Sample records for cleanup technology utilizing

  1. Challenges Achieved By Innovative Technologies Our Link to a Safer, Cleaner, Healthier Tomorrow - 12369

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Heidi; Shoffner, Peggy; Lagos, Leonel E.

    2012-07-01

    The River Corridor Closure Project is the nation's largest environmental cleanup closure project where innovative technologies are being utilized to overcome DOE's environmental clean-up challenges. DOE provides a Technology Needs Statement that specifies their on-site challenges and the criteria to overcome those challenges. This allows for both the private sector and federally funded organizations to respond with solutions that meet their immediate needs. DOE selects the company based on their ability to reduce risk to human health and the environment, improve efficiency of the cleanup, and lower costs. These technologies are our link to a cleaner, safer, healthier tomorrow. (authors)

  2. Utilizing the right mix of environmental cleanup technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitaker, Wade; Bergren, Chris; Flora, Mary

    2007-07-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units that are required by environmental regulations, to undergo characterization and, if needed, remediation.more » In the initial years of the SRS environmental cleanup program (early 1990's), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical / pH-adjusting injection, phyto-remediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baro-balls, electrical resistance heating, soil vapor extraction, and micro-blowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works pro-actively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup technologies. Remediating large, complex groundwater plumes using state of-the art technologies and approaches is a hallmark of years of experience and progress. Environmental restoration at SRS continues to be a challenging and dynamic process as new cleanup technologies and approaches are adopted. (authors)« less

  3. Plutonium mining for cleanup.

    PubMed

    Bramlitt, E T

    1988-08-01

    Cleanup is the act of making a contaminated site relatively free of Pu so it may be used without radiological safety restrictions. Contaminated ground is the focus of major cleanups. Cleanup traditionally involves determining Pu content of soil, digging up soil in which radioactivity exceeds guidelines, and relocating excised soil to a waste-disposal site. Alternative technologies have been tested at Johnston Atoll (JA), where there is as much as 100,000 m3 of Pu-contaminated soil. A mining pilot plant operated for the first 6 mo of 1986 and made 98% of soil tested "clean", from more than 40 kBq kg-1 (1000 pCi g-1) to less than about 500 Bq kg-1 (15 pCi g-1) by concentrating Pu in 2% of the soil. The pilot plant is now installed at the U.S. Department of Energy Nevada Test Site for evaluating cleanup of other contaminated soils and refining cleanup effectiveness. A full-scale cleanup plant has been programmed for JA in 1988. In this paper, previous cleanups are reviewed, and the mining endeavor at JA is detailed. "True soil cleanup" is contrasted with the classical "soil relocation cleanup." The mining technology used for Pu cleanup has been in use for more than a century. Mining for cleanup, however, is unique. It is envisioned as being prominent for radiological and other cleanups in the future.

  4. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  5. Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation.

    PubMed

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation.

  6. Site Remediation Technology InfoBase: A Guide to Federal Programs, Information Resources, and Publications on Contaminated Site Cleanup Technologies. First Edition

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Table of Contents: Federal Cleanup Programs; Federal Site Remediation Technology Development Assistance Programs; Federal Site Remediation Technology Development Electronic Data Bases; Federal Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Selected Bibliography: Federal Publication on Alternative and Innovative Site Remediation; and Appendix: Technology Program Contacts.

  7. Pollution control: utility ships adapt for spill cleanups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-02-01

    A practical and cost effective approach to oil spill cleanup is being undertaken by Dutch companies. The approach involves constructing and equipping multi-use ships for pollution control. Usually, these ships are maintained in another type of service and come into use for spill cleanup only when needed. The use of these ships in pollution control is discussed.

  8. Application of Modern Coal Technologies to Military Facilities. Volume II. Evaluation of the Applicability and Cost of Current and Emerging Coal Technologies for the Utilization of Coal as a Primary Energy Source

    DTIC Science & Technology

    1968-05-01

    flue gas . Is one. The more popular method Is wet limestone scrubbing. In the limestone Injection system, ground limestone Is mixed with the coal and...is removed. The remainder must be eliminated from the flue gas as SO2 by wet scrubbing. Reduced boiler efficiency, due to ash accumulation on the...use of the fluldlzed-bed boiler, rather than a conventional coal-fired boiler requiring a flue gas cleanup system, will result In an

  9. Research on robotics by principal investigators of the Robotics Technology Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrigan, R.W.

    The U.S. Department of Energy`s Office of Technology Development has been developing robotics and automation technologies for the clean-up and handling of hazardous and radioactive waste through one of its major elements, Cross Cutting and Advanced Technology development. CC&AT university research and development programs recognize the strong technology, base resident in the university community and sponsor a focused technology research and development program which stresses close interaction between the university sector and the DOE community. This report contains a compilation of research articles by each of 14 principle investigators supported by CC&AT to develop robotics and automation technologies for themore » clean-up and handling of hazardous and radioactive waste. This research has led to innovative solutions for waste clean-up problems, and it has moved technology out of university laboratories into functioning systems which has allowed early evaluation by site technologists.« less

  10. PHYTOREMEDIATION: USING PLANTS TO CLEAN UP CONTAMINATED SOIL, GROUNDWATER, AND WASTEWATER

    EPA Science Inventory

    Phytoremediation is an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost. The cleanup technology is defined as the use of green plants to remove, contain, or render harmless such environmental contaminants as heavy ...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric; Talmadge, M.; Dutta, Abhijit

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve themore » conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.« less

  12. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, E N; Rockey, J M; Tucker, M S

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}Fmore » and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.« less

  13. Decontamination & decommissioning focus area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In Februarymore » 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.« less

  14. Human life support during interplanetary travel and domicile. IV - Mars expedition technology trade study

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ferrall, Joseph F.; Seshan, P. K.

    1991-01-01

    Results of trading processing technologies in a closed-loop configuration, in terms of power and weight for the Mars Expedition Mission, are presented. The technologies were traded and compared to a baseline set for functional elements that include CO2 removal, H2O electrolysis, potable H2O cleanup, and hygiene H2O cleanup. These technologies were selected from those being considered for Space Station Freedom and represent only chemical/physical technologies. Attention is given to the technology trade calculation scheme, technology data and selection, the generic modular flow schematic, and life support system specifications.

  15. Not ''just'' pump and treat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angleberger, K; Bainer, R W

    2000-12-12

    The Lawrence Livermore National Laboratory (LLNL) has been consistently improving the site cleanup methods by adopting new philosophies, strategies and technologies to address constrained or declining budgets, lack of useable space due to a highly industrialized site, and significant technical challenges. As identified in the ROD, the preferred remedy at the LLNL Livermore Site is pump and treat, although LLNL has improved this strategy to bring the remediation of the ground water to closure as soon as possible. LLNL took the logical progression from a pump and treat system to the philosophy of ''Smart Pump and Treat'' coupled with themore » concepts of ''Hydrostratigraphic Unit Analysis,'' ''Engineered Plume Collapse,'' and ''Phased Source Remediation,'' which led to the development of new, more cost-effective technologies which have accelerated the attainment of cleanup goals significantly. Modeling is also incorporated to constantly develop new, cost-effective methodologies to accelerate cleanup and communicate the progress of cleanup to stakeholders. In addition, LLNL improved on the efficiency and flexibility of ground water treatment facilities. Ground water cleanup has traditionally relied on costly and obtrusive fixed treatment facilities. LLNL has designed and implemented various portable ground water treatment units to replace the fixed facilities; the application of each type of facility is determined by the amount of ground water flow and contaminant concentrations. These treatment units have allowed for aggressive ground water cleanup, increased cleanup flexibility, and reduced capital and electrical costs. After a treatment unit has completed ground water cleanup at one location, it can easily be moved to another location for additional ground water cleanup.« less

  16. Dynamics of the Genetic Diversity of Subsurface Microbial Communities and Their Applications to Contaminated Site Cleanups

    EPA Science Inventory

    When compared to traditional approaches, the utilization of molecular and genomic techniques to soil and groundwater cleanup investigations can reduce inherent parameter variability when conducting bench and pilot-scale investigations or carrying out full-scale field applications...

  17. Green Remediation Best Management Practices: Mining Sites

    EPA Pesticide Factsheets

    This fact sheet describes best management practices (BMPs) that can be used to reduce the environmental footprint of cleanup activities associated with common project components, cleanup phases, and implementation of remediation technologies.

  18. A Citizen's Guide to Drycleaner Cleanup

    EPA Pesticide Factsheets

    The State Coalition for Remediation of Drycleaners (SCRD) has prepared an easy-to-read guide explaining the drycleaner cleanup process and describing the technologies that are most commonly used to clean up contaminated drycleaner sites.

  19. Groundwater Contamination: DOD Uses and Develops a Range of Remediation Technologies to Clean Up Military Sites

    DTIC Science & Technology

    2005-06-01

    relative cost -effectiveness of a technology for a given site. DOD has identified a number of contaminants of concern at its facilities, each of...to contain or eliminate hazardous contaminants in groundwater. However, the long cleanup times and high costs of using pump-and- treat technologies...environment. DOD estimates that cleanup of its contaminated sites will cost billions of dollars and may take decades to complete because of the

  20. Using the Triad Approach to Streamline Brownfields Site Assessment and Cleanup

    EPA Pesticide Factsheets

    EPA's Brownfields Technology Support Center (BTSC) has prepared this document to provide an educational tool for site owners, project managers, and regulators to help streamline assessment and cleanup activities at brownfields sites.

  1. Superfund Training/Tech Transfer

    EPA Pesticide Factsheets

    This asset includes a collection of information resources, training, and other media related to hazardous waste site cleanup and characterization. A major part of this asset is the CLU-IN System, which is a collection of websites designed to be the central reference library for the development, collection, evaluation, coordination, and dissemination of information relating to the utilization of alternative or innovative treatment technologies... for cleaning up hazardous waste sites (Title 42 Section 9660 (b)(8)). Information includes Best Practices for using innovative technologies, case studies and focus areas about characterization and remediation technologies, emerging issues, optimization, and green(ing) remediation. CLU-IN is available via web-based documentation, live events, podcasts, and videos. Additionally, the Technology Innovation and Field Services Division (TIFSD) supports both classroom and online training registration through Trainex.org. All EPA content is also posted on EPA's website.

  2. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beittel, R.; Ruth, L.A.

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (coppermore » oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.« less

  3. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such asmore » Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency cleanup responses, has a sound approach for decontamination decision-making that has been applied several times. The anthrax contamination at the U. S. Hart Senate Office Building and numerous U. S. Post Office facilities are examples of employing novel technical responses. Decontamination of the Hart Office building required development of a new approach for high level decontamination of biological contamination as well as techniques for evaluating the technology effectiveness. The World Trade Center destruction also demonstrated the need for, and successful implementation of, appropriate cleanup methodologies. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly “package and dispose” method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.H.

    In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been aboutmore » $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $$4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $$226 billion over a period of 75 years. 1 tab.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udengaard, Niels; Knight, Richard; Wendt, Jesper

    This final report presents the results of a four-year technology demonstration project carried out by a consortium of companies sponsored in part by a $25 million funding by the Department of Energy (DOE) under the American Recovery and Reinvestment Act (ARRA). The purpose of the project was to demonstrate a new, economical technology for the thermochemical conversion of woody biomass into gasoline and to demonstrate that the gasoline produced in this way is suitable for direct inclusion in the already existing gasoline pool. The process that was demonstrated uses the Andritz-Carbona fluidized-bed steam-oxygen gasification technology and advanced tar reforming catalyticmore » systems to produce a clean syngas from waste wood, integrated conventional gas cleanup steps, and finally utilizes Haldor Topsoe’s (Topsoe) innovative Topsoe Improved Gasoline Synthesis (TIGASTM) syngas-to-gasoline process. Gas Technology Institute (GTI) carried out the bulk of the testing work at their Flex Fuel development facility in Des Plaines, Illinois; UPM in Minnesota supplied and prepared the feedstocks, and characterization of liquid products was conducted in Phillips 66 labs in Oklahoma. The produced gasoline was used for a single-engine emission test at Southwest Research Institute (SwRI®) in San Antonio, TX, as well as in a fleet test at Transportation Research Center, Inc. (TRC Inc.) in East Liberty, Ohio. The project benefited from the use of existing pilot plant equipment at GTI, including a 21.6 bone dry short ton/day gasifier, tar reformer, Morphysorb® acid gas removal, associated syngas cleanup and gasifier feeding and oxygen systems.« less

  6. Drivers and applications of integrated clean-up technologies for surfactant-enhanced remediation of environments contaminated with polycyclic aromatic hydrocarbons (PAHs).

    PubMed

    Liang, Xujun; Guo, Chuling; Liao, Changjun; Liu, Shasha; Wick, Lukas Y; Peng, Dan; Yi, Xiaoyun; Lu, Guining; Yin, Hua; Lin, Zhang; Dang, Zhi

    2017-06-01

    Surfactant-enhanced remediation (SER) is considered as a promising and efficient remediation approach. This review summarizes and discusses main drivers on the application of SER in removing polycyclic aromatic hydrocarbons (PAHs) from contaminated soil and water. The effect of PAH-PAH interactions on SER efficiency is, for the first time, illustrated in an SER review. Interactions between mixed PAHs could enhance, decrease, or have no impact on surfactants' solubilization power towards PAHs, thus affecting the optimal usage of surfactants for SER. Although SER can transfer PAHs from soil/non-aqueous phase liquids to the aqueous phase, the harmful impact of PAHs still exists. To decrease the level of PAHs in SER solutions, a series of SER-based integrated cleanup technologies have been developed including surfactant-enhanced bioremediation (SEBR), surfactant-enhanced phytoremediation (SEPR) and SER-advanced oxidation processes (SER-AOPs). In this review, the general considerations and corresponding applications of the integrated cleanup technologies are summarized and discussed. Compared with SER-AOPs, SEBR and SEPR need less operation cost, yet require more treatment time. To successfully achieve the field application of surfactant-based technologies, massive production of the cost-effective green surfactants (i.e. biosurfactants) and comprehensive evaluation of the drivers and the global cost of SER-based cleanup technologies need to be performed in the future. Copyright © 2017. Published by Elsevier Ltd.

  7. Marine Debris Clean-Ups as Meaningful Science Learning

    ERIC Educational Resources Information Center

    Stepath, Carl M.; Bacon, Joseph Scott

    2010-01-01

    This seven to eight week hands-on Marine Debris Clean-up Project used a service project to provide an introduction of marine science ecology, watershed interrelationships, the scientific method, and environmental stewardship to 8th grade middle school students. It utilized inquiry based learning to introduce marine debris sources and impacts to…

  8. CONTAMINANTS AND REMEDIAL OPTIONS AT SELECTED METAL-CONTAMINATED SITES

    EPA Science Inventory

    This document provides information that facilitates characterization of the site and selection of treatment technologies at metals-contaminated sites that would be capable of meeting site-specific cleanup levels. he document does not facilitate the determination of cleanup levels...

  9. A Decision-Making Framework for Cleanup of Sites Impacted with Light Non-Aqueous Phase Liquids (LNAPL)

    EPA Pesticide Factsheets

    This document has been prepared by the Remediation Technologies Development Forum (RTDF) NAPL Cleanup Alliance to provide a guide to practicable and reasonable approaches for management of LNAPL petroleum hydrocarbons in the subsurface.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics ofmore » conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.

    In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focusmore » research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.« less

  12. Robotics for mixed waste operations, demonstration description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less

  13. Robotics crosscutting program: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies becamemore » evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.« less

  14. Clean-ups at Aberdeen Proving Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenuto, R.A.

    1994-12-31

    The Department of Defense has utilized radiative material in numerous applications over several decades. Aberdeen Proving Ground has been an integral player in the Army`s Research, Development, and Testing of items incorporating radionuclides, as well as developing new and innovative applications. As new information becomes available and society progresses, we find that the best management practices used decades, or even sometimes years earlier are inadequate to meet the current demands. Aberdeen Proving Ground is committed to remediating historic disposal sites, and utilizing the best available technology in current operations to prevent future adverse impact. Two projects which are currently ongoingmore » at Aberdeen Proving Ground illustrates these points. The first, the remediation of contaminated metal storage areas, depicts how available technology has provided a means for recycling material whereby preventing the continued stock piling, and allowing for the decommissioning of the areas. The second, the 26Th Street Disposal Site Removal Action, shows how historic methods of disposition were inadequate to meet today`s needs.« less

  15. Spatial Case Information Management System (SCIMS)

    Science.gov Websites

    SCIMS facilitates the update of the Land Administration System (LAS) Case File location. Please select Cleanup Notes Utilities LAS Request Import Utility Privacy Copyright System Status Support User Guide

  16. EPA waiver of ground water cleanup standards in NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, A.A.

    1995-11-01

    EPA may invoke a technical impracticability (TI) waiver at a site when the Agency determines that it is technically impracticable from an engineering perspective to attain cleanup standards within a reasonable time period. The October 6, 1994 TI waiver of ground water cleanup standards at the G.E./Moreau Superfund Site in New York is the first post-Record of Decision (ROD) TI waiver granted by EPA since issuance of the September 1993 guidance on technical impracticability of ground water restoration. In the 1987 ROD, EPA selected natural gradient flushing and treatment as the ground water remedy and estimated that TCE-contaminated ground watermore » within the unconsolidated aquifer at the Site would be restored to drinking water quality within decades. EPA`s subsequent reevaluation showed that cleanup of the ground water would take 200 years or more, regardless of the remedial technology employed, due to the presence of site-specific physical and chemical factors that limit the effectiveness of ground water remediation technologies. Following public participation activities, EPA issued the TI waiver as an Explanation of Significant Differences (ESD) to the ROD. The ESD revised the time frame expected for ground water restoration but did not reduce or change any of the required cleanup actions.« less

  17. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denise Lach; Stephanie Sanford

    2006-09-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators’ concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites aroundmore » the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: - quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; - are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; - are concerned equally about technological and implementation issues; and - believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites.« less

  18. Major factors affecting in situ biodegradation rates of jet-fuel during large-scale biosparging project in sedimentary bedrock.

    PubMed

    Machackova, Jirina; Wittlingerova, Zdena; Vlk, Kvetoslav; Zima, Jaroslav

    2012-01-01

    Biodegradation of petroleum hydrocarbons (TPH), mainly jet fuel, had taken place at the former Soviet Army air base in the Czech Republic. The remediation of large-scale petroleum contamination of soil and groundwater has provided valuable information about biosparging efficiency in the sandstone sedimentary bedrock. In 1997 petroleum contamination was found to be present in soil and groundwater across an area of 28 hectares, divided for the clean-up purpose into smaller clean-up fields (several hectares). The total estimated quantity of TPH released to the environment was about 7,000 metric tons. Biosparging was applied as an innovative clean-up technology at the site and was operated over a 10-year period (1997-2008). Importance of a variety of factors that affect bacterial activity in unsaturated and saturated zones was widely studied on the site and influence of natural and technological factors on clean-up efficiency in heavily contaminates areas of clean-up fields (initial contaminant mass 111-452 metric ton/ha) was evaluated. Long-term monitoring of the groundwater temperature has shown seasonal rises and falls of temperature which have caused a fluctuation in biodegradation activity during clean-up. By contrast, an overall rise of average groundwater temperature was observed in the clean-up fields, most probably as a result of the biological activity during the clean-up process. The significant rise of biodegradation rates, observed after air sparging intensification, and strong linear correlation between the air injection rates and biodegradation activities have shown that the air injection rate is the principal factor in biodegradation efficiency in heavily contaminated areas. It has a far more important role for achieving a biodegradation activity than the contamination content which appeared to have had only a slight effect after the removal of about 75% of initial contamination.

  19. Involving stakeholders in evaluating environmental restoration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, G.H.; Serie, P.J.

    1993-02-01

    Involving citizens, interest groups, and regulators in environmental restoration and waste management programs is a challenge for government agencies and the organizations that support them. To be effective, such involvement activities must identify all individuals and groups who have a stake in the cleanup. Their participation must be early, substantive, and meaningful. Stockholders must be able to see how their input was considered and used, and feel that a good- faith effort was made to reconcile conflicting objectives. The Integrated Demonstration for Cleanup of Volatile Organic Compounds at Arid Sites (VOC-Arid ID) is a Department of Energy Office of Technologymore » Development project located at Hanford. Along with technical evaluation of innovative cleanup technologies, the program is conducting an institutional assessment of regulatory and public acceptance of new technologies. Through a series of interviews and workshops, and use of a computerized information management tool, stakeholders are having a voice in the evaluation. Public and regulatory reaction has been positive.« less

  20. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  1. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  2. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  3. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM - TECHNOLOGY PROFILES 4th Edition

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment technologies. As a result, the SI...

  4. Department of Energy - Oak Ridge Operations and URS - CH2M Oak Ridge LLC. Partnering Framework for the Cleanup of the East Tennessee Technology Park, Oak Ridge, Tennessee, USA - 12348

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, Allen L.

    2012-07-01

    The cleanup and re-industrialization of the East Tennessee Technology Park (ETTP) hinges on a collaborative working relationship between the cleanup contractor and the U.S. Department of Energy's (DOE)-Oak Ridge Office (ORO). A Partnering Framework document was signed on June 30, 2011, with an ultimate goal of completing the contract scope of work ahead of schedule and under budget. This partnering process was the first time that DOE and its contractor, jointly developed and signed such an agreement before the contractor assumed management responsibilities of the Site. A strong desire of both parties to utilize a partnering approach in the performancemore » of their respective responsibilities is evident. The Partnering Framework was modeled after a partnering process employed by the California Department of Transportation, Division of Construction. This partnering process has been used successfully by the California Department of Transportation and its major contractors for many years with great success. The partnering process used at ETTP was a phased approach. First, a Partnering Framework document was developed and signed June 30, 2011, by the Partnering Sponsors, the two leaders of the ETTP cleanup and re-industrialization project, the DOE-ORO Assistant Manager for Environmental Management and the contractor's President and Program Manager. In this way the partnering process could begin when the contactor assumed ETTP Site management responsibilities on August 1, 2011. The Partnering Framework then set the stage for the second phase of the partnering process which would be development of the Partnering Agreement and the kick-off of the first of a number of facilitated Partnering Workshops. Key elements of the Partnering Framework document include: (1) a statement of commitment which affirms the desire of both parties to work collaboratively toward the cleanup and re-industrialization of the ETTP Site; (2) a vision which describes both parties ultimate goal of safe, efficient cleanup, and (3) an implementation section which describes how the partnering process will be conducted, as well as how disputes will be managed. The signed Partnering Framework and Partnering Agreement provide the needed foundation of the safe and cost-effective cleanup and re-industrialization of the ETTP Site. The benefits of partnering have already been observed as the Partnering Teams effectively addressed a number of early contract and project challenges such as funding reductions and progress in resolving Material Differences. Based, in part of the successes achieved as a result of the partnering between UCOR and DOE-ORO, UCOR and DOE-ORO are extending this partnering approach to a number of the ETTP Site stakeholders. For example, DOE-ORO, UCOR and CROET signed a Partnering Agreement on November 3, 2011. This Partnering Agreement affirms the parties' commitment to work collaboratively to re-industrialize the ETTP Site. Both DOE-ORO and UCOR are looking to extend this partnering approach with other Site stakeholders such as its employees, its subcontractors, the Oak Ridge National Laboratory and the Y-12 Security Complex in the future. (authors)« less

  5. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM TECHNOLOGY PROFILES: SIXTH EDITION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment and monitoring and measurement technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment techn...

  6. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM - TECHNOLOGY PROFILES - SEVENTH EDITION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment and monitoring and measurement technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment techn...

  7. High Temperature Syngas Cleanup Technology Scale-up and Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Ben; Turk, Brian; Denton, David

    Gasification is a technology for clean energy conversion of diverse feedstocks into a wide variety of useful products such as chemicals, fertilizers, fuels, electric power, and hydrogen. Existing technologies can be employed to clean the syngas from gasification processes to meet the demands of such applications, but they are expensive to build and operate and consume a significant fraction of overall parasitic energy requirements, thus lowering overall process efficiency. RTI International has developed a warm syngas desulfurization process (WDP) utilizing a transport-bed reactor design and a proprietary attrition-resistant, high-capacity solid sorbent with excellent performance replicated at lab, bench, and pilotmore » scales. Results indicated that WDP technology can improve both efficiency and cost of gasification plants. The WDP technology achieved ~99.9% removal of total sulfur (as either H 2S or COS) from coal-derived syngas at temperatures as high as 600°C and over a wide range of pressures (20-80 bar, pressure independent performance) and sulfur concentrations. Based on the success of these tests, RTI negotiated a cooperative agreement with the U.S. Department of Energy for precommercial testing of this technology at Tampa Electric Company’s Polk Power Station IGCC facility in Tampa, Florida. The project scope also included a sweet water-gas-shift process for hydrogen enrichment and an activated amine process for 90+% total carbon capture. Because the activated amine process provides some additional non-selective sulfur removal, the integration of these processes was expected to reduce overall sulfur in the syngas to sub-ppmv concentrations, suitable for most syngas applications. The overall objective of this project was to mitigate the technical risks associated with the scale up and integration of the WDP and carbon dioxide capture technologies, enabling subsequent commercial-scale demonstration. The warm syngas cleanup pre-commercial test unit was designed and constructed on schedule and under budget and was operated for approximately 1,500 total hours utilizing ~20% of the IGCC’s total syngas as feed (~1.5 MM scfh of dry syngas). The WDP system reduced total sulfur levels to ~10 ppmv (~99.9% removal) from raw syngas that contained as high as 14,000 ppmv of total sulfur. The integration of WDP with the activated amine process enabled further reduction of total sulfur in the final treated syngas to the anticipated sub-ppmv concentrations (>99.99% removal), suitable for stringent syngas applications such as chemicals, fertilizers, and fuels. Techno-economic assessments by RTI and by third parties indicate potential for significant (up to 50%) capital and operating cost reductions for the entire syngas cleanup block when WDP technology is integrated with a broad spectrum of conventional and emerging carbon capture or acid gas removal technologies. This final scientific/technical report covers the pre-FEED, FEED, EPC, commissioning, and operation phases of this project, as well as system performance results. In addition, the report addresses other parallel-funded R&D efforts focused on development and testing of trace contaminant removal process (TCRP) sorbents, a direct sulfur recovery process (DSRP), and a novel sorbent for warm carbon dioxide capture, as well as pre-FEED, FEED, and techno-economic studies to consider the potential benefit for use of WDP for polygeneration of electric power and ammonia/urea fertilizers.« less

  8. TECHNICAL APPROACHES TO CHARACTERIZING AND ...

    EPA Pesticide Factsheets

    The document provides brownfields planners with an overview of the technical methods that can be used to achieve successful site assessment and cleanup which are two key components of the brownfields redevelopment process. No two brownfields sites are identical and planners will need to base assessment and cleanup activities on the conditions of the particular sites with which they are dealing. A site assessment strategy should address: the type and extent of contamination, if any, that is present, the types of data needed to adequately assess the site; appropriate sampling and analytical methods to characterize the contamination; acceptable level of uncertainty and cleanup technologies that contain or treat the types of wastes present.This document includes references to state agency roles including the Voluntary Cleanup Program, public involvement and other guidances that may be used. Information

  9. The SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION program - Technology Profiles

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) program was created to evaluate new and promising treatment technologies for cleanup at hazardous waste sites. The mission of the SITE program is to encourage the development and routine use of innovative treatment technologie...

  10. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies.

  11. SITE TECHNOLOGY CAPSULE: NOVOCS EVALUATION AT NAS NORTH ISLAND

    EPA Science Inventory

    This is a SITE Technology Capsule. The MACTEC, Inc. (MACTEC), NoVOCs(TM) in-well volatile organic compounds (VOC) stripping technology is an in-situ groundwater remediation technology designed for the cleanup of groundwater contaminated with VOCs. The NoVOCs(TM) technology was ev...

  12. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.

    PubMed

    Merk, B; Litskevich, D; Gregg, R; Mount, A R

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.

  13. A sustainable approach to controlling oil spills.

    PubMed

    Al-Majed, Abdul Aziz; Adebayo, Abdulrauf Rasheed; Hossain, M Enamul

    2012-12-30

    As a result of the huge economic and environmental destruction from oil spills, studies have been directed at improving and deploying natural sorbents which are not only the least expensive but also the safest means of spill control. This research reviews the limitations and environmental impact of existing cleanup methods. It also justifies the need for concerted research effort on oil spill control using natural and sustainable technology concepts. The article proposes future guidelines for the development of a sustainable cleanup technology. Finally, guidelines for the development of a new technology for the Middle East are proposed, which is the use of an abundant resource--date palm fibers--for such techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. SEMINAR PROCEEDINGS: RCRA CORRECTIVE ACTION STABILIZATION TECHNOLOGIES

    EPA Science Inventory

    The seminar publication provides an overview of many technologies that can be used in applying the stabilization concept to RCRA cleanup activities. Technologies discussed include covers, grouting, slurry walls, hydrofracture, horizontal well drilling, a vacuum extraction, and b...

  15. HANDBOOK FOR CONDUCTING ORAL HISTORY INTERVIEWS RELATED TO TRIBAL AND INDIAN PARTICIPATION IN THE CONSTRUCTION, OPERATION AND CLEANUP OF THE NUCLEAR WEAPONS COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristann Gibson; Mervyn L. Tano; Albert Wing

    1999-08-31

    There were three major projects undertaken at the outset of the DOE/EM 22 Cooperative Agreement back in September 1995. There was a project relating to Tribal oral histories. Another project of the Cooperative Agreement related to technology and Tribal values and needs. This project by analogy could apply to issues of technology, environmental cleanup and other indigenous peoples internationally. How can Indian Tribes participate in defining the need for technology development rather than merely learning to adapt themselves and their situations and values to technology developed by others with differing needs, values and economic resources? And the third project wasmore » the placement of a Tribal intern in EM-22.« less

  16. MTBE TREATMENT TECHNOLOGIES DEMONSTRATION PROJECTS

    EPA Science Inventory

    The NRMRL, in collaboration with the State of California, and Department of Defense research program (ESTCP) is hosting a field-scale evaluation of cleanup technologies at the Department of Defense National Environmental Technology Test Site at Port Hueneme California. EPA has ...

  17. Innovative Remediation Technologies: Field-Scale Demonstration Projects in North America, 2nd Edition

    EPA Pesticide Factsheets

    This report consolidates key reference information in a matrix that allows project mangers to quickly identify new technologies that may answer their cleanup needs and contacts for obtaining technology demonstration results and other information.

  18. ACCESSING FEDERAL DATA BASES FOR CONTAMINATED SITE CLEAN-UP TECHNOLOGIES

    EPA Science Inventory

    The Federal Remediation Technologies Roundtable (Roundtable) eveloped this publication to provide information on accessing Federal data bases that contain data on innovative remediation technologies. The Roundtable includes representatives from the Department of Defense (DoD), En...

  19. Early decision framework for integrating sustainable risk management for complex remediation sites: Drivers, barriers, and performance metrics.

    PubMed

    Harclerode, Melissa A; Macbeth, Tamzen W; Miller, Michael E; Gurr, Christopher J; Myers, Teri S

    2016-12-15

    As the environmental remediation industry matures, remaining sites often have significant underlying technical challenges and financial constraints. More often than not, significant remediation efforts at these "complex" sites have not achieved stringent, promulgated cleanup goals. Decisions then have to be made about whether and how to commit additional resources towards achieving those goals, which are often not achievable nor required to protect receptors. Guidance on cleanup approaches focused on evaluating and managing site-specific conditions and risks, rather than uniformly meeting contaminant cleanup criteria in all media, is available to aid in this decision. Although these risk-based cleanup approaches, such as alternative endpoints and adaptive management strategies, have been developed, they are under-utilized due to environmental, socio-economic, and risk perception barriers. Also, these approaches are usually implemented late in the project life cycle after unsuccessful remedial attempts to achieve stringent cleanup criteria. In this article, we address these barriers by developing an early decision framework to identify if site characteristics support sustainable risk management, and develop performance metrics and tools to evaluate and implement successful risk-based cleanup approaches. In addition, we address uncertainty and risk perception challenges by aligning risk-based cleanup approaches with the concepts of risk management and sustainable remediation. This approach was developed in the context of lessons learned from implementing remediation at complex sites, but as a framework can, and should, be applied to all sites undergoing remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Non-woven Textile Materials from Waste Fibers for Cleanup of Waters Polluted with Petroleum and Oil Products

    NASA Astrophysics Data System (ADS)

    Neznakomova, Margarita; Boteva, Silvena; Tzankov, Luben; Elhag, Mohamed

    2018-04-01

    The aim of this work was to investigate the possibility of using non-woven materials (NWM) from waste fibers for oil spill cleanup and their subsequent recovery. Manufacture of textile and readymade products generates a significant amount of solid waste. A major part of it is deposited in landfills or disposed of uncontrollably. This slowly degradable waste causes environmental problems. In the present study are used two types of NWM obtained by methods where waste fibers are utilized. Thus, real textile products are produced (blankets) with which spills are covered and removed by adsorption. These products are produced by two methods: the strengthening of the covering from recovered fibers is made by entanglement when needles of special design pass through layers (needle-punching) or by stitching with thread (technology Maliwatt). Regardless of the random nature of the fiber mixture, the investigated products are good adsorbents of petroleum products. The nature of their structure (a significant void volume and developed surface) leads to a rapid recovery of the spilled petroleum products without sinking of the fiber layer for the sampled times. The used NWM can be burned under special conditions.

  1. Cleaning up contaminated wood-treating sites. Background paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report identifies technologies available for organic hazardous waste cleanup at woodtreating sites throughout the country. OTA has identified a range of such technologies that have been selected in the past and could be applied to other sites in the future. The applicability of a technology to a particular Superfund site has to be based on many site-specific factors. Nevertheless, it is clear that a number of the approaches identified by OTA may be appropriate and could prove useful if more detailed site-specific studies and tests were done. Although this study focused on the Texarkana site, decisionmakers and the publicmore » could benefit from this analysis in selecting future cleanup strategies for other sites.« less

  2. Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list

    PubMed Central

    Litskevich, D.; Gregg, R.; Mount, A. R.

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604

  3. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS & PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  4. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION: TECHNOLOGY PROFILES, NINTH EDITION

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  5. An automated online turboflow cleanup LC/MS/MS method for the determination of 11 plasticizers in beverages and milk.

    PubMed

    Ates, Ebru; Mittendorf, Klaus; Senyuva, Hamide

    2013-01-01

    An automated sample preparation technique involving cleanup and analytical separation in a single operation using an online coupled TurboFlow (RP-LC system) is reported. This method eliminates time-consuming sample preparation steps that can be potential sources for cross-contamination in the analysis of plasticizers. Using TurboFlow chromatography, liquid samples were injected directly into the automated system without previous extraction or cleanup. Special cleanup columns enabled specific binding of target compounds; higher MW compounds, i.e., fats and proteins, and other matrix interferences with different chemical properties were removed to waste, prior to LC/MS/MS. Systematic stepwise method development using this new technology in the food safety area is described. Selection of optimum columns and mobile phases for loading onto the cleanup column followed by transfer onto the analytical column and MS detection are critical method parameters. The method was optimized for the assay of 10 phthalates (dimethyl, diethyl, dipropyl, butyl benzyl, diisobutyl, dicyclohexyl, dihexyl, diethylhexyl, diisononyl, and diisododecyl) and one adipate (diethylhexyl) in beverages and milk.

  6. Groundwater cleanup demonstrations at Complex 34, CCAS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On top of the block house at Launch Complex 34, representatives from environmental and Federal agencies hear from Laymon Gray, with Florida State University, about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background (left) can be seen the cement platform and walkway from the block house to the pad. Beyond it is the Atlantic Ocean. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site.

  7. ENVIRONMENTAL SYSTEMS MANAGEMENT / POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    Goal 8.4 Improve Environmental Systems Management (Formally Pollution Prevention and New Technology) Background The U.S. Environmental Protection Agency (EPA) has developed and evaluated tools and technologies to monitor, prevent, control, and clean-up pollution through...

  8. Green Remediation Best Management Practices: Pump and Treat Technologies

    EPA Pesticide Factsheets

    The U.S. EPA Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site with pump and treat technologies.

  9. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS AND PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  10. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 2 - EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  11. Status of Environmental Management Initiatives to Accelerate the Reduction of Environmental Risks and Challenges Posed by the Legacy of the Cold War

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-01

    Fifty years of nuclear weapons production and energy research in the United States during the Cold War generated large amounts of radioactive wastes, spent nuclear fuel (SNF), excess plutonium and uranium, thousands of contaminated facilities, and contaminated soil and groundwater. During most of that half century, the Nation did not have the environmental regulatory structure or nuclear waste cleanup technologies that exist today. The result was a legacy of nuclear waste that was stored and disposed of in ways now considered unacceptable. Cleaning up and ultimately disposing of these wastes is the responsibility of the U.S. Department of Energy (DOE).more » In 1989, DOE established the Office of Environmental Management (EM) to solve the large scale and technically challenging risks posed by the world's largest nuclear cleanup. This required EM to build a new nuclear cleanup infrastructure, assemble and train a technically specialized workforce, and develop the technologies and tools required to safely decontaminate, disassemble, stabilize, disposition, and remediate unique radiation hazards. The sites where nuclear activities produced legacy waste and contamination include the original Manhattan Project sites--Los Alamos, New Mexico; Hanford, Washington; and Oak Ridge, Tennessee--as well as major Cold War sites, such as Savannah River Site, South Carolina; the Idaho National Laboratory, Idaho; Rocky Flats Plant, Colorado; and Fernald, Ohio. Today EM has responsibility for nuclear cleanup activities at 21 sites covering more than two million acres in 13 states, and employs more than 30,000 Federal and contractor employees, including scientists, engineers and hazardous waste technicians. This cleanup poses unique, technically complex problems, which must be solved under the most hazardous of conditions, and which will require billions of dollars a year for several more decades. The EM program focus during its first 10 years was on managing the most urgent risks and maintaining safety at each site while negotiating state and Federal environmental compliance agreements. The program also concentrated on characterizing waste and nuclear materials and assessing the magnitude and extent of environmental contamination. By the late 1990s, EM had made significant progress in identifying and characterizing the extent of contamination and cleanup required and began transitioning from primarily a characterization and stabilization program to an active cleanup and closure program. During that time, EM formulated multi-year cleanup and closure plans, which contributed to cleanup progress; however, reducing the overall environmental risk associated with the cleanup program remained a challenge. In response, the Secretary of Energy directed a review of the EM program be undertaken. The resulting 'Top-to Bottom Review' re-directed the program focus from managing risks to accelerating the reduction of these risks.« less

  12. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominallymore » 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.« less

  13. CONSIDERATIONS FOR INNOVATIVE REMEDIATION TECHNOLOGY EVALUATION SAMPLING PLANS

    EPA Science Inventory

    Field trials of innovative subsurface cleanup technologies require the use of integrated site characterization approaches to obtain critical design parameters, to evaluate pre-treatment contaminant distributions, and to assess process efficiency. This review focuses on the trans...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016 accomplishments and primary areas of focus for the Department of Energy's (DOE's) Office of Environmental Management and EM sites are presented. For DOE EM, these include Focusing on the Field, Teaming with Cleanup Partners, Developing New Technology, and Maximizing Cleanup Dollars. Major 2016 achievements are highlighted for EM, Richland Operations Office, Office of River Protection, Savannah River Site, Oak Ridge, Idaho, Waste Isolation Pilot Plant, Los Alamos, Portsmouth, Paducah, West Valley Demonstration Project, and the Nevada National Security Site,

  15. GUIDANCE OF THE FIELD DEMONSTRATION OF REMEDIATION TECHNOLOGIES

    EPA Science Inventory

    This paper will focus on the demonstration of hazardous waste cleanup technologies in the field. The technologies will be at the pilot- or full-scale, and further referred to as field-scale. The main objectives of demonstration at the field-scale are development of reliable perfo...

  16. SITE TECHNOLOGY PROFILES - 11TH EDITION, EMERGING TECHNOLOGY PROGRAM, VOLUME 2

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  17. MEMBRANE TECHNOLOGIES FOR REMEDIATING CONTAMINATED SOILS: A CRITICAL REVIEW

    EPA Science Inventory

    Regulatory compliance requires the cleanup of soils contaminated with toxic organic and metallic compounds. Several chemical and thermal detoxification technologies have been tested on soils excavated from contaminated sites. Soil washing with aqueous solutions transfers the cont...

  18. ASSESSING UST CORRECTIVE ACTION TECHNOLOGIES: EARLY SCREENING OF CLEANUP TECHNOLOGIES FOR THE SATURATED ZONE

    EPA Science Inventory

    This manual assists the user in making a preliminary evaluation of the likely effectiveness of various remediation technologies in the event of a release of petroleum products into the saturated zone. he manual: 1) helps the user develop a conceptual understanding of site conditi...

  19. ADDENDUM TO SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 1 - DEMONSTRATION PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  20. Technology Demonstration Summary: International Waste Technologies In Situ Stabilization/Solidification, Hialeah, Florida

    EPA Science Inventory

    An evaluation was performed of the International Waste Technologies (IWT) HWT-20 additive and the Geo-Con, Inc. deep-soil-mixing equipment for an in situ stabilization/solidification process and its applicability as an on-site treatment method for waste site cleanup. The analysis...

  1. A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushingmore » (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.« less

  2. SITE PROGRAM CURRENT AND FUTURE INNOVATIVE TECHNIQUES FOR GROUNDWATER TREATMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) conducts research related to the demonstration and evaluation of innovative cleanup technologies. One of the mechanisms for the evaluation of innovative field-scale technologies for hazardous ...

  3. Biogeochemical Stability of Contaminants in the Subsurface Following In Situ Treatment

    EPA Science Inventory

    In recent years, innovative treatment technologies have emerged to meet groundwater cleanup goals. In many cases these methods take advantage of the redox behavior of contaminant species. For example, remedial technologies that strategically manipulate subsurface redox conditio...

  4. Science plus management equals successful remediation: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehlman, M.D.; Rogers, D.T.; Payne, F.C.

    A case study involving a Brownfields site in southeastern Michigan clearly illustrates the elements of successful remediation. The site`s soil was contaminated with polychlorinated biphenyls (PCBs) and its groundwater with a variety of chlorinated solvents. The original estimate for remediation has exceeded $30 million. Several phases of investigation were conducted to evaluate the nature and sources of contaminants, the site`s hydrogeology, potential risks to human health and the environment, and feasible remedial technologies. Multiple cleanup criteria were established for different affected areas based on the results of the investigations, changes that were taking place with the state cleanup regulations andmore » standards and subsequent negotiations with state and federal regulators. Innovative remedial technologies were selected. The result was a remediation that met or exceeded all soil and groundwater cleanup objectives, was performed on schedule, and was highly cost-effective. The final cost was limited to $3 million--one-tenth of the original estimate. The success of this project involved meticulous scientific study and comprehensive understanding of applicable regulatory requirements and available remediation technologies. It also required effective project management to coordinate the multidisciplinary efforts involved and to maintain the constant vertical and horizontal communications necessary to ensure sound decisions at every step in the process.« less

  5. Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Jacobs, Raymer J.E.

    2008-06-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).« less

  6. Progress on Footprint Reduction at the Hanford Site - 12406

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, Dale E.; Seeley, Paul; Farabee, Al

    2012-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) continues to reduce the footprint of legacy sites throughout the EM complex. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess contaminated facilities, soil and groundwater remediation, and solid waste disposition. All of these initiatives are being accomplished with established technologies in proven regulatory frameworks. Ultimately, completion of these environmental cleanup activities will reduce the monitoring and maintenance costs associated with managing large federal facilities, allowing EM to place more focus on other high priority cleanup efforts and facilitate a successful transition to land-termmore » stewardship of these sites. Through the American Recovery and Reinvestment Act (ARRA) investment, the Department's cleanup footprint has been reduced by 45 percent to date, from 2411 km{sup 2} (931 mi{sup 2}) to 1336 km{sup 2} (516 mi{sup 2}s). With this significant progress on footprint reduction, the Department is on track towards their goal to reduce its overall footprint by approximately 90 percent by 2015. In addition, some areas cleaned up may become available for alternate uses (i.e. recreation, conservation, preservation, industrialization or development). Much of the work to reduce the complex's footprint occurred at the Savannah River Site in South Carolina and the Hanford Site in Washington, but cleanup continues across the complex. Footprint reduction is progressing well at the Hanford Site, supported predominantly through ARRA investment. To date, 994 km{sup 2} (384 mi{sup 2}) (65%) of footprint reduction have been achieved at Hanford, with a goal to achieve a 90% reduction by Fiscal Year 2015. The DOE EM and DOE Richland Operations Office, continue to make great progress to reduce the legacy footprint of the Hanford Site. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess facilities, both contaminated and uncontaminated, waste site cleanup activities, and debris pile removal. All of these activities can be accomplished with proven technologies and within established regulatory frameworks. Footprint reduction goals for Fiscal Year 2011 were exceeded, largely with the help of ARRA funding. As cleanup projects are completed and the total area requiring cleanup shrinks, overall costs for surveillance and maintenance operations and infrastructure services decrease. This work completion and decrease in funding requirements to maintain waste sites and antiquated facilities allows more focus on high priority site missions (i.e. groundwater remediation, tank waste disposition, etc.) and moves Site areas closer to transition from EM to the Legacy Management program. The progress in the Hanford footprint reduction effort will help achieve success in these other important mission areas. (authors)« less

  7. DEMONSTRATION BULLETIN: CIRCULATING BED COMBUSTOR - OGDEN ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    An evaluation of the Ogden Environmental Services (OES) circulating bed combustor (CBC) technology was carried out under the superfund Innovative Technology Evaluation (SITE) Program to determine its applicabilitY as an on-site treatment method for waste site cleanups, and more s...

  8. 75 FR 29786 - In the Matter of Act Clean Technologies, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ..., Inc., for use in cleanup operations in the Gulf of Mexico, and its purported request that field tests be conducted on the oil fluidizer technology; and (2) the purported results of field tests finding...

  9. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME I - DEMONSTRATION PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  10. SITE TECHNOLOGY PROFILES - 11TH EDITION, COMPACT DISC

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  11. INTERACTIVE ABANDONED MINE LANDS WORKSHOP SERIES - ACID MINE WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    The purpose of this interactive workshop is to present and discuss active and passive acid mine wastes cleanup technologies and to discuss the apparent disconnect between their development and their implementation. The workshop addressed five main barriers to implementing innovat...

  12. SITE TECHNOLOGY PROFILES, TENTH EDITION, VOLUME 3 - MEASUREMENT AND MONITORING PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its thirteenth year, is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine us...

  13. SITE TECHNOLOGY PROFILES - 11TH EDITION - DEMONSTRATION PROGRAM, VOLUME 1

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  14. Emergency Response and Management Activities

    EPA Pesticide Factsheets

    This quarterly report, highlighting accomplishments over the past several months, showcases EPA’s unique emergency response capabilities through the use of cutting-edge technologies and innovative cleanup strategies.

  15. Technical Report for the Demonstration of Wide Area ...

    EPA Pesticide Factsheets

    Report The U.S. Environmental Protection Agency in collaboration with the Department of Homeland Security conducted the “Wide-Area Urban Radiological Contaminant, Mitigation, and Cleanup Technology Demonstration” in Columbus, Ohio on June 22-25, 2015. Five wide-area radiological decontamination technologies (including strippable coatings, gels, and chemical foam technologies) were demonstrated on an urban building.

  16. Biological Agents

    EPA Pesticide Factsheets

    These chemicals or organisms increase the rate at which microorganisms break down complex compounds into simpler products (biodegredation). Two bioremediation technologies currently being used for oil spill cleanups are fertilization and seeding.

  17. SITE TECHNOLOGY PROFILES - 11TH EDITION, MEASUREMENT AND MONITORING PROGRAM, VOLUME 3

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program, now in its eleventh year is an integral part of EPA's research into alternative cleanup methods for hazardous waste sites around the nation. The SITE Program was created to encourage the development and routine use o...

  18. APPLICATIONS ANALYSIS REPORT: TOXIC TREATMENTS, IN-SITU STEAM/HOT-AIR STRIPPING TECHNOLOGY

    EPA Science Inventory

    This document is an evaluation of the performance of the Toxic Treatments (USA), Inc., (TTUSA) in situ steam/hot-air stripping technology and its applicability as an on-site treatment technique for hazardous waste site soil cleanup of volatile and semivolatile contaminants. Both ...

  19. Key NASA, USAF and federal officials sign a Memorandum of Agreement on groundwater cleanup

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Key participants in the signing of a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives, gather on top of the block house at Launch Complex 34. Motioning at right is Skip Chamberlain, program manager, Office of Science and Technology, U.S. Department of Energy. Others on the tour include Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally.

  20. Solidification/Stabilization Resource Guide

    EPA Pesticide Factsheets

    This Solidification/Stabilization Resource Guide is intended to inform site cleanup managers of recently-published materials such as field reports and guidance documents that address issues relevant to solidification/stabilization technologies.

  1. Campaigning for bioremediation. [Pencillium citrinum, Acremonium falciforme, Alternaria alternata, Ulocladium tuberculatum, Fusarium sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankenberger, W.T. Jr.; Karlson, U.

    Coaxing indigenous soil microorganisms to munch on toxics may prove the only permanent, cost-effective, and safe technique for cleanup of noxious pollutants like selenium, a widespread environmental contaminant in the western United States. The process from innovation in the laboratory to application in the field has taken more than bioremediation know-how. Media exposure and political and bureaucratic support have been necessary partners with sound science to bring Se cleanup technology as far along as it is today. Before describing their patented Se bioremediation process and chronicling the events that led to environmental cleanup in California, the authors give some backgroundmore » about Se, its geochemistry, and its biochemical and environmental behavior. The bioremediation process optimizes field conditions that allow soil fungi to methylate toxic Se compound to dimethylselenide, a non-toxic gas.« less

  2. State of the states on brownfields programs for cleanup and reuse of contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Brownfields consist of land and/or buildings that are abandoned or underutilized where expansion or redevelopment is complicated, in part, because of the threat of known or potential contamination. Federal and state laws governing the treatment of these sites may require remediation (cleanup) of property before redevelopment and can contribute to uncertain liability for property owners or users. Congress, in considering the reauthorization of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as Superfund, is interested in the issue of brownfields and in their potential return to productive use. As a result, the House Subcommittee on Commerce, Trademore » and Hazardous Materials of the Committee on Commerce requested the Office of Technology Assessment (OTA) to prepare a background paper on issues surrounding cleanup and redevelopment of brownfields.« less

  3. USEPA SITE PROGRAM APPROACH TO TECHNOLOGY TRANSFER AND REGULATORY ACCEPTANCE

    EPA Science Inventory

    The USEPA's SITE program was created to meet the demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. These sites often have multiple contaminants in soil and groundwater, and few...

  4. Key NASA, USAF and federal officials sign a Memorandum of Agreement on groundwater cleanup

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the site of Launch Complex 34, key participants sign a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives. Seated at the table, from left to right, are Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally.

  5. Key NASA, USAF and federal officials sign a Memorandum of Agreement on groundwater cleanup

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the site of Launch Complex 34, key participants sign a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives. Seated from left to right are Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally.

  6. Central Plateau Cleanup at DOE's Hanford Site - 12504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, Jonathan

    The discussion of Hanford's Central Plateau includes significant work in and around the center of the Hanford Site - located about 7 miles from the Columbia River. The Central Plateau is the area to which operations will be shrunk in 2015 when River Corridor cleanup is complete. This work includes retrieval and disposal of buried waste from miles of trenches; the cleanup and closure of massive processing canyons; the clean-out and demolition to 'slab on grade' of the high-hazard Plutonium Finishing Plant; installation of key groundwater treatment facilities to contain and shrink plumes of contaminated groundwater; demolition of all othermore » unneeded facilities; and the completion of decisions about remaining Central Plateau waste sites. A stated goal of EM has been to shrink the footprint of active cleanup to less than 10 square miles by 2020. By the end of FY2011, Hanford will have reduced the active footprint of cleanup by 64 percent exceeding the goal of 49 percent. By 2015, Hanford will reduce the active footprint of cleanup by more than 90 percent. The remaining footprint reduction will occur between 2015 and 2020. The Central Plateau is a 75-square-mile region near the center of the Hanford Site including the area designated in the Hanford Comprehensive Land Use Plan Environmental Impact Statement (DOE 1999) and Record of Decision (64 FR 61615) as the Industrial-Exclusive Area, a rectangular area of about 20 square miles in the center of the Central Plateau. The Industrial-Exclusive Area contains the 200 East and 200 West Areas that have been used primarily for Hanford's nuclear fuel processing and waste management and disposal activities. The Central Plateau also encompasses the 200 Area CERCLA National Priorities List site. The Central Plateau has a large physical inventory of chemical processing and support facilities, tank systems, liquid and solid waste disposal and storage facilities, utility systems, administrative facilities, and groundwater monitoring wells. As a companion to the Hanford Site Cleanup Completion Framework document, DOE issued its draft Central Plateau Cleanup Completion Strategy in September 2009 to provide an outline of DOE's vision for completion of cleanup activities across the Central Plateau. As major elements of the Hanford cleanup along the Columbia River Corridor near completion, DOE believed it appropriate to articulate the agency vision for the remainder of the cleanup mission. The Central Plateau Cleanup Completion Strategy and the Hanford Site Cleanup Completion Framework were provided to the regulatory community, the Tribal Nations, political leaders, the public, and Hanford stakeholders to promote dialogue on Hanford's future. The Central Plateau Cleanup Completion Strategy describes DOE's vision for completion of Central Plateau cleanup and outlines the decisions needed to achieve the vision. The Central Plateau strategy involves steps to: (1) contain and remediate contaminated groundwater, (2) implement a geographic cleanup approach that guides remedy selection from a plateau-wide perspective, (3) evaluate and deploy viable treatment methods for deep vadose contamination to provide long-term protection of the groundwater, and (4) conduct essential waste management operations in coordination with cleanup actions. The strategy will also help optimize Central Plateau readiness to use funding when it is available upon completion of River Corridor cleanup projects. One aspect of the Central Plateau strategy is to put in place the process to identify the final footprint for permanent waste management and containment of residual contamination within the 20-square-mile Industrial-Exclusive Area. The final footprint identified for permanent waste management and containment of residual contamination should be as small as practical and remain under federal ownership and control for as long as a potential hazard exists. Outside the final footprint, the remainder of the Central Plateau will be available for other uses consistent with the Hanford Comprehensive Land-Use Plan (DOE 1999), while maintained under federal ownership and control. (author)« less

  7. KSC-00pp0102

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  8. KSC00pp0101

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  9. KSC-00pp0101

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Greg Beyke, with Current Environmental Solutions, talks to representatives from environmental and federal agencies about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  10. KSC00pp0102

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, representatives from environmental and Federal agencies head for the block house during presentations about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  11. Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks

    PubMed Central

    Karn, Barbara; Kuiken, Todd; Otto, Martha

    2009-01-01

    Objective Although industrial sectors involving semiconductors; memory and storage technologies; display, optical, and photonic technologies; energy; biotechnology; and health care produce the most products that contain nanomaterials, nanotechnology is also used as an environmental technology to protect the environment through pollution prevention, treatment, and cleanup. In this review, we focus on environmental cleanup and provide a background and overview of current practice; research findings; societal issues; potential environment, health, and safety implications; and future directions for nanoremediation. We do not present an exhaustive review of chemistry/engineering methods of the technology but rather an introduction and summary of the applications of nanotechnology in remediation. We also discuss nanoscale zerovalent iron in detail. Data sources We searched the Web of Science for research studies and accessed recent publicly available reports from the U.S. Environmental Protection Agency and other agencies and organizations that addressed the applications and implications associated with nanoremediation techniques. We also conducted personal interviews with practitioners about specific site remediations. Data synthesis We aggregated information from 45 sites, a representative portion of the total projects under way, to show nanomaterials used, types of pollutants addressed, and organizations responsible for each site. Conclusions Nanoremediation has the potential not only to reduce the overall costs of cleaning up large-scale contaminated sites but also to reduce cleanup time, eliminate the need for treatment and disposal of contaminated soil, and reduce some contaminant concentrations to near zero—all in situ. Proper evaluation of nanoremediation, particularly full-scale ecosystem-wide studies, needs to be conducted to prevent any potential adverse environmental impacts. PMID:20049198

  12. Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico.

    PubMed

    Sammarco, Paul W; Kolian, Stephan R; Warby, Richard A F; Bouldin, Jennifer L; Subra, Wilma A; Porter, Scott A

    2016-04-01

    During/after the BP/Deepwater Horizon oil spill, cleanup workers, fisherpersons, SCUBA divers, and coastal residents were exposed to crude oil and dispersants. These people experienced acute physiological and behavioral symptoms and consulted a physician. They were diagnosed with petroleum hydrocarbon poisoning and had blood analyses analyzed for volatile organic compounds; samples were drawn 5-19 months after the spill had been capped. We examined the petroleum hydrocarbon concentrations in the blood. The aromatic compounds m,p-xylene, toluene, ethylbenzene, benzene, o-xylene, and styrene, and the alkanes hexane, 3-methylpentane, 2-methylpentane, and iso-octane were detected. Concentrations of the first four aromatics were not significantly different from US National Health and Nutritional Examination Survey/US National Institute of Standards and Technology 95th percentiles, indicating high concentrations of contaminants. The other two aromatics and the alkanes yielded equivocal results or significantly low concentrations. The data suggest that single-ring aromatic compounds are more persistent in the blood than alkanes and may be responsible for the observed symptoms. People should avoid exposure to crude oil through avoidance of the affected region, or utilizing hazardous materials suits if involved in cleanup, or wearing hazardous waste operations and emergency response suits if SCUBA diving. Concentrations of alkanes and PAHs in the blood of coastal residents and workers should be monitored through time well after the spill has been controlled.

  13. Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup

    EPA Pesticide Factsheets

    This primer explains the phytoremediation process, discusses the potential advantages and considerations in selecting phytoremediation to clean up brownfields sites, and provides information on additional resources about phytoremediation.

  14. GREEN TECHNOLOGIES SOLUTIONS-OIL RECOVERY (GTS-OR)

    EPA Pesticide Factsheets

    Technical product bulletin: this surface washing agent used in oil spill cleanups may clean oil from beaches, rocks, riprap, pilings, and seawalls. May be used in freshwater, estuarine, and marine environments.

  15. Oil Spills

    MedlinePlus

    ... oil, assessing shoreline impact, and evaluating accepted cleanup technologies. Students and teachers can find a variety of oil spill-related educational resources in our Education section . For stories, news, and updates about current, notable, and historical ...

  16. Decontamination Efficacy of Three Commercial-Off-The-Shelf (COTS) Sporicidal Disinfectants on Medium-Sized Panels Contaminated with Surrogate Spores of Bacillus anthracis

    PubMed Central

    Sabol, Jonathan P.

    2014-01-01

    In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation’s remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm), resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2) panels of steel, pressure-treated (PT) lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types. PMID:24940605

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, N.

    New technologies were used to cost-effectively remediate several hundred feet of radioactively contaminated subsurface drain pipes at the General Motors site in Adrian, Michigan, and to conduct post-remedial verification surveys. Supplemental cleanup criteria were applied to inaccessible areas of the project, and inexpensive treatment technology was used to treat wastewater generated. Application of these methods resulted in substantial cost savings.

  18. EPA Superfund Records of Decision (RODs) for Region 7: Iowa, Kansas, Missouri, and Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  19. EPA Superfund Records of Decision (RODs) for Region 10: Alaska, Idaho, Oregon, and Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  20. The GETE approach to facilitating the commercialization and use of DOE-developed environmental technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, T.N.

    The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.

  1. Phytoremediation: novel approaches to cleaning up polluted soils.

    PubMed

    Krämer, Ute

    2005-04-01

    Environmental pollution with metals and xenobiotics is a global problem, and the development of phytoremediation technologies for the plant-based clean-up of contaminated soils is therefore of significant interest. Phytoremediation technologies are currently available for only a small subset of pollution problems, such as arsenic. Arsenic removal employs naturally selected hyperaccumulator ferns, which accumulate very high concentrations of arsenic specifically in above-ground tissues. Elegant two-gene transgenic approaches have been designed for the development of mercury or arsenic phytoremediation technologies. In a plant that naturally hyperaccumulates zinc in leaves, approximately ten key metal homeostasis genes are expressed at very high levels. This outlines the extent of change in gene activities needed in the engineering of transgenic plants for soil clean-up. Further analysis and discovery of genes for phytoremediation will benefit from the recent development of segregating populations for a genetic analysis of naturally selected metal hyperaccumulation in plants, and from comprehensive ionomics data--multi-element concentration profiles from a large number of Arabidopsis mutants.

  2. KSC-00pp0104

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  3. KSC00pp0100

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies

  4. KSC00pp0104

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, the Six-Phase Soil Heating site that is involved in a groundwater cleanup project can be seen. The project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six-Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background is the block house for the complex. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  5. KSC-00pp0100

    NASA Image and Video Library

    2000-01-25

    At Launch Complex 34, Cape Canaveral Air Station, several studies are under way for groundwater cleanup of trichloroethylene at the site. Shown here is monitoring equipment for one of the methods, potassium permanganate oxidation. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program in the 60s. The environmental research project involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA, who formed the Interagency NDAPL Consortium (IDC), to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. KSC hosted a two-day conference that presented information and demonstrations of the three technologies for representatives from environmental and federal agencies

  6. Social conflict and the formation of emergent groups in a technological disaster: The Exxon Valdez oil spill and the response of residents in the area of Homer, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Button, G.V.

    1993-01-01

    To date there has been a paucity of research on the formation of emergent groups in the wake of technological disasters. A majority of researchers have contended that whereas natural disasters engender social cohesion and stimulate the formation of emergent groups, technological disasters have the tendency to constrain such formation because of the social conflict which follows in the wake of a technological disaster. This thesis challenges that assumption and examines both the nature of the social conflict and the formation of emergent groups that occurred in the aftermath of this country's largest environmental disaster: the Exxon Valdez oil spill.more » An anthropological perspective is employed. The investigator examines the formation of such groups in the area of Homer, Alaska. The differential response to the disaster and the ensuing social conflict is examined by a combination of participant-observation methods, formal and informal, in-depth interviews, and archival records. This investigation reveals that although there was considerable social conflict, there was also sufficient social cohesion to promote the formation of emergent group responses to the oil spill and the cleanup that followed. Moreover, it finds that the resultant conflict and the formation of such groups was attributable in part to a widely reported sense of a loss of control' and considerable uncertainty about many of the facts' surrounding the spill. This included uncertainty about who was ultimately in control of the cleanup and which clean-up technologies and remediation efforts were most urgent and useful. This thesis concludes that, contrary to the expectations of most social scientists, emergent groups can form in the wake of a technological disaster. Moreover, given the sense of urgency and the common perception of disaster victims that authorities are both unable and unwilling to respond to disasters, the formation of such groups is inevitable.« less

  7. Activities with Argentina. Spring 1999. A U.S. Department of Energy Cooperative Program with the National Atomic Energy Commission of the Argentine Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-06-01

    In 1989, the US Department of Energy (DOE) responded to the need to redirect resources from weapons production to environmental restoration and waste management by establishing the Office of Environmental Management (EM) and delegated to this office the responsibility of cleaning up the US nuclear weapons complex. Now in its eight year, EM`s mission has three central facets: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of waste from past and current operations; and (3) to develop and implement innovative technologies for environmental cleanup. To this end, EM has established domestic andmore » international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industries meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas.« less

  8. Superfund: conscripting industry support for environmental cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulick, T.E.

    The Superfund is notable in its attempt to charge the costs of environmental damage to those commercial interests that contributed to the damage. The approach should appeal to the Reagan administration's fiscal austerity program. It realizes the attendant costs to the benefits of our technologically productive society and recognizes that those costs must be paid either as environmental precautions or as cleanup costs, property damage, and disease. This article examines the major problems addressed by Superfund, describing the major provisions of the Act, discussing previously available remedies, and considering some of the problems that may arise with implementation. 126 references.

  9. Key NASA, USAF and federal officials sign a Memorandum of Agreement on groundwater cleanup

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Walter W. Kovalick Jr., Ph.D., director of Technology Innovation Office for the U.S. Environmental Protection Agency, addresses representatives from Kennedy Space Center, the 45th Space Wing, and various federal environmental agencies gathered to attend a Memorandum of Agreement (MOA) signing, taking place at the site of Launch Complex 34. The MOA formalizes the cooperative efforts of the federal agencies in ground-water cleanup initiatives. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally. Other attendees included Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; and Roy Bridges Jr., director of John F. Kennedy Space Center.

  10. Tanks Focus Area annual report FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for overmore » 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zygarlicke, C J; Schmidt, D D; Olson, E S

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area ofmore » developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.« less

  12. 77 FR 4799 - Environmental Management Site-Specific Advisory Board, Paducah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ...] Recommendation 12-02: Pro Nuclear Future Use for Paducah Gaseous Diffusion Plant Site Public Comments Adjourn... clean-up science and technology activities). Comments outside of the scope may be submitted via written...

  13. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. T. Brown; G. Matthern; A. Glenn

    The Metals and Radionuclides Product Line of the US Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted andmore » is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies.« less

  14. NASA Technology Evaluation for Environmental Risk Mitigation Remediation Technology Collaboration Development

    NASA Technical Reports Server (NTRS)

    Romeo, James

    2013-01-01

    NASA is committed to finding solutions to agency cleanup problems that are better, cheaper, and more effective than the status quo. Unfortunately, some potential solutions involve innovative technologies for which NASA remediation managers may not have a high level of understanding or confidence. Since 2004, NASA's Stennis Space Center (SSC) in Mississippi has been pumping groundwater contaminated with trichloroethylene (TCE) and other halogenated volatile organic compounds (HVOC) from their cleanup location designated "Area G" through extraction wells to an aboveground treatment system. Over time, however, the effectiveness of this treatment strategy has diminished and an alternative approach is needed. In 2012, professionals from NASA's Principal Center for Technology Evaluation for Environmental Risk Mitigation (TEERM) introduced SSC managers to an innovative technology for enhancing the performance of SSC's existing pump and treat system. The technology, generally referred to as in situ chemical oxidation (ISCO), involves slowly and continuously injecting a strong but safe chemical oxidant into the groundwater. Treatment is enhanced by a "surfactant-type effect" which causes residual contamination from saturated soil to be released into the dissolved-phase where it can be readily oxidized. Any dissolved-phase contamination that was not oxidized can be collected by the extraction well network and treated aboveground. SSC was not familiar with the technology so to increase their confidence, TEERM identified a contractor who was willing to demonstrate their product and process at a significantly reduced price. An initial, small-scale demonstration of ISCO began at sse in March 2012 and completed in August 2012. This successful demonstration was followed by three larger-scale ISCO demonstrations between August and December 2012. The contractor's innovative Continuous Injection System (CIS) incorporated "green" and sustainable technologies and practices. A slow injection rate was maintained autonomously by the CIS, eliminating the need for multiple mobilizations of personnel and powered equipment. The CIS was calibrated to deliver only as much reagent as the formation would accept without "short circuiting", minimizing material waste. Public utility water pressure was used to mix, dilute, and inject the reagent. NASA personnel were trained to operate and maintain the system and remote monitoring and injection control capabilities were developed, further reducing the need for contractor mobilizations to the site. An integrated solar photovoltaic panel was used to power the control valves and web monitoring telemetry. SSC provided hydrogen peroxide for the process using their existing supplier for the aboveground pump and treat systems. The only consumable required from the contractor was their proprietary activator to catalyze SSC's peroxide.

  15. Environmental Stewardship at the Savannah River Site: Generations of Success - 13212

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Bergren, Christopher L.; Gaughan, Thomas F.

    2013-07-01

    Approximately sixty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. SRS production operations impacted air, soil, groundwater, ecology, and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a commitment to environmental stewardship. The Site boasts many environmental firsts. Notably, SRS was the first major Department of Energy (DOE) facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early generation of work set the stagemore » for subsequent efforts. Since that time, the scientists and engineers at SRS pro-actively identified environmental problems and developed and implemented effective and efficient environmental management and remediation solutions. This second generation, spanning the 1980's through the 2000's, is exemplified by numerous large and small cleanup actions to address metals and radionuclides, solvents and hydrocarbons, facility and area decommissioning, and ecological restoration. Recently, a third generation of environmental management was initiated as part of Enterprise SRS. This initiative to 'Develop and Deploy Next Generation Cleanup Technologies' formalizes and organizes the major technology matching, development, and implementation processes associated with historical SRS cleanup success as a resource to support future environmental management missions throughout DOE. The four elements of the current, third generation, effort relate to: 1) transition from active to passive cleanup, 2) in situ decommissioning of large nuclear facilities, 3) new long term monitoring paradigms, and 4) a major case study related to support for recovery and restoration of the Japanese Fukushima-Daiichi nuclear power plant and surrounding environment. (authors)« less

  16. Progress on Cleaning Up the Only Commercial Nuclear Fuel Reprocessing Facility to Operate in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T. J.; MacVean, S. A.; Szlis, K. A.

    2002-02-26

    This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less

  17. IDENTIFICATION OF COMPOUNDS IN SOUTH AFRICAN STREAM SAMPLES USING ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory

    Analytical methods for target compounds usually employ clean-up procedures to remove potential mass interferences and utilize selected ion recording (SIR) to provide low detection limits. Such an approach, however, could overlook non-target compounds that might be present and tha...

  18. PHYTOREMEDIATION OF ORGANIC AND NUTRIENT CONTAMINANTS

    EPA Science Inventory

    Phytoremediation, the use of vegetation for the in situ treatment of contaminated soils and sediments, is an emerging technology that promises effective and inexpensive cleanup of certain hazardous waste sites. otential applications of phytoremediation would be bioremediation of ...

  19. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficialmore » engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)« less

  20. Mixing In a Compounding Pharmacy in the 21st Century.

    PubMed

    Standridge, Rob

    2015-01-01

    When it comes to combining ingredients for topical preparations, compounding pharmacists utilize either the manual methods such as a spatula and pill tile or a mortar and pestle, typically an electronic mortar and pestle. If a topical preparation must be pre-ground or requires trituration, or any level of particle-size reduction, historically the manual method of combining ingredients in such a preparation would include the initial use of a mortar and pestle; however with micronized substances this is not as much a concern today as in the past. There is, of course, the concern of a lack of reproducibility, knowing that each compounder might utilize the equipment differently, would mix for varying times, and would also mix with varying amounts of physical pressure applied to the pestle. If the discipline of uniform usage is great enough in the lab, this method could probably produce consistent results, but, because of the preparation and cleanup time and the fact that newer technology is available, this method is not recommended as the common compounding method in a compounding pharmacy that does more than a handful of compounded topical preparations per week. This article is not meant to say these methods are not appropriate, but, rather, to point out that newer technology is available and might be preferable in order to provide a cleaner, more efficient, and more reproducible lab environment.

  1. In situ sediment treatment using activated carbon: a demonstrated sediment cleanup technology.

    PubMed

    Patmont, Clayton R; Ghosh, Upal; LaRosa, Paul; Menzie, Charles A; Luthy, Richard G; Greenberg, Marc S; Cornelissen, Gerard; Eek, Espen; Collins, John; Hull, John; Hjartland, Tore; Glaza, Edward; Bleiler, John; Quadrini, James

    2015-04-01

    This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC-globally recognized as one of the most effective sorbents for organic contaminants-were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when applied correctly, in situ treatment via contaminant sequestration and immobilization using a sorbent material such as AC has progressed from an innovative sediment remediation approach to a proven, reliable technology. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  2. The NOXSO clean coal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% ofmore » the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).« less

  3. COMPARISON OF THE EXTENT OF TREATMENT OF MTBE AND BENZENE BY ACTIVE REMEDIAL TECHNOLOGY AT UST SITES IN KANSAS

    EPA Science Inventory

    Data were collected from 63 sites in Kansas where technology for active cleanup of gasoline contamination had been implemented; SVE and AS was used at 39 sites, SVE alone at 11 sites, SVE an AS and excavation at 6 sites, SVE and product recovery at 3 sites, excavation alone at 2 ...

  4. Horizontal directional drilling: a green and sustainable technology for site remediation.

    PubMed

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  5. CONTAMINANTS AND REMEDIAL OPTIONS AT WOOD PRESERVING SITES

    EPA Science Inventory

    This document provides information that facilitates characterization of the site and selection of treatment technologies at wood preserving sites, to meet the regulations’ acceptable cleanup levels. It does not provide risk-assessment information or policy guidance related to det...

  6. EPA superfund Records of Decision (RODs) for region 3: New Jersey, New York, Puerto Rico, and Virgin Islands. Irregular report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  7. EPA superfund Records of Decision (RODs) for region 7: Iowa, Kansas, Missouri, and Nebraska. Irregular report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  8. EPA superfund Records of Decision (RODs) for region 3: Delaware, Washington DC, Maryland, Pennsylvania, and Virginia. Irregular report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  9. EPA Superfund Records of Decision (RODs) for Region 1: Connecticut, Maine, Massachussetts, New Hampshire, Rhode Island, and Vermont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  10. EPA Superfund Records of Decision (RODs) for Region 3: Delaware, Washington DC, Maryland, Pennsylvania, and Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  11. EPA superfund Records of Decision (RODs) for region 1: Connecticut, Maine, Massachussetts, New Hampshire, Rhode Island, and Vermont. Irregular report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  12. EPA Superfund Records of Decision (RODs) for Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  13. EPA superfund Records of Decision (RODs) for region 6: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. Irregular report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  14. EPA superfund Records of Decision (RODs) for region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin. Irregular report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  15. EPA superfund Records of Decision (RODs) for region 8: Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming. Irregular report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  16. EPA Superfund Records of Decision (RODs) for Region 2: New Jersey, New York, Puerto Rico, and Virgin Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  17. EPA Superfund Records of Decision (RODs) for Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  18. EPA Superfund Records of Decision (RODs) for Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  19. EPA Superfund Records of Decision (RODs) for Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  20. EPA Superfund Records of Decision (RODs) for Region 9: Arizona, California, Hawaii, Nevada, American Samoa, and Guam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    The purpose of an EPA Record of Decision is to evaluate a Superfund Site with the goal of protecting human health and the environment while ensuring consistency of evaluations in contamination and clean-up of all Superfund sites. The ROD is a public document signed by the appropriate Regional Administrator which details cleanup, cost estimates, and EPA`s responsiveness to the public comment summary. The ROD may be litigated, thus it is important to have all current updates to the signed EPA decision. The ROD may be amended with an Amendment or supplemented by an Explanation of Significant Difference (ESD). A Superfundmore » Site may have multiple RODs, as each Superfund Site may be further redefined as Operable Units and Events. This allows EPA`s decisions to evolve as new technology presents itself. Average clean-up time for a Superfund Site can range from 12 to 100 years.« less

  1. Novel fracture technology proves marginal Viking prospect economic, part II: Well clean-up, flowback and testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haidar, S.; Rylance, M.; Tybero, G.

    1996-12-31

    Having completed both fracture treatments as discussed in a companion paper, this paper continues on to describe the post fracture shut-in, clean-up and well testing operations that took place on the Viking Wx exploration well 49/17-12. These operations involved the removal of Resin Coated Proppant (RCP) from the wellbore, via Coiled Tubing (CT), through the use of a specially designed jetting nozzle. The RCP pack stability at a concentration of 3.0 lb/ft{sup 2} (as per planned design) had already been tested in a flowback cell. The use of a Surface Read-Out (SRO) gauge, combined with gas, water and proppant flowmore » rates as well as the viscosity of fracturing fluids returns, enabled real time calculation of the drag forces, on the proppant pack, during clean-up. The flow rate, in the field, was controlled such that the calculated drag forces remained below those observed in the laboratory. Following the clean-up a flow and build-up test was conducted, to evaluate the fracture half length and fracture conductivity, from which a Pseudo-radial skin was calculated. The Non-Darcy effects in the fracture were also evaluated, and finally the short term and long term well deliverabilities were assessed.« less

  2. Citizen Contributions to the Closure of High-Level Waste (HLW) Tanks 18 and 19 at the Department of Energy's (DOE) Savannah River Site (SRS) - 13448

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawless, W.F.

    2013-07-01

    Citizen involvement in DOE's decision-making for the environmental cleanup from DOE's management of its nuclear wastes across the DOE complex has had a positive effect on the cleanup of its SRS site, characterized by an acceleration of cleanup not only for the Transuranic wastes at SRS, but also for DOE's first two closures of HLW tanks, both of which occurred at SRS. The Citizens around SRS had pushed successfully for the closures of Tanks 17 and 20 in 1997, becoming the first closures of HLW tanks under regulatory guidance in the USA. However, since then, HLW tank closures ceased duemore » to a lawsuit, the application of new tank clean-up technology, interagency squabbling between DOE and NRC over tank closure criteria, and finally and almost fatally, from budget pressures. Despite an agreement with its regulators for the closure of Tanks 18 and 19 by the end of calendar year 2012, the outlook in Fall 2011 to close these two tanks had dimmed. It was at this point that the citizens around SRS became reengaged with tank closures, helping DOE to reach its agreed upon milestone. (authors)« less

  3. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    EPA Science Inventory

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  4. Special Focus Areas for Hazardous Waste Cleanups under the Resource Conservation and Recovery Act (RCRA)

    EPA Pesticide Factsheets

    In order to manage the new and changing needs of the RCRA Corrective Action Program, EPA is constantly exploring program enhancements, alternate exposure pathways, and new technologies available to protect human health and environment.

  5. Environmental Remediation Technologies Derived from Space Industry Research

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Sauser, Brian; Helminger, Andrew

    2004-01-01

    Beginning in the 1950s and 1960s, an abundance of effort and initiative was focused on propelling the space industry outward for planetary exploration and habitation. During these early years, the push to take space science to new levels indirectly contributed to the evolution of another science field that would not fully surface until the early 1980s, environmental remediation. This field is associated with the remediation or cleanup of environmental resources such as groundwater, soil, and sediment. Because the space-exploration initiative began prior to the establishment of the U.S. Environmental Protection Agency (EPA) in December of 1970, many NASA Centers as well as space-related support contractors allowed for the release of spent chemicals into the environment. Subsequently, these land owners have been directed by the EPA to responsibly initiate cleanup of their impacted sites. This paper will focus on the processes and lessons learned with the development, testing, and commercialization initiatives associated with four remediation technologies. The technologies include installation techniques for permeable reactive barriers (PRBs), the use of ultrasound to improve long-term performance of PRBs, emulsified zero-valent iron for product-level solvent degradation, and emulsion technologies for application to metal and polychlorinated biphenyl contaminated media. Details of the paper cover technology research, evaluation, and testing; contracts and grants; and technology transfer strategies including patenting, marketing, and licensing.

  6. Coast Guard's Response to Spilled Oil

    ERIC Educational Resources Information Center

    Ard, R. W., Jr.

    1976-01-01

    The Coast Guard utilizes a number of monitoring detectors, sensors, and techniques to find, recover and identify oil spills. Discussed in this article are in-situ and airborne sensors, systems developed to provide clean-up capability such as air deployable anti-pollution transfer system (ADAPTS), and techniques which will determine the source of a…

  7. U-PLANT GEOGRAPHIC ZONE CLEANUP PROTOTYPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROMINE, L.D.

    2006-02-01

    The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as ''cleanup items'') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is availablemore » to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will provide a focal point for integrating UPZ actions, including field cleanup activities, waste staging and handling, and post-cleanup monitoring and institutional controls.« less

  8. Models Show Subsurface Cracking May Complicate Groundwater Cleanup at Hazardous Waste Sites

    EPA Science Inventory

    Chlorinated solvents like trichloroethylene contaminate groundwater at numerous sites nationwide. This modeling study, conducted at the Air Force Institute of Technology, shows that subsurface cracks, either natural or due to the presence of the contaminant itself, may result in...

  9. SITE-SPECIFIC MANAGEMENT APPROACHES AND REDEVELOPMENT TOOLS - TECHNOLOGIES (SMARTTECH)

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) and the German Federal Ministry of Education and Research (BMBF) continues an ongoing partnership to gain an understanding of each other's approach to the cleanup of chemical contamination in order to protect human health an...

  10. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground-water contamination by nonaqueous phase liquids poses one of the greatest remedial challenges In the field of environmental engineering. Denser-than-water nonaqueous phase liquids (DNAPLs) are especially problematic due to their tow water solubility, high density, and capi...

  11. Materials technology for coal-conversion processes. Seventeenth quarterly report, January-March 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellingson, W. A.

    1979-01-01

    Studies of slag attack on refractories were continued, utilizing conditions relevant to MHD applications. Addition of 10 wt % K/sub 2/O seed to the slag did not increase its corrosive effect on the refractories tested. A hot gas-stream cleanup erosion-monitoring system using an ANL-developed nondestructive ultrasonic system was installed at the Morgantown Energy Technology Center (METC) during this period and was 75% completed. Characteristic-slope values obtained from broadband and resonant-band acoustic-emission transducers during rapid heating of a 95% Al/sub 2/O/sub 3/ refractory panel are consistent with theory. Corrosion information on type and thickness of corrosion-product layers was obtained on Incoloymore » 800, 310 stainless steel, Inconel 671 and 871 and 982/sup 0/C. Fluid-bed corrosion studies involving sulfation accelerators have shown that addition of 0.3 mol % CaCl/sub 2/ has no significant effect on corrosion behavior of the alloys studied. However, 0.5 mol % NaCl or 1.9 mol % Na/sub 2/CO/sub 3/ increases the corrosion rates of most materials. Failure analyses were performed on components from the slagging gasifier and liquefaction unit at the Grand Forks Energy Technology Center, and a ball valve from the METC Valve Dynamic Test Unit.« less

  12. Technology Catalogue. First edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, asmore » well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamboj, Sunita; Durham, Lisa A.

    A post-remediation radiological dose assessment was conducted for the Formerly Utilized Sites Remedial Action Program (FUSRAP) Linde Site by using the measured residual concentrations of the radionuclides of concern following the completion of the soils remedial action. The site’s FUSRAP-related contaminants of concern (COCs) are radionuclides associated with uranium processing activities conducted by the Manhattan Engineer District (MED) in support of the Nation’s early atomic energy and weapons program and include radium-226 (Ra-226), thorium-230 (Th-230), and total uranium (Utotal). Remedial actions to address Linde Site soils and structures were conducted in accordance with the Record of Decision for the Lindemore » Site, Tonawanda, New York (ROD) (USACE 2000a). In the ROD, the U.S. Army Corps of Engineers (USACE) determined that the cleanup standards found in Title 40, Part 192 of the Code of Federal Regulations (40 CFR Part 192), the standards for cleanup of uranium mill sites designated under the Uranium Mill Tailings Radiation Control Act (UMTRCA), and the Nuclear Regulatory Commission (NRC) standards for decommissioning of licensed uranium and thorium mills, found in 10 CFR Part 40, Appendix A, Criterion 6(6), are Applicable or Relevant and Appropriate Requirements (ARARs) for cleanup of MED-related contamination at the Linde Site. The major elements of this remedy will involve excavation of the soils with COCs above soil cleanup levels and placement of clean materials to meet the other criteria of 40 CFR Part 192.« less

  14. Activated Carbon-Supported Palladized Iron Nanoparticles: Applications to Contaminated Site Remediation

    EPA Science Inventory

    This chapter describes the potential of nanotechnology to provide new solutions to managing and cleaning our contaminated water and soil and improving the performance of conventional technologies used in cleanup efforts. Our initial efforts have been focused on key pollutants of ...

  15. Green Remediation: Incorporating Sustainable Practices into Remediation of Contaminated Sites (Technology Primer)

    EPA Science Inventory

    As part of its mission to protect human health and the environment, the U. S. Environmental Protection Agency is dedicated to developing and promoting innovative cleanup strategies that restore contaminated sites to productive use, reduce associated costs, and promote environment...

  16. FIELD APPLICATIONS OF ROBOTIC SYSTEMS IN HAZARDOUS WASTE SITE OPERATIONS

    EPA Science Inventory

    The cleanup of hazardous waste sites is a challenging and complex field that offers numerous opportunities for the application of robotic technology. he contamination problem, long in the making, will take decades to resolve. ur ingenuity in developing robotic tools to assist in ...

  17. Hazardous Waste Cleanup: Alcatel-Lucent USA Incorporated, in Murray Hill, New Jersey

    EPA Pesticide Factsheets

    Alcatel-Lucent, formerly known as Lucent Technologies Inc., or its predecessors including AT&T Bell Laboratories (Bell Lab), has occupied the Site since the 1940s. The site consists of approximately 200 acres and located at 600 Mountain Avenue, Murray

  18. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground water contamination by non-aqueous phase liquids poses one of the greatest remedial challenges in the field of environmental engineering. Denser-than-water non-aqueous phase liquids (DNAPLs) are especially problematic due to their low water solubility, high density, an...

  19. Treatment Technologies for Site Cleanup: Annual Status Report, Twelfth Edition

    EPA Pesticide Factsheets

    The ASR is based on the analysis of over nearly 3,000 RODs signed since 1982 at 1,536 NPL sites. The online version includes new downloadable spreadsheets with the data for several of the key tables and figures in the report.

  20. Hazcon Solidification Process, Douglassville, Pa.: Applications Analysis Report

    EPA Science Inventory

    This document is an evaluation of the HAZCON solidification technology and its applicability as an on-site treatment method for waste site cleanup. A Demonstration was held at the Douglassville, Pennsylvania Superfund site in the fall of 1987. Operational data and sampling and an...

  1. A Universal Nutrient Application Strategy For The Bioremediation Of Oil-Polluted Beaches

    EPA Science Inventory

    Biostimulation by nutrient application is a viable technology for restoring oil-contaminated beaches. Maximizing the nutrient residence time is key for achieving a rapid cost-effective cleanup. We considered the nutrient injection strategy through a perforated pipe at the high ti...

  2. KSC-00pp0103

    NASA Image and Video Library

    2000-01-25

    On top of the block house at Launch Complex 34, representatives from environmental and Federal agencies hear from Laymon Gray, with Florida State University, about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background (left) can be seen the cement platform and walkway from the block house to the pad. Beyond it is the Atlantic Ocean. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  3. KSC00pp0103

    NASA Image and Video Library

    2000-01-25

    On top of the block house at Launch Complex 34, representatives from environmental and Federal agencies hear from Laymon Gray, with Florida State University, about the environmental research project that involves the Department of Defense, Environmental Protection Agency, Department of Energy and NASA in a groundwater cleanup effort. Concentrations of trichloroethylene solvent have been identified in the soil at the complex as a result of cleaning methods for rocket parts during the Apollo Program, which used the complex, in the 60s. The group formed the Interagency NDAPL Consortium (IDC) to study three contamination cleanup technologies: Six Phase Soil Heating, Steam Injection and In Situ Oxidation with Potassium Permanganate. All three methods may offer a way to remove the contaminants in months instead of decades. In the background (left) can be seen the cement platform and walkway from the block house to the pad. Beyond it is the Atlantic Ocean. KSC hosted a two-day conference that presented information and demonstrations of the three technologies being tested at the site

  4. An updated ciguatoxin extraction method and silica cleanup for use with HPLC-MS/MS for the analysis of P-CTX-1, PCTX-2 and P-CTX-3.

    PubMed

    Meyer, Lauren; Carter, Steve; Capper, Angela

    2015-12-15

    Ciguatera fish poisoning is a debilitating human neuro-intoxication caused by consumption of tropical marine organisms, contaminated with bioaccumulated ciguatoxins (CTXs). The growing number of cases coupled with the high toxicity of CTXs makes their reliable detection and quantification of paramount importance. Three commonly occurring ciguatoxins, P-CTX-1, 2 and 3 from five different ciguatoxic Spanish mackerel (Scomberomorus commerson), were used to assess the effectiveness of different extraction techniques: homogenization (high powered blending vs. ultrasonication); C-18 column sizes (500 mg vs. 900 mg); and a novel HILIC SPE cleanup. Despite minor differences, blending and sonication proved equally effective. Larger 900 mg columns offered a greater extraction efficiency, increasing detected P-CTX-1 by 37% (P < 0.001). The newly adapted cleanup was highly effective at reducing co-eluting phospholipids thereby reducing matrix effects and increasing detectable CTXs by HPLC-MS/MS. Silica cleanup extraction efficiencies were also compared between the highly effective and validated ciguatoxin rapid extraction method (CREM) and current best practice extraction method employed by Queensland Health (QH). Overall, the QH protocol proved more effective, especially when paired with the newly adapted cleanup, as this increased the amount of extracted P-CTX-1 by 46% (P < 0.01), P-CTX-2 by 10% and P-CTX-3 by 71% (P = 0.001). This study suggests the QH protocol utilizing a 900 mg C-18 column and newly adapted HILIC SPE cleanup was most effective at extracting P-CTX-1, -2, -3. Specifically P-CTX-1, the primary ciguatoxin congener of concern due to its extremely high potency and an ability to cause CFP at 0.1 μg/kg following consumption of carnivorous fish flesh. Despite being more time intensive (an additional 85 min per batch of 12 samples), this will be especially effective for assessing lower toxin burdens, which may be near the limit of detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gasification Product Improvement Facility (GPIF). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C.D.

    This paper presents a comparative techno-economic analysis of four emerging conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The processing steps include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation.

  7. Science plus management equals successful remediation -- A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehlman, M.D.; Rogers, D.T.; Payne, F.C.

    In the past, owners of contaminated sites attempted to remediate as quickly as possible, usually by excavating contaminated soil or pumping and treating contaminated groundwater. Often, they started remediation before identifying all potential types and sources of contaminants, and before conducting a thorough hydrogeologic study. Such premature action usually resulted in the selected remedy not working, the contamination spreading, or unnecessary remedial activities. Today, successful site remediation is recognized as a complex and time-consuming undertaking--requiring a combination of careful scientific study, effective negotiation with the regulatory agencies and skillful management of multidisciplinary efforts. A case study involving a Brownfields sitemore » in southeastern Michigan clearly illustrates the elements of successful remediation. The site`s soil was contaminated with polychlorinated biphenyls (PCBs) and its groundwater with a variety of chlorinated solvents. The original estimate for remediation had exceeded $30 million. Several phases of investigation were conducted to evaluate the nature and sources of contaminants, the site`s hydrogeology, potential risks to human health and the environment, and feasible remedial technologies. Multiple cleanup criteria were established for different affected areas based on the results of the investigations, changes that were taking place with the state cleanup regulations and standards and subsequent negotiations with state and federal regulators. Innovative remedial technologies were selected. The result was a remediation that met or exceeded all soil and groundwater cleanup objectives, was performed on schedule, and was highly cost-effective. The final cost was limited to $3 million--one-tenth of the original estimate.« less

  8. Remediation of transuranic-contaminated coral soil at Johnston Atoll using the segmented gate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramlitt, E.; Johnson, N.

    1994-12-31

    Thermo Analytical, Inc. (TMA) has developed a system to remove clean soil from contaminated soil. The system consists of a soil conveyor, an array of radiation detectors toward the conveyor feed end, a gate assembly at the conveyor discharge end, and two additional conveyors which move discharged soil to one or another paths. The gate assembly is as wide as the ``sorter conveyor,`` and it has eight individual gates or segments. The segments automatically open or close depending on the amount of radioactivity present. In one position they pass soil to a clean soil conveyor, and in the other positionmore » they let soil fall to a hot soil conveyor. The soil sorting process recovers clean soil for beneficial use and it substantially reduces the quantity of soil which must be decontaminated or prepared for waste disposal. The Segmented Gate System (SGS) was developed for the cleanup of soil contaminated with some transuranium elements at Johnston Atoll. It has proven to be an effective means for recovering clean soil and verifying that soil is clean, minimizing the quantity of truly contaminated soil, and providing measures of contamination for waste transport and disposal. TMA is constructing a small, transportable soil cleanup as it is confident the SGS technology can be adapted to soils and contaminants other than those at Johnston Atoll. It will use this transportable plant to demonstrate the technology and to develop site specific parameters for use in designing plants to meet cleanup needs.« less

  9. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.

    PubMed

    Kuppusamy, Saranya; Thavamani, Palanisami; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. How to Meet Water Cleanup Deadlines

    ERIC Educational Resources Information Center

    Schmidt, Richard K.

    1976-01-01

    Most waste treatment techniques conceived to meet the 1977 standards can be separated into three distinct phases: primary, secondary and tertiary treatment. An examination of the four heaviest industrial water users, pulp and paper, steel, plating, and food processing, demonstrates these treatments use proven technology to meet specific…

  11. Innovations in Site Characterization: Streamlining Cleanup at Vapor Intrusion and Product Removal Sites Using the Triad Approach: Hartford Plume Site, Hartford, Illinois

    EPA Pesticide Factsheets

    The Hartford Plume Site case study provides a detailed example of the strategies and technologies used at the site that are available to environmental practitioners to use at large and small hydrocarbon sites.

  12. Terra Vac In Situ Vacuum Extraction System: Applications Analysis Report

    EPA Science Inventory

    This document is an evaluation of the Terra Vac in situ vacuum extraction system and its applicability as a treatment method for waste site cleanup. This report analyzes the results from the Superfund Innovative Technology Evaluation (SITE) Program’s 56-day demonstration at t...

  13. GUIDELINES FOR THE BIOREMEDIATION OF OIL-CONTAMINATED SALT MARSHES

    EPA Science Inventory

    The objective of this document is to present a detailed technical guideline for use by spill responders for the cleanup of coastal wetlands contaminated with oil and oil products by using one of the least intrusive approaches
    bioremediation technology. This manual is a supplem...

  14. Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigsby V.P.

    2009-02-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement slab], roofing, structural steel supports, interior walls, and exterior walls) and support system components including the recirculation cooling water (RCW); electrical; communication; fire protection; ventilation; process coolant; process lube oil; utilities such as steam, water and drain lines; (2) Process Piping; (3) Seal Exhaust Headers; (4) Seal Exhaust Traps; (5) Process Valves; (6) Differential Blind Multipliers (DBM)/Partial Blind Multipliers (PBM); and (7) Aftercoolers (also known as Intercell coolers). Converters and compressors while components of the process gas system, are not included in this commingled waste lot. On January 6, 2009, a meeting was held with EPA, TDEC, DOE and the team for the sole purpose of finalizing the objectives, format, and content of WPXL 6.999. The objective of WPXL 6.999 was to provide a crosswalk to the building structure and the PGE components profiles. This was accomplished by providing tables with references to the specific section of the individual profiles for each of the WLs. There are two building profiles and eight PGE profiles. All of the waste identified in the individual profiles will be commingled, shipped, and disposed exclusively under WPXL 6.999. The individual profiles were provided to the EPA and Tennessee Department of Environment and Conservation (TDEC) for information purposes only. This summary WPXL 6.999 will be submitted to EPA, TDEC, and DOE for review and approval. The format agreed upon by the regulators and DOE form the basis for WPXL 6.999. The agreed format is found on pages v and vi of the CONTENTS section of this profile. The disposal of this waste will be executed in accordance with the Action Memorandum for the Decontamination and Decommissioning of the K-25 and K-27 Buildings, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2002), Removal Action Work Plan for the K-25 and K-27 Buildings, Process Equipment Removal and Demolition, K-25/K-27 Project, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Building Structures and Remaining Components Located at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005); and Waste Handling Plan for Building K-25 West Wing Process Equipment and Piping at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008b).« less

  15. USEPA'S SITE PROGRAM IMPACT ON THE DEVELOPMENT AND USE OF INNOVATIVE HAZARDOUS WASTE TREATMENT

    EPA Science Inventory

    The USEPA's SITE Program was created to meet the increased demand for innovative technologies for hazardous waste treatment. The primary mission of the SITe Program is to expedite the cleanup of sites on the NPL. The SITE Program has two components: The Demonstration Program and ...

  16. 40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... remediation wastes into or within a CAMU does not constitute creation of a unit subject to minimum technology... wastes for implementing corrective action or cleanup at the facility. A CAMU must be located within the...

  17. Hazardous Waste Cleanup: Xerox Corporation - Joseph C. Wilson Center for Technology in Webster, New York

    EPA Pesticide Factsheets

    The Xerox Corporation campus is located at 800 Phillips Road in Webster, New York. The facility occupies approximately one thousand acres in the Town of Webster. The areas adjacent to the site to the east south and west are zoned for industrial, commercial

  18. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, A.L.

    2013-07-01

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will havemore » been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of all cleanup work, UCOR's safety record goes hand in hand with its excellent project performance. Through calendar year 2012, UCOR's recordable injury rate was 0.33, and the company has worked close to 4 million hours without a lost work day injury. UCOR's safety record is one of the best in the DOE EM Complex. This performance was due, in large part, to the people and processes URS and CH2M HILL, the parent companies of UCOR, brought to the project. Key approaches included: - Selected and deployed experienced staff in key leadership positions throughout the organization; - Approached 'Transition' as the 'true' beginning of the cleanup project - kicking off a number of project initiatives such as Partnering, PMB development, D and D Plan execution, etc. - Established a project baseline for performance measurement and obtained EVMS certification in record time; - Determined material differences and changed conditions that warranted contract change - then quickly addressed these changes with the DOE client; - Aligned the project and the contract within one year - also done in record time; - Implemented Safety Trained Supervisor and Safety Conscious Work Environment Programs, and kicked off the pursuit of certification under DOE's Voluntary Protection Program. (authors)« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Rodney

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process:more » Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;« less

  20. Visible light guided manipulation of liquid wettability on photoresponsive surfaces

    PubMed Central

    Kwon, Gibum; Panchanathan, Divya; Mahmoudi, Seyed Reza; Gondal, Mohammed A.; McKinley, Gareth H.; Varanasi, Kripa K.

    2017-01-01

    Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil–water clean-up and demulsification technologies. PMID:28440292

  1. Super oxidation and solidification of organic solvents, polycyclic aromatic hydrocarbons and pesticides at an abandoned chemical factory site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Kevin; Xu, Paul; Loo, Walter

    2013-07-01

    Large quantities of organic chemical such as VOCs, SVOCs and POPs were found in the soil of land at an abandoned Chemical Plant. Technology of super oxidation was applied to the soil for cleanup. Fenton process was utilized to treat soil contaminated heavily by BHC, benzene, chlorobenzene, dichlorobenzene, hexachlorobenzene, dichloroethane, dichloropropane, trichlorobenzene and dichloroether, etc. Super oxidation was coupled with method of stabilization for this case to enhance the remediation effect, which proved to be successful. Concentration of concerned pollutants was brought down below the national regulation level by approximately 8 folds. To make the treated soil strong and effectivemore » layer preventing pollutants breaking through, Iron powder was mixed in the soil, forming PBR (Permeable Barrier Reactor), to lower the risk to human health. The site after enhanced super oxidation above was totally safe to be developed into a residential community and/or commercial area. (authors)« less

  2. Waste-to-Energy and Fuel Cell Technologies Overview

    DTIC Science & Technology

    2011-01-13

    Integration of stationary fuel cells with biomass gasification is a developing technology that is in need of demonstration. Innovation for Our...the PureCell®400 Innovation for Our Energy Future Gasification of wood wastes is another potential source of useful fuel gas. Wood waste... Gasification → Cleanup → Fuel Cell Gasification uses high temperature to convert cellulosic materials to fuel gas • Hydrogen (H2) • Carbon monoxide (CO

  3. Proceedings: Fourteenth annual EPRI conference on fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-05-01

    EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less

  4. Demonstration of Spacecraft Fire Safety Technology

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2012-01-01

    During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.

  5. PROTOCOL FOR DETERMINING BIOAVAILABILITY AND BIOKINETICS OF ORGANIC POLLUTANTS IN DISPERSED, COMPACTED AND INTACT SOIL SYSTEMS TO ENHANCE IN SITU BIOREMEDIATION

    EPA Science Inventory

    The development of effective in situ and on-site bioremediation technologies can facilitate the cleanup of chemically-contaminated soil sites. Knowledge of biodegradation kinetics and bioavailability of organic pollutants can facilitate decisions on the efficacy of in situ and o...

  6. KSC-99pp0390

    NASA Image and Video Library

    1999-04-06

    On the site of Launch Complex 34, key participants sign a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives. Seated from left to right are Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally

  7. Approaches to sheltered-water oil spills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, M.A.; Waldron, D.M.

    Technology has produced more effective and efficient oil removal equipment for on-water cleanup in the past five years. Much of the innovation has been to increase recovery capacity to meet the planning volumes required to government regulations. However, more than 95 percent of the spills are relatively small. Large equipment, often requiring large platforms, is not very useful and is difficult/expensive to operate on small spills. In addition, damage from spills results when oil impacts shorelines. The emphasis on spill response should address the ability of the equipment to remove oil in a nearshore environment. Clean Seas has been attemptingmore » to address this need since the Avila Pipeline spill in 1992, in which a 180 barrel spill resulted in about $18 million damage/cleanup cost.« less

  8. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee

    2003-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.

  9. Isolation and recovery of selected polybrominated diphenyl ethers from human serum and sheep serum: coupling reversed-phase solid-phase disk extraction and liquid-liquid extraction techniques with a capillary gas chromatographic electron capture negative ion mass spectrometric determinative technique.

    PubMed

    Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.

  10. Cleanups in My Community Data

    EPA Pesticide Factsheets

    Cleanups in My Community (CIMC) enables you to map and list hazardous waste cleanup locations and grant areas, and drill down to details about those cleanups and grants and other, related information.

  11. Ultra-Stable Oscillators for Probe Radio Science Investigations

    NASA Technical Reports Server (NTRS)

    Asmar, Sami

    2012-01-01

    An Ultra-Stable Oscillator (USO) is: A frequency reference, and A clock It is stable, small, and sensitive. It is a science and an art form. It is flown on spacecraft/probes. It]is utilized at ground stations alone or as a cleanup loop. It eliminates lock-up time on uplink for occultation egress & effect of media on uplink signal. It has enabled significant planetary science investigations.

  12. Risk based requirements for long term stewardship: A proof-of-principle analysis of an analytic method tested on selected Hanford locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, T.T.; Andrews, W.B.; Buck, J.W.

    1998-03-01

    Since 1989, the Department of Energy`s (DOE) Environmental Management (EM) Program has managed the environmental legacy of US nuclear weapons production, research and testing at 137 facilities in 31 states and one US territory. The EM program has conducted several studies on the public risks posed by contaminated sites at these facilities. In Risks and the Risk Debate [DOE, 1995a], the Department analyzed the risks at sites before, during, and after remediation work by the EM program. The results indicated that aside from a few urgent risks, most hazards present little inherent risk because physical and active site management controlsmore » limit both the releases of site contaminants, and public access to these hazards. Without these controls, these sites would pose greater risks to the public. Past risk reports, however, provided little information about post-cleanup risk, primarily because of uncertainty about future site uses and site characteristics at the end of planned cleanup activities. This is of concern because in many cases current cleanup technologies, and remedies, will last a shorter period of time than the waste itself and the resulting contamination will remain hazardous.« less

  13. Sticky foam as a less-than-lethal technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.H.

    1996-12-31

    Sandia National Labs (SNL) in 1994 completed a project funded by the National Institute of Justice (NIJ) to determine the applicability of sticky foam for correctional applications. Sticky foam is an extremely tacky, tenacious material used to block, entangle, and impair individuals. The NIJ project developed a gun capable of firing multiple shots of sticky foam, tested the gun and sticky foam effectiveness on SNL volunteers acting out prison and law enforcement scenarios, and had the gun and sticky foam evaluated by correctional representatives. Based on the NIJ project work, SNL supported the Marine Corps Mission, Operation United Shield, withmore » sticky foam guns and supporting equipment to assist in the withdrawal of UN Peacekeepers from Somalia. Prior to the loan of the equipment, the Marines were given training in sticky foam characterization, toxicology, safety issues, cleanup and waste disposal, use limitations, use protocol and precautions, emergency facial clean-up, skin cleanup, gun filling, targeting and firing, and gun cleaning. The Marine Corps successfully used the sticky foam guns as part of that operation. This paper describes these recent developments of sticky foam for non-lethal uses and some of the lessons learned from scenario and application testing.« less

  14. Environmental Management Science Program Workshop. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less

  15. KSC-99pp0392

    NASA Image and Video Library

    1999-04-06

    Key participants in the signing of a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives, gather on top of the block house at Launch Complex 34. Motioning at right is Skip Chamberlain, program manager, Office of Science and Technology, U.S. Department of Energy. Others on the tour include Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally

  16. Recent trends at the state and federal level in accelerating CERCLA clean-ups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, B.

    Efforts at accelerating remedial action at the federal level focus on the following: the Superfund accelerated clean-up model (SCAM); Brownfields economic redevelopment initiative; guidance documents and policies; and collaboration with state voluntary cleanup programs. At the state level efforts involved in accelerating clean-ups include voluntary clean-up programs and Brownfields initiatives.

  17. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.J.; Brown, W.R.; Siwajek, L.

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfillmore » gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.« less

  18. Soil Contamination and Remediation Strategies. Current research and future challenge

    NASA Astrophysics Data System (ADS)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on eliminating the source of pollution, but also on blocking the pathways from contaminants to receptors or reducing the exposure to contaminants,. Future challenge integration of sustainability into remediation decision-making. Soil is not a waste! There is a growing interest in the clean up approaches that maintain soil quality after remediation treatments. This issue is of great importance in the U.S.A. where the EPA from 2009 is promoting innovative clean-up strategies (Green Remediation). Green remediation is defined as the practice of considering all environmental effects of remedy and incorporating options to maximize environmental benefit of cleanup actions . These remediation strategies restore contaminated sites to productive use with a great attention to the global environmental quality, including the preservation of soil functionality according to the following principles: use minimally invasive technologies; use passive energy technologies such as bioremediation and phytoremediation as primary remedies or finishing steps where possible and effective; minimize soil and habitat disturbance; minimize bioavailability of contaminants trough adequate contaminant source and plume control If we move from the current definition of remedial targets based on total concentrations, technologies with low impact on the environment can be utilized reducing the wrong choice to disposal soil in landfill destroying quickly a not renewable essential resource.

  19. Proceedings from the Workshop on Phytoremediation of Inorganic Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Jay Thatcher; Matthern, Gretchen Elise; Glenn, Anne Williams

    The Metals and Radionuclides Product Line of the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) is responsible for the development of technologies and systems that reduce the risk and cost of remediation of radionuclide and hazardous metal contamination in soils and groundwater. The rapid and efficient remediation of these sites and the areas surrounding them represents a technological challenge. Phytoremediation, the use of living plants to cleanup contaminated soils, sediments, surface water and groundwater, is an emerging technology that may be applicable to the problem. The use of phytoremediation to cleanup organic contamination is widely accepted andmore » is being implemented at numerous sites. This workshop was held to initiate a discussion in the scientific community about whether phytoremediation is applicable to inorganic contaminants, such as metals and radionuclides, across the DOE complex. The Workshop on Phytoremediation of Inorganic Contaminants was held at Argonne National Laboratory from November 30 through December 2, 1999. The purpose of the workshop was to provide SCFA and the DOE Environmental Restoration Program with an understanding of the status of phytoremediation as a potential remediation technology for DOE sites. The workshop was expected to identify data gaps, technologies ready for demonstration and deployment, and to provide a set of recommendations for the further development of these technologies. More specifically, the objectives of the workshop were to: · Determine the status of the existing baseline, including technological maturation, · Identify areas for future potential research, · Identify the key issues and recommendations for issue resolution, · Recommend a strategy for maturing key aspects of phytoremediation, · Improve communication and collaboration among organizations currently involved in phytoremediation research, and · Identify technical barriers to making phytoremediation commercially successful in more areas.« less

  20. Mold: Cleanup and Remediation

    MedlinePlus

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  1. Coal-Based Fuel-Cell Powerplants

    NASA Technical Reports Server (NTRS)

    Ferral, J. F.; Pappano, A. W.; Jennings, C. N.

    1986-01-01

    Report assesses advanced technologyy design alternatives for integrated coal-gasifier/fuel-cell powerplants. Various gasifier, cleanup, and fuelcell options evaluated. Evaluation includes adjustments to assumed performances and costs of proposed technologies where required. Analysis identifies uncertainties remaining in designs and most promising alternatives and research and development required to develop these technologies. Bulk of report summary and detailed analysis of six major conceptual designs and variations of each. All designs for plant that uses Illinois No. 6 coal and produces 675 MW of net power.

  2. A validated method for rapid determination of dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in human milk: focus on utility of tandem solid phase extraction (SPE) cleanup.

    PubMed

    Lin, Yuanjie; Feng, Chao; Xu, Qian; Lu, Dasheng; Qiu, Xinlei; Jin, Yu'e; Wang, Guoquan; Wang, Dongli; She, Jianwen; Zhou, Zhijun

    2016-07-01

    An improved method based on tandem solid phase extraction (SPE) cleanup and gas chromatography-high resolution mass spectrometry (GC-HRMS) has been validated for a rapid determination of dibenzo-p-dioxins/furans (PCDD/Fs), dioxin-like polychlorinated biphenyls (PCBs), marker polychlorinated biphenyls (M-PCBs), and polybrominated diphenyl ethers (PBDEs) using a large volume (50 mL) of human milk. This method was well validated for the measurement of these analytes in human milk from the general population with low limits of detection (LODs, 0.004-0.12 ng/g lipid), satisfactory accuracy (75-120 % of recoveries), and precision [less than 10 % of relative standard deviations (RSDs)]. To comprehensively evaluate the performance of this method, a good, presently validated and routinely used method based on an automated sample clean-up system (ASCS, based on the commercial acid multilayer silica, basic alumina, and carbon columns) was used in parallel for comparison. Compared with the ASCS method, this method presented comparable specificity. Additionally, this method, in contrast to ASCS method, highly reduced consumption of solvents (40 mL versus 500 mL), which results in much lower background in the procedural blank, reduced time, and enhanced sample pretreatment throughput. This method was also applied in a pilot study to measure a batch of human milk samples with satisfactory results. Graphical Abstract Characteristics of the application of tandem SPE cleanup for determination of PCDD/Fs, DL-PCBs,M-PCBs and PBDEs in human milk.

  3. Cleanups in My Community

    EPA Pesticide Factsheets

    Cleanups In My Community is a web app of hazardous waste cleanups for which EPA collects information, on maps and in lists, and to access additional information about those cleanups. This page describes and links to the application.

  4. Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford Shale

    NASA Astrophysics Data System (ADS)

    Lu, Rong

    Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is critical to a frac job, and determining well cleanup characteristics using the flowback data can help improve frac design. It has become increasingly important as a result of the unique flowback profiles observed in some shale gas plays due to the unconventional formation characteristics. Computer simulation is an efficient and effective way to tackle the problem. History matching can help reveal some mechanisms existent in the cleanup process. The Fracturing, Acidizing, Stimulation Technology (FAST) Consortium at Colorado School of Mines previously developed a numerical model for investigating the hydraulic fracturing process, cleanup, and relevant physics. It is a three-dimensional, gas-water, coupled fracture propagation-fluid flow simulator, which has the capability to handle commonly present damage mechanisms. The overall goal of this research effort is to validate the model on real data and to investigate the dominant physics in well cleanup for the Cana Field, which produces from the Woodford Shale in Oklahoma. To achieve this goal, first the early time delayed gas production was explained and modeled, and a simulation framework was established that included all three relevant damage mechanisms for a slickwater fractured well. Next, a series of sensitivity analysis of well cleanup to major reservoir, fracture, and operational variables was conducted; five of the Cana wells' initial flowback data were history matched, specifically the first thirty days' gas and water producing rates. Reservoir matrix permeability, net pressure, Young's modulus, and formation pressure gradient were found to have an impact on the gas producing curve's shape, in different ways. Some moderately good matches were achieved, with the outcome of some unknown reservoir information being proposed using the corresponding inputs from the history matching study. It was also concluded that extended shut-in durations after fracturing all the stages do not delay production in the overall situation. The success of history matching will further knowledge of well cleanup characteristics in the Cana Field, enable the future usage of this tool in other hydraulically fractured gas wells, and help operators optimize the flowback operations. Future improvements can be achieved by further developing the current simulator so that it has the capability of optimizing its grids setting every time the user changes the inputs, which will result in better stability when the relative permeability setting is modified.

  5. Estimate of the Potential Amount of Low-Level Waste from the Fukushima Prefecture - 12370

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Carolyn; Olson, Eric A.J.; Elmer, John

    2012-07-01

    The amount of waste generated by the cleanup of the Fukushima Prefecture (Fukushima-ken) following the releases from the Fukushima Daiichi nuclear power plant accident (March 2011) is dependent on many factors, including: - Contamination amounts; - Cleanup levels determined for the radioisotopes contaminating the area; - Future land use expectations and human exposure scenarios; - Groundwater contamination considerations; - Costs and availability of storage areas, and eventually disposal areas for the waste; and - Decontamination and volume reduction techniques and technologies used. For the purposes of estimating these waste volumes, Fukushima-ken is segregated into zones of similar contamination level andmore » expected future use. Techniques for selecting the appropriate cleanup methods for each area are shown in a decision tree format. This approach is broadly applied to the 20 km evacuation zone and the total amounts and types of waste are estimated; waste resulting from cleanup efforts outside of the evacuation zone is not considered. Some of the limits of future use and potential zones where residents must be excluded within the prefecture are also described. The size and design of the proposed intermediate storage facility is also discussed and the current situation, cleanup, waste handling, and waste storage issues in Japan are described. The method for estimating waste amounts outlined above illustrates the large amount of waste that could potentially be generated by remediation of the 20 km evacuation zone (619 km{sup 2} total) if the currently proposed cleanup goals are uniformly applied. The Japanese environment ministry estimated in early October that the 1 mSv/year exposure goal would make the government responsible for decontaminating about 8,000 km{sup 2} within Fukushima-ken and roughly 4,900 km{sup 2} in areas outside the prefecture. The described waste volume estimation method also does not give any consideration to areas with localized hot spots. Land use and area dose rate estimates for the 20 km evacuation zone indicate there are large areas where doses to the public can be mitigated through methods other than removal and disposal of soil and other wastes. Several additional options for waste reduction can also be considered, including: - Recycling/reusing or disposing of as municipal waste material that can be unconditionally cleared; - Establishing additional precautionary (e.g., liners) and monitoring requirements for municipal landfills to dispose of some conditionally-cleared material; and - Using slightly-contaminated material in construction of reclamations, banks and roads. Waste estimates for cleanup will continue to evolve as decontamination plans are drafted and finalized. (authors)« less

  6. Use of technical and economic analysis for optimizing technology selection and remedial design for contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardisty, P.E.; Brown, A.

    1996-12-01

    The decision to remediate a contaminated site can be seen from the macroeconomic and microeconomic viewpoints. Macroeconomics can be used to plan and account for the overall cost of pollution as part of a firm`s production, and thus make overall decisions on the real cost of pollution and the level of clean-up which may be called for. Valuation of damaged resources, option values and intrinsic worth is an important part of this process. Once the decision to remediate has been taken, the question becomes how best to remediate. Microeconomic analysis deals with providing efficient allocative decisions for reaching specified goals.more » it is safe to say that cost is one of the single most important factors in site clean-up decision making. A basic rule of remediation is often taken to be the maximization of contaminant mass removed per dollar spent. However, remediation may also be governed by other objectives and constraints. In some situations, minimization of time, rather than cost, could be the constraint. Or perhaps the objective could be to achieve a set level of clean-up for the lowest possible cost, even if a large program would result in unit-cost reductions. Evaluation of the economics of a clean-up project is directly linked to the objectives of the site owner, and the constraints within which the remediation is to be performed. Economic analysis of remedial options for containment of a 350,000 L hydrocarbon spill migrating through fractured rock into a river in Alberta, Canada, clear direction to the site owner.« less

  7. SMARTE: RESTORING THE ENVIRONMENT, REVITALIZING COMMUNITIES - NOV. 13, 2006 - TECHNOLOGY SHOWCASE THEATRE

    EPA Science Inventory

    SMARTe (Sustainable Management Approaches and Revitalization Tools -electronic) is a web-based decision support tool being developed by the Office of Research and Development (ORD) in partnership with the Office of Brownfields Cleanup and...

  8. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elementsmore » and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.« less

  9. Technical approaches to characterizing and cleaning up iron and steel mill sites under the brownfields initiative. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    EPA has developed this guide to provide decision-makers, such as city planners, private sector developers, and other involved in redeveloping brownfields, with a better understanding of the technical issues involved in assessing and cleaning up iron and steel mill sites so they can make the most informed decisions possible. This overview of the technical process involved in assessing and cleaning up brownfields sites can assist planners in making decisions at various stages of the project. An understanding of land use and industrial processes conducted in the past at a site can help the planner to conceptualize the site and identifymore » likely areas of contamination that may require cleanup. Numerous resources are suggested to facilitate characterization of the site and consideration of cleanup technologies.« less

  10. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.

    PubMed

    Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua

    2013-08-01

    The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.

  11. Particulate Emission Abatement for Krakow Boilerhouses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-14

    Environmental cleanup and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in themore » reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glucksberg, Nadia; Peters, Jay

    The Conceptual Site Model (CSM) is a powerful tool for understanding the link between contamination sources, cleanup objectives, and ultimate site reuse. The CSM describes the site setting, geology, hydrogeology, potential sources, release mechanisms and migration pathways of contaminants. The CSM is needed to understand the extent of contamination and how receptors may be exposed to both radiological and chemical constituents. A key component of the CSM that is often overlooked concerns how the regulatory requirements drive remediation and how each has to be integrated into the CSM to ensure that all stakeholder requirements are understood and addressed. This papermore » describes how the use of the CSM helped reach closure and reuse at two facilities in Connecticut that are pursuing termination of their Nuclear Regulatory Commission (NRC) license. The two facilities are the Combustion Engineering Site, located in Windsor, Connecticut, (CE Windsor Site) and the Connecticut Yankee Atomic Power Company, located in Haddam Neck, Connecticut (CYAPCO). The closure of each of these facilities is regulated by four agencies: - Nuclear Regulatory Commission (NRC) - which requires cleanup levels for radionuclides to be protective of public health; - US Environmental Protection Agency (USEPA) - which requires cleanup levels for chemicals to be protective of public health and the environment; - Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiation Division - which requires cleanup levels for radionuclides to be protective of public health; and - Connecticut Department of Environmental Protection (CTDEP) Bureau of Water Protection and Land Reuse - which requires cleanup levels for chemicals to be protective of public health and the environment. Some of the radionuclides at the CE Windsor Site are also regulated under the Formerly Utilized Site Remedial Action Program (FUSRAP) under the Army Corps of Engineers. The remainder of this paper presents the similarities and differences between the CSMs for these two sites and how each site used the CSM to reach closure. Although each of these site have unique histories and physical features, the CSM approach was used to understand the geology, hydrogeology, migration and exposure pathways, and regulatory requirements to successfully characterize and plan closure of the sites. A summary of how these attributes affected site closure is provided.« less

  13. Fast-Track Cleanup at Closing DoD Installations

    EPA Pesticide Factsheets

    The Fast-Track Cleanup program strives to make parcels available for reuse as quickly as possible by the transfer of uncontaminated or remediated parcels, the lease of contaminated parcels where cleanup is underway, or the 'early transfer' of contaminated property undergoing cleanup.

  14. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of themore » River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.« less

  15. Establishing Final Cleanup Decisions for the Hanford Site River Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerch, J.A.; Sands, J.P.

    2007-07-01

    A major challenge in the River Corridor Closure Contract is establishing final cleanup decisions for the source operable units in the Hanford Site river corridor. Cleanup actions in the river corridor began in 1994 and have been performed in accordance with a 'bias for action' approach adopted by the Tri-Parties - the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology. This approach enabled early application of cleanup dollars on actual remediation of contaminated waste sites. Consequently, the regulatory framework authorizing cleanup actions at source operable units in the river corridor consists largely of interimmore » action records of decision, which were supported by qualitative risk assessments. Obtaining final cleanup decisions for the source operable units is necessary to determine whether past cleanup actions in the river corridor are protective of human health and the environment and to identify any course corrections that may be needed to ensure that ongoing and future cleanup actions are protective. Because the cleanup actions are ongoing, it is desirable to establish the final cleanup decisions as early as possible to minimize the impacts of any identified course corrections to the present cleanup approach. Development of a strategy to obtain final cleanup decisions for the source operable units in a manner that is responsive to desires for an integrated approach with the groundwater and Columbia River components while maintaining the ability to evaluate each component on its own merit represents a significant challenge. There are many different options for grouping final cleanup decisions, and each involved party or stakeholder brings slightly different interests that shape the approach. Regardless of the selected approach, there are several specific challenges and issues to be addressed before making final cleanup decisions. A multi-agency and contractor working group has been established to address these issues and develop an endorsed strategy. Ultimately, it is anticipated that the Tri-Parties will establish a set of milestones to document pathway selection and define schedule requirements. (authors)« less

  16. Amounts and activity concentrations of radioactive wastes from the cleanup of large areas contaminated in nuclear accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehto, J.; Ikaeheimonen, T.K.; Salbu, B.

    The fallout from a major nuclear accident at a nuclear plant may result in a wide-scale contamination of the environment. Cleanup of contaminated areas is of special importance if these areas are populated or cultivated. All cleanup measures generate high amounts of radioactive waste, which have to be treated and disposed of in a safe manner. Scenarios assessing the amounts and activity concentrations of radioactive wastes for various cleanup measures after severe nuclear accidents have been worked out for urban, forest and agricultural areas. These scenarios are based on contamination levels and ares of contaminated lands from a model accident,more » which simulates a worst case accident at a nuclear power plant. Amounts and activity concentrations of cleanup wastes are not only dependent on the contamination levels and areas of affected lands, but also on the type of deposition, wet or dry, on the time between the deposition and the cleanup work, on the season, at which the deposition took place, and finally on the level of cleanup work. In this study practically all types of cleanup wastes were considered, whether or not the corresponding cleanup measures are cost-effective or justified. All cleanup measures are shown to create large amounts of radioactive wastes, but the amounts, as well as the activity concentrations vary widely from case to case.« less

  17. Determination of pesticides associated with suspended sediments in the San Joaquin River, California, USA, using gas chromatography-ion trap mass spectrometry

    USGS Publications Warehouse

    Bergamaschi, B.A.; Baston, D.S.; Crepeau, K.L.; Kuivila, K.M.

    1999-01-01

    An analytical method useful for the quantification of a range of pesticides and pesticide degradation products associated with suspended sediments was developed by testing a variety of extraction and cleanup schemes. The final extraction and cleanup methods chosen for use are suitable for the quantification of the listed pesticides using gas chromatography-ion trap mass spectrometry and the removal of interfering coextractable organic material found in suspended sediments. Methylene chloride extraction followed by Florisil cleanup proved most effective for separation of coextractives from the pesticide analytes. Removal of elemental sulfur was accomplished with tetrabutylammonium hydrogen sulfite. The suitability of the method for the analysis of a variety of pesticides was evaluated, and the method detection limits (MDLs) were determined (0.1-6.0 ng/g dry weight of sediment) for 21 compounds. Recovery of pesticides dried onto natural sediments averaged 63%. Analysis of duplicate San Joaquin River suspended-sediment samples demonstrated the utility of the method for environmental samples with variability between replicate analyses lower than between environmental samples. Eight of 21 pesticides measured were observed at concentrations ranging from the MDL to more than 80 ng/g dry weight of sediment and exhibited significant temporal variability. Sediment-associated pesticides, therefore, may contribute to the transport of pesticides through aquatic systems and should be studied separately from dissolved pesticides.

  18. Methane enrichment digestion experiments at the anaerobic experimental test unit at Walt Disney World. Final report, March 1989-August 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, V.J.; Hill, A.H.

    1993-06-01

    The goal of the project was to determine the technical feasibility of utilizing a novel concept in anaerobic digestion, in-situ methane enrichment digestion or MED for producing utility-grade gas from a pilot-scale anaerobic digester. MED tests conducted during this program consistently achieved digester product gas with a methane (CH4) content of greater than 90% (on a dry-, nitrogen-free basis). The MED concept, because it requires relatively simple equipment and modest energy input, has the potential to simplify gas cleanup requirements and substantially reduce the cost of converting wastes and biomass to pipeline quality gas.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  20. Enhancing cleanup of heavy metal-polluted landfill soils and improving soil microbial activity using green technology with ferrous sulfate

    USDA-ARS?s Scientific Manuscript database

    Landfills have led to some of the most intense battles over pollution that has ever been seen. With the population skyrocketing worldwide, these landfills will only become more of a public issue as time goes on. Heavy metals from several sources especially in landfills are an increasingly urgent pro...

  1. KSC-99pp0391

    NASA Image and Video Library

    1999-04-06

    On the site of Launch Complex 34, key participants sign a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives. Seated at the table, from left to right, are Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally

  2. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, T.A.

    1998-11-01

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  3. Heartland Engineers: A Century of Superior Service 1907-2007

    DTIC Science & Technology

    2009-01-01

    NJ SUPERFUND SITE, REMEDIAL DESIGN 104. INDEPENDENCE AAF: OEW LMS ASR-NOFA 105. INDEPENDENCE SATELLITE POW CAMP: PA/INPR 106. INVES. & ASSESS IMA-AR...the development of nuclear weaponry, under the Formerly Used Sites Remedial Action Plan (FUSRAP) for the Department of Energy as well as Formerly Used...further assist in the cleanup of Cold War legacy wastes through the U.S. Depart- ment of Energy’s Formerly Utilized Sites Remedial Action Program

  4. Analysis of Aircraft Fuels and Related Materials

    DTIC Science & Technology

    1982-09-01

    content by the Karl Fischer method . Each 2040 solvent sample represented a different step in a clean-up procedure conducted by Aero Propulsion...izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm. It has a re- peatability of 0.1 ppm... Method 163-80, which util- izes a potentiometric titration with alcoholic silver nitrate. This method has a minimum detectability of 1 ppm and has a

  5. The DOE fellows program-a workforce development initiative for the US department of energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Leonel E.

    The US Department of Energy Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology,more » engineering, and math (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only six years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 100 DOE Fellows have participated in the Waste Management (WM) Symposia since 2008 with a total of 84 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings and this year two Fellows will present at the International Conference on Environmental Remediation and Radioactive Waste Management (ICEM13) in Brussels, Belgium. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors, commercial nuclear power companies, and other STEM industry (GE, Boeing, Lockheed Martin, Johnson and Johnson, Beckman-Coulter, and other top companies). This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well-trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the DOE Complex by participating in summer internship assignments. (authors)« less

  6. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, L.

    The DOE Office of Environmental Management (DOE-EM) oversees one of the largest and most technically challenging cleanup programs in the world. The mission of DOE-EM is to complete the safe cleanup of the environmental legacy from five decades of nuclear weapons development and government-sponsored nuclear energy research. Since 1995, Florida International University's Applied Research Center (FIU-ARC) has supported the DOE-EM mission and provided unique research capabilities to address some of these highly technical and difficult challenges. This partnership has allowed FIU-ARC to create a unique infrastructure that is critical for the training and mentoring of science, technology, engineering, and mathmore » (STEM) students and has exposed many STEM students to 'hands-on' DOE-EM applied research, supervised by the scientists and engineers at ARC. As a result of this successful partnership between DOE and FIU, DOE requested FIU-ARC to create the DOE-FIU Science and Technology Workforce Development Initiative in 2007. This innovative program was established to create a 'pipeline' of minority STEM students trained and mentored to enter DOE's environmental cleanup workforce. The program was designed to help address DOE's future workforce needs by partnering with academic, government and private companies (DOE contractors) to mentor future minority scientists and engineers in the research, development, and deployment of new technologies and processes addressing DOE's environmental cleanup challenges. Since its inception in 2007, the program has trained and mentored 78 FIU STEM minority students. Although, the program has been in existence for only five years, a total of 75 internships have been conducted at DOE National Laboratories, DOE sites, DOE Headquarters and field offices, and DOE contractors. Over 85 DOE Fellows have participated in the Waste Management Symposia since 2008 with a total of 68 student posters and 7 oral presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)« less

  7. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Gary; Albritton, John; Denton, David

    In September 2010, RTI and the DOE/NETL signed a cooperative agreement (DE-FE000489) to design, build, and operate a pre-commercial syngas cleaning system that would capture up to 90% of the CO 2 in the syngas slipstream, and demonstrate the ability to reduce syngas contaminants to meet DOE’s specifications for chemical production application. This pre-commercial syngas cleaning system is operated at Tampa Electric Company’s (TEC) 250-MWe integrated gasification combined cycle (IGCC) plant at Polk Power Station (PPS), located near Tampa, Florida. The syngas cleaning system consists of the following units: Warm Gas Desulfurization Process (WDP) - this unit processes a syngasmore » flow equivalent of 50 MWe of power (50 MWe equivalent corresponds to about 2.0 MM scfh of syngas on dry basis) to produce a desulfurized syngas with a total sulfur (H 2S+COS) concentration ~ 10 ppmv. Water Gas Shift (WGS) Reactor - this unit converts sufficient CO into CO 2 to enable 90% capture of the CO 2 in the syngas slipstream. This reactor uses conventional commercial shift catalyst technologies. Low Temperature Gas Cooling (LTGC) - this unit cools the syngas for the low temperature activated MDEA process and separates any condensed water. Activated MDEA Process (aMDEA) - this unit employs a non-selective separation for the CO 2 and H 2S present in the raw syngas stream. Because of the selective sulfur removal by the upstream WDP unit, the CO 2 capture target of 90% CO 2 can be achieved with the added benefit that total sulfur concentration in the CO 2 product is < 100 ppmv. An additional advantage of the activated MDEA process is that the non-selective sulfur removal from the treated syngas reduces sulfur in the treated gas to very low sub-ppmv concentrations, which are required for chemical production applications. Testing to date of this pre-commercial syngas cleaning system has shown that the technology has great potential to provide clean syngas from coal and petcoke-based gasification at increased efficiency and at significantly lower capital and operating costs than conventional syngas cleanup technologies. However, before the technology can be deemed ready for scale-up to a full commercial-scale demonstration, additional R&D testing is needed at the site to address the following critical technical risks: WDP sorbent stability and performance; Impact of WDP on downstream cleanup and conversion steps; Metallurgy and refractory; Syngas cleanup performance and controllability; Carbon capture performance and additional syngas cleanup The proposed plan to acquire this additional R&D data involves: Operation of the units to achieve an additional 3,000 hours of operation of the system within the performance period, with a target of achieving 1,000 hours of those hours via continuous operation of the entire integrated pre-commercial demonstration system; Rapid turnaround of repairs and/or modifications required as necessary to return any specific unit to operating status with documentation and lessons learned to support technology maturation, and; Proactive performance of maintenance activities during any unplanned outages and if possible while operating.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is justmore » now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.« less

  9. Managing previously disposed waste to today's standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less

  10. A Cs(x)WO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation.

    PubMed

    Wu, Xiaoyong; Yin, Shu; Xue, Dongfeng; Komarneni, Sridhar; Sato, Tsugio

    2015-10-28

    A novel CsxWO3/ZnO smart coating was proposed to achieve multiple functions, such as heat insulation, photodecomposition of toxic NO gas, blocking of harmful UV light, etc. In this composite coating, CsxWO3 nanorods were used as a NIR and UV light shielding material while ZnO nanoparticles were utilized as a photocatalyst and a material to enhance visible light transmittance and block UV light. When the mass ratio of CsxWO3/ZnO was 1, the composite coating possessed a very good visible light transmittance of over 80% and an excellent UV-shielding ability. This novel coating showed heat insulation that is superior to the ITO coating and photocatalytic decontamination of NO gas that is superior to the standard TiO2 (P25). The proposed CsxWO3/ZnO smart coating is a promising material not only for energy saving but also for environmental cleanup.

  11. EPRR

    Science.gov Websites

    Electronic Public Reading Room Operational Reading Room & Environmental Cleanup through April 2018 Los Alamos Legacy Cleanup Electronic Public Reading Room Environmental Cleanup from May 2018

  12. 33 CFR 165.1329 - Regulated Navigation Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA. 165.1329... Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA... (EPA) and others in the Thea Foss and Wheeler-Osgood Waterways EPA superfund cleanup site. Vessels may...

  13. 33 CFR 165.1329 - Regulated Navigation Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA. 165.1329... Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA... (EPA) and others in the Thea Foss and Wheeler-Osgood Waterways EPA superfund cleanup site. Vessels may...

  14. 33 CFR 165.1329 - Regulated Navigation Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA. 165.1329... Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA... (EPA) and others in the Thea Foss and Wheeler-Osgood Waterways EPA superfund cleanup site. Vessels may...

  15. 33 CFR 165.1329 - Regulated Navigation Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA. 165.1329... Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site, Commencement Bay, Tacoma, WA... (EPA) and others in the Thea Foss and Wheeler-Osgood Waterways EPA superfund cleanup site. Vessels may...

  16. Cleanups in My Community

    EPA Pesticide Factsheets

    Cleanups in My Community (CIMC) is a public web application that enables integrated access through maps, lists and search filtering to site-specific information EPA has across all cleanup programs. CIMC taps into data publicly available from EPA's EnviroFacts (RCRA Corrective Action facilities, Brownfields properties and grant areas, Superfund NPL sites, other facility data) and web services (water monitoring stations, impaired waters, emergency responses, tribal boundaries, congressional districts, etc.) and connects to other applications (e.g., Superfund's CPAD) to provide easy seamless access to site-specific cleanup information with explanatory text and within the context of related data. Data can be filtered by cleanup program, geography, environmental indicators, controls, and cleanup stage. CIMC also provides some web services that integrate these data for others to use in their applications.

  17. Overview of technology modeling in the Remedial Action Assessment System (RAAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.D.; Bagaasen, L.M.; Chan, T.C.

    1994-08-01

    There are numerous hazardous waste sites under the jurisdiction of the US Department of Energy (DOE). To assist the cleanup of these sites in a more consistent, timely, and cost-effective manner, the Remedial Action Assessment System (RAAS) is being developed by the Pacific Northwest Laboratory (PNL). RAAS is a software tool designed to automate the initial technology selection within the remedial investigation/feasibility study (RI/FS) process. The software does several things for the user: (1) provides information about available remedial technologies, (2) sorts possible technologies to recommend a list of technologies applicable to a given site, (3) points out technical issuesmore » that may prevent the implementation of a technology, and (4) provides an estimate of the effectiveness of a given technology at a particular site. Information from RAAS can be used to compare remediation options and guide selection of technologies for further study.« less

  18. Mental health and alcohol problems among Estonian cleanup workers 24 years after the Chernobyl accident.

    PubMed

    Laidra, Kaia; Rahu, Kaja; Tekkel, Mare; Aluoja, Anu; Leinsalu, Mall

    2015-11-01

    To study the long-term mental health consequences of the 1986 Chernobyl nuclear accident among cleanup workers from Estonia. In 2010, 614 Estonian Chernobyl cleanup workers and 706 geographically and age-matched population-based controls completed a mail survey that included self-rated health, the Posttraumatic Stress Disorder Checklist (PCL), alcohol symptoms (AUDIT), and scales measuring depressive, anxiety, agoraphobia, fatigue, insomnia, and somatization symptoms. Respondents were dichotomized into high (top quartile) and low symptom groups on each measure. Logistic regression analysis detected significant differences between cleanup workers and controls on all measures even after adjustment for ethnicity, education, marital status, and employment status. The strongest difference was found for somatization, with cleanup workers being three times more likely than controls to score in the top quartile (OR = 3.28, 95% CI 2.39-4.52), whereas for alcohol problems the difference was half as large (OR = 1.52, 95% CI 1.16-1.99). Among cleanup workers, arrival at Chernobyl in 1986 (vs. later) was associated with sleep problems, somatization, and symptoms of agoraphobia. The toll of cleanup work was evident 24 years after the Chernobyl accident among Estonian cleanup workers indicating the need for focused mental health interventions.

  19. The ecological impact of land restoration and cleanup. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-08-01

    The report is concerned with the ecological impacts of specific cleanup treatment on the land where they were carried out. The cleanup procedures given apply equally to chemical or radioactive materials. Guidance is provided for cleanup procedures likely to be suggested by government, industry, or environmental groups. The basic types of cleanup procedures for removing or deactiving spilled contamination involve moving people and animals from the affected area, scraping and grading the contaminated soil into windrows, plowing the contamination under, or digging up the contamination and hauling it away. The report describes and evaluates the various land-type cleanup effects inmore » terms of impact of the techniques on the environment. Part I defines several natural ecosystems and some of their natural derivations. Part II presents managed ecosystems which are imposed on natural ecosystems and are no longer bound by the initial native ecosystem balances. Part III deals with avion and mammilian wild life displaced by cleanup.« less

  20. Worldwide Emerging Environmental Issues Affecting the U.S. Military. February 2008 Report

    DTIC Science & Technology

    2008-02-01

    lost, and economic and environmental damages should be addressed. Mangroves ’ destruction could cause biodiversity loss in tropical areas , increase... Environmental Science & Technology Online is a comprehensive overview of the current state of nanotechnology risk assessment , emphasizing the paucity of...search and rescue robots. These recommendations apply equally well to the handling of robotic devices for environmental assessment and cleanup

  1. USSR Report Military Affairs

    DTIC Science & Technology

    1986-07-22

    the after- math of the Chernobyl Nuclear Power Plant accident and the mobilization of labor and technology in the clean-up effort will be published...in the series USSR REPORT: POLITICAL AND SOCIOLOGICAL AFFAIRS under the subtitle AFTERMATH OF CHERNOBYL NUCLEAR POWER PLANT ACCIDENT. This is a...EDITORIALIZES CHERNOBYL ACCIDENT Kiev PRAVDA UKRAINY in Russian 14 May 86 p 1 TRANSPORT WORKERS» EFFORTS AT CHERNOBYL DETAILED Moscow SOTSIALISnCHESKAYA

  2. USSR Report, Military Affairs

    DTIC Science & Technology

    1986-07-29

    math of the Chernobyl Nuclear Power Plant accident and the mobilization of labor and technology in the clean-up effort will be published in the series...USSR REPORT: POLITICAL AND SOCIOLOGICAL AFFAIRS under the subtitle AFTERMATH OF CHERNOBYL NUCLEAR POWER PLANT ACCIDENT. This is a represen- tative... CHERNOBYL ACCIDENT Kiev PRAVDA UKRAINY in Russian 14 May 86 p 1 TRANSPORT WORKERS’ EFFORTS AT CHERNOBYL DETAILED Moscow SOTSIALISTiaESKAYA INDUSTRIYA

  3. Ground Water Issue: Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites

    DTIC Science & Technology

    2001-02-01

    Development Ground Water Issue Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites National Risk Management Research... Phytoremediation , the use of plants in remediation, is one such technology. This issue paper focuses on the processes and applications of phytoremediation ...of phytoremediation as a cleanup or containment technique for remediation of hazardous waste sites. Introductory material on plant processes is

  4. Greener Cleanups

    EPA Pesticide Factsheets

    OSWER’s goal is to reduce the environmental footprint of cleanup activities at contaminated sites to the maximum extent possible. This website shares policies, tools and practices to achieve that goal across cleanup programs.

  5. Investing in International Information Exchange Activities to Improve the Safety, Cost Effectiveness and Schedule of Cleanup - 13281

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seed, Ian; James, Paula; Mathieson, John

    2013-07-01

    With decreasing budgets and increasing pressure on completing cleanup missions as quickly, safely and cost-effectively as possible, there is significant benefit to be gained from collaboration and joint efforts between organizations facing similar issues. With this in mind, the US Department of Energy (DOE) and the UK Nuclear Decommissioning Authority (NDA) have formally agreed to share information on lessons learned on the development and application of new technologies and approaches to improve the safety, cost effectiveness and schedule of the cleanup legacy wastes. To facilitate information exchange a range of tools and methodologies were established. These included tacit knowledge exchangemore » through facilitated meetings, conference calls and Site visits as well as explicit knowledge exchange through document sharing and newsletters. A DOE web-based portal has been established to capture these exchanges and add to them via discussion boards. The information exchange is operating at the Government-to-Government strategic level as well as at the Site Contractor level to address both technical and managerial topic areas. This effort has resulted in opening a dialogue and building working relationships. In some areas joint programs of work have been initiated thus saving resource and enabling the parties to leverage off one another activities. The potential benefits of high quality information exchange are significant, ranging from cost avoidance through identification of an approach to a problem that has been proven elsewhere to cost sharing and joint development of a new technology to address a common problem. The benefits in outcomes significantly outweigh the costs of the process. The applicability of the tools and methods along with the lessons learned regarding some key issues is of use to any organization that wants to improve value for money. In the waste management marketplace, there are a multitude of challenges being addressed by multiple organizations and the effective pooling and exchange of knowledge and experience can only be of benefit to all participants to help complete the cleanup mission more quickly and more cost effectively. This paper examines in detail the tools and processes used to promote information exchange and the progress made to date. It also discusses the challenges and issues involved and proposes recommendations to others who are involved in similar activities. (authors)« less

  6. An Overview of Public Domain Tools for Measuring the Sustainability of Environmental Remediation - 12060

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claypool, John E.; Rogers, Scott

    The application of sustainability principles to the investigation and remediation of contaminated sites is an area of rapid development within the environmental profession, with new business practices, tools, and performance standards for identifying, evaluating, and managing the 'collateral' impacts of cleanup projects to the environment, economy and society coming from many organizations. Guidelines, frameworks, and standards of practice for 'green and sustainable remediation' (GSR) have been released and are under development by the Sustainable Remediation Forum (SURF), the American Society for Testing Materials (ASTM), the Interstate Technology Roundtable Commission (ITRC) and other organizations in the U.S. and internationally. In responsemore » to Executive Orders from the President, Federal government agencies have developed policies, procedures and guidelines for evaluating and reporting the sustainability of their environmental restoration projects. Private sector companies in the petroleum, utility, manufacturing, defense, and other sectors are developing their own corporate GSR programs to improve day-to-day management of contaminated sites and to support external reporting as part of their corporate social responsibility (CSR) efforts. The explosion of mandates, policy, procedures and guidance raises the question of how to determine whether a remediation technology or cleanup approach is green and/or sustainable. The environmental profession has responded to this question by designing, developing and deploying a wide array of tools, calculators, and databases that enable regulatory agencies, site managers and environmental professionals to calculate the collateral impacts of their remediation projects in the environmental, social, and economic domains. Many of these tools are proprietary ones developed by environmental engineering/consulting firms for use in their consulting engagements and/or tailored specifically to meet the needs of their clients. When it comes to the public domain, Federal government agencies are spearheading the development of software tools to measure and report emissions of air pollutants (e.g., carbon dioxide, other greenhouse gases, criteria air pollutants); consumption of energy, water and natural resources; accident and safety risks; project costs and other economic metrics. Most of the tools developed for the Government are available to environmental practitioners without charge, so they are growing in usage and popularity. The key features and metrics calculated by the available public-domain tools for measuring the sustainability of environmental remediation projects share some commonalities but there are differences amongst the tools. The SiteWise{sup TM} sustainability tool developed for the Navy and US Army will be compared with the Sustainable Remediation Tool (SRT{sup TM}) developed for the US Air Force (USAF). In addition, the USAF's Clean Solar and Wind Energy in Environmental Programs (CleanSWEEP), a soon-to-be-released tool for evaluating the economic feasibility of utilizing renewal energy for powering remediation systems will be described in the paper. (authors)« less

  7. Environmental Management Technology Leveraging Initiative. Topical report, October 1, 1995--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The ``Environmental Management Technology Leveraging Initiative,`` a cooperative agreement between the Global Environment and Technology Foundation and the Department of Energy-Morgantown Energy Technology Center, has completed its second year. This program, referred to as the Global Environmental Technology Enterprise (GETE) is an experiment to bring together the public and private sectors to identify, formulate, promote and refine methods to develop more cost-effective clean-up treatments. Working closely with Department of Energy officials, National Laboratory representatives, business people, academia, community groups, and other stakeholders, this program attempts to commercialize innovative, DOE-developed technologies. The methodology to do so incorporates three elements: business assistance,more » information, and outreach. A key advance this year was the development of a commercialization guidance document which can be used to diagnose the commercialization level and needs for innovative technologies.« less

  8. Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, T.C.; Looney, B.B.; Fliermans, C.B.

    1994-06-01

    The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ``Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.`` Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well.

  9. Robotic Waterjet System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA needed a way to safely strip old paint and thermal protection material from reusable components from the Space Shuttle; to meet this requirement, Marshall Space Flight Center teamed with United Technologies' USBI Company and developed a stripping system based on hydroblasting. United Technology spun off a new company, Waterjet Systems, to commercialize and market the technology. The resulting ARMS (Automated Robotic Maintenance Systems), employ waterblasts at 55,000 pounds per square inch controlled by target-sensitive robots. The systems are used on aircraft and engine parts, and the newest application is on ships, where it not only strips but catches the ensuing wastewater. This innovation results in faster, cheaper stripping with less clean-up and reduced environmental impact.

  10. Voluntary Guidelines for Methamphetamine Laboratory Cleanup - Document

    EPA Pesticide Factsheets

    provides technical guidance for state and local personnel responsible for meth lab cleanup, based on an extensive review of the best available science and practices, and addresses general cleanup activities, specific items/materials, sampling.

  11. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  12. US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, R.A.

    1997-05-01

    The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institutemore » of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.« less

  14. Corrective Action Sites around the Nation

    EPA Pesticide Factsheets

    Provide info to the public/community orgs, local officials & consultants on nearby corrective action cleanups, the status of the cleanup and future plans. Links to the Natl Corrective Action, Cleanups in My Community & Cleaning Up Our Land, Water & Air

  15. Green Remediation Best Management Practices: Overview of EPA's Methodology to Address the Environmental Footprint of Site Cleanup

    EPA Pesticide Factsheets

    Contaminated site cleanups involving complex activities may benefit from a detailed environmental footprint analysis to inform decision-making about application of suitable best management practices for greener cleanups.

  16. Military Base Realignments and Closures: DOD Has Improved Environmental Cleanup Reporting but Should Obtain and Share More Information

    DTIC Science & Technology

    2017-01-01

    the property, put final cleanup remedies in place before the property is transferred. However, under some circumstances the services may conduct an...early transfer before cleanup has been completed. When remedies are in place for addressing the contamination of a former installation or the...cleanup at BRAC installations will significantly increase due to the high cost of remediating emerging contaminants, primarily perfluorooctane

  17. Demonstration of an In-Situ Friction-Sound Probe for Mapping Particle Size at Contaminated Sediment Sites

    DTIC Science & Technology

    2013-09-01

    management practices resulting in the release of contaminants to soil , sediment, and groundwater in coastal environments. At contaminated sediment sites it...the release of contaminants to soil , sediment, and groundwater in coastal environments. Areas of potential concern at these sites are identified by...study will acquire additional soil and groundwater data necessary to satisfactorily evaluate remedial technologies and develop cleanup goals supporting

  18. Trial Support and Data Analysis for 2015 ONR Sea-Trial

    DTIC Science & Technology

    2017-06-21

    Report Chad M. Smith The Pennsylvania State University Applied Research Laboratory P.O. Box 30 State College, PA 16804-0030 phone: (814) 863...was the support of the PI and Penn State Applied Research Laboratory (PSU-ARL) technicians for demobilization and post-experimental cleanup of the...NAME(S) AND ADDRESS(ES) The Pennsylvania State University Applied Research Labotatory Office of Sponsored Programs 110 Technology Center Building

  19. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.; Looney, B.B.; Accorsi, F.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, mostmore » DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.« less

  20. KSC-99pp0389

    NASA Image and Video Library

    1999-04-06

    Walter W. Kovalick Jr., Ph.D., director of Technology Innovation Office for the U.S. Environmental Protection Agency, addresses representatives from Kennedy Space Center, the 45th Space Wing, and various federal environmental agencies gathered to attend a Memorandum of Agreement (MOA) signing, taking place at the site of Launch Complex 34. The MOA formalizes the cooperative efforts of the federal agencies in ground-water cleanup initiatives. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally. Other attendees included Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; and Roy Bridges Jr., director of John F. Kennedy Space Center

  1. Environmental Program

    NASA Technical Reports Server (NTRS)

    Fischer, Holger

    2009-01-01

    NASA's White Sands Test Facility has six core environmental compliance capabilities: remote hazardous testing of reactive, explosive and toxic materials and fluids; hypergolic fluids materials and systems testing; oxygen materials and system testing; hypervelocity impact testing; flight hardware processing; and, propulsion testing. The facility's permit status and challenges are reviewed. Historic operations and practices dating from the 1960s through the early 1980s resulted in contamination of the facility's groundwater. An environmental restoration effort has been employed to protect public health and the health of the workforce. The restoration seeks to properly handle hazardous materials and waste processes; determine the nature and extent of the contamination; stop the migration of contaminated groundwater; stabilize the plume front which has been assessed as the greatest risk to public health; and, clean-up the environment to restore it to preexisting conditions. The Plume Front Treatment System is operational and seeks to stop the westward movement of the plume to protect drinking water and irrigation well. Specifically, the treatment system will extract contaminated water from the aquifer, remove chemical using the best available technology, and return (inject) the treated water back to the aquifer. The Mid-Plume Interception Treatment System also seeks to stop the migration of containment, as well as to evaluate new technologies to accelerate cleanup, such as bioremediation.

  2. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less

  3. The National LUST Cleanup Backlog: A Study of Opportunities

    EPA Pesticide Factsheets

    To understand the makeup of UST releases remaining and why the pace of cleanups is slowing, EPA undertook a two-phase, data-driven analysis of the cleanups remaining as of 2006 (Phase 1) and 2009 (Phase 2).

  4. Tephra fall clean-up in urban environments

    NASA Astrophysics Data System (ADS)

    Hayes, Josh L.; Wilson, Thomas M.; Magill, Christina

    2015-10-01

    Tephra falls impact urban communities by disrupting transport systems, contaminating and damaging buildings and infrastructures, and are potentially hazardous to human health. Therefore, prompt and effective tephra clean-up measures are an essential component of an urban community's response to tephra fall. This paper reviews case studies of tephra clean-up operations in urban environments around the world, spanning 50 years. It identifies methods used in tephra clean-up and assesses a range of empirical relationships between level of tephra accumulation and clean-up metrics such as collected tephra volume, costs, and duration of operations. Results indicate the volume of tephra collected from urban areas is proportional to tephra accumulation. Urban areas with small tephra accumulations (1,000 m3/km2 or an average of 1 mm thickness) may collect < 1% of the total deposit, whereas urban areas which experience large accumulations (> 50,000 m3/km2 or an average of 50 mm thickness) remove up to 80%. This relationship can inform impact and risk assessments by providing an estimate of the likely response required for a given tephra fall. No strong relationship was found between tephra fall accumulation and clean-up cost or duration for urban environments which received one-off tephra falls, suggesting that these aspects of tephra fall clean-up operations are context specific. Importantly, this study highlights the advantage of effective planning for tephra clean-up and disposal in potentially exposed areas.

  5. Duct injection for SO{sub 2} control, Design Handbook, Volume 1, Process design and engineering guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    PETC developed a comprehensive program of coal-related, acid-rain research and development with a major activity area centering on flue gas cleanup and control of SO{sub 2} emissions. Particular emphasis was placed on the retrofit measures for older coal-fired power plants which predate the 1971 New Source Performance Standards. Candidate emission control technologies fall into three categories, depending upon their point of application along the fuel path (i.e., pre, during, or post combustion). The post-combustion, in-duct injection of a calcium-based chemical reagent seemed promising. Preliminary studies showed that reagent injection between the existing air heater and electrostatic precipitator (ESP) could removemore » between 50-60% of the SO{sub 2} and produce an environmentally safe, dry, solid waste that is easily disposed. Although SO{sub 2} removal efficiencies were less, the estimated capital costs for duct injection technology were low making the economics of duct injection systems seem favorable when compared to conventional wet slurry scrubbers under certain circumstances. With the promulgation of the Clean Air Act Amendments of 1990 came more incentive for the development of low capital cost flue gas desulfurization (FGD) processes. A number of technical problems had to be resolved, however, before duct injection technology could be brought to a state of commercial readiness. The Duct Injection Technology Development Program was launched as a comprehensive, four-year research effort undertaken by PETC to develop this new technology. Completed in 1992, this Duct Injection Design Handbook and the three-dimensional predictive mathematical model constitute two primary end products from this development program. The aim of this design handbook and the accompanying math model is to provide utility personnel with sufficient information to evaluate duct injection technology against competing SO{sub 2} emissions reduction strategies for an existing plant.« less

  6. ENERGY CONSERVATION AND PRODUCTION AT WASTE CLEANUP SITES (ISSUE PAPER)

    EPA Science Inventory

    Saving energy used by hazardous waste cleanup remediation systems should interest those people working on waste cleanup sites. Presidential Executive Order 13123, "Greening the Government Through Efficient Energy Management", states that each agency shall strive to expand the us...

  7. Brownfields Grants Information

    EPA Pesticide Factsheets

    This asset includes all types of information regarding Brownfields grant programs that subsidize/support Brownfield cleanup. This includes EPA's Brownfields Program grant funding for brownfields assessment, cleanup, revolving loans, and environmental job training. Assessment grants provide funding for a grant recipient to inventory, characterize, assess, and conduct planning and community involvement related to brownfield sites. Revolving Loan Fund Grants enable States, political subdivisions, and Indian tribes to make low interest loans to carryout cleanup activities at brownfields properties. Cleanup grants provide funding for a grant recipient to carry out cleanup activities at brownfield sites. Environmental Workforce Development and Job Training Grants are designed to provide funding to eligible entities, including nonprofit organizations, to recruit, train, and place predominantly low-income and minority, unemployed and under-employed residents of solid and hazardous waste-impacted communities with the skills needed to secure full-time, sustainable employment in the environmental field and in the assessment and cleanup work taking place in their communities. Training, Research, and Technical Assistance Grants provide funding to eligible organizations to provide training, research, and technical assistance to facilitate brownfields cleanup. Regulatory authority for the collection and use of this information is found in the Small Business Liability Relief

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Karen; McCormick, Matt

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level,more » and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses Working Group, Tank Waste Task Force, Hanford Summits, and Hanford Advisory Board Exposure Scenario Workshops, as well as more than 200 advice letters issued by the Hanford Advisory Board (http://www.hanford.gov/page.cfm/hab). These goals help guide all aspects of Hanford Site cleanup. Cleanup activities at various areas of the site support the achievement of one or more of these goals. These goals help set priorities to apply resources and sequence cleanup efforts for the greatest benefit. These goals reflect DOE's recognition that the Columbia River is a critical resource for the people and ecology of the Pacific Northwest. The 50-mile stretch of the river known as the Hanford Reach is home to the last free-flowing section of the river in the U.S. As one of the largest rivers in North America, its waters support a multitude of uses that are vital to the economic and environmental well being of the region and it is particularly important in sustaining the culture of Native Americans. Cleanup actions must protect this river. (authors)« less

  9. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  10. HANDBOOK ON THE BENEFITS, COSTS, AND IMPACTS OF LAND CLEANUP AND REUSE

    EPA Science Inventory

    Summarizes the theoretical and empirical literature addressing benefit-cost and impact assessment of the land cleanup and reuse scenario. When possible, recommendations are provided for conducting economic analysis of land cleanup and reuse sites and programs. The knowledge base ...

  11. Analysis of state Superfund programs: 50 state study. 1998 update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    States have remediated over 40,000 contaminated sites not on the federal Superfund list. ELI`s latest analysis of state Superfund programs examines the cleanup programs of all 50 states, Puerto Rico, and the District of Columbia. The study provides the most current data on state statutes, program organization, staffing, funding, expenditures, cleanup standards, and cleanup activities, voluntary cleanup programs and brownfields programs. State and federal policymakers and attorneys working on non-NPL sites should find this study useful.

  12. Evaluation of surface roughness of enamel after various bonding and clean-up procedures on enamel bonded with three different bonding agents: An in-vitro study

    PubMed Central

    Goel, Amit; Singh, Atul; Gupta, Tarun

    2017-01-01

    Background The purpose of this study was to analyze and compare the enamel surface roughness before bonding and after debonding, to find correlation between the adhesive remnant index and its effect on enamel surface roughness and to evaluate which clean-up method is most efficient to provide a smoother enamel surface. Material and Methods 135 premolars were divided into 3 groups containing 45 premolars in each group. Group I was bonded by using moisture insensitive primer, Group II by using conventional orthodontic adhesive and Group III by using self-etching primer. Each group was divided into 3 sub-groups on the basis of type of clean-up method applied i,e scaling followed by polishing, tungsten carbide bur and Sof-Lex disc. Enamel surface roughness was measured and compared before bonding and after clean-up. Results Evaluation of pre bonding and post clean-up enamel surface roughness (Ra value) with the t test showed that Post clean-up Ra values were greater than Pre bonding Ra values in all the groups except in teeth bonded with self-etching primer cleaned with Sof-Lex disc. Reliability of ARI score taken at different time interval tested with Kruskal Wallis test suggested that all the readings were reliable. Conclusions No clean-up procedure was able to restore the enamel to its original smoothness. Self-etching primer and Sof-Lex disc clean-up method combination restored the enamel surface roughness (Ra value) closest to its pre-treatment value. Key words:Enamel surface roughness, clean-up method, adhesive remnant index. PMID:28512535

  13. Environmental cleanup: The challenge at the Hanford Site, Washington, USA

    NASA Astrophysics Data System (ADS)

    Gray, Robert H.; Becker, C. Dale

    1993-07-01

    Numerous challenges face those involved with developing a coordinated and consistent approach to cleaning up the US Department of Energy’s (DOE) Hanford Site in southeastern Washington. These challenges are much greater than those encountered when the site was selected and the world’s first nuclear complex was developed almost 50 years ago. This article reviews Hanford’s history, operations, waste storage/disposal activities, environmental monitoring, and today’s approach to characterize and clean up Hanford under a Federal Facility Agreement and Consent Order, signed by DOE, the Environmental Protection Agency, and the Washington Sate Department of Ecology. Although cleanup of defense-related waste at Hanford holds many positive benefits, negative features include high costs to the US taxpayer, numerous uncertainties concerning the technologies to be employed and the risks involved, and the high probability that special interest groups and activists at large will never be completely satisfied. Issues concerning future use of the site, whether to protect and preserve its natural features or open it to public exploitation, remain to be resolved.

  14. Environmental restoration and waste management: Five-year plan, Fiscal Years 1992--1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleman, L.I.

    1990-06-01

    This document reflects DOE's fulfillment of a major commitment of the Environmental Restoration and Waste Management Five-Year Plan: reorganization to create an Office of Environmental Restoration and Waste Management (EM) responsible for the consolidated environmental management of nuclear-related facilities and sites formerly under the Assistant Secretaries for Defense Programs and Nuclear Energy and the Director of the Office of Energy Research. The purposes of this Plan for FY 1992--1996 are to measure progress in meeting DOE's compliance, cleanup, and waste management agenda; to incorporate a revised and condensed version of the Draft Research Development, Demonstration, Testing, and Evaluation (RDDT E)more » Plan (November 1989) to describe DOE's process for developing the new technologies critically needed to solve its environmental problems; to show DOE's current strategy and planned activities through FY 1996, including reasons for changes required to meet compliance and cleanup commitments; and to increase the involvement of other agencies and the public in DOE's planning.« less

  15. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  16. ReOpt[trademark] V2.0 user guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M K; Bryant, J L

    1992-10-01

    Cleaning up the large number of contaminated waste sites at Department of Energy (DOE) facilities in the US presents a large and complex problem. Each waste site poses a singular set of circumstances (different contaminants, environmental concerns, and regulations) that affect selection of an appropriate response. Pacific Northwest Laboratory (PNL) developed ReOpt to provide information about the remedial action technologies that are currently available. It is an easy-to-use personal computer program and database that contains data about these remedial technologies and auxiliary data about contaminants and regulations. ReOpt will enable engineers and planners involved in environmental restoration efforts to quicklymore » identify potentially applicable environmental restoration technologies and access corresponding information required to select cleanup activities for DOE sites.« less

  17. Technology Evaluation Report: Non-destructive ...

    EPA Pesticide Factsheets

    Technology Evaluation Report HSRP is working to develop tools and information that will help detect the intentional introduction of chemical or biological contaminants in buildings or water systems, the containment of these contaminants, the decontamination of buildings and/or water systems, and the management of wastes generated from decontamination and cleanup operations. Evaluation of the performance of CBI Polymers’ DeconGelTM 1108, Environmental Alternatives, Inc.’s (EAI’s) Rad-Release II (RRII), Environmental Alternatives, Inc.’s SuperGel, and Intek Technologies’ LH-21. The objective of evaluating these technologies was to test their ability to remove radioactive cesium (Cs)-137 from the mixed building material coupons of brick with mortar, tile with grout, granite with mortar, all mortar and all grout coupons.

  18. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids

    PubMed Central

    Mosa, Kareem A.; Saadoun, Ismail; Kumar, Kundan; Helmy, Mohamed; Dhankher, Om Parkash

    2016-01-01

    Global mechanization, urbanization, and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizoremediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments. PMID:27014323

  19. Review of State Soil Cleanup Levels for Dioxin (December 2009)

    EPA Science Inventory

    This final report summarizes a survey of state soil cleanup levels for dioxin and characterizes the science underlying these values. The objective of this project was to summarize existing state cleanup levels for dioxin in soil, together with their scientific bases where availa...

  20. 40 CFR 312.25 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cleanup liens. 312.25 Section 312.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS INNOCENT LANDOWNERS, STANDARDS FOR... cleanup liens. (a) All appropriate inquiries must include a search for the existence of environmental...

  1. Successful implementation of property cleanup under the Ohio and the Texas voluntary programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roffman, A.

    1999-07-01

    Cleanups of two properties, one located in Ohio and the other in Texas were successfully implemented. The facilities were printing plants that manufactured printed material and forms for commercial and industrial use. Primary products and chemicals involved in the manufacturing of the forms included ink, petroleum products and cleaning solvents. The Ohio property underwent a successful cleanup under the Ohio EPA Voluntary Action Program (VAP). It met the Ohio EPA residential land use cleanup standards for soil and shallow groundwater. A No Further Action letter has been submitted to the state and it resulted in the issuance of a Covenantmore » Not to Sue. The Texas facility underwent a successful cleanup under the Texas Natural Resource Conservation Commission (TNRCC) Voluntary Cleanup Program (VCP). It resulted in the issuance of a Certificate of Completion (COC) for residential land use for soil, and a conditional COC for industrial land use for the shallow groundwater.« less

  2. Superfund record of decision amendment (EPA Region 5): Moss-American (Kerr-McGee Oil Co.), Milwaukee, WI, September 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this decision document is to present an amendment to the Record of Decision (ROD) for the Moss-American Site, which is located in Milwaukee, Wisconsin. The ROD amendment for the Moss-American site has three principal components: (1) changes in soil treatment technology, (2) potential changes in cleanup standards, and (3) changes in cover design and requirements.

  3. Performance Analysis of Cofiring Densified Refuse Derived Fuel in a Military Boiler.

    DTIC Science & Technology

    1981-12-01

    Derived Fuel 70 Design Considerations for Municipal Solid Waste Conveyors 71 Densification of Refuse -Derived Fuels: Preparation Properties and Systems...problems could be realized if the system were expanded and if operating demands were increased. 70 DESIGN CONSIDERATIONS FOR MUNICIPAL SOLID WASTE CONVEYORS ...cleanup might be very useful in order to determine the level at which a conveyor design is monetarily accep~table. A scan of conveying technologies for

  4. Processing plutonium-contaminated soil on Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-07-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical`s (TMA`s) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab.

  5. Research and Analysis of Possible Solutions for Navy-Simulated Training Technology

    DTIC Science & Technology

    2015-03-01

    54 Table 16. Environmental Damages to Vieques Island .....................................................56 Table 17. Excerpt: Tab C of...Vieques Island Fiscal Year Environmental (52 Munitions (18 Totals Sites) Sites) Through FY12 $27.6 $155.5 $183.1 FY13 $0.2 $19.5 $19.7 FY14 & Beyond...advantages over live ammunition base u·aining: safety and cleanup cost have been discussed above. Additionally it is possible that laser-based u·aining

  6. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater at Complex Sites

    NASA Astrophysics Data System (ADS)

    Deeb, R. A.; Hawley, E.

    2011-12-01

    This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and alternative remedial strategies for groundwater remediation under a variety of Federal and state cleanup programs, including technical impracticability (TI) and other Applicable or Relevant and Appropriate Requirement (ARAR) waivers, state and local designations such as groundwater management zones, Alternate Concentration Limits (ACLs), use of monitored natural attenuation (MNA) over long timeframes, and more. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies to illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, timeframe, and potential remedial effectiveness. Case studies provide examples of the flexible, site-specific, application of alternative endpoints and alternative remedial strategies that have been used in the past to manage and remediate groundwater contamination at complex sites. For example, at least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. These designations typically indicate that groundwater contamination is present above permissible levels. Soil and groundwater within these zones are managed to protect human health and the environment. Lesson learned for the analyses conducted and the case studies evaluated allow for a more careful consideration of alternative, beneficial, and cost-effective cleanup objectives and metrics that can be achieved over the short-term (while eventually meeting long-term cleanup objectives or demonstrating the applicability of alternative endpoints), thus improving the site cleanup process at complex sites where appropriate.

  7. 48 CFR 49.105-4 - Cleanup of construction site.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cleanup of construction site. 49.105-4 Section 49.105-4 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT MANAGEMENT TERMINATION OF CONTRACTS General Principles 49.105-4 Cleanup of construction site. In...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, Jonathan; Franco, Joe

    The discussion of Hanford's River Corridor will cover work that has already been completed plus the work remaining to be done. This includes the buildings, waste sites, and groundwater plumes in the 300 Area; large-scale burial ground remediation in the 600 Area; plutonium production reactor dismantling and 'cocooning' along the river; preservation of the world's first full-scale plutonium production reactor; removal of more than 14 million tons of contaminated soil and debris along the Columbia River shoreline and throughout the River Corridor; and the excavation of buried waste sites in the river shore area. It also includes operating an EPA-permittedmore » low-level waste disposal facility in the central portion of the site. At the completions of cleanup in 2015, Hanford's River Corridor will be the largest closure project ever completed by the Department of Energy. Cleanup of the River Corridor has been one of Hanford's top priorities since the early 1990's. This urgency has been due to the proximity of hundreds of waste sites to the Columbia River. In addition, removal of the sludge from K West Basin, near the river, remains a high priority. This 220-square-mile area of the Hanford Site sits on the edge of the last free-flowing stretch of the Columbia River. The River Corridor portion of the Hanford Site includes the 100 and 300 Areas along the south shore of the Columbia River. The 100 Areas contain nine retired plutonium production reactors. These areas are also the location of numerous support facilities and solid and liquid waste disposal sites that have contaminated groundwater and soil. The 300 Area, located just north of the city of Richland, contains fuel fabrication facilities, nuclear research and development facilities, and their associated solid and liquid waste disposal sites that have contaminated groundwater and soil. In order to ensure that cleanup actions address all threats to human health and the environment, the River Corridor includes the adjacent areas that extend from the 100 Area and 300 Area to the Central Plateau. For sites in the River Corridor, remedial actions are expected to restore groundwater to drinking water standards and ensure that aquatic life in the Columbia River is protected by achieving ambient water quality standards. It is intended that these objectives be achieved, unless technically impracticable, within a reasonable timeframe. In those instances where remedial action objectives are not achievable in a reasonable time frame, or are determined to be technically impracticable, programs are being implemented to contain the plume, prevent exposure to contaminated groundwater, and evaluate further risk reduction opportunities as new technologies become available. River Corridor cleanup work also removes potential sources of contamination, which are close to the Columbia River, and places them on the Central Plateau for final disposal. The intent is to shrink the footprint of active cleanup to within the 75-square- mile area of the Central Plateau by removing excess facilities and remediating waste sites. Cleanup actions are supporting anticipated future land uses consistent with the Hanford Reach National Monument, where applicable, and the Hanford Comprehensive Land- Use Plan (DOE 1999). The River Corridor has been divided into six geographic decision areas to achieve source and groundwater remedy decisions. These decisions will provide comprehensive coverage for all areas within the River Corridor and will incorporate ongoing interim action cleanup activities. Cleanup levels will be achieved in order to support anticipated future land uses of conservation and preservation for most of this area and industrial use for the 300 Area. At the conclusion of cleanup actions, the federal government will implement long-term stewardship activities to ensure protection of human health and the environment. (authors)« less

  9. 30 CFR 75.400-2 - Cleanup program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...

  10. 30 CFR 75.400-2 - Cleanup program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...

  11. 30 CFR 75.400-2 - Cleanup program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...

  12. 30 CFR 75.400-2 - Cleanup program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...

  13. 30 CFR 75.400-2 - Cleanup program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cleanup program. 75.400-2 Section 75.400-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.400-2 Cleanup...

  14. Green and sustainable remediation practices in Federal agency cleanup programs

    DOE PAGES

    Martino, Louis E.; Dona, Carol L.; Dicerbo, Jerry; ...

    2016-10-27

    Federal agencies manage hazardous waste sites under the assumption that environmental restoration will improve the environment by returning contaminated groundwater to beneficial use, removing waste residuals from a site, treating discharges to surface water, and reducing overall risks to human health and the environment. However, the associated time-consuming and expensive operations, extensive performance monitoring, and post-closure care can lead to unanticipated environmental impacts due to both the technological nature of these cleanup activities and the related protracted timelines. These life-cycle impacts can and should be included in the evaluation of remedial alternatives. Increasingly, Federal agencies are considering these life-cycle impacts—more » variously referred to as ‘‘environmental footprint analysis,’’ ‘‘sustainable remediation,’’ ‘‘green remediation,’’ ‘‘greener remediation,’’ and ‘‘green and sustainable remediation’’— when evaluating environmental restoration approaches. For the purposes of this paper, this concept will be referred to as ‘‘green and sustainable remediation’’ (GSR), with application of GSR assumed to take place across the cleanup life cycle, from the investigation phase through site closeout. This paper will discuss the history of GSR, what GSR is, who is implementing GSR, and GSR metrics. Finally, the paper will also discuss two approaches to GSR, using case studies to understand and implement it; the first will be a qualitative approach, and the second a more detailed quantitative approach« less

  15. Green and sustainable remediation practices in Federal agency cleanup programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Louis E.; Dona, Carol L.; Dicerbo, Jerry

    Federal agencies manage hazardous waste sites under the assumption that environmental restoration will improve the environment by returning contaminated groundwater to beneficial use, removing waste residuals from a site, treating discharges to surface water, and reducing overall risks to human health and the environment. However, the associated time-consuming and expensive operations, extensive performance monitoring, and post-closure care can lead to unanticipated environmental impacts due to both the technological nature of these cleanup activities and the related protracted timelines. These life-cycle impacts can and should be included in the evaluation of remedial alternatives. Increasingly, Federal agencies are considering these life-cycle impacts—more » variously referred to as ‘‘environmental footprint analysis,’’ ‘‘sustainable remediation,’’ ‘‘green remediation,’’ ‘‘greener remediation,’’ and ‘‘green and sustainable remediation’’— when evaluating environmental restoration approaches. For the purposes of this paper, this concept will be referred to as ‘‘green and sustainable remediation’’ (GSR), with application of GSR assumed to take place across the cleanup life cycle, from the investigation phase through site closeout. This paper will discuss the history of GSR, what GSR is, who is implementing GSR, and GSR metrics. Finally, the paper will also discuss two approaches to GSR, using case studies to understand and implement it; the first will be a qualitative approach, and the second a more detailed quantitative approach« less

  16. The U.S. Department of Energy - Office of Environmental Management Cooperation Program with the Russian Federal Atomic Energy Agency (ROSATOM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, K.D.; Holtzscheiter, E.W.

    2006-07-01

    The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with the Russian Federal Atomic Energy Agency - Rosatom (formerly Minatom) for 14 years on waste management challenges of mutual concern. Currently, EM is cooperating with Rosatom to explore issues related to high-level waste and investigate Russian experience and technologies that could support EM site cleanup needs. EM and Rosatom are currently implementing six collaborative projects on high-level waste issues: 1) Advanced Melter Technology Application to the U.S. DOE Defense Waste Processing Facility (DWPF) - Cold Crucible Induction Heated Melter (CCIM); 2) - Design Improvements to themore » Cold Crucible Induction Heated Melter; 3) Long-term Performance of Hanford Low-Activity Glasses in Burial Environments; 4) Low-Activity-Waste (LAW) Glass Sulfur Tolerance; 5) Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms; and, 6) Documentation of Mixing and Retrieval Experience at Zheleznogorsk. Preliminary results and the path forward for these projects will be discussed. An overview of two new projects 7) Entombment technology performance and methodology for the Future 8) Radiation Migration Studies at Key Russian Nuclear Disposal Sites is also provided. The purpose of this paper is to provide an overview of EM's objectives for participating in cooperative activities with the Russian Federal Atomic Energy Agency, present programmatic and technical information on these activities, and outline specific technical collaborations currently underway and planned to support DOE's cleanup and closure mission. (authors)« less

  17. Geothermal well site restoration and plug and abandonment of wells, DOE Gladys McCall test site, Cameron Parish, Louisiana and DOE Willis Hulin test site, Vermillion Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana--the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete,more » utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports, and cost and salvage reports. Site locations, grid maps, and photographs are provided.« less

  18. A differential mobility spectrometry/mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP.

    PubMed

    Kafle, Amol; Klaene, Joshua; Hall, Adam B; Glick, James; Coy, Stephen L; Vouros, Paul

    2013-07-15

    There is continued interest in exploring new analytical technologies for the detection and quantitation of DNA adducts, biomarkers which provide direct evidence of exposure and genetic damage in cells. With the goal of reducing clean-up steps and improving sample throughput, a Differential Mobility Spectrometry/Mass Spectrometry (DMS/MS) platform has been introduced for adduct analysis. A DMS/MS platform has been utilized for the analysis of dG-ABP, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl (4-ABP). After optimization of the DMS parameters, each sample was analyzed in just 30 s following a simple protein precipitation step of the digested DNA. A detection limit of one modification in 10^6 nucleosides has been achieved using only 2 µg of DNA. A brief comparison (quantitative and qualitative) with liquid chromatography/mass spectrometry is also presented highlighting the advantages of using the DMS/MS method as a high-throughput platform. The data presented demonstrate the successful application of a DMS/MS/MS platform for the rapid quantitation of DNA adducts using, as a model analyte, the deoxyguanosine adduct of the bladder carcinogen 4-aminobiphenyl. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of themore » processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.« less

  20. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multistage-hydraulic-fracture treatments are currently the most-established method for effectively stimulating and enabling economic development of gas-bearing organic-rich shale formations. Fracture cleanup in the stimulated reservoir volume (SRV) is critical to stimulation effectiveness and long-term well performance. But, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls to less than expectations. A systematic study of the factors that hinder fracture-fluid cleanup in shale formations can help optimize fracture treatments and better quantify long-term volumes of produced water and gas. Fracture-fluid cleanup is a complex process influenced by mutliphase flow through porousmore » media (relative permeability hysteresis, capillary pressure), reservoir-rock and -fluid properties, fracture-fluid properties, proppant placement, fracture-treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best and most-practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent effect on fracture-fluid cleanup and well deliverability. Here, a 3D, two-phase, dual-porosity model was used to investigate the effect of mutliphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir-rock compaction, gas slippage, and gas desorption on fracture-fluid cleanup and well performance in Marcellus Shale. Our findings have shed light on the factors that substantially constrain efficient fracture-fluid cleanup in gas shales, and we have provided guidelines for improved fracture-treatment designs and water management.« less

  1. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE PAGES

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; ...

    2017-04-01

    Horizontal wells combined with successful multistage-hydraulic-fracture treatments are currently the most-established method for effectively stimulating and enabling economic development of gas-bearing organic-rich shale formations. Fracture cleanup in the stimulated reservoir volume (SRV) is critical to stimulation effectiveness and long-term well performance. But, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls to less than expectations. A systematic study of the factors that hinder fracture-fluid cleanup in shale formations can help optimize fracture treatments and better quantify long-term volumes of produced water and gas. Fracture-fluid cleanup is a complex process influenced by mutliphase flow through porousmore » media (relative permeability hysteresis, capillary pressure), reservoir-rock and -fluid properties, fracture-fluid properties, proppant placement, fracture-treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best and most-practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent effect on fracture-fluid cleanup and well deliverability. Here, a 3D, two-phase, dual-porosity model was used to investigate the effect of mutliphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir-rock compaction, gas slippage, and gas desorption on fracture-fluid cleanup and well performance in Marcellus Shale. Our findings have shed light on the factors that substantially constrain efficient fracture-fluid cleanup in gas shales, and we have provided guidelines for improved fracture-treatment designs and water management.« less

  2. 78 FR 50447 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Cleanup...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... for OMB Review; Comment Request; Cleanup Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the... (ICR) proposal; titled, ``Cleanup Program for Accumulations of Coal and Float Coal Dusts, Loose Coal...

  3. Brownfields to School Sites: How Can the State Facilitate Cleanup To Build Essential Schools?

    ERIC Educational Resources Information Center

    California State Legislature, Sacramento. Select Committee on Environmental Justice.

    This document presents background information and testimony concerning the cleanup of potentially contaminated vacant or underutilized property for use as future school sites in low-income and minority communities. Various proposals are offered that would allow the state, where necessary, to facilitate the cleanup of these "brownfields"…

  4. Texas Coastal Cleanup Report, 1986.

    ERIC Educational Resources Information Center

    O'Hara, Kathryn; And Others

    During the 1986 Coastweek, a national event dedicated to improvement of the marine environment, a large beach cleanup was organized on the Texas coast. The goals of the cleanup were to create public awareness of the problems caused by marine debris, and to collect data on the types and quantities of debris found on the Texas coastline. The…

  5. 75 FR 76280 - Regulated Navigation Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    .../ Tideflats superfund cleanup remediation efforts. This RNA will prohibit activities that would disturb the.../Tideflats superfund cleanup remediation process in those waters. These caps consist of approximately three... remediation efforts of the U.S. Environmental Protection Agency (EPA) and others in the Thea Foss and Wheeler...

  6. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  7. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  8. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  9. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  10. 40 CFR 761.125 - Requirements for PCB spill cleanup.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Additional pre- or post-cleanup sampling. (B) The estimated cost of the cleanup by man-hours, dollars, or... section are designed to be consistent with existing reporting requirements to the extent possible so as to...) by standard commercial wipe tests. (ii) All soil within the spill area (i.e., visible traces of soil...

  11. The long-term problems of contaminated land: Sources, impacts and countermeasures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baes, C.F. III

    1986-11-01

    This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').

  12. Cleaning Contaminated Water at Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rende, Dean; Nenoff, Tina

    2013-11-21

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  13. Homeland Security Research Improves the Nation's Ability to ...

    EPA Pesticide Factsheets

    Technical Brief Homeland Security (HS) Research develops data, tools, and technologies to minimize the impact of accidents, natural disasters, terrorist attacks, and other incidents that can result in toxic chemical, biological or radiological (CBR) contamination. HS Research develops ways to detect contamination, sampling strategies, sampling and analytical methods, cleanup methods, waste management approaches, exposure assessment methods, and decision support tools (including water system models). These contributions improve EPA’s response to a broad range of environmental disasters.

  14. Cleaning Contaminated Water at Fukushima

    ScienceCinema

    Rende, Dean; Nenoff, Tina

    2018-05-16

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  15. Phytoremediation: A new technology gets ready to bloom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, J.

    1997-05-01

    For most environmental managers and owners of contaminated property, the prospect of undertaking site cleanups conjures up complex images of heavy machinery, high-tech treatment programs, heavy financial burdens, negative public reactions and a morass of regulatory requirements and potential legal liabilities. A few years ago, a handful of agricultural and biological scientists set out to change all that. Based on their knowledge of the ability of plants and trees to remove contaminants from the environment, they began developing the groundwork for phytoremediation, a collection of straightforward, low-tech cleanup technologies that is receiving increasing attention from regulators and owners of contaminatedmore » sites. At least five companies devoted exclusively to commercial applications of phytoremediation have emerged from this early work. Phytoremediation is the use of selected crop plants or trees to extract or promote degradation of toxic substances in soils, groundwater, surface water, wastewater and sediments. It may even be possible in some cases to harvest such contaminants as heavy metals that have been taken up by plants and recover them for recycling. In other variations, plants stimulate the growth of naturally occurring microbial populations, which then degrade organic contaminants, such as petroleum hydrocarbons, in soils. At appropriate sites, the cost of applying phytoremediation techniques may range from half to less than 20% of the cost of using physical, chemical or thermal techniques.« less

  16. Quantification of Complex Polycyclic Aromatic Hydrocarbon Mixtures in Standard Reference Materials Using GC×GC/ToF-MS

    PubMed Central

    Manzano, Carlos; Hoh, Eunha; Massey Simonich, Staci L.

    2014-01-01

    This research is the first to quantify complex PAH mixtures in NIST SRMs using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/ToF-MS), with and without extract cleanup, and reports previously unidentified PAH isomers in the NIST SRMs. We tested a novel, high orthogonality GC column combination (LC-50×NSP-35), as well as with a commonly used column combination (Rtx-5ms×Rxi-17) for the quantification of a complex mixture of 85 different PAHs, including parent (PAHs), alkyl- (MPAHs), nitro- (NPAHs), oxy- (OPAHs), thio- (SPAHs), bromo- (BrPAHs), and chloro-PAHs (ClPAHs) in extracts from two standard reference materials: NIST SRM1650b (diesel particulate matter), with cleanup and NIST SRM1975 (diesel particulate extract), with and without extract cleanup. The LC-50×NSP-35 column combination resulted in an average absolute percent difference of 33.8%, 62.2% and 30.8% compared to the NIST certified PAH concentrations for NIST SRM1650b, NIST SRM1975 with cleanup and NIST SRM1975 without cleanup, while the Rtx-5ms×Rxi-17 resulted in an absolute percent difference of 38.6%, 67.2% and 79.6% for NIST SRM1650b, NIST SRM1975 with cleanup and NIST SRM1975 without cleanup, respectively. This GC×GC/ToF-MS method increases the number of PAHs detected and quantified in complex environmental extracts using a single chromatographic run. Without clean-up, 7 additional compounds were detected and quantified in NIST SRM1975 using the LC-50×NSP-35 column combination. These results suggest that the use of the LC-50×NSP-35 column combination in GC×GC/ToF-MS not only results in better chromatographic resolution and greater orthogonality for the separation of complex PAH mixtures, but can also be used for the accurate quantification of complex PAH mixtures in environmental extracts without cleanup. PMID:23932031

  17. SUPERFUND CLEANUPS AND INFANT HEALTH.

    PubMed

    Currie, Janet; Greenstone, Michael; Moretti, Enrico

    2011-05-01

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989-2003 in five large states. Our "difference in differences" approach compares birth outcomes before and after a site clean-up for mothers who live within 2,000 meters of the site and those who live between 2,000- 5,000 meters of a site. We find that proximity to a Superfund site before cleanup is associated with a 20 to 25% increase in the risk of congenital anomalies.

  18. Cleanup procedure for water, soil, animal and plant extracts for the use of electron-capture detector in the gas chromatographic analysis of organophosphorus insecticide residues.

    PubMed

    Kadoum, A M

    1968-07-01

    A simple, aqueous acetonitrile partition cleanup method for analyses of some common organophosphorus insecticide residues is described. The procedure described is for cleanup and quantitative recovery of parathion, methyl parathion, diazinon, malathion and thimet from different extracts. Those insecticides in the purified extracts of ground water, grain, soil, plant and animal tissues can be detected quantitatively by gas chromatography with an electron capture-detector at 0.01 ppm. Cleanup is satisfactory for paper and thin-layer chromatography for further identification of individual insecticides in the extracts.

  19. 75 FR 30753 - Regulated Navigation Area; Thea Foss and Wheeler-Osgood Waterways EPA Superfund Cleanup Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... superfund cleanup remediation efforts. To more effectively protect those efforts, the Coast Guard is... cleanup remediation process in those waters. These caps consist of approximately three feet of sand and... remediation efforts that underlie the whole concept of the proposed RNA, and we would consult with the City of...

  20. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influencedmore » by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.« less

  1. Mental disorders among Chernobyl cleanup workers from Estonia: A clinical assessment.

    PubMed

    Laidra, Kaia; Rahu, Kaja; Kalaus, Katri-Evelin; Tekkel, Mare; Leinsalu, Mall

    2017-08-01

    To assess, at a clinical level, the mental health of former Chernobyl cleanup workers from Estonia by comparing them with same-age controls. The Mini International Neuropsychiatric Interview (MINI) was administered during 2011-2012 to 99 cleanup workers and 100 population-based controls previously screened for mental health symptoms. Logistic regression analysis showed that cleanup workers had higher odds of current depressive disorder (odds ratio [OR] = 3.07, 95% confidence interval [CI: 1.34, 7.01]), alcohol dependence (OR = 3.47, 95% CI [1.29, 9.34]), and suicide ideation (OR = 3.44, 95% CI [1.28, 9.21]) than did controls. Except for suicide ideation, associations with Chernobyl exposure became statistically nonsignificant when adjusted for education and ethnicity. A quarter of a century after the Chernobyl accident, Estonian cleanup workers were still at increased risk of mental disorders, which was partly attributable to sociodemographic factors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. From Cleanup to Stewardship. A companion report to Accelerating Cleanup: Paths to Closure and background information to support the scoping process required for the 1998 PEIS Settlement Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-10-01

    Long-term stewardship is expected to be needed at more than 100 DOE sites after DOE's Environmental Management program completes disposal, stabilization, and restoration operations to address waste and contamination resulting from nuclear research and nuclear weapons production conducted over the past 50 years. From Cleanup to stewardship provides background information on the Department of Energy (DOE) long-term stewardship obligations and activities. This document begins to examine the transition from cleanup to long-term stewardship, and it fulfills the Secretary's commitment to the President in the 1999 Performance Agreement to provide a companion report to the Department's Accelerating Cleanup: Paths to Closuremore » report. It also provides background information to support the scoping process required for a study on long-term stewardship required by a 1998 Settlement Agreement.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeb, Rula A.; Hawley, Elisabeth L.

    The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-termmore » management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, J.

    Every environmentalist and environmental manager dreams of a day when it will be possible to load hazardous waste into one end of a magic machine and retrieve beneficial -- or at least benign -- products from the other end. Two unrelated companies -- Molten Metal Technology Inc., (Waltham, Mass.) and ELI Eco Logic Inc. (Rockwood, Ontario, Canada) -- have developed different technologies that show promise of realizing such dreams. Whether either company`s solution to the problem of effectively managing hazardous wastes proves to be the dream machine remains to be seen, but their stories offer insight into what the futuremore » may hold for hazardous waste management. The Eco Logic Process was demonstrated in 1991 at Hamilton Harbour, Ontario, and later at Bay City, Mich., in cleanups of polychlorinated biphenyls (PCBs) and other soil contaminants. The technology was accepted into the US Environmental Protection Agency`s Superfund Innovative Technology Evaluation (SITE) program in 1992.« less

  5. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  6. Environmental Liabilities: DoD Training Range Cleanup Cost Estimates Are Likely Understated

    DTIC Science & Technology

    2001-04-01

    1Federal accounting standards define environmental cleanup costs as...report will not be complete or accurate. Federal financial accounting standards have required that DOD report a liability for the estimated cost of...within the range is better than any other amount. SFFAS No. 6, Accounting for Property, Plant, and Equipment, further defines cleanup costs as costs for

  7. Cleanup Verification Package for the 118-F-5 PNL Sawdust Pit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. D. Habel

    2008-05-20

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-5 Burial Ground, the PNL (Pacific Northwest Laboratory) Sawdust Pit. The 118-F-5 Burial Ground was an unlined trench that received radioactive sawdust from the floors of animal pens in the 100-F Experimental Animal Farm.

  8. SUPERFUND CLEANUPS AND INFANT HEALTH

    PubMed Central

    Currie, Janet; Greenstone, Michael; Moretti, Enrico

    2013-01-01

    We are the first to examine the effect of Superfund cleanups on infant health rather than focusing on proximity to a site. We study singleton births to mothers residing within 5km of a Superfund site between 1989–2003 in five large states. Our “difference in differences” approach compares birth outcomes before and after a site clean-up for mothers who live within 2,000 meters of the site and those who live between 2,000– 5,000 meters of a site. We find that proximity to a Superfund site before cleanup is associated with a 20 to 25% increase in the risk of congenital anomalies. PMID:25152535

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, P.A.

    The Lasagna project is the first of what we expect will be several large cooperative projects between industry consortia and government to develop improved remediation technologies. In 1992, Monsanto Company began contacting other major corporations to see if they were experiencing similar difficulties in applying cost-effective, or even workable technologies for industrial site remediation. Both General Electric and DuPont were early participants in the effort to develop a meeting with the EPA to discuss technical problems faced in cleanup, research needs, and ways to accelerate development of more cost-effective techniques. This paper provides some background on how this cooperative processmore » came to reality, what the Lasagna process is and how the cooperative arrangements and financing are structured.« less

  10. Full-scale wind tunnel-investigation of the Advanced Technology Light Twin-Engine airplane (ATLIT). [Langley full scale tunnel

    NASA Technical Reports Server (NTRS)

    Hassell, J. L., Jr.; Newsom, W. A., Jr.; Yip, L. P.

    1980-01-01

    An investigation was conducted to evaluate the aerodynamic performance, stability, and control characteristics of the Advanced Technology Light Twin Engine airplane (ATLIT). Data were measured over an angle of attack range from -4 deg to 20 deg for various angles of sideslip between -5 deg and 15 deg at Reynolds numbers of 0.0000023 and 0.0000035 for various settings of power and flap deflection. Measurements were also made by means of special thrust torque balances to determine the installed propeller characteristics. Part of the investigation was devoted to drag cleanup of the basic airplane and to the evaluation of the effect of winglets on drag and stability.

  11. Familiarization and Detection of Green Monopropellants Image

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.

    2015-01-01

    Ammonium dinitramide (ADN) and hydroxyl ammonium nitrate (HAN) are green monopropellants which will be appearing at Kennedy Space Center (KSC) for processing in the next few years. These are relatively safe replacements for hydrazine as a monopropellant; however, little is known about methods of leak detection, vapor scrubbing, air emissions, or cleanup that will be required for safe and environmentally benign operations at KSC. The goal of this work is to develop leak detection and related technologies for the two new green monopropellants.

  12. Familiarization and Detection of Green Monopropellants Project

    NASA Technical Reports Server (NTRS)

    Coan, Mary Rachel (Compiler)

    2014-01-01

    Ammonium dinitramide (ADN) and hydroxyl ammonium nitrate (HAN) are green monopropellants which will be appearing at Kennedy Space Center (KSC) for processing in the next few years. These are relatively safe replacements for hydrazine as a monopropellant; however, little is known about methods of leak detection, vapor scrubbing, air emissions, or cleanup that will be required for safe and environmentally benign operations at KSC. The goal of this work is to develop leak detection and related technologies for the two new green monopropellants.

  13. Fire extinguishment and inhibition in spacecraft environments

    NASA Technical Reports Server (NTRS)

    Deris, John

    1987-01-01

    It was concluded that it is essential that NASA develop a comprehensive approach to fire extinguishment and inerting in spacecraft environments. Electronic equipment might be easily protected through use of an onboard inert gas generating system. The use of Halon 1301 presents serious technological challenges for agent cleanup and removal of the toxic and corrosive products of combustion. Nitrogen pressurization, while effective, probably presents a serious weight penality. The use of liquid water sprays appears to be the most effective approach to general purpose spacecraft fire protection.

  14. Intergenerational equity and environmental restoration cleanup levels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocking, E. K.; Environmental Assessment

    2001-01-01

    The United States Department of Energy environmental restoration program faces difficult decisions about the levels of cleanup to be achieved at its many contaminated sites and has acknowledged the need for considering intergenerational equity in its decision making. Intergenerational equity refers to the fairness of access to resources across generations. Environmental restoration cleanup levels can have unintended and unfair consequences for future generations access to resources. The potentially higher costs associated with using low, non-risk-based cleanup levels for remediation may divert funding from other activities that could have a greater beneficial impact on future generations. Low, non-risk-based cleanup levels couldmore » also result in more damage to the nation's resources than would occur if a higher cleanup level were used. The loss or impairment of these resources could have an inequitable effect on future generations. However, intergenerational inequity could arise if sites are not completely restored and if access to and use of natural and cultural resources are unfairly limited as a result of residual contamination. In addition to concerns about creating possible intergenerational inequities related to selected cleanup levels, the tremendous uncertainties associated with sites and their restoration can lead site planners to rely on stewardship by default. An ill-conceived stewardship program can contribute to intergenerational inequity by limiting access to resources while passing on risks to future generations and not preparing them for those risks. This paper presents a basic model and process for designing stewardship programs that can achieve equity among generations.« less

  15. A comprehensive guide of remediation technologies for oil contaminated soil - Present works and future directions.

    PubMed

    Lim, Mee Wei; Lau, Ee Von; Poh, Phaik Eong

    2016-08-15

    Oil spills result in negative impacts on the environment, economy and society. Due to tidal and waves actions, the oil spillage affects the shorelines by adhering to the soil, making it difficult for immediate cleaning of the soil. As shoreline clean-up is the most costly component of a response operation, there is a need for effective oil remediation technologies. This paper provides a review on the remediation technologies for soil contaminated with various types of oil, including diesel, crude oil, petroleum, lubricating oil, bitumen and bunker oil. The methods discussed include solvent extraction, bioremediation, phytoremediation, chemical oxidation, electrokinetic remediation, thermal technologies, ultrasonication, flotation and integrated remediation technologies. Each of these technologies was discussed, and associated with their advantages, disadvantages, advancements and future work in detail. Nonetheless, it is important to note that no single remediation technology is considered the best solution for the remediation of oil contaminated soil. This review provides a comprehensive literature on the various remediation technologies studied in the removal of different oil types from soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Green PCB Remediation from Sediment Systems (GPRSS) Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Thompson, Karen; Zeitlin, Nancy; Quinn, Jacqueline; Parrish, Lewis M.

    2014-01-01

    An ongoing problem facing the global environment community including NASA centers is the removal and remediation of polychlorinated biphenyls (PCBs). PCBs were commonly used in a variety of materials including paints, caulking, and adhesives due to the advantageous physical and chemical properties that PCBs imparted to these various materials. Unfortunately, these properties have made the treatment of sites contaminated with these chemicals extremely difficult to deal with, due to their inherent chemical stability. The remediation of sediments contaminated with PCBs is especially difficult, primarily due to the risk of releasing the contaminant into the environment during the treatment process. Traditional treatment options involve the use of dredging and incineration of the contaminated soils/sediments, in which the chance of releasing the contaminants is greatly increased. The purpose of this project is to develop cleanup technology capable of remediating contaminated sediments in-situ, with minimum intrusion. This allows for the minimization of any potential contaminant release during the treatment process, providing a safer method for cleanup operations (as opposed to dredging/incineration) and still treating the basic problem of PCB contamination (as opposed to capping).

  17. Demonstration Report: ESTCP UXO Discrimination Study ESTCP PROJECT # MM-0838

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika

    2010-02-15

    In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date,more » testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation will require demonstration to regulators of not only individual technologies, but of an entire decision making process. This characterization study was be the second phase in what is expected to be a continuing effort that will span several years. The FY06 Defense Appropriation contained funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program (ESTCP). ESTCP responded by conducting a UXO Discrimination Study at the former Camp Sibert, AL. The results of this first demonstration were very encouraging. Although conditions were favorable at this site, a single target of interest (4.2-in mortar) and benign topography and geology, all of the classification approaches demonstrated were able to correctly identify a sizable fraction of the anomalies as arising from non-hazardous items that could be safely left in the ground. To build upon the success of the first phase of this study, ESTCP sponsored a second study in 2009 at the former Camp San Luis Obispo, CA, a site with more challenging topography and a wider mix of targets-of-interest (TOI). There were two primary objectives of this study: (1) Test and validate detection and discrimination capabilities of currently available and emerging technologies on real sites under operational conditions; and (2) Investigate in cooperation with regulators and program managers how discrimination technologies can be implemented in cleanup operations.« less

  18. Research and Technology Development Activities to Address the DOE-EM Environmental Mercury Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M; Peterson, Mark J

    Human activities have altered trace metal distributions globally. This is especially true for the trace metal mercury (Hg), a pervasive global pollutant that can be methylated to form highly toxic methylmercury (MeHg), which bioaccumulates in aquatic food webs, endangering humans and other biota. Currently there are more than 3,000 mercury-contaminated sites identified worldwide and the United Nations Environment Programme has recently highlighted the risk of this contamination to human health [1, 2]. The Oak Ridge Reservation (ORR) represents an example of one of these mercury-contaminated sites. Unlike other contaminants metals, radionuclides, and organic solvents that impact the Department of Energymore » Office of Environmental Management (DOE-EM) cleanup program at the ORR and other DOE sites, mercury has several unique characteristics that make environmental remediation of the Y-12 National Security Complex one of the most formidable challenges ever encountered. These distinctive physicochemical properties for mercury include the following: it is a liquid at ambient temperature and pressure; it is the only metal that biomagnifies; and it is the only contaminant transported as a cation, as a dissolved or gaseous elemental metal (similar to an organic solvent), or as both a cation and a dissolved or gaseous elemental metal under environmental conditions. Because of these complexities, implementing cost effective and sustainable solutions that reduce mercury flux from various primary and secondary contamination sources will require linking basic science understanding and applied research advancements into Oak Ridge Office of Environmental Management s (OREM) cleanup process. Currently, DOE is investing in mercury-related research through a variety of programs, including the Office of Science sponsored Critical Interfaces Science Focus Area, EM headquarters sponsored Applied Field Research Initiative, OREM-sponsored Lower East Fork Poplar Creek (LEFPC) Mercury Technology Development Program, Small Business Innovative Research (SBIR), and EM s Minority Serving Institutions Partnership Program. Collectively, these multi-institutional and multidisciplinary programs are generating new tools, knowledge, and remediation approaches that will enable efficient cleanup of mercury contaminated systems locally and globally. In this talk we will highlight the progress made to date in addressing key knowledge gaps required to solve this watershed-scale conundrum.« less

  19. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  20. Clean-up and disposal process of polluted sediments from urban rivers.

    PubMed

    He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C

    2001-10-01

    In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.

  1. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification.more » Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system design, identification and selection of tar compounds and 2 mixtures for use in CPO tests, and preparation of CPO catalysts for validation. (Q3 2009 ~ Q4 2009) - Task C: Test CPO with biomass gasification product gas. Optimize CPO performance with selected tar compounds. Optimize CPO performance with multi-component mixtures. Milestones include optimizing CPO catalysts design, collecting CPO experimental data for next stage kinetic modeling and understanding the effect of relative reactivities on ultimate tar conversion and syngas yields. (Q1 2010 ~ Q3 2010) - Task D: Develop tar CPO kinetic model with CPO kinetic model and modeling results as deliverables. (Q3 2010 ~ Q2 2011) - Task E: Project management and reporting. Milestone: Quarterly reports and presentations, final report, work presented at national technical conferences (Q1 2009 ~ Q2 2011) At the beginning of the program, IP landscaping was conducted to understand the operation of various types of biomass gasifiers, their unique syngas/tar compositions and potential tar mitigation options using the catalytic partial oxidation technology. A process simulation model was developed to quantify the system performance and economics impact of CPO tar removal technology. Biomass gasification product compositions used for performance evaluation tests were identified after literature review and system modeling. A reaction system for tar conversion tests was designed, constructed, with each individual component shaken-down in 2009. In parallel, University of Minnesota built a lab-scale unit and evaluated the tar removal performance using catalytic reforming. Benzene was used as the surrogate compound. The biomass gasification raw syngas composition was provided by GE through system studies. In 2010, GE selected different tar compounds and evaluated the tar removal effectiveness of the CPO catalyst. The catalytic performance was evaluated under different operating conditions, including catalyst geometry, S/C ratio, O/C ratio, GHSV, and N2 dilution. An understanding of how to optimize catalytic tar removal efficiency by varying operating conditions has been developed. GE collaborated with UoMn in examining inorganic impurities effects. Catalysts were pre-impregnated with inorganic impurities commonly present in biomass gasification syngas, including Si, Ca, Mg, Na, K, P and S. UoMn performed catalyst characterization and has acquired fundamental understandings of impurities effect on catalytic tar removal. Based on experimental data and the proposed reaction pathway, GE constructed a model to predict kinetic performance for biomass gasification tar cleanup process. Experimental data (eg. tar conversion, reactor inlet and outlet temperatures, product distribution) at different operating conditions were used to validate the model. A good fit between model predictions and experimental data was found. This model will be a valuable tool in designing the tar removal reactor and identifying appropriate operating conditions. We attended the 2011 DOE Biomass Program Thermochemical Platform Review held in Denver, CO from February 16 to 18 and received very positive comments from the review panel. Further, syngas utility and biomass to power/fuel companies expressed strong interest in our tar removal technology.« less

  2. Cleanups In My Community (CIMC) - Recovery Act Funded Cleanups, National Layer

    EPA Pesticide Factsheets

    This data layer provides access to Recovery Act Funded Cleanup sites as part of the CIMC web service. The American Recovery and Reinvestment Act was signed into law by President Obama on February 17th, 2009 and all reporting on ARRA for these 3 programs was complete as of 2013. Out of the five EPA programs that distributed recovery act funding, three of them were cleanup programs: Brownfields, Superfund and Leaking Underground Storage Tanks. CIMC provides information on site cleanups that received ARRA Recovery Act funding for Superfund and Brownfields, but not Leaking Underground Storage Tanks. Data for Brownfields came from the ACRES database. Data for Superfund came from the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) database. Data in CIMC no longer need to be updated for the ARRA program. For information on all EPA Recovery Act funded work, please see: http://archive.epa.gov/recovery/web/html/ and http://epamap17.epa.gov/arra/.

  3. Mature B-cell neoplasms in Chernobyl clean-up workers of 1986-1987: summary of cytomorphological and immunocytochemical study in 25 years after Chernobyl accident.

    PubMed

    Gluzman, D F; Sklyarenko, L M; Nadgornaya, V A; Zavelevich, M P

    2011-03-01

    The data on the verified cases of mature B-cell neoplasms (chronic lymphocytic leukemia - CLL, B-prolymphocytic leukemia, non-Hodgkin's lymphoma in leukemization phase and multiple myeloma - MM; 146 cases in total) in the consecutive group of Ukrainian clean-up workers within 10-25 years after Chernobyl accident are summarized. B-cell neoplasms represent the most prevalent group among all diagnosed neoplasms of hematopoietic and lymphoid tissues in clean-up worker patients under study (49.4%). MM percentage in the patients of Chernobyl clean-up worker group turned out to be significantly higher than in the patients of the general populations studied at the same period. While the percentage of B-CLL is similar in clean-up worker patients and patients of general population, the trend towards younger age of patients with mature B-cell neoplasms in clean-up worker group is evident. The current concepts on the possible association between mature B-cell neoplasms (mainly B-CLL) and radiation exposure are briefly outlined. Only the precise diagnosis of hematopoietic malignancies combining with large-scale analytical epidemiological studies with careful dose assessment and long-term follow-up may represent the basis for resolving the question whether mature B-cell neoplasms may be radiogenic.

  4. Extent and Degree of Shoreline Oiling: Deepwater Horizon Oil Spill, Gulf of Mexico, USA

    PubMed Central

    Michel, Jacqueline; Owens, Edward H.; Zengel, Scott; Graham, Andrew; Nixon, Zachary; Allard, Teresa; Holton, William; Reimer, P. Doug; Lamarche, Alain; White, Mark; Rutherford, Nicolle; Childs, Carl; Mauseth, Gary; Challenger, Greg; Taylor, Elliott

    2013-01-01

    The oil from the 2010 Deepwater Horizon spill in the Gulf of Mexico was documented by shoreline assessment teams as stranding on 1,773 km of shoreline. Beaches comprised 50.8%, marshes 44.9%, and other shoreline types 4.3% of the oiled shoreline. Shoreline cleanup activities were authorized on 660 km, or 73.3% of oiled beaches and up to 71 km, or 8.9% of oiled marshes and associated habitats. One year after the spill began, oil remained on 847 km; two years later, oil remained on 687 km, though at much lesser degrees of oiling. For example, shorelines characterized as heavily oiled went from a maximum of 360 km, to 22.4 km one year later, and to 6.4 km two years later. Shoreline cleanup has been conducted to meet habitat-specific cleanup endpoints and will continue until all oiled shoreline segments meet endpoints. The entire shoreline cleanup program has been managed under the Shoreline Cleanup Assessment Technique (SCAT) Program, which is a systematic, objective, and inclusive process to collect data on shoreline oiling conditions and support decision making on appropriate cleanup methods and endpoints. It was a particularly valuable and effective process during such a complex spill. PMID:23776444

  5. Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program - 12184

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Christopher; Kothari, Vijendra; Starr, Ken

    2012-07-01

    The U.S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequatelymore » described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS and M) program: - Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. - DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. - DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators. After review of historical site documentation, DOE reports, and USACE radiological data, DOE concluded the following: - DOE had access to adequate documentation to evaluate site conditions at the former LOOW. This is important to confirm now, while institutional knowledge of early FUSRAP work remains available. - DOE remediated the completed VPs to conditions that are protective for unrestricted residential use. Sample and walkover gamma scan results indicate that no wastes remain that exceed cleanup criteria. - Process knowledge and field observations establish that Cs-137 is the predominant radionuclide in the KAPL waste stream. Cs-137, a strong gamma emitter, was used as an indicator for remediation of KAPL waste. Other radionuclides were present in much lower relative concentrations and were likely also removed during remediation of the VPs. - KAPL contaminants were removed during remedial activities at the former LOOW as either co-located or co-mingled with other radionuclides. - For the active VPs (VP-E, VP-E', and VP-G), results of DOE's cleanup of the accessible portions of these properties indicate that KAPL waste does not remain at concentrations greater than the DOE cleanup limit: - Inaccessible areas were not associated with historic KAPL waste handling. Therefore, it is unlikely that KAPL waste remains on the active VPs. - Because gamma activity was used by DOE during remediation/verification activities for excavation control, additional USACE cleanup of FUSRAP wastes on these properties will likely result in the remediation of any co-located residual KAPL wastes to acceptable levels or identification of KAPL waste that is not co-located. - Although USACE has not established a cleanup level for Cs-137 on the active NFSS VPs, DOE assessment and remediation data indicate that assessed Cs-137 was remediated and significant Cs-137 is unlikely to remain. Because of the low likelihood of encountering significant KAPL waste on the active NFSS VPs, additional remediation is not anticipated at these properties. - USACE assessment soil sampling results on the NFSS proper indicate that KAPL waste does not exceed the DOE cleanup level for Cs-137. USACE has not established a cleanup level for Cs-137 on NFSS proper. The USACE cleanup of FUSRAP wastes on the NFSS proper will likely result in the remediation of any co-located residual KAPL wastes or identification of KAPL waste that is not co-located. DOE is drafting a report of the investigation of KAPL waste at LOOW. The report will be released to the public for comment when the draft is complete. DOE responses to stakeholder inquiries resulted in a common understanding of site conditions and site risk. DOE expects additional interaction with stakeholders at the former LOOW as USACE completes remediation of the active VPs and the NFSS proper, and these relationships will hopefully have built trust between DOE and the stakeholders that DOE will perform its duties in an open and transparent manner that includes stakeholders as stewards for remediated FUSRAP sites. (authors)« less

  6. Integrating phytoremediation, wetlands, spray irrigation, and prairie restoration to treat carbon tetrachloride contamination in a rural community.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFreniere, L. M.; Negri, M. C.; Sedivy, R. A.

    2006-01-01

    In a cooperative conservation effort, the U.S. Department of Agriculture is cleaning up a contaminated aquifer in a rural community and simultaneously improving the community's recreational and educational opportunities. While one component of the cleanup system irrigates school athletic fields that were parched and bare in previous summers, other components have created a nearby public recreational area. The USDA's other partners in this effort are the U.S. Department of Energy's Argonne National Laboratory (ANL) and the U.S. Environmental Protection Agency, Kansas State University, state regulators, local businesses, governmental units, and residents. The groundwater aquifer beneath Murdock, Nebraska, became contaminated withmore » carbon tetrachloride as the result of fumigation of grain stored decades ago in a USDA facility. Contaminant levels in the groundwater (up to 7,800 {micro}g/L at one time) precluded use of the aquifer for drinking water, and discharge of contaminated groundwater to a nearby creek posed health risks. Concentrations of carbon tetrachloride as high as 361 {micro}g/kg in subsurface soil indicated the presence of a soil source. Model simulations of potential leaching indicated that the source would continue to release contaminant for at least 80 years, and migration to the creek would continue after that. The USDA, ANL, and EPA developed an innovative cleanup system that combines multiple technologies. Near the contamination source, pumps extract contaminated groundwater and pass it through a spray irrigation system that dissipates the carbon tetrachloride harmlessly into the air. The treated water irrigates the school's athletic field, nurturing a healthy grassy surface. Supplementing the spray irrigation technology are more than 2,000 trees planted downstream from where the groundwater enters the creek. The trees accomplish phytoremediation by taking up contaminated water and breaking down carbon tetrachloride naturally. Native prairie plants around and between the trees intercept rainwater and force the trees to draw most of their water from the aquifer. The partners are restoring a downstream wetland to intercept lingering traces of carbon tetrachloride and are installing an ADA-accessible, public trail through both the tree plantation and the wetland. Interpretive signs will enhance the visitor's experience and facilitate use of the site as an outdoor 'living' classroom for the local school district. The landowners have welcomed this public outreach aspect of the project. In addition, a visiting scientist program brings technical experts into the school to explain the cleanup effort and answer questions. The EPA has approved a monitoring plan to follow the progress of the cleanup effort and ensure the protection of human health and the environment.« less

  7. Nonaqueous Phase Liquid Dissolution in Porous Media: Multi-Scale Effects of Multi-Component Dissolution Kinetics on Cleanup Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNab, W; Ezzedine, S; Detwiler, R

    2007-02-26

    Industrial organic solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE) constitute a principal class of groundwater contaminants. Cleanup of groundwater plume source areas associated with these compounds is problematic, in part, because the compounds often exist in the subsurface as dense nonaqueous phase liquids (DNAPLs). Ganglia (or 'blobs') of DNAPL serve as persistent sources of contaminants that are difficult to locate and remediate (e.g. Fenwick and Blunt, 1998). Current understanding of the physical and chemical processes associated with dissolution of DNAPLs in the subsurface is incomplete and yet is critical for evaluating long-term behavior of contaminant migration, groundwater cleanup, andmore » the efficacy of source area cleanup technologies. As such, a goal of this project has been to contribute to this critical understanding by investigating the multi-phase, multi-component physics of DNAPL dissolution using state-of-the-art experimental and computational techniques. Through this research, we have explored efficient and accurate conceptual and numerical models for source area contaminant transport that can be used to better inform the modeling of source area contaminants, including those at the LLNL Superfund sites, to re-evaluate existing remediation technologies, and to inspire or develop new remediation strategies. The problem of DNAPL dissolution in natural porous media must be viewed in the context of several scales (Khachikian and Harmon, 2000), including the microscopic level at which capillary forces, viscous forces, and gravity/buoyancy forces are manifested at the scale of individual pores (Wilson and Conrad, 1984; Chatzis et al., 1988), the mesoscale where dissolution rates are strongly influenced by the local hydrodynamics, and the field-scale. Historically, the physico-chemical processes associated with DNAPL dissolution have been addressed through the use of lumped mass transfer coefficients which attempt to quantify the dissolution rate in response to local dissolved-phase concentrations distributed across the source area using a volume-averaging approach (Figure 1). The fundamental problem with the lumped mass transfer parameter is that its value is typically derived empirically through column-scale experiments that combine the effects of pore-scale flow, diffusion, and pore-scale geometry in a manner that does not provide a robust theoretical basis for upscaling. In our view, upscaling processes from the pore-scale to the field-scale requires new computational approaches (Held and Celia, 2001) that are directly linked to experimental studies of dissolution at the pore scale. As such, our investigation has been multi-pronged, combining theory, experiments, numerical modeling, new data analysis approaches, and a synthesis of previous studies (e.g. Glass et al, 2001; Keller et al., 2002) aimed at quantifying how the mechanisms controlling dissolution at the pore-scale control the long-term dissolution of source areas at larger scales.« less

  8. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, N.M.; Lynn, S.

    1991-07-01

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently tomore » the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.« less

  9. NUCLEAR CLEANUP: Progress Made at Rocky Flats, but Closure by 2006 Is Unlikely, and Costs May Increase

    DTIC Science & Technology

    2001-02-01

    liquids or residues from process pipes and tanks. The contractor also dismantled plutonium - processing furnaces, stripped out contaminated process...Soil Cleanup Levels on the Scope and Cost of the 903 Pad Cleanup 30 Figures Figure 1: Workers in Protective Clothing Handling Plutonium - Contaminated ...activities—shipping nuclear materials such as plutonium - contaminated metals and powders—is expected to be completed in 2002. Another activity

  10. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  11. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOEpatents

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  12. Multiphase flow models for hydraulic fracturing technology

    NASA Astrophysics Data System (ADS)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.

  13. NASA-EPA automotive thermal reactor technology program

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Hibbard, R. R.

    1972-01-01

    The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.

  14. Water Utility Lime Sludge Reuse – An Environmental Sorbent ...

    EPA Pesticide Factsheets

    Lime sludge can be used as an environmental sorbent to remove sulfur dioxide (SO2) and acid gases, by the ultra-fine CaCO3 particles, and to sequester mercury and other heavy metals, by the Natural Organic Matter and residual activated carbon. The laboratory experimental set up included a simulated flue gas preparation unit, a lab-scale wet scrubber, and a mercury analyzer system. The influent mercury concentration was based on a range from 22 surveyed power plants. The reactivity of the lime sludge sample for acid neutralization was determined using a method similar to method ASTM C1318-95. Similar experiments were conducted using reagent calcium carbonate and calcium sulfate to obtain baseline data for comparing with the lime sludge test results. The project also evaluated the techno-economic feasibility and sustainable benefits of reusing lime softening sludge. If implemented on a large scale, this transformative approach for recycling waste materials from water treatment utilities at power generation utilities for environmental cleanup can save both water and power utilities millions of dollars. Huge amounts of lime sludge waste, generated from hundreds of water treatment utilities across the U.S., is currently disposed in landfills. This project evaluated a sustainable and economically-attractive approach to the use of lime sludge waste as a valuable resource for power generation utilities.

  15. DWPF Melt Cell Crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    2003-04-08

    On December 2, 2002, Remote and Specialty Equipment Systems (RSES) of the Savannah River Technology Center (SRTC) was requested to build a remotely operated crawler to assist in cleaning the Defense Waste Processing Facility (DWPF) melt cell floor of glass, tools, and other debris. The crawler was to assist a grapple and vacuum system in cleaning the cell. The crawler was designed to push glass and debris into piles so that the grapple could pick up the material and place it in waste bins. The crawler was also designed to maneuver the end of the vacuum hose, if needed. Inmore » addition, the crawler was designed to clean the area beneath the cell worktable that was inaccessible to the grapple and vacuum system. Originally, the system was to be ready for deployment by December 17. The date was moved up to December 12 to better utilize the available time for clean up. The crawler was designed and built in 10 days and completed cleaning the melt cell in 8 days. Due to initial problems with the grapple and vacuum system, the crawler completed essentially all of the cleanup tasks by itself. The crawler also cleaned an area on the west side of the cell that was not initially slated for cleaning.« less

  16. Cleanup/stimulation of a horizontal wellbore using propellants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougeot, J.E.; Lauterbach, K.A.

    1993-01-01

    This report documents the stimulation/cleanup of a horizontal well bore (Wilson 25) using propellants. The Wilson 25 is a Bartlesville Sand well located in the Flatrock Field, Osage County, Oklahoma. The Wilson 25 was drilled to determine if horizontal drilling could be used as a means to economically recover primary oil that had been left in place in a mostly abandoned oil field because of the adverse effects of water coning. Pump testing of the Wilson 25 horizontal well bore before cleanup or stimulation produced 6 barrels of oil and .84 barrels of water per day. The high percentage ofmore » daily oil production to total daily fluid production indicated that the horizontal well bore had accessed potentially economical oil reserves if the fluid production rate could be increased by performing a cleanup/stimulation treatment. Propellants were selected as an inexpensive means to stimulate and cleanup the near well bore area in a uniform manner. The ignition of a propellant creates a large volume of gas which penetrates the formation, creating numerous short cracks through which hydrocarbons can travel into the well bore. More conventional stimulation/cleanup techniques were either significantly more expensive, less likely to treat uniformly, or could not be confined to the near well bore area. Three different propellant torpedo designs were tested with a total of 304' of horizontal well bore being shot and producible. The initial test shot caused 400' of the horizontal well bore to become plugged off, and subsequently it could not be production tested. The second and third test shots were production tested, with the oil production being increased 458% and 349%, respectively, on a per foot basis. The Wilson 25 results indicate that a propellant shot treatment is an economically viable means to cleanup/stimulate a horizontal well bore.« less

  17. FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

    Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to themore » technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel Dog Soil Test Kit.« less

  18. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  19. Problems and limitations of voluntary cleanup programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S.F.

    1995-12-31

    At least a dozen states have already implemented voluntary cleanup programs (VCPs). Provisions to promote state VCPs were prominent in the EPA`s 1994 proposed revisions to CERCLA and in current legislative initiatives. Under the VCP, property owners voluntarily enroll to investigate and remediate contaminated sites with the aegis of a state agency and thus avoid involvement with the federal Superfund program. When the state agency is satisfied with the condition of the site, it issues a certificate to the owner. The VCP is meant to mitigate unintended consequences of CERCLA such as the economic abandonment of urban industrial sites inmore » favor of unpolluted suburban sites. The VCP concept has been combined with other reforms including cleanup standards, financial incentives, and independent action. The effectiveness of voluntary cleanup programs is limited by the costs of investigation and cleanup relative to the value of the property in question. It is also limited when property has environmental problems outside the traditional focus of state Superfund agencies on soil and groundwater contamination. VCPs also have potential unintended consequences of their own. The VCP concept is consistent with a 15 year trend of increasing government attention and involvement with sites of diminishing health and environmental significance. VCP may reinforce the perception of liability and unwittingly raise the standard of due diligence in property assessments, especially if combined with generic cleanup standard.« less

  20. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLACKFORD LT

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Centralmore » Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.« less

  1. Approach for ochratoxin A fast screening in spices using clean-up tandem immunoassay columns with confirmation by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).

    PubMed

    Goryacheva, I Yu; De Saeger, S; Lobeau, M; Eremin, S A; Barna-Vetró, I; Van Peteghem, C

    2006-09-01

    An approach for ochratoxin A (OTA) fast cost-effective screening based on clean-up tandem immunoassay columns was developed and optimized for OTA detection with a cut-off level of 10 microg kg(-1) in spices. Two procedures were tested and applied for OTA detection. Column with bottom detection immunolayer was optimized for OTA determination in Capsicum ssp. spices. A modified clean-up tandem immunoassay procedure with top detection immunolayer was successfully applied for all tested spices. Its main advantages were decreasing of the number of analysis steps and quantity of antibody and also minimizing of matrix effects. The total duration of the extraction and analysis was about 40 min for six samples. Chilli, red pepper, pili-pili, cayenne, paprika, nutmeg, ginger, white pepper and black pepper samples were analyzed for OTA contamination by the proposed clean-up tandem immunoassay procedures. Clean-up tandem immunoassay results were confirmed by HPLC-MS/MS with immunoaffinity column clean-up. Among 17 tested Capsicum ssp. spices, 6 samples (35%) contained OTA in a concentration exceeding the 10 microg kg(-1) limit discussed by the European Commission. All tested nutmeg (n=8), ginger (n=5), white pepper (n=7) and black pepper (n=6) samples did not contain OTA above this action level.

  2. Superfund Green Remediation

    EPA Pesticide Factsheets

    Green remediation is the practice of considering all environmental effects of site cleanup and incorporating options – like the use of renewable energy resources – to maximize the environmental benefits of cleanups.

  3. Enrichment and low-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup by cation exchange resin.

    PubMed

    Küsters, Markus; Gerhartz, Michael

    2010-04-01

    For the determination of glyphosate, aminomethylphosphonic acid and glufosinate in drinking water, different procedures of enrichment and cleanup were examined using anion exchange or SPE. In many cases interactions of, e.g. alkaline earth metal ions especially calcium could be observed during enrichment and cleanup resulting in loss of analytes. For that reason, a novel cleanup and enrichment procedure for the determination of these phosphonic acid herbicides has been developed in drinking water using cation-exchange resin. In summary, the cleanup procedure with cation-exchange resin developed in this study avoids interactions as described above and is applicable to calcium-rich drinking water samples. After derivatization with 9-fluorenylmethylchloroformate followed by LC with fluorescence detection, LOD of 12, 14 and 12 ng/L and mean recoveries from real-world drinking water samples of 98+/-9, 100+/-16 and 101+/-11% were obtained for glyphosate, aminomethylphosphonic acid and glufosinate, respectively. The low LODs and the high precision permit the analysis of these phosphonic acid herbicides according to the guidelines of the European Commission.

  4. Health complaints among subjects involved in oil cleanup operations during oil spillage from a Greek tanker "Tasman Spirit".

    PubMed

    Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Rasheed, Shahzad; Meo, Imran Mu; Al-Saadi, Muslim M; Ghani, Hamza A; Alkandari, Jasem Ramadan

    2009-01-01

    Oil spillage in the sea water is a disaster for marine life and humans in the vicinity. The study aimed at investigating health complaints among subjects involved in oil cleanup operations during a spillage from a Greek oil tanker "Tasman Spirit". The project was conducted under the supervision of the Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia. The study concerned the respiratory and general health complaints in 50 apparently healthy, non-smoking male workers exposed to crude oil during oil cleanup operations. The exposed group was matched with a similar number of male, non-smoking controls. The health complaints were evaluated based on a comprehensive interview. The subjects involved in oil cleanup operations had significantly higher rates of health complaints including cough (38%), runny nose (36%), eye irritation/redness (32%), sore throat (28%), headache (28%), nausea (24%) and general illness (18%), compared to their matched controls. Air pollution due to crude oil spillage into sea water may cause respiratory and general health complaints in workers involved in oil cleanup operations.

  5. Development of comprehensive remediation standards at San Francisco International Airport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosso, A.; Lawler, M.; Meek, S.

    1995-12-31

    An ongoing expansion at the San Francisco International Airport (Airport) will result in a 35 percent increase in both terminal square footage and passenger handling capability. Facility relocation and construction are set to begin in October, 1995. Appropriate cleanup of contaminated soil and groundwater must be completed prior to this activity. Remedial goals for this major industrial facility must be protective of both human health and the environment. A risk-based strategy for the development of recommended cleanup objectives has been developed with the support of state regulatory agencies. This strategy includes Remediation Management Zones (RMZs), distinct regions at the Airportmore » with different remedial goals based on the associated risk to water quality, human health, and the environment. The RMZs and the final cleanup objectives for the Airport will be finalized by mid-1995, and will be used to govern future cleanup efforts at the site. This presentation will describe the history of the project, the determination of human health and ecological buffer zones, and the integration of these two concepts to produce cleanup objectives fully supported by the state regulatory authority.« less

  6. Streamlining Site Cleanup in New York City

    EPA Pesticide Factsheets

    This joint effort, supported by the New York State Department of Environmental Conservation (NYS DEC), advances the environmental cleanup goals of PlaNYC 2030, the city's comprehensive sustainability plan.

  7. The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Thomas C.; Strom, Dean; Beulow, Laura

    The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 andmore » 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)« less

  8. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  9. Proceedings: Demilitarization and Disposal Technology Conference (2nd) Held at Salt Lake City, Utah on April 24, 25, 26, 1979,

    DTIC Science & Technology

    1979-04-01

    AAP contains a wet scrubber system. The scrubber is a combination spray chamber/ venturi / marble bed unit capable of attaining a 21" WG pressure drop...requirements until the feed rates are reduced considerably. Water quality data from the scrubber show that the heavy metals and low pH to be the major water...demilitarized using this method. The process water, scrubber water, and all clean-up water are treated by a water treatment system. This treatment

  10. Oil Spill Cleanup

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Petroleum Remediation Product (PRP) is a new way of cleaning up oil spills. It consists of thousands of microcapsules, tiny balls of beeswax with hollow centers, containing live microorganisms and nutrients to sustain them. As oil flows through the microcapsule's shell, it is consumed and digested by the microorganisms. Pressure buildup causes the PRP to explode and the enzymes, carbon dioxide and water are released into the BioBoom used in conjunction with PRP, preventing contaminated water from spreading. The system incorporates technology originally developed at the Jet Propulsion Laboratory and Marshall Space Flight Center.

  11. Progress Toward Cleanup of Operable Unit 1 Groundwater at the US DOE Mound, Ohio, Site: Success of a Phase-Combined Remedy – 15310

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooten, Gwendolyn; Cato, Rebecca; Looney, Brian

    2015-03-01

    Operable Unit 1 (OU-1) soil and groundwater have been affected by volatile organic compounds (VOC) Present groundwater remedy is collection, treatment, and disposal (pump and treat [P&T]) Several combinations of technologies were used to address soil and groundwater contamination Monitored natural attenuation (MNA) is a viable alternative Majority of source term has been excavated VOC concentrations in groundwater have decreased Attenuation mechanisms have been observed in the subsurface at OU-1

  12. Worldwide Emerging Environmental Issues Affecting the U.S. Military. January 2010 Report

    DTIC Science & Technology

    2010-01-01

    key farmland in Africa on a long-term basis. The report notes that it is critical to ensure that such contracts promote shared food security ...Technological Advances with Environmental Security Implications………………..4 6.1 New Detection and Cleanup Techniques…………………………………………...…4 6.2...Regulatory Regime might be adjusted to Include Nanomaterials…..6 7.2 Monopoly over Rare Earth Elements Raises Security and Environmental Concerns…..7

  13. A digital approach to fabricating an abutment replica to control cement volume in a cement-retained implant prosthesis.

    PubMed

    Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok

    2016-07-01

    If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. High-throughput analytical techniques for multiresidue, multiclass determination of 653 pesticides and chemical pollutants in tea--Part III: Evaluation of the cleanup efficiency of an SPE cartridge newly developed for multiresidues in tea.

    PubMed

    Pang, Guo-Fang; Fan, Chun-Lin; Chang, Qiao-Ying; Li, Yan; Kang, Jian; Wang, Wen-Wen; Cao, Jing; Zhao, Yan-Bing; Li, Nan; Li, Zeng-Yin; Chen, Zong-Mao; Luo, Feng-Jian; Lou, Zheng-Yun

    2013-01-01

    A comparative study was conducted over three stages on the cleanup efficiency of SPE cartridge Cleanert TPT, newly developed for multigroups of pesticide residues in tea. In Stage I, different SPE cartridges C18, graphite carbon black (GCB), primary secondary amine (PSA), and amino (NH2) were purchased and combined into 12 different sequences. Through the comparative test on cleanup efficiency of 84 representative pesticides in tea, Envi-Carb GCB + PSA with a good cleanup effect was selected. In Stage II, GC/MS test results from the comparative study of the extraction efficiency of 201 pesticides spiked into green tea and Woolong tea with Cleanert TPT and Envi-Carb + PSA SPE showed that average recoveries fell within 70-110% and RSD <20% for 193 and 184 pesticides, respectively, for green tea, accounting for 96.0 and 91.0% of the total number, respectively. GC/MS/MS test results also found 193 and 184 pesticides, respectively, meeting the recovery and RSD conditions, accounting for 96.0 and 91.5%, respectively, of the total number. For Woolong tea samples, GC/MS results showed that with Cleanert TPT and Envi-Carb + PSA SPE for cleanup, there were 192 and 177 pesticides, respectively, meeting the conditions, accounting for 95.5 and 88.1% of the total number, respectively. GC/MS/MS results demonstrated that there were 195 and 184 pesticides, respectively, meeting the conditions, accounting for 97.0 and 91.5% of the total number, respectively. It was seen that Cleanert TPT was superior to Envi-Carb + PSA in cleanup efficiency, whether for green or Woolong tea samples, or GC/MS or GC/MS/MS determination. In Stage III, 61104 results of the average content value of pesticides and RSD (two teas xtwo Youden pair concentrations x two kinds of SPE cartridges x two instruments x 19 tests x 201 pesticides) were derived from the 19 times stability tests over 3 months by paralleling three samples every 5 days via two instruments with two kinds of SPE cartridges for cleanup, respectively, against Youden Pair samples of the 201 incurred pesticides from green and Woolong teas. The statistical analysis found that detected values from the target pesticides of the incurred Youden pair samples showed no marked differences with cleanup by either Cleanert TPT or Envi-Carb + PSA, whether for green or Woolong tea, or G/IMS or G/IM/IMS. The test results using the two aforementioned kinds of SPE cleanup for above 93% pesticides had a tolerance less than 15%, which testifies that both cartridge cleanups met the requirement for pesticide residue analysis.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs aremore » discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.« less

  16. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  17. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  18. Energy shortcuts take time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, N.

    The author summarizes findings presented at the August 1986 international conference on underground gasification of coal (UGC), held in West Germany. Six sessions of 47 papers included two papers in each devoted to technology and one each to economics, laboratory experiments, modeling, and environment plus miscellaneous poster display sessions covering 14 research projects. These contributions came for the US (16), West Germany (12), Belgium (10), France (3), Netherlands (3), and New Zealand, Poland and the EEC. Mr Jenkins points out that UGC technology is a complete mixture of coal mining, coal combustion as well as gasification, cleanup, and ground watermore » pollution; well drilling and precise geology are two other essential skills. Further, like other technologies that have been waiting in the wings for years, e.g., wind power and wave power, UCG is very exacting of engineering skill and direct answers and not susceptible to an energy-economic shortcut.« less

  19. Decision support tool for used oil regeneration technologies assessment and selection.

    PubMed

    Khelifi, Olfa; Dalla Giovanna, Fabio; Vranes, Sanja; Lodolo, Andrea; Miertus, Stanislav

    2006-09-01

    Regeneration is the most efficient way of managing used oil. It saves money by preventing costly cleanups and liabilities that are associated with mismanagement of used oil, it helps to protect the environment and it produces a technically renewable resource by enabling an indefinite recycling potential. There are a variety of processes and licensors currently offering ways to deal with used oils. Selecting a regeneration technology for used oil involves "cross-matching" key criteria. Therefore, the first prototype of spent oil regeneration (SPORE), a decision support tool, has been developed to help decision-makers to assess the available technologies and select the preferred used oil regeneration options. The analysis is based on technical, economical and environmental criteria. These criteria are ranked to determine their relative importance for a particular used oil regeneration project. The multi-criteria decision analysis (MCDA) is the core of the SPORE using the PROMETHEE II algorithm.

  20. Dyscirculatory encephalopathy in Chernobyl disaster clean-up workers (a 20-year study).

    PubMed

    Podsonnaya, I V; Shumakher, G I; Golovin, V A

    2010-05-01

    Results obtained over 20-years of following 536 Chernobyl clean-up workers and 436 control subjects are presented. Dyscirculatory encephalopathy developed more frequently in persons exposed to radiation at age 30 years. As compared with the control group, workers were characterized by early onset of disease, faster progression, stable symptomatology for 5-6 years, and further progression of disease in the form of autonomic dysfunction, psycho-organic syndrome, and epilepsy. Major strokes were also more common in clean-up workers.

  1. Memorandum of the Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination

    EPA Pesticide Factsheets

    This memorandum presents clarifying guidance for establishing protective cleanup levels for radioactive contamination at Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites.

  2. Improving Sampling, Analysis, and Data Management for Site Investigation and Cleanup

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency (EPA) supports the adoption of streamlined approaches to sampling, analysis, and data management activities conducted during site assessment, characterization, and cleanup.

  3. Increased leukemia risk in Chernobyl cleanup workers

    Cancer.gov

    A new study found a significantly elevated risk for chronic lymphocytic leukemia among workers who were engaged in recovery and clean-up activities following the Chernobyl power plant accident in 1986.

  4. Radiation Dose to Post-Chernobyl Cleanup Workers

    Cancer.gov

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  5. 1.5-GW S-band relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Ferguson, Patrick E.

    1992-04-01

    There is a strong symbiotic relationship between a developing technology and its applications. New technologies can generate applications previously either unrealizable or impractical. Conversely, applications can demand the development of new technological capability. Examples of both types of development can be found in the evolution of HPM. The high power and energy output made possible by HPM have created a technology driven interest in directed energy weapons and short pulse radar. On the other hand, the requirements for heating of fusion plasmas have resulted in an application driven program to develop high average power microwave devices. In this paper we address these and other applications such as RF electron linacs, laser pumping, and beaming of power. Emerging applications, such as ionispheric modification and environmental cleanup, are also touched upon. The approach of this paper will be to review each application separately and then compare the requirements of the applications in terms of the power, frequency and other key requirements necessary for HPM to usefully address the application.

  6. Physics overview of AVLIS

    NASA Astrophysics Data System (ADS)

    Solarz, R. W.

    1985-02-01

    Atomic vapor laster isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention. The underlying physical principles were identified and optimized, the major technology components were developed, and the integrated enrichment performance of the process was tested. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws are fomulated. Two primary applications are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. A variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radiothermal mechanical generators. The ability to radidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.

  7. Nuclear radiation cleanup and uranium prospecting

    DOEpatents

    Mariella, Jr., Raymond P.; Dardenne, Yves M.

    2016-02-02

    Apparatus, systems, and methods for nuclear radiation cleanup and uranium prospecting include the steps of identifying an area; collecting samples; sample preparation; identification, assay, and analysis; and relating the samples to the area.

  8. Nuclear radiation cleanup and uranium prospecting

    DOEpatents

    Mariella, Jr., Raymond P.; Dardenne, Yves M.

    2017-01-03

    Apparatus, systems, and methods for nuclear radiation cleanup and uranium prospecting include the steps of identifying an area; collecting samples; sample preparation; identification, assay, and analysis; and relating the samples to the area.

  9. Cleanup Verification Package for the 300-18 Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Capron

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete.

  10. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    PubMed

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Johnston Atoll Plutonium Contaminated Soil Cleanup Project. 5th quarterly report, 1 August 94 to 31 October 1994. Technical report, 1 August-31 October 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doane, R.W.; Grant, R.H.

    1996-09-01

    Thermo NUtech is the prime contractor for the Defense Nuclear Agency (DNA), responsible for the operation and maintenance of the Johnston Atoll plutonium Contaminated Soil Cleanup Project. During this production period, the Scope of Work included movement of soil to and from the plant, processing contaminated soil through the Segmented Gate System (SGS) and Soil Washing System, packaging of waste soil for shipment, identification and implementation of process improvements, data collection and validation, and compliance with all applicable regulations governing environmental safety and health. The SGS utilizes arrays of sensitive radiation detectors coupled with sophisticated computer software to segregate contaminatedmore » soil from a moving feed supply on conveyor belts. Contaminated soil is diverted to a `hot path` for plutonium particles greater than 5000 Becquerels or to a supplemental soil washing process designed to remove dispersed low leve%l contamination from a soil faction consisting of very small particles. Low to intermediate levels of contamination are removed from the soil to meet DNA`s criteria for unrestricted use of less than 500 Becquerels per kilogram of soil, with no hot particles. The low level concentrate is expected to be packaged for shipment to an approved defense waste disposal site.« less

  12. Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  13. Tribal Lands Cleanup and Spill Prevention Programs

    EPA Pesticide Factsheets

    EPA takes strides to prevent and cleanup contamination and contaminated sites located on or near Tribal lands. Our programs work hand-in-hand with tribes to ensure we protect their health and the environment.

  14. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  15. Workplace Safety: Indoor Environmental Quality

    MedlinePlus

    ... Cleanup Tuberculosis Follow NIOSH Facebook Flickr Pinterest Twitter YouTube NIOSH Homepage NIOSH A-Z Workplace Safety & Health ... Cleanup Tuberculosis Follow NIOSH Facebook Flickr Pinterest Twitter YouTube NIOSH Homepage NIOSH A-Z Workplace Safety & Health ...

  16. Burbank performs the scheduled extensive cleanup of ventilation systems

    NASA Image and Video Library

    2012-02-22

    ISS030-E-093414 (22 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, performs the scheduled extensive cleanup of ventilation systems in the Columbus laboratory of the International Space Station.

  17. 43 CFR 3931.30 - Suspension of operations and production.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... environmental studies or analysis; (2) To ensure that necessary environmental remediation or cleanup is being... environmental remediation or cleanup is being performed as a result of unwarranted or unexpected actions. (c...

  18. 43 CFR 3931.30 - Suspension of operations and production.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... environmental studies or analysis; (2) To ensure that necessary environmental remediation or cleanup is being... environmental remediation or cleanup is being performed as a result of unwarranted or unexpected actions. (c...

  19. 43 CFR 3931.30 - Suspension of operations and production.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... environmental studies or analysis; (2) To ensure that necessary environmental remediation or cleanup is being... environmental remediation or cleanup is being performed as a result of unwarranted or unexpected actions. (c...

  20. 43 CFR 3931.30 - Suspension of operations and production.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... environmental studies or analysis; (2) To ensure that necessary environmental remediation or cleanup is being... environmental remediation or cleanup is being performed as a result of unwarranted or unexpected actions. (c...

  1. Molds in the Environment

    MedlinePlus

    ... visit this page: About CDC.gov . Mold Cleanup & Remediation Homeowner’s and Renter’s Guide to Mold Cleanup After ... Home or Building with Mold Damage Prevention and Remediation Strategies for the Control and Removal of Fungal ...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{submore » 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.« less

  3. Hazardous waste sites: voluntary industry cleanup proposed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-02-27

    A proposal that calls for the chemical industry to undertake voluntary cleanup of hazardous waste sites was presented recently to the Environmental Protection Agency and on Capitol Hill. And although still in draft form, the proposal has elicited a very favorable response. In its present form, the proposal calls for setting up a nonprofit holding company, supported by donations from the chemical industry, to plan and carry out cleanup operations. It is the result of nine months of discussion among representatives of industry, environmental groups, and former government personnel, carried out under the auspices of the Conservation Foundation to assessmore » what could be done to speed the cleanup of hazardous waste sites. Although still in draft form, the proposal already is getting excellent reviews. One Congressional staff member says that the idea of a voluntary program is excellent. And EPA sees it as a real opportunity to supplement its funds - which it has been saying are nowhere near adequte to clean up all the sites that it expects eventually to be placed on the national priorities list - and get the work done. All this, of course, would occur under the agency's watchful eye. Some in the environmental community fear that the mere discussion of a private cleanup exercise might be used as an argument for not reauthorizing Superfund or for not expanding the size of the fund. However, most see the voluntary cleanup as a supplement to, not a replacement for, the Superfund program.« less

  4. Benefits of Integration of Aerojet Rocketdyne and RTI Advanced Gasification Technologies for Hydrogen-Rich Syngas Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Vijay; Denton, David; SHarma, Pradeep

    The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS (AFWGS) process was successfully implemented in the WDP pre-commercial demonstration test mentioned above, this technology was used as part of RTI’s advanced warm syngas technology package for the techno-economic analyses for this project. RTI’s advanced transport-reactor-based WGS (ATWGS) process was still conceptual at the start of this project, but one of the tasks for this project was to evaluate the technical feasibility of this technology. In each of the three application-based comparison studies conducted as part of this project, the reference case was based on an existing Department of Energy National Energy Technology Laboratory (DOE/NETL) system study. Each of these references cases used existing commercial technology and the system resulted in > 90% carbon capture. In the comparison studies for the use of the hydrogen-rich syngas generated in either an Integrated Gasification Combined Cycle (IGCC) or a Coal-to-Methanol (CTM) plant, the comparison cases consisted of the reference case, a case with the integration of each individual advanced technology (either AR or RTI), and finally a case with the integration of all the advanced technologies (AR and RTI combined). In the Coal-to-Liquids (CTL) comparison study, the comparison study consisted of only three cases, which included a reference case, a case with just RTI’s advanced syngas cleaning technology, and a case with AR’s and RTI’s advanced technologies. The results from these comparison studies showed that the integration of the advanced technologies did result in substantial benefits, and by far the greatest benefits were achieved for cases integrating all the advanced technologies. For the IGCC study, the fully integrated case resulted in a 1.4% net efficiency improvement, an 18% reduction in capital cost per kW of capacity, a 12% reduction in the operating cost per kWh, and a 75–79% reduction in sulfur emissions. For the CTM case, the fully integrated plant resulted in a 22% reduction in capital cost, a 13% reduction in operating costs, a > 99% net reduction in sulfur emissions, and a reduction of 13–15% in CO 2 emissions. Because the capital cost represents over 60% of the methanol Required Selling Price (RSP), the significant reduction in the capital cost for the advanced technology case resulted in an 18% reduction in methanol RSP. For the CTL case, the fully integrated plant resulted in a 16% reduction in capital cost, which represented a 13% reduction in diesel RSP. Finally, the technical feasibility analysis of RTI’s ATWGS process demonstrated that a fluid-bed catalyst with sufficient attrition resistance and WGS activity could be made and that the process achieved about a 24% reduction in capital cost compared to a conventional fixed-bed commercial process.« less

  5. Patterns of hematological malignancies in Chernobyl clean-up workers (1996-2005).

    PubMed

    Gluzman, D; Imamura, N; Sklyarenko, L; Nadgornaya, V; Zavelevich, M; Machilo, V

    2006-03-01

    The question as to whether the incidence of leukemias and malignant lymphomas among the Chernobyl clean-up workers increased in 20 years after the catastrophe is still a point of much controversy. Precise diagnosis of the main forms of hematopoietic malignancies according to FAB classification and new WHO classification and comparison of these data with that in the general population will be helpful in estimating the relative contribution of the radiation factor to the overall incidence of such pathologies. The data on 218 consecutive cases of malignant diseases of hematopoietic and lymphoid tissues in Chernobyl clean-up workers diagnosed in 1996-2005 are given in comparison with the data of 2697 consecutive patients of general population of the same age group. The morphology and cytochemistry of bone marrow and peripheral blood cells were studied. Immunocytochemical techniques (APAAP, LSAB-AP) and the broad panel of monoclonal antibodies to lineage specific and differentiation antigens of leukocytes were employed for immunophenotyping leukemic cells. Various types of oncohematological diseases developing 10-20 years after Chernobyl accident were registered in a group of clean-up workers under study including myelodysplastic syndromes (MDS), acute leukemias (ALL and AML), chronic myelogenous leukemia (CML) and other chronic myeloproliferative diseases, chronic lymphocytic leukemia (B-CLL) and other chronic lymphoproliferative diseases of B and T cell origin. MDS percentage among patients of clean-up workers group tended to exceed MDS percentage in the group of patients representing the general population examined at the same period (4.58 vs. 3.70%). Among 34 AML cases, leukemia was preceded by MDS in seven patients. The relative contribution of CML to the total number of clean-up workers with leukemia was higher than the corresponding percentage value in general population examined at the same period (9.17 vs. 6.59%). B-CLL was a predominant form of hematopoietic malignancies in clean-up workers under study (25.68%). Nevertheless, B-CLL percentage in patients of clean-up workers group did not differ significantly from that in the patients of general population. The multiple myeloma percentage (7.79%) in the group of patients belonging to clean-up workers in our study turned out to be twice as much as in the patients of general population (4.0%). The verified diagnosis of tumors of hematopoietic and lymphoid tissue according to modern classification (EGIL, WHO) could be the prerequisite for further molecular genetic and analytical epidemiology study of leukemias that may be related to Chernobyl NPP accident consequences.

  6. Green Remediation Best Management Practices: Integrating Renewable Energy into Site Cleanup

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site.

  7. Brief Guide to Mold, Moisture, and Your Home

    MedlinePlus

    ... your eyes. How Do I Know When the Remediation or Cleanup is Finished? You must have completely ... water or moisture problem before the cleanup or remediation can be considered finished. You should have completed ...

  8. 76 FR 10018 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... Idaho's 2015 Cleanup Vision Government Budget Cycle American Recovery and Reinvestment Act Idaho Cleanup.... The Deputy Designated Federal Officer is empowered to conduct the meeting in a fashion that will...

  9. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less

  10. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical,more » and technical literacy and competency. This report discusses fiscal year 1993 activities.« less

  11. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salt, D.E.; Blaylock, M.; Kumar, N. P.B.A.

    1995-05-01

    Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction: the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration: the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization: the use of plants to eliminate the bioavailability of toxic metals in soils. Biological mechanisms of toxic metal uptake,more » translocation and resistance as well as strategies for improving phytoremediation are also discussed. 83 refs., 4 figs., 1 tab.« less

  12. A modular approach for automated sample preparation and chemical analysis

    NASA Technical Reports Server (NTRS)

    Clark, Michael L.; Turner, Terry D.; Klingler, Kerry M.; Pacetti, Randolph

    1994-01-01

    Changes in international relations, especially within the past several years, have dramatically affected the programmatic thrusts of the U.S. Department of Energy (DOE). The DOE now is addressing the environmental cleanup required as a result of 50 years of nuclear arms research and production. One major obstacle in the remediation of these areas is the chemical determination of potentially contaminated material using currently acceptable practices. Process bottlenecks and exposure to hazardous conditions pose problems for the DOE. One proposed solution is the application of modular automated chemistry using Standard Laboratory Modules (SLM) to perform Standard Analysis Methods (SAM). The Contaminant Analysis Automation (CAA) Program has developed standards and prototype equipment that will accelerate the development of modular chemistry technology and is transferring this technology to private industry.

  13. Cleanup/stimulation of a horizontal wellbore using propellants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougeot, J.E.; Lauterbach, K.A.

    1993-01-01

    This report documents the stimulation/cleanup of a horizontal well bore (Wilson 25) using propellants. The Wilson 25 is a Bartlesville Sand well located in the Flatrock Field, Osage County, Oklahoma. The Wilson 25 was drilled to determine if horizontal drilling could be used as a means to economically recover primary oil that had been left in place in a mostly abandoned oil field because of the adverse effects of water coning. Pump testing of the Wilson 25 horizontal well bore before cleanup or stimulation produced 6 barrels of oil and .84 barrels of water per day. The high percentage ofmore » daily oil production to total daily fluid production indicated that the horizontal well bore had accessed potentially economical oil reserves if the fluid production rate could be increased by performing a cleanup/stimulation treatment. Propellants were selected as an inexpensive means to stimulate and cleanup the near well bore area in a uniform manner. The ignition of a propellant creates a large volume of gas which penetrates the formation, creating numerous short cracks through which hydrocarbons can travel into the well bore. More conventional stimulation/cleanup techniques were either significantly more expensive, less likely to treat uniformly, or could not be confined to the near well bore area. Three different propellant torpedo designs were tested with a total of 304` of horizontal well bore being shot and producible. The initial test shot caused 400` of the horizontal well bore to become plugged off, and subsequently it could not be production tested. The second and third test shots were production tested, with the oil production being increased 458% and 349%, respectively, on a per foot basis. The Wilson 25 results indicate that a propellant shot treatment is an economically viable means to cleanup/stimulate a horizontal well bore.« less

  14. Pesticide analysis in coffee leaves using a quick, easy, cheap, effective, rugged and safe approach and liquid chromatography tandem mass spectrometry: Optimization of the clean-up step.

    PubMed

    Trevisan, Maria Teresa Salles; Owen, Robert Wyn; Calatayud-Vernich, Pau; Breuer, Andrea; Picó, Yolanda

    2017-08-25

    An analytical method using a quick, easy, cheap, effective, rugged and safe (QuEChERS) procedure for multi-residue determination of 52 pesticides in coffee leaf extractshas been developed and validated according to SANTE/11945/2015 guidelines. Different sorbent combinations for dispersive solid phase extraction (d-SPE) clean-up as well as dispersive liquid-liquid microextraction (DLLME) were tested. The relative standard deviations (RSDs) for the recovery of 87-94% of pesticides added to coffee leaf extracts,was ≤20% for samples spiked at concentrations up to 50ng*g -1 depending on the clean-up procedures. However, samples spiked with a 100ng*g -1 pesticide mixture gave RSDs>20% for most pesticides when d-SPE was carried out adding Supelclean ENVI-Carb 120/400. To explain this fact,the secondary metabolic profile was analyzed in all the extraction and clean-up procedures. Only in the clean-up procedure with the addition of Supel QuE Z-Sep+, does caffeine show a constant adsorption between blank and spiked samples. In other clean-up procedures, the amount of caffeine was higher in those samples spiked with pesticides. This indicates competition between caffeine and pesticides for adsorption to the sorbent. Addition of Supel QuE Z-Sep+ to the procedure revealed only a 32% matrix effect, whereas using PSA+ C18 the matrix effect was close to 97%. The process efficiency is up to 54% with the addition of Supel QuE Z-Sep+ and just up to 7% for the other clean-up procedures. The method was successfully tested in coffee leaves from different types of cultivars. Pesticides were not detected in organic coffee leaf extracts, but thiametoxan was clearly detected in 50% of coffee leaf extracts harvested from coffee trees grown under traditional conditions as determined by UHPLC-TOFMSLC/QqTOF-MS/MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan

    2018-05-11

    This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) < 20%), and the LOQs were 1-5 μg/kg in the evaluated meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with <15% frequency of compounds with significant quantitative ion suppression (>30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Engineering Forum Issue Paper: Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  17. 24 CFR 598.215 - What are the purpose and content of the strategic plan?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... preserve the environment and historic landmarks, address “brownfields” clean-up and redevelopment, explore..., Environmental Cleanup Cost Deduction (i.e., “Brownfields Tax Incentive”), and the Work Opportunity Tax Credit...

  18. 24 CFR 598.215 - What are the purpose and content of the strategic plan?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... preserve the environment and historic landmarks, address “brownfields” clean-up and redevelopment, explore..., Environmental Cleanup Cost Deduction (i.e., “Brownfields Tax Incentive”), and the Work Opportunity Tax Credit...

  19. 24 CFR 598.215 - What are the purpose and content of the strategic plan?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... preserve the environment and historic landmarks, address “brownfields” clean-up and redevelopment, explore..., Environmental Cleanup Cost Deduction (i.e., “Brownfields Tax Incentive”), and the Work Opportunity Tax Credit...

  20. EPA Completes Reviews of 14 New England Site Cleanups during FY’ 2017

    EPA Pesticide Factsheets

    EPA has completed comprehensive reviews of site cleanups at 14 National Priorities List Sites (Superfund Sites), including four Federal Facilities, across New England by performing required Five-Year Reviews of each site.

  1. Report: EPA Needs to Track Compliance with Superfund Cleanup Requirements

    EPA Pesticide Factsheets

    Report #08-P-0141, April 28, 2008. According to EPA’s Superfund information system, there were 3,397 active Superfund enforcement instruments to ensure cleanups at National Priorities List sites as of September 30, 2007.

  2. Introduction to Energy Conservation and Production at Waste Cleanup Sites

    EPA Pesticide Factsheets

    This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.

  3. EPA Begins Reviews of 24 New England Site Cleanups during Current Fiscal Year

    EPA Pesticide Factsheets

    EPA plans to conduct comprehensive reviews of site cleanups at 24 National Priorities List Sites (Superfund Sites), including two Federal Facilities, across New England by performing required Five-Year Reviews of sites.

  4. The Great Oil Spill Cleanup Contest.

    ERIC Educational Resources Information Center

    Hampton, Elaine

    1993-01-01

    Presents an exciting way to acquaint students with current methods to clean up oil spills. Students also have the freedom to create new clean-up methods as they think through the problem and experiment to find effective solutions. (PR)

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moren, Richard J.; Grindstaff, Keith D.

    Hanford's Long-Term Stewardship (LTS) Program has evolved from a small, informal process, with minimal support, to a robust program that provides comprehensive transitions from cleanup contractors to long-term stewardship for post-cleanup requirements specified in the associated cleanup decision documents. The LTS Program has the responsibility for almost 100,000 acres of land, along with over 200 waste sites and will soon have six cocooned reactors. Close to 2,600 documents have been identified and tagged for storage in the LTS document library. The program has successfully completed six consecutive transitions over the last two years in support of the U.S. DOE Richlandmore » Operations Office's (DOE-RL) near-term cleanup objectives of significantly reducing the footprint of active cleanup operations for the River Corridor. The program has evolved from one that was initially responsible for defining and measuring Institutional Controls for the Hanford Site, to a comprehensive, post remediation surveillance and maintenance program that begins early in the transition process. In 2013, the first reactor area -- the cocooned 105-F Reactor and its surrounding 1,100 acres, called the F Area was transitioned. In another first, the program is expected to transition the five remaining cocooned reactors into the program through using a Transition and Turnover Package (TTP). As Hanford's LTS Program moves into the next few years, it will continue to build on a collaborative approach. The program has built strong relationships between contractors, regulators, tribes and stakeholders and with the U.S. Department of Energy's Office of Legacy Management (LM). The LTS Program has been working with LM since its inception. The transition process utilized LM's Site Transition Framework as one of the initial requirement documents and the Hanford Program continues to collaborate with LM today. One example of this collaboration is the development of the LTS Program's records management system in which, LM has been instrumental. The development of a rigorous data collection and records management systems has been influenced and built off of LMs success, which also ensures compatibility between what Hanford's LTS Program develops and LM. In another example, we are exploring a pilot project to ship records from the Hanford Site directly to LM for long-term storage. This pilot would gain program efficiencies so that records would be handled only once. Rather than storage on-site, then shipment to an interim Federal Records Center in Seattle, records would be shipped directly to LM. The Hanford LTS Program is working to best align programmatic processes, find efficiencies, and to benchmark site transition requirements. Involving the Hanford LTS Program early in the transition process with an integrated contractor and DOE team is helping to ensure that there is time to work through details on the completed remediation of transitioning areas. It also will allow for record documentation and storage for the future, and is an opportunity for the program to mature through the experiences that will be gained by implementing LTS Program activities over time.« less

  6. Risk-Based Decision Making Case Study: Application at a Superfund Cleanup.

    ERIC Educational Resources Information Center

    Blacker, Stanley; Goodman, Daniel

    1994-01-01

    Describes a case study comparing an integrated approach to Superfund cleanup with traditional approaches at a particular Superfund site. Emphasizes ways to save time and money while still achieving the desired risk reduction level. (LZ)

  7. IMMUNOASSAY ANALYSIS FOR CHLORPYRIFOS IN FOODS

    EPA Science Inventory

    Chlorpyrifos is widely used in agriculture on fruits and vegetables. The tolerances for chlorpyrifos on produce range from 0.1-8.0 ppm. Residue detection is commonly performed by gas chromatography following various cleanup procedures. However, the required cleanup can make ...

  8. Considering Traditional Ecological Knowledge (TEK) During the Cleanup Process

    EPA Pesticide Factsheets

    This memorandum provides direction to improve the decision-making process as it relates to site assessment, characterization, and cleanup activities, to ensure EPA's Office of Land and Emergency Management is considering TEK when tribes provide it to EPA.

  9. Risk Assessment Approach for the Hanford Site River Corridor Closure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J.E.; Weiss, S.G.; Sands, J.P.

    2007-07-01

    The river corridor portion of the U.S. Department of Energy's (DOE) Hanford Site includes the 100 Area and 300 Area, which border the Columbia River and cover 565 km{sup 2} (218 mi{sup 2}). The River Corridor Closure (RCC) Project scope of work includes 486 contaminated facilities, 4 of 9 deactivated plutonium production reactors, and 370 waste disposal sites. DOE's cleanup actions in the river corridor were initiated in 1994 under the Comprehensive Environmental Response, Compensation, and Liability Act of 1981 (42 U.S.C. 9601, et seq.) (CERCLA) and included source and groundwater operable units (OUs). DOE's RCC Project, awarded to Washingtonmore » Closure Hanford (WCH) in 2005, focuses on source OUs and has allowed cleanup actions to continue in the 100 and 300 Areas with completion by 2013. The regulatory authorization for cleanup actions at source OUs in the river corridor consists primarily of interim action records of decision (RODs), which were supported by qualitative risk assessments and limited field investigations. A key to establishing final cleanup decisions and proceeding toward final CERCLA closeout is completion of quantitative baseline risk assessment activities. Baseline risk assessment is necessary to determine whether cleanup actions are protective of human health and the environment and to identify any course corrections needed to ensure that current and future cleanup actions are protective. Because cleanup actions are ongoing under interim action RODs, it is desirable to establish the final cleanup decision bases as early as possible to minimize the impacts of any identified course corrections to the cleanup approach. Risk assessment is being performed by WCH as the River Corridor Baseline Risk Assessment (RCBRA). The RCBRA uses a multi-step process that summarizes existing data; uses the data quality objectives process to identify both data gaps and unresolved issues through public workshops; and solicits input from regulators, trustees, and stakeholders. Sampling and analysis plans are then developed to document quality requirements and identify field sample collection approaches. After required data are collected, the risks to human health and the environment are assessed. Sampling of upland, riparian, and near-shore environments for the 100/300 Area Component was performed in 2005 and 2006. The 100/300 Area Component includes former operational/reactor areas. The results of these efforts will be incorporated into a mid-2007 draft risk assessment report for the 100/300 Area Component of the RCBRA. Adapting methodology developed from the 100/300 Area Component, the Inter-Areas risk assessment will be conducted for the riparian and near-shore environments. The Inter-Areas Component includes shoreline areas between former operational areas addressed in the 100/300 Area Component. The Inter-Areas risk assessment will supplement results from the 100/300 Area Component to provide a more complete analysis of residual risks in the river corridor. Plans for the final element of the RCBRA, the Columbia River Component, are being developed by DOE and currently is not part of the RCC Project. The Columbia River Component includes the reach of the Columbia River located adjacent to the Hanford Site and reaches downstream to an undetermined boundary. Recommendations for final cleanup decisions at source units within the river corridor, based in part on the risk assessment results, will be presented for future public review in a River Corridor Source Unit Proposed Plan. To form an integrated cleanup approach for the river corridor, the RCBRA results for the source units require integration with risk assessment results from groundwater cleanup actions managed by other contractors. WCH's risk assessment task includes development of an integration strategy for activities leading up to the final regulatory decisions for all OUs in the river corridor. (authors)« less

  10. The trickle-down theory of cleaner air.

    PubMed

    Frazer, L

    2000-04-01

    The 1990 Clean Air Act Amendments prompted an increased urgency to find new ways to treat airstreams containing volatile organic compounds, which affect the nitrogen photolytic cycle and help produce ground-level ozone, hazardous air pollutants, and odorous air emissions such as hydrogen sulfide. Scientists at the New Jersey company Envirogen have adapted traditional biofiltration technology to perform airborne waste stream cleanup. Preliminary research on pollutants such as phenol, methylene chloride, benzene, and toluene indicates that Envirogen's biotrickling filter may remove an average of about 94% of total hazardous air pollutants. Scientists are working to identify microbes that will clean up more stubborn pollutants.

  11. An Analysis of the Potential Use of Red Horse Capabilities and Training Activities to Perform or Accelerate Air Force Environmental Cleanups

    DTIC Science & Technology

    1992-09-01

    capable of remediating sites contaminated with VOCs. Technologies which are innovative , emerging or not applicable are all considered to be...AD-A261 422 AFIT/GEE/CE%’/92S-’ AN" ANALYSIS OF T1’E, P’OTEN-TIAL USE OF RED HORSE CAPABILITIES AND TRAINING ACTIVITIES TO PEPFORM OR ACCELERATE AIR...Approved for public release; distribution unlimited 93 2 2-5 1󈧤 A.FIT/GEE/CEV/92S-7 AIN A.N.AýLYSIS OF THE POTENTIAL USE OF RED HORSE CAPABILITIES

  12. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise.more » Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.« less

  13. Characterization, monitoring, and sensor technology catalogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community.more » Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.« less

  14. Hazardous Waste Clean-Up Information (CLU-IN) On-line Characterization and Remediation Databases Fact Sheet

    EPA Pesticide Factsheets

    This fact sheet provides an overview of the 10 on-line characterization and remediation databases available on the Hazardous Waste Clean-Up Information (CLU-IN) website sponsored by the U.S. Environmental Protection Agency.

  15. Report: Some States Cannot Address Assessment Needs and Face Limitations in Meeting Future Superfund Cleanup Requirements

    EPA Pesticide Factsheets

    Report #2004-P-00027, September 1, 2004. The five States have established hazardous waste site cleanup programs that address contaminated sites posing human health and environmental risks ranging from low to high.

  16. 40 CFR 761.366 - Cleanup equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cleanup equipment. 761.366 Section 761.366 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Double...

  17. 40 CFR 761.120 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the particular spill. These factors may mitigate expected exposures and risks or make cleanup to... spill situations in which site-specific risk factors may warrant additional cleanup to more stringent... numerical decontamination levels is clearly unwarranted because of risk-mitigating factors, that compliance...

  18. 40 CFR 761.120 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the particular spill. These factors may mitigate expected exposures and risks or make cleanup to... spill situations in which site-specific risk factors may warrant additional cleanup to more stringent... numerical decontamination levels is clearly unwarranted because of risk-mitigating factors, that compliance...

  19. Notification: CTS Asheville Superfund Site Update: Sampling, Monitoring, Communication and Opportunities for Cleanup Efficiencies

    EPA Pesticide Factsheets

    Project #OPE-FY14-0044, July 22, 2014. The EPA OIG plans to begin preliminary research of the EPA's sampling, monitoring, communication and opportunities for cleanup efficiencies for the CTS Asheville Superfund Site, North Carolina.

  20. Plating Inc. Site Fact Sheet: EPA to Begin Cleanup of Hazardous Waste

    EPA Pesticide Factsheets

    Hazardous waste cleanup and local community outreach around the Plating Inc. site at 888 N. Prior Ave.in St. Paul. The former industrial facility specialized in zinc and chromate plating of aluminum and is now abandoned.

  1. 48 CFR 970.1504-1-9 - Special considerations: Cost-plus-award-fee.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....e., nuclear energy processing, industrial environmental cleanup); (iii) Construction of facilities... industrial/DOE settings (i.e., nuclear energy, chemical or petroleum processing, industrial environmental... industrial/DOE settings (i.e., nuclear energy, chemical processing, industrial environmental cleanup); (ii...

  2. 48 CFR 970.1504-1-9 - Special considerations: Cost-plus-award-fee.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....e., nuclear energy processing, industrial environmental cleanup); (iii) Construction of facilities... industrial/DOE settings (i.e., nuclear energy, chemical or petroleum processing, industrial environmental... industrial/DOE settings (i.e., nuclear energy, chemical processing, industrial environmental cleanup); (ii...

  3. 48 CFR 970.1504-1-9 - Special considerations: Cost-plus-award-fee.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....e., nuclear energy processing, industrial environmental cleanup); (iii) Construction of facilities... industrial/DOE settings (i.e., nuclear energy, chemical or petroleum processing, industrial environmental... industrial/DOE settings (i.e., nuclear energy, chemical processing, industrial environmental cleanup); (ii...

  4. Flood Cleanup to Protect Indoor Air Quality

    EPA Pesticide Factsheets

    During a flood cleanup, the indoor air quality in your home or office may appear to be the least of your problems. However, failure to remove contaminated materials and to reduce moisture and humidity can present serious long-term health risks.

  5. 48 CFR 970.1504-1-9 - Special considerations: Cost-plus-award-fee.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....e., nuclear energy processing, industrial environmental cleanup); (iii) Construction of facilities... industrial/DOE settings (i.e., nuclear energy, chemical or petroleum processing, industrial environmental... industrial/DOE settings (i.e., nuclear energy, chemical processing, industrial environmental cleanup); (ii...

  6. 48 CFR 970.1504-1-9 - Special considerations: Cost-plus-award-fee.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....e., nuclear energy processing, industrial environmental cleanup); (iii) Construction of facilities... industrial/DOE settings (i.e., nuclear energy, chemical or petroleum processing, industrial environmental... industrial/DOE settings (i.e., nuclear energy, chemical processing, industrial environmental cleanup); (ii...

  7. Glufosinate ammonium clean-up procedure from water samples using SPE

    NASA Astrophysics Data System (ADS)

    Tayeb M., A.; Ismail B., S.; Mardiana-Jansar, K.; Ta, Goh Choo; Agustar, Hani Kartini

    2015-09-01

    For the determination of glufosinate ammonium residue in soil and water samples, different solid phase extraction (SPE) sorbent efficiency was studied. Four different SPE sorbents i.e.: CROMABOND PS-H+, CROMABOND PS-OH-, ISOLUTE ENV+, Water Sep-Pak and OASIS HLB were used. Sample clean-up performance was evaluated using high performance liquid chromatography (Agilent 1220 infinity LC) with fluorescence detector. Detection of FMO-derivatives was done at λ ex = 260 nm and λ em= 310 nm. OASIS HLB column was the most suitable for the clean-up in view of the overall feasibility of the analysis.

  8. [Genomic disorders in the mononuclear blood cells of those who worked in the cleanup of the accident at the Chernobyl Atomic Electric Power Station].

    PubMed

    Butenko, Z A; Smirnova, I A; Zak, K P; Mikhaĭlovskaia, E V; Ianok, E A; Kishinskaia, E G

    1998-01-01

    The results of molecular investigations of blood mononuclears from 120 clean-up workers after 7-9 years of Chernobyl accident with the total exposure radiation doses ranging from 5 to 76 cGr are presented. Structural polymorphism of the leukemia associated bcr and ribosomal RNA (rRNA) genes were studied using Southern blot hybridization. Allelic polymorphism of bcr gene with characteristic for leukemia allele distribution was detected in 16.6%. Rearrangements of rRNA genes were observed in 13% of Chernobyl accident clean-up workers.

  9. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities

    PubMed Central

    Cheong, Hae-Kwan; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub

    2011-01-01

    Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was analyzed for metabolites of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and heavy metals. To compare the urinary levels of exposure biomarkers, the urine of 39 inland residents who were not directly exposed to the oil spill were analyzed. Results Residents exposed to oil remnants through clean-up work showed associations between physical symptoms and the exposure levels defined in various ways, including days of work, degree of skin contamination, and levels of some urinary exposure biomarkers of VOCs, metabolites and metals, although no major abnormalities in urinary exposure biomarkers were observed. Conclusions This study provides evidence of a relationship between crude oil exposure and acute human health effects and suggests the need for follow-up to evaluate the exposure status and long-term health effects of clean-up participants. PMID:22125768

  10. Impact of pH on the stability and the cross-reactivity of ochratoxin A and citrinin.

    PubMed

    Bazin, Ingrid; Faucet-Marquis, Virginie; Monje, Marie-Carmen; El Khoury, Micheline; Marty, Jean-Louis; Pfohl-Leszkowicz, Annie

    2013-11-28

    Mycotoxins are secondary metabolites produced by several fungi contaminating crops. In several countries, the maximum permitted levels of mycotoxins are found in foodstuffs and feedstuffs. The common strategy of mycotoxin analysis involves extraction, clean-up and quantification by chromatography. In this paper, we analyzed the reasons of underestimation of ochratoxin A (OTA) content in wine, and overestimation of OTA in wheat, depending on the pH of the clean-up step and the simultaneous presence of citrinin (CIT). We demonstrated that the increase of pH by adding polyethylene glycol (PEG) to wine led to an underestimation of OTA by conversion of OTA into open ring ochratoxin A OP-OA. In comparing three methods of extraction and clean-up for the determination of OTA and CIT in wheat--(i) an inter-laboratory validated method for OTA in cereals using immunoaffinity column clean-up (IAC) and extraction by acetonitrile/water; (ii) a validated method using IAC and extraction with 1% bicarbonate Na; and (iii) an in-house validated method based on acid liquid/liquid extraction--we observed an overestimation of OTA after immunoaffinity clean-up when CIT is also present in the sample, whereas an underestimation was observed when OTA was alone. Under neutral and alkaline conditions, CIT was partially recognized by OTA antibodies.

  11. Impact of pH on the Stability and the Cross-Reactivity of Ochratoxin A and Citrinin

    PubMed Central

    Bazin, Ingrid; Faucet-Marquis, Virginie; Monje, Marie-Carmen; El Khoury, Micheline; Marty, Jean-Louis; Pfohl-Leszkowicz, Annie

    2013-01-01

    Mycotoxins are secondary metabolites produced by several fungi contaminating crops. In several countries, the maximum permitted levels of mycotoxins are found in foodstuffs and feedstuffs. The common strategy of mycotoxin analysis involves extraction, clean-up and quantification by chromatography. In this paper, we analyzed the reasons of underestimation of ochratoxin A (OTA) content in wine, and overestimation of OTA in wheat, depending on the pH of the clean-up step and the simultaneous presence of citrinin (CIT). We demonstrated that the increase of pH by adding polyethylene glycol (PEG) to wine led to an underestimation of OTA by conversion of OTA into open ring ochratoxin A OP-OA. In comparing three methods of extraction and clean-up for the determination of OTA and CIT in wheat—(i) an inter-laboratory validated method for OTA in cereals using immunoaffinity column clean-up (IAC) and extraction by acetonitrile/water; (ii) a validated method using IAC and extraction with 1% bicarbonate Na; and (iii) an in-house validated method based on acid liquid/liquid extraction—we observed an overestimation of OTA after immunoaffinity clean-up when CIT is also present in the sample, whereas an underestimation was observed when OTA was alone. Under neutral and alkaline conditions, CIT was partially recognized by OTA antibodies. PMID:24287570

  12. 40 CFR 761.61 - PCB remediation waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... care centers, endangered species habitats, estuaries, wetlands, national parks, national wildlife... ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE... least 30 days prior to the date that the cleanup of a site begins, the person in charge of the cleanup...

  13. An Evaluation of Public Preferences for Superfund Site Cleanup, Volume II: Pilot Study (1995)

    EPA Pesticide Factsheets

    In volume II, the authors present the detailed technical results of a pilot market research study that was conducted to determine preferences for the specific type and level of cleanup desired by the public at Superfund sites.

  14. 77 FR 10485 - Environmental Management Site-Specific Advisory Board, Idaho National Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Status EM/National Nuclear Security Administration Integration Ecological Surveys Ground Water Waste Area... and site management in the areas of environmental restoration, waste management, and related... Idaho Cleanup Project (ICP) Workforce Reductions Advanced Mixed Waste Cleanup Project (AMWTP) Workforce...

  15. Private-Sector Cleanup Expenditures and Transaction Costs at 18 Superfund Sites (1993)

    EPA Pesticide Factsheets

    Superfund allows the government either to clean up a site and recover its cost from the potentially responsible parties (PRPs) or to require the PRPs to undertake the cleanup themselves. This study examines private-sector expenditures and transaction-costs

  16. 40 CFR 147.3015 - Information to be considered for Class III wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3015 Information to... quality as required for aquifer cleanup by § 147.3011 of this subpart. (3) An aquifer cleanup plan if...

  17. 40 CFR 147.3015 - Information to be considered for Class III wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS Lands of the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3015 Information to... quality as required for aquifer cleanup by § 147.3011 of this subpart. (3) An aquifer cleanup plan if...

  18. An Introduction to the Cost of Engineering and Institutional Controls at Brownfield Properties

    EPA Pesticide Factsheets

    This fact sheet introduces and explores the costs of site cleanup and, where cleanup leaves site contamination that restricts reuse, outlines the engineering and institutional controls and their monitoring and maintenance costs over a longer time frame.

  19. EPA Science Matters Newsletter: Greener Cleanups at Hazardous Waste Sites (Published August 2013)

    EPA Pesticide Factsheets

    Read about the EPA’s Smart Energy Resources Guide (SERG). The guide covers techniques for superfund managers to reduce cleanup emissions in a process called green remediation, and can be used by any site remediation and redevelopment manager.

  20. Epidemiology of Late Health Effects in Ukrainian Chornobyl Cleanup Workers.

    PubMed

    Bazyka, Dimitry; Prysyazhnyuk, Anatoly; Gudzenko, Natalya; Dyagil, Iryna; Belyi, David; Chumak, Vadim; Buzunov, Volodymyr

    2018-07-01

    This article summarizes the results of 30 y of follow-up of cancer and noncancer effects in Ukrainian cleanup workers after the Chornobyl accident. The number of power plant employees and first responders with acute radiation syndrome under follow-up by the National Research Center for Radiation Medicine decreased from 179 in 1986-1991 to 105 in 2011-2015. Cancers and leukemia (19) and cardiovascular diseases (21) were the main causes of deaths among acute radiation syndrome survivors (54) during the postaccident period. Increased radiation risks of leukemia in the Ukrainian cohort of 110,645 cleanup workers exposed to low doses are comparable to those among survivors of the atomic bomb explosions in Japan in 1945. Additionally, an excess of chronic lymphocytic leukemia was demonstrated in the cleanup workers cohort for 26 y after the exposure. A significant excess of multiple myeloma incidence [standardized incidence rate (SIR) 1.61 %, 95% confidence interval (CI) 1.01-2.21], thyroid cancer (SIR 4.18, 95% CI 3.76-4.59), female breast cancer (SIR 1.57 CI 1.40-1.73), and all cancers combined (SIR 1.07; 95% CI 1.05-1.09) was registered. High prevalence was demonstrated for cardio- and cerebrovascular diseases and mental health changes. However, the reasons for the increases require further investigation. To monitor other possible late effects of radiation exposure in Chornobyl cleanup workers, analytical cohort and case-control studies need to include cardiovascular pathology, specifically types of potentially radiogenic cancers using a molecular epidemiology approach. Possible effects for further study include increased rates of thyroid, breast, and lung cancers and multiple myeloma; reduction of radiation risks of leukemia to population levels; and increased morbidity and mortality of cleanup workers from cardio- and cerebrovascular pathology.

  1. Content Analysis of Vomit and Diarrhea Cleanup Procedures To Prevent Norovirus Infections in Retail and Food Service Operations.

    PubMed

    Chao, Morgan G; Dubé, Anne-Julie; Leone, Cortney M; Moore, Christina M; Fraser, Angela M

    2016-11-01

    Human noroviruses are the leading cause of foodborne disease in the United States, sickening 19 to 21 million Americans each year. Vomit and diarrhea are both highly concentrated sources of norovirus particles. For this reason, establishing appropriate cleanup procedures for these two substances is critical. Food service establishments in states that have adopted the 2009 or 2013 U.S. Food and Drug Administration Food Code are required to have a program detailing specific cleanup procedures. The aim of our study was to determine the alignment of existing vomit and diarrhea cleanup procedures with the 11 elements recommended in Annex 3 of the 2011 Supplement to the 2009 Food Code and to determine their readability and clarity of presentation. In July 2015, we located vomit and diarrhea cleanup procedures by asking Norovirus Collaborative for Outreach, Research, and Education stakeholders for procedures used by their constituency groups and by conducting a Google Advanced Search of the World Wide Web. We performed content analysis to determine alignment with the recommendations in Annex 3. Readability and clarity of presentation were also assessed. A total of 38 artifacts were analyzed. The mean alignment score was 7.0 ± 1.7 of 11 points; the mean clarity score was 6.7 ± 2.5 of 17 points. Only nine artifacts were classified as high clarity, high alignment. Vomit and diarrhea cleanup procedures should align with Annex 3 in the Food Code and should, as well, be clearly presented; yet, none of the artifacts completely met both conditions. To reduce the spread of norovirus infections in food service establishments, editable guidelines are needed that are aligned with Annex 3 and are clearly written, into which authors could insert their facility-specific information.

  2. Acetonitrile extraction and dual-layer solid phase extraction clean-up for pesticide residue analysis in propolis.

    PubMed

    Oellig, Claudia

    2016-05-06

    Propolis is a very complex mixture of substances that is produced by honey bees and is known to be a rather challenging matrix for residue analysis. Besides resins, flavonoids and phenols, high amount of wax is co-extracted resulting in immense matrix effects. Therefore a suitable clean-up is crucial and indispensable. In this study, a reliable solid phase extraction (SPE) clean-up was developed for pesticide residue analysis in propolis. The clean-up success was quickly and easily monitored by high-performance thin-layer chromatography with different detection possibilities. The final method consists of the extraction of propolis with acetonitrile according to the QuEChERS method followed by an effective extract purification on dual-layer SPE cartridges with spherical hydrophobic polystyrene-divinylbenzene resin/primary secondary amine as sorbent and a mixture of toluene/acetone (95:5, v/v) for elution. Besides fat-soluble components like waxes, flavonoids, and terpenoids, more polar compounds like organic acids, fatty acids, sugars and anthocyanins were also removed to large extent. Method performance was assessed by recovery experiments at spiking levels of 0.5 and 1mg/kg (n=5) for fourteen pesticides that are relevant for propolis. Mean recoveries determined by HPLC-MS against solvent standards were between 40 and 101%, while calculation against matrix-matched standards provided recoveries of 79-104%. Precision of recovery, assessed by relative standard deviations, were below 9%. Thus, the developed dual-layer SPE clean-up enables the reliable pesticide residue analysis in propolis and provides a suitable alternative to time-consuming clean-up procedures proposed in literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Novel approaches to analysis of 3-chloropropane-1,2-diol esters in vegetable oils.

    PubMed

    Moravcova, Eliska; Vaclavik, Lukas; Lacina, Ondrej; Hrbek, Vojtech; Riddellova, Katerina; Hajslova, Jana

    2012-03-01

    A sensitive and accurate method utilizing ultrahigh performance liquid chromatography (U-HPLC) coupled to high resolution mass spectrometry based on orbitrap technology (orbitrapMS) for the analysis of nine 3-chloropropane-1,2-diol (3-MCPD) diesters in vegetable oils was developed. To remove the interfering triacylglycerols that induce strong matrix effects, a clean-up step on silica gel column was used. The quantitative analysis was performed with the use of deuterium-labeled internal standards. The lowest calibration levels estimated for the respective analytes ranged from 2 to 5 μg kg(-1). Good recovery values (89-120%) and repeatability (RSD 5-9%) was obtained at spiking levels of 2 and 10 mg kg(-1). As an alternative, a novel ambient desorption ionization technique, direct analysis in real time (DART), hyphenated with orbitrapMS, was employed for no separation, high-throughput, semi-quantitative screening of 3-MCPD diesters in samples obtained by chromatographic fractionation. Additionally, the levels of 3-MCPD diesters measured in reallife vegetable oil samples (palm oil, sunflower oil, rapeseed oil) using both methods are reported. Relatively good agreement of the data generated by U-HPLC-orbitrapMS and DART-orbitrapMS were observed. With regard to a low ionization yield achieved for 3-MCPD monoesters, the methods presented in this paper were not yet applicable for the analysis of these contaminants at the naturally occurring levels.

  4. Bacterial Diversity in Submarine Groundwater along the Coasts of the Yellow Sea

    PubMed Central

    Ye, Qi; Liu, Jianan; Du, Jinzhou; Zhang, Jing

    2016-01-01

    Submarine groundwater (SGD) is one of the most significant pathways for the exchange of groundwater and/or source of nutrients, metals and carbon to the ocean, subsequently cause deleterious impacts on the coastal ecosystems. Microorganisms have been recognized as the important participators in the biogeochemical processes in the SGD. In this study, by utilizing 16S rRNA-based Illumina Miseq sequencing technology, we investigated bacterial diversity and distribution in both fresh well water and brackish recirculated porewater along the coasts in the Yellow Sea. The results showed that Actinobacteria and Betaproteobacteria, especially Comamonas spp. and Limnohabitans spp. were dominated in fresh well samples. Distinct patterns of bacterial communities were found among the porewater samples due to different locations, for examples, Cyanbacteria was the most abundant in the porewater samples far from the algal bloomed areas. The analysis of correlation between representative bacterial taxonomic groups and the contexture environmental parameters showed that fresh well water and brackish porewater might provide different nutrients to the coastal waters. Potential key bacterial groups such as Comamonas spp. may be excellent candidates for the bioremediation of the natural pollutants in the SGD. Our comprehensive understanding of bacterial diversity in the SGD along the coasts of the Yellow Sea will create a basis for designing the effective clean-up approach in-situ, and provide valuable information for the coastal management. PMID:26779172

  5. Remedial action assessment system: Decision support for environmental cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennock, K.A.; Bohn, S.; Franklin, A.L.

    1991-11-01

    A large number of hazardous waste sites across the United States await treatment. Waste sites can be physically complex entities composed of multiple, possibly interacting contaminants distributed throughout one or more media. The sites may be active as well with contaminants escaping through one or more potential escape paths. Treatment of these sites requires a long and costly commitment involving the coordination of activities among several waste treatment professionals. In order to reduce the cost and time required for the specification of treatment at these waste sites. The Remedial Action Assessment System (RAAS) was proposed. RAAS is an automated informationmore » management system which utilizes a combination of expert reasoning and numerical models to produce the combinations of treatment technologies, known as treatment trains, which satisfy the treatment objectives of a particular site. In addition, RAAS supports the analysis of these trains with regard to effectiveness and cost so that the viable treatment trains can be measured against each other. The Remedial Action Assessment System is a hybrid system designed and constructed using object-oriented tools and techniques. RAAS is advertised as a hybrid system because it combines, in integral fashion, numerical computing (primarily quantitative models) with expert system reasoning. An object-oriented approach was selected due to many of its inherent advantages, among these the naturalness of modeling physical objects and processes.« less

  6. Waste Information Management System: One Year After Web Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.

    2008-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less

  7. Liquid secondary waste. Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less

  8. Combined Cycle Power Generation Employing Pressure Gain Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley, Adam

    The Phase I program assessed the potential benefit of applying pressure gain combustion (PGC) technology to a natural gas combined cycle power plant. A conceptual design of the PGC integrated gas turbine was generated which was simulated in a detailed system modeling tool. The PGC integrated system was 1.93% more efficient, produced 3.09% more power, and reduced COE by 0.58%. Since the PGC system used had the same fuel flow rate as the baseline system, it also reduced CO 2 emissions by 3.09%. The PGC system did produce more NOx than standard systems, but even with the performanceand cost penaltiesmore » associated with the cleanup system it is better in every measure. This technology benefits all of DOE’s stated program goals to improve plant efficiency, reduce CO 2 production, and reduce COE.« less

  9. EPA Handbook on the Benefits, Costs, and Impacts of Land Cleanup and Reuse (2011)

    EPA Pesticide Factsheets

    This Handbook describes EPA‘s land cleanup and reuse programs and outlines some of the unique aspects that have complicated efforts to develop suitable methods for estimating benefits. It clarifies the differences between types of economic analyses—specif

  10. EPA Uses Greener Cleanup Practices to Reduce Environmental Footprint at Telles Ranch UST Site, Colorado River Indian Tribes Reservation

    EPA Pesticide Factsheets

    Learn about the work of EPA’s Pacific Southwest Underground Storage Tank (UST) program to reduce its environmental footprint by using greener cleanup practices at the Telles Ranch leaking UST site in Arizona.

  11. Frequently Asked Questions (FAQs) for Fiscal Year (FY) 14 Brownfields Assessment, Revolving Loan Fund and Cleanup Grants

    EPA Pesticide Factsheets

    EPA prepared these Frequently Asked Questions and Answers to assist prospective applicants with preparing Brownfields Assessment, Revolving Loan Fund and Cleanup grant proposals for the FY14 competition. Please review the FY 2014 proposal guidelines/Reques

  12. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Searches for recorded environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  13. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Searches for recorded environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  14. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Searches for recorded environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  15. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Searches for recorded environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  16. 33 CFR 137.55 - Searches for recorded environmental cleanup liens.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Searches for recorded environmental cleanup liens. 137.55 Section 137.55 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE POLLUTION FINANCIAL RESPONSIBILITY AND COMPENSATION OIL SPILL...

  17. 40 CFR 761.243 - Standard wipe sample method and size.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND USE PROHIBITIONS Determining a PCB Concentration for Purposes of Abandonment or Disposal of Natural Gas Pipeline: Selecting Sample Sites, Collecting Surface Samples, and Analyzing Standard PCB Wipe.../Rinse Cleanup as Recommended by the Environmental Protection Agency PCB Spill Cleanup Policy,” dated...

  18. Fact Sheet on Avoiding Indoor Air Quality Problems During Flood Cleanup

    EPA Pesticide Factsheets

    This fact sheet discusses problems caused by microbial growth, and other effects of flooding, on indoor air quality and the steps you can take to lessen these effects. This focuses on residential flood cleanup, but it applies to other building types.

  19. Perioperative hair removal: A review of best practice and a practice improvement opportunity.

    PubMed

    Spencer, Maureen; Barnden, Marsha; Johnson, Helen Boehm; Fauerbach, Loretta Litz; Graham, Denise; Edmiston, Charles E

    2018-06-01

    The current practice of perioperative hair removal reflects research-driven changes designed to minimize the risk of surgical wound infection. An aspect of the practice which has received less scrutiny is the clean-up of the clipped hair. This process is critical. The loose fibers represent a potential infection risk because of the micro-organisms they can carry, but their clean-up can pose a logistical problem because of the time required to remove them. Research has demonstrated that the most commonly employed means of clean-up, the use of adhesive tape or sticky mitts, can be both ineffective and time-consuming in addition to posing an infection risk from cross-contamination. Recently published research evaluating surgical clippers fitted with a vacuum-assisted hair collection device highlights the potential for significant practice improvement in the perioperative hair removal clean-up process. These improvements include not only further mitigation of potential infection risk but also substantial OR time and cost savings.

  20. Evaluation of beach cleanup effects using linear system analysis.

    PubMed

    Kataoka, Tomoya; Hinata, Hirofumi

    2015-02-15

    We established a method for evaluating beach cleanup effects (BCEs) based on a linear system analysis, and investigated factors determining BCEs. Here we focus on two BCEs: decreasing the total mass of toxic metals that could leach into a beach from marine plastics and preventing the fragmentation of marine plastics on the beach. Both BCEs depend strongly on the average residence time of marine plastics on the beach (τ(r)) and the period of temporal variability of the input flux of marine plastics (T). Cleanups on the beach where τ(r) is longer than T are more effective than those where τ(r) is shorter than T. In addition, both BCEs are the highest near the time when the remnants of plastics reach the local maximum (peak time). Therefore, it is crucial to understand the following three factors for effective cleanups: the average residence time, the plastic input period and the peak time. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top