamination on the surface of piece parts and assemblies. Cleanliness of parts can be controlled using two strategies, referred to as gross cleanliness and precision cleanliness. Under a gross cleanliness strategy acceptance is based on visual cleanliness. This approach introduces a number of concerns that render it unsuitable for controlling cleanliness of high technology products. Under the precision cleanliness strategy, subjective, visual assessment of cleanliness is replaced by objective measurement of cleanliness. When a precision cleanliness strategy is adopted there naturally arises the question: How clean is clean enough? The six commonly used methods for establishing objective cleanliness acceptance limits will be discussed. Special emphasis shall focus on the use of multiple extraction, a technique that has been demonstrated for additively manufactured parts.
Aerobiology in the operating room and its implications for working standards.
Friberg, B; Friberg, S
2005-01-01
Two novel operating room (OR) ventilation concepts, i.e. the upward displacement or thermal convection system and the exponential ultra-clean laminar air flow (LAF) designed to function without extra walls, were evaluated from a bacteriological point of view. The thermal convection system (17 air changes/h) was compared with conventional ventilation (16 air changes/h) with an air inlet at the ceiling and evacuation at floor level. The exponential LAF was compared with the vertical ultra-clean LAF and the horizontal ultra-clean LAF, both with extra side walls. The comparison was made using strictly standardized simulated operations and, except for the horizontal LAF, it was performed in the same OR where the type of ventilation was changed. In the different areas important for surgical asepsis, the thermal system resulted in a twofold to threefold increase in bacterial air and surface counts compared to the conventional system (statistical significance = p < 0.05-0.0001). The bacteriological efficiency of the exponential LAF was equal to the horizontal and vertical LAF units with extra walls in the OR, and all three systems easily fulfilled the criteria for ultra-clean air, i.e. bacteria-carrying particles < 10/m3. In the areas important for surgical asepsis the turbulent ventilation systems yielded highly significant correlation between air and surface contamination (p < 0.02-0.0006). No such correlation existed in the LAF systems.
Bio-Inspired Self-Cleaning Surfaces
NASA Astrophysics Data System (ADS)
Liu, Kesong; Jiang, Lei
2012-08-01
Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.
Airborne sand and dust soiling of solar collecting mirrors
NASA Astrophysics Data System (ADS)
Sansom, Christopher; Almond, Heather; King, Peter; Endaya, Essam; Bouaichaoui, Sofiane
2017-06-01
The reflectance of solar collecting mirrors can be significantly reduced by sand and dust soiling, particularly in arid environments. Larger airborne sand and dust particles can also cause damage by erosion, again reducing reflectance. This work describes investigations of the airborne particle size, shape, and composition in three arid locations that are considered suitable for CSP plants, namely in Iran, Libya, and Algeria. Sand and dust has been collected at heights between 0.5 to 2.0m by a variety of techniques, but are shown not to be representative of the particle size found either in ground dust and sand, or on the solar collecting mirror facets themselves. The possible reasons for this are proposed, most notably that larger particles may rebound from the mirror surface. The implications for mirror cleaning and collector facet erosion are discussed.
Further evidence for particle nucleation in clear air adjacent to marine cumulus clouds
NASA Astrophysics Data System (ADS)
Perry, Kevin D.; Hobbs, Peter V.
1994-11-01
Observational evidence is presented for the nucleation of condensation nuclei (CN) in the clear air adjacent to an isolated, marine, cumulus cloud. Two separate regions of particle nucleation are identified: one located above the cloud top, and the second located downwind of the cloud near the level of the anvil outflow. The regions of high CN concentrations were located in extremely clean marine air, with unactivated aerosol surface area (excluding the nucleation mode) less than 2 sq micrometers/cu cm, air temperature -31 C, and higher relative humidities than the undisturbed environment. Vertical profile measurements downwind of the cloud showed that CN concentrations at the level of the anvil outflow (4.9 km) were 8 times greater than at any other level between the surface and 5.3 km. A conceptual model is formulated in which aerosol particles, sulfur dioxide (SO2), sulfuric acid vapor (H2SO4), dimethyl sulfide (DMS), and ozone (O3) from the boundary layer are entrained into the cumulus cloud. Total aerosol number concentrations and unactivated aerosol surface area decrease with height in the cloud due to Brownian diffusion and diffusiophoresis of cloud interstitial aerosol to hydrometeors, coalescence scavenging by cloud droplets, collisional scavenging by ice particles, and subsequent removal by precipitation. The air that is detrained from the cloud raises the relative humidity and vents the clean air, SO2, H2SO4, DMS, and O3 to the near-cloud environment. Hydroxyl radicals then oxidize the SO2 and DMS to H2SO4. Under the conditions of high relative humidity, low total aerosol surface area, low temperatures, and high SO2 concentrations near cloud top, significant concentrations of new particles can be produced by homogeneous-bimolecular nucleation of sulfuric acid solution droplets from H2SO4 and H2O vapor molecules. The concentration of CN as a function of time is calculated for the case described in this paper using a bimodal integral nucleation model. The model results show that significant numbers of CN could have been produced within a few hours by the homogeneous-bimolecular nucleation of sulfuric acid solution droplets under the observed conditions provided the concentration of SO2 near cloud top was enhanced by vertical transport.
Failure analysis of explanted sternal wires.
Shih, Chun-Ming; Su, Yea-Yang; Lin, Shing-Jong; Shih, Chun-Che
2005-05-01
To classify and understand the mechanisms of surface damages and fracture mechanisms of sternal wires, explanted stainless steel sternal wires were collected from patients with sternal dehiscence following open-heart surgery. Surface alterations and fractured ends of sternal wires were examined and analyzed. Eighty fractured wires extracted from 25 patients from January 1999 to December 2003, with mean implantation interval of 55+/-149 days (range 5-729 days) after cardiac surgery, were studied by various techniques. The extracted wires were cleaned and the fibrotic tissues were removed. Irregularities and fractured ends were assayed by a scanning electron microscopy. After stereomicroscopy and documentation, the explants were cleaned with 1% sodium hypochlorite to remove the blood and tissues and was followed by cleaned with deionized water and alcohol. The explants were examined by stereomicroscopy, and irregularities on surface and fracture surfaces of sternal wires were assayed by scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and X-ray mapping. The explants with surrounding fibrotic tissue were stained and examined with stereomicroscopy and transmission electronic microscopy. Corrosion pits were found on the surface of explanted sternal wires. EDAX and X-ray mapping examinations revealed diminution of nickel concentration in the severely corroded pits on sternal wires. A feature of transgranular cracking was observed for stress corrosion cracking and striation character for typical corrosion fatigue was also identified. TEM examination of tissue showed the metallic particles in phagolysosomes of macrophages inside the surrounding sternal tissue. The synergic effect of hostile environment and the stress could be the precursors of failures for sternal wires.
Contamination and release of nanomaterials associated with the use of personal protective clothing.
Tsai, Candace Su-Jung
2015-05-01
We investigated nanomaterial release associated with the contamination of protective clothing during manipulation of clothing fabrics contaminated with nanoparticles. Nanomaterials, when released as airborne nanoparticles, can cause inhalation exposure which is the route of exposure of most concern to cause adverse health effects. Measurement of such nanoparticle re-suspension has not yet been conducted. Protective clothing can be contaminated with airborne nanoparticles during handling and operating processes, typically on the arms and front of the body. The contaminated clothing could release nanoparticles in the general room while performing other activities and manipulating the clothing after work. The exposures associated with three different fabric materials of contaminated laboratory coats (cotton, polyester, and Tyvek), including the magnitude of contamination and particle release, were investigated in this study by measuring the number concentration increase and the weight change on fabric pieces. This study simulated real life occupational exposure scenarios and was performed in both regular and clean room environments to investigate the effect of background aerosols on the measurements. Concentration were measured using particle spectrometers for diameters from 10nm to 10 µm. Collected aerosol particles and contaminated fabric surfaces were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and elemental composition analysis. The magnitude of particle release from contaminated lab coat fabric was found to vary by the type of fabric material; cotton fabric showed the highest level of contamination and particle release, followed by Tyvek and polyester fabrics. The polyester lab coat material was found to have the lowest particle release to deposition (R/D) ratio. The particle release number concentrations were in a range of 768-119 particles cm(-3) and 586-187 particles cm(-3) in regular and clean rooms, respectively. Multiple peaks were observed in the number concentration distribution data, with particle diameters peaking at 40-50 and 100-300nm. The SEM analysis of the contaminated fabric surface found test particles and other environmental particles. The elemental composition analysis presented detectable response to the studied alumina oxide particles. The laboratory coat primarily made of cotton woven material is not recommended for worker protection against nanoparticle exposure because of the highest particle contamination and release ability. In addition, the result demonstrated that a well-controlled (cleanroom) environment is critical to investigate the factors affecting nanoparticle interaction with protective clothing. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Technical Reports Server (NTRS)
Henry, Michael
2000-01-01
During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.
NASA Technical Reports Server (NTRS)
Heyman, J. S. (Inventor)
1982-01-01
An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.
Method for cleaning and passivating a metal surface
NASA Technical Reports Server (NTRS)
Alexander, George B. (Inventor); Carpenter, Norman F. (Inventor)
1976-01-01
A cleaning solvent useful in the cleaning of metal surfaces, e.g. nickle-iron alloys, contains sulfamic acid, citric acid, a solvent for hydrocarbon residues, and a surfactant. Metal surfaces are cleaned by contacting the surface with the cleaning solvent and then passivated by contact with aqueous solutions of citric acid or sodium nitrite or a combination of the two.
Determinants of aerosol lung-deposited surface area variation in an urban environment.
Reche, Cristina; Viana, Mar; Brines, Mariola; Pérez, Noemí; Beddows, David; Alastuey, Andrés; Querol, Xavier
2015-06-01
Ultrafine particles are characterized by a high surface area per mass. Particle surface has been reported to play a significant role in determining the toxicological activity of ultrafine particles. In light of this potential role, the time variation of lung deposited surface area (LDSA) concentrations in the alveolar region was studied at the urban background environment of Barcelona (Spain), aiming to asses which processes and sources govern this parameter. Simultaneous data on Black Carbon (BC), total particle number (N) and particle number size distribution were correlated with LDSA. Average LDSA concentrations in Barcelona were 37 ± 26 μm(2)cm(-3), levels which seem to be characteristic for urban environments under traffic influence across Europe. Results confirm the comparability between LDSA data provided by the online monitor and those calculated based on particle size distributions (by SMPS), and reveal that LDSA concentrations are mainly influenced by particles in the size range 50-200 nm. A set of representative daily cycles for LDSA concentrations was obtained by means of a k-means cluster technique. The contribution of traffic emissions to daily patterns was evidenced in all the clusters, but was quantitatively different. Traffic events under stable atmospheric conditions increased mean hourly background LDSA concentrations up to 6 times, attaining levels higher than 200 μm(2)cm(-3). However, under warm and relatively clean atmospheric conditions, the traffic rush hour contribution to the daily LDSA mean appeared to be lower and the contribution of new urban particle formation events (by photochemically induced nucleation) was detected. These nucleation events were calculated to increase average background LDSA concentrations by 15-35% (maximum LDSA levels=45-50 μm(2)cm(-3)). Thereby, it may be concluded that in the urban background of Barcelona road traffic is the main source increasing the aerosol surface area which can deposit on critical regions of the human lung, followed by nucleation episodes. Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling the interface of platinum and α-quartz(001): Implications for sintering
Plessow, Philipp N.; Sánchez-Carrera, Roel S.; Li, Lin; ...
2016-05-04
We present a first-principles study which aims to understand the metal–support interaction of platinum nanoparticles on α-quartz(001) and, more generally, silica. The thermodynamic stability of the α-quartz(001) surface and its interface with Pt(111) are investigated as a function of temperature and partial pressure of H 2O and O 2. Potential defects in the α-quartz(001) surface as well as the adsorption energies of the Pt atom are also studied. This allows us to draw conclusions concerning nanoparticle shape and the resistance toward particle migration based on the interface free energies. We find that, as for the clean α-quartz(001) surface, a dry,more » reconstructed interface is expected at temperatures that are high but within experimentally relevant ranges. On an ideal, dry, reconstructed surface, particle migration is predicted to be a fast sintering mechanism. On real surfaces, defects may locally prevent reconstruction and act as anchoring points. Finally, the energetics of the adsorption of platinum atoms on α-quartz(001) do not support surface-mediated single-atom migration as a viable path for sintering on the investigated surfaces.« less
Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices
2013-06-01
after an acidic challenge . Enamel loss was significantly greater when erosive and abrasive effects were combined. They concluded that acid-softened...surrounding soft tissues. Another benefit of restoration is the elimination of a challenging area for the patient and hygienist to clean. These areas...abrasion challenge ; the resin cement with the smallest sized filler particles had the smallest weight loss and maintained the smoothest surface of all the
Wet particle source identification and reduction using a new filter cleaning process
NASA Astrophysics Data System (ADS)
Umeda, Toru; Morita, Akihiko; Shimizu, Hideki; Tsuzuki, Shuichi
2014-03-01
Wet particle reduction during filter installation and start-up aligns closely with initiatives to reduce both chemical consumption and preventative maintenance time. The present study focuses on the effects of filter materials cleanliness on wet particle defectivity through evaluation of filters that have been treated with a new enhanced cleaning process focused on organic compounds reduction. Little difference in filter performance is observed between the two filter types at a size detection threshold of 60 nm, while clear differences are observed at that of 26 nm. It can be suggested that organic compounds can be identified as a potential source of wet particles. Pall recommends filters that have been treated with the special cleaning process for applications with a critical defect size of less than 60 nm. Standard filter products are capable to satisfy wet particle defect performance criteria in less critical lithography applications.
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Abe, Haruto; Ochiai, Naoya
The fundamental characteristics of the cryogenic single-component micro-nano solid nitrogen (SN2) particle production using super adiabatic Laval nozzle and its application to the physical photo resist removal-cleaning technology are investigated by a new type of integrated measurement coupled computational technique. As a result of present computation, it is found that high-speed ultra-fine SN2 particles are continuously generated due to the freezing of liquid nitrogen (LN2) droplets induced by rapid adiabatic expansion of transonic subcooled two-phase nitrogen flow passing through the Laval nozzle. Furthermore, the effect of SN2 particle diameter, injection velocity, and attack angle to the wafer substrate on resist removal-cleaning performance is investigated in detail by integrated measurement coupled computational technique.
Seenama, Chakkraphong; Tachasirinugune, Peenithi; Jintanothaitavorn, Duangporn; Kachintorn, Kanchana; Thamlikitkul, Visanu
2013-02-01
To determine the effectiveness of Virusolve+ disinfectant wipes and PAL disinfectant wipes for decontamination of inoculated bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital. Tryptic soy broths containing MRSA and XDR A. baumannii were painted onto the surfaces of patient's stainless steel bed rail, patient's fiber footboard, control panel of infusion pump machine and control panel of respirator. The contaminated surfaces were cleaned by either tap water, tap water containing detergent, Virusolve+ disinfectant wipes or PAL disinfectant wipes. The surfaces without any cleaning procedures served as the control surface. The contaminated surfaces cleaned with the aforementioned procedures and control surfaces were swabbed with cotton swabs. The swabs were streaked on agar plates to determine the presence of MRSA and XDR A. baumannii. MRSA and XDR A. baumannii were recovered from all control surfaces. All surfaces cleaned with tap water or tap water containing detergent revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with tap water containing detergent were less than those cleaned with tap water alone. All surfaces cleaned with PAL disinfectant wipes also revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with PAL disinfectant wipes were less than those cleaned with tap water containing detergent. No bacteria were recovered from all surfaces cleaned with Virusolve+ disinfectant wipes. Virusolve+ disinfectant wipes were more effective than tap water; tap water containing detergent and PAL disinfectant wipes for decontamination of bacteria inoculated on patients environmental and medical equipment surfaces at Siriraj Hospital.
Laser Ablation Cleaning of Self-Reacting Friction Stir Weld Seam Surfaces: A Preliminary Evaluation
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Russell, C. K.; Brooke, S. A.; Parry, Q.; Lowrey, N. M.
2014-01-01
Anodized aluminum panels were cleaned by three lasers at three separate sites with a view to determining whether more economical laser cleaning might supplant current manual cleaning methods for preparation of surfaces to be welded by the self-reacting friction stir process. Uncleaned panels yielded welds exhibiting residual oxide defect (ROD) and failing at very low stresses along the trace of the weld seam. Manually cleaned panels yielded welds without ROD; these welds failed at nominal stress levels along an angled fracture surface not following the weld seam trace. Laser cleaned panels yielded welds failing at intermediate stress levels. The inadequacy of the laser cleaning processes leaves questions: Was the anodized aluminum test too stringent to represent actual cleaning requirements? Were the wrong laser cleaning techniques/parameters used for the study? Is the laser cleaning mechanism inadequate for effective preweld surface cleaning?
Characterization of contaminant removal by an optical strip material
NASA Astrophysics Data System (ADS)
Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.
2001-03-01
Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.
Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.; ...
2016-08-18
Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less
Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.
Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C
2014-04-01
Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields. Copyright © 2013 Elsevier Inc. All rights reserved.
Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity
NASA Astrophysics Data System (ADS)
Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing
2018-04-01
A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.
Particles of spilled oil-absorbing carbon in contact with water
Muradov, Nazim [Melbourne, FL
2011-03-29
Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.
NASA Astrophysics Data System (ADS)
Li, Yuan; Zhang, Zhaozhu; Zhu, Xiaotao; Men, Xuehu; Ge, Bo; Zhou, Xiaoyan
2015-02-01
In this paper, a new superhydrophobic coating was successfully prefabricated by a facile sol-gel process which was made up of first the surface chemical reaction of (3-Glycidyloxypropyl) trimethoxysilane (A-187) and SiO2 particles and subsequent spray-coating onto the substrate. Further hardening treatment and surface fluorination allowed the SiO2 coating with the optimum mass ratio of 2.0:1 to exhibit nice superhydrophobic property and high adhesive effect to substrates. Our researches indicated that the mass ratio of A-187 and SiO2 particles could significantly control the surface morphology (or the wettability) and affect adhesion force of the superhydrophobic coating to substrates. In the process, hardening temperature was quite important for rapid evaporation of the solvent and then fast hardening of the coating despite the absence of the similar effect to the mass ratio of A-187 and SiO2 particles on the superhydrophobic coating, and moreover, a higher hardening temperature could also highly improve transparency of the superhydrophobic coating. These findings suggest that the superhydrophobic coating should have promising commercial applications as a self-cleaning product.
Tamburini, Elena; Donegà, Valentina; Marchetti, Maria Gabriella; Pedrini, Paola; Monticelli, Cecilia; Balbo, Andrea
2015-01-01
The worktops in both chemical and microbiological laboratories are the surfaces most vulnerable to damage and exposure to contamination by indoor pollutants. The rate at which particles are deposited on indoor surfaces is an important parameter to determine human exposure to airborne biological particles. In contrast to what has been established for inorganic pollutants, no limit has been set by law for microbial contamination in indoor air. To our knowledge, a comparative study on the effect of surfaces on the deposition of microbes has not been carried out. An evaluation of the microbial contamination of worktop materials could be of crucial importance, both for safety reasons and for the reliability of tests and experiments that need to be carried out in non-contaminated environments. The aim of this study was to evaluate the overall microbial contamination (fungi, mesophilic and psychrophilic bacteria, staphylococci) on six widely used worktop materials in laboratories (glass, stainless steel, fine porcelain stoneware, post-forming laminate, high-performing laminate and enamel steel) and to correlate it with the characteristics of the surfaces. After cleaning, the kinetics of microbial re-contamination were also evaluated for all surfaces. PMID:26193296
Engineers Clean Mirror with Carbon Dioxide Snow
2015-01-22
Just like drivers sometimes use snow to clean their car mirrors in winter, two Exelis Inc. engineers are practicing "snow cleaning'" on a test telescope mirror for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland. By shooting carbon dioxide snow at the surface, engineers are able to clean large telescope mirrors without scratching them. "The snow-like crystals (carbon dioxide snow) knock contaminate particulates and molecules off the mirror," said Lee Feinberg, NASA optical telescope element manager. This technique will only be used if the James Webb Space Telescope's mirror is contaminated during integration and testing. The Webb telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. With a mirror seven times as large as Hubble's and infrared capability, Webb will be capturing light from 13.5 billion light years away. To do this, its mirror must be kept super clean. "Small dust particles or molecules can impact the science that can be done with the Webb," said Feinberg. "So cleanliness especially on the mirrors is critical." Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Goddard/Chris Gunn
NASA Astrophysics Data System (ADS)
Choi, Jaehyuck; Kim, Jinsu; Lowe, Jeff; Dattilo, Davide; Koh, Soowan; Choi, Jun Yeol; Dietze, Uwe; Shoki, Tsutomu; Kim, Byung Gook; Jeon, Chan-Uk
2015-10-01
EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. SPM (Sulfuric acid peroxide mixture) which has been extensively used for acid cleaning of photomask and wafer has serious drawback for EUV mask cleaning. It shows severe film loss of tantalum-based absorber layers and limited removal efficiency of EUV-generated carbon contaminants on EUV mask surface. Here, we introduce such novel cleaning chemicals developed for EUV mask as almost film loss free for various layers of the mask and superior carbon removal performance. Combinatorial chemical screening methods allowed us to screen several hundred combinations of various chemistries and additives under several different process conditions of temperature and time, eventually leading to development of the best chemistry selections for EUV mask cleaning. Recently, there have been many activities for the development of EUV pellicle, driven by ASML and core EUV scanner customer companies. It is still important to obtain film-loss free cleaning chemicals because cleaning cycle of EUV mask should be much faster than that of optic mask mainly due to EUV pellicle lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality changes and film losses during 50 cleaning cycles using new chemicals as well as particle and carbon contaminant removal characteristics. We have observed that the performance of new chemicals developed is superior to current SPM or relevant cleaning chemicals for EUV mask cleaning and EUV mask lifetime elongation.
Liquid sodium dip seal maintenance system
Briggs, Richard L.; Meacham, Sterling A.
1980-01-01
A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.
NASA Technical Reports Server (NTRS)
Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick
1991-01-01
Laboratory isotherms for the binding of several nonheterogeneously active atmospheric gases and for HCl to water ice are translated into adsorptive equilibrium constants and surface enthalpies. Extrapolation to polar conditions through the Clausius Clapeyron relation yields coverage estimates below the percent level for N2, Ar, CO2, and CO, suggesting that the crystal faces of type II stratospheric cloud particles may be regarded as clean with respect to these species. For HCl, and perhaps HF and HNO3, estimates rise to several percent, and the adsorbed layer may offer acid or proton sources alternate to the bulk solid for heterogeneous reactions with stratospheric nitrates. Measurements are lacking for many key atmospheric molecules on water ice, and almost entirely for nitric acid trihydrate as substrate. Adsorptive equilibria enter into gas to particle mass flux descriptions, and the binding energy determines rates for desorption of, and encounter between, potential surface reactants.
Thammarakcharoen, Faungchat; Suvannapruk, Waraporn; Suwanprateeb, Jintamai
2014-10-01
In this study, a statistical design of experimental methodology based on Taguchi orthogonal design has been used to study the effect of various processing parameters on the amount of calcium phosphate coating produced by such technique. Seven control factors with three levels each including sodium hydroxide concentration, pretreatment temperature, pretreatment time, cleaning method, coating time, coating temperature and surface area to solution volume ratio were studied. X-ray diffraction revealed that all the coatings consisted of the mixture of octacalcium phosphate (OCP) and hydroxyapatite (HA) and the presence of each phase depended on the process conditions used. Various content and size (-1-100 μm) of isolated spheroid particles with nanosized plate-like morphology deposited on the titanium surface or a continuous layer of plate-like nanocrystals having the plate thickness in the range of -100-300 nm and the plate width in the range of 3-8 μm were formed depending on the process conditions employed. The optimum condition of using sodium hydroxide concentration of 1 M, pretreatment temperature of 70 degrees C, pretreatment time of 24 h, cleaning by ultrasonic, coating time of 6 h, coating temperature of 50 degrees C and surface area to solution volume ratio of 32.74 for producing the greatest amount of the coating formed on the titanium surface was predicted and validated. In addition, coating temperature was found to be the dominant factor with the greatest contribution to the coating formation while coating time and cleaning method were significant factors. Other factors had negligible effects on the coating performance.
Katayama, Hirohito; Higo, Takashi; Tokunaga, Yuji; Katoh, Shigeo; Hiyama, Yukio; Morikawa, Kaoru
2008-01-01
A practical, risk-based monitoring approach using the combined data collected from actual experiments and computer simulations was developed for the qualification of an EU GMP Annex 1 Grade B, ISO Class 7 area. This approach can locate and minimize the representative number of sampling points used for microbial contamination risk assessment. We conducted a case study on an aseptic clean room, newly constructed and specifically designed for the use of a restricted access barrier system (RABS). Hotspots were located using three-dimensional airflow analysis based on a previously published empirical measurement method, the three-dimensional airflow analysis. Local mean age of air (LMAA) values were calculated based on computer simulations. Comparable results were found using actual measurements and simulations, demonstrating the potential usefulness of such tools in estimating contamination risks based on the airflow characteristics of a clean room. Intensive microbial monitoring and particle monitoring at the Grade B environmental qualification stage, as well as three-dimensional airflow analysis, were also conducted to reveal contamination hotspots. We found representative hotspots were located at perforated panels covering the air exhausts where the major piston airflows collect in the Grade B room, as well as at any locations within the room that were identified as having stagnant air. However, we also found that the floor surface air around the exit airway of the RABS EU GMP Annex 1 Grade A, ISO Class 5 area was always remarkably clean, possibly due to the immediate sweep of the piston airflow, which prevents dispersed human microbes from falling in a Stokes-type manner on settling plates placed on the floor around the Grade A exit airway. In addition, this airflow is expected to be clean with a significantly low LMAA. Based on these observed results, we propose a simplified daily monitoring program to monitor microbial contamination in Grade B environments. To locate hotspots we propose using a combination of computer simulation, actual airflow measurements, and intensive environmental monitoring at the qualification stage. Thereafter, instead of particle or microbial air monitoring, we recommend the use of microbial surface monitoring at the main air exhaust. These measures would be sufficient to assure the efficiency of the monitoring program, as well as to minimize the number of surface sampling points used in environments surrounding a RABS.
Preparation and analysis of particulate metal deposits
NASA Technical Reports Server (NTRS)
Poppa, H.; Moorhead, D.; Heinemann, K.
1985-01-01
Small particles and clusters of palladium were grown by deposition from the vapor phase under ultrahigh vacuum conditions. Amorphous and crystalline support films of Al2O3 and ultrathin amorphous carbon films were used as substrate materials. The growth of the metal deposit was monitored in situ by scanning transmission diffraction of energy-filtered 100 kV electrons and high resolution transmission electron microscopy (TEM) analysis was performed in a separate instrument. It was established by in situ TEM, however, that the transfer of specimens in this case did not unduly affect the size and distribution of deposit particles. It was found that the cleanness, stoichiometry, crystallinity and structural perfection of the support surface play an essential role in determining the crystalline perfection and structure of the particles. The smallest palladium clusters reproducibly prepared contained not more than six atoms but size determinations below 1 nm average particle diameter are very problematic with conventional TEM. Palladium particles grown on carbon supports feature an impurity-stabilized mosaic structure.
NASA Astrophysics Data System (ADS)
Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.
2016-11-01
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m-2 pan-Arctic-mean cooling), exceeding -1 W m-2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.
Croft, B; Wentworth, G R; Martin, R V; Leaitch, W R; Murphy, J G; Murphy, B N; Kodros, J K; Abbatt, J P D; Pierce, J R
2016-11-15
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m -2 pan-Arctic-mean cooling), exceeding -1 W m -2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.
Milella, E; Cosentino, F; Licciulli, A; Massaro, C
2001-06-01
In the present work a titania network encapsulating a hydroxyapatite particulate phase is proposed as a bioceramic composite coating. The coating on a titanium substrate was produced starting from a sol containing a mixture of titania colloidal particles and hydroxyapatite submicron particles using the dip-coating technique. The microstructure, the morphology and the surface chemical composition of the coating were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Adhesion tests were also performed. These analyses showed that the obtained coating was chemically clean, homogeneous, rough, porous, with a low thickness and well-defined phase composition as well as a good adhesion to the substrate.
Surface texture and composition of titanium brushed with toothpaste slurries of different pHs.
Hossain, Awlad; Okawa, Seigo; Miyakawa, Osamu
2007-02-01
This in vitro study characterized the surface texture and composition of titanium brushed with toothpaste slurries of different pHs, and thereby elucidated mechanochemical interactions between the metal and abrasive material in dentifrice. Two fluoride-free toothpastes, which contained crystalline CaHPO(4).2H(2)O and amorphous SiO(2) particles as abrasive, were mixed with acidic buffers to provide slurries of pH 6.8 and 4.8. Specimens were cast from CP Ti, mirror-polished, and then toothbrushed at 120strokes/min for 350,400 strokes under a load of 2.45N. Specimen surfaces were characterized by means of SPM and EPMA. The obtained data were compared with the already reported results of water-diluted alkaline slurries. SPM data of each paste were analyzed using one-way ANOVA, followed by post hoc Tukey test. Irrespective of toothpaste, neutral slurries, as with alkaline slurries, yielded a chemically altered surface with rough texture, whereas acidic slurries formed a chemically clean surface with relatively smooth texture. Mechanochemical polishing effect might be mainly responsible for the cleanness and smoothness. Acidic slurry-induced smooth surface may minimize plaque formation. However, the augmentation of released titanium ions may be adverse to the human body. For evaluation of toothpaste abrasion effects on titanium, paste slurry pH should be taken into account.
Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars.
De la Rosa, José M; Miller, Ana Z; Pozo-Antonio, J Santiago; González-Pérez, José A; Jiménez-Morillo, Nicasio T; Dionisio, Amelia
2017-12-15
The deposition of soot on building surfaces darkens their colour and leads to undesirable black crusts, which are one of the most serious problems on the conservation of built cultural heritage. As a preventive strategy, self-cleaning systems based on the use of titanium dioxide (TiO 2 ) coatings have been employed on building materials for degrading organic compounds deposited on building surfaces, improving their durability and performance. In this study, the self-cleaning effect of TiO 2 -containing mortars coated with diesel soot has been appraised under laboratory conditions. The mortar samples were manufactured using lime putty and two different doses of TiO 2 (2.5% and 5%). The lime mortars were then coated with diesel engine soot and irradiated with ultraviolet A (UVA) illumination for 30days. The photocatalytic efficiency was evaluated by visual inspection, field emission scanning electron microscopy (FESEM) and colour spectrophotometry. Changes in the chemical composition of the soot particles (including persistent organic pollutants) were assessed by analytical pyrolysis (Py-GC/MS) and solid state 13 C NMR spectroscopy. The FESEM and colour spectrophotometry revealed that the soot-coated TiO 2 -containing mortars promoted a self-cleaning effect after UVA irradiation. The combination of analytical pyrolysis and 13 C solid state NMR showed that the UVA irradiation caused the cracking of polycyclic aromatic structures and n-alkyl compounds of the diesel soot and its transformation into methyl polymers. Our findings also revealed that the inclusion of TiO 2 in the lime mortar formulations catalysed these transformations promoting the self-cleaning of the soot-stained mortars. The combined action of TiO 2 and UVA irradiation is a promising proxy to clean lime mortars affected by soot deposition. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Y.D.; Lee, K.B.; Islam, S.Z.
2008-07-01
In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulatemore » and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.« less
Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping
2017-10-15
Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-12
... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental... Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental Policy Act, and... coal mining operations under the Clean Water Act, National Environmental Policy Act, and the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Cho; Alexander Fridman
2009-04-02
The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filtermore » membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.« less
Burnet, George; Gokhale, Ashok J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.
Burnet, G.; Gokhale, A.J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Oh, U.; Guanghan, Zhao; Koike, Tomoki; Ochiai, Naoya
2014-01-01
The ultra-high heat flux cooling characteristics and impingement behavior of cryogenic micro-solid nitrogen (SN2) particles in relation to a heated wafer substrate were investigated for application to next generation semiconductor wafer cleaning technology. The fundamental characteristics of cooling heat transfer and photoresist removal-cleaning performance using micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. This study contributes not only advanced cryogenic cooling technology for high thermal emission devices, but also to the field of nano device engineering including the semiconductor wafer cleaning technology.
NASA Astrophysics Data System (ADS)
Ando, Takashi; Harada, Yoshio
The relationship between roughness caused by blasting and adhesion of spray coatings on aluminum container substrates was studied through various experiments as part of measures for improving the adhesion of the 75mass%Cr-Fe alloy plasma spray coating for sulfi dation corrosion resistance, which is applied on the inner surface of cylindrical Al containers of high-temperature type NAS batteries. Surface roughness of μmRa2.8 - 7.3 was acquired by using Al2O3 particle size #100 (212 - 75μm) to #46 (600 - 250μm) grit. In order to achieve uniform roughness and a clean surface, a combination of blasting when the nozzle was being inserted from the top of the container, and air blowing when the nozzle was being removed was done. It was determined that when Al2O3 particles of size #100 grit was used, a good anchoring shape was formed throughout with a roughened surface of μmRa 2.8. When the internal surface of 3000 Al cylindrical containers were continually blasted using particle size #100 grit, the initial surface roughness of μmRa3.7 - 3.9 only deteriorated to about μmRa2.6. A 75mass%Cr-Fe alloy spray coating was applied to the Al cylindrical containers that were roughened using particle size #100 grit. This coating showed cracks by a bending test, but no peeling occurred. This coating was examined by a tensile strength test and showed good adhesion at 64 - 66 MPa. Through experiments, it was proven that spray coatings formed on the Al cylindrical containers after receiving optimal blasting with particle size #100 grit had good adhesion and corrosion resistance after being used for NAS batteries that stored electrical power for about nine years.
NASA Astrophysics Data System (ADS)
Eibl, Christian; Schmidt, Anke B.; Donath, Markus
2012-10-01
The unoccupied surface electronic structure of clean and oxidized Fe(001) was studied with spin-resolved inverse photoemission and target current spectroscopy. For the clean surface, we detected a dz2 surface state with minority spin character just above the Fermi level, while the image-potential surface state disappears. The opposite is observed for the ordered p(1×1)O/Fe(001) surface: the dz2-type surface state is quenched, while the image-potential state shows up as a pronounced feature. This behavior indicates enhanced surface reflectivity at the oxidized surface. The appearance and disappearance of specific unoccupied surface states prove to be decisive criteria for a clean Fe(001) surface. In addition, enhanced spin asymmetry in the unoccupied states is observed for the oxidized surface. Our results have implications for the use of clean and oxidized Fe(001) films as spin-polarization detectors.
NASA Astrophysics Data System (ADS)
Di Biagio, C.; Pelon, J.; Ancellet, G.; Bazureau, A.; Mariage, V.
2018-01-01
We have analyzed aerosol properties at the regional scale over high Arctic north of Svalbard between October 2014 and June 2015 from version 4 (V4) CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) spaceborne observations and compared results with surface lidar observations from IAOOS (Ice-Atmosphere-Ocean Observing System) platforms. CALIOP data indicate a maximum in aerosol occurrence at the end of winter attributed to low-level (0-2 km) and midtropospheric (2-5 km) particles identified in CALIOP V4 product as being mostly of dust origin. Another maximum was observed in October-December attributed to clean marine particles below 2 km and smoke and dust above. The 532 nm aerosol extinction was in the range 1-8 Mm-1 (0-2 km), 1-18 Mm-1 (2-5 km), and 0-6 Mm-1 (5-10 km), a factor 2 lower compared to values previously reported using CALIOP V3 data set. Aerosols are identified from trajectory analyses to originate mostly from Russia/Europe at all altitudes, and also North America above 2 km, and it is concluded that dust and clean marine types are most probably overrepresented in the analyzed CALIOP data set. It is proposed that most part of dust types are diamond dust, while part of clean marine are polluted species, as corroborated from colocated polarized lidar IAOOS observations. IAOOS observations allowed confirming the identified sensitivity of CALIOP with a particle backscatter coefficient of 0.001 km-1 sr-1 at 532 nm. For optically thicker layers CALIOP is shown to be a valuable tool to follow transport of aerosol layers in the Arctic and identify their possible modifications.
Characterization of a Regenerable Impactor Filter for Spacecraft Cabin Applications
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.
2015-01-01
Regenerable filters will play an important role in human exploration beyond low-Earth orbit. Life Support Systems aboard crewed spacecrafts will have to operate reliably and with little maintenance over periods of more than a year, even multiple years. Air filters are a key component of spacecraft life support systems, but they often require frequent routine maintenance. Bacterial filters aboard the International Space Station require almost weekly cleaning of the pre-filter screen to remove large lint debris captured in the microgravity environment. The source of the airborne matter which is collected on the filter screen is typically from clothing fibers, biological matter (hair, skin, nails, etc.) and material wear. Clearly a need for low maintenance filters requiring little to no crew intervention will be vital to the success of the mission. An impactor filter is being developed and tested to address this need. This filter captures large particle matter through inertial separation and impaction methods on collection surfaces, which can be automatically cleaned after they become heavily loaded. The impactor filter can serve as a pre-filter to augment the life of higher efficiency filters that capture fine and ultrafine particles. A prototype of the filter is being tested at the Particulate Filtration Laboratory at NASA Glenn Research Center to determine performance characteristics, including particle cut size and overall efficiency. Model results are presented for the flow characteristics near the orifice plate through which the particle-laden flow is accelerated as well as around the collection bands.
Colloidal and electrochemical aspects of copper-CMP
NASA Astrophysics Data System (ADS)
Sun, Yuxia
Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.
NASA Astrophysics Data System (ADS)
Yang, Sen; Liu, Wenjin; Zhong, Minlin
2003-03-01
Different weight ratio of nickel based alloy, titanium and graphite powders were mixed and then laser cladded onto carbon steel substrate to produce a surface metal matrix composite layer. The experimental results showed that the coating was uniform, continuous and free of cracks. An excellent bonding between the coating and the carbon steel substrate was ensured by the strong metallurgical interface. The microstructures of the coating were mainly composed of γ-Ni dendrite, M23C6, a small amount of CrB, and dispersed TiC particles, and the in-situ generated TiCp/matrix interfaces were clean and free from deleterious surface reaction. The morphologies of TiC particles changed from the global, cluster to flower-like shape, the volume fraction of TiCp and the microhardness gradually increased from the bottom to the top of the coating layer, and the maximum microhardness of the coating was about HV0.2850, 3 times larger than that of steel substrate. The volume fraction of TiC particles increased with increasing of volume fraction of Ti and C too.
Particle monitoring and control in vacuum processing equipment
NASA Astrophysics Data System (ADS)
Borden, Peter G., Dr.; Gregg, John
1989-10-01
Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.
Drastic reduction of adsorption of CO and H2 on (111)-type Pd layers
NASA Technical Reports Server (NTRS)
Poppa, H.; Soria, F.
1983-01-01
Clean surfaces of (111)-type Pd layers, grown from the vapor phase on Mo(110) at room temperature, were used to study the adsorption of CO and H2 by temperature-programmed desorption, Auger electron spectroscopy, and low-energy electron diffraction. Mild annealing of the as-grown layers during a single desorption cycle (to about 600 K) drastically reduces the adsorption for both adsorbates. Low-dose argon-ion bombardment introduces surface imperfections which restore a high adsorption probability. The results are interpreted in terms of particular (111)-type surface structures that persist tp layer thicknesses of about four monolayers; the results raise questions with respect to the surface structure of supported thin epitaxial islands and particles of Pd and possibly also with respect to conventional methods of preparing bulk surfaces of Pd for adsorption studies.
Laser cleaning of the contaminations on the surface of tire mould
NASA Astrophysics Data System (ADS)
Ye, Yayun; Jia, Baoshen; Chen, Jing; Jiang, Yilan; Tang, Hongping; Wang, Haijun; Luan, Xiaoyu; Liao, Wei; Zhang, Chuanchao; Yao, Caizhen
2017-07-01
During the manufacturing of tires, surface pollutants on tire mould will lead to the production of unqualified tires. Tire moulds need to be regularly cleaned. Laser cleaning is recognized as a non-destructive, effective, precise and environmental friendly method. In this paper, laser cleaning was used to remove contaminants on tire mould surface. First, laser induced damage experiments were performed. The results showed that the roughness and hardness of the cast steel sample surface seldom changed under the energy range of 140.1-580.2 mJ laser irradiation 1 pulse and the energy range of 44.7-168.9 mJ laser irradiation 100 pulses. In the laser cleaning experiments, the cleaning thresholds and the optimal cleaning parameters were obtained. Results indicated that laser cleaning was safe and effective for tire mould contamination removal.
Packaging system with cleaning channel and method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Lu
A packaging structure and method for surface mount integrated circuits reduces electrochemical migration (ECM) problems by including one or more cleaning channels to effectively and efficiently remove flux residue that may otherwise remain lodged in gaps between the surface mount package and the printed circuit board. A cleaning channel may be formed along a bottom surface of the surface mount package (i.e., the surface facing the printed circuit board), or along a portion of a top surface of the printed circuit board. In either case, the inclusion of a cleaning channel enlarges the gap between the bottom surface of themore » surface mount package and the printed circuit board and creates a path for contaminants to be flushed out during a cleaning process.« less
NASA Astrophysics Data System (ADS)
Tyagi, P. V.; Moss, Andrew; Goudket, Philippe; Pattalwar, Shrikant; Herbert, Joe; Valizadeh, Reza; McIntosh, Peter
2018-06-01
Field emission is one of the critical issues in the superconducting radio frequency (SRF) cavities and can degrade their accelerating gradient during operation. The contamination present at top surface of the SRF cavity is one of the foremost reasons for field emission. Plasma based surface processing can be a viable option to eliminate such surface contaminants and enhance performance of the SRF cavity especially for in-situ applications. These days, 1.3 GHz nine-cell SRF cavity has become baseline standard for many particle accelerators, it is of interest to develop plasma cleaning technique for such SRF cavities. In the development of the plasma processing technique for SRF cavities, the most challenging task is to ignite and tune the plasma in different cells of the SRF cavity. At Daresbury laboratory, UK, we have successfully achieved plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity. The plasma ignition in different cells of the cavity was accomplished at room temperature towards room temperature plasma cleaning of the SRF cavity surface. Here, we report the successful demonstration of the plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity.
Environmentally compatible hand wipe cleaning solvents
NASA Technical Reports Server (NTRS)
Clayton, Catherine P.; Kovach, Michael P.
1995-01-01
Several solvents of environmental concern have previously been used for hand wipe cleaning of SRB surfaces, including 1,1,1-trichloroethane, perchloroethylene, toluene, xylene, and MEK. USBI determined the major types of surfaces involved, and qualification requirements of replacement cleaning agents. Nineteen environmentally compatible candidates were tested on 33 material substrates with 26 types of potential surface contaminants, involving over 7,000 individual evaluations. In addition to the cleaning performance evaluation, bonding, compatibility, and corrosion tests were conducted. Results showed that one cleaner was not optimum for all surfaces. In most instances, some of the candidates cleaned better than the 1,1,1-trichloroethane baseline control. Aqueous cleaners generally cleaned better, and were more compatible with nonmetallic materials, such as paints, plastics, and elastomers. Organic base cleaners were better on metal surfaces. Five cleaners have been qualified and are now being implemented in SRB hand wipe cleaning operations.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1998-01-01
This chapter presents the adhesion, friction, and wear behaviors of smooth, atomically clean surfaces of solid-solid couples, such as metal-ceramic couples, in a clean environment. Surface and bulk properties, which determine the adhesion, friction, and wear behaviors of solid-solid couples, are described. The primary emphasis is on the nature and character of the metal, especially its surface energy and ductility. Also, the mechanisms of friction and wear for clean, smooth surfaces are stated.
Hon, Chun-Yip; Chua, Prescillia Ps; Danyluk, Quinn; Astrakianakis, George
2014-06-01
Occupational exposure to antineoplastic drugs has been documented to result in various adverse health effects. Despite the implementation of control measures to minimize exposure, detectable levels of drug residual are still found on hospital work surfaces. Cleaning these surfaces is considered as one means to minimize the exposure potential. However, there are no consistent guiding principles related to cleaning of contaminated surfaces resulting in hospitals to adopt varying practices. As such, this pilot study sought to evaluate current cleaning protocols and identify those factors that were most effective in reducing contamination on drug preparation surfaces. Three cleaning variables were examined: (1) type of cleaning agent (CaviCide®, Phenokil II™, bleach and chlorhexidine), (2) application method of cleaning agent (directly onto surface or indirectly onto a wipe) and (3) use of isopropyl alcohol after cleaning agent application. Known concentrations of antineoplastic drugs (either methotrexate or cyclophosphamide) were placed on a stainless steel swatch and then, systematically, each of the three cleaning variables was tested. Surface wipes were collected and quantified using high-performance liquid chromatography-tandem mass spectrometry to determine the percent residual of drug remaining (with 100% being complete elimination of the drug). No one single cleaning agent proved to be effective in completely eliminating all drug contamination. The method of application had minimal effect on the amount of drug residual. In general, application of isopropyl alcohol after the use of cleaning agent further reduced the level of drug contamination although measureable levels of drug were still found in some cases.
Copoly(imide siloxane) Abhesive Materials with Varied Siloxane Oligomer Length
NASA Technical Reports Server (NTRS)
Wohl, Christoper J.; Atkins, Brad M.; Lin, Yi; Belcher, Marcus A.; Connell, John W.
2010-01-01
In this work, low surface energy copoly(imide siloxane)s were synthesized with various siloxane segment lengths. Characterization of these materials revealed that domain formation of the low surface energy component within the matrix was more prevalent for longer siloxane segments as indicated by increased opacity, decreased mechanical properties, and variation of the Tg. Incorporation of siloxanes lowered the polymer s surface energy as indicated by water contact angle values. Topographical modification of these materials by laser ablation patterning further reduced the surface energy, even generating superhydrophobic surfaces. Combined, the contact angle data and particle adhesion testing indicated that copoly(imide siloxane) materials may provide greater mitigation to particulate adhesion than polyimide materials alone. These enhanced surface properties for abhesive applications did result in a reduction of the tensile moduli of the copolymers. It is possible that lower siloxane loading levels would result in retention of the mechanical properties of the polyimide while still affording abhesive surface properties. This hypothesis is currently being investigated. Laser ablation patterning offers further reduction in particle retention as the available surface area for particle adhesion is reduced. Pattern variation and size dependencies are currently being evaluated. For the purposes of lunar dust adhesion mitigation, it is likely that this approach, termed passive due to the lack of input from an external energy source, would not be sufficient to mitigate surface contamination or clean contaminated surfaces for some lunar applications. It is feasible to combine these materials with active mitigation strategies - methods that utilize input from external energy sources - would broaden the applicability of such materials for abhesive purposes. Collaborative efforts along these lines have been initiated with researchers at NASA Kennedy Space Center where experiments are being conducted involving a series of embedded electrodes within polymeric matrices.
Active cleaning technique for removing contamination from optical surfaces in space
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.; Cruz, G. A.
1973-01-01
An active cleaning technique for removing contaminants from optical surfaces in space was investigated with emphasis on the feasibility of using plasma exposure as a means of in-situ cleaning. The major work accomplished includes: (1) development of an in-situ reflectometer for use in conjunction with the contaminant film deposition/cleaning facility; (2) completion of Apollo Telescope Mount (ATM) filter treatment experiments to assess the effects of plasma exposure on the UV transmittance; (3) attempts to correlate the atomic oxygen flux with cleaning rate; (4) completion of in-situ butadien contamination/plasma cleaning/UV reflectance measurement experiments; (5) carbon cleaning experiments using various gases; (6) completion of silicone contamination/cleaning experiments; and (7) experiments conducted at low chamber pressures to determine cleaning rate distribution and contamination of surfaces adjacent to those being cleaned.
Tebbutt, G. M.
1991-01-01
The performance of agar-contact plates and an alginate-swab method for sampling food surfaces before and after cleaning was compared. Contact plates were more convenient, and were at least as sensitive as the swabbing method. To assess cleaning efficiency repeated sampling was carried out in selected premises, and several cleaning methods were introduced for trial periods. Some surfaces, notably wood and polypropylene, were particularly difficult to clean. For these scrubbing with a nylon brush was the best method. Other surfaces were more easily cleaned, and generally the methods introduced as part of this study were better than the original method used in the premises. Paper proved to be unpopular, and cleaning solutions applied with it did no better than those cleaned with a multiuse cloth kept soaking in a detergent and hypochlorite solution. PMID:1850362
Wang, Meng; Chen, Shi-Bao; Ma, Yi-Bing
2010-11-01
Though it has been claimed that nanotechnology has great potential in environmental cleaning, caution is required to the application of nano-particles (<100 nm). The studies relevant to organism exposure have shown that nano-particles can be hazardous. Currently, more papers are available about the remediation efficiency, characteristics, and mechanisms of manufactured nanoparticles after applied into polluted environment, but few studies are conducted about the ecotoxicological effects of the nano-particles. This paper reviewed the current researches on the hazards of nano- or ultrafine particles in environmental detoxification, discussed the potential environmental risks of applying nano-particles, and prospected the perspectives of the nanoparticles in environmental cleaning research.
Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, M.K.; Samal, A.R.; Palit, A.
One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mmmore » and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.« less
Detecting Aerosol Effect on Deep Precipitation Systems: A Modeling Study
NASA Astrophysics Data System (ADS)
Li, X.; Tao, W.; Khain, A.; Kummerow, C.; Simpson, J.
2006-05-01
Urban cities produce high concentrations of anthropogenic aerosols. These aerosols are generally hygroscopic and may serve as Cloud Condensation Nuclei (CCN). This study focuses on the aerosol indirect effect on the deep convective systems over the land. These deep convective systems contribute to the majority of the summer time rainfall and are important for local hydrological cycle and weather forecast. In a companion presentation (Tao et al.) in this session, the mechanisms of aerosol-cloud-precipitation interactions in deep convective systems are explored using cloud-resolving model simulations. Here these model results will be analyzed to provide guidance to the detection of the impact of aerosols as CCN on summer time, deep convections using the currently available observation methods. The two-dimensional Goddard Cumulus Ensemble (GCE) model with an explicit microphysical scheme has been used to simulate the aerosol effect on deep precipitation systems. This model simulates the size distributions of aerosol particles, as well as cloud, rain, ice crystals, snow, graupel, and hail explicitly. Two case studies are analyzed: a midlatitude summer time squall in Oklahoma, and a sea breeze convection in Florida. It is shown that increasing the CCN number concentration does not affect the rainfall structure and rain duration in these two cases. The total surface rainfall rate is reduced in the squall case, but remains essentially the same in the sea breeze case. For the long-lived squall system with a significant portion of the stratiform rain, the surface rainfall PDF (probability density function) distribution is more sensitive to the change of the initial CCN concentrations compared with the total surface rainfall. The possibility of detecting the aerosol indirect effect in deep precipitation systems from the space is also studied in this presentation. The hydrometeors fields from the GCE model simulations are used as inputs to a microwave radiative transfer model. It is found that Tb at higher frequencies (35 GHz and 85 GHz) are quite sensitive to the CCN concentration variations. This is because the higher frequency brightness temperatures are sensitive to large, ice-phase particles. In a clean environment, the deep convections produce larger cloud particles. When these cloud particles are transported above the freezing level by strong updrafts, they form larger precipitable ice particles (snow, graupel and hail) compared with dirty environment simulations. These larger ice particles result in significantly colder brightness temperatures at high frequencies in the clean scenario simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Q.; Gustafson, W. I.; Fast, J. D.
2012-09-28
Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the relative impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 October–16 November 2008). Two distinct regions are identified. The near-coast polluted region is characterized by low surface precipitation rates, the strong suppression of non-sea-salt particle activation due to sea-salt particles, a predominant albedo effect in aerosol indirect effects, and limited impact of aerosols associated withmore » anthropogenic emissions on clouds. Opposite sensitivities to natural marine and anthropogenic aerosol perturbations are seen in cloud properties (e.g., cloud optical depth and cloud-top and cloud-base heights), precipitation, and the top-of-atmosphere and surface shortwave fluxes over this region. The relatively clean remote region is characterized by large contributions of aerosols from non-regional sources (lateral boundaries) and much stronger drizzle at the surface. Under a scenario of five-fold increase in regional anthropogenic emissions, this relatively clean region shows large cloud responses, for example, a 13% increase in cloud-top height and a 9% increase in albedo in response to a moderate increase (25% of the reference case) in cloud condensation nuclei (CCN) concentration. The reduction of precipitation due to this increase in anthropogenic aerosols more than doubles the aerosol lifetime in the clean marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol, which ultimately alters the cloud micro- and macro-physical properties, leading to strong aerosol-cloud-precipitation interactions. The high sensitivity is also related to an increase in cloud-top entrainment rate (by 16% at night) due to the increased anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions due to the increased anthropogenic aerosols have a stronger diurnal cycle over the clean region compared to the near-coast region with stronger interactions at night. During the day, solar heating results in more frequent decoupling of the cloud and sub-cloud layers, thinner clouds, reduced precipitation, and reduced sensitivity to the increase in anthropogenic emissions. This study shows the importance of natural aerosols in accurately quantifying anthropogenic forcing within a regional modeling framework. Finally, the results of this study also imply that the energy balance perturbations from increased anthropogenic emissions are larger in the more susceptible clean environment than in already polluted environment and are larger than possible from the first indirect effect alone.« less
Simple fabrication of antireflective silicon subwavelength structure with self-cleaning properties.
Kim, Bo-Soon; Ju, Won-Ki; Lee, Min-Woo; Lee, Cheon; Lee, Seung-Gol; Beom-Hoan, O
2013-05-01
A subwavelength structure (SWS) was formed via a simple chemical wet etching using a gold (Au) catalyst. Single nano-sized Au particles were fabricated by metallic self-aggregation. The deposition and thermal annealing of the thin metallic film were carried out. Thermal annealing of a thin metallic film enables the creation of metal nano particles by isolating them from each other by means of the self-aggregation of the metal. After annealing, the samples were soaked in an aqueous etching solution of hydrofluoric acid and hydrogen peroxide. When silicon (Si) was etched for 2 minutes using the Au nano particles, the reflectance was decreased almost 0% over the entire wavelength range from 300 to 1300 nm due to its deep and steeply double tapered structure. When given varying incident angle degrees from 30 degrees to 60 degrees, the reflectance was also maintained at less than 3%. Following this, the etched silicon was treated with a plasma-polymerized fluorocarbon (PPFC) film of about 5 nm using an ICP reactor for surface modification. The result of this surface treatment, the contact angle increased significantly from 27.5 degrees to 139.3 degrees. The surface modification was successful and maintained almost 0% reflectance because of the thin film deposition.
Automatic Flushing Unit With Cleanliness Monitor
NASA Technical Reports Server (NTRS)
Hildebrandt, N. E.
1982-01-01
Liquid-level probe kept clean, therefore at peak accuracy, by unit that flushes probe with solvent, monitors effluent for contamination, and determines probe is particle-free. Approach may be adaptable to industrial cleaning such as flushing filters and pipes, and ensuring that manufactured parts have been adequately cleaned.
A review: Application of adhesive bonding on semiconductor interconnection joints
NASA Astrophysics Data System (ADS)
Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Shahimin, Mukhzeer Mohamad; Retnasamy, Vithyacharan
2017-09-01
A comprehensive review on adhesive die bonding is presented in this paper. Adhesive bonding technique involved electrically conductive adhesives that bond by evaporation of a solvent or by curing a bonding agent with three main parameters; heat, pressure, and time. Isotropic conductive adhesive (ICA) and anisotropic conductive adhesive (ACA) are the commonly used adhesive in this technique. In order to achieve and promote a better adhesion of die on the substrate, surface cleaning steps and methods were very crucial. The major challenge faced by this technique is entrapment of the conductive particles between the die and substrate. An adequate amount of conductive particle is needed between the die and substrate in order to avoid increase in contact resistance.
Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana
2015-10-01
Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.
Goel, Amit; Singh, Atul; Gupta, Tarun
2017-01-01
Background The purpose of this study was to analyze and compare the enamel surface roughness before bonding and after debonding, to find correlation between the adhesive remnant index and its effect on enamel surface roughness and to evaluate which clean-up method is most efficient to provide a smoother enamel surface. Material and Methods 135 premolars were divided into 3 groups containing 45 premolars in each group. Group I was bonded by using moisture insensitive primer, Group II by using conventional orthodontic adhesive and Group III by using self-etching primer. Each group was divided into 3 sub-groups on the basis of type of clean-up method applied i,e scaling followed by polishing, tungsten carbide bur and Sof-Lex disc. Enamel surface roughness was measured and compared before bonding and after clean-up. Results Evaluation of pre bonding and post clean-up enamel surface roughness (Ra value) with the t test showed that Post clean-up Ra values were greater than Pre bonding Ra values in all the groups except in teeth bonded with self-etching primer cleaned with Sof-Lex disc. Reliability of ARI score taken at different time interval tested with Kruskal Wallis test suggested that all the readings were reliable. Conclusions No clean-up procedure was able to restore the enamel to its original smoothness. Self-etching primer and Sof-Lex disc clean-up method combination restored the enamel surface roughness (Ra value) closest to its pre-treatment value. Key words:Enamel surface roughness, clean-up method, adhesive remnant index. PMID:28512535
NASA Astrophysics Data System (ADS)
Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji
2017-12-01
We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.
Martin, U; Sonntag, A-K; Neuhaus, B; Karch, H
2004-10-01
The effectiveness of cleaning and disinfection of environmental surfaces was evaluated in three nursing homes using bacteriological monitoring. Samples from inmates (nose, throat and wounds) and surface cleaning equipment were also taken. Cleaning solutions, disinfectants and cleaning clothes were found to be highly contaminated in two of three institutions. Referring to the surfaces in some cases disinfection didn't reduce bacterial colony counts and seeded MRSA as a potential pathogen in one nursing home. Six MRSA-positive inmates and identical strains were registered in the environment. MRSA can be used as a marker organism to demonstrate effectiveness of cleaning. To achieve further improvement bacteriological monitoring can help in focussing special cleaning and disinfection related problems.
Honey bee hairs and pollenkitt are essential for pollen capture and removal.
Amador, Guillermo J; Matherne, Marguerite; Waller, D'Andre; Mathews, Megha; Gorb, Stanislav N; Hu, David L
2017-03-23
While insect grooming has been observed and documented for over one hundred years, we present the first quantitative analysis of this highly dynamic process. Pollinating insects, like honey bees, purposely cover themselves with millions of pollen particles that, if left ungroomed, would make sensing and controlled flight difficult. How do they get clean? We show that the hairs on insect eyes are tuned to the pollen they collect; namely, the hairs are spaced so that they suspend pollen above the body for easy removal by the forelegs. In turn, hair spacing on the foreleg dictates the leg's ability to store the pollen removed during each swipe. In tests with wax-covered honey bees, we show that hairy forelegs are necessary for pollen removal. Moreover, the viscous fluid found on the surface of pollen grains, or pollenkitt, greatly enhances adhesion. We find that bees accumulate twice as much pollen if pollenkitt is present. This study may help further understand pollination, as well as inform designs for mechanically-sensitive functional surfaces with micro- and nano-structures that are easier to keep clean.
Effectiveness of Surface Cleaning and Disinfection in a Brazilian Healthcare Facility.
Santos-Junior, Aires G; Ferreira, Adriano M; Frota, Oleci P; Rigotti, Marcelo A; Barcelos, Larissa da S; Lopes de Sousa, Alvaro Francisco; de Andrade, Denise; Guerra, Odanir G; R Furlan, Mara C
2018-01-01
Failures in the processes of cleaning and disinfecting health service surfaces may result in the spread and transfer of pathogens that are often associated with healthcare-related infections and outbreaks. To assess the effectiveness of environmental surface cleaning and disinfection in a hospital clinic. The study was conducted in a nursing ward with 45 beds. A total of 80 samples from five high-touch surfaces were evaluated before and after cleaning and disinfection, using the following methods: visual inspection, adenosine triphosphate bioluminescence assay, aerobic colony count, Staphylococcus aureus colony count, and evaluation of resistance to methicillin. The data analysis used nonparametric comparative and correlative tests to observe any differences in the pre- and post- cleaning and disinfection results for the surfaces assessed. Effective cleaning and disinfection had a significant effect on only two surfaces when measured for the presence of adenosine triphosphate, the inner bathroom door handle ( p =0.007) and the toilet bowl ( p =0.01). When evaluated for Staphylococcus aureus colony count, the toilet flush handle also demonstrated a significant effect ( p =0.04). The effectiveness of cleaning and disinfection of the surfaces tested was not satisfactory. An educational intervention is recommended for the cleaning and disinfection staff and the nursing team at the healthcare facility. The data in the study revealed that daily hospital cleaning and disinfection in the sampled sites are not sufficient in medical and surgical wards. Hospital cleanliness must be reevaluated from the point of view of materials, such as an adequate supply of clean cloths, in addition to establishing more precise cleanliness protocols and accurate monitoring systems.
Harris, Candace D.; Shen, Nan; Rubenchik, Alexander M.; ...
2015-11-04
Here, time-resolved plasma emission spectroscopy was used to characterize the energy coupling and temperature rise associated with single, 10-ns pulsed laser ablation of metallic particles bound to transparent substrates. Plasma associated with Fe(I) emission lines originating from steel microspheres was observed to cool from >24,000 to ~15,000 K over ~220 ns asmore » $$\\tau$$ -0.28, consistent with radiative losses and adiabatic gas expansion of a relatively free plasma. Simultaneous emission lines from Si(II) associated with the plasma etching of the SiO2 substrate were observed yielding higher plasma temperatures, ~35,000 K, relative to the Fe(I) plasma. Lastly, the difference in species temperatures is consistent with plasma confinement at the microsphere-substrate interface as the particle is ejected, and is directly visualized using pump-probe shadowgraphy as a function of pulsed laser energy.« less
Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. PMID:28904839
Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew
2017-01-01
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.
The Spectral and Chemical Measurement of Pollutants on Snow Near South Pole, Antarctica
NASA Technical Reports Server (NTRS)
Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.
2017-01-01
Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from less than 1 W m(exp. -2) for clean snow to approximately 70 W m(exp. -2) for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.
The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica
NASA Astrophysics Data System (ADS)
Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.
2017-06-01
Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from <1 W m-2 for clean snow to 70 W m-2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.
The Hayabusa Curation Facility at Johnson Space Center
NASA Technical Reports Server (NTRS)
Zolensky, M.; Bastien, R.; McCann, B.; Frank, D.; Gonzalez, C.; Rodriguez, M.
2013-01-01
The Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected regolith dust from Muses Sea region of smooth terrain [1]. The spacecraft returned to Earth with more than 10,000 grains ranging in size from just over 300 µm to less than 10 µm [2, 3]. These grains represent the only collection of material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains are being transferred to NASA for parallel curation and allocation. In order to properly receive process and curate these samples, a new curation facility was established at Johnson Space Center (JSC). Since the Hayabusa samples within the JAXA curation facility have been stored free from exposure to terrestrial atmosphere and contamination [4], one of the goals of the new NASA curation facility was to continue this treatment. An existing lab space at JSC was transformed into a 120 sq.ft. ISO class 4 (equivalent to the original class 10 standard) clean room. Hayabusa samples are stored, observed, processed, and packaged for allocation inside a stainless steel glove box under dry N2. Construction of the clean laboratory was completed in 2012. Currently, 25 Itokawa particles are lodged in NASA's Hayabusa Lab. Special care has been taken during lab construction to remove or contain materials that may contribute contaminant particles in the same size range as the Hayabusa grains. Several witness plates of various materials are installed around the clean lab and within the glove box to permit characterization of local contaminants at regular intervals by SEM and mass spectrometry, and particle counts of the lab environment are frequently acquired. Of particular interest is anodized aluminum, which contains copious sub-mm grains of a multitude of different materials embedded in its upper surface. Unfortunately the use of anodized aluminum was necessary in the construction of the clean room frame to strengthen it and eliminate corrosion and wear over time. All anodized aluminum interior to the lab was thus covered or replaced by minimally contaminating materials.
Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection
Tuladhar, Era; Hazeleger, Wilma C.; Koopmans, Marion; Zwietering, Marcel H.; Beumer, Rijkelt R.
2012-01-01
Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested. PMID:22941071
Residual viral and bacterial contamination of surfaces after cleaning and disinfection.
Tuladhar, Era; Hazeleger, Wilma C; Koopmans, Marion; Zwietering, Marcel H; Beumer, Rijkelt R; Duizer, Erwin
2012-11-01
Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log(10) for poliovirus and close to 4 log(10) for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log(10) reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.
Efficiency of surface cleaning by a glow discharge for plasma spraying coating
NASA Astrophysics Data System (ADS)
Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.
2016-06-01
The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.
Cleaning with Bulk Nanobubbles.
Zhu, Jie; An, Hongjie; Alheshibri, Muidh; Liu, Lvdan; Terpstra, Paul M J; Liu, Guangming; Craig, Vincent S J
2016-11-01
The electrolysis of aqueous solutions produces solutions that are supersaturated in oxygen and hydrogen gas. This results in the formation of gas bubbles, including nanobubbles ∼100 nm in size that are stable for ∼24 h. These aqueous solutions containing bubbles have been evaluated for cleaning efficacy in the removal of model contaminants bovine serum albumin and lysozyme from surfaces and in the prevention of the fouling of surfaces by these same proteins. Hydrophilic and hydrophobic surfaces were investigated. It is shown that nanobubbles can prevent the fouling of surfaces and that they can also clean already fouled surfaces. It is also argued that in practical applications where cleaning is carried out rapidly using a high degree of mechanical agitation the role of cleaning agents is not primarily in assisting the removal of soil but in suspending the soil that is removed by mechanical action and preventing it from redepositing onto surfaces. This may also be the primary mode of action of nanobubbles during cleaning.
NASA Astrophysics Data System (ADS)
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-01
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.
The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...
Cleaning Processes across NASA Centers
NASA Technical Reports Server (NTRS)
Hammond, John M.
2010-01-01
All significant surfaces of the hardware must be pre-cleaned to remove dirt, grit, scale, corrosion, grease, oil and other foreign matter prior to any final precision cleaning process. Metallic parts shall be surface treated (cleaned, passivated, pickled and/or coated) as necessary to prevent latent corrosion and contamination.
Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.
2016-01-01
The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764
Effectiveness of Surface Cleaning and Disinfection in a Brazilian Healthcare Facility
Santos-Junior, Aires G.; Ferreira, Adriano M.; Frota, Oleci P.; Rigotti, Marcelo A.; Barcelos, Larissa da S.; Lopes de Sousa, Alvaro Francisco; de Andrade, Denise; Guerra, Odanir G.; R. Furlan, Mara C.
2018-01-01
Background: Failures in the processes of cleaning and disinfecting health service surfaces may result in the spread and transfer of pathogens that are often associated with healthcare-related infections and outbreaks. Aims: To assess the effectiveness of environmental surface cleaning and disinfection in a hospital clinic. Method: The study was conducted in a nursing ward with 45 beds. A total of 80 samples from five high-touch surfaces were evaluated before and after cleaning and disinfection, using the following methods: visual inspection, adenosine triphosphate bioluminescence assay, aerobic colony count, Staphylococcus aureus colony count, and evaluation of resistance to methicillin. The data analysis used nonparametric comparative and correlative tests to observe any differences in the pre- and post- cleaning and disinfection results for the surfaces assessed. Results: Effective cleaning and disinfection had a significant effect on only two surfaces when measured for the presence of adenosine triphosphate, the inner bathroom door handle (p=0.007) and the toilet bowl (p=0.01). When evaluated for Staphylococcus aureus colony count, the toilet flush handle also demonstrated a significant effect (p=0.04). Conclusion: The effectiveness of cleaning and disinfection of the surfaces tested was not satisfactory. An educational intervention is recommended for the cleaning and disinfection staff and the nursing team at the healthcare facility. Relevance to Clinical Practice: The data in the study revealed that daily hospital cleaning and disinfection in the sampled sites are not sufficient in medical and surgical wards. Hospital cleanliness must be reevaluated from the point of view of materials, such as an adequate supply of clean cloths, in addition to establishing more precise cleanliness protocols and accurate monitoring systems. PMID:29643951
Qin, Frank G F; Mawson, John; Zeng, Xin An
2011-05-30
Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied.
Qin, Frank G. F.; Mawson, John; Zeng, Xin An
2011-01-01
Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied. PMID:24957615
Goodman, Eric R.; Platt, Richard; Bass, Richard; Onderdonk, Andrew B.; Yokoe, Deborah S.; Huang, Susan S.
2009-01-01
OBJECTIVES To evaluate the adequacy of discharge room cleaning and the impact of a cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) on environmental surfaces in intensive care unit (ICU) rooms. DESIGN Prospective environmental study. SETTING AND SAMPLE Convenience sample of ICU rooms in an academic hospital. METHODS AND INTERVENTION The intervention consisted of (1) a change from the use of pour bottles to bucket immersion for applying disinfectant to cleaning cloths, (2) an educational campaign, and (3) feedback regarding adequacy of discharge cleaning. Cleaning of 15 surfaces was evaluated by inspecting for removal of a preapplied mark, visible only with an ultraviolet lamp (“black light”). Six surfaces were cultured for MRSA or VRE contamination. Outcomes of mark removal and culture positivity were evaluated by χ2 testing and generalized linear mixed models, clustering by room. RESULTS The black-light mark was removed from 44% of surfaces at baseline, compared with 71% during the intervention (P <.001). The intervention increased the likelihood of removal of black-light marks after discharge cleaning (odds ratio, 4.4; P < .001), controlling for ICU type (medical vs surgical) and type of surface. The intervention reduced the likelihood of an environmental culture positive for MRSA or VRE (proportion of cultures positive, 45% at baseline vs 27% during the intervention; adjusted odds ratio, 0.4; P = .02). Broad, flat surfaces were more likely to be cleaned than were doorknobs and sink or toilet handles. CONCLUSIONS Increasing the volume of disinfectant applied to environmental surfaces, providing education for Environmental Services staff, and instituting feedback with a black-light marker improved cleaning and reduced the frequency of MRSA and VRE contamination. PMID:18624666
Comparative study of pulsed laser cleaning applied to weathered marble surfaces
NASA Astrophysics Data System (ADS)
Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.
2013-10-01
The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.
A comparison of the effects of toothbrushing and handpiece prophylaxis on retention of sealants.
Kolavic Gray, Shellie; Griffin, Susan O; Malvitz, Dolores M; Gooch, Barbara F
2009-01-01
Tooth surface cleaning before acid etching is considered to be an important step in the retention of resin-based pit-and-fissure sealants. The authors reviewed and summarized instructions for cleaning tooth surfaces from five manufacturers of 10 unfilled resin-based sealants marketed in the United States. The authors also searched electronic databases for studies that directly compared the effects of different surface-cleaning methods on sealant retention and for systematic reviews of the effectiveness of sealants. They explored the association between surface-cleaning methods and sealant retention in the studies included in the systematic reviews. They calculated the summary weighted retention rates for studies that used either a handpiece or toothbrush prophylaxis. All of the sealant manufacturers' instructions for use (IFU) recommended cleaning the tooth before acid etching. None of the IFU directly stated that a handpiece was required to perform the cleaning, but five IFU implied the use of handpiece prophylaxis. None of the IFU recommended surface-altering procedures in caries-free teeth. Direct evidence from two clinical trials showed no difference in complete sealant retention between surfaces cleaned mechanically with pumice or prophylaxis paste and those cleaned with air-water syringe or dry toothbrushing. Indirect evidence from 10 studies found that weighted summary retention by year after sealant placement in studies that used toothbrush prophylaxis was greater than or equivalent to values for studies that used handpiece prophylaxis. Levels of sealant retention after surface cleaning with toothbrush prophylaxis were at least as high as those associated with hand-piece prophylaxis. This finding may translate into lower resource costs for sealant placement.
Method and apparatus for reducing cleaning blade wear
Grannes, Steven G.; Rhoades, Charles A.; Hebbie, Terry L.
1992-01-01
An improved cleaning blade construction (10) for eliminating erosion troughs (6) in the upper surface (15) of a cleaning blade member (14) by introducing pressurized fluid through a pressure manifold chamber (16) formed in the upper surface (15) of the cleaning blade member (14). The pressurized fluid will prevent carryback material (7) from passing through a wear groove (6) formed in the cleaning blade member.
Biochemical imaging of tissues by SIMS for biomedical applications
NASA Astrophysics Data System (ADS)
Lee, Tae Geol; Park, Ji-Won; Shon, Hyun Kyong; Moon, Dae Won; Choi, Won Woo; Li, Kapsok; Chung, Jin Ho
2008-12-01
With the development of optimal surface cleaning techniques by cluster ion beam sputtering, certain applications of SIMS for analyzing cells and tissues have been actively investigated. For this report, we collaborated with bio-medical scientists to study bio-SIMS analyses of skin and cancer tissues for biomedical diagnostics. We pay close attention to the setting up of a routine procedure for preparing tissue specimens and treating the surface before obtaining the bio-SIMS data. Bio-SIMS was used to study two biosystems, skin tissues for understanding the effects of photoaging and colon cancer tissues for insight into the development of new cancer diagnostics for cancer. Time-of-flight SIMS imaging measurements were taken after surface cleaning with cluster ion bombardment by Bi n or C 60 under varying conditions. The imaging capability of bio-SIMS with a spatial resolution of a few microns combined with principal component analysis reveal biologically meaningful information, but the lack of high molecular weight peaks even with cluster ion bombardment was a problem. This, among other problems, shows that discourse with biologists and medical doctors are critical to glean any meaningful information from SIMS mass spectrometric and imaging data. For SIMS to be accepted as a routine, daily analysis tool in biomedical laboratories, various practical sample handling methodology such as surface matrix treatment, including nano-metal particles and metal coating, in addition to cluster sputtering, should be studied.
[Nano-particles--pharmaceutical "dwarves" with know-how].
Ziegler, Andreas S
2008-12-01
Self-cleaning surface coatings, tooth paste with repair effect, mini fuel cells and extremely small data memories, which contain the knowledge of whole libraries: After "micro" in the 1980ies and "electronic" in the 1990ies, "nano" is the technological keyword of this decade. The new nano-materials fascinate laymen and experts alike. Also in pharmacy the advance into dimensions unattainable so far, paved the way for the formulation of new pharmaceutical preparations. The nanotechnology offers innovative answers to previously unresolved galenic and/or biopharmaceutical questions and offers unexpected possibilities for drug targeting.
Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone
NASA Astrophysics Data System (ADS)
Singer, Brett C.; Coleman, Beverly K.; Destaillats, Hugo; Hodgson, Alfred T.; Lunden, Melissa M.; Weschler, Charles J.; Nazaroff, William W.
This study investigated the formation of secondary pollutants resulting from household product use in the presence of ozone. Experiments were conducted in a 50-m 3 chamber simulating a residential room. The chamber was operated at conditions relevant to US residences in polluted areas during warm-weather seasons: an air exchange rate of 1.0 h -1 and an inlet ozone concentration of approximately 120 ppb, when included. Three products were used in separate experiments. An orange oil-based degreaser and a pine oil-based general-purpose cleaner were used for surface cleaning applications. A plug-in scented-oil air freshener (AFR) was operated for several days. Cleaning products were applied realistically with quantities scaled to simulate residential use rates. Concentrations of organic gases and secondary organic aerosol from the terpene-containing consumer products were measured with and without ozone introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs was of similar magnitude to homogeneous reaction with continuously emitted constituents. Formaldehyde generation resulted from product use with ozone present, increasing indoor levels by the order of 10 ppb. Cleaning product use in the presence of ozone generated substantial fine particle concentrations (more than 100 μg m -3) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods.
Chaudhary, Savita; Sood, Aastha; Mehta, S K
2014-09-01
Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems.
Haidar Ahmad, Imad A; Blasko, Andrei
2017-08-11
The aim of this work is to identify the parameters that affect the recovery of pharmaceutical residues from the surface of stainless steel coupons. A series of factors were assessed, including drug product spike levels, spiking procedure, drug-excipient ratios, analyst-to-analyst variability, intraday variability, and cleaning procedure of the coupons. The lack of a well-defined procedure that consistently cleaned the coupon surface was identified as the major contributor to low and variable recoveries. Assessment of cleaning the surface of the coupons with clean-in-place solutions (CIP) gave high recovery (>90%) and reproducible results (Srel≤4%) regardless of the conditions that were assessed previously. The approach was successfully applied for cleaning verification of small molecules (MW <1,000 Da) as well as large biomolecules (MW up to 50,000 Da).
Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D
2008-11-01
A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.
Comparative study between chemical and atmospheric pressure plasma jet cleaning on glass substrate
NASA Astrophysics Data System (ADS)
Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Fhong, Soon Chin; Sahdan, Mohd Zainizan; Nayan, Nafarizal
2017-01-01
The atmospheric pressure plasma jet with low frequency and argon as working gas is presented in this paper to demonstrate its application for glass substrate clean and modification. The glass substrate clean by atmospheric pressure plasma jet is an efficient method to replace other substrate clean method. A comparative analysis is done in this paper between substrate cleaned by chemical and plasma treatment methods. Water contact angle reading is taken for a different method of substrate clean and period of treatment. Under the plasma treatment, the sample shows low surface adhesion due to having the surface property of super hydrophilic surface 7.26°. This comparative analysis is necessary in the industrial application for cost production due to sufficient time and method of substrate clean.
Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumder, Malay K.; Horenstein, Mark N.; Joglekar, Nitin R.
The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed thatmore » the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m 2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.« less
NASA Technical Reports Server (NTRS)
Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred;
2008-01-01
The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.
2016-01-01
The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASAs Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeleys Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICONs Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instruments particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.
2016-09-01
The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASA's Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeley's Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICON's Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instrument's particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.
The growth of oscillating bubbles in an ultrasound field
NASA Astrophysics Data System (ADS)
Yamauchi, Risa; Yamashita, Tatsuya; Ando, Keita
2017-11-01
From our recent experiments to test particle removal by underwater ultrasound, dissolved gas supersaturation is found to play an important role in physical cleaning; cavitation bubble nucleation can be triggered easily by weak ultrasound under the supersaturation and mild motion of the bubbles contributes to efficient cleaning without erosion. The state of gas bubble nuclei in water is critical to the determination of a cavitation inception threshold. Under ultrasound forcing, the size of bubble nuclei is varied by the transfer of dissolved gas (i.e., rectified diffusion); the growth rate will be promoted by the supersaturation and is thus expected to contribute to cavitation activity enhancement. In the present work, we experimentally study rectified diffusion for bubbles attached at glass surfaces in an ultrasound field. We will present the evolution of bubble nuclei sizes with varying parameters such as dissolved oxygen supersaturation, and ultrasound intensity and frequency. the Research Grant of Keio Leading-edge Laboratory of Science & Technology.
Principles of an enhanced MBR-process with mechanical cleaning.
Rosenberger, S; Helmus, F P; Krause, S; Bareth, A; Meyer-Blumenroth, U
2011-01-01
Up to date, different physical and chemical cleaning protocols are necessary to limit membrane fouling in membrane bioreactors. This paper deals with a mechanical cleaning process, which aims at the avoidance of hypochlorite and other critical chemicals in MBR with submerged flat sheet modules. The process basically consists of the addition of plastic particles into the loop circulation within submerged membrane modules. Investigations of two pilot plants are presented: Pilot plant 1 is equipped with a 10 m(2) membrane module and operated with a translucent model suspension; pilot plant 2 is equipped with four 50 m(2) membrane modules and operated with pretreated sewage. Results of pilot plant 1 show that the establishment of a fluidised bed with regular particle distribution is possible for a variety of particles. Particles with maximum densities of 1.05 g/cm(3) and between 3 and 5 mm diameter form a stable fluidised bed almost regardless of activated sludge concentration, viscosity and reactor geometry. Particles with densities between 1.05 g/cm(3) and 1.2 g/cm(3) form a stable fluidised bed, if the velocity at the reactor bottom is sufficiently high. Activities within pilot plant 2 focused on plant optimisation and the development of an adequate particle retention system.
Su, Shiming; Bai, Lingyu; Wei, Caibing; Gao, Xiang; Zhang, Tuo; Wang, Yanan; Li, Lianfang; Wang, Jinjin; Wu, Cuixia; Zeng, Xibai
2015-07-01
The investigation of arsenic (As) re-accumulation in an area previously remediated by soil dressing will help in sustainable controlling the risks of As to local ecosystems and should influence management decisions about remediation strategies. In this study, As content in an area remediated by soil dressing and the possible As accumulation risk in agricultural products were investigated. The results indicated that after 7 years of agricultural activities, the average As content (24.6 mg kg(-1)) in surface soil of the investigated area increased by 83.6% compared with that (13.4 mg kg(-1)) in clean soil. Of the surface soil samples (n = 88), 21.6% had As levels that exceeded the limits of the Environmental Quality Standard for Soils of China (GB 15618-1995) and 98.9% of the surface soil samples with As contents exceeding that in clean soil was observed. Soil dressing might be not a remediation method once and for all in some contaminated areas, even though no significant difference in available As content was found between clean (0.18 mg kg(-1)) and surface (0.22 mg kg(-1)) soils. The foreign As in surface soil of the investigated area mainly specifically sorbed with soil colloid or associated with hydrous oxides of Fe and Al, or existed in residual fraction. The upward movement of contaminated soil from the deeper layers and the atmospheric deposition of slag particles might be responsible for the re-accumulation of As in the investigated area. Decreases in soil pH in the investigated soils and the fact that no plant samples had As levels exceeding the limits of the National Food Safety Standards for Contaminants of China (GB 2762-2012) were also observed.
SPARCLE: Space Plasma Alleviation of Regolith Concentrations in the Lunar Environment
NASA Astrophysics Data System (ADS)
Clark, P. E.; Keller, J. W.; Curtis, S. A.; Nuth, J. A.; Stubbs, T. J.; Farrell, W. M.
2006-05-01
The return of robotic devices and humans to the Moon will occur in the near future. Based on our previous experience, surface dust is a major problem requiring a solution: During Apollo landings, extensive locally- induced stirring of the regolith caused dust to be suspended long enough to come into contact with conducting surfaces. Dust behaved like abrasive Velcro: it adhered to everything and attempts to remove it by simply brushing did not remove fines (<10) and resulted in severe abrasion. Lunar fines, because of their electrostatic charging, were relatively difficult to collect in sample bags along with other size range particles. Within hours, seals were broken, samples contaminated, and portions of the samples, especially fines, lost. Because of this difficulty, details on lunar dust are relatively sparse. Obviously, the strategies initially implemented to deal with lunar dust failed. A major technological challenge will be developing a dust mitigation strategy. A currently proposed strategy based increased magnetic susceptibility in lunar fines may not work uniformly well for fines of non-mare, or non-lunar, composition. Based on dust behavior already observed on previous missions, we believe the successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. We are planning test and develop an electrostatically-based device to modulate the electrical potential of conducting surfaces, hence to self clean exposed surfaces while collecting dust samples. It would scan a surface constantly to control its potential, and a plate of the opposite potential. As a first step, an experimental low mass, power, and volume device with complimentary electron and ion guns with specially designed self-cleaning nozzles are being designed for to test our concept and develop a working charging and discharging strategy in the lunar environment. Meanwhile, a laboratory simulation will act as a feasibility study for a laboratory breadboard self-cleaning device based on the use of combined electron or ion beams. The compact device would act as plasma dust sweeper.
Corrosion behaviour of laser-cleaned AA7024 aluminium alloy
NASA Astrophysics Data System (ADS)
Zhang, F. D.; Liu, H.; Suebka, C.; Liu, Y. X.; Liu, Z.; Guo, W.; Cheng, Y. M.; Zhang, S. L.; Li, L.
2018-03-01
Laser cleaning has been considered as a promising technique for the preparation of aluminium alloy surfaces prior to joining and welding and has been practically used in the automotive industry. The process is based on laser ablation to remove surface contaminations and aluminium oxides. However the change of surface chemistry and oxide status may affect corrosion behaviour of aluminium alloys. Until now, no work has been reported on the corrosion characteristics of laser cleaned metallic surfaces. In this study, we investigated the corrosion behaviour of laser-cleaned AA7024-T4 aluminium alloy using potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The results showed that the laser-cleaned surface exhibited higher corrosion resistance in 3.5 wt.% NaCl solution than as-received hot-rolled alloy, with significant increase in impedance and decrease in capacitance, while SVET revealed that the active anodic points appeared on the as-received surface were not presented on the laser-cleaned surfaces. Such corrosion behaviours were correlated to the change of surface oxide status measured by glow discharge optical emission spectrometry (GDOES) and X-ray photoelectron spectroscopy (XPS). It was suggested that the removal of the original less protective oxide layer consisting of MgO and MgAl2O4 on the as-received surfaces and the newly formed more protective oxide layer containing mainly Al2O3 and MgO by laser cleaning were responsible for the improvement of the corrosion performance.
Plasma surface cleaning in a microwave plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.C.; Nelson, W.D.; Haselton, H.H.
1994-03-01
A microwave electron cyclotron resonance (ECR) plasma source has been operated to produce reactive plasmas of oxygen and its mixture with argon. Aluminum samples (0.95 cm by 1.9 cm) were coated with thin films (<20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in discharge conditions of microwave power up to 1300 W, radio frequency power up to 200 W, biased potential up to 400 V, gas pressures up to 5 mtorr, and operating time up to 35 min. The surface texture of the postcleaned samples has been examinedmore » visually. Mass loss of the samples after plasma cleaning was measured to estimate cleaning rates. Measured clean rates of low-pressure (0.5-mtorr) argon/oxygen plasmas were as high as 2.7 {mu}m/min. X-ray photoelectron spectroscopy (XPS) was used to determine cleanliness of the sample surfaces after plasma cleaning. The XPS study on polished samples confirmed the effectiveness of plasma cleaning in achieving atomic level of surface cleanliness. In this technical memorandum plasma properties, cleaning phenomena, and significant results are reported and discussed.« less
Cavitation effects in ultrasonic cleaning baths
NASA Technical Reports Server (NTRS)
Glasscock, Barbara H.
1995-01-01
In this project, the effect of cavitation from aqueous ultrasonic cleaning on the surfaces of metal and non-metal sample coupons was studied. After twenty cleaning cycles, the mass loss from the aluminum coupons averaged 0.22 mg/sq cm surface area and 0.014 mg/sq cm for both stainless steel and titanium. The aluminum coupons showed visual evidence of minor cavitation erosion in regions of previously existing surface irregularities. The non-metal samples showed some periods of mass gain. These effects are believed to have minor impact on hardware being cleaned, but should be evaluated in the context of specific hardware requirements. Also the ultrasonic activity in the large cleaning baths was found to be unevenly distributed as measured by damage to sheets of aluminum foil. It is therefore recommended that items being cleaned in an ultrasonic bath be moved or conveyed during the cleaning to more evenly distribute the cavitation action provide more uniform cleaning.
Atmospheric fate of oil matter adsorbed on sea salt particles under UV light
NASA Astrophysics Data System (ADS)
Vaitilingom, M.; Avij, P.; Huang, H.; Valsaraj, K. T.
2014-12-01
The presence of liquid petroleum hydrocarbons at the sea water surface is an important source of marine pollution. An oil spill in sea-water will most likely occur due to an involuntary accident from tankers, offshore platforms, etc. However, a large amount of oil is also deliberately spilled in sea-water during the clean-out process of tank vessels (e.g. for the Mediterranean Sea, 490,000 tons/yr). Moreover, the pollution caused by an oil spill does not only affect the aquatic environment but also is of concern for the atmospheric environment. A portion of the oil matter present at the sea-water surface is transported into the atmosphere viaevaporation and adsorption at the surface of sea spray particles. Few studies are related to the presence of oil matter in airborne particles resulting from their adsorption on sea salt aerosols. We observed that the non-volatile oil matter was adsorbed at the surface of sea-salt crystals (av. size of 1.1 μm). Due to their small size, these particles can have a significant residence time in the atmosphere. The hydrocarbon matter adsorbed at the surface of these particles can also be transformed by catalyzers present in the atmosphere (i.e. UV, OH, O3, ...). In this work, we focused on the photo-oxidation rates of the C16 to C30alkanes present in these particles. We utilized a bubble column reactor, which produced an abundance of small sized bubbles. These bubbles generated droplets upon bursting at the air-salt water interface. These droplets were then further dried up and lifted to the top of the column where they were collected as particles. These particles were incubated in a controlled reactor in either dark conditions or under UV-visible light. The difference of alkane content analyzed by GC-MS between the particles exposed to UV or the particles not exposed to UV indicated that up to 20% in mass was lost after 20 min of light exposure. The degradation kinetics varied for each range of alkanes (C16-20, C21-25, C26-30) from 20 to 60 μg L-1 min-1. To observe the effect on air composition when samples are exposed to solar light, experiments were conducted under controlled atmospheric conditions: oxygen free or with O3 gas. The results showed the importance of the photo-transformation processes of oil in airborne particles and its relation to the gaseous nature of the ambient atmosphere.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... recreational boat surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...
NASA Astrophysics Data System (ADS)
Bixler, Gregory D.; Bhushan, Bharat
2013-08-01
Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.
Edmunds, L M; Rawlinson, A
1998-10-01
Blood contamination of 16 surfaces in the dental surgery was investigated using the Kastle-Meyer test for haemoglobin, after three types of periodontal procedures had been performed on a total of 30 patients. The effect of cleaning surfaces contaminated by blood was investigated using the same test. Cleaning materials used in the dental surgery were tested to rule out the possibility of false positive outcomes and the sensitivity of the test was determined prior to the study. The results show a marked variation in the degree of contamination and efficacy of cleaning following treatment. Overall, root planing was associated with the most widespread and frequent blood contamination and gingival surgery the least. The surgery work surface, edge of the spittoon, aspirator tube and ultrasonic scaler handpiece into which the ultrasonic insert fits, were the most frequently contaminated surfaces. The work surface, dentist's pen, light switch and handle were cleaned most effectively. The least effectively cleaned surfaces were the water dispenser switch, aspirator tube, bracket table and ultrasonic scaler handpiece. Methods for reducing this potential source of cross-infection are discussed.
Lambrechts, A A; Human, I S; Doughari, J H; Lues, J F R
2014-09-01
Food borne illnesses and food poisoning are cause for concern globally. The diseases are often caused by food contamination with pathogenic bacteria due largely to poor sanitary habits or storage conditions. Prevalence of some bacteria on cleaned and sanitised food contact surfaces from eight convenience food plants in Gauteng (South Africa) was investigated with the view to evaluate the efficacy of the cleaning methods used with such food contact surfaces. The microbial load of eight convenience food manufacturing plants was determined by sampling stainless steel food contact surfaces after they had been cleaned and sanitised at the end of a day's shift. Samples were analysed for Total Plate Count (TPC), Escherichia coli, Salmonella species, Staphylococcus aureus and Listeria species. Results showed that 59 % of the total areas sampled for TPC failed to comply with the legal requirements for surfaces, according to the Foodstuffs, Cosmetics and Disinfectants Act (< 100 cfu.cm(-2)). S. aureus and Salmonella were not detected, but Listeria was detected in 23 % and E. coli in 1.3 % of the samples. Fifty percent (50 %) of the plants applied conventional cleaning methods for cleaning and sanitation and 50 % used the low-pressure foam (LPF) method. There was significant difference (P ≤ 0.05) between the mean TPC values of the conventional cleaning method (14 358.82) compared to that of LPF method (2 386.51) but no significant difference (P > 0.05) in terms of Listeria species isolates obtained from both cleaning methods. The LPF method proved to be the superior cleaning option for lowering TPC counts. Regardless of cleaning method used, pathogens continued to flourish on various surfaces, including dry stainless steel, posing a contamination hazard for a considerable period depending on the contamination level and type of pathogen. Intensive training for proper chemical usage and strict procedural compliance among workers for efficient cleaning procedures is recommended.
Small Business Innovations (Mass Microbalance)
NASA Technical Reports Server (NTRS)
1991-01-01
Femtometrics of Costa Mesa, CA, developed the Model 200-1 SAW Mass Microbalance under a NASA Small Business Innovation Research (SBIR) contract with Langley Research Center. The product is described as "the next generation of aerosol mass microbalance technology," because a new type of sensor, the Surface Acoustic Wave (SAW) piezoelectric crystal, offers mass resolution two orders of magnitude greater than the Quartz Crystal Microbalance cascade impactor (QCM) (used at Langley since 1979 for collection and measurement of aerosol particles in the upper atmosphere). The Model 200-1 SAW Mass Microbalance, which provides a 400-fold increase in mass sensitivity per unit area over the QCM, can be used for real-time particle monitoring in clean rooms, measuring chemical vapors in very low concentrations, measuring target chemicals in the stratosphere and in industry as a toxic vapor monitor.
SnTe microcrystals: Surface cleaning of a topological crystalline insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.
Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferredmore » into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.« less
Surface cleaning and pure nitridation of GaSb by in-situ plasma processing
NASA Astrophysics Data System (ADS)
Gotow, Takahiro; Fujikawa, Sachie; Fujishiro, Hiroki I.; Ogura, Mutsuo; Chang, Wen Hsin; Yasuda, Tetsuji; Maeda, Tatsuro
2017-10-01
A clean and flat GaSb surface without native oxides has been attained by H2 plasma cleaning and subsequent in-situ N2 plasma nitridation process at 300 oC. The mechanisms of thermal desorption behavior of native oxides on GaSb have been studied by thermal desorption spectroscopy (TDS) analysis. The suitable heat treatment process window for preparing a clean GaSb surface is given. Auger electron spectroscopy (AES) analysis indicates that native oxides were completely removed on the GaSb surface after H2 plasma exposure and the pure nitridation of the clean GaSb surface was obtained at a relatively low temperature of 300 °C. This pure nitridation of GaSb have a possibility to be used as a passivation layer for high quality GaSb MOS devices.
Plasma surface cleaning using microwave plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, C.C.; Haselton, H.H.; Nelson, W.D.
1993-11-01
In a microwave electron cyclotron resonance (ECR) plasma source, reactive plasmas of oxygen and its mixture with argon are used for plasma-cleaning experiments. Aluminum test samples (0.95 {times} 1.9 cm) were coated with thin films ({le} 20 {mu}m in thickness) of Shell Vitrea oil and cleaned by using such reactive plasmas. The plasma cleaning was done in various discharge conditions with fixed microwave power, rf power, biased potential, gas pressures (0.5 and 5 mtorr), and operating time up to 35 min. The status of plasma cleaning has been monitored by using mass spectroscopy. Mass loss of the samples after plasmamore » cleaning was measured to estimate cleaning rates. Measured clean rates of low pressure (0.5 mtorr) argon/oxygen plasmas were as high as 2.7 {mu}/min. X-ray photoelectron spectroscopy was used to determine cleanliness of the sample surfaces and confirm the effectiveness of plasma cleaning in achieving atomic levels of surface cleanliness. In this paper, significant results are reported and discussed.« less
Adherent nanoparticles-mediated micro- and nanobubble nucleation
NASA Astrophysics Data System (ADS)
Chan, Chon U.; Chen, Long Quan; Lippert, Alexander; Arora, Manish; Ohl, Claus-Dieter
2014-11-01
Surface nanobubbles are commonly nucleated through water-ethanol-water exchange. It is believed that the higher gas solubility in ethanol and exothermic mixing leads to a supersaturation of gas in water. However details of the nucleation dynamic are still unknown. Here we apply the exchange process onto a glass surface deposited with nanoparticles and monitor the dynamics optically at video frame rates. During exchange bubbles of a few micron in diameter nucleate at the sites of nanoparticles. These microbubbles eventually dissolve in ethanol but are stable in water. This agrees with the nucleation process observed for surface nanobubbles. Also we find a reduction of surface attached nanobubbles near the particles, which might be due to gas uptake from the microbubble growth. Finally, high speed recordings reveal stick-slip motion of the triple contact line during the growth process. We will discuss possibilities of utilizing the findings for contamination detection and ultrasonic cleaning.
NASA Astrophysics Data System (ADS)
Park, H. J.; Kim, S. W.; Kobayashi, H.; Nishizawa, T.
2017-12-01
The Polarization Optical Particle Counter (POPC), unlike general OPCs, has the advantage capable of classifying the aerosol types (e.g., dust, anthropogenic pollution), because it measures particle number, size and depolarization ratio (DPR; the sphericity information of single particle) for 4 size bins with diameter (0.5-1, 1-3, 3-5, 5-10 μm). In this study, we investigate the temporal variations of particle number and volume size distributions with DPR values and classify aerosol types such as dust, anthropogenic pollution, from 4-year (2013-2016) POPC data at Seoul National University campus in Seoul, Korea. Coarse mode particles from 5-10 μm with relatively high DPR values (0.25-0.3) were distinctly appeared in in both spring (March-May) and winter (December-February) due to frequent transport of Asian dust particles. In summer (June -August), however, both aerosol number concentration and DPR value were decreased in all size bins due to the influences of relatively clean maritime airmass and frequent precipitations. In autumn (September - November), the particle number concentration in all size bins was the lowest. To classify the aerosol types, we investigate particle number and volume size distributions and DPR value for clean, dust-dominant and anthropogenic pollution-dominant cases, which were selected by PM10, PM2.5 mass concentrations and its ratio, because those parameters are clearly different among aerosol types (Kobayashi et al., 2014, Pan et al., 2016). Non-spherical coarse mode particles (Dp > 2.5 μm, 0.1 < DPR < 0.6) were dominantly observed during the dust-dominant period, while both spherical fine mode and coarse mode particles (Dp < 1 μm and Dp = 2-4 μm, DPR < 0.1) were dominantly appeared during the pollution event. The aerosol type classifications with these criteria values were successfully applied to the extreme Asian dust event from February 22 to 24, 2015. The results showed that pollution-dominant airmass preceded by the appearance of a major mineral dust plume. Co-located aerosol lidar measurements also revealed that spherical pollution particles were observed near the surface prior to a major plume of non-spherical mineral dust.
Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangopadhyay, Subhashis; Schmidt, Thomas, E-mail: tschmidt@ifp.uni-bremen.de; Kruse, Carsten
The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600 °C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300 °C, active-nitrogen exposure at temperaturesmore » as high as 700 °C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.« less
Cleaning of copper traces on circuit boards with excimer laser radiation
NASA Astrophysics Data System (ADS)
Wesner, D. A.; Mertin, M.; Lupp, F.; Kreutz, E. W.
1996-04-01
Cleaning of Cu traces on circuit boards is studied using pulsed excimer laser radiation (pulse width ˜ 20 ns, wavelength 248 nm), with the goal of improving the properties of the Cu surface for soldering and bonding. Traces with well-defined oxide overlayers are cleaned by irradiation in air using ≤ 10 3 laser pulses at fluences per pulse of ≤ 2 J cm -2. After treatment the surface morphology is analyzed using optical microscopy, optical profilometry, and scanning electron microscopy, while the chemical state of the surface is investigated with X-ray photoelectron (XPS) spectroscopy. Ellipsometry is used to determine the oxide overlayer thickness. Prior to cleaning samples exhibit a contamination overlayer about 15-25 nm in thickness containing Cu 2O and C. Cleaning reduces the overlayer thickness to ≤ 10 nm by material removal. The process tends to be self-limiting, since the optical reflectivity of the oxidized Cu surface for laser radiation is smaller than that of the cleaned surface. Additionally, the interaction with the laser radiation results in surface segregation of a minor alloy component out of the bulk (e.g. Zn), which may help to passivate the surface for further chemical reactions.
Kern, M; Thompson, V P
1994-05-01
Silica coating can improve bonding of resin to glass-infiltrated aluminum oxide ceramic (In-Ceram), and sandblasting is a pretreatment to thermal silica coating (Silicoater MD system) or a tribochemical coating process (Rocatec system). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology, and surface composition of In-Ceram ceramic. Volume loss through sandblasting was 36 times less for In-Ceram ceramic compared with a feldspathic glass ceramic (IPS-Empress), and sandblasting of In-Ceram ceramic did not change its surface composition. After tribochemical coating with the Rocatec system, a layer of small silica particles remained that elevated the silica content to 19.7 weight percentage (energy-dispersive spectroscopy). Ultrasonic cleaning removed loose silica particles from the surface and decreased the silica content to 15.8 weight percentage, which suggested firm attachment of most of the silica layer to the surface. After treatment with the Silicoater MD system, the silica content increased only slightly from that of the sandblasted specimen. The silica layer created by these systems differs greatly in both morphology and thickness, which could result in different bond strengths. Sandblasting of all ceramic clinical restorations with feldspathic glass materials should be avoided, but for In-Ceram ceramic the volume loss was within an acceptable range and similar to that of noble metals.
Robust self-cleaning surfaces that function when exposed to either air or oil
NASA Astrophysics Data System (ADS)
Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R.; Carmalt, Claire J.; Parkin, Ivan P.
2015-03-01
Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.
Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles.
Kim, Inho; Hwang, Kwangseok; Lee, Jinwon
2012-04-11
Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively.
Fine coal cleaning via the micro-mag process
Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.
1991-01-01
A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.
Air powder abrasive treatment as an implant surface cleaning method: a literature review.
Tastepe, Ceylin S; van Waas, Rien; Liu, Yuelian; Wismeijer, Daniel
2012-01-01
To evaluate the air powder abrasive treatment as an implant surface cleaning method for peri-implantitis based on the existing literature. A PubMed search was conducted to find articles that reported on air powder abrasive treatment as an implant surface cleaning method for peri-implantitis. The studies evaluated cleaning efficiency and surface change as a result of the method. Furthermore, cell response toward the air powder abrasive-treated discs, reosseointegration, and clinical outcome after treatment is also reported. The PubMed search resulted in 27 articles meeting the inclusion criteria. In vitro cleaning efficiency of the method is reported to be high. The method resulted in minor surface changes on titanium specimens. Although the air powder abrasive-treated specimens showed sufficient levels of cell attachment and cell viability, the cell response decreased compared with sterile discs. Considerable reosseointegration between 39% and 46% and improved clinical parameters were reported after treatment when applied in combination with surgical treatment. The results of the treatment are influenced by the powder type used, the application time, and whether powder was applied surgically or nonsurgically. The in vivo data on air powder abrasive treatment as an implant surface cleaning method is not sufficient to draw definitive conclusions. However, in vitro results allow the clinician to consider the method as a promising option for implant surface cleaning in peri-implantitis treatment.
Contamination on LDEF: Sources, distribution, and history
NASA Technical Reports Server (NTRS)
Pippin, Gary; Crutcher, Russ
1993-01-01
An introduction to contamination effects observed on the Long Duration Exposure Facility (LDEF) is presented. The activities reported are part of Boeing's obligation to the LDEF Materials Special Investigation Group. The contamination films and particles had minimal influence on the thermal performance of the LDEF. Some specific areas did have large changes in optical properties. Films also interfered with recession rate determination by reacting with the oxygen or physically shielding underlying material. Generally, contaminant films lessen the measured recession rate relative to 'clean' surfaces. On orbit generation of particles may be an issue for sensitive optics. Deposition on lenses may lead to artifacts on photographic images or cause sensors to respond inappropriately. Particles in the line of sight of sensors can cause stray light to be scattered into sensors. Particles also represent a hazard for mechanisms in that they can physically block and/or increase friction or wear on moving surfaces. LDEF carried a rather complex mixture of samples and support hardware into orbit. The experiments were assembled under a variety of conditions and time constraints and stored for up to five years before launch. The structure itself was so large that it could not be baked after the interior was painted with chemglaze Z-306 polyurethane based black paint. Any analysis of the effects of molecular and particulate contamination must account for a complex array of sources, wide variation in processes over time, and extreme variation in environment from ground to launch to flight. Surface conditions at certain locations on LDEF were established by outgassing of molecular species from particular materials onto adjacent surfaces, followed by alteration of those species due to exposure to atomic oxygen and/or solar radiation.
Factors governing particle number emissions in a waste-to-energy plant.
Ozgen, Senem; Cernuschi, Stefano; Giugliano, Michele
2015-05-01
Particle number concentration and size distribution measurements were performed on the stack gas of a waste-to-energy plant which co-incinerates municipal solid waste, sewage sludge and clinical waste in two lines. Average total number of particles was found to be 4.0·10(5)cm(-3) and 1.9·10(5)cm(-3) for the line equipped with a wet flue gas cleaning process and a dry cleaning system, respectively. Ultrafine particles (dp<100nm) accounted for about 97% of total number concentration for both lines, whereas the nanoparticle (dp<50nm) contribution differed slightly between the lines (87% and 84%). The experimental data is explored statistically through some multivariate pattern identifying methods such as factor analysis and cluster analysis to help the interpretation of the results regarding the origin of the particles in the flue gas with the objective of determining the factors governing the particle number emissions. The higher moisture of the flue gas in the wet cleaning process was found to increase the particle number emissions on average by a factor of about 2 due to increased secondary formation of nanoparticles through nucleation of gaseous precursors such as sulfuric acid, ammonia and water. The influence of flue gas dilution and cooling monitored through the variation of the sampling conditions also confirms the potential effect of the secondary new particle formation in increasing the particle number emissions. This finding shows the importance of reporting the experimental conditions in detail to enable the comparison and interpretation of particle number emissions. Regarding the fuel characteristics no difference was observed in terms of particle number concentration and size distributions between the clinical waste feed and the municipal solid waste co-incineration with sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Mishina, H.; Buckley, D. H.
1984-01-01
Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.
NASA Astrophysics Data System (ADS)
Liu, Feng; Wang, Shuliang; Zhang, Ming; Ma, Miaolian; Wang, Chengyu; Li, Jian
2013-09-01
Improvement of the robustness of superhydrophobic surfaces is crucial for the purpose of achieving commercial applications of these surfaces in such various areas as self-cleaning, water repellency and corrosion resistance. We have investigated a fabrication of polyvinyl alcohol (PVA)/silica (SiO2) composite polymer coating on wooden substrates with super repellency toward water, low sliding angles, low contact angle hysteresis, and relatively better mechanical robustness. The composite polymer slurry, consisting of well-mixing SiO2 particles and PVA, is prepared simply and subsequently coated over wooden substrates with good adhesion. In this study, the mechanical robustness of superhydrophobic wood surfaces was evaluated. The effect of petaloid structures of the composite polymer on robustness was investigated using an abrasion test and the results were compared with those of superhydrophobic wood surfaces fabricated by other processes. The produced wood surfaces exhibited promising superhydrophobic properties with a contact angle of 159̊ and a sliding angle of 4̊, and the relatively better mechanical robustness.
Vapor purification with self-cleaning filter
Josephson, Gary B.; Heath, William O.; Aardahl, Christopher L.
2003-12-09
A vapor filtration device including a first electrode, a second electrode, and a filter between the first and second electrodes is disclosed. The filter is formed of dielectric material and the device is operated by applying a first electric potential between the electrodes to polarize the dielectric material such that upon passing a vapor stream through the filter, particles from the vapor stream are deposited onto the filter. After depositing the particles a second higher voltage is applied between the electrodes to form a nonthermal plasma around the filter to vaporize the collected particles thereby cleaning the filter. The filter can be a packed bed or serpentine filter mat, and an optional upstream corona wire can be utilized to charge airborne particles prior to their deposition on the filter.
Fabrication, test and demonstration of critical environment monitoring system
NASA Technical Reports Server (NTRS)
Heimendinger, K. W.
1972-01-01
Design and performance of an analytical system for the evaluation of certain environmental constituents in critical environmental areas of the Quality Reliability and Assurance Laboratory are reported. Developed was a self-contained, integrated, minimum sized unit that detects, interrogates, and records those parameters of the environment dictated for control in large storage facilities, clean rooms, temporarily curtained enclosures, and special working benches. The system analyzes humidity, temperature, hydrocarbons particle size, and particle count within prescribed clean areas.
Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean
2009-01-01
Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.
Cleanliness audit of clinical surfaces and equipment: who cleans what?
Anderson, R E; Young, V; Stewart, M; Robertson, C; Dancer, S J
2011-07-01
Current guidelines recommend regular cleaning of clinical equipment. We monitored items on a surgical ward for predominant user, hand-touch frequency, cleaning responsibilities and measurement of organic soil. Equipment was assessed in triplicate against a cleanliness benchmark of 100 relative light units (RLU) using the Hygiena® ATP system. There were 44 items, of which 21 were cleaned by clinical support workers (CSWs), five by domestic staff; three by nurses, three by doctors, and 12 with no designated cleaning responsibility. Geometric mean RLUs ranged from 60 to 550/100 cm² for small items such as hand-gel containers, bed control, blood pressure cuff and clinical notes; with similar values of 80-540/100 cm² RLU for larger items such as electrocardiogram machine, defibrillator, trolleys and tables. Overall geometric mean was 249/100 cm² RLU for all surfaces, with 84% (37 of 44) items exceeding the 100RLU benchmark. Of 27 items cleaned by clinical staff, 24 (89%) failed the benchmark. Of 12 sites with no cleaning specification, 11 (92%) failed the benchmark. Three of seven 'clean' sites (<100/100 cm² RLU) were cleaned by domestic staff. Average log(10) RLU of surfaces cleaned by domestics were 64% lower compared with surfaces cleaned by CSWs (95% confidence interval: 35%, 80%; P=0.019). In conclusion, clinical equipment frequently demonstrates high levels of organic soil, whether or not items have assigned cleaning responsibility. These findings suggest that cleaning practices for clinical equipment may require review, along with education of staff with specific cleaning responsibilities. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil
2016-01-01
Objectives The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Design Before-after trial. Setting Newly built community hospital. Intervention 90 minute training refresher with surface-specific performance results. Methods Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. Results 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. Conclusion At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences. PMID:27196635
Clifford, Robert; Sparks, Michael; Hosford, Eve; Ong, Ana; Richesson, Douglas; Fraser, Susan; Kwak, Yoon; Miller, Sonia; Julius, Michael; McGann, Patrick; Lesho, Emil
2016-01-01
The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal) correlates with cleaning efficacy (absence of molecular or cultivable biomaterial) and whether one brief educational intervention improves cleaning outcomes. Before-after trial. Newly built community hospital. 90 minute training refresher with surface-specific performance results. Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention) and assessments continued for another eight consecutive months. 1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant). For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant), and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016). For nonspecific biomaterial on surfaces: a) removal of cultivable Gram-negatives (GN) trended toward improvement (P = 0.056); b) removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning) worsened (P = 0.017); c) removal of PCR-based detection of bacterial DNA improved (P = 0.046), but acquisition worsened (P = 0.003); d) cleaning thoroughness and efficacy were not correlated. At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-05
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0nM and 50mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids. Copyright © 2018. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Pohlchuck, Bobby; Whitle, Neville C.; Hector, Louis G., Jr.; Adams, Jim
1998-01-01
An investigation was conducted to examine the adhesion and surface chemistry of single-crystal aluminum in contact with single-crystal sapphire (alumina). Pull-off force (adhesion) measurements were conducted under loads of 0. I to I mN in a vacuum of 10(exp -1) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) at room temperature. An Auger electron spectroscopy analyzer incorporated directly into an adhesion-measuring vacuum system was primarily used to define the chemical nature of the surfaces before and after adhesion measurements. The surfaces were cleaned by argon ion sputtering. With a clean aluminum-clean -sapphire couple the mean value and standard deviation of pull-off forces required to separate the surfaces were 3015 and 298 micro-N, respectively. With a contaminated aluminum-clean sapphire couple these values were 231 and 241 micro-N. The presence of a contaminant film on the aluminum surface reduced adhesion by a factor of 13. Therefore, surfaces cleanliness, particularly aluminum cleanliness, played an important role in the adhesion of the aluminum-sapphire couples. Pressures on the order of 10(exp -8) to 10(exp -9) Pa (approx. 10(exp -10) to 10(exp -11) torr) maintained a clean aluminum surface for only a short time (less then 1 hr) but maintained a clean sapphire surface, once it was achieved, for a much longer time.
Conservation laws, vertex corrections, and screening in Raman spectroscopy
NASA Astrophysics Data System (ADS)
Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.
2017-07-01
We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.
Control of cavitation using dissolved carbon dioxide for damage-free megasonic cleaning of wafers
NASA Astrophysics Data System (ADS)
Kumari, Sangita
This dissertation describes the finding that dissolved carbon dioxide is a potent inhibitor of sonoluminescence and describes the implications of the finding in the development of improved megasonic cleaning formulations. Megasonic cleaning, or the removal of contaminants particles from wafer surfaces using sound-irradiated cleaning fluids, has been traditionally used in the semiconductor industry for cleaning of wafers. A critical challenge in the field is to achieve removal of small particles (22 nm to 200 nm) without causing damage to fine wafer features. The work described here addresses this challenge by identifying sonoluminescence and solution pH as two key factors affecting damage and cleaning efficiency, respectively and establishing novel means to control them using CO2(aq) release compounds in the presence of acids and bases. Sonoluminescence (SL) behavior of the major dissolved gases such as Ar, Air, N2, O2 and CO2 was determined using a newly designed Cavitation Threshold Cell (CT Cell). SL, which is the phenomenon of release of light in sound-irradiated liquids, is a sensitive indicator of cavitation, primarily transient cavitation. It was found that all the tested dissolved gases such as Ar, Air, N2 and O2, generated SL signal efficiently. However, dissolved CO2 was found to be completely incapable of generating SL signal. Based on this interesting result, gradual suppression of SL signal was demonstrated using CO2(aq). It was further demonstrated that CO2(aq) is not only incapable but is also a potent inhibitor of SL. The inhibitory role of CO2(aq) was established using a novel method of controlled in-situ release of CO 2 from NH4HCO3. ~130 ppm CO2(aq) was shown to be necessary and sufficient for complete suppression of SL generation in air saturated DI water. The method however required acidification of solution for significant release of CO2, making it unsuitable for the design of cleaning solutions at high pH. Analysis of the underlying ionic equilibria revealed that the loss of released CO2(aq) upon increase in pH can be compensated by moderate increase in added NH4HCO3. Using this method, simultaneous control of SL and solution pH was demonstrated in two systems, NH4HCO3/HCl and NH4OH/CO2, at two nominal pH values; 5.7 and 7.0. Damage studies were performed on wafer samples with line/space patterns donated by IMEC and FSI International bearing Si/metal/a-Si gate stacks of thickness ~36 nm and Si/Poly-Si gate stacks of thickness ~67 nm, respectively. A single wafer spin cleaning tool MegPieRTM was used for the generation of megasonic energy for inducing damage to the structures. It was demonstrated that CO2 dissolution in DI water suppresses damage to the gate stacks in a dose-dependent manner. Together, these studies establish a systematic and strong correlation between CO2(aq) concentration, SL suppression and damage suppression. Significant damage reduction (~50 % to ~90 %) was observed at [CO2(aq)] > ~300 ppm. It was also demonstrated that CO2(aq) suppresses damage under alkaline pH condition too. This demonstration was made possible by the successful design of two new cleaning systems NH4HCO3/NH4OH and CO2/NH 4OH that could generate CO2(aq) under alkaline conditions. Damage suppressing ability of the newly designed cleaning systems were compared to the standard cleaning system NH4OH at pH 8.2 and it was found that NH4HCO3/NH4OH and CO2/NH 4OH systems were 80 % more efficient in suppressing damage compared to the standard NH4OH cleaning system. Finally, megasonic cleaning studies were conducted in the same single wafer spin cleaning tool MegPieRTM, using SiO2 particles (size 185 nm) deposited on 200 mm oxide Si wafers, as the contaminant. It was found that the standard cleaning chemical, NH4OH, pH 8.2, was effective in achieving > 95 % particle removal for 2 min irradiation of megasonic energy at power densities > 0.7 W/cm2. Based on these results, a new system, NH4HCO3/NH4OH, was designed with an aim to release ~300 ppm CO2 at pH 8.2. It was demonstrated that newly designed system NH4HCO3/NH 4OH, allowed significant suppression of damage in comparison to NH 4OH while maintaining > 90 % cleaning efficiency that was comparable to NH4OH solution, at the same acoustic power densities. Taken together, these studies establish a potent and flexible means for the inhibition of SL generation over a wide pH range and acoustic power densities and demonstrate its use in suppression of wafer damage without compromising megasonic cleaning efficiency. (Abstract shortened by UMI.)
Magnetically driven floating foams for the removal of oil contaminants from water.
Calcagnile, Paola; Fragouli, Despina; Bayer, Ilker S; Anyfantis, George C; Martiradonna, Luigi; Cozzoli, P Davide; Cingolani, Roberto; Athanassiou, Athanassia
2012-06-26
In this study, we present a novel composite material based on commercially available polyurethane foams functionalized with colloidal superparamagnetic iron oxide nanoparticles and submicrometer polytetrafluoroethylene particles, which can efficiently separate oil from water. Untreated foam surfaces are inherently hydrophobic and oleophobic, but they can be rendered water-repellent and oil-absorbing by a solvent-free, electrostatic polytetrafluoroethylene particle deposition technique. It was found that combined functionalization of the polytetrafluoroethylene-treated foam surfaces with colloidal iron oxide nanoparticles significantly increases the speed of oil absorption. Detailed microscopic and wettability studies reveal that the combined effects of the surface morphology and of the chemistry of the functionalized foams greatly affect the oil-absorption dynamics. In particular, nanoparticle capping molecules are found to play a major role in this mechanism. In addition to the water-repellent and oil-absorbing capabilities, the functionalized foams exhibit also magnetic responsivity. Finally, due to their light weight, they float easily on water. Hence, by simply moving them around oil-polluted waters using a magnet, they can absorb the floating oil from the polluted regions, thereby purifying the water underneath. This low-cost process can easily be scaled up to clean large-area oil spills in water.
Glow discharge cleaning of vacuum switch tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, T.; Toya, H.
1991-10-01
This paper reports that glow discharge cleaning has ben advancing as a means of degassing vacuum chambers constructed for a large accelerator or for nuclear fusion research. To clean the whole surface of parts inside a vacuum switch tube (VST), a new technique is tried which generates glow discharge between the inner electrodes and copper grid surrounding it. Photographic observation reveals that the glow discharge spreads out and cleans the whole surface inside the VST. A breakdown test between the inner electrodes shows the effect of the cleaning with this technique. Higher breakdown voltage between the inner electrodes is attainedmore » by performing this glow discharge cleaning in argon rather than hydrogen gas. The difference of the cleaning effect seems to be attributed to that of the energy transfer from ion species to the absorbed molecules and microprotrusions on the surfaces.« less
Dixon, P M; Savill, D; Horbyl, A; Reardon, R J M; Liuti, T
2014-06-01
Infundibular caries of the equine maxillary cheek teeth is an important disorder that can lead to dental fracture or apical infection. Treatment by removing food debris and carious dental tissue from affected infundibulae using high-pressure abrasion with aluminium hydroxide micro-particles, followed by filling the cleaned defect with endodontic restorative materials is a recommended treatment. However, although anecdotally considered a successful treatment option, there is currently no objective evidence to support this claim. Forty maxillary cheek teeth (CT) that contained 55 infundibulae with caries (mainly grade 2) were extracted post-mortem from 21 adult horses. Five of the CT were sectioned prior to treatment to facilitate visual examination of the carious infundibulae. The remaining carious infundibulae were cleaned using high-pressure abrasion with aluminium hydroxide particles and five CT were sectioned to assess the efficacy of this cleaning process. The remaining 30 CT containing 39 carious infundibulae were then filled with a composite restorative material. The efficacy of this restoration was assessed by computed tomography imaging followed by direct visual examination after sectioning the teeth. Only 46% (18/39) of restored infundibulae, all with shallow (mean 9.6 mm deep) defects, were fully cleaned of food debris and carious material, and filled with restorative material to their full depth. Of these 18, 11 had peripheral defects around the restoration, leaving just 18% (7/39) of restorations without any gross defects. The remaining 54% (21/39) of infundibulae (mean depth of infundibular caries defect, 18.3 mm) still contained food debris and/or carious material in more apical locations, with infundibulae with the deepest caries defects being the least effectively cleaned. The findings of this study indicate that high-pressure micro-particle abrasion is only effective in cleaning food debris from shallow, carious CT infundibulae and consequently, the majority of subsequent infundibular restorations are imperfect. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Nickelsen, Simin; Moghadam, Afsaneh Dorri; Ferguson, J. B.; Rohatgi, Pradeep
2015-10-01
In the present study, the wetting behavior of surfaces of various common metallic materials used in the water industry including C84400 brass, commercially pure aluminum (99.0% pure), Nickle-Molybdenum alloy (Hastelloy C22), and 316 Stainless Steel prepared by mechanical abrasion and contact angles of several materials after mechanical abrasion were measured. A model to estimate roughness factor, Rf, and fraction of solid/oil interface, ƒso, for surfaces prepared by mechanical abrasion is proposed based on the assumption that abrasive particles acting on a metallic surface would result in scratches parallel to each other and each scratch would have a semi-round cross-section. The model geometrically describes the relation between sandpaper particle size and water/oil contact angle predicted by both the Wenzel and Cassie-Baxter contact type, which can then be used for comparison with experimental data to find which regime is active. Results show that brass and Hastelloy followed Cassie-Baxter behavior, aluminum followed Wenzel behavior and stainless steel exhibited a transition from Wenzel to Cassie-Baxter. Microstructural studies have also been done to rule out effects beyond the Wenzel and Cassie-Baxter theories such as size of structural details.
Ion-Deposited Polished Coatings
NASA Technical Reports Server (NTRS)
Banks, B. A.
1986-01-01
Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.
Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Wiesner, S.
2017-03-01
The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.
Experimental Study of Reciprocating Friction between Rape Stalk and Bionic Nonsmooth Surface Units
Ma, Zheng; Li, Yaoming; Xu, Lizhang
2015-01-01
Background. China is the largest producer of rape oilseed in the world; however, the mechanization level of rape harvest is relatively low, because rape materials easily adhere to the cleaning screens of combine harvesters, resulting in significant cleaning losses. Previous studies have shown that bionic nonsmooth surface cleaning screens restrain the adhesion of rape materials, but the underlying mechanisms remain unclear. Objective. The reciprocating friction between rape stalk and bionic nonsmooth metal surface was examined. Methods. The short-time Fourier transform method was used to discriminate the stable phase of friction signals and the stick-lag distance was defined to analyze the stable reciprocating friction in a phase diagram. Results. The reciprocating friction between rape stalk and metal surface is a typical stick-slip friction, and the bionic nonsmooth metal surfaces with concave or convex units reduced friction force with increasing reciprocating frequency. The results also showed that the stick-lag distance of convex surface increased with reciprocating frequency, which indicated that convex surface reduces friction force more efficiently. Conclusions. We suggest that bionic nonsmooth surface cleaning screens, especially with convex units, restrain the adhesion of rape materials more efficiently compared to the smooth surface cleaning screens. PMID:27034611
The construction, fouling and enzymatic cleaning of a textile dye surface.
Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J
2010-11-01
The enzymatic cleaning of a rubisco protein stain bound onto Surface Plasmon Resonance (SPR) biosensor chips having a dye-bound upper layer is investigated. This novel method allowed, for the first time, a detailed kinetic study of rubisco cleanability (defined as fraction of adsorbed protein removed from a surface) from dyed surfaces (mimicking fabrics) at different enzyme concentrations. Analysis of kinetic data using an established mathematical model able to decouple enzyme transfer and reaction processes [Onaizi, He, Middelberg, Chem. Eng. Sci. 64 (2008) 3868] revealed a striking effect of dyeing on enzymatic cleaning performance. Specifically, the absolute rate constants for enzyme transfer to and from a dye-bound rubisco stain were significantly higher than reported previously for un-dyed surfaces. These increased transfer rates resulted in higher surface cleanability. Higher enzyme mobility (i.e., higher enzyme adsorption and desorption rates) at the liquid-dye interface was observed, consistent with previous suggestions that enzyme surface mobility is likely correlated with overall enzyme cleaning performance. Our results show that reaction engineering models of enzymatic action at surfaces may provide insight able to guide the design of better stain-resistant surfaces, and may also guide efforts to improve cleaning formulations. Copyright 2010 Elsevier Inc. All rights reserved.
Neutral beam dump with cathodic arc titanium gettering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, A.; Korepanov, S. A.; Putvinski, S.
An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features amore » new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.« less
Combined wet and dry cleaning of SiGe(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong
Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less
Chemical exposure among professional ski waxers--characterization of individual work operations.
Freberg, Baard Ingegerdsson; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag G; Daae, Hanne Line; Hersson, Merete; Molander, Paal
2013-04-01
Preparation of skis prior to skiing competitions involves several individual work operations and the use of a wide variety of chemically based ski waxing products to improve the performance of the skis, including products used after skiing for wax removal and ski sole cleaning. Modern ski waxes consist mainly of petroleum-derived straight-chain aliphatic hydrocarbons, perfluoro-n-alkanes or polyfluorinated n-alkanes. The wax cleaning products contain solvents such as neat aliphatic hydrocarbons (aliphates) or a mixture with limonene. Different ski waxing work operations can result in contaminated workroom atmospheres. The aim of this study was to assess the chemical exposures related to the individual ski waxing work operations by investigating the specific work operations in controlled model experiments. Four main work operations with potential exposures were identified: (i) application of glider waxes, (ii) scraping and brushing of applied glider waxes, (iii) application of base/grip waxes, and (iv) ski sole cleaning. Aerosol particle masses were sampled using conical samplers equipped with 37-mm PVC, 5-µm pore size filters and cyclones equipped with 37-mm PVC, 0.8-µm pore size filters for the inhalable and the respirable aerosol mass fractions, respectively. For measurements of particle number concentrations, a Scanning Mobility Particle Sizer was used. Mean aerosol particle mass concentrations of 18.6 mg m(-3) and 32.2 mg m(-3) were measured during application of glider wax powders in the respirable and in the inhalable aerosol mass fractions, respectively. Particle number concentration of ~900 000 particles cm(-3) was measured during application of glider wax powder products. Ski sole cleaning with products containing aliphates displayed solvent air concentrations up to 62.5 p.p.m. This study shows that the potential exposure to generated particles during ski waxing and ski preparation is considerable, especially during work using glide wax powders.
Surface Cleaning of Iron Artefacts by Lasers
NASA Astrophysics Data System (ADS)
Koh, Y. S.; Sárady, I.
In this paper the general method and ethics of the laser cleaning technique for conservation are presented. The results of two experiments are also presented; experiment 1 compares cleaning of rust by an Nd:YAG laser and micro-blasting whilst experiment 2 deals with removing the wax coating from iron samples by a TEA CO2 laser. The first experiment showed that cleaning with a pulsed laser and higher photon energy obtained a better surface structure than micro blasting. The second experiment showed how differences in energy density affect the same surface.
Removal of lead contaminated dusts from hard surfaces.
Lewis, Roger D; Condoor, Sridhar; Batek, Joe; Ong, Kee Hean; Backer, Denis; Sterling, David; Siria, Jeff; Chen, John J; Ashley, Peter
2006-01-15
Government guidelines have widely recommended trisodium phosphate (TSP) or "lead-specific" cleaning detergents for removal of lead-contaminated dust (LCD) from hard surfaces, such as floors and window areas. The purpose of this study was to determine if low-phosphate, non-lead-specific cleaners could be used to efficiently remove LCD from 3 types of surfaces (vinyl flooring, wood, and wallpaper). Laboratory methods were developed and validated for simulating the doping, embedding, and sponge cleaning of the 3 surface types with 4 categories of cleaners: lead-specific detergents, nonionic cleaners, anionic cleaners, and trisodium phosphate (TSP). Vinyl flooring and wood were worn using artificial means. Materials were ashed, followed by ultrasound extraction, and anodic stripping voltammetry (ASV). One-way analysis of variance approach was used to evaluate the surface and detergent effects. Surface type was found to be a significant factor in removal of lead (p < 0.001). Vinyl flooring cleaned better than wallpaper by over 14% and wood cleaned better than wallpaper by 13%. There was no difference between the cleaning action of vinyl flooring and wood. No evidence was found to support the use of TSP or lead-specific detergents over all-purpose cleaning detergents for removal of lead-contaminated dusts. No-phosphate, non-lead-specific detergents are effective in sponge cleaning of lead-contaminated hard surfaces and childhood lead prevention programs should consider recommending all-purpose household detergents for removal of lead-contaminated dust after appropriate vacuuming.
Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O
2017-02-01
The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p < 0.05), and over the patient's eye by at least a factor of 436 (p < 0.05), which in clinical practice translates into significantly reduced air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.
Plume particle collection and sizing from static firing of solid rocket motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.
Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto
2014-01-01
Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.
Exposure Assessment in a Single-Walled Carbon Nanotube Primary Manufacturer.
Kouassi, Serge; Catto, Cyril; Ostiguy, Claude; L'Espérance, Gilles; Kroeger, Jens; Debia, Maximilien
2017-03-01
This study was aimed at documenting and characterizing occupational exposure to single-walled carbon nanotubes (SWCNTs) generated in a primary manufacturing plant. It also compared various strategies of exposure monitoring. A 6-day measurement protocol was scheduled (D1-D6) including both (i) quasi-personal monitoring with an array of direct reading instruments (DRIs) and (ii) offline electron microscopy analyses of surface and breathing zone filter-based samples. The first step (D1 and D2) consisted of contamination screenings resulting from the various SWCNT production tasks using a multimetric approach. Surface sampling was also carried out to assess workplace cross-contamination. The second step (D3-D6) focused on the exposure monitoring during recovery/cleaning task, by comparing three personal elemental carbon (EC) measurements [respirable EC using a cyclone following the NIOSH 5040 method (REC-CYC), respirable and thoracic EC using parallel particle impactors [REC-PPI and TEC-PPI, respectively)] and gravimetric mass concentration measurements. DustTrak DRX and electrical low-pressure impactor measurements indicated that particles were released during weighing, transferring, and recovery/cleaning tasks of the manufacturing process. Electron microscopy revealed the presence of agglomerated SWCNTs only during the recovery/cleaning task. REC-CYC concentrations remained under the limits of quantification; REC-PPI showed levels up to 58 µg m-3; and TEC-PPI ranged from 40 to 70 µg m-3. Ratios calculated between gravimetric measurements and estimated DustTrak mass concentrations ranged from 2.8 to 4.9. Cross-contamination appeared to be limited since SWCNTs was only found on surface samples collected close to the reactor in the production room. This case study showed that the DustTrak DRX should be the preferred device among DRIs to identify potential exposure to SWCNTs. However, there is a risk of false positive since it is a non-specific instrument; therefore, the actual release of SWCNTs must be confirmed with scanning electron microscopy/transmission electron microscopy analyses. Besides, using EC measurements as a proxy for SWCNT exposure assessments, as suggested by the NIOSH, is still challenging since interferences can occur with other EC sources such as carbon black, which is also present in the workplace. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Eckstein, Brittany C; Adams, Daniel A; Eckstein, Elizabeth C; Rao, Agam; Sethi, Ajay K; Yadavalli, Gopala K; Donskey, Curtis J
2007-01-01
Background Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD) and vancomycin-resistant Enterococcus (VRE) colonization or infection and examined whether an intervention would result in improved decontamination of surfaces. Methods During a 6-week period, we cultured commonly touched surfaces (i.e. bedrails, telephones, call buttons, door knobs, toilet seats, and bedside tables) in rooms of patients with CDAD and VRE colonization or infection before and after housekeeping cleaning, and again after disinfection with 10% bleach performed by the research staff. After the housekeeping staff received education and feedback, additional cultures were collected before and after housekeeping cleaning during a 10-week follow-up period. Results Of the 17 rooms of patients with VRE colonization or infection, 16 (94%) had one or more positive environmental cultures before cleaning versus 12 (71%) after housekeeping cleaning (p = 0.125), whereas none had positive cultures after bleach disinfection by the research staff (p < 0.001). Of the 9 rooms of patients with CDAD, 100% had positive cultures prior to cleaning versus 7 (78%) after housekeeping cleaning (p = 0.50), whereas only 1 (11%) had positive cultures after bleach disinfection by research staff (p = 0.031). After an educational intervention, rates of environmental contamination after housekeeping cleaning were significantly reduced. Conclusion Our findings provide additional evidence that simple educational interventions directed at housekeeping staff can result in improved decontamination of environmental surfaces. Such interventions should include efforts to monitor cleaning and disinfection practices and provide feedback to the housekeeping staff. PMID:17584935
NASA Astrophysics Data System (ADS)
Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang
2010-03-01
A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.
Contamination removal using various solvents and methodologies
NASA Technical Reports Server (NTRS)
Jeppsen, J. C.
1989-01-01
Critical and non-critical bonding surfaces must be kept free of contamination that may cause potential unbonds. For example, an aft-dome section of a redesigned solid rocket motor that had been contaminated with hydraulic oil did not appear to be sufficiently cleaned when inspected by the optically stimulated electron emission process (Con Scan) after it had been cleaned using a hand double wipe cleaning method. As a result, current and new cleaning methodologies as well as solvent capability in removing various contaminant materials were reviewed and testing was performed. Bonding studies were also done to verify that the cleaning methods used in removing contaminants provide an acceptable bonding surface. The removal of contaminants from a metal surface and the strength of subsequent bonds were tested using the Martin Marietta and double-wipe cleaning methods. Results are reported.
Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating
NASA Astrophysics Data System (ADS)
Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan
2016-03-01
A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.
NASA Astrophysics Data System (ADS)
Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro
2016-03-01
Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.
Low surface energy polymeric release coating for improved contact print lithography
NASA Astrophysics Data System (ADS)
Mancini, David P.; Resnick, Douglas J.; Gehoski, Kathleen A.; Popovich, Laura L.; Chang, Daniel
2002-03-01
Contact printing has been used for decades in many various lithography applications in the microelectronic industry. While vacuum contact printing processes offer sub-micron resolution and high throughput, they often suffer from some important drawbacks. One of the most common problems is degradation in both resolution and defect density which occurs when the same mask si used for multiple exposures without frequent mask cleans. This is largely due to the relatively high surface energy of both quartz and chrome and the tendency of most photoresists to adhere to these surfaces. As a result, when a mask and wafer are pressed into intimate contact, resist will tend to stick to the mask creating a defect on the wafer, effectively propagating defects to subsequent wafers. In this study, DuPont Teflon AF 1601S is used as a photomask coating and evaluated for its ability to act as a release agent and reduce defects while maintaining resolution for multiple exposures. Teflon AF is an amorphous, transparent, low surface energy, polymeric material that can be spin coated into a thin conformal film. Tests have shown that when using an uncoated mask in vacuum contact, resolution of 0.75 micrometers dense lines is severely degraded after less than 10 consecutive exposures. However, when the mask is coated, 0.75 micrometers dense lines were successfully resolved using vacuum contact for over 200 exposures without cleaning. In addition, it has been demonstrated that Teflon AF coatings impart to a mask a self-cleaning capability, since particles tend to stick to the photoresist rather than the mask. A coated mask, which was purposefully contaminated with particulates, resolved 0.75 micrometers dense lines on all but the first wafer of a series of 25 consecutive exposures. The patented mask releases layer process has successfully been demonstrated with a positive novolak resist. Additional data which describes the system chemistry, dilution and coating process, and film morphology are also presented.
NASA Technical Reports Server (NTRS)
Himmel, R. P.
1975-01-01
Various hybrid processing steps, handling procedures, and materials are examined in an attempt to identify sources of contamination and to propose methods for the control of these contaminants. It is found that package sealing, assembly, and rework are especially susceptible to contamination. Moisture and loose particles are identified as the worst contaminants. The points at which contaminants are most likely to enter the hybrid package are also identified, and both general and specific methods for their detection and control are developed. In general, the most effective controls for contaminants are: clean working areas, visual inspection at each step of the process, and effective cleaning at critical process steps. Specific methods suggested include the detection of loose particles by a precap visual inspection, by preseal and post-seal electrical testing, and by a particle impact noise test. Moisture is best controlled by sealing all packages in a clean, dry, inert atmosphere after a thorough bake-out of all parts.
Chemical resistance and cleanability of glazed surfaces
NASA Astrophysics Data System (ADS)
Hupa, Leena; Bergman, Roger; Fröberg, Linda; Vane-Tempest, Stina; Hupa, Mikko; Kronberg, Thomas; Pesonen-Leinonen, Eija; Sjöberg, Anna-Maija
2005-06-01
Adhesion of soil on glazed surfaces and their cleanability depends on chemical composition, phase composition, and roughness of the surface. The surface can be glossy consisting mainly of a smooth glassy phase. A matt and rough surface consists of a glassy phase and one or more crystalline phases. The origin and composition of the crystalline phases affect the chemical resistance and the cleanability of the surface. Fifteen experimental glossy and matt glazes were soaked in a slightly alkaline cleaning agent solution. The surfaces were spin-coated with sebum, i.e. a soil component typical for sanitary facilities. After wiping out the soil film in a controlled manner, the surface conditions and the soil left were evaluated with colour measurements, SEM/EDXA and COM. The results show that wollastonite-type crystals in the glaze surfaces were attacked in aqueous solutions containing typical cleaning agents. This corrosion led to significant decrease in the cleanability of the surface. The other crystal types observed, i.e. diopside and quartz crystals were not corroded, and the cleanability of glazes containing only these crystals was not changed in the cleaning agent exposures. Also the glassy phase was found to be attacked in some formulations leading to a somewhat decreased cleanability. The repeated soiling and cleaning procedures indicated that soil is accumulated on rough surfaces and surfaces which were clearly corroded by the cleaning agent.
Precision cleaning apparatus and method
Schneider, T.W.; Frye, G.C.; Martin, S.J.
1998-01-13
A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.
Precision cleaning apparatus and method
Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.
1998-01-01
A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.
NASA Astrophysics Data System (ADS)
Bogaard, T.; Bandyopadhyay, S.; Foppen, J. W.
2017-12-01
Societal demand for water safety is continuously increasing, being it resilient against flood/droughts, clean water for ecosystems, recreation or safe drinking water. Robust methods to measure temporal and spatial patterns of water and contaminant pathways are still lacking. Our research project aims to develop and apply (1) innovative, robust, and environmental-friendly silica-protected iron oxide micro-particles tagged with artificial DNA to trace contaminant movement and travel times of water in natural systems and (2) an innovative coupled model approach to capture dynamics in hydrological pathways and their effects on water quality. The exceptional property of DNA-tagging is the infinite number of unique tracers that can be produced and their detectability at extreme low concentrations. The advantage of the iron-core of the particle is the magnetic harvesting of the particles from water-samples. Such tracers are thought to give the water sector a unique tool for in-situ mapping of transport of contaminants and pathogenic microorganisms in water systems. However, the characteristics of the particle like magnetic property of the iron-core and surface potential of the silica layer, are of key importance for the behaviour of the particle in surface water and in soils. Furthermore, the application of such micro-particles requires strict protocols for the experiment, sampling and laboratory handling which are currently not available. We used two different types of silica-protected DNA-tagged micro-particles. We performed batch, column and flow experiments to assess the behaviour of the particles. We will present the first results of the controlled laboratory experiments for hydrological tracing. We will discuss the results and link it to the differences in particles design. Furthermore, we will draw conclusions and discuss knowledge gaps for future application of silica-protected DNA-tagged micro-particles in hydrological research.
Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials
NASA Astrophysics Data System (ADS)
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-09-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials.
Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger
2004-01-01
A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.
Véliz, Elena; Vergara, Teresa; Pearcy, Mercedes; Dabanch, Jeannette
Introduction Dental care has become a challenge for healthcare associated infection prevention programs, since the environment, within other factors, plays an important role in the transmission chain. Materials and Methods An intervention program was designed for the Dental Unit of Hospital Militar de Santiago, between years 2014 and 2015. The program contemplated 3 stages: diagnostic, intervention and evaluation stage. Objective To improve the safety of critical surfaces involved in dental healthcare. Results During the diagnostic stage, the cleaning and disinfection process was found to be deficient. The most contaminated critical surface was the instrument holder unit, then the clean area and lamp handle. The surfaces that significantly reduced their contamination, after the intervention, were the clean area and the instrument carrier unit. Conclusion Training in the processes of cleaning and disinfecting surfaces and dental equipment is one of the cost-effective strategies in preventing healthcare-associated infections (HCAI), with simple and easy-to-apply methods.
Fogging technique used to coat magnesium with plastic
NASA Technical Reports Server (NTRS)
Mroz, T. S.
1967-01-01
Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.
Development of durable self-cleaning coatings using organic-inorganic hybrid sol-gel method
NASA Astrophysics Data System (ADS)
Kumar, Divya; Wu, Xinghua; Fu, Qitao; Ho, Jeffrey Weng Chye; Kanhere, Pushkar D.; Li, Lin; Chen, Zhong
2015-07-01
Self-cleaning coatings with excellent water-repellence and good mechanical properties are in high demand. However, producing such coatings with resistance to mechanical abrasion and environmental weathering remains a key challenge. Mechanically robust coatings based on tetraethylorthosilicate (TEOS) and glycidoxypropyltriethoxysilane (Glymo) have been prepared using a sol-gel method. Emphasis is given to the addition of Glymo, an epoxy silane which creates an organic matrix that blends with the inorganic Sisbnd Osbnd Si matrix formed from the TEOS. The combination of the blended matrix produced coatings with good adhesion to substrates and improved mechanical properties. Fluoroalkylsilane (FAS) and silica fillers were introduced to increase the hydrophobicity of the coating. It was found that the water contact angle (CA) of these coatings increases from 115° to 164° upon decreasing filler size from 1-5 μm to 10-20 nm. The sliding angle (SA) for coatings with 15 wt.% loading of 10-20 nm silica is around 2°. UV weathering does not show significant effect on the properties of the coatings. Mechanical properties and performances including hardness, Young's modulus, coating adhesion and abrasion resistance were systematically analyzed. In the current work, a simple self-cleaning test, which measures the extent of dirt accumulation and subsequent removal by water spray, was performed. The coatings with 15 wt.% loading of 10-20 nm silica particles show the best self-cleaning performance both before and after mechanical abrasion. The developed coating process is simple and can be easily scaled-up for large surfaces that require self-cleaning function.
Dippenaar, Ricky; Smith, Johan
2018-02-23
Expressed human milk (EHM) feed preparation areas represent a potential source of unintentional nosocomial infection. Daily disinfection of environmental surfaces remains an essential intervention to mitigate nosocomial infections. The inefficiency of conventional cleaning and disinfection contributes to an increased risk for the acquisition of multi-drug resistant pathogens. "Non touch" technologies such as the pulsed xenon ultraviolet (PX-UVD) light device have documented sustained reduction in surface bacterial colonization and reduced cross contamination. The impact of a PX-UVD on surface colony forming units per square centimeter (cfu/cm 2 ) in feed preparation areas was evaluated following its implementation as standard care. A quasi-experimental study was performed documenting bacterial colonization from 6 high risk feed preparation areas in a community care hospital in South Africa. Pre and post conventional cleaning neutralizing rinse swabs were collected fortnightly over a 16 week control period prior to the introduction of the PX-UVD and compared to a matching set of samples for the PX-UVD period. A 90% reduction in total surface bioburden was noted from the control period (544 cfu/cm 2 ) compared to the corresponding PX-UVD period (50 cfu/cm 2 ). Sub -analysis of both the Pre-clean Control: Pre-clean PX-UVD counts as well as the Post-clean Control: Post-clean PX-UVD counts noted significant improvements (p < 0.001). A statistically significant improvement was noted between pre-and post-cleaning total surface bioburden following exposure to the PX-UVD (p = 0.0004). The introduction of the PX-UVD was associated with a sustained reduction in the pre clean bioburden counts with a risk trend (per week) 0.19, (95% CI [0.056, 0.67], p = 0.01). The use of a PX-UVD as adjunct to standard cleaning protocols was associated with a significant decrease in surface bioburden. The study demonstrated the inefficiency of conventional cleaning. Persistence of potentially pathological species in both periods highlights current health sector challenges.
Evaluating a new paradigm for comparing surface disinfection in clinical practice.
Carling, Philip C; Perkins, Jennifer; Ferguson, JoAnn; Thomasser, Anita
2014-11-01
Despite an increasing understanding of the importance of near-patient surfaces in the transmission of healthcare-associated pathogens, there remains a need to define the relative clinical effectiveness of disinfection interventions. A serial 2-phase evaluation of the clinical effectiveness of 2 surface disinfectants. A general acute care hospital. A unique system for quantifying bioburden reduction while monitoring the possible impact of differences in cleaning thoroughness was used to compare the clinical effectiveness of a traditional quaternary ammonium compound (QAC) and a novel peracetic acid/hydrogen peroxide disinfectant (ND) as part of terminal room cleaning. As a result of QAC cleaning, 93 (40%) of 237 cleaned surfaces confirmed by fluorescent marker (DAZO) removal were found to have complete removal of aerobic bioburden. During the ND phase of the study, bioburden was removed from 211 (77%) of 274 cleaned surfaces. Because there was no difference in the thoroughness of cleaning with either disinfectant (65.3% and 66.4%), the significant ([Formula: see text]) difference in bioburden reduction can be attributed to better cleaning efficacy with the ND. In the context of the study design, the ND was 1.93 times more effective in removing bacterial burden than the QAC ([Formula: see text]). Furthermore, the study design represents a new research paradigm in which 2 interventions can be compared by concomitantly and objectively analyzing both the product and process variables in a manner that can be used to define the relative effectiveness of all disinfection cleaning interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.
2013-08-05
The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less
NASA Astrophysics Data System (ADS)
Moon, D. R.; Heard, D. E.; Ingham, T.; Chipperfield, M.; Seakins, P. W.; Baeza Romero, M. T. T.; Taverna, G. S.
2016-12-01
It is suggested that injection of TiO2 particles into the stratosphere to back-scatter solar radiation maybe an effective measure to mitigate the effects of global warming. TiO2 particles are well suited to this application because of their high refractive index.1 However, the effect of such a measure on stratospheric chemistry is not fully understood. HO2 is a key atmospheric species in both the troposphere and the stratosphere and is responsible for 40% of ozone destruction in the lower stratosphere.2 In addition to this, application of TiO2 coatings to surfaces within the urban environment are used to abate ambient levels of NO2 and for their self-cleaning properties. This study investigates the heterogeneous reaction between airborne sub-micron TiO2 particles and HO2 radicals using an aerosol flow tube and the FAGE (fluorescence assay by gas expansion) technique to monitor HO2 uptake. The dependence of the uptake coefficient (γHO2) to relative humidity (RH) has been determined. Experiments performed in dark conditions at the most stratospherically relevant RH (11.1%) determined γHO2 = (2.08 ± 0.11) × 10-2. A positive dependence of γHO2 with RH was observed which showed a correlation between γHO2 and the number of monolayers of water adsorbed on the particle surface. Experiments illuminated with near-UV light (365 nm) were performed and showed significant production of HO2 from the aerosols into the gas phase. The concentrations were dependent on light flux, RH and total particle surface area. While the production of HOx in the gas phase has been observed close to TiO2 surfaces in the presence of H2O23,4 it is believed that this phenomena has not been observed from airborne TiO2 particles and parameterized in this way before. Emissions of HO2 from the surface of TiO2 particles in the stratosphere could rule out the application of TiO2 particles for use within solar-radiation management schemes. The TOMCAT 3-D chemical transport model was used to predict the effect of the injection of TiO2 particles into the stratosphere. Uptake and production of HO2 along with other studied heterogeneous reactions with TiO2 particles are considered. The predicted changes to [HO2], [O3] and other species will be presented. Pope, F. D. et al. (2010) Wennberg, P. O. et. al. (1994) Murakami, Y. et al. (2006) Bahrini, C. et al. (2010)
Assessment of disinfection of hospital surfaces using different monitoring methods1
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos, Aires Garcia
2015-01-01
OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process. PMID:26312634
Assessment of disinfection of hospital surfaces using different monitoring methods.
Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos Junior, Aires Garcia
2015-01-01
to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.
Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.
Pareo, Paola; De Gregorio, Gian Luca; Manca, Michele; Pianesi, Maria Savina; De Marco, Luisa; Cavallaro, Francesco; Mari, Margherita; Pappadà, Silvio; Ciccarella, Giuseppe; Gigli, Giuseppe
2011-11-15
Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure). Copyright © 2011 Elsevier Inc. All rights reserved.
Can tokamaks PFC survive a single event of any plasma instabilities?
NASA Astrophysics Data System (ADS)
Hassanein, A.; Sizyuk, V.; Miloshevsky, G.; Sizyuk, T.
2013-07-01
Plasma instability events such as disruptions, edge-localized modes (ELMs), runaway electrons (REs), and vertical displacement events (VDEs) are continued to be serious events and most limiting factors for successful tokamak reactor concept. The plasma-facing components (PFCs), e.g., wall, divertor, and limited surfaces of a tokamak as well as coolant structure materials are subjected to intense particle and heat loads and must maintain a clean and stable surface environment among them and the core/edge plasma. Typical ITER transient events parameters are used for assessing the damage from these four different instability events. HEIGHTS simulation showed that a single event of a disruption, giant ELM, VDE, or RE can cause significant surface erosion (melting and vaporization) damage to PFC, nearby components, and/or structural materials (VDE, RE) melting and possible burnout of coolant tubes that could result in shut down of reactor for extended repair time.
Agarwal, Manika; Wible, Emily; Ramir, Tyler; Altun, Sibel; Viana, Grace; Evans, Carla; Lukic, Henry; Megremis, Spiro; Atsawasuwan, Phimon
2018-05-01
To evaluate the long-term effects of seven different cleaning methods on light transmittance, surface roughness, and flexural modulus of a polyurethane retainer material. Polyurethane retainer specimens (Vivera®, Align Technology Inc) (70 specimens, n = 10 per method, 50.8 mm × 12.7 mm × 1.0 mm) were exposed to seven cleaning methods twice a week for 6 months. Before treatment and after 6 months, light transmittance, surface roughness, and flexural modulus of the specimens were quantified. Qualitative assessment of randomly selected specimens from each solution was performed at baseline and after 6 months using a scanning electron microscope. Statistical analyses were performed at the .05 significance level. Of the three test variables, light transmittance through the specimens was the only one that changed significantly from baseline to 6 months for all cleaning solutions, with all of them causing a decrease. However, except for 0.6% sodium hypochlorite showing a change in surface roughness values and 2.5% vinegar and toothbrushing showing an increase in flexural modulus, none of the other four cleaning methods resulted in significant changes in surface roughness or flexural modulus values for the polyurethane specimens between baseline and after 6 months. Of the seven cleaning methods, Invisalign® cleaning crystals, Polident®, and Listerine® showed the least amount of change in light transmittance values for the polyurethane specimens over 6 months, and they had no effect on surface roughness and flexural modulus values.
Hard surface biocontrol in hospitals using microbial-based cleaning products.
Vandini, Alberta; Temmerman, Robin; Frabetti, Alessia; Caselli, Elisabetta; Antonioli, Paola; Balboni, Pier Giorgio; Platano, Daniela; Branchini, Alessio; Mazzacane, Sante
2014-01-01
Healthcare-Associated Infections (HAIs) are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies. This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans) on hard surfaces in a hospital setting. The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy) and approximately 20000 microbial surface samples were collected. Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3-4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities. This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost-effective strategy to counteract or (bio)control healthcare-associated pathogens.
Hard Surface Biocontrol in Hospitals Using Microbial-Based Cleaning Products
Vandini, Alberta; Temmerman, Robin; Frabetti, Alessia; Caselli, Elisabetta; Antonioli, Paola; Balboni, Pier Giorgio; Platano, Daniela; Branchini, Alessio; Mazzacane, Sante
2014-01-01
Background Healthcare-Associated Infections (HAIs) are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies. Aim This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans) on hard surfaces in a hospital setting. Methods The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy) and approximately 20000 microbial surface samples were collected. Results Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3–4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities. Conclusions This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost-effective strategy to counteract or (bio)control healthcare-associated pathogens. PMID:25259528
Cleaning of printed circuit assemblies with surface-mounted components
NASA Astrophysics Data System (ADS)
Arzigian, J. S.
The need for ever-increasing miniaturization of airborne instrumentation through the use of surface mounted components closely placed on printed circuit boards highlights problems with traditional board cleaning methods. The reliability of assemblies which have been cleaned with vapor degreasing and spray cleaning can be seriously compromised by residual contaminants leading to solder joint failure, board corrosion, and even electrical failure of the mounted parts. In addition, recent government actions to eliminate fully halogenated chlorofluorocarbons (CFC) and chlorinated hydrocarbons from the industrial environment require the development of new cleaning materials and techniques. This paper discusses alternative cleaning materials and techniques and results that can be expected with them. Particular emphasis is placed on problems related to surface-mounted parts. These new techniques may lead to improved circuit reliability and, at the same time, be less expensive and less environmentally hazardous than the traditional systems.
Role of cavitation in high-speed droplet impact problems
NASA Astrophysics Data System (ADS)
Kondo, Tomoki; Ando, Keita
2014-11-01
High-speed droplet impact is found in physical cleaning using liquid jets, but its mechanisms for particle removal from target surfaces are yet unclear. In this study, we explore the possibility of having cavitation inside the droplet. The pressure evolution within a droplet colliding with a flat surface of deformable materials is determined by multicomponent Euler equations. Dynamics of cavitation bubbles heterogeneously nucleated from preexisting nuclei are determined from Rayleigh-Plesset calculations according to the pressure evolution within the droplet in one-way-coupling manner. The simulation shows that cavitation indeed occurs due to tension that arises from the water hammer shock reflection at the droplet interface. The role of cavitation including pressure emission from its collapse is to be discussed based on the one-way-coupling computations.
Cosmic Dust in ~50 KG Blocks of Blue Ice from Cap-Prudhomme and Queen Alexandra Range, Antarctica
NASA Astrophysics Data System (ADS)
Maurette, M.; Cragin, J.; Taylor, S.
1992-07-01
Favorable Antarctic blue ice fields have produced a large number of meteorite finds because of the ice ablation concentration process (Cassidy et al., 1982). Such ice fields should also concentrate cosmic dust grains including both spherules and unmelted micrometeorites. Here we present preliminary results of concentrations of cosmic dust grains in ice from two very different Antarctic blue ice fields. The first sample (~60 kg) was collected in January 1987 from the surface of the blue ice field at Cap-Prudhomme (CP), near the French station of Dumont d'Urville, by a team from the "Laboratoire de Glaciologie du CNRS" (A. Barnola). The second sample (~50 kg), was retrieved from a meteorite stranding surface near the Queen Alexandra range (QUE) by a team (M. Burger, W. Cassidy, and R.Walker) of the ANSMET 1990 field expedition in Antarctica. Both samples were transported frozen to the laboratory where they were subdivided and processed. The CP sample was cut with a stainless steel saw into 4 pieces while the QUE sample, which had the top surface identified, was cut into three equal (~15 cm) horizontal layers to provide constituent variability with depth. All subsequent work on both samples was performed in a class 100 clean room using procedures developed by M. de Angelis and M. Maurette aimed at minimizing the loss of extraterrestrial particles. Pieces of both samples were cleaned by rinsing thoroughly with ultrapure water (Milli-O) and then melted in polyethylene containers in a microwave oven. Aliquots were decanted for chemical analysis and the remaining meltwater was filtered through stainless steel sieves for collection of large (>30 micrometers) particles. Using a 30X binocular microscope particles were hand picked for subsequent SEM/EDX analyses. Our initial objective was to compare the cosmic dust concentration in ice from the two locations. But this comparison was only partial because in the CP-ice, only magnetic spherules of >50 micrometers were studied whereas the QUE-ice studies included measurements of the depth variation of various characteristics, such as the size distribution and concentration of both cosmic spherules and unmelted chondritic micrometeorites (AMMs), the concentrations of grains in the ~1-10-micrometer size range, and the concentration of trace elements in the ice. In addition both magnetic and nonmagnetic particles were collected from the QUE-ice. The concentration of chondritic spherules 50 micrometers in size is similar at both locations: in the CP-ice 5 spherules were found in 40 kg of residual ice (after cleaning), and 7 spherules (including a nonmagnetic one) were recovered from 50kg of QUE-ice. The QUE sample contained 11 AMMs (including 3 grains with sizes ~30-50 micrometers) resulting in a ratio of unmelted to melted micrometeorites with sizes >50 micrometers (~1), which is much lower than the CP ratio of >5 (obtained for particles subsequently recovered from 360 tons of CP-ice). The QUE sample showed that particles >100 micrometers in size are found primarily within the top 15 m of ice while smaller particles are found in the bottom layers (30-50 cm). In contrast to CP-ice, QUE-ice contains many annealed stress cracks, that etch very quickly in water. Despite the very different glaciological and climatological regimes at the CP and QUE ice fields, concentrations of cosmic spherules are surprisingly similar. The ratio of AMMs to spherules does vary, however. The depth variations of the characteristics of cosmic dust grains trapped in the ~50-cm-thick top layer of a blue ice field are already very useful to select favorable zones to collect micrometeorites. In addition, they might provide insight into both climatic and ice flow parameters. Acknowledgements. We thank W.A. Cassidy and G. Crozaz for comments and R.M. Walker for his support and interest. REFERENCES. Cassidy W.A. and Rancitelli L.A. (1982) Am. Scientist 70, 156-164.
Yang, Junsi; Ciftci, Ozan Nazim
2016-09-01
The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cleaning High-Voltage Equipment With Corncob Grit
NASA Technical Reports Server (NTRS)
Caveness, C.
1986-01-01
High electrical resistance of particles makes power shutdown unnecessary. New, inexpensive method of cleaning high-voltage electrical equipment uses plentiful agricultural product - corncob grit. Method removes dirt and debris from transformers, circuit breakers, and similar equipment. Suitable for utilities, large utility customers, and electrical-maintenance services.
The World of Work--Industrial Clean Rooms.
ERIC Educational Resources Information Center
Potts, Frank E.
The purpose of this publication is to present information concerning the environmental conditions imposed upon workers in industries which require clean room facilities to eliminate particle-caused equipment failure. The information, which was collected through interviews, observation, and other standard job analysis techniques, discusses these…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockie, K.A.; Suttora, L.C.; Quigley, K.D.
2007-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger
2012-11-01
For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on very unusual properties of microbes. For ESA, this collection is an essential resource with which to evaluate the contamination potential of spacecraft-associated biology and validate new biological contamination control and reduction procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, B.; Kahabka, J.
1995-06-01
This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority`s James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, bothmore » existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft{sup 2} of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed.« less
Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel
2015-06-01
In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.
Self-Cleaning Surfaces: A Third-Year Undergraduate Research Project
ERIC Educational Resources Information Center
Haines, Ronald S.; Wu, Alex H. F.; Zhang, Hua; Coffey, Jacob; Huddle, Thomas; Lafountaine, Justin S.; Lim, Zhi-Jun; White, Eugene A.; Tuong, Nam T.; Lamb, Robert N.
2009-01-01
Superhydrophobic (non water-wettable) surfaces can possess the ability to self-clean (the so-called "lotus effect"). The task of devising the apparatus and method for quantifying this self-cleaning effect was offered as a project in a third-year undergraduate laboratory course. Using commonly available equipment the students devised a…
Development of a filter regeneration system for advanced spacecraft fluid systems
NASA Technical Reports Server (NTRS)
Behrend, A. F., Jr.; Descamp, V. A.
1974-01-01
The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.
Elemental accumulation in lichen transplants in the neighborhood of thermal power stations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, M.C.; Reis, M.A.; Alves, L.C.
1996-12-31
Lichens are known to be good monitors of air pollution because they easily absorb the chemical elements from air particles. Therefore, the exposure of clean lichens to a polluted region will result in an accumulation of elements emitted by the pollution sources in the lichens. In this work, samples of the lichen Parmelia sulcata were collected from olive tree stems and in a very clean area to gauge pollution. The goal is to obtain a quantitative relation between results obtained via lichens and via airborne particles.
2015-01-01
Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic–hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement. PMID:25073014
Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E
2014-08-26
Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.
Zandparsa, Roya; Talua, Nayrouz A; Finkelman, Matthew D; Schaus, Scott E
2014-02-01
The purpose of this in vitro study was to compare the shear bond strength of an airborne-particle abraded zirconia, an acid-etched zirconia (Piranha solution), an Alloy Primer treated zirconia, and a silaned zirconia to enamel, all bonded with a phosphate-methacrylate resin luting agent. Seventy extracted intact human molars were collected, cleaned, and mounted in autopolymerizing acrylic resin, with the experimental surface of the teeth exposed. The specimens were randomly divided into seven groups of zirconia specimens (4 mm diameter, 2 mm thick). Group 1: Airborne-particle abrasion; group 2: Airborne-particle abrasion and Z-PRIME Plus; group 3: Airborne-particle abrasion and alloy primer; group 4: Piranha solution 7:1; group 5: Piranha solution 7:1 and Z-PRIME Plus; group 6: Piranha solution 7:1 and Alloy primer; group 7: CoJet and silane. All specimens were luted with a phosphate-methacrylate resin luting agent (Panavia F2.0) and stored in distilled water for 1 day, then thermocycled (5°C and 55°C) for 500 cycles and tested for shear bond strength (SBS), measured in MPa, with a universal testing machine at a 0.55 mm/min crosshead speed. All specimens were inspected under a scanning electron microscope to determine mode of failure. The mean values and standard deviations of all specimens were calculated for each group. A one-way ANOVA was performed, and multiple pairwise comparisons were then completed with post hoc Tukey test (alpha = 0.05). The airborne-particle abrasion and Z-PRIME Plus group resulted in a significantly higher SBS than the other groups (21.11 ± 6.32 MPa) (p < 0.001). The CoJet and silane group (15.99 ± 8.92 MPa) and airborne-particle abrasion and alloy primer group (11.07 ± 4.34 MPa) showed high shear bond strength but not statistically significant from the airborne-particle abrasion group (14.23 ± 5.68 MPa). Failure mode was predominately mixed in groups 1, 2, 3, and 7 with islands of retained resin on the zirconia and enamel surfaces; however, groups 4, 5, and 6 showed mostly adhesive failures, which left the zirconia surface free of the adhesive materials. No cohesive failures of the substrates (ceramic, resin, or enamel) were observed. Airborne-particle abrasion followed by the application of a zirconia primer produced the highest bond strength to enamel. Therefore, it can be recommended as a promising surface treatment method to achieve a durable bond to densely sintered zirconia ceramics. © 2013 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Anjana, R.; Kurias, K. M.; Jayaraj, M. K.
2017-10-01
Upconversion luminescent nanomaterials have great outlook towards imaging applications. These materials have high chemical and thermal stability, low auto fluorescence, high photo stability and IR excitation does not cause photo damage to living cells and penetrate deeply into tissue. Most of the reported nanoparticles are synthesized through chemical methods in which surface modification is needed for dispersing nanoparticles in water. In this paper we report clean and simple synthesis of upconversion luminescent yttrium oxyfluoride (YOF) nanoparticles through laser ablation in deionized water. YOF:Er3+, Yb3+ pellets were used for ablation. Er3+ is the emission centre Yb3+ is the sensitizer. Obtained colloidal solution is transparent to day light and showing red emission on exciting with 980 nm IR laser. By controlling ablation parameters particles of size less than 10 nm dispersed uniformly in water can be obtained through this surfactant free method. The synthesized nanoparticles can be used for cell imaging.
Self-cleaning feed distributing delivery device for glass melters
Mensink, Daniel L.
1992-01-01
A self cleaning, plug resistant, adjustable parameter feed distributing and delivery apparatus for a glass melter comprising a housing with a passage therethrough for a glass slurry, a cold finger within the passage for creating a dispersion pattern of the slurry, a movable slotted tube for controlling the confluence of air propellant and slurry in the passage, and a plurality of ribs that extend through the slots in the slotted tube to urge the slurry forward if it becomes stuck or resists forward movement. Coolant passages in the housing and the cold finger maintain the slurry temperature below that of the melter plenum. The cold finger is axially movable to adjust the dispersion pattern to the desired consistency. Other design features of size can be applied for use in situations requiring different parameters of pattern, particle size, rate, and feed consistencies. The device utilizes air as both a propellant and a surface cleansing mechanism. Other fluids may be used as propellants where process compatibility requires.
Peng, Shan; Bhushan, Bharat
2016-01-01
Superoleophobic aluminum surfaces are of interest for self-cleaning, anti-smudge (fingerprint resistance), anti-fouling, and corrosion resistance applications. In the published literature on superoleophobic aluminum surfaces, mechanical durability, self-cleaning, and anti-smudge properties data are lacking. Microstep structure has often been used to prepare superhydrophobic aluminum surfaces which produce the microstructure. The nanoreticula structure has also been used, and is reported to be able to trap air-pockets, which are desirable for a high contact angle. In this work, the microstep and nanoreticula structures were produced on aluminum surfaces to form a hierarchical micro/nanostructure by a simple two-step chemical etching process. The hierarchical structure, when modified with fluorosilane, made the surface superoleophobic. The effect of nanostructure, microstructure, and hierarchical structure on wettability and durability were studied and compared. The superoleophobic aluminum surfaces were found to be wear resistant, self-cleaning, and have anti-smudge and corrosion resistance properties. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerber, Pranita B.; Porter, Lisa M.; McCullough, L. A.
2012-10-12
Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of di-block copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, (2009) 177]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of di-block copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) (PAN-b-PBA) at two different temperaturesmore » were carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included: HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % of nitrogen present in the films pyrolyzed at 600 °C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration reduced significantly for films pyrolyzed at 900 °C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen sub-peaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic cluster, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 °C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerber, Pranita; Porter, Lisa M.; McCullough, Lynne A.
2012-11-15
Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of diblock copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, 177 (2009)]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of diblock copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) at two different temperatures weremore » carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % nitrogen was present in the films pyrolyzed at 600 Degree-Sign C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration decreased significantly for films pyrolyzed at 900 Degree-Sign C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen subpeaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic clusters, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 Degree-Sign C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.« less
NASA Technical Reports Server (NTRS)
Colberg, W. R.; Gordon, G. H.; Jackson, C. H.
1984-01-01
Hulls inflict minimal substrate damage. Walnut hulls found to be best abrasive for cleaning aluminum surfaces prior to painting. Samples blasted with walnut hulls showed no compressive stress of surface.
Using Ozone To Clean and Passivate Oxygen-Handling Hardware
NASA Technical Reports Server (NTRS)
Torrance, Paul; Biesinger, Paul
2009-01-01
A proposed method of cleaning, passivating, and verifying the cleanliness of oxygen-handling hardware would extend the established art of cleaning by use of ozone. As used here, "cleaning" signifies ridding all exposed surfaces of combustible (in particular, carbon-based) contaminants. The method calls for exposing the surfaces of the hardware to ozone while monitoring the ozone effluent for carbon dioxide. The ozone would passivate the hardware while oxidizing carbon-based residues, converting the carbon in them to carbon dioxide. The exposure to ozone would be continued until no more carbon dioxide was detected, signifying that cleaning and passivation were complete.
Kusumaningrum, H D; Paltinaite, R; Koomen, A J; Hazeleger, W C; Rombouts, F M; Beumer, R R
2003-12-01
Effective cleaning and sanitizing of food preparation sites is important because pathogens are readily spread to food contact surfaces after preparation of contaminated raw products. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning by wiping with regular, microfiber, and antibacterial-treated cloths was investigated. Wiping with cleaning cloths resulted in a considerable reduction of microorganisms from surfaces, despite the greater difficulty in removing S. aureus than Salmonella Enteritidis. Depending on the cloth type, S. aureus were reduced on surfaces from initial numbers of approximately 10(5) CFU/100 cm2 to numbers from less than 4 CFU/100 cm2 (below the detection limit) to 100 CFU/100 cm2. Directly after the cloths were used to clean the contaminated surfaces, they contained high numbers of bacteria (10(4) to 10(5) CFU/100 cm2), except for the disposable antibacterial-treated cloths, in which no bacteria could be detected. The tolerance of these pathogens to sodium hypochlorite was studied in the suspension test and in cloths. S. aureus showed a better tolerance for sodium hypochlorite than Salmonella Enteritidis. Inactivation of microorganisms in cloths required a higher concentration of sodium hypochlorite than was needed in the suspension test. Repeated exposure to sodium hypochlorite, however, resulted in an increase in susceptibility to this compound. This study provides essential information about the transfer of bacteria when wiping surfaces and highlights the need for a hygiene procedure with cleaning cloths that sufficiently avoids cross-contamination in the household environment.
NASA Astrophysics Data System (ADS)
Salta, M.; Goodes, L. R.; Maas, B. J.; Dennington, S. P.; Secker, T. J.; Leighton, T. G.
2016-09-01
The accumulation of marine organisms on a range of manmade surfaces, termed biofouling, has proven to be the Achilles’ heel of the shipping industry. Current antifouling coatings, such as foul release coatings (FRCs), only partially inhibit biofouling, since biofilms remain a major issue. Mechanical ship hull cleaning is commonly employed to remove biofilms, but these methods tend to damage the antifouling coating and often do not result in full removal. Here, we report the effectiveness of biofilm removal from FRCs through a novel cleaning device that uses an ultrasonically activated stream (UAS). In this device, ultrasound enhances the cleaning properties of microbubbles in a freely flowing stream of water. The UAS was applied on two types of commercial FRCs which were covered with biofilm growth following twelve days immersion in the marine environment. Biofilm removal was quantified in terms of reduction in biovolume and surface roughness, both measured using an optical profilometer, which were then compared with similar measurements after cleaning with a non-ultrasonically activated water stream. It was found that the UAS significantly improves the cleaning capabilities of a water flow, up to the point where no detectable biofilm remained on the coating surfaces. Overall biofilm surface coverage was significantly lower on the FRC coatings cleaned with the UAS system when compared to the coatings cleaned with water or not cleaned at all. When biofilm biomass removal was investigated, the UAS system resulted in significantly lower biovolume values even when compared to the water cleaning treatment with biovolume values close to zero. Remarkably, the surface roughness of the coatings after cleaning with the UAS was found to be comparable to that of the blank, non-immersed coatings, illustrating that the UAS did not damage the coatings in the process. The data supporting this study are openly available from the University of Southampton repository at http://dx.doi.org/10.5258/SOTON/399420.
Plasma discharge self-cleaning filtration system
Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong
2014-07-22
The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.
Carbon distribution profiles in lunar fines
NASA Technical Reports Server (NTRS)
Hart, R. K.
1977-01-01
Radial distribution profiles of elemental carbon in lunar soils consisting of particles in the size range of 50 to 150 microns were investigated. Initial experiments on specimen preparation and the analysis of prepared specimens by Auger electron spectrometry (AES) and scanning electron microscopy (SEM) are described. Results from splits of samples 61501,84 and 64421,11, which were mounted various ways in several specimen holders, are presented. A low carbon content was observed in AES spectra from soil particles that were subjected to sputter-ion cleaning with 960eV argon ions for periods of time up to a total exposure for one hour. This ion charge was sufficient to remove approximately 70 nm of material from the surface. All of the physically adsorbed carbon (as well as water vapor, etc.) would normally be removed in the first few minutes, leaving only carbon in the specimen, and metal support structure, to be detected thereafter.
Materials SIG quantification and characterization of surface contaminants
NASA Technical Reports Server (NTRS)
Crutcher, E. Russ
1992-01-01
When LDEF entered orbit its cleanliness was approximately a MIL-STD-1246B Level 2000C. Its burden of contaminants included particles from every part of its history including a relatively small contribution from the shuttle bay itself. Although this satellite was far from what is normally considered clean in the aerospace industry, contaminating events in orbit and from processing after recovery were easily detected. The molecular contaminants carried into orbit were dwarfed by the heavy deposition of UV polymerized films from outgassing urethane paints and silicone based materials. Impacts by relatively small objects in orbit could create particulate contaminants that easily dominated the particle counts within a centimeter of the impact site. During the recovery activities LDEF was 'sprayed' with a liquid high in organics and water soluble salts. With reentry turbulence, vibration, and gravitational loading particulate contaminants were redistributed about LDEF and the shuttle bay.
NASA Astrophysics Data System (ADS)
Yousefi, Taher; Torab-Mostaedi, Meisam; Mobtaker, Hossein Ghasemi; Keshtkar, Ali Reza
2016-10-01
The strategy developed in this study, offers significant advantages (simplicity and cleanness of method and also a product purity and new morphology of the product) over the conventional routes for the synthesis of ThO2 nanostructure. The effect of current density on morphology was studied. The synthesized powder was characterized by means of Powder X-ray Diffraction (PXRD), Transmission Electron Microscopy (TEM, Phillips EM 2085) Brunauer-Emmett-Teller (BET) and Fourier Transform Infrared (FT-IR) spectroscopy. The results show that the current density has a great effect on the morphology of the samples. The average size of the particles decreases as the applied current density increases and the average size of the samples decreases from 50 to 15 nm when the current density increases from 2 to 5 mA cm-2.
2014-06-01
Canada), telle que representee par le ministre de la Defense nationale, 2014 i Abstract Under certain conditions, military coatings...μm Particle C: a compound of fluorinated polymer and polypropylene , mean particle size 9 μm Due to the fact that all three types of particles have...functional particles, which are either pure fluorinated polymer or compound of fluorinated polymer and polypropylene , possessing certain degrees of
Bixler, Gregory D; Bhushan, Bharat
2014-01-07
In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.
Nonhazardous solvent composition and method for cleaning metal surfaces
Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.
1993-01-01
A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.
Nonhazardous solvent composition and method for cleaning metal surfaces
Googin, J.M.; Simandl, R.F.; Thompson, L.M.
1993-05-04
A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.
Exoelectron emission from a clean, annealed magnesium single crystal during oxygen adsorption
NASA Technical Reports Server (NTRS)
Ferrante, J.
1976-01-01
Exoelectron emission was observed from a clean, annealed Mg (0001) surface during oxygen and chlorine adsorption at pressures of 6.5x10 0.00001- N/sq m and lower. the studies were performed in an ultrahigh vacuum system. The crystals were cleaned by argon ion bombardment and annealed at 300 C. Auger electron spectroscopy was used to verify surface cleanliness, and low energy electron diffraction was used to verify that the surface was annealed. The emission was found to be oxygen arrival rate dependent. Two peaks were observed in the electron emission with exposure. Evidence is presented that the formation of the second peak corresponds to oxidation of the Mg surface. No emission was observed from clean aluminum during adsorption. Results verify that electron emission occurs from a strain free surface simply upon adsorption of oxygen. A qualitative explanation for the mechanisms of emission in terms of chemical effects is presented.
NASA Astrophysics Data System (ADS)
Bixler, Gregory D.; Bhushan, Bharat
2013-12-01
In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.
METHOD OF CLEANING METAL SURFACES
Winkler, H.W.; Morfitt, J.W.; Little, T.H.
1959-05-19
Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.
Cleaning of titanium substrates after application in a bioreactor.
Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C
2015-03-10
Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.
Tuning the adhesion between polyimide substrate and MWCNTs/epoxy nanocomposite by surface treatment
NASA Astrophysics Data System (ADS)
Bouhamed, Ayda; Kia, Alireza Mohammadian; Naifar, Slim; Dzhagan, Volodymyr; Müller, Christian; Zahn, Dietrich R. T.; Choura, Slim; Kanoun, Olfa
2017-11-01
MWCNTs/epoxy nanocomposite thin films are coated on the polyimide (PI) flexible substrate, to be used as a strain sensor. Previous studies showed that the adhesion between polyimide and other materials are very poor. In this work, two approaches, oxygen plasma cleaning and simple solvent cleaning are performed for activation of the polyimide surface. In order to understand the impact of both cleaning techniques, the physicochemical properties of PI are measured and characterized using contact angle measurements (CAMs), X-ray photoelectron spectroscopy(XPS), and atomic force microscopy (AFM). In addition, the adhesion properties of PI/[MWCNTs/epoxy] systems by varying surface treatment time are investigated and evaluated using force-distance measurements by AFM. The results illustrate that the activated surface exhibits higher surface energy for oxygen plasma cleaning in comparison with the solvent cleaning method. The improvement can be related to the increase of oxygen concentration, which is accompanied by the enhancement of the polar component to 53.79 mN/m due to the formation of functional groups on the surface and the change of the substrate surface roughness from 1.72 nm to 15.5 nm. As a result, improved adhesion was observed from force-distance measurement between PI/[MWCNTs/epoxy] systems due to oxygen plasma effects.
Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji
2018-05-01
Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bogdan, Janusz; Jackowska-Tracz, Agnieszka; Zarzyńska, Joanna; Pławińska-Czarnak, Joanna
2015-02-01
Nanotechnology is a field of science that is nowadays developing in a dynamic way. It seems to offer almost endless opportunities of contribution to many areas of economy and human activity, in general. Thanks to nanotechnology, the so-called nanomaterials can be designed. They present structurally altered materials, with their physical, chemical and biological properties entirely differing from properties of the same materials manufactured in microtechnology. Nanotechnology creates a unique opportunity to modify the matter at the level of atoms and particles. Therefore, it has become possible to obtain items displaying new, useful properties, i.e. self-disinfecting and self-cleaning surfaces. Those surfaces are usually covered by a thin layer of a photocatalyst. The role of the photocatalyst is most of the time performed by the nanosized titanium dioxide (nano-TiO2). Excitation of nano-TiO2 by ultraviolet radiation initiates advanced oxidation processes and reactions leading to the creation of oxygen vacancies that bind water particles. As a result, photocatalytic surfaces are given new properties. Those properties can then be applied in a variety of disciplines, such as medicine, food hygiene, environmental protection or building industry. Practically, the applications include inactivation of microorganisms, degradation of toxins, removing pollutants from buildings and manufacturing of fog-free windows or mirrors.
Yang, Wen; Huang, Jin-lou; Peng, Hui-qing; Li, Si-tuo
2013-09-01
Attrition scrubbing was used to remediate lead contaminated-site soil, and the main purpose was to remove fine particles and lead contaminants from the surface of sand. The optimal parameters of attrition scrubbing were determined by orthogonal experiment, and three soil samples with different lead concentration were subjected to attrition scrubbing experiments. The results showed that the optimal scrubbing parameters were: a solid ratio of 70% dry matter, a temperature of 25 degrees C, an attrition time of 30 min, and an attrition speed of 1200 r x min(-1). Before attrition scrubbing, the screening and analysis of soil showed that in all three soil samples, lead was mainly enriched on sand and fine particles, and the distribution of lead was highly correlated to the organic matter. After attrition scrubbing, the washing efficiency of the original state lead contaminated sand soil in triplicates was 67.61%, 31.71% and 41.01%, respectively, which indicates that attrition scrubbing can remove part of the fine soil and lead contaminants from the surface of sand, to accomplish the purpose of pollutants enrichment. Scanning electron microscopy (SEM) analysis showed that the sand surface became smooth after attrition scrubbing. The results above show that attrition scrubbing has a good washing effect for the remediation of lead contaminated sand soil.
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1974-01-01
The technique which utilizes exposure to a plasma to remove contaminants from a surface was incorporated into a laboratory model which demonstrates active cleaning by both plasma cleaning and ion sputtering modes of operation. The development phase is reported and includes discussion of the plasma tube configuration, device design, and performance tests. A general description of the active cleaning device is provided which includes information on the main power/plasma discharge sensors, and the power, gas supply, and ion accelerator systems. Development of the active cleaning species at high vacuum conditions is described and results indicate that plasma cleaning occurs in the region of a visible plume which extends from the end of the plasma tube. Recommendations are made for research to determine the plasma cleaning mechanism and the plasma species responsible for the cleaning, as well limitations on the type of contaminants that can be removed.
The surface chemistry of cerium oxide
Mullins, David R.
2015-01-29
Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO 2 to CeO 2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less
NASA Technical Reports Server (NTRS)
Ledoux, F. N.
1970-01-01
The bibliography is arranged in separate sections under headings that include: (1) spacecraft cleanliness, (2) general cleaning, (3) clean room and work stations, (4) contamination, (5) decontamination, (6) manufacturing, (7) miscellaneous, (8) particle count analysis, (9) passivation, (10) packaging, (11) water, and (12) acids and detergents.
Impinging Water Droplets on Inclined Glass Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.
Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initialmore » droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that photovoltaic modules and heliostats can be designed to maximize self-cleaning.« less
Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.
1979-01-01
A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.
Surface Analysis Evaluation of Handwipe Cleaning for the Space Shuttle RSRM
NASA Technical Reports Server (NTRS)
Lesley, Michael W.; Anderson, Erin L.; McCool, Alex (Technical Monitor)
2001-01-01
In this paper we discuss the role of surface-sensitive spectroscopy (electron spectroscopy for chemical analysis, or ESCA) in the selection of solvents to replace 1,1,1-trichloroethane in handwipe cleaning of bonding surfaces on NASA's Space Shuttle Reusable Solid Rocket Motor (RSRM). Removal of common process soils from a wide variety of metallic and polymeric substrates was characterized. The cleaning efficiency was usually more dependent on the type of substrate being cleaned and the specific process soil than on the solvent used. A few substrates that are microscopically rough or porous proved to be difficult to clean with any cleaner, and some soils were very tenacious and difficult to remove from any substrate below detection limits. Overall, the work showed that a wide variety of solvents will perform at least as well as 1,1,1-trichloroethane.
Review of dust transport and mitigation technologies in lunar and Martian atmospheres
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Curtis, Jennifer Sinclair; Gaier, James R.
2015-09-01
Dust resuspension and deposition is a ubiquitous phenomenon in all lunar and Martian missions. The near-term plans to return to the Moon as a stepping stone to further exploration of Mars and beyond bring scientists' attention to development and evaluation of lunar and Martian dust mitigation technologies. In this paper, different lunar and Martian dust transport mechanisms are presented, followed by a review of previously developed dust mitigation technologies including fluidal, mechanical, electrical and passive self-cleaning methods for lunar/Martian installed surfaces along with filtration for dust control inside cabins. Key factors in choosing the most effective dust mitigation technology are recognized to be the dust transport mechanism, energy consumption, environment, type of surface materials, area of the surface and surface functionality. While electrical methods operating at higher voltages are identified to be suitable for small but light sensitive surfaces, pre-treatment of the surface is effective for cleaning thermal control surfaces, and mechanical methods are appropriate for surfaces with no concerns of light blockage, surface abrasion and 100% cleaning efficiency. Findings from this paper can help choose proper surface protection/cleaning for future space explorations. Hybrid techniques combining the advantages of different methods are recommended.
Development of Electrostatically Clean Solar Array Panels
NASA Technical Reports Server (NTRS)
Stern, Theodore G.
2000-01-01
Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.
Pelleieux, S; Mathieu, L; Block, J-C; Gantzer, C; Bertrand, I
2016-10-01
This work aimed to assess at pilot scale the effect of chlorination and water flushing on 2-month-old drinking water biofilms and, above all, on biofilm-associated F-specific RNA bacteriophages MS2, GA and Qβ. Chlorination (4 mg l(-1) ) was applied first with a hydrodynamic shear stress of 1 Pa and second with an increase in hydrodynamic shear stress to 10 Pa. Despite a rapid decrease in the number of biofilm bacteria and associated phages, infectious phages were still detected on surfaces after completion of the 150 min cleaning procedure. The resulting sequence of phage removal was: GA > Qβ ≫ MS2. The effect of chlorine on biofilm bacteria and biofilm-associated phages was limited to the upper layers of the biofilm and was not enhanced by an increase in hydrodynamic shear stress. A smaller decrease was observed for MS2 than for GA or Qβ after completion of the cleaning procedure. The differences observed between the three phages suggest that the location of the viral particles in the biofilm, which is related to their surface properties, affects the efficiency of chlorine disinfection. © 2016 The Society for Applied Microbiology.
Baking and helium glow discharge cleaning of SST-1 Tokamak with graphite plasma facing components
NASA Astrophysics Data System (ADS)
Semwal, P.; Khan, Z.; Raval, D. C.; Dhanani, K. R.; George, S.; Paravastu, Y.; Prakash, A.; Thankey, P.; Ramesh, G.; Khan, M. S.; Saikia, P.; Pradhan, S.
2017-04-01
Graphite plasma facing components (PFCs) were installed inside the SST-1 vacuum vessel. Prior to installation, all the graphite tiles were baked at 1000 °C in a vacuum furnace operated below 1.0 × 10-5 mbar. However due to the porous structure of graphite, they absorb a significant amount of water vapour from air during the installation process. Rapid desorption of this water vapour requires high temperature bake-out of the PFCs at ≥ 250 °C. In SST-1 the PFCs were baked at 250 °C using hot nitrogen gas facility to remove the absorbed water vapour. Also device with large graphite surface area has the disadvantage that a large quantity of hydrogen gets trapped inside it during plasma discharges which makes density control difficult. Helium glow discharge cleaning (He-GDC) effectively removes this stored hydrogen as well as other impurities like oxygen and hydrocarbon within few nano-meters from the surface by particle induced desorption. Before plasma operation in SST-1 tokamak, both baking of PFCs and He-GDC were carried out so that these impurities were removed effectively. The mean desorption yield of hydrogen was found to be 0.24. In this paper the results of baking and He-GDC experiments of SST-1 will be presented in detail.
An evaluation of the efficiency of cleaning methods in a bacon factory
Dempster, J. F.
1971-01-01
The germicidal efficiencies of hot water (140-150° F.) under pressure (method 1), hot water + 2% (w/v) detergent solution (method 2) and hot water + detergent + 200 p.p.m. solution of available chlorine (method 3) were compared at six sites in a bacon factory. Results indicated that sites 1 and 2 (tiled walls) were satisfactorily cleaned by each method. It was therefore considered more economical to clean such surfaces routinely by method 1. However, this method was much less efficient (31% survival of micro-organisms) on site 3 (wooden surface) than methods 2 (7% survival) and 3 (1% survival). Likewise the remaining sites (dehairing machine, black scraper and table) were least efficiently cleaned by method 1. The most satisfactory results were obtained when these surfaces were treated by method 3. Pig carcasses were shown to be contaminated by an improperly cleaned black scraper. Repeated cleaning and sterilizing (method 3) of this equipment reduced the contamination on carcasses from about 70% to less than 10%. PMID:5291745
NASA Astrophysics Data System (ADS)
Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing
2013-12-01
In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.
New electrostatic coal cleaning method cuts sulfur content by 40%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-12-01
An emission control system that electrically charges pollutants and coal particles promises to reduce sulfur 40% at half the cost. The dry coal cleaning processes offer superior performance and better economics than conventional flotation cleaning. Advanced Energy Dynamics, Inc. (AED) is developing both fine and ultra fine processes which increase combustion efficiency and boiler reliability and reduced operating costs. The article gives details from the performance tests and comparisons and summarizes the economic analyses. 4 tables.
Cleaning, disinfection and sterilization of surface prion contamination.
McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E
2013-12-01
Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Engineers Clean Mirror with Carbon Dioxide Snow
2015-05-07
Just like drivers sometimes use snow to clean their car mirrors in winter, two Exelis Inc. engineers are practicing "snow cleaning'" on a test telescope mirror for the James Webb Space Telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland. By shooting carbon dioxide snow at the surface, engineers are able to clean large telescope mirrors without scratching them. "The snow-like crystals (carbon dioxide snow) knock contaminate particulates and molecules off the mirror," said Lee Feinberg, NASA optical telescope element manager. This technique will only be used if the James Webb Space Telescope's mirror is contaminated during integration and testing. The Webb telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. With a mirror seven times as large as Hubble's and infrared capability, Webb will be capturing light from 13.5 billion light years away. To do this, its mirror must be kept super clean. "Small dust particles or molecules can impact the science that can be done with the Webb," said Feinberg. "So cleanliness especially on the mirrors is critical." Webb is an international project led by NASA with its partners, the European Space Agency and the Canadian Space Agency. Image credit: NASA/Goddard/Chris Gunn Text credit: Laura Betz, NASA's Goddard Space Flight Center, Greenbelt, Maryland NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Supersonic Gas-Liquid Cleaning System
NASA Technical Reports Server (NTRS)
Kinney, Frank
1996-01-01
The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.
[Evaluation of Medical Instruments Cleaning Effect of Fluorescence Detection Technique].
Sheng, Nan; Shen, Yue; Li, Zhen; Li, Huijuan; Zhou, Chaoqun
2016-01-01
To compare the cleaning effect of automatic cleaning machine and manual cleaning on coupling type surgical instruments. A total of 32 cleaned medical instruments were randomly sampled from medical institutions in Putuo District medical institutions disinfection supply center. Hygiena System SUREII ATP was used to monitor the ATP value, and the cleaning effect was evaluated. The surface ATP values of the medical instrument of manual cleaning were higher than that of the automatic cleaning machine. Coupling type surgical instruments has better cleaning effect of automatic cleaning machine before disinfection, the application is recommended.
Metal sponge for cryosorption pumping applications
Myneni, Ganapati R.; Kneisel, Peter
1995-01-01
A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.
Theoretical considerations of soil retention. [dirtying of solar energy devices
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1980-01-01
The performance of solar energy devices is adversely affected by surface soiling, and generally, the loss of performance increases with increases in the quantity of soil retained on their surfaces. To minimize performance losses caused by soiling, solar devices should not only be deployed in low soiling geographical areas, but employ surfaces or surfacing materials having low affinity for soil retention, maximum susceptibility to be naturally cleaned by wind, rain and snow, and to be readily cleanable by simple and inexpensive maintenance cleaning techniques. This article describes known and postulated mechanisms of soil retention on surfaces, and infers from these mechanisms that low soiling and easily cleanable surfaces should have low surface energy, and be hard, smooth, hydrophobic and chemically clean of sticky materials and water soluble salts.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2009-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.
Development of a Modified Vacuum Cleaner for Lunar Surface Systems
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.
2010-01-01
The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities at varying pressure environments.
He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T
2017-02-15
Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.
Transparent self-cleaning dust shield
Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.
2005-06-28
A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
NASA Astrophysics Data System (ADS)
Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.
2018-05-01
In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.
NASA Technical Reports Server (NTRS)
Schmeling, M.; Burnett, D. S.; Allton, J. H.; Rodriquez, M.; Tripa, C. E.; Veryovkin, I. V.
2013-01-01
The Genesis mission was the first mission returning solar material to Earth since the Apollo program [1,2]. Unfortunately the return of the space craft on September 8, 2004 resulted in a crash landing, which shattered the samples into small fragments and exposed them to desert soil and other debris. Thus only small fragments of the original collectors are available, each having different degrees of surface contamination. Thorough surface cleaning is required to allow for subsequent analysis of solar wind material embedded within. An initial cleaning procedure was developed in coordination with Johnson Space Center which focused on removing larger sized particulates and a thin film organic contamination acquired during collection in space [3]. However, many of the samples have additional residues and more rigorous and/or innovative cleaning steps might be necessary. These cleaning steps must affect only the surface to avoid leaching and re-distribution of solar wind material from the bulk of the collectors. To aid in development and identification of the most appropriate cleaning procedures each sample has to be thoroughly inspected before and after each cleaning step. Laboratory based total reflection X-ray fluorescence (TXRF) spectrometry lends itself to this task as it is a non-destructive and surface sensitive analytical method permitting analysis of elements from aluminum onward present at and near the surface of a flat substrate [4]. The suitability of TXRF has been demonstrated for several Genesis solar wind samples before and after various cleaning methods including acid treatment, gas cluster ion beam, and CO2 snow jet [5 - 7]. The latter one is non-invasive and did show some promise on one sample [5]. To investigate the feasibility of CO2 snow jet cleaning further, several flown Genesis samples were selected to be characterized before and after CO2 snow application with sample 61052 being discussed below.
Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser
NASA Astrophysics Data System (ADS)
Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua
2017-05-01
The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.
Adventitious Carbon on Primary Sample Containment Metal Surfaces
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Fries, M. D.
2015-01-01
Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.
Handling of hazardous drugs - Effect of an innovative teaching session for nursing students.
Zimmer, Janine; Hartl, Stefanie; Standfuß, Katrin; Möhn, Till; Bertsche, Astrid; Frontini, Roberto; Neininger, Martina P; Bertsche, Thilo
2017-02-01
Imparting knowledge and practical skills in hazardous drug handling in nursing students' education is essential to prevent hazardous exposure and to preserve nurses' health. This study aimed at comparing routine nursing education with an additional innovative teaching session. A prospective controlled study in nursing students was conducted in two study periods: (i) a status-quo period (routine education on handling hazardous drugs) followed by (ii) an intervention period (additional innovative teaching session on handling hazardous drugs). Nursing students at a vocational school were invited to participate voluntarily. In both study periods (i) and (ii), the following factors were analysed: (a) knowledge of hazardous drug handling by questionnaire, (b) practical skills in hazardous drug handling (e.g. cleaning) by a simulated handling scenario, (c) contamination with drug residuals on the work surface by fluorescent imaging. Fifty-three nursing students were enrolled. (a) Median knowledge improved from status-quo (39% right answers) to intervention (65%, p<0.001), (b) practical skills improved from status-quo (53% of all participants cleaned the work surface) to intervention (92%, p<0.001). (c) Median number of particles/m 2 decreased from status-quo to intervention (932/97, p<0.001). Compared with routine education, knowledge and practical skills in hazardous drug handling were significantly improved after an innovative teaching session. Additionally, the amount of residuals on the work surface decreased. This indicates a lower risk for hazardous drug exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan
2010-10-01
This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.
Assessment of hospital daily cleaning practices using ATP bioluminescence in a developing country.
Zambrano, Alejandra A; Jones, Alex; Otero, Paula; Ajenjo, Maria Cristina; Labarca, Jaime A
2014-01-01
Visual assessment of surfaces may not be enough to document the level of cleanliness in the hospital setting. It is necessary to introduce quantitative methods to document the results of this practice. To evaluate the efficacy of hospital terminal cleaning procedures, using an adenosine triphosphate (ATP) bioluminescence method in a teaching hospital. During 2008 we conducted an evaluation using ATP bioluminescence LIGHTNING MVP™ (Arquimed) of external and internal housekeeping service. After conducting an initial evaluation we implemented education of cleaning practices and finally we did a post intervention evaluation. Using chi-square method we compared prior versus after cleaning, quality of cleaning performed by external versus internal personnel, single versus double terminal cleaning procedures and prior versus after intervention. A finding of three RLU or less was considered a clean surface. We performed 198 evaluations in 33 patient units and nine OR. Internal personnel accomplished 25.37% of clean surfaces before and 80% after the education intervention (p=0.01). In contrast, external personnel obtained 68.8% before and 73.33% after intervention (p=0.3). This study suggests that visual assessment is not enough to ensure quality of the process and it is necessary to document the level of cleanliness by quantitative methods. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
MEASUREMENT OF RURAL SULFUR DIOXIDE AND PARTICLE SULFATE: ANALYSIS OF CASTNET DATA, 1987 - 1996
The Clean Sir Status and Trends Network (CASTNet) was implemented by the U.S. Environmental Protection Agency (EPA) in 1991 in response to Title IX of the Clean Air Amendments of 1990, which mandated the deployment of a national ambient air monitoring network to track progress of...
A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom
ERIC Educational Resources Information Center
Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric
2015-01-01
A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…
Modes of occurrence of potentially hazardous elements in coal: levels of confidence
Finkelman, R.B.
1994-01-01
The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.
Assessment of terminal cleaning in pediatric isolation rooms: Options for low-resource settings.
Dramowski, Angela; Whitelaw, Andrew; Cotton, Mark F
2016-12-01
Few studies have evaluated terminal cleaning in low-resource settings. Adequacy of pediatric isolation room terminal cleaning was evaluated using quantitative bacterial surface cultures, ATP bioluminescence assays, and fluorescent high-touch surface markers at Tygerberg Children's Hospital in South Africa (August 1, 2014-October 31, 2015). Cleaning adequacy was assessed by comparing pre- and postcleaning measurements. Influence of verbal feedback was determined by comparing cleaners' first and subsequent cleaning episodes. Cleaning methods were compared for cost, time, and feasibility. Adequacy of terminal cleaning was evaluated in 25 isolation rooms after hospitalization for pulmonary tuberculosis (n = 13), respiratory (n = 5) and enteric viruses (n = 5), pertussis (n = 1), and methicillin-resistant Staphylococcus aureus (n = 1). Mean aerobic colony counts and mean ATP relative light units declined between pre- and postcleaning evaluations (39 ± 41 to 15 ± 30 [P < .001] and 72 ± 40 to 23 ± 11 [P < .001]). Fluorescent marker removal was initially poor, but improved significantly at subsequent cleaning episodes (17 out of 78 [22%] to 121 out of 198 [61%]; P < .001); mean aerobic colony counts and ATP values also declined significantly following feedback. Cost, time, and resources required for ATP and surface cultures far exceeded that required for fluorescent markers. Adequacy of isolation room cleaning improved following feedback to cleaning staff. Fluorescent markers are an inexpensive option for cleaning evaluation and training in low-resource settings. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.
2017-03-01
Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.
Clean Air Markets - Monitoring Surface Water Chemistry
Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.
Particle behavior and char burnout mechanisms under pressurized combustion conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.
Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was tomore » provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.« less
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo
2018-02-01
We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.
Characterization of Self-Assembled Monolayers on a Ruthenium Surface
2017-01-01
We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on piranha-cleaned and piranha + H2SO4 cleaned substrates were compared to monolayers formed on H-radical-cleaned Ru surfaces. We found that alkanethiols on H-radical-cleaned Ru formed densely packed monolayers that remained stable when kept in a nitrogen atmosphere. X-ray photoelectron spectroscopy (XPS) shows a distinct sulfur peak (BE = 162.3 eV), corresponding to metal–sulfur bonding. When exposed to ambient conditions, the SAM decayed over a period of hours. PMID:28585831
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-05
... 2006 24-Hour Fine Particle Standards for the Detroit-Ann Arbor Nonattainment Area AGENCY: Environmental... the Clean Air Act (CAA) regarding the fine particle (PM 2.5 ) nonattainment area of Detroit-Ann Arbor...
Metal sponge for cryosorption pumping applications
Myneni, G.R.; Kneisel, P.
1995-12-26
A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.
2008-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolich, George; Shadel, Craig; Chapman, Jenny
2016-09-01
In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.« less
Method of separating and de-watering fine particles
Yoon, Roe-Hoan
2016-12-13
A process for cleaning and dewatering hydrophobic particulate materials is presented. The process is performed in two steps: 1) agglomeration of the hydrophobic particles in a first hydrophobic liquid/aqueous mixture; followed by 2) dispersion of the agglomerates in a second hydrophobic liquid to release the water trapped within the agglomerates along with the entrained hydrophilic particles.
NASA Astrophysics Data System (ADS)
Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing
2017-08-01
Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.
CPV performance versus soiling effects: Cleaning policies
NASA Astrophysics Data System (ADS)
Sanchez, D.; Trujillo, P.; Martinez, M.; Ferrer, J. P.; Rubio, F.
2012-10-01
In order to improve the performance of the CPV Plants in a cost effective way it is important to define the best cleaning policies, analyzing the effect of soiling in the surface of CPV modules. The energy generation of a CPV technology based in Fresnel Lens improves up to 7% when the surface of the module is cleaned. Some experimental measurements have been carried out over CPV modules and a model has been defined to analyze what is the best cleaning policy for that Technology in Puertollano. The power losses because of soiling and the critical time until the power losses stabilizes are obtained from the measurements; they are used as an input for the simulation. Using an established cleaning cost and the feeding tariff from Spain in 2007 it has been obtained that cleaning only reports a profit during the summer. The conclusion of the work is that the cleaning tasks have to be carefully planned together with the meteorological forecast in order to maximize the investment made in the cleaning.
Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth
NASA Astrophysics Data System (ADS)
Russell, L. M.
2017-12-01
Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray emissions to particles, addressing the persistent question of the sources of cloud condensation nuclei in clean marine conditions.
NASA Technical Reports Server (NTRS)
Blue, G. D.; Moran, C. M.
1985-01-01
Corrosion rates of 304L stainless steel coupons in MON-1 oxidizer have been measured as a function of cleaning procedures employed, surface layer positions, propellant impurity levels, and short-term exposure durations (14 to 90 days). Of special interest was propellant contamination by buildup of soluble iron, which may cause flow decay. Surface treatments employed were combinations of cleaning, pickling, and passivation procedures. Propellants used were MIL-SPEC MON-1 and several types of purified NTO (i.e., low water, low chloride) which may, at a later time, be specified as spacecraft grade. Pretest coupon surface analysis by X-ray photoelectron spectroscopy (XPS-ESCA) has revealed important differences, for the different cleaning procedures, in the make-up of the surface layer, both in composition and state of chemical combination of the elements involved. Comparisons will be made of XPS/ESCA data, for different cleaning procedures, for specimens before and after propellant exposure.
Low temperature self-cleaning properties of superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Wang, Fajun; Shen, Taohua; Li, Changquan; Li, Wen; Yan, Guilong
2014-10-01
Outdoor surfaces are usually dirty surfaces. Ice accretion on outdoor surfaces could lead to serious accidents. In the present work, the superhydrophobic surface based on 1H, 1H, 2H, 2H-Perfluorodecanethiol (PFDT) modified Ag/PDMS composite was prepared to investigate the anti-icing property and self-cleaning property at temperatures below freezing point. The superhydrophobic surface was deliberately polluted with activated carbon before testing. It was observed that water droplet picked up dusts on the cold superhydrophobic surface and took it away without freezing at a measuring temperature of -10 °C. While on a smooth PFDT surface and a rough surface base on Ag/PDMS composite without PFDT modification, water droplets accumulated and then froze quickly at the same temperature. However, at even lower temperature of -12 °C, the superhydrophobic surface could not prevent the surface water from icing. In addition, it was observed that the frost layer condensed from the moisture pay an important role in determining the low temperature self-cleaning properties of a superhydrophobic surface.
NASA Astrophysics Data System (ADS)
Joos, Hanna; Madonna, Erica; Witlox, Kasja; Ferrachat, Sylvaine; Wernli, Heini; Lohmann, Ulrike
2017-05-01
While there is a clear impact of aerosol particles on the radiation balance, whether and how aerosol particles influence precipitation is controversial. Here we use the ECHAM6-HAM global climate model coupled to an aerosol module to analyse whether an impact of anthropogenic aerosol particles on the timing and amount of precipitation can be detected in North Pacific warm conveyor belts. Warm conveyor belts are the strongest precipitation-producing airstreams in extratropical cyclones and are identified here with a Lagrangian technique, i.e. by objectively identifying the most strongly ascending trajectories in North Pacific cyclones. These conveyor belts have been identified separately in 10-year ECHAM6-HAM simulations with present-day and pre-industrial aerosol conditions. Then, the evolution of aerosols and cloud properties has been analysed in detail along the identified warm conveyor belt trajectories. The results show that, under present-day conditions, some warm conveyor belt trajectories are strongly polluted (i.e. high concentrations of black carbon and sulfur dioxide) due to horizontal transport from eastern Asia to the oceanic region where warm conveyor belts start their ascent. In these polluted trajectories a weak delay and reduction of precipitation formation occurs compared to clean warm conveyor belt trajectories. However, all warm conveyor belts consist of both polluted and clean trajectories at the time they start their ascent, and the typically more abundant clean trajectories strongly reduce the aerosol impact from the polluted trajectories. The main conclusion then is that the overall amount of precipitation is comparable in pre-industrial conditions, when all warm conveyor belt trajectories are clean, and in present-day conditions, when warm conveyor belts consist of a mixture of clean and polluted trajectories.
Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J
2018-02-19
Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.
Abort Gap Cleaning for LHC Run 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico
2014-07-01
To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to themore » applied cleaning algorithms.« less
Brushless Cleaning of Solar Panels and Windows
NASA Technical Reports Server (NTRS)
Schneider, H. W.
1982-01-01
Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.
Zhang, Zhi-Hui; Wang, Hu-Jun; Liang, Yun-Hong; Li, Xiu-Juan; Ren, Lu-Quan; Cui, Zhen-Quan; Luo, Cheng
2018-03-01
Superhydrophobic surfaces have great potential for application in self-cleaning and oil/water separation. However, the large-scale practical applications of superhydrophobic coating surfaces are impeded by many factors, such as complicated fabrication processes, the use of fluorinated reagents and noxious organic solvents and poor mechanical stability. Herein, we describe the successful preparation of a fluorine-free multifunctional coating without noxious organic solvents that was brushed, dipped or sprayed onto glass slides and stainless-steel meshes as substrates. The obtained multifunctional superhydrophobic and superoleophilic surfaces (MSHOs) demonstrated self-cleaning abilities even when contaminated with or immersed in oil. The superhydrophobic surfaces were robust and maintained their water repellency after being scratched with a knife or abraded with sandpaper for 50 cycles. In addition, stainless-steel meshes sprayed with the coating quickly separated various oil/water mixtures with a high separation efficiency (>93%). Furthermore, the coated mesh maintained a high separation efficiency above 95% over 20 cycles of separation. This simple and effective strategy will inspire the large-scale fabrication of multifunctional surfaces for practical applications in self-cleaning and oil/water separation.
Preventing Molecular and Particulate Infiltration in a Confined Volume
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1999-01-01
Contaminants from an instrument's self-generated sources or from sources external to the instrument may degrade its critical surfaces and/or create an environment which limits the instrument's intended performance. Analyses have been carried out on a method to investigate the required purging flow of clean, dry gas to prevent the ingestion of external contaminants into the instrument container volume. The pressure to be maintained and the required flow are examined in terms of their effectiveness in preventing gaseous and particulate contaminant ingestion and abatement of self-generated contaminants in the volume. The required venting area or the existing volume venting area is correlated to the volume to be purged, the allowable pressure differential across the volume, the external contaminant partial pressure, and the sizes of the ambient particulates. The diffusion of external water vapor into the volume while it was being purged was experimentally obtained in terms of an infiltration time constant. That data and the acceptable fraction of the outside pressure into the volume indicate the required flow of purge gas expressed in terms of volume change per unit time. The exclusion of particulates is based on the incoming velocity of the particles and the exit flow speed and density of the purge gas. The purging flow pressures needed to maintain the required flows through the vent passages are indicated. The purge gas must prevent or limit the entrance of the external contaminants to the critical locations of the instrument. It should also prevent self- contamination from surfaces, reduce material outgassing, and sweep out the outgassed products. Systems and facilities that can benefit from purging may be optical equipment, clinical facilities, manufacturing facilities, clean rooms, and other systems requiring clean environments.
Two year performance of a 10 kW CPV system installed in two areas of Saudi Arabia
NASA Astrophysics Data System (ADS)
Khonkar, Hussam; Alowais, Abdullah; Sheikho, Ayman; Alyahya, Abdulaziz; Alghamdi, Ahmed; Alsaedan, Abdullah; Eugenio, Nunilo N.; Alalweet, Fahad; Halawani, Mohammad; Alsaferan, Abdulrahman
2014-09-01
The three year KACST/IBM collaboration in solar technology research led to the design and development of a 10kW CPV system. The system is comprised of 81 PV modules, inverters and a tracking system and is grid connected. A primary and secondary optics were employed to reach 1600x concentration on multijunction solar cells. Two CPV trackers were installed in the city of Riyadh and one in the eastern coastal city of Al Khafji. These two areas differ in climatic conditions. Riyadh is mostly dry and very often hit by very strong sand storms while Al Khafji is very humid with sand storms. Very fine dusts and dirt carried by the storms hits the surface of the primary optics, Fresnel lens, of the system. In Riyadh, the particles stick to the lenses but accumulation in the surface is not much since it is blown away by wind. However, the humid condition of the coastal areas wets the dusts and makes it sticky, cumulating more dusts and dirt. This paper discusses in details the parts of the 10kW CPV system. It presents a comprehensive analysis of the system's performance since the time they were installed and operated. CPV systems are operated with the least number of personnel and supervision. However, dust and dirt lessens the amount of sunlight passing through the primary optics. It requires periodic cleaning of the Fresnel lens. Different methods of cleaning were tried to identify the efficient way to clean the system that results to a higher power generation. Corrections and modifications of the system to further increase power production are presented.
Rhoades, J; Gialagkolidou, K; Gogou, M; Mavridou, O; Blatsiotis, N; Ritzoulis, C; Likotrafiti, E
2013-10-01
To investigate the potential use of oregano essential oil as an antimicrobial agent in liquid soap for hand washing and for food contact surface cleaning. Oregano essential oil (O.E.O.) was emulsified in liquid detergent solution. This was challenge tested against a commercial antimicrobial soap in hand washing trials using natural flora. Soap with O.E.O. was as effective as the commercial antimicrobial soap at reducing aerobic plate count on the hands and more effective than plain soap with no additives. Cloths wetted with soap with O.E.O. were used to clean three different surfaces contaminated with four bacterial pathogens. For three of the four pathogens, the addition of 0·5% v/v O.E.O. to the soap solution enhanced cleaning performance and also reduced bacterial survival on the cloth after cleaning. Oregano essential oil (0·5%) is effective as an antimicrobial additive to detergent solutions for hand washing and surface cleaning. This preliminary study has shown that oregano essential oil is a potential alternative to antimicrobials used in various detergents, such as chloroxylenol and triclosan, which can have adverse environmental and health effects. Further development could lead to a commercial product. © 2013 The Society for Applied Microbiology.
Tooth Surface Comparison after Air Polishing and Rubber Cup: A Scanning Electron Microscopy Study.
Camboni, Sara; Donnet, Marcel
2016-03-01
To demonstrate, using microscopic observations, the difference between two well-known oral prophylaxis techniques: polishing paste and air polishing. The observations were performed on human enamel. Enamel samples were obtained from plaque-rich human teeth extracted for orthodontic or clinical purposes. In order to allow a reliable comparison between different applications, each enamel sample was divided into two parts: one underwent air-polishing, whereas polishing paste was applied to the other. AIR-FLOW® Master was selected together with AIR-FLOW® PLUS for the prophylaxis powder application. For the polishing-paste application, several different pastes where used, including Cleanic®, CCS®, Proxyt®, and SuperPolish. A comparative test control was also used by cleaning the enamel with sodium hypochlorite (6%). The enamel treated with AIR-FLOW PLUS showed a similar surface when compared to the control enamel; however, there was complete cleaning down to the tooth microstructure. On the other hand, use of the polishing paste resulted in an enamel surface that appeared abraded and flattened. Moreover, some of the natural irregular enamel surfaces demonstrated some filling in with debris. AIR-FLOW PLUS powder was able to more deeply clean without creating any damage to the enamel, making it suitable for regular cleaning treatments. The polishing pastes were found to abrade the enamel surface, to flatten it, and deposit debris into the microcavities. Both methods having different mechanical effects can therefore be considered as complementary, in that some patients experience a sense of "roughness" following a cleaning. A clinical recommendation for this experience would be to use the air polish first to clean the enamel surface, and follow with a little polishing paste to smooth the surface, if required.
NASA Technical Reports Server (NTRS)
Berkebile, Stephen; Gaier, James R.
2012-01-01
During the Apollo missions, the adhesion of dust to critical spacecraft systems was a greater problem than anticipated and resulted in functional degradation of thermal control surfaces, spacesuit seals, and other spacecraft components. Notably, Earth-based simulation efforts did not predict the magnitude and effects of dust adhesion in the lunar environment. Forty years later, we understand that the ultrahigh vacuum (UHV) environment, coupled with micrometeorite impacts and constant ion and photon bombardment from the sun result in atomically clean and high surface energy dust particles and spacecraft surfaces. However, both the dominant mechanism of adhesion in airless environments and the conditions for high fidelity simulation tests have still to be determined. The experiments presented in here aim to aid in the development of dust mitigation techniques for airless bodies (e.g., lunar surface, asteroids, moons of outer planets). The approach taken consists of (a) quantifying the adhesion between common polymer and metallic spacecraft materials and a synthetic noritic volcanic glass, as a function of surface cleanliness and of triboelectric charge transfer in a UHV environment, and (b) determining parameters for high fidelity tests through investigation of adhesion dependence on vacuum environment and sample treatment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is generally observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10. Furthermore, electrostatically-induced adhesion is found to decrease rapidly above pressures of 10-6 torr. It is concluded that high-fidelity tests should be conducted in high to ultrahigh vacuum and include an ionized surface cleaning process.
GAS-ATOMIZED SPRAY SCRUBBER EVALUATION
The report gives results of fine particle collection efficiency measurements of a gas-atomized spray scrubber, cleaning effluent gas from a No. 7 gray iron cupola. Tests were made at several levels of pressure drop and liquid/gas ratio. Particle size measurements on inlet and out...
Air Quality Index (AQI) -- A Guide to Air Quality and Your Health
... Guide for Ozone Air Quality Guide for Particle Pollution Other AirNow Publications Other AirNow Publications En Español ... the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... square foot) is washed for 1 minute. Wipe smooth surfaces with a cleaning solution-soaked disposable absorbent pad such that each 900 cm2 (1 square foot) is wiped for 1 minute. Wash any surface square foot... solution with 1 gallon of clean water per square foot and capture the rinse water. Mop up the wet surface...
Code of Federal Regulations, 2012 CFR
2012-07-01
... square foot) is washed for 1 minute. Wipe smooth surfaces with a cleaning solution-soaked disposable absorbent pad such that each 900 cm2 (1 square foot) is wiped for 1 minute. Wash any surface square foot... solution with 1 gallon of clean water per square foot and capture the rinse water. Mop up the wet surface...
Code of Federal Regulations, 2013 CFR
2013-07-01
... square foot) is washed for 1 minute. Wipe smooth surfaces with a cleaning solution-soaked disposable absorbent pad such that each 900 cm2 (1 square foot) is wiped for 1 minute. Wash any surface square foot... solution with 1 gallon of clean water per square foot and capture the rinse water. Mop up the wet surface...
Code of Federal Regulations, 2010 CFR
2010-07-01
... square foot) is washed for 1 minute. Wipe smooth surfaces with a cleaning solution-soaked disposable absorbent pad such that each 900 cm2 (1 square foot) is wiped for 1 minute. Wash any surface square foot... solution with 1 gallon of clean water per square foot and capture the rinse water. Mop up the wet surface...
Code of Federal Regulations, 2011 CFR
2011-07-01
... square foot) is washed for 1 minute. Wipe smooth surfaces with a cleaning solution-soaked disposable absorbent pad such that each 900 cm2 (1 square foot) is wiped for 1 minute. Wash any surface square foot... solution with 1 gallon of clean water per square foot and capture the rinse water. Mop up the wet surface...
NASA Astrophysics Data System (ADS)
Mari, X.; Guinot, B. P.; Thuoc, C. V.; Brune, J.; Lefebvre, J. P.; Raimbault, P.; Niggemann, J.; Dittmar, T.
2016-02-01
Black Carbon (BC) is an aerosol emitted during biomass burning and fossil fuel combustion. The atmospheric lifetime of Black Carbon (BC) ranges from a few days in rainy climates up to one month in dry regions, and on a global scale wet deposition of atmospheric BC accounts for about 80% of the BC input to the ocean. The rain-mediated input of BC to the ocean was studied in a coastal site located in a regional hotspot of atmospheric BC concentration, North Vietnam. We monitored changes in atmospheric and marine BC during a 24-h cycle impacted by a short and heavy rainfall event. During the rainfall event, atmospheric BC concentration decreased by a factor of 8 (i.e. from 5230 to 660 µg BC m-3). This cleaning of the air column was immediately followed by a significant increase (by a factor of 2 to 4) of particulate BC (PBC) and POC concentrations in the surface microlayer (SML) and at 1.5 m depth. In the SML, this event was also followed by a significant increase of DOC and dissolved BC (DBC) concentrations. Interestingly, the concentration of DOC decreased by >10% after the rainfall at 1.5 m depth, suggesting an adsorption of DOC onto sinking PBC. Concomitantly with the increase in particulate BC, nutrient concentrations increased by a factor of 2 in the SML, while no change was observed in the underlying water column. After the rainfall, the particle size spectra, measured along the water column with a LISST (Laser In-Situ Scattering and Transmissometry probe), changed in that the concentration of small particles (<5 µm) decreased and the concentration of large particles (>100 µm) increased. This alteration of the particle size spectra was restricted to a thin layer of about 20 cm thickness, probably corresponding to a BC-enriched layer adsorbing DOC and small particles, and stimulating aggregation during sinking from the surface to deeper water layers. The concentrations of POC, DOC, PBC, DBC and nutrients reached pre-rainfall levels 4 hours after the event.
Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat
2017-05-01
Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.
Preliminary Results of Cleaning Process for Lubricant Contamination
NASA Astrophysics Data System (ADS)
Eisenmann, D.; Brasche, L.; Lopez, R.
2006-03-01
Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.
Casoli, Antonella; Di Diego, Zaira; Isca, Clelia
2014-12-01
Cleaning is one of the most important, delicate, and at the same time controversial processes in the conservation treatment of paintings. Although a strict definition of cleaning would be the removal of dirt, grime, or other accretions (surface cleaning), in the conservation field, cleaning is used in the broader meaning to include thinning/removing altered or “unwanted layers” of materials without damaging or altering the physicochemical properties of the surfaces to be preserved. The cleaning of unvarnished paintings is one of the most critical issues that are currently discussed. Several studies exist regarding different cleaning tools, such as gels, soaps, enzymes, ionic liquids, and foams, as well as various dry methods and lasers, but only a few have been performed on the risk associated with the use of water and organic solvents for the cleaning treatments in relation to the original paint binder. The aim of the study is to verify analytically the behavior of water gelling agents during cleaning treatments and the interaction of the following elements: water or organic solvents applied for the removal of gel residues with the original lipid paint binder. For this purpose, the study was conducted on a fragment of canvas painting (sixteenth to seventeenth century) of Soprintendenza per i Beni Storici, Artistici ed Etnoantropologici del Friuli Venezia Giulia (Superintendence for the Historical, Artistic and Ethno-anthropological Heritage of Friuli Venezia Giulia), Udine by means of Fourier transform infrared spectroscopy, gas chromatography/mass spectrometry, and scanning electron microscopy.
Gomes, Vera; Dionísio, Amélia; Santiago Pozo-Antonio, J
2018-06-01
Graffiti are one of the most severe threats to Stone Cultural Heritage and are most of the times removed after long periods of environmental exposure. This research intends to evaluate the influence of the ageing of the graffitis on the effectiveness of their cleaning. So, comparative studies on unaged and on artificially SO 2 aged samples were conducted. Four graffiti spray colours were applied on a granite stone and cleaned with two chemical commercial cleaners: a solution of KOH and a solution of n-butyl acetate, xylene and alcohol isobutyl. The spray paints (unaged and aged) and cleaning effectiveness were characterized by stereomicroscopy, colour spectrophotometry, adhesion tests, SEM, μEDXRF, XRD and FTIR. The cleaning effectiveness was also evaluated through surface roughness and static contact angle measurements. The alkyd graffiti paints presented greatest resistance under SO 2 rich environments than the polyethylene paint. The aged polyethylene paint showed chemical modifications that resulted in graffiti losses and neo formed mineralogical phases in the surface of the paint. After ageing, the paints became more difficult to clean, showed higher global colour changes and higher residue percentages. No significant roughness variations were detected after chemical cleaning. After the cleaning procedures aged surfaces became more water repellent comparatively to unaged and reference samples. The best cleaning effectiveness was mainly achieved with the potassium hydroxide solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie
Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less
Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis
Zhan, Wangcheng; Shu, Yuan; Sheng, Yujie; ...
2017-03-22
Here, the stabilization of surfactant-assisted synthesized colloidal noble metal nanoparticles (NPs, e.g., Au NPs) on solids is a promising strategy for preparing supported nanocatalysts for heterogeneous catalysis because of their uniform particle sizes, controllable shapes, and tunable compositions. However, the removal of surfactants to obtain clean surfaces for catalysis through traditional approaches (e.g., solvent extraction and thermal decomposition) can easily induce the sintering of NPs, greatly hampering their use in synthesis of novel catalysts. Herein, we demonstrate that such unwanted surfactants can be utilized to stabilize NPs on solids via a simple yet efficient thermal annealing strategy. After being annealedmore » in N 2 flow, the surface-bound surfactants are in situ carbonized as sacrificial architectures that form a conformal coating on NPs and assist in creating an enhanced metal-support interaction between NPs and substrate, thus slowing down the Ostwald ripening process during post-oxidative calcination to remove surface covers.« less
NASA Technical Reports Server (NTRS)
Goreva, Y. S.; Humanyun, M.; Burnett, D. S.; Jurewicz, A. J.; Gonzalez, C. P.
2014-01-01
ToF-SIMS images of Genesis sample surfaces contain an incredible amount of important information, but they also show that the crash-derived surface contamination has many components, presenting a challenge to cleaning. Within the variability, we have shown that there are some samples which appear to be clean to begin with, e.g. 60471, and some are more contaminated. Samples 60493 and 60500 are a part of a focused study of the effectiveness of aqua regia and/or sulfuric acid cleaning of small flight Si implanted with Li-6 using ToF-SIMS.
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debehets, J.; Homm, P.; Menghini, M.
In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
Debehets, J.; Homm, P.; Menghini, M.; ...
2018-01-12
In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less
SEM/EDS analysis and characterization of gunshot residues from Brazilian lead-free ammunition.
Martiny, Andrea; Campos, Andrea P C; Sader, Marcia S; Pinto, André L
2008-05-02
The exposition to heavy metal-rich airborne due to fire practicing has forced to the development of heavy metal-free environmental ammunition primers all over the world. Here we characterize the GSR elements present in the Brazilian lead-free ammunition produced by Companhia Brasileira de Cartuchos (CBC) and commercialized by MagTech in the U.S. and Europe under the name CleanRange centerfire cartridges. Both first and second generations of CleanRange in calibers 9 mm Luger, .40 S&W, .380 AUTO and .38 SPL were analyzed and compared to regular Brazilian CBC ammunition by scanning electron microscopy/energy dispersive spectroscopy. Differences in composition and morphology of GSR particles from the two generations of CleanRange were observed. The first generation ammunition (found in Europe) presented spherical particles, being strontium the only unique element detected. The second generation (found in the U.S.) produced irregular particles composed mostly by potassium, aluminum, silicon and calcium. We can conclude that identification of GSR derived from CBC second generation lead-free ammunition in suspects' hands may be impossible without the addition of a distinct metallic taggant in the primer composition by the manufacturer.
An intense lithium ion beam source using vacuum baking and discharge cleaning techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moschella, J.J.; Kusse, B.R.; Longfellow, J.P.
We have developed a high-purity, intense, lithium ion beam source which operates at 500 kV and 120 A/cm{sup 2} with pulse widths of 125 ns full width half maximum. The beams were generated using a lithium chloride anode in planar magnetically insulated geometry. We have found that the combination of vacuum baking of the anode at 250 {degree}C followed by the application of 100 W of pure argon, steady-state, glow discharge cleaning reduced the impurity concentration in the beam to approximately 10% (components other than chlorine or lithium were considered impurities). Although the impurities were low, the concentration of chlorinemore » in the 1+ and 2+ charge states was significant ({similar to}25%). The remaining 65% of the beam consisted of Li{sup +} ions. Without the special cleaning process, over half the beam particles were impurities. It was determined that these impurities entered the beam at the anode surface but came originally from material in the vacuum chamber. After the cleaning process, recontamination was observed to occur in approximately 6 min. This long recontamination time, which was much greater than the expected monolayer formation time, was attributed to the elevated temperature of the anode. We also compared the electrical characteristics of the beams produced by LiCl anodes to those generated by a standard polyethylene proton source. In contrast to the polyethylene anode, the LiCl source exhibited a higher impedance, produced beams of lower ion current efficiency and had longer turn on times.« less
AES and LEED study of the zinc blende SiC(100) surface
NASA Technical Reports Server (NTRS)
Dayan, M.
1985-01-01
Auger and LEED measurements have been carried out on the (100) surface of zinc blende SiC. Two different phases of the clean surface, in addition to two kinds of oxygen-covered surfaces, have been obtained, identified, and discussed. In the oxygen-covered surface, the oxygen is bonded to the Si. The carbon-rich phase is reconstructed (2 x 1), similar to the (100) clean surfaces of Si, Ge, and diamond. The Si-topped surface is reconstructed. A model of alternating Si dimers is suggested for this surface.
Bioinspired superhydrophobic, self-cleaning and low drag surfaces
NASA Astrophysics Data System (ADS)
Bhushan, Bharat
2013-09-01
Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.
Sintering of Pt nanoparticles via volatile PtO 2: Simulation and comparison with experiments
Plessow, Philipp N.; Abild-Pedersen, Frank
2016-09-23
It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO 2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO 2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the availablemore » data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO 2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO 2(g) as an alternative to surface-mediated ripening.« less
Radiation Environment Model of Protons and Heavier Ions at Jupiter
NASA Technical Reports Server (NTRS)
Sierra, Luz Maria Martinez; Garrett, Henry B.; Jun, Insoo
2015-01-01
We performed an in depth study of the methods used to review the geometric factors (GF) and sensitivity to charge particles of the Energetic Particle Detector instrument on board the Galileo Spacecraft. Monte Carlo simulations were performed to understand the interactions of electrons and ions (i. e., protons and alphas) with the sensitive regions of the instrument. The DC0 and B0 channels were studied with the intention of using them to update the jovian proton radiation model. The results proved that the B0 is a clean proton chanel without any concerns for contamination by heavier ions and electrons. In contrast, DC0 was found to be contaminated by electrons. Furthermore, we also found out that the B2 channel is a clean alpha particle channel (in other words, no contamination by electrons and/or protons).
40 CFR 761.372 - Specific requirements for relatively clean surfaces.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Specific requirements for relatively clean surfaces. 761.372 Section 761.372 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING...
Surface Analysis of the Laser Cleaned Metal Threads
NASA Astrophysics Data System (ADS)
Sokhan, M.; Hartog, F.; McPhail, D.
The laser cleaning of the tarnished silver threads was carried out using Nd:YAG laser radiation at IR (1064 nm) and visible wavelengths (532 nm). The preliminary tests were made on the piece of silk with the silver embroidery with the clean and tarnished areas. FIBS and SIMS analysis were used for analysing the condition of the surface before and after laser irradiation. It was found that irradiation below 0.4 J/cm-2 and higher than 1.0 J/cm-2 fluences aggravates the process of tarnishing and leads to the yellowing effect. The results of preliminary tests were used for finding the optimum cleaning regime for the laser cleaning of the real museum artefact: "Women Riding Jacket" dated to the beginning of 18th century.