Sample records for clear phase separation

  1. Comprehensive separation of secondary metabolites in natural products by high-speed counter-current chromatography using a three-phase solvent system.

    PubMed

    Yanagida, Akio; Yamakawa, Yutaka; Noji, Ryoko; Oda, Ako; Shindo, Heisaburo; Ito, Yoichiro; Shibusawa, Yoichi

    2007-06-01

    High-speed counter-current chromatography (HSCCC) using the three-phase solvent system n-hexane-methyl acetate-acetonitrile-water at a volume ratio of 4:4:3:4 was applied to the comprehensive separation of secondary metabolites in several natural product extracts. A wide variety of secondary metabolites in each natural product was effectively extracted with the three-phase solvent system, and the filtered extract was directly submitted to the HSCCC separation using the same three-phase system. In the HSCCC profiles of crude natural drugs listed in the Japanese Pharmacopoeia, several physiologically active compounds were clearly separated from other components in the extracts. The HSCCC profiles of several tea products, each manufactured by a different process, clearly showed their compositional difference in main compounds such as catechins, caffeine, and pigments. These HSCCC profiles also provide useful information about hydrophobic diversity of whole components present in each natural product.

  2. Different insulin concentrations in resuspended vs. unsuspended NPH insulin: Practical aspects of subcutaneous injection in patients with diabetes.

    PubMed

    Lucidi, P; Porcellati, F; Marinelli Andreoli, A; Candeloro, P; Cioli, P; Bolli, G B; Fanelli, C G

    2017-06-06

    This study measured the insulin concentration (Ins [C] ) of NPH insulin in vials and cartridges from different companies after either resuspension (R+) or not (R-; in the clear/cloudy phases of unsuspended NPH). Measurements included Ins [C] in NPH(R+) and in the clear/cloudy phases of NPH(R-), and the time needed to resuspend NPH and time for NPH(R+) to separate again into clear/cloudy parts. In vials of NPH(R+) (assumed to be 100%), Ins [C] in the clear phase of NPH(R-) was<1%, but 230±41% and 234±54% in the cloudy phases of Novo Nordisk and Eli Lilly NPH, respectively. Likewise, in pen cartridges, Ins [C] in the clear phase of NPH(R-) was<1%, but 182±33%, 204±22% and 229±62% in the cloudy phases of Novo, Lilly and Sanofi NPH. Time needed to resuspend NPH (spent in tipping) in vials was brief with both Novo (5±1s) and Lilly NPH (6±1s), but longer with all pen cartridges (50±8s, 40±6s and 30±4s from Novo, Lilly and Sanofi, respectively; P=0.022). Time required for 50% separation into cloudy and clear parts of NPH was longer with Novo (60±7min) vs. Lilly (18±3min) in vials (P=0.021), and affected by temperature, but not by the different diameter sizes of the vials. With pen cartridges, separation into clear and cloudy parts was significantly faster than in vials (P<0.01). Ins [C] in NPH preparations varies depending on their resuspension or not. Thus, subcutaneous injection of the same number of units of NPH in patients with diabetes may deliver different amounts of insulin depending on its prior NPH resuspension. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Detecting phase separation of freeze-dried binary amorphous systems using pair-wise distribution function and multivariate data analysis.

    PubMed

    Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger

    2013-09-15

    The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  5. Macroscopic phase separation in high-temperature superconductors

    PubMed Central

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  6. Re-entrant phase behavior for systems with competition between phase separation and self-assembly

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Williamson, Alexander J.; Doye, Jonathan P. K.; Carrete, Jesús; Varela, Luis M.; Louis, Ard A.

    2011-03-01

    In patchy particle systems where there is a competition between the self-assembly of finite clusters and liquid-vapor phase separation, re-entrant phase behavior can be observed, with the system passing from a monomeric vapor phase to a region of liquid-vapor phase coexistence and then to a vapor phase of clusters as the temperature is decreased at constant density. Here, we present a classical statistical mechanical approach to the determination of the complete phase diagram of such a system. We model the system as a van der Waals fluid, but one where the monomers can assemble into monodisperse clusters that have no attractive interactions with any of the other species. The resulting phase diagrams show a clear region of re-entrance. However, for the most physically reasonable parameter values of the model, this behavior is restricted to a certain range of density, with phase separation still persisting at high densities.

  7. Investigation of phase separated polyimide blend films containing boron nitride using FTIR imaging

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Hong, Deok Gi; Jung, Young Mee; Won, Jong Chan; Lee, Seung Woo

    2018-04-01

    Immiscible aromatic polyimide (PI) blend films and a PI blend film incorporated with thermally conductive boron nitride (BN) were prepared, and their phase separation behaviors were examined by optical microscopy and FTIR imaging. The 2,2‧-bis(trifluoromethyl)benzidine (TFMB)-containing and 4,4‧-thiodianiline (TDA)-containing aromatic PI blend films and a PI blend/BN composite film show two clearly separated regions; one region is the TFMB-rich phase, and the other region is the TDA-rich phase. The introduction of BN induces morphological changes in the immiscible aromatic PI blend film without altering the composition of either domain. In particular, the BN is selectively incorporated into the TDA-rich phase in this study.

  8. Tube radial distribution phenomenon with a two-phase separation solution of a fluorocarbon and hydrocarbon organic solvent mixture in a capillary tube and metal compounds separation.

    PubMed

    Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2014-01-01

    A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single phase) changed to a heterogeneous solution (two phases) with inner tetradecafluorohexane and outer hexane phases in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a separation technique for metal compounds. A model analyte mixture, copper(II) and hematin, was separated through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.

  9. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  10. Cold-induced aqueous acetonitrile phase separation: A salt-free way to begin quick, easy, cheap, effective, rugged, safe.

    PubMed

    Shao, Gang; Agar, Jeffrey; Giese, Roger W

    2017-07-14

    Cooling a 1:1 (v/v) solution of acetonitrile and water at -16° C is known to result in two clear phases. We will refer to this event as "cold-induced aqueous acetonitrile phase separation (CIPS)". On a molar basis, acetonitrile is 71.7% and 13.6% in the upper and lower phases, respectively, in our study. The phase separation proceeds as a descending cloud of microdroplets. At the convenient temperature (typical freezer) employed here the lower phase is rather resistant to solidification, although it emerges from the freezer as a solid if various insoluble matter is present at the outset. In a preliminary way, we replaced the initial (salting-out) step of a representative QuEChERS procedure with CIPS, applying this modified procedure ("CIPS-QuEChERS") to a homogenate of salmon (and partly to beef). Three phases resulted, where only the upper, acetonitrile-rich phase is a liquid (that is completely clear). The middle phase comprises ice and precipitated lipids, while the lower phase is the residual matrix of undissolved salmon or meat. Treating the upper phase from salmon, after isolation, with anhydrous MgSO 4 and C18-Si (typical QuEChERS dispersive solid phase extraction sorbents), and injecting into a GC-MS in a nontargeted mode, gives two-fold more preliminary hits for chemicals, and also number of spiked pesticides recovered, relative to that from a comparable QuEChERS method. In part, this is because of much higher background signals in the latter case. Further study of CIPS-QuEChERS is encouraged, including taking advantage of other QuERChERS conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    NASA Astrophysics Data System (ADS)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  12. Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.

    PubMed

    Jung, Sung Suk; Sohn, Il

    2014-01-01

    In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement.

  13. Vertical phase separation of 6,13-bis(triisopropylsilylethynyl) pentacene/poly(methyl methacrylate) blends prepared by electrostatic spray deposition for organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Onojima, Norio; Hara, Kazuhiro; Nakamura, Ayato

    2017-05-01

    Blend films composed of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and poly(methyl methacrylate) (PMMA) were prepared by electrostatic spray deposition (ESD). ESD is considered as an intermediate process between dry and wet processes since the solvent present in small droplets can almost be evaporated before arriving at the substrate. Post-drying treatments with the time-consuming evaporation of residual solvents can be omitted. However, it is still not clear that a vertically phase-separated structure can be formed in the ESD process since the vertical phase separation of the blend films is associated with the solvent evaporation. In this study, we fabricated bottom-gate, top-contact organic field-effect transistors based on the blend films prepared by ESD and the devices exhibited transistor behavior with small hysteresis. This result demonstrates that the vertical phase separation of a blend film (upper TIPS pentacene active layer/bottom PMMA gate insulator) can occur in the facile one-step ESD process.

  14. CEC with new monolithic stationary phase based on a fluorinated monomer, trifluoroethyl methacrylate.

    PubMed

    Yurtsever, Arda; Saraçoğlu, Berna; Tuncel, Ali

    2009-02-01

    A new, fluorinated monolithic stationary phase for CEC was first synthesized by a single-stage, thermally initiated copolymerization of a fluorinated monomer, 2,2,2-trifluoroethyl methacrylate (TFEM) and ethylene dimethacrylate (EDMA) in the presence of a porogen mixture. In this preparation, 2-acrylamido-2-methyl-1-propanesulfonic acid was used as the charge-bearing monomer. The porogen mixture was prepared by mixing isoamylalcohol and 1,4-butanediol. A clear increase in the electroosmotic mobility was observed with increasing pH. The electroosmotic mobility decreased with increasing ACN concentration. Poly(TFEM-co-EDMA) monolith prepared under optimized polymerization conditions was successfully used in the separation of alkylbenzenes and phenols by CEC. The best chromatographic separation for alkylbenzenes was performed with lower ACN concentrations (i.e. 60% v/v) with respect to the common acrylic-based CEC monoliths. The theoretical plate numbers up to 220 000 plates/m were achieved in the reversed phase separation of phenols. Poly(TFEM-co-EDMA) monolith also allowed the simultaneous separation of aniline and benzoic acid derivatives by a single run and by using a lower ACN concentration in the mobile phase with respect to the similar electrochromatographic separations. A stable retention behaviour in reversed phase separation of alkylbenzenes was obtained with the poly(TFEM-co-EDMA) monolith.

  15. A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes.

    PubMed

    Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee

    2016-01-13

    For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.

  16. Industrial application of green chromatography--I. Separation and analysis of niacinamide in skincare creams using pure water as the mobile phase.

    PubMed

    Yang, Yu; Strickland, Zackary; Kapalavavi, Brahmam; Marple, Ronita; Gamsky, Chris

    2011-03-15

    In this work, chromatographic separation of niacin and niacinamide using pure water as the sole component in the mobile phase has been investigated. The separation and analysis of niacinamide have been optimized using three columns at different temperatures and various flow rates. Our results clearly demonstrate that separation and analysis of niacinamide from skincare products can be achieved using pure water as the eluent at 60°C on a Waters XTerra MS C18 column, a Waters XBridge C18 column, or at 80°C on a Hamilton PRP-1 column. The separation efficiency, quantification quality, and analysis time of this new method are at least comparable with those of the traditional HPLC methods. Compared with traditional HPLC, the major advantage of this newly developed green chromatography technique is the elimination of organic solvents required in the HPLC mobile phase. In addition, the pure water chromatography separations described in this work can be directly applied in industrial plant settings without further modification of the existing HPLC equipment. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Nanoscale ferromagnetism in phase-separated manganites

    NASA Astrophysics Data System (ADS)

    Mori, S.; Horibe, Y.; Asaka, T.; Matsui, Y.; Chen, C. H.; Cheong, S. W.

    2007-03-01

    Magnetic domain structures in phase-separated manganites were investigated by low-temperature Lorentz electron microscopy, in order to understand some unusual physical properties such as a colossal magnetoresistance (CMR) effect and a metal-to-insulator transition. In particular, we examined a spatial distribution of the charge/orbital-ordered (CO/OO) insulator state and the ferromagnetic (FM) metallic one in phase-separated manganites; Cr-doped Nd0.5Ca0.5MnO3 and ( La1-xPrx)CaMnO3 with x=0.375, by obtaining both the dark-field images and Lorentz electron microscopic ones. It is found that an unusual coexistence of the CO/OO and FM metallic states below a FM transition temperature in the two compounds. The present experimental results clearly demonstrated the coexisting state of the two distinct ground states in manganites.

  18. POTENTIAL IMPACT OF TANK F FLUSH SOLUTION ON H-CANYON EVAPORATOR OPERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyser, E.; Fondeur, F.; Fink, S.

    2010-09-13

    Previous chemical analysis of a sample from the liquid heel found in Tank F of the High Activity Drain (HAD) system in F/H laboratory revealed the presence of n-paraffin, tributyl phosphate (TBP), Modifier from the Modular Caustic-Side Solvent Extraction Unit (MCU) process and a vinyl ester resin that is very similar to the protective lining on Tank F. Subsequent analyses detected the presence of a small amount of diisopropylnaphthalene (DIN) (major component of Ultima Gold{trademark} AB liquid scintillation cocktail). Indications are that both vinyl ester resin and DIN are present in small amounts in the flush solution. The flush solutionmore » currently in the LR-56S trailer likely has an emulsion which is believed to contain a mixture of the reported organic species dominated by TBP. An acid treatment similar to that proposed to clear the HAD tank heel in F/H laboratory was found to allow separation of an organic phase from the cloudy sample tested by SRNL. Mixing of that clear sample did re-introduce some cloudiness that did not immediately clear but that cloudiness is attributed to the DIN in the matrix. An organic phase does quickly separate from the cloudy matrix allowing separation by a box decanter in H-Canyon prior to transfer to the evaporator feed tank. This separation should proceed normally as long as the emulsion is broken-up by acidification.« less

  19. Measuring local volume fraction, long-wavelength correlations, and fractionation in a phase-separating polydisperse fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J. J., E-mail: johnjosephwilliamson@gmail.com; Evans, R. M. L.

    We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size andmore » polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.« less

  20. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-04

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated.

  1. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  2. Coarsening and pattern formation during true morphological phase separation in unstable thin films under gravity

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Narayanam, Chaitanya; Khanna, Rajesh; Puri, Sanjay

    2017-12-01

    We address in detail the problem of true morphological phase separation (MPS) in three-dimensional or (2 +1 )-dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of these films are asymmetric and show two points of common tangency, which facilitates the formation of two equilibrium phases. Three distinct patterns formed by relative preponderance of these phases are clearly identified in "true MPS". Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway for true MPS. The pattern formation and phase-ordering dynamics have been studied using statistical measures such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov growth law [L (t ) ˜t1 /3] . However, for the defect pathway, there is a crossover of domain growth behavior from L (t ) ˜t1 /4→t1 /3 in the dynamical scaling regime. We also underline the analogies and differences behind the mechanisms of MPS and true MPS in thin liquid films and generic spinodal phase separation in binary mixtures.

  3. Morphological manifestations of freezing and thawing injury in bacteriophage T4Bo.

    PubMed Central

    Steele, P. R.

    1976-01-01

    Electron microscopic observation of negatively stained preparations of frozen and thawed suspensions of T4Bo phage clearly separated the morphological changes produced produced by low-temperature salt denaturation from those produced by eutectic phase changes. Salt denaturation caused contraction of tail sheaths. Eutectic phase changes appeared to cause two separate lesions. Firstly the tail sheath was disjointed 18-22 nm. below the collar and the tail core was disjointed at 40-60 nm. below the collar, giving rise to separated heads with a small tail remnant, and separated tails in which the sheath remarkably remained in its extended form. Secondly, tears were seen in the head membranes of particles with collapsed empty heads. In all the experiments the percentage of normal phage particles counted electron-microscopically was close to the percentage of viable phage as determined by plaque assay. Images Plate 1 PMID:1068189

  4. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  5. Diamine-Appended Mg 2 (dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO 2/N 2 Separations

    DOE PAGES

    Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.; ...

    2017-10-18

    Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less

  6. Effects of ions on the solubility transition and the phase-separation of N-isopropylacrylamide in water.

    PubMed

    Sasaki, Shigeo; Okabe, Satoshi

    2011-11-10

    The effects of NaCl, NaOH, and HCl on the solubility transition and the phase-separation of N-isopropylacrylamide (NIPA) were investigated for the purpose of clarifying the physicochemical mechanism of salting-out and salting-in phenomena. The discrete change in the solubility of NIPA in the salt-free water at the solubility transition (reported in J. Phys. Chem. B 2010, 114, 14995-15002) decreased with the addition of HCl and disappeared in the HCl solutions at concentrations higher than 2 M, while it increased with additions of NaOH and NaCl. A difference in NIPA concentration between the phase-separated solutions decreases with the addition of HCl and increases with additions of NaOH and NaCl. Partition coefficients of HCl in the phase-separated NIPA-rich solutions are higher than those in the NIPA poor solutions, while partition coefficients of NaCl and NaOH between the NIPA-rich and -poor solutions have trends opposite to those of HCl. The present results clearly indicate that the HCl favors the dehydrated NIPA and stabilizes the H(2)O-poor state of the NIPA molecule more than NaCl.

  7. A weak cation-exchange monolith as stationary phase for the separation of peptide diastereomers by CEC.

    PubMed

    Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E

    2011-01-01

    A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.

    PubMed

    Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh

    2018-05-01

    A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.

  9. Kinetics on cocondensation between phenol and urea through formaldehyde I

    Treesearch

    Yasunori Yoshida; Bunchiro Tomita; Chung-Yun Hse

    1995-01-01

    The kinetics of the reactions of methylolphenols and urea were investigated using 2- and 4-hydroxybenzyl alcohols. The high-performance liquid chromatography (HPLC) using a reverse-phase column gave a clear separation between methylolphenols and hydroxybenzylureas. The molar ratios of hydroxybenzylureas to the corresponding methylolphenols in reaction mixtures were...

  10. Kinetics on cocondensation between phenol and urea through formaldehyde I.

    Treesearch

    Yasunori Yoshida; Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The kinetics of the ractions of methylolphenols and urea were investigated using 2- and 4- hydroxybenzyl alcohols. The high-performance liquid chromatogrpahy (HPLC) using a reverse-phase column gave a clear separation between methylolphenols and hydroxybenzylureas. The molar ratios of hydroxybenzylureas to be corresponding methylolphenols in reaction mixtures were...

  11. Phase Separation from Electron Confinement at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Scopigno, N.; Bucheli, D.; Caprara, S.; Biscaras, J.; Bergeal, N.; Lesueur, J.; Grilli, M.

    2016-01-01

    Oxide heterostructures are of great interest for both fundamental and applicative reasons. In particular, the two-dimensional electron gas at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces displays many different properties and functionalities. However, there are clear experimental indications that the interface electronic state is strongly inhomogeneous and therefore it is crucial to investigate possible intrinsic mechanisms underlying this inhomogeneity. Here, the electrostatic potential confining the electron gas at the interface is calculated self-consistently, finding that such confinement may induce phase separation, to avoid a thermodynamically unstable state with a negative compressibility. This provides a robust mechanism for the inhomogeneous character of these interfaces.

  12. Comparison of high-performance liquid chromatography separation of red wine anthocyanins on a mixed-mode ion-exchange reversed-phase and on a reversed-phase column.

    PubMed

    Vergara, Carola; Mardones, Claudia; Hermosín-Gutiérrez, Isidro; von Baer, Dietrich

    2010-09-03

    Anthocyanins, which confer the characteristic color to red wine, can be used as markers to classify wines according to the grape variety. It is a complex separation that requires very high chromatographic efficiency, especially in the case of aged red wines, due to the formation of pyranoanthocyanins. A coelution between these kinds of compounds can affect the R(ac/coum) ratio of aged wines, and might lead to false results when classifying the wine variety. In 2007, the use of a novel mixed-mode ion-exchange reversed-phase column was reported to separate anthocyanins extracted from grapes of Vitis labrusca with different selectivity than C-18 columns. In the present work, the separation of anthocyanins including pyranoanthocyanins in young and aged Cabernet Sauvignon wines and other varieties is evaluated. The most interesting contributions of this research are the different elution order and selectivity obtained for anthocyanins and pyranoanthocyanins (only formed in wine), compared with those observed in C-18 stationary phases. Also interesting is the separation of the polymeric fraction, which elutes as a clearly separated peak at the chromatogram's end. However, a comparison with a high efficiency C-18 column with the same dimensions and particle size demonstrated that the tested mixed-mode column shows broader peaks with a theoretical plate number below 8000, for malvidin-3-glucoside peak, while it can be up to 10 times higher for a high efficiency C-18 column, depending on the column manufacturer. Under the tested conditions, in mixed-mode phase, the analysis time is almost twice that of a C-18 column with the same dimensions and particle size. A mixed-mode phase with increased efficiency should provide an interesting perspective for separation of anthocyanins in wine, due to its improved selectivity, combined with a useful role in a second-dimension separation in preparative anthocyanin chromatography. 2010 Elsevier B.V. All rights reserved.

  13. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    A neutral polymer phase system consisting of 7.5 percent dextran 40/4.5 percent PEG 6, 0.11 M Na phosphate, 5 percent fetal bovine serum (FBS), pH 7.5, was developed which has a high phase droplet electrophoretic mobility and retains cell viability over many hours. In this and related systems, the drop mobility was a linear function of drop size, at least in the range 4-30 micron diameter. Applications of and electric field of 4.5 v/cm to a system containing 10 percent v/v bottom phase cleared the system more than two orders of magnitude faster than in the absence of the field. At higher bottom phase concentrations a secondary phenomenon intervened in the field driven separations which resulted in an increase in turbidity after clearing had commenced. The increase was associated with a dilution of the phase system in the chamber. The effect depended on the presence of the electric field. It may be due to electroosmotic flow of buffer through the Amicon membranes into the sample chamber and flow of phase system out into the rinse stream. Strategies to eliminate this problem are proposed.

  14. A unified classification of stationary phases for packed column supercritical fluid chromatography.

    PubMed

    West, C; Lesellier, E

    2008-05-16

    The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.

  15. Homomorphic filtering textural analysis technique to reduce multiplicative noise in the 11Oba nano-doped liquid crystalline compounds

    NASA Astrophysics Data System (ADS)

    Madhav, B. T. P.; Pardhasaradhi, P.; Manepalli, R. K. N. R.; Pisipati, V. G. K. M.

    2015-07-01

    The compound undecyloxy benzoic acid (11Oba) exhibits nematic and smectic-C phases while a nano-doped undecyloxy benzoic acid with ZnO exhibits the same nematic and smectic-C phases with reduced clearing temperature as expected. The doping is done with 0.5% and 1% ZnO molecules. The clearing temperatures are reduced by approximately 4 ° and 6 °, respectively (differential scanning calorimeter data). While collecting the images from a polarizing microscope connected with hot stage and camera, the illumination and reflectance combined multiplicatively and the image quality was reduced to identify the exact phase in the compound. A novel technique of homomorphic filtering is used in this manuscript through which multiplicative noise components of the image are separated linearly in the frequency domain. This technique provides a frequency domain procedure to improve the appearance of an image by gray level range compression and contrast enhancement.

  16. Physico-chemical separation process of nanoparticles in cosmetic formulations

    NASA Astrophysics Data System (ADS)

    Retamal Marín, R. R.; Babick, F.; Stintz, M.

    2017-06-01

    Understanding the world of nanoparticles, especially their interactions with the environment, begins with their correct detection and successive quantification. To achieve this purpose, one needs to perform correctly developed standard operating procedures (SOPs). Furthermore, the study of nanoparticles frequently requires their characterisation in complex media (e.g. in cosmetic formulations). In this study, a set of sample preparation procedures for the detection and extraction of NMs in emulsion-based formulations is proposed and their performance for model and real-life products is discussed. A separation or extraction of lipid phases is achieved by means of organic solvents. The polarity of the lipid phases is decisive for selecting an optimum solvent. The use of the Hansen Solubility Parameters (HSP) may clearly support this decision.

  17. The separation of flavonoids from Pongamia pinnata using combination columns in high-speed counter-current chromatography with a three-phase solvent system.

    PubMed

    Yin, Hao; Zhang, Si; Long, Lijuan; Yin, Hang; Tian, Xinpeng; Luo, Xiongming; Nan, Haihan; He, Sha

    2013-11-08

    The mangrove plant Pongamia pinnata (Leguminosae) is well known as a plant pesticide. Previous studies have indicated that the flavonoids are responsible of the biological activities of the plant. A new high-speed counter-current chromatography (HSCCC) method for the separation of three flavonoids, karanjin (1), pinnatin (2), and pongaflavone (3), from P. pinnata was developed in the present study. The lower and intermediate phase (LP and IP) of a new three-phase solvent system, n-hexane-acetonitrile-dichloromethane-water, at a volume ratio of 5:5:1:5, were used as the stationary phases, while the upper phase (UP) was used as the mobile phase, and the volume ratio between the stationary phases in the CCC column could be tuned by varying the initial pumped volume ratio of the stationary phases. The CCC columns containing all three phases of the solvent system were considered combination columns. According to the theories of combination column, it is possible to optimize the retention time of the target compounds by varying the volume ratio of the stationary phases in the HSCCC combination columns, as well as the suitable volume ratios of the stationary phases for the separation of the target compounds were predicted from the partition coefficients of the compounds in the three-phase solvent system. Then, three HSCCC separations using the combination columns with initial pumped LP:IP volume ratios of 1:0, 0.9:0.1, and 0.7:0.3 were performed separately based on the prediction. Three target compounds were prepared with high purity when the initial pumped volume ratio of the stationary phases was 0.9:0.1. The baseline separation of compounds 2 and 3 was achieved on the combination column with an initial pumped volume ratio of 0.7:0.3. Furthermore, the three experiments clearly demonstrated that the retentions and resolutions of the target compounds increased with an increasing volume ratio of IP, which is consistent with the prediction for the retention times for the solutes on combination columns. The method proposed here reduces the need for solvent selection compared with the conventional method and may have broad potential applicability in the preparation of natural products. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography.

    PubMed

    Yanagida, Akio; Shoji, Atsushi; Shibusawa, Yoichi; Shindo, Heisaburo; Tagashira, Motoyuki; Ikeda, Mitsuo; Ito, Yoichiro

    2006-04-21

    High-speed counter-current chromatography (HSCCC) using the type-J coil planet centrifuge was applied to compositional analysis of tea catechins and separation of other food-related polyphenols. The HSCCC separation of nine different standard compounds and those from extracts of commercial tea leaves was performed with a two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-0.1% aqueous trifluoroacetic acid (TFA) (2:2:3, v/v/v) by eluting the upper organic phase at a flow rate of 2 ml/min. The main compounds in the extract of non-fermented green tea were found to be monomeric catechins, their galloylated esters and caffeine. In addition to these compounds, oxidized pigments, such as hydrophobic theaflavins (TFs) and polar thearubigins (TRs) were also separated and detected from the extracts of semi-fermented oolong tea and fermented black tea. Furthermore, several food-related polyphenols, such as condensed catechin oligomers (procyanidins), phenolic acids and flavonol glycosides were clearly separated under the same HSCCC condition. These separation profiles of HSCCC provide useful information about the hydrophobic diversity of these bioactive polyphenols present in various types of teas and food products.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.

    Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less

  20. Independent active and thermodynamic processes govern the nucleolus assembly in vivo

    PubMed Central

    Falahati, Hanieh; Wieschaus, Eric

    2017-01-01

    Membraneless organelles play a central role in the organization of protoplasm by concentrating macromolecules, which allows efficient cellular processes. Recent studies have shown that, in vitro, certain components in such organelles can assemble through phase separation. Inside the cell, however, such organelles are multicomponent, with numerous intermolecular interactions that can potentially affect the demixing properties of individual components. In addition, the organelles themselves are inherently active, and it is not clear how the active, energy-consuming processes that occur constantly within such organelles affect the phase separation behavior of the constituent macromolecules. Here, we examine the phase separation model for the formation of membraneless organelles in vivo by assessing the two features that collectively distinguish it from active assembly, namely temperature dependence and reversibility. We use a microfluidic device that allows accurate and rapid manipulation of temperature and examine the quantitative dynamics by which six different nucleolar proteins assemble into the nucleoli of Drosophila melanogaster embryos. Our results indicate that, although phase separation is the main mode of recruitment for four of the studied proteins, the assembly of the other two is irreversible and enhanced at higher temperatures, behaviors indicative of active recruitment to the nucleolus. These two subsets of components differ in their requirements for ribosomal DNA; the two actively assembling components fail to assemble in the absence of ribosomal DNA, whereas the thermodynamically driven components assemble but lose temporal and spatial precision. PMID:28115706

  1. The high squareness Sm-Co magnet having Hcb=10.6 kOe at 150°C

    NASA Astrophysics Data System (ADS)

    Machida, Hiroaki; Fujiwara, Teruhiko; Kamada, Risako; Morimoto, Yuji; Takezawa, Masaaki

    2017-05-01

    The relationship between magnetic properties and magnetic domain structures of Sm(Fe, Cu, Zr, Co)7.5 magnet was investigated. The developed Sm-Co magnet, which is conducted homogenization heat treatment at ingot state, high temperature short time sintering and long time solid solution heat treatment showed the maximum energy product, [BH]m of 34.0 MGOe and the coercivity, Hcb of 11.3 kOe at 20°C respectively. Moreover, Hcb of 10.6 kOe at 150°C was achieved. Heat treated ingot has clear 1-7 phase in mother phase from optical microscope observation. Kerr effect microscope with magnetic field applied was used to investigate magnetic domain structure. Reverse magnetic domains were generated evenly but generation of them from inside grain were not observed. Cell structure was observed by scanning transmission electron microscope and composition analysis was conducted by energy dispersive X-ray spectroscopy. Cell size was approximately 150 ˜ 300 nm, Fe and Cu were clearly separated and concentrated to 2-17 phase and 1-5 phase respectively. Moreover, Cu concentration went up to 40 at% in 1-5 phase. That means the gap of domain wall energy between 1-5 phase and 2-17 phase was increased due to microstructure control by conducting heat treatment for compositional homogeneity.

  2. Syn-Fuel reciprocating charge pump improvement program. Quarterly technical project report, April-June 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less

  3. Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography.

    PubMed

    Callahan, Damien L; De Souza, David; Bacic, Antony; Roessner, Ute

    2009-07-01

    Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.

  4. Ultrahigh-density sub-10 nm nanowire array formation via surface-controlled phase separation.

    PubMed

    Tian, Yuan; Mukherjee, Pinaki; Jayaraman, Tanjore V; Xu, Zhanping; Yu, Yongsheng; Tan, Li; Sellmyer, David J; Shield, Jeffrey E

    2014-08-13

    We present simple, self-assembled, and robust fabrication of ultrahigh density cobalt nanowire arrays. The binary Co-Al and Co-Si systems phase-separate during physical vapor deposition, resulting in Co nanowire arrays with average diameter as small as 4.9 nm and nanowire density on the order of 10(16)/m(2). The nanowire diameters were controlled by moderating the surface diffusivity, which affected the lateral diffusion lengths. High resolution transmission electron microscopy reveals that the Co nanowires formed in the face-centered cubic structure. Elemental mapping showed that in both systems the nanowires consisted of Co with undetectable Al or Si and that the matrix consisted of Al with no distinguishable Co in the Co-Al system and a mixture of Si and Co in the Co-Si system. Magnetic measurements clearly indicate anisotropic behavior consistent with shape anisotropy. The dynamics of nanowire growth, simulated using an Ising model, is consistent with the experimental phase and geometry of the nanowires.

  5. Assessing Online Collaborative Discourse.

    PubMed

    Breen, Henny

    2015-01-01

    This qualitative study using transcript analysis was undertaken to clarify the value of Harasim's Online Collaborative Learning Theory as a way to assess the collaborative process within nursing education. The theory incorporated three phases: (a) idea generating; (b) idea organizing; and (c) intellectual convergence. The transcripts of asynchronous discussions from a 2-week module about disaster nursing using a virtual community were analyzed and formed the data for this study. This study supports the use of Online Collaborative Learning Theory as a framework for assessing online collaborative discourse. Individual or group outcomes were required for the students to move through all three phases of the theory. The phases of the Online Collaborative Learning Theory could be used to evaluate the student's ability to collaborate. It is recommended that group process skills, which have more to do with interpersonal skills, be evaluated separately from collaborative learning, which has more to do with cognitive skills. Both are required for practicing nurses. When evaluated separately, the student learning needs are more clearly delineated. © 2014 Wiley Periodicals, Inc.

  6. Mechanisms for cytoplasmic organization: an overview.

    PubMed

    Pagliaro, L

    2000-01-01

    One of the basic characteristics of life is the intrinsic organization of cytoplasm, yet we know surprisingly little about the manner in which cytoplasmic macromolecules are arranged. It is clear that cytoplasm is not the homogeneous "soup" it was once envisioned to be, but a comprehensive model for cytoplasmic organization is not available in modern cell biology. The premise of this volume is that phase separation in cytoplasm may play a role in organization at the subcellular level. Other mechanisms for non-membrane-bounded intracellular organization have previously been proposed. Some of these will be reviewed in this chapter. Multiple mechanisms, involving phase separation, specific intracellular targeting, formation of macromolecular complexes, and channeling, all could well contribute to cytoplasmic organization. Temporal and spatial organization, as well as composition, are likely to be important in defining the characteristics of cytoplasm.

  7. Mixed-bed ion exchange chromatography employing a salt-free pH gradient for improved sensitivity and compatibility in MudPIT.

    PubMed

    Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M

    2013-07-16

    In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.

  8. Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun

    2012-04-01

    We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.

  9. Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations.

    PubMed

    Ahmad, Shaista; Das, Subir K; Puri, Sanjay

    2012-03-01

    Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.

  10. Recent advances in micro-scale and nano-scale high-performance liquid-phase chromatography for proteome research.

    PubMed

    Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui

    2011-01-01

    High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.

  11. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shukla, N.; Yang, D.; Gellman, A. J.

    2016-06-01

    Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.

  12. Electrochemical lithium intercalation into Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Shimono, Takahiro; Kobayashi, Wataru; Nitani, Hiroaki; Kumai, Reiji; Moritomo, Yutaka

    2013-04-01

    We have prepared Li-intercalated LixBi2Sr2CaCu2O8+δ (x =0-2.0) samples by using electrochemical method, and performed synchrotron x-ray diffraction, Cu K-edge x-ray absorption fine structure (XAFS), and magnetic susceptibility measurements. With increasing x, a- and c-lattice parameters monotonically increase, which shows lithium intercalation into Bi2Sr2CaCu2O8+δ. Accompanied by the lithium insertion, the valence of Cu ion changes from Cu2+/Cu3+ to Cu1+/Cu2+ to realize charge neutrality. This change of the valence was detected by Cu K-edge XAFS measurement. A clear increase of spectral weight that corresponds to 1s→ 4pπ(3d10L) was observed at around 8982 eV with x. The superconducting (SC) transition temperature TC significantly changes from 74 K for x = 0 to 90 K for x = 0.8, which is attributed to modified density of states by the decrease of hole concentration. A volume fraction of the superconducting phase was 1-2 % for x >= 0.6 implying phase separation where Li-rich non SC phase and Li-poor SC phase coexist. Such a phase separation is universally seen in electrode active materials.

  13. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers.

    PubMed

    Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti

    2016-08-19

    This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modifying the Balanced Scorecard for a Network Industry The Case of the Clearing Industry

    NASA Astrophysics Data System (ADS)

    Chlistalla, Michael; Schaper, Torsten

    The Balanced Scorecard (BSC) is a well-established framework for the management of a company as it integrates financial and non-financial perspectives. Little attention has been given to its theoretical and conceptual valuation. We illustrate how the stakeholder value theory corresponds with the concept of the BSC and show the importance of underlying cause-and-effect relationships between its perspectives. For the case of clearing in Europe which is currently facing profound changes, we present our three-phased approach how to adjust and to extend Kaplan and Norton’s original concept. We modify the generic BSC by adding risk management as a separate perspective and by integrating competition and IT. Based on multiple case studies, we then validate whether the modified BSC is suited to meet the specifics of the clearing industry.

  15. Time-of-flight expansion of binary Bose–Einstein condensates at finite temperature

    NASA Astrophysics Data System (ADS)

    Lee, K. L.; Jørgensen, N. B.; Wacker, L. J.; Skou, M. G.; Skalmstang, K. T.; Arlt, J. J.; Proukakis, N. P.

    2018-05-01

    Ultracold quantum gases provide a unique setting for studying and understanding the properties of interacting quantum systems. Here, we investigate a multi-component system of 87Rb–39K Bose–Einstein condensates (BECs) with tunable interactions both theoretically and experimentally. Such multi-component systems can be characterized by their miscibility, where miscible components lead to a mixed ground state and immiscible components form a phase-separated state. Here we perform the first full simulation of the dynamical expansion of this system including both BECs and thermal clouds, which allows for a detailed comparison with experimental results. In particular we show that striking features emerge in time-of-flight (TOF) for BECs with strong interspecies repulsion, even for systems which were separated in situ by a large gravitational sag. An analysis of the centre of mass positions of the BECs after expansion yields qualitative agreement with the homogeneous criterion for phase-separation, but reveals no clear transition point between the mixed and the separated phases. Instead one can identify a transition region, for which the presence of a gravitational sag is found to be advantageous. Moreover, we analyse the situation where only one component is condensed and show that the density distribution of the thermal component also shows some distinct features. Our work sheds new light on the analysis of multi-component systems after TOF and will guide future experiments on the detection of miscibility in these systems.

  16. The use of native cation-exchange chromatography to study aggregation and phase separation of monoclonal antibodies

    PubMed Central

    Chen, Shuang; Lau, Hollis; Brodsky, Yan; Kleemann, Gerd R; Latypov, Ramil F

    2010-01-01

    This study introduces a novel analytical approach for studying aggregation and phase separation of monoclonal antibodies (mAbs). The approach is based on using analytical scale cation-exchange chromatography (CEX) for measuring the loss of soluble monomer in the case of individual and mixed protein solutions. Native CEX outperforms traditional size-exclusion chromatography in separating complex protein mixtures, offering an easy way to assess mAb aggregation propensity. Different IgG1 and IgG2 molecules were tested individually and in mixtures consisting of up to four protein molecules. Antibody aggregation was induced by four different stress factors: high temperature, low pH, addition of fatty acids, and rigorous agitation. The extent of aggregation was determined from the amount of monomeric protein remaining in solution after stress. Consequently, it was possible to address the role of specific mAb regions in antibody aggregation by co-incubating Fab and Fc fragments with their respective full-length molecules. Our results revealed that the relative contribution of Fab and Fc regions in mAb aggregation is strongly dependent on pH and the stress factor applied. In addition, the CEX-based approach was used to study reversible protein precipitation due to phase separation, which demonstrated its use for a broader range of protein–protein association phenomena. In all cases, the role of Fab and Fc was clearly dissected, providing important information for engineering more stable mAb-based therapeutics. PMID:20512972

  17. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.

    PubMed

    Park, Tuson; Ronning, F; Yuan, H Q; Salamon, M B; Movshovich, R; Sarrao, J L; Thompson, J D

    2006-03-02

    With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.

  18. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.

    PubMed

    Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas

    2012-07-01

    Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model (triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases, a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and the difference in the shift and transition width (crossover) exponents.

  19. Quantitation of triacylglycerols in edible oils by off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column.

    PubMed

    Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong

    2015-07-24

    In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed using principal component analysis. The results of the principal component analysis enabled a clear identification of different plant oils. By using this two-dimensional liquid chromatography-mass spectrometry system coupled with principal component analysis, adulterated soybean oils with 5% added lord oil and peanut oils with 5% added soybean oil can be clearly identified. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The nature of the mineral component of bone and the mechanism of calcification.

    PubMed

    Glimcher, M J

    1987-01-01

    From the physical chemical standpoint, the formation of a solid phase of Ca-P in bone represents a phase transformation, a process exemplified by the formation of ice from water. Considering the structural complexity and abundance of highly organized macromolecules in the cells and extracellular tissue spaces of mineralized tissues generally and in bone particularly, it is inconceivable that this phase transformation occurs by homogeneous nucleation, i.e., without the active participation of an organic component acting as a nucleator. This is almost surely true in biologic mineralization in general. Electron micrographs and low-angle neutron and X-ray diffraction studies clearly show that calcification of collagen fibrils occurs in an extremely intimate and highly organized fashion: initiation of crystal formation within the collagen fibrils in the hole zone region, with the long axes (c-axis) of the crystals aligned roughly parallel to the long axis of the fibril within which they are located. Crystals are initially formed in hole zone regions within individual fibrils separated by unmineralized regions. Calcification is initiated in spatially distinct nucleation sites. This indicates that such regions within a single, undirectional fibril represents independent sites for heterogeneous nucleation. Clearly, sites where mineralization is initiated in adjacent collagen fibrils are even further separated, emphasizing even more clearly that the process of progressive calcification of the collagen fibrils and therefore of the tissue is characterized principally by the presence of increasing numbers of independent nucleation sites within additional hole zone regions of the collagen fibrils. The increase in the mass of Ca-P apatite accrues principally by multiplication of more crystals, mostly by secondary nucleation from the crystals initially deposited in the hole zone region. Very little additional growth of the crystals occurs with time, the additional increase in mineral mass being principally the result of increase in the number of crystals (multiplication), not size of the crystals (crystal growth). The crystals within the collagen fibers grow in number and possibly in size to extend into the overlap zone of the collagen fibrils ("pores") so that all of the available space within the fibrils, which has possibly expanded in volume from its uncalcified level, is eventually occupied by the mineral crystals. It must be recognized that the calcification of separate tissue components and compartments (collagen, mitochondria, matrix vesicles) must be an independent physical chemical event.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Counter-current motion in counter-current chromatography.

    PubMed

    Ito, Yoichiro

    2014-12-12

    After the CCC2012 meeting, I have received an e-mail regarding the terminology of "Countercurrent Chromatography". It stated that the term "Countercurrent" is a misnomer, because its stationary phase is motionless in the column and that the method should be renamed as liquid-liquid separations or centrifugal separations. However, it was found that these names are already used for various other techniques as found via Google search. The term "Countercurrent Chromatography" was originally made after two preparative methods of Countercurrent distribution and liquid Chromatography, both having no countercurrent motion in the column. However, it is surprising to find that this F1 hybrid method "Countercurrent Chromatography" can clearly exhibit countercurrent motion within the separation column in both hydrodynamic and hydrostatic equilibrium systems. This justifies that "Countercurrent Chromatography" is a proper term for this chromatographic method. Published by Elsevier B.V.

  2. Heavy ion observations by MARIE in cruise phase and Mars orbit

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Cleghorn, T.; Cucinotta, F.; Pinsky, L.; Zeitlin, C.

    2004-01-01

    The charged particle spectrum for nuclei from protons to neon, (charge Z=10) was observed during the cruise phase and orbit around Mars by the MARIE charged particle spectrometer on the Odyssey spacecraft. The cruise data were taken between April 23, 2001 and mid-August 2001. The Mars orbit data were taken March 5, 2002 through May 2002 and are scheduled to continue until August 2004. Charge peaks are clearly separated for charges up to Z=10. Especially prominent are the carbon and oxygen peaks, with boron and nitrogen also clearly visible. Although heavy ions are much less abundant than protons in the cosmic ray environment, it is important to determine their abundances because their ionization energy losses (proportional to Z2) are far more dangerous to humans and to instruments. Thus the higher charged nuclei make a significant contribution to dose and dose equivalent received in space. Results of the charged particle spectrum measurements will be reported. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Phase separation and ion conductivity in the bulk and at the surface of anion exchange membranes with different ion exchange capacities at different humidities

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Akiyama, Ryo; Miyatake, Kenji; Inukai, Junji

    2018-01-01

    For higher performances of anion exchange membrane (AEM) fuel cells, understanding the phase-separated structures inside AEMs is essential, as well as those at the catalyst layer/membrane interfaces. The AEMs based on quaternized aromatic semi-block copolymers with different ion exchange capacities (IECs) were systematically investigated. With IECs of 1.23 and 1.95 mequiv g-1, the water uptakes at room temperature were 37% and 98%, and the anion conductivities 23.6 and 71.4 mS cm-1, respectively. The increases were not proportional to the IEC. Images obtained by transmission electron microscopy in vacuum were similar with both IEC values, but the development of a clear phase separation in humidified nitrogen was observed in the profiles only with 1.95 mequiv g-1obtained by small-angle X-ray scattering. At the temperature of 40 °C and the relative humidity (RH) of 30%, the average currents observed at the tip apex by current-sensing atomic force microscopy were <0.5 and 10 pA with 1.23 and 1.95 mequiv g-1, respectively, and those at 70% RH were 10 and 15 pA, respectively. The humidity gave a larger influence on the bulk structure with 1.95 mequiv g-1, whereas a larger influence on the surface conductivity with 1.23 mequiv g-1.

  4. Strategies towards controlling strain-induced mesoscopic phase separation in manganite thin films

    NASA Astrophysics Data System (ADS)

    Habermeier, H.-U.

    2008-10-01

    Complex oxides represent a class of materials with a plethora of fascinating intrinsic physical functionalities. The intriguing interplay of charge, spin and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental as well as application oriented research. The existence of nanoscale electronic phase separation in correlated complex oxides is one of the areas in this field whose impact on the current understanding of their physics and potential applications is not yet clear. In this paper this issue is treated from the point of view of complex oxide thin film technology. Commenting on aspects of complex oxide thin film growth gives an insight into the complexity of a reliable thin film technology for these materials. Exploring fundamentals of interfacial strain generation and strain accommodation paves the way to intentionally manipulate thin film properties. Furthermore, examples are given for an extrinsic continuous tuning of intrinsic electronic inhomogeneities in perovskite-type complex oxide thin films.

  5. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion

    PubMed Central

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147

  6. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    PubMed

    Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui

    2015-01-01

    Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40-45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.

  7. ON THE PUZZLING HIGH-ENERGY PULSATIONS OF THE ENERGETIC RADIO-QUIET γ-RAY PULSAR J1813–1246

    DOE PAGES

    Marelli, M.; Harding, A.; Pizzocaro, D.; ...

    2014-10-28

    In this study, we have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by twomore » peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.« less

  8. On the Puzzling High-Energy Pulsations of the Energetic Radio-Quiet -Ray Pulsar J1813-1246

    NASA Technical Reports Server (NTRS)

    Marelli, M.; Harding, Alice K.; Pizzocaro, D.; De Luca, A.; Wood, K. S.; Caraveo, P.; Salvetti, D.; Parkinson, P. M.; Acero, F.

    2014-01-01

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813-1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase.We extended the available Fermi ephemeris to five years.We found two glitches. The gamma-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the gamma-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and gamma-ray emission of J1813. The unique X-ray and gamma-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  9. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  10. The morphology of blends of linear and branched polyethylenes in solid state by small-angle scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wignall, G.D.; Londono, J.D.; Alamo, R.G.

    1995-12-01

    We have used small-angle neutron and x-ray scattering (SANS And SAXS) to investigate the solid state morphology of blends of high-density and low-density polyethylenes (HDPE and LDPE). The blends are homogenous in the melt as demonstrated by SANS using the contrast obtained by deuterating the linear polymer, though they phase segregate on slow cooling (0.75{degree}C/min). For high concentrations ({theta} {ge} 0.5) of linear polymer, there are separate stacks of HDPE and LDPE lamellae, as indicated by 2-peak SAXS curves. For predominantly branched blends, the phase separation is less complete, and the components are separated within the same lamellar stack, withmore » alternating HDPE and LDPE lamellae. Moreover, the phases no longer consist of the pure components and the HDPE lamellae contain up to 15% LDPE. Rapid quenching into dry-ice/acetone (-78{degree}C) produces only one lamellar stack over the whole concentration range. The blends show extensive cocrystallization with a tendency for the branched material to be preferentially located in the amorphous regions. For high concentrations ({theta} {ge} 0.5) of HDPE-D the overall scattering length density is high and the excess concentration of LDPE between the lamellae enhances the contrast between the crystalline and amorphous phases. Thus, the interlamellar spacing (long period) is clearly visible in the SANS pattern. The blend morphology is a strong function of the quench rate and samples quenched less rapidly (e.g., into water at 23{degree}C) show a similar morphology to slowly cooled samples.« less

  11. A computational investigation of the thermodynamics and structure in colloid and polymer mixtures

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan Alexander

    In this dissertation I use computational tools to study the structure and thermodynamics of colloid-polymer mixtures. I show that fluid-fluid phase separation in mixtures of colloids and linear polymers cannot be universally reduced using polymer-based scaling principles since these assume the binodals exist in a single scaling regime, whereas accurate simulations clearly demonstrate otherwise. I show that rethinking these solutions in terms of multiple length scales is necessary to properly explain the thermodynamic stability and structure of these fluid phases, and produce phase diagrams in nearly quantitative agreement with experimental results. I then extend this work to encompass more geometrically complex "star" polymers revealing how the phase behavior for many of these binary mixtures may be mapped onto that of mixtures containing only linear polymers. I further consider the depletion-driven crystallization of athermal colloidal hard spheres induced by polymers. I demonstrate how the partitioning of a finite amount of polymer into the colloidal crystal phase implies that the polymer's architecture can be tailored to interact with the internal void structure of different crystal polymorphs uniquely, thus providing a direct route to thermodynamically stabilizing one arbitrarily chosen structure over another, e.g., the hexagonal close-packed crystal over the face-centered cubic. I then begin to generalize this result by considering the consequences of thermal interactions and complex polymer architectures. These principles lay the groundwork for intelligently engineering co-solute additives in crystallizing colloidal suspensions that can be used to thermodynamically isolate single crystal morphologies. Finally, I examine the competition between self-assembly and phase separation in polymer-grafted nanoparticle systems by comparing and contrasting the validity of two different models for grafted nanoparticles: "nanoparticle amphiphiles" versus "patchy particles." The latter suggests these systems have some utility in forming novel "equilibrium gel" phases, however, I find that considering grafted nanoparticles as amphiphiles provides a qualitatively accurate description of their thermodynamics revealing either first-order phase separation into two isotropic phases or continuous self-assembly. I find no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.

  12. The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Watt, C. E. J.; Mann, I. R.; Jonathan Rae, I.; Sibeck, D. G.; Boyd, A. J.; Forsyth, C. F.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J.

    2018-05-01

    Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

  13. Sensing Floquet-Majorana fermions via heat transfer

    NASA Astrophysics Data System (ADS)

    Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.

    2017-09-01

    Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.

  14. Liquid-liquid phase transition in an ionic model of silica

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Lascaris, Erik; Palmer, Jeremy C.

    2017-06-01

    Recent equation of state calculations [E. Lascaris, Phys. Rev. Lett. 116, 125701 (2016)] for an ionic model of silica suggest that it undergoes a density-driven, liquid-liquid phase transition (LLPT) similar to the controversial transition hypothesized to exist in deeply supercooled water. Here, we perform extensive free energy calculations to scrutinize the model's low-temperature phase behavior and confirm the existence of a first-order phase transition between two liquids with identical compositions but different densities. The low-density liquid (LDL) exhibits tetrahedral order, which is partially disrupted in the high-density liquid (HDL) by the intrusion of additional particles into the primary neighbor shell. Histogram reweighting methods are applied to locate conditions of HDL-LDL coexistence and the liquid spinodals that bound the two-phase region. Spontaneous liquid-liquid phase separation is also observed directly in large-scale molecular dynamics simulations performed inside the predicted two-phase region. Given its clear LLPT, we anticipate that this model may serve as a paradigm for understanding whether similar transitions occur in water and other tetrahedral liquids.

  15. Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel-cadmium, batteries using Cyanex 923 and 272

    NASA Astrophysics Data System (ADS)

    Reddy, B. Ramachandra; Priya, D. Neela

    Studies are conducted on the leaching and solvent extraction separation of metals from chloride leach liquor of spent nickel-cadmium batteries with Cyanex 923 and 272 diluted in kerosene as the extractants. Dissolution of the metals increases with increase in acid concentration and time but decreases with the solids-to-liquid ratio. Complete dissolution of Cd, Co and Ni can be achieved with 1.5 M HCl at 85 °C for 8 h and a solids-to-liquid ratio of 4. Treatment of leach liquor for the separation of metals with Cyanex 923 shows that increase of extractant and chloride ion concentration increases the percentage extraction of cadmium. The plot of log[distribution coefficient] versus log[extractant]/[Cl -] is linear with a slope of 2, which indicates that the extraction follows a solvation mechanism with the extracted species as CdCl 2·2S (S, Cyanex 923). Moreover, Cyanex 923 enables a clear separation of Cd from Co and Ni. Extraction of cobalt with Cyanex 272 involves a cation-exchange mechanism with the formation of a 1:2 metal-to-ligand complex in the organic phase. Based on the distribution data, extractant concentration and equilibrium pH of the aqueous phase, a possible separation process is proposed for the recovery of cadmium, cobalt and nickel with >99% efficiency.

  16. Characterization of Jamaican agro-industrial wastes. Part II, fatty acid profiling using HPLC: precolumn derivatization with phenacyl bromide.

    PubMed

    Bailey-Shaw, Y A; Golden, K D; Pearson, A G M; Porter, R B R

    2012-09-01

    This paper describes the determination of fatty acid composition of coffee, citrus and rum distillery wastes using reversed-phase high-performance liquid chromatography (RP-HPLC). Lipid extracts of the waste samples are derivatized with phenacyl bromide and their phenacyl esters are separated on a C8 reversed-phase column by using continuous gradient elution with water and acetonitrile. The presence of saturated and unsaturated fatty acids in quantifiable amounts in the examined wastes, as well as the high percentage recoveries, are clear indications that these wastes have potential value as inexpensive sources of lipids. The HPLC procedures described here could be adopted for further analysis of materials of this nature.

  17. Retrospective multi-phase non-contrast-enhanced magnetic resonance angiography (ROMANCE MRA) for robust angiogram separation in the presence of cardiac arrhythmia.

    PubMed

    Kim, Hahnsung; Park, Suhyung; Kim, Eung Yeop; Park, Jaeseok

    2018-09-01

    To develop a novel, retrospective multi-phase non-contrast-enhanced MRA (ROMANCE MRA) in a single acquisition for robust angiogram separation even in the presence of cardiac arrhythmia. In the proposed ROMANCE MRA, data were continuously acquired over all cardiac phases using retrospective, multi-phase flow-sensitive single-slab 3D fast spin echo (FSE) with variable refocusing flip angles, while an external pulse oximeter was in sync with pulse repetitions in FSE to record real-time information on cardiac cycles. Data were then sorted into k-bin space using the real-time cardiac information. Angiograms were reconstructed directly from k-bin space by solving a constrained optimization problem with both subtraction-induced sparsity and low rank priors. Peripheral MRA was performed in normal volunteers with/without caffeine consumption and a volunteer with cardiac arrhythmia using conventional fresh blood imaging (FBI) and the proposed ROMANCE MRA for comparison. The proposed ROMANCE MRA shows superior performance in accurately delineating both major and small vessel branches with robust background suppression if compared with conventional FBI. Even in the presence of irregular heartbeats, the proposed method exhibits clear depiction of angiograms over conventional methods within clinically reasonable imaging time. We successfully demonstrated the feasibility of the proposed ROMANCE MRA in generating robust angiograms with background suppression. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Layer-by-layer self-assembled graphene oxide/silica microsphere composites as stationary phase for high performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Liu, Shujuan; Song, Xinwang; Zhu, Yangwen; Jiang, Shengxiang

    2012-11-21

    Graphene oxide (GO) has been layer-by-layer assembled onto silica microspheres to form a GO/SiO(2) composite stationary phase. All the characterizations of GO/SiO(2) by elemental analysis, Raman spectroscopy and Fourier transformed infrared spectrometry confirmed that with the increase of the assembled layer, GO gradually increases on the silica surface. The chromatographic properties of bare SiO(2) and GO/SiO(2) with different GO assembled layers show that the amount of GO plays an important role in the separation of analytes. Only the appropriate amount of GO on SiO(2) can perform a good chromatographic separation. The comparison between chromatographic performances of bare SiO(2) column, GO/SiO(2)-2 column and C18 commercial column clearly show that GO/SiO(2)-2 and C18 columns obtained a better separation; GO/SiO(2)-2 exhibits a large π-electron system and C18 exhibits hydrophobicity. The eluting order, peak width and resolution of analyte on GO/SiO(2)-2 column was highly dependent on the size of its π-electron system, while on the C18 column the decisive factor is its hydrophobic property.

  19. Specific applications of capillary electrochromatography to biopolymers, including proteins, nucleic acids, peptide mapping, antibodies, and so forth.

    PubMed

    Krull, I S; Sebag, A; Stevenson, R

    2000-07-28

    Separation of biopolymers is an obvious application of capillary electrochromatography (CEC) technology, since speed and resolution should increase significantly over high-performance liquid chromatography (HPLC). All too often, HPLC chromatograms of polymers show poorly resolved envelopes of overlapping peaks from oligomers. The practical limitation of column length and pressure drop has hindered development of high resolution separations of many polymers in HPLC. However, this generally applies only to packed beds of small particles, and not to continuous (or monolithic) beds, as introduced by Hjerten et al. [S. Hjerten, Ind. Eng. Chem. Res. 38 (1999) 1205; S. Hjerten, C. Ericson, Y.-M. Li, R. Zhang, Biomed. Chromatogr. 12 (1998) 120; C. Ericson, S. Hjerten, Anal. Chem. 71 (1999) 1621; J.-L. Liao, N. Chen, C. Ericson, S. Hjerten, Anal. Chem. 68 (1996) 3468; S. Hjerten, A. Vegvari, T. Srichaiyo, H.-X. Zhang, C. Ericson, D. Eaker, J. Capillary. Elec. 5 (1998) 13; C. Ericson, J.-L. Liao, K. Nakazato, S. Hjerten, J. Chromatogr. A 767 (1997) 33; S. Hjerten, D. Eaker, K. Elenbring, C. Ericson, K. Kubo, J.-L. Liao, C.-M. Zeng, P.-A. Lidstrom, C. Lindh, A. Palm, T. Srichiayo, L. Valtcheva, R. Zhang, Jpn. J. Electroph. 39 (1995) 1]. Throughout this review we will refer to such packings as monolithic or continuous beds, but they are identical type packings, formed by the in situ polymerization in the capillary or column. CEC capillaries can be much longer, and contain smaller particles than is practical for HPLC. This improves resolution significantly. CEC is able to capitalize on existing mobile phase technology developed over 30 years to improve separations. The requirement that the mobile phase simultaneously promote the separation and mobile phase mobility needs to be considered. In RPLC, this dual role is not much of a problem. It may be much more important in other modes, particularly ion-exchange (IEC). As the field develops, it is becoming clear that CEC is not just a simple extension of HPLC. Instruments, column technology and operating optima are clearly different than HPLC. CEC will develop into its own unique field. Open tubular HPLC is almost precluded by the high pressures required for forcing liquids through 10 microm or smaller capillaries. Electroosmotic pumping (EOF) avoids the pressure constraints and provides better flow profiles. Compared to HPCE, the ability to interact with the stationary phase may enable separations that would be difficult with electrophoresis alone. Since the mobile phase can be less complex than micellar electrokinetic chromatography (MEKC), CEC also avoids the problem of high background signals from the micelle forming compounds. Thus CEC-MS (mass spectrometry) is expected to be even more powerful than HPCE-MS. The fortuitous, simultaneous development of matrix assisted laser desorption-time of flight MS (MALDI-TOF-MS) technology will enable extension of the mass range to above 100 000 Da. Lack of familiarity is the perhaps the largest liability of CEC compared to other techniques. This paper critically compares the state-of-the-art of CEC with HPLC and HPCE, with a particular emphasis on separation of biopolymers. The goal is to help the reader overcome the fear of the unknown, in this case, CEC.

  20. Quantum critical phase with infinite projected entangled paired states

    NASA Astrophysics Data System (ADS)

    Poilblanc, Didier; Mambrini, Matthieu

    2017-07-01

    A classification of SU(2)-invariant projected entangled paired states (PEPS) on the square lattice, based on a unique site tensor, has been recently introduced by Mambrini et al. [M. Mambrini, R. Orús, and D. Poilblanc, Phys. Rev. B 94, 205124 (2016), 10.1103/PhysRevB.94.205124]. It is not clear whether such SU(2)-invariant PEPS can either (i) exhibit long-range magnetic order (such as in the Néel phase) or (ii) describe a genuine quantum critical point (QCP) or quantum critical phase (QCPh) separating two ordered phases. Here, we identify a specific family of SU(2)-invariant PEPS of the classification which provides excellent variational energies for the J1-J2 frustrated Heisenberg model, especially at J2=0.5 , corresponding to the approximate location of the QCP or QCPh separating the Néel phase from a dimerized phase. The PEPS are built from virtual states belonging to the 1/2⊗N⊕0 SU(2) representation, i.e., with N "colors" of virtual spin-1/2 . Using a full-update infinite-PEPS approach directly in the thermodynamic limit, based on the corner transfer matrix renormalization algorithm supplemented by a conjugate gradient optimization scheme, we provide evidence of (i) the absence of magnetic order and of (ii) diverging correlation lengths (i.e., showing no sign of saturation with increasing environment dimension) in both the singlet and triplet channels, when the number of colors N ≥3 . We argue that such a PEPS gives a qualitative description of the QCP or QCPh of the J1-J2 model.

  1. Preparation and characterization of microporous poly(d,l-lactic acid) film for tissue engineering scaffold

    PubMed Central

    Shi, Shuai; Wang, Xiu Hong; Guo, Gang; Fan, Min; Huang, Mei Juan; Qian, Zhi Yong

    2010-01-01

    We prepared a series of microporous films based on poly(d,l-lactic acid) (PLA) via phase separation. According to scanning electron microscopy (SEM), a 3-dimensional foamy structure with multimicrometer scale pores on the air surface of film could be observed. As the morphology of PLA film could not be stabilized using solvent–nonsolvent phase separation, we investigated the effect of temperature, air movement, and concentration on the properties of microporous PLA films. The results show that when the temperature was 25°C in a vacuum, it was easy to prepare PLA film with micropores, and it was stable. As the relationship between the morphology and formation factors was clear and the morphology of the PLA film was controllable, we studied the PLA film’s potential use for cell culture. SEM results showed that NIH3T3 cell could be adhered on the surface of film well after incubation for 2 days. Meanwhile, in vitro culture experiments revealed the great biocompatibility of the scaffold for adsorption and proliferation of fibroblasts. PMID:21179227

  2. Determination of the continuous cooling transformation diagram of a high strength low alloyed steel

    NASA Astrophysics Data System (ADS)

    Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong

    2016-11-01

    The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.

  3. Interactions between acidified dispersions of milk proteins and dextran or dextran sulfate.

    PubMed

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2014-09-01

    Polysaccharides are often used to stabilize cultured milk products, although the nature of these interactions is not entirely clear. The objective of this study was to investigate phase behavior of milk protein dispersions with added dextran (DX; molecular weight = 2 × 10(6) Da) or dextran sulfate (DS; molecular weight = 1.4 × 10(6) Da) as examples of uncharged and charged polysaccharides, respectively. Reconstituted skim milk (5-20% milk solids, wt/wt) was acidified to pH 4.4, 4.6, 4.8, or 4.9 at approximately 0°C (to inhibit gelation) by addition of 3 N HCl. Dextran or DS was added to acidified milk samples to give concentrations of 0 to 2% (wt/wt) and 0 to 1% (wt/wt) polysaccharide, respectively. Milk samples were observed for possible phase separation after storage at 0°C for 1 and 24h. Possible gelation of these systems was determined by using dynamic oscillatory rheology. The type of interactions between caseins and DX or DS was probed by determining the total carbohydrate analysis of supernatants from phase-separated samples. At 5.0 to 7.5% milk solids, phase separation of milk samples occurred after 24h even without DX or DS addition, due to destabilization of caseins in these acidic conditions, and a stabilizing effect was observed when 0.7 or 1.0% DS was added. At higher milk solids content, phase separation was not observed without DX or DS addition. Similar results were observed at all pH levels. Gelation occurred in samples containing high milk solids (≥10%) with the addition of 1.0 to 2.0% DX or 0.4 to 1.0% DS. Based on carbohydrate analysis of supernatants, we believe that DX interacted with milk proteins through a type of depletion flocculation mechanism, whereas DS appeared to interact via electrostatic-type interactions with milk proteins. This study helps to explain how uncharged and charged stabilizers influence the texture of cultured dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effect of the Hartmann number on phase separation controlled by magnetic field for binary mixture system with large component ratio

    NASA Astrophysics Data System (ADS)

    Heping, Wang; Xiaoguang, Li; Duyang, Zang; Rui, Hu; Xingguo, Geng

    2017-11-01

    This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.

  5. In vivo differentiation of complementary contrast media at dual-energy CT.

    PubMed

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F; Gao, Dong-Wei; Yeh, Benjamin M

    2012-10-01

    To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase-enhanced CT scan simultaneously in a single examination. Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012.

  6. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.

    PubMed

    Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J

    2014-08-25

    Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly

    NASA Astrophysics Data System (ADS)

    Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles

    Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.

  8. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  9. A novel mechanical model for phase-separation in debris flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.

    2015-04-01

    Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  10. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  11. Phase-separation induced extraordinary toughening of magnetic hydrogels

    NASA Astrophysics Data System (ADS)

    Tang, Jingda; Li, Chenghai; Li, Haomin; Lv, Zengyao; Sheng, Hao; Lu, Tongqing; Wang, T. J.

    2018-05-01

    Phase separation markedly influences the physical properties of hydrogels. Here, we find that poly (N, N-dimethylacrylamide) (PDMA) hydrogels suffer from phase separation in aqueous sodium hydroxide solutions when the concentration is higher than 2 M. The polymer volume fraction and mechanical properties show an abrupt change around the transition point. We utilize this phase separation mechanism to synthesize tough magnetic PDMA hydrogels with the in-situ precipitation method. For comparison, we also prepared magnetic poly (2-acrylamido-2-methyl-propane sulfonic acid sodium) (PNaAMPS) magnetic hydrogels, where no phase separation occurs. The phase-separated magnetic PDMA hydrogels exhibit an extraordinarily high toughness of ˜1000 J m-2; while non-phase-separated magnetic PNaAMPS hydrogels only show a toughness of ˜1 J m-2, three orders of magnitude lower than that of PDMA hydrogels. This phase separation mechanism may become a new approach to prepare tough magnetic hydrogels and inspire more applications.

  12. Expressions for the spherical-wave-structure function based on a bump spectrum model for the index of refraction

    NASA Astrophysics Data System (ADS)

    Richardson, Christina E.; Andrews, Larry C.

    1991-07-01

    New spectra models have recently been developed for the spatial power spectra of temperature and refractive index fluctuations in the atmospheric boundary layer showing the characteristic 'bump' just prior to the dissipation ranges. Theoretical work involving these new models has led to new expressions for the phase structure function associated with a plane optical wave, although most experimental work has involved spherical waves. Following techniques similar to those used for the plane wave analysis, new expressions valid in geometrical and diffraction regimes are developed here for the phase structure function of a spherical optical wave propagating through clear-air atmospheric turbulence. Useful asymptotic formulas for small separation distances and the inertial subrange are derived from these general expressions.

  13. Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same

    DOEpatents

    Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN

    2012-07-17

    An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.

  14. Method for separating disparate components in a fluid stream

    DOEpatents

    Meikrantz, David H.

    1990-01-01

    The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.

  15. A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions

    PubMed Central

    Lewus, Rachael A.; Levy, Nicholas E.; Lenhoff, Abraham M.; Sandler, Stanley I.

    2018-01-01

    Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein-protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein-protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. PMID:25378269

  16. Reaction-mediated entropic effect on phase separation in a binary polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang

    2017-10-01

    We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.

  17. Seismic body wave separation in volcano-tectonic activity inferred by the Convolutive Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; De Lauro, Enza; De Martino, Salvatore; Falanga, Mariarosaria; Petrosino, Simona

    2015-04-01

    One of the main challenge in volcano-seismological literature is to locate and characterize the source of volcano/tectonic seismic activity. This passes through the identification at least of the onset of the main phases, i.e. the body waves. Many efforts have been made to solve the problem of a clear separation of P and S phases both from a theoretical point of view and developing numerical algorithms suitable for specific cases (see, e.g., Küperkoch et al., 2012). Recently, a robust automatic procedure has been implemented for extracting the prominent seismic waveforms from continuously recorded signals and thus allowing for picking the main phases. The intuitive notion of maximum non-gaussianity is achieved adopting techniques which involve higher-order statistics in frequency domain., i.e, the Convolutive Independent Component Analysis (CICA). This technique is successful in the case of the blind source separation of convolutive mixtures. In seismological framework, indeed, seismic signals are thought as the convolution of a source function with path, site and the instrument response. In addition, time-delayed versions of the same source exist, due to multipath propagation typically caused by reverberations from some obstacle. In this work, we focus on the Volcano Tectonic (VT) activity at Campi Flegrei Caldera (Italy) during the 2006 ground uplift (Ciaramella et al., 2011). The activity was characterized approximately by 300 low-magnitude VT earthquakes (Md < 2; for the definition of duration magnitude, see Petrosino et al. 2008). Most of them were concentrated in distinct seismic sequences with hypocenters mainly clustered beneath the Solfatara-Accademia area, at depths ranging between 1 and 4 km b.s.l.. The obtained results show the clear separation of P and S phases: the technique not only allows the identification of the S-P time delay giving the timing of both phases but also provides the independent waveforms of the P and S phases. This is an enormous advantage for all the problems related to the source inversion and location In addition, the VT seismicity was accompanied by hundreds of LP events (characterized by spectral peaks in the 0.5-2-Hz frequency band) that were concentrated in a 7-day interval. The main interest is to establish whether the occurrence of LPs is only limited to the swarm that reached a climax on days 26-28 October as indicated by Saccorotti et al. (2007), or a longer period is experienced. The automatically extracted waveforms with improved signal-to-noise ratio via CICA coupled with automatic phase picking allowed to compile a more complete seismic catalog and to better quantify the seismic energy release including the presence of LP events from the beginning of October until mid of November. Finally, a further check of the volcanic nature of extracted signals is achieved by looking at the seismological properties and the content of entropy held in the traces (Falanga and Petrosino 2012; De Lauro et al., 2012). Our results allow us to move towards a full description of the complexity of the source, which can be used for hazard-model development and forecast-model testing, showing an illustrative example of the applicability of the CICA method to regions with low seismicity in high ambient noise

  18. A Study on Feasibility of Dual-Wavelength Radar for Identification of Hydrometeor Phases

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    An important objective for the Dual-wavelength Ku-/Ka-band Precipitation Radar (DPR) that will be on board the Global Precipitation Measuring (GPM) core satellite, is to identify the phase state of hydrometeors along the range direction. To assess this, radar signatures are simulated in snow and rain to explore the relation between the differential frequency ratio (DFR), defined as the difference of radar reflectivity factors between Ku- and Ka-bands, and the radar reflectivity factor at Ku-band, ZKu, for different hydrometeor types. Model simulations indicate that there is clear separation between snow and rain in the ZKu-DFR plane assuming that the snow follows the Gunn-Marshall size distribution (1958) and rain follows the Marshall-Palmer size distribution (1948). In an effort to verify the simulated results, the data collected by the Airborne Second Generation Precipitation Radar (APR-2) in the Wakasa Bay AMSR-E campaign are employed. Using the signatures of Linear Depolarization Ratio (LDR) at Ku-band, the APR-2 data can be easily divided into the regions of snow, mixed phase and rain for stratiform storms. These results are then superimposed onto the theoretical curves computed from the model in the ZKu-DFR plane. It has been found that in 90% of the cases, snow and rain can be distinguished if the Ku-band radar reflectivity exceeds 18 dBZ (the minimum detectable level of GPM DPR at Ku-band). This is also the case for snow and mixed-phase hydrometeors. Although snow can be easily distinguished from rain and melting hydrometeors by using Ku- and Ka-band radar, the rain and mixed-phase particles are not always separable. It is concluded that Ku- and Ka-band dual-wavelength radar might provide a potential means to identify the phase state of hydrometeors.

  19. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  20. HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.

    PubMed

    Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun

    2008-07-01

    A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.

  1. A high pressure liquid chromatography method for separation of prolactin forms.

    PubMed

    Bell, Damon A; Hoad, Kirsten; Leong, Lillian; Bakar, Juwaini Abu; Sheehan, Paul; Vasikaran, Samuel D

    2012-05-01

    Prolactin has multiple forms and macroprolactin, which is thought not to be bioavailable, can cause a raised serum prolactin concentration. Gel filtration chromatography (GFC) is currently the gold standard method for separating macroprolactin, but is labour-intensive. Polyethylene glycol (PEG) precipitation is suitable for routine use but may not always be accurate. We developed a high pressure liquid chromatography (HPLC) assay for macroprolactin measurement. Chromatography was carried out using an Agilent Zorbax GF-250 (9.4 × 250 mm, 4 μm) size exclusion column and 50 mmol/L Tris buffer with 0.15 mmol/L NaCl at pH 7.2 as mobile phase, with a flow rate of 1 mL/min. Serum or plasma was diluted 1:1 with mobile phase and filtered and 100 μL injected. Fractions of 155 μL were collected for prolactin measurement and elution profile plotted. The area under the curve of each prolactin peak was calculated to quantify each prolactin form, and compared with GFC. Clear separation of monomeric-, big- and macroprolactin forms was achieved. Quantification was comparable to GFC and precision was acceptable. Total time from injection to collection of the final fraction was 16 min. We have developed an HPLC method for quantification of macroprolactin, which is rapid and easy to perform and therefore can be used for routine measurement.

  2. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    PubMed

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  3. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.

    PubMed

    Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2015-01-01

    A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Reply to "Comment on 'Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions' "

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-04-01

    In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012), 10.1103/PhysRevE.86.050701], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014), 10.1103/PhysRevE.89.046501] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973), 10.1103/PhysRevA.8.1921]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results.

  5. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  6. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection.

    PubMed

    Paleologos, E K; Kontominas, M G

    2005-06-10

    A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature.

  7. Conceptual design for spacelab two-phase flow experiments

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; King, C. D.

    1977-01-01

    KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.

  8. An assessment of implementation and evaluation phases of strategic plans in Iranian hospitals.

    PubMed

    Sadeghifar, Jamil; Tofighi, Shahram; Roshani, Mohamad; Toulideh, Zahra; Mohsenpour, Seyedramezan; Jafari, Mehdi

    2017-01-01

    To assess the implementation and evaluation phases of strategic plans in selected hospitals. We conducted a cross-sectional study of implementation and evaluation of strategic plan in 24 hospitals in 2015, using a questionnaire which consisted of two separate sections for strategic implementation and strategic evaluation. Data were analyzed with SPSS version 18. Nearly one-third of hospitals claimed that they allocate their budget based on priorities and strategic goals. However, it turned out that although goals had been set, no formal announcements had been made. Most of the hospitals stated that they used measures when evaluating the plan. For hospital staff, clarifying the hospital's priorities was the most important advantage of a strategic plan. There is no clear definition for strategic management in Iranian hospitals, which results in chaotic implementation and control of strategic planning.

  9. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations.

    PubMed

    Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki

    2016-01-27

    Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.

  10. Dielectric and impedance properties of NiFe1.95R0.05O4 (R = Y, Yb and Lu)

    NASA Astrophysics Data System (ADS)

    Ugendar, Kodam; Kumar, Hanuma; Markaneyulu, G.; Rani, G. Neeraja

    2018-04-01

    The dielectric and impedance spectroscopic properties of NiFe1.95R0.05O4 (R = Y, Yb and Lu) were investigated. The materials were prepared by solid state reaction and crystallized in the cubic inverse spinel phase with a very small amount additional phase of RFeO3 (R = Y, Yb and Lu) as secondary phase. The scanning electron micrograph images clearly show grains (˜2μm) which are separated by thin grain boundaries. The presences of all elements were confirmed by the energy dispersive X-ray elemental mapping. The frequency variation of ɛ' shows the dispersion, following the Koop's phenomenological theory, which considers the dielectric structure as an inhomogeneous medium of two-layers of the Maxwell-Wagner type. Impedance spectroscopic analysis indicates the different relaxation mechanisms, which corresponds to bulk grain and grain-boundaries. Their contributions to the electrical conductivity and capacitance of these materials were discussed in detailed.

  11. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations

    NASA Astrophysics Data System (ADS)

    Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki

    2016-01-01

    Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.

  12. Phase separation and large deviations of lattice active matter

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu

    2018-04-01

    Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.

  13. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.

  14. Effect of applied strain on phase separation of Fe-28 at.% Cr alloy: 3D phase-field simulation

    NASA Astrophysics Data System (ADS)

    Zhu, Lihui; Li, Yongsheng; Liu, Chengwei; Chen, Shi; Shi, Shujing; Jin, Shengshun

    2018-04-01

    A quantitative simulation of the separation of the α‧ phase in Fe-28 at.% Cr alloy under the effects of applied strain is performed by utilizing a three-dimensional phase-field model. The elongation of the Cr-enriched α‧ phase becomes obvious with the influence of applied uniaxial strain for the phase separation transforms from spinodal decomposition of 700 K to nucleation and growth of 773 K. The applied strain shows a significant influence on the early stage phase separation, and the influence is enlarged with the elevated temperature. The steady-state coarsening with the mechanism of spinodal decomposition is substantially affected by the applied strain for low-temperature aging, while the influence is reduced as the temperature increases and as the phase separation mechanism changes to nucleation and growth. The peak value of particle size distribution decreases, and the PSD for 773 K becomes more widely influenced by the applied strain. The simulation results of separation of the Cr-enriched α‧ phase with the applied strain provide a further understanding of the strain effect on the phase separation of Fe-Cr alloys from the metastable region to spinodal regions.

  15. Nanoscale Phase-Separated Structure in Core-Shell Nanoparticles of SiO2-Si1-xGexO2 Glass Revealed by Electron Microscopy.

    PubMed

    Kubo, Yugo; Yonezawa, Kazuhiro

    2017-09-05

    SiO 2 -based optical fibers are indispensable components of modern information communication technologies. It has recently become increasingly important to establish a technique for visualizing the nanoscale phase-separated structure inside SiO 2 -GeO 2 glass nanoparticles during the manufacturing of SiO 2 -GeO 2 fibers. This is because the rapidly increasing price of Ge has made it necessary to improve the Ge yield by clarifying the detailed mechanism of Ge diffusion into SiO 2 . However, direct observation of the internal nanostructure of glass particles has been extremely difficult, mainly due to electrostatic charging and the damage induced by electron and X-ray irradiation. In the present study, we used state-of-the-art scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDX) to examine cross-sectional samples of SiO 2 -GeO 2 particles embedded in an epoxy resin, which were fabricated using a broad Ar ion beam and a focused Ga ion beam. These advanced techniques enabled us to observe the internal phase-separated structure of the nanoparticles. We have for the first time clearly determined the SiO 2 -Si 1-x Ge x O 2 core-shell structure of such particles, the element distribution, the degree of crystallinity, and the quantitative chemical composition of microscopic regions, and we discuss the formation mechanism for the observed structure. The proposed imaging protocol is highly promising for studying the internal structure of various core-shell nanoparticles, which affects their catalytic, optical, and electronic properties.

  16. Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.

    2017-06-01

    The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.

  17. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A.

    2013-01-01

    Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856

  18. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography

    PubMed Central

    Yousefi, Siavash; Qin, Jia; Dziennis, Suzan; Wang, Ruikang K.

    2014-01-01

    Abstract. Cutaneous wound healing consists of multiple overlapping phases starting with blood coagulation following incision of blood vessels. We utilized label-free optical coherence tomography and optical microangiography (OMAG) to noninvasively monitor healing process and dynamics of microcirculation system in a mouse ear pinna wound model. Mouse ear pinna is composed of two layers of skin separated by a layer of cartilage and because its total thickness is around 500 μm, it can be utilized as an ideal model for optical imaging techniques. These skin layers are identical to human skin structure except for sweat ducts and glands. Microcirculatory system responds to the wound injury by recruiting collateral vessels to supply blood flow to hypoxic region. During the inflammatory phase, lymphatic vessels play an important role in the immune response of the tissue and clearing waste from interstitial fluid. In the final phase of wound healing, tissue maturation, and remodeling, the wound area is fully closed while blood vessels mature to support the tissue cells. We show that using OMAG technology allows noninvasive and label-free monitoring and imaging each phase of wound healing that can be used to replace invasive tissue sample histology and immunochemistry technologies. PMID:25036212

  19. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.

    PubMed

    Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-08-01

    Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. © 2016 Institute of Food Technologists®

  20. Planetary period oscillations in Saturn's magnetosphere: Further comments on the relationship between post-equinox properties deduced from magnetic field and Saturn kilometric radiation measurements

    NASA Astrophysics Data System (ADS)

    Cowley, S. W. H.; Provan, G.

    2016-07-01

    We discuss the planetary period oscillations (PPOs) observed by the Cassini spacecraft in Saturn's magnetosphere, in particular the relationship between the properties of the PPOs in the post-equinox interval as observed in magnetic field data by Andrews et al. (2012) and Provan et al. (2013, 2014) and in Saturn kilometric radiation (SKR) emissions by Fischer et al. (2014, 2015), whose results are somewhat discrepant. We show that differences in the reported PPO periods, a fundamental property which should be essentially identical in the two data sets, can largely be accounted for by the phenomenon of dual modulation of the SKR emissions in polarization-separated data, in which the modulation associated with one hemisphere is also present in the other. Misidentification of the modulations results in a reported reversal in the SKR periods in the initial post-equinox interval, south for north and vice versa, relative to the magnetic oscillations whose hemispheric origin is more securely identified through the field component phase relations. Dual modulation also results in the apparent occurrence of phase-locked common periods in the northern and southern SKR data during later intervals during which two separate periods are clearly discerned in the magnetic data through beat modulations in both phase and amplitude. We further show that the argument of Fischer et al. (2015) concerning the phase relation between the magnetic field oscillations and the SKR modulations is erroneous, the phase difference between them revealing the local time (LT) of the upward field-aligned current of the PPO current system at times of SKR modulation maxima. Furthermore, this LT is found to vary significantly over the Cassini mission from dawn, to dusk, and to noon, depending on the LT of apoapsis where the spacecraft spends most time. These variations are consistent with the view that the SKR modulation is fundamentally a rotating system like the magnetic perturbations, though complicated by the strong LT asymmetry in the strength of the sources, and rule out a mainly clock-like (strobe) modulation as argued by Fischer et al. (2015), for which no physical mechanism is suggested. We also elucidate the nature of the magnetic periods, criticized by Fischer et al. (2015), which have previously been derived in ∼100-200 day post-equinox intervals between abrupt changes in PPO properties, and further show that their argument that the magnetic phase data provide evidence for the occurrence of common phase-locked magnetic oscillations in some intervals is fallacious. The most important consequence of our results, however, is that they demonstrate the essential compatibility of the post-equinox magnetic field and SKR data, despite the contrary results published to date. They also show that due to the dual modulation effect in polarization-separated SKR data, analysis and interpretation may contain more subtleties than previously realized. Joint examination of the combined magnetic and SKR data clearly provides greater insight and enhanced confidence compared with analyses of these data sets individually.

  1. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  2. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-03-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  3. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  4. On Clear-Cut Mapping with Time-Series of Sentinel-1 Data in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Rauste, Yrjo; Antropov, Oleg; Mutanen, Teemu; Hame, Tuomas

    2016-08-01

    Clear-cutting is the most drastic and wide-spread change that affects the hydrological and carbon-balance proper- ties of forested land in the Boreal forest zone1.A time-series of 36 Sentinel-1 images was used to study the potential for mapping clear-cut areas. The time series covered one and half year (2014-10-09 ... 2016-03-20) in a 200-km-by-200-km study site in Finland. The Sentinel- 1 images were acquired in Interferometric Wide-swath (IW), dual-polarized mode (VV+VH). All scenes were acquired in the same orbit configuration. Amplitude im- ages (GRDH product) were used. The Sentinel-1 scenes were ortho-rectified with in-house software using a digi- tal elevation model (DEM) produced by the Land Survey of Finland. The Sentinel-1 amplitude data were radio- metrically corrected for topographic effects.The temporal behaviour of C-band backscatter was stud- ied for areas representing 1) areas clear-cut during the ac- quisition of the Sentinel-1 time-series, 2) areas remaining forest during the acquisition of the Sentinel-1 time-series, and 3) areas that had been clear-cut before the acquisition of the Sentinel-1 time-series.The following observations were made:1. The separation between clear-cut areas and forest was generally low;2. Under certain acquisition conditions, clear-cut areas were well separable from forest;3. The good scenes were acquired: 1) in winter during thick snow cover, and 2) in late summer towards the end of a warm and dry period;4. The separation between clear-cut and forest was higher in VH polarized data than in VV-polarized data.5. The separation between clear-cut and forest was higher in the winter/snow scenes than in the dry summer scenes.

  5. Long-term stability of crystal-stabilized water-in-oil emulsions.

    PubMed

    Ghosh, Supratim; Pradhan, Mamata; Patel, Tejas; Haj-Shafiei, Samira; Rousseau, Dérick

    2015-12-15

    The impact of cooling rate and mixing on the long-term kinetic stability of wax-stabilized water-in-oil emulsions was investigated. Four cooling/mixing protocols were investigated: cooling from 45°C to either 25°C or 4°C with/without stirring and two cooling rates - slow (1°C/min) and fast (5°C/min). The sedimentation behaviour of the emulsions was significantly affected by cooling protocol. Stirring was critical to the stability of all emulsions, with statically-cooled (no stirring) emulsions suffering from extensive aqueous phase separation. Emulsions stirred while cooling showed sedimentation of a waxy emulsion layer leaving a clear oil layer at the top, with a smaller separation and droplet size distribution at 4°C compared to 25°C, indicating the importance of the amount of crystallized wax on emulsion stability. Light microscopy revealed that crystallized wax appeared both on the droplet surface and in the continuous phase, suggesting that stirring ensured dispersibility of the water droplets during cooling as the wax was crystallizing. Wax crystallization on the droplet surface provided stability against droplet coalescence while continuous phase wax crystals minimized inter-droplet collisions. The key novel aspect of this research is in the simplicity to tailor the spatial distribution of wax crystals, i.e., either at the droplet surface or in the continuous phase via use of a surfactant and judicious stirring and/or cooling. Knowledge gained from this research can be applied to develop strategies for long-term storage stability of crystal-stabilized W/O emulsions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Electron irradiation induced phase separation in a sodium borosilicate glass

    NASA Astrophysics Data System (ADS)

    Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.

    2004-06-01

    Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.

  7. Spectro-microscopic Characterization of Physical Properties and Phase Separations in Individual Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    OBrien, R. E.; Wang, B.; Neu, A.; Kelly, S. T.; Lundt, N.; Epstein, S. A.; MacMillan, A.; You, Y.; Laskin, A.; Nizkorodov, S.; Bertram, A. K.; Moffet, R.; Gilles, M.

    2013-12-01

    The phase state and liquid-liquid phase separations of ambient and laboratory generated aerosol particles were investigated using (1) scanning transmission x-ray microscopy/near-edge x-ray absorption fine structure spectroscopy (STXM/NEXAFS) coupled to a relative humidity (RH) controlled in-situ chamber and (2) environmental scanning electron microscopy (ESEM). The phase states of the particles were determined from measurements of their size and optical density. A comparison is made between the observed phase states of ambient samples and of laboratory generated aerosols to determine how well laboratory samples represent the phase of ambient samples. In addition, liquid-liquid phase separations in laboratory generated particles were investigated. Preliminary results showing that liquid-liquid phase separations occur at RH's between the deliquescence and efflorescence points and that the organic phase surrounds the inorganic phase will be presented. The STXM/NEXAFS technique provides insight into the degree of mixing at the deliquescence point and the degree of phase separation for particles of atmospherically relevant sizes.

  8. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-04-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  9. Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jun; Kim, Jinwoo; Park, Eun Soo

    2018-06-01

    We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.

  10. Pi-Pi contacts are an overlooked protein feature relevant to phase separation

    PubMed Central

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong

    2018-01-01

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. PMID:29424691

  11. Superfluid helium 2 liquid-vapor phase separation: Technology assessment

    NASA Technical Reports Server (NTRS)

    Lee, J. M.

    1984-01-01

    A literature survey of helium 2 liquid vapor phase separation is presented. Currently, two types of He 2 phase separators are being investigated: porous, sintered metal plugs and the active phase separator. The permeability K(P) shows consistency in porous plug geometric characterization. Both the heat and mass fluxes increase with K(P). Downstream pressure regulation to adjust for varying heat loads and both temperatures is possible. For large dynamic heat loads, the active phase separator shows a maximum heat rejection rate of up to 2 W and bath temperature stability of 0.1 mK. Porous plug phase separation performance should be investigated for application to SIRTF and, in particular, that plugs of from 10 to the minus ninth square centimeters to 10 to the minus eighth square centimeters in conjunction with downstream pressure regulation be studied.

  12. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    NASA Astrophysics Data System (ADS)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.

  13. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    NASA Astrophysics Data System (ADS)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  14. Crude oil as a microbial seed bank with unexpected functional potentials

    PubMed Central

    Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei

    2015-01-01

    It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments. PMID:26525361

  15. The nanoscale phase distinguishing of PCL-PB-PCL blended in epoxy resin by tapping mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Huiqin; Sun, Limin; Shen, Guangxia; Liang, Qi

    2012-02-01

    In this work, we investigated the bulk phase distinguishing of the poly(ɛ-caprolactone)-polybutadiene-poly(ɛ-caprolactone) (PCL-PB-PCL) triblock copolymer blended in epoxy resin by tapping mode atomic force microscopy (TM-AFM). We found that at a set-point amplitude ratio ( r sp) less than or equal to 0.85, a clear phase contrast could be obtained using a probe with a force constant of 40 N/m. When r sp was decreased to 0.1 or less, the measured size of the PB-rich domain relatively shrank; however, the height images of the PB-rich domain would take reverse (translating from the original light to dark) at r sp = 0.85. Force-probe measurements were carried out on the phase-separated regions by TM-AFM. According to the phase shift angle vs. r sp curve, it could be concluded that the different force exerting on the epoxy matrix or on the PB-rich domain might result in the height and phase image reversion. Furthermore, the indentation depth vs. r sp plot showed that with large tapping force (lower r sp), the indentation depth for the PB-rich domain was nearly identical for the epoxy resin matrix.

  16. On the phase form of a deformation quantization with separation of variables

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2016-06-01

    Given a star product with separation of variables on a pseudo-Kähler manifold, we obtain a new formal (1, 1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star product with separation of variables, its formal Berezin transform, classifying form, phase form, and canonical trace density.

  17. An assessment of implementation and evaluation phases of strategic plans in Iranian hospitals

    PubMed Central

    Sadeghifar, Jamil; Tofighi, Shahram; Roshani, Mohamad; Toulideh, Zahra; Mohsenpour, Seyedramezan; Jafari, Mehdi

    2017-01-01

    Objectives: To assess the implementation and evaluation phases of strategic plans in selected hospitals. Methods: We conducted a cross-sectional study of implementation and evaluation of strategic plan in 24 hospitals in 2015, using a questionnaire which consisted of two separate sections for strategic implementation and strategic evaluation. Data were analyzed with SPSS version 18. Results: Nearly one-third of hospitals claimed that they allocate their budget based on priorities and strategic goals. However, it turned out that although goals had been set, no formal announcements had been made. Most of the hospitals stated that they used measures when evaluating the plan. For hospital staff, clarifying the hospital’s priorities was the most important advantage of a strategic plan. Conclusion: There is no clear definition for strategic management in Iranian hospitals, which results in chaotic implementation and control of strategic planning. PMID:29085637

  18. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    PubMed

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Simultaneous multicolor imaging of wide-field epi-fluorescence microscopy with four-bucket detection

    PubMed Central

    Park, Kwan Seob; Kim, Dong Uk; Lee, Jooran; Kim, Geon Hee; Chang, Ki Soo

    2016-01-01

    We demonstrate simultaneous imaging of multiple fluorophores using wide-field epi-fluorescence microscopy with a monochrome camera. The intensities of the three lasers are modulated by a sinusoidal waveform in order to excite each fluorophore with the same modulation frequency and a different time-delay. Then, the modulated fluorescence emissions are simultaneously detected by a camera operating at four times the excitation frequency. We show that two different fluorescence beads having crosstalk can be clearly separated using digital processing based on the phase information. In addition, multiple organelles within multi-stained single cells are shown with the phase mapping method, demonstrating an improved dynamic range and contrast compared to the conventional fluorescence image. These findings suggest that wide-field epi-fluorescence microscopy with four-bucket detection could be utilized for high-contrast multicolor imaging applications such as drug delivery and fluorescence in situ hybridization. PMID:27375944

  20. Analysis and observation of moving domain fronts in a ring of coupled electronic self-oscillators

    NASA Astrophysics Data System (ADS)

    English, L. Q.; Zampetaki, A.; Kevrekidis, P. G.; Skowronski, K.; Fritz, C. B.; Abdoulkary, Saidou

    2017-10-01

    In this work, we consider a ring of coupled electronic (Wien-bridge) oscillators from a perspective combining modeling, simulation, and experimental observation. Following up on earlier work characterizing the pairwise interaction of Wien-bridge oscillators by Kuramoto-Sakaguchi phase dynamics, we develop a lattice model for a chain thereof, featuring an exponentially decaying spatial kernel. We find that for certain values of the Sakaguchi parameter α, states of traveling phase-domain fronts involving the coexistence of two clearly separated regions of distinct dynamical behavior, can establish themselves in the ring lattice. Experiments and simulations show that stationary coexistence domains of synchronization only manifest themselves with the introduction of a local impurity; here an incoherent cluster of oscillators can arise reminiscent of the chimera states in a range of systems with homogeneous oscillators and suitable nonlocal interactions between them.

  1. Effect of solvents on the optical and morphological properties of MEH-PPV: PC70BM nanocomposites

    NASA Astrophysics Data System (ADS)

    Mhamdi, Asya; Ltaief, Adnen; Bouazizi, Abdelaziz

    2017-10-01

    Focused on phase separation and morphologies of polymer poly [2-methoxy-5-(2'-ethyl) hexoxy-1,4-phenylenevinylene] (MEH-PPV) and [6,6]-phenylC71-butyric acid methyl ester (PC70BM) nanocomposite, we studied the effect of organic solvent on the optical and morphological properties of these blends. The MEH-PPV: PC70BM films was prepared using three different solvent; Tetrahydrofuran (THF), Chlorobenzene (CB) and Toluene. On the other hand, the effect of 1-8 octanedithiol additives is also studied with the same different solvents. These blend films are characterized by photoluminescence spectroscopy, UV-Vis absorption spectroscopy and atomic force microscopy (AFM). The photoluminescence results show that the THF solvent provide the better charge transfer. In a morphological view point, the phase segregation was clearly appearing by the addition of the additive on the surface of the blend films.

  2. Investigations into polymer and carbon nanomaterial separations

    NASA Astrophysics Data System (ADS)

    Owens, Cherie Nicole

    The work of this thesis follows a common theme of research focused on innovative separation science. Polyhydroxyalkanoates are biodegradable polyesters produced by bacteria that can have a wide distribution in molecular weight and monomer composition. This large distribution often leads to unpredictable physical properties making commercial applications challenging. To improve polymer homogeneity and obtain samples with a clear set of physical characteristics, poly-3-hydroxyvalerate-co-3-hydroxybutyrate copolymers were fractionated using gradient polymer elution chromatography (GPEC) with carefully optimized gradients. The resulting fractions were analyzed using Size Exclusion Chromatography (SEC) and NMR. As the percentage of “good” solvent was increased in the mobile phase, the polymers eluted with decreasing percentage of 3-hydroxyvalerate and increasing molecular weight, which indicates the importance of precipitation/redissolution in the separation. As such, GPEC is an excellent choice to provide polyhydroxyalkanoate samples with a narrower distribution in composition than the original bulk copolymer. Additionally, the critical condition was found for 3-hydroxybutyrate to erase its effects on retention of the copolymer. Copolymer samples were then separated using Liquid Chromatography at the Critical Condition (LCCC) and it was determined that poly(3-hydroxvalerate-co-3-hydroxybutyrate) is a statistically random copolymer. The second project uses ultra-thin layer chromatography (UTLC) to study the performance and behavior of polyhydroxybutyrate (P3HB) as a chromatographic substrate. One specific polyhydroxyalkanoate, polyhydroxybutyrate, is a liquid crystalline polymer that can be electrospun. Electrospinning involves the formation of nanofibers though the application of an electric potential to a polymer solution. Precisely controlled optimization of electrospinning parameters was conducted to achieve the smallest diameter PHA nanofibers to date to utilize as novel UTLC substrates. Additionally, aligned electrospun UTLC (AE-UTLC) substrates were developed to compare to the randomly oriented electrospun (E-UTLC) devices. The PHB plates were compared to commercially available substrates for the separation of biological samples: nucleotides and steroids. The electrospun substrates show lower band broadening and higher reproducibility in a smaller development distance than commercially available TLC plates, conserving both resources and time. The AE-UTLC plates provided further enhancement of reproducibility and development time compared to E-UTLC plates. Thus, the P3HB E-UTLC phases are an excellent sustainable option for TLC as they are biodegradable and perform better than commercial phases. A third topic of interest is the study of ordered carbon nanomaterials. The typical amorphous carbon used as a stationary phase in Hypercarb ® is known to consist of basal- and edge-plane oriented sites. This heterogeneity of the stationary phase can lead to peak broadening that may be improved by using homogeneous carbon throughout. Amorphous, basal-plane, and edge-plane carbons were produced in-house through membrane template synthesis. Amorphous, basal-plane, and edge-plane carbons were then used separately as chromatographic phases in capillary electrochomatography (CEC). Differences in chromatographic performance between these species were assessed by modeling retention data for test solutes to determine Linear Solvation Energy Relationships (LSER). The LSER study for the three carbon phases indicates that the main difference is in the polarizability, and hydrogen bonding character of the surface leading to unique solute interactions. These results highlight the possible usefulness of using these phases independently.

  3. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  4. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.

    PubMed

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru

    2017-08-04

    Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.

  5. A Preliminary Assessment of Phase Separator Ground-Based and Reduced-Gravity Testing for ALS Systems

    NASA Technical Reports Server (NTRS)

    Hall, Nancy Rabel

    2006-01-01

    A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.

  6. Pi-Pi contacts are an overlooked protein feature relevant to phase separation.

    PubMed

    Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah

    2018-02-09

    Protein phase separation is implicated in formation of membraneless organelles, signaling puncta and the nuclear pore. Multivalent interactions of modular binding domains and their target motifs can drive phase separation. However, forces promoting the more common phase separation of intrinsically disordered regions are less understood, with suggested roles for multivalent cation-pi, pi-pi, and charge interactions and the hydrophobic effect. Known phase-separating proteins are enriched in pi-orbital containing residues and thus we analyzed pi-interactions in folded proteins. We found that pi-pi interactions involving non-aromatic groups are widespread, underestimated by force-fields used in structure calculations and correlated with solvation and lack of regular secondary structure, properties associated with disordered regions. We present a phase separation predictive algorithm based on pi interaction frequency, highlighting proteins involved in biomaterials and RNA processing. © 2018, Vernon et al.

  7. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  8. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    NASA Astrophysics Data System (ADS)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  9. Method and turbine for extracting kinetic energy from a stream of two-phase fluid

    NASA Technical Reports Server (NTRS)

    Elliott, D. G. (Inventor)

    1979-01-01

    An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.

  10. Ionic liquid/water mixtures: from hostility to conciliation.

    PubMed

    Kohno, Yuki; Ohno, Hiroyuki

    2012-07-21

    Water was originally inimical to ionic liquids (ILs) especially in the analysis of their detailed properties. Various data on the properties of ILs indicate that there are two ways to design functions of ionic liquids. The first is to change the structure of component ions, to provide "task-specific ILs". The second is to mix ILs with other components, such as other ILs, organic solvents or water. Mixing makes it easy to control the properties of the solution. In this strategy, water is now a very important partner. Below, we summarise our recent results on the properties of IL/water mixtures. Stable phase separation is an effective method in some separation processes. Conversely, a dynamic phase change between a homogeneous mixture and separation of phases is important in many fields. Analysis of the relation between phase behaviour and the hydration state of the component ions indicates that the pattern of phase separation is governed by the hydrophilicity of the ions. Sufficiently hydrophilic ions yielded ILs that are miscible with water, and hydrophobic ions gave stable phase separation with water. ILs composed of hydrophobic but hydrated ions undergo a dynamic phase change between a homogeneous mixture and separate phases according to temperature. ILs having more than seven water molecules per ion pair undergo this phase transition. These dynamic phase changes are considered, with some examples, and application is made to the separation of water-soluble proteins.

  11. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    PubMed

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  12. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.

    PubMed

    Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2013-11-15

    A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Phase behaviour of casein micelles and barley beta-glucan polymer molecules in dietary fibre-enriched dairy systems.

    PubMed

    Repin, Nikolay; Scanlon, Martin G; Fulcher, R Gary

    2012-07-01

    Enrichment of colloidal dairy systems with dietary fibre frequently causes quality defects because of phase separation. We investigate phase separation in skimmed milk enriched with Glucagel (a commercial product made from barley that is predominantly comprised of the polysaccharide β-glucan). The driving force for phase separation was depletion flocculation of casein micelles in the presence of molecules of the polysaccharide. Depending on the volume fraction of casein micelles and the concentration of Glucagel, the stable system phase separated either as a transient gel or as a sedimented system. The rate at which phase separation progressed also depended on the volume fraction of casein micelles and the concentration of Glucagel. To confirm the role of depletion flocculation in the phase separation process, enzymatic reduction in the molecular weight of β-glucan was shown to limit the range of attraction between micelles and allow the stable phase to exist at a higher β-glucan concentration for any given volume fraction of casein micelles. These phase diagrams will be useful to dairy product manufacturers striving to improve the nutrient profile of their products while avoiding product quality impairment. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  15. Fluid Phase Separation (FPS) experiment for flight on the shuttle in a Get Away Special (GAS) canister: Design and fabrication

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid that will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The phase separation experiment is totally self-contained, with three levels of containment on all fluids, and provides all necessary electrical power and control. The controller regulates the temperature of the fluid and controls data logging and sampling. An astronaut-activated switch will initiate the experiment and an unmaskable interrupt is provided for shutdown. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS 42 in April 1991. Presented here are the design and the production of a fluid phase separation experiment for rapid implementation at low cost.

  16. The puzzling first-order phase transition in water–glycerol mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Ivan; Greenbaum; Sokolov, Alexei P.

    2015-06-05

    Over the last decade, discussions on a possible liquid-liquid transition (LLT) have strongly intensified. The LLT proposed by several authors focused mostly on explaining the anomalous properties of water in a deeply supercooled state. However, there have been no direct experimental observations yet of LLT in bulk water in the so-called 'no man's land', where water exists only in the crystalline states. Recently, a novel experimental strategy to detect LLT in water has been employed using water-glycerol (W-G) mixtures, because glycerol can generate a strong hindrance for water crystallization. As a result, the observed first-order phase transition at a concentrationmore » of glycerol around c(g) approximate to 20 mol% was ascribed to the LLT. Here we show unambiguously that the first order phase transition in W-G mixtures is caused by the ice formation. We provide additional dielectric measurements, applying specific annealing temperature protocols in order to reinforce this conclusion. We also provide an explanation, why such a phase transition occurs only in the narrow glycerol concentration range. These results clearly demonstrate the danger of analysis of phase-separating liquids to gain better insights into water dynamics. These liquids have complex phase behavior that is affected by temperature, phase stability and segregation, viscosity and nucleation, and finally by crystallization, that might lead to significant misinterpretations.« less

  17. Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated Polymerization-Induced Phase Separation

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2015-01-01

    Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865

  18. Phase separation and second-order phase transition in the phenomenological model for a Coulomb-frustrated two-dimensional system

    NASA Astrophysics Data System (ADS)

    Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.

    2018-03-01

    We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.

  19. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    PubMed

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  20. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    PubMed

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  1. Phase Separation and Crystallization of Hemoglobin C in Transgenic Mouse and Human Erythrocytes

    PubMed Central

    Canterino, Joseph E.; Galkin, Oleg; Vekilov, Peter G.; Hirsch, Rhoda Elison

    2008-01-01

    Individuals expressing hemoglobin C (β6 Glu→Lys) present red blood cells (RBC) with intraerythrocytic crystals that form when hemoglobin (Hb) is oxygenated. Our earlier in vitro liquid-liquid (L-L) phase separation studies demonstrated that liganded HbC exhibits a stronger net intermolecular attraction with a longer range than liganded HbS or HbA, and that L-L phase separation preceded and enhanced crystallization. We now present evidence for the role of phase separation in HbC crystallization in the RBC, and the role of the RBC membrane as a nucleation center. RBC obtained from both human homozygous HbC patients and transgenic mice expressing only human HbC were studied by bright-field and differential interference contrast video-enhanced microscopy. RBC were exposed to hypertonic NaCl solution (1.5–3%) to induce crystallization within an appropriate experimental time frame. L-L phase separation occurred inside the RBC, which in turn enhanced the formation of intraerythrocytic crystals. RBC L-L phase separation and crystallization comply with the thermodynamic and kinetics laws established through in vitro studies of phase transformations. This is the first report, to the best of our knowledge, to capture a temporal view of intraerythrocytic HbC phase separation, crystal formation, and dissolution. PMID:18621841

  2. Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Pin; Lisker, Marco; Kalkofen, Bodo; Burte, Edmund P.

    2016-03-01

    Ferroelectric capacitors made by lead zirconate titanate (PZT) thin films and iridium electrodes are fabricated on three-dimensional structures and their properties are investigated. The iridium films are grown by Plasma Enhanced MOCVD at 300°C, while the PZT films are deposited by thermal MOCVD at different process temperatures between 450°C and 550°C. The step coverage and composition uniformity of the PZT films on trench holes and lines are investigated. Phase separation of PZT films has been observed on both 3D and planar structures. No clear dependences of the crystallization and composition of PZT on 3D structure topography have been found. STEM EDX line scans show a uniform Zr/(Zr+Ti) concentration ratio along the 3D profile but the variation of the Pb/(Zr+Ti) concentration ratio is large because of the phase separation. 3D ferroelectric capacitors show good ferroelectric properties but have much higher leakage currents than 2D ferroelectric capacitors. Nevertheless, during cycling tests the degradation of the remnant polarization between 2D and 3D capacitors is similar after 109 switching cycles. In addition, the sidewalls and bottoms of the 3D structures seem to have comparable remnant polarizations with the horizontal top surfaces.

  3. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  4. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration.

    PubMed

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-03-01

    Although a vast amount of research has been dedicated to investigate the Hofmeister effect on the stability of polymer solutions, a clear understanding of the role of polymer properties in this phenomenon is still missing. Here, the Hofmeister effect of NaCl (destabilizing) and NaSCN (stabilizing) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order to understand the effect of inter-chain interactions on the response to addition of salt. The temperature-driven phase separation of the solutions was monitored by differential scanning calorimetry, which provides the precise value of the phase separation temperature, as well as the enthalpy change accompanied with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect, but amplified the NaSCN effect. This difference is attributed to an electrostatic stabilization mechanism in the case of NaSCN. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Phase separations in mixtures of a liquid crystal and a nanocolloidal particle.

    PubMed

    Matsuyama, Akihiko

    2009-11-28

    We present a mean field theory to describe phase separations in mixtures of a liquid crystal and a nanocolloidal particle. By taking into account a nematic, a smectic A ordering of the liquid crystal, and a crystalline ordering of the nanoparticle, we calculate the phase diagrams on the temperature-concentration plane. We predict various phase separations, such as a smectic A-crystal phase separation and a smectic A-isotropic-crystal triple point, etc., depending on the interactions between the liquid crystal and the colloidal surface. Inside binodal curves, we find new unstable and metastable regions, which are important in the phase ordering dynamics. We also find a crystalline ordering of the nanoparticles dispersed in a smectic A phase and a nematic phase. The cooperative phenomena between liquid-crystalline ordering and crystalline ordering induce a variety of phase diagrams.

  6. Kinetics of phase separation and coarsening in dilute surfactant pentaethylene glycol monododecyl ether solutions

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.

    2011-12-01

    We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.

  7. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  8. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaki, N.; Yang, H. -B.; Rameau, J. D.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of themore » phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J Sigma s(i)s(j), contained in the t - J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  9. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE PAGES

    Zaki, Nader; Yang, Hongbo -B.; Rameau, Jon D.; ...

    2017-11-28

    The phase diagram associated with high-T c superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure ofmore » the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, JΣs is j, contained in the t-J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  10. Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos.

    PubMed

    Mondal, S; Pawar, S A; Sujith, R I

    2017-10-01

    Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and the acoustic field in a combustor, is a major challenge faced in most practical combustors such as those used in rockets and gas turbines. We employ the synchronization theory for understanding the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system. Interactions between coupled subsystems exhibiting different collective dynamics such as periodic, quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have focused on different dynamical states separately, synchronous behaviour of two coupled systems exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first experimental observation of different synchronous behaviours between two subsystems of a thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129 (2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase locking, and phase drifting are observed as the dynamics of such subsystem change. The observed synchronization behaviour is further characterized using phase locking value, correlation coefficient, and relative mean frequency. These measures clearly reveal the boundaries between different states of synchronization.

  11. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Zaki, N.; Yang, H.-B.; Rameau, J. D.; Johnson, P. D.; Claus, H.; Hinks, D. G.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J ∑sisj , contained in the t -J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.

  12. Liquid Crystals in Chromatography

    NASA Astrophysics Data System (ADS)

    Witkiewicz, Zygfryd

    The following sections are included: * INTRODUCTION * LIQUID CRYSTALS SUITABLE FOR GAS CHROMATOGRAPHY * Monomeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Polymeric Liquid Crystal Stationary Phases * Conventional Analytical Columns * Capillary Columns * FACTORS AFFECTING THE CHROMATOGRAPHIC SEPARATIONS ON LIQUID CRYSTAL STATIONARY PHASES * Kind of Mesophase of the Liquid Crystal * Molecular Structure of the Liquid Crystals and of the Chromatographed Substances * Substrate on which the Liquid Crystal is Deposited * ANALYTICAL APPLICATIONS OF LIQUID CRYSTAL STATIONARY PHASES IN GAS CHROMATOGRAPHY * Separation of Isomers of Benzene and Naphthalene Derivatives * Separation of Alkane and Alkene Isomers * Separation of Mixtures of Benzene and Aliphatic Hydrocarbon Derivatives Containing Heteroatoms * Separation of Polynuclear Hydrocarbons * INVESTIGATION OF THE PROPERTIES OF LIQUID CRYSTALS BY GAS CHROMATOGRAPHY * APPLICATION OF LIQUID CRYSTALS IN LIQUID CHROMATOGRAPHY * Column Chromatography * Thin-Layer Chromatography * APPLICATION OF LIQUID CRYSTAL STATIONARY PHASES IN SUPERCRITICAL FLUID CHROMATOGRAPHY * FINAL REMARKS * References

  13. SEPARATION AND CHARACTERIZATION OF HUMAN SERUM CHYLOMICRONS

    PubMed Central

    Scanu, Angelo; Page, Irvine H.

    1959-01-01

    Chylomicrons were separated by low and high speed ultracentrifugation from lipemic sera of human subjects in the absorptive phase. The final chylomicron preparation was free from other serum components and contained a small constant amount of protein, approximately 2 per cent of the chylomicron fraction. Electrophoresis, immunochemical analysis, and absorption experiments identified the protein component as derived from a mixture of beta and alpha1 serum lipoproteins. Large aliquots of an emulsion of serum freed of chylomicrons and coconut oil were incubated at 37°C. for 2 hours and ultracentrifuged as in the preparation of chylomicrons. The fat particles now showed the presence of minute amounts of beta and alpha1 serum lipoproteins in almost the same proportion as found in chylomicrons. "Finger prints" of delipidized samples of chylomicrons and particles from serum-coconut oil emulsion gave similar, although not identical patterns. The data on "clearing factor" activity corroborated the finding that serum alpha1 lipoproteins are contained in chylomicrons and particles from serum-coconut oil emulsion. These two lipide particles, partially delipidized, were both able to activate a "clearing factor" system in vitro, a property exhibited only by intact or partially delipidized alpha1 serum lipoproteins. Clearing activity was satisfactorily determined by using an emulsion of coconut oil mixed in agar as a substrate to give an opaque gel, in which the diffusing enzyme showed its activity by areas of clearing. The results obtained by this technique were in agreement with those based on fall in optical density and non-esterified fatty acid production. Chemical analysis of serum chylomicrons showed a concentration of cholesterol and phospholipides higher than could be accounted for by the attached beta and alpha1 serum lipoproteins. On the basis of these results the assumption is made that in the blood stream small amounts of serum lipoproteins, by a process of adsorption, form a complex with the absorbed triglycerides, cholesterol, and phospholipides, to produce chylomicrons. PMID:13620852

  14. Thermal cycling effects on static and dynamic properties of a phase separated manganite

    NASA Astrophysics Data System (ADS)

    Sacanell, J.; Sievers, B.; Quintero, M.; Granja, L.; Ghivelder, L.; Parisi, F.

    2018-06-01

    In this work we address the interplay between two phenomena which are signatures of the out-of-equilibrium state in phase separated manganites: irreversibility against thermal cycling and aging/rejuvenation process. The sample investigated is La0.5Ca0.5MnO3, a prototypical manganite exhibiting phase separation. Two regimes for isothermal relaxation were observed according to the temperature range: for T > 100 K, aging/rejuvenation effects are observed, while for T < 100 K an irreversible aging was found. Our results show that thermal cycles act as a tool to unveil the dynamical behavior of the phase separated state in manganites, revealing the close interplay between static and dynamic properties of phase separated manganites.

  15. 75 FR 13336 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Approved for Collection at Key West International Airport (EYW) and Use at EYW: Runway safety area design. Runway safety area construction. Approach clearing--design. Runway obstruction clearing--design. Runway obstruction clearing, phase II--construction. Noise implementation plan, phase 6--design. Noise implementation...

  16. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.

    In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we createmore » LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.« less

  17. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  18. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  19. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less

  20. Direct observation of episodic growth in an abyssal xenophyophore (Protista)

    NASA Astrophysics Data System (ADS)

    Gooday, A. J.; Bett, B. J.; Pratt, D. N.

    1993-11-01

    Three specimens of the xenophyophore Reticulammina labyrinthica were photographed on the Madeira Abyssal Plain (31°6.1'N, 21°10.9'W; 4944 m) using the Bathysnap time-lapse camera system. During the 8 month observation period, the specimens underwent an estimated 3-10 fold increase in volume. Growth occurred episodically in several distinct phases, each lasting 2-3 days, during which sediment was collected and incorporated into the test. These phases were separated by fairly regular periods of about 2 months when the organisms showed little obvious activity. The growth phases were approximately synchronous between specimens. However, it is not clear whether the periodicity and apparent synchronization of these events resulted from an external (environmental) cue or whether growth is internally controlled and the synchronization arose by chance. These unique observations, which represent the first direct measurement of growth in any abyssal organism living outside a hydrothermal vent field, suggest that xenophyophores combine test growth with deposit feeding. The tests appear to grow more quickly, and to be more active, dynamic structures, than previously believed.

  1. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    PubMed

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.

  2. Process for improving soluble coal yield in a coal deashing process

    DOEpatents

    Rhodes, Donald E.

    1980-01-01

    Coal liquefaction products are contacted with a deashing solvent and introduced into a first separation zone. The first separation zone is maintained at an elevated temperature and pressure, determined to maximize the recovery of soluble coal products, to cause said coal liquefaction products to separate into a first light phase and a first heavy phase. Under these conditions the heavy phase while still fluid-like in character is substantially non-flowable. Flowability is returned to the fluid-like heavy phase by the introduction of an additional quantity of deashing solvent into the first separation zone at a location below the interface between the first light and heavy phases or into the heavy phase withdrawal conduit during withdrawal of the first heavy phase and prior to any substantial pressure reduction. The first heavy phase then is withdrawn from the first separation zone for additional downstream processing without plugging either the withdrawal conduit or the downstream apparatus. The first light phase comprising the soluble coal products is withdrawn and recovered in an increased yield to provide a more economical coal deashing process.

  3. Understanding the Impact of Water on the Miscibility and Microstructure of Amorphous Solid Dispersions: An AFM-LCR and TEM-EDX Study.

    PubMed

    Li, Na; Gilpin, Christopher J; Taylor, Lynne S

    2017-05-01

    Miscibility is critical for amorphous solid dispersions (ASDs). Phase-separated ASDs are more prone to crystallization, and thus can lose their solubility advantage leading to product failure. Additionally, dissolution performance can be diminished as a result of phase separation in the ASD matrix. Water is known to induce phase separation during storage for some ASDs. However, the impact of water introduced during preparation has not been as thoroughly investigated to date. The purpose of this study was to develop a mechanistic understanding of the effect of water on the phase behavior and microstructure of ASDs. Evacetrapib and two polymers were selected as the model system. Atomic force microscopy coupled with Lorentz contact resonance, and transmission electron microscopy with energy dispersive X-ray spectroscopy were employed to evaluate the microstructure and composition of phase-separated ASDs. It was found that phase separation could be induced via two routes: solution-state phase separation during ASD formation caused by water absorption during film formation by a hydrophilic solvent, or solid-phase separation following exposure to high RH during storage. Water contents of as low as 2% in the organic solvent system used to dissolve the drug and polymer were found to result in phase separation in the resultant ASD film. These findings have profound implications on lab-scale ASD preparation and potentially also for industrial production. Additionally, these high-resolution imaging techniques combined with orthogonal analyses are powerful tools to visualize structural changes in ASDs, which in turn will enable better links to be made between ASD structure and performance.

  4. Heat capacity anomaly in a self-aggregating system: Triblock copolymer 17R4 in water

    NASA Astrophysics Data System (ADS)

    Dumancas, Lorenzo V.; Simpson, David E.; Jacobs, D. T.

    2015-05-01

    The reverse Pluronic, triblock copolymer 17R4 is formed from poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO): PPO14 - PEO24 - PPO14, where the number of monomers in each block is denoted by the subscripts. In water, 17R4 has a micellization line marking the transition from a unimer network to self-aggregated spherical micelles which is quite near a cloud point curve above which the system separates into copolymer-rich and copolymer-poor liquid phases. The phase separation has an Ising-like, lower consolute critical point with a well-determined critical temperature and composition. We have measured the heat capacity as a function of temperature using an adiabatic calorimeter for three compositions: (1) the critical composition where the anomaly at the critical point is analyzed, (2) a composition much less than the critical composition with a much smaller spike when the cloud point curve is crossed, and (3) a composition near where the micellization line intersects the cloud point curve that only shows micellization. For the critical composition, the heat capacity anomaly very near the critical point is observed for the first time in a Pluronic/water system and is described well as a second-order phase transition resulting from the copolymer-water interaction. For all compositions, the onset of micellization is clear, but the formation of micelles occurs over a broad range of temperatures and never becomes complete because micelles form differently in each phase above the cloud point curve. The integrated heat capacity gives an enthalpy that is smaller than the standard state enthalpy of micellization given by a van't Hoff plot, a typical result for Pluronic systems.

  5. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  6. Selective Detection of Peptide-Oligonucleotide Heteroconjugates Utilizing Capillary HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Catron, Brittany; Caruso, Joseph A.; Limbach, Patrick A.

    2012-06-01

    A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1-2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.

  7. Images reveal that atmospheric particles can undergo liquid–liquid phase separations

    PubMed Central

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

    2012-01-01

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443

  8. Images reveal that atmospheric particles can undergo liquid-liquid phase separations.

    PubMed

    You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L; Zhang, Xiaolu; Weber, Rodney J; Shilling, John E; Dabdub, Donald; Martin, Scot T; Bertram, Allan K

    2012-08-14

    A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).

  9. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard

    2006-02-01

    We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.

  10. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns.

    PubMed

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-12-01

    Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.

  11. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  12. Separation of Iron Phase and P-Bearing Slag Phase from Gaseous-Reduced, High-Phosphorous Oolitic Iron Ore at 1473 K (1200 °C) by Super Gravity

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Lei; Guo, Zhancheng

    2016-04-01

    In situ observation on the morphology evolution and phosphorous migration of gaseous-reduced, high-phosphorous oolitic iron ore during the melting process was carried out with a high-temperature confocal scanning laser microscope. The results showed that 1473 K (1200 °C) was a critical temperature at which the gangue minerals started to form into the slag phase while the iron grains remained in a solid state; in addition, the phosphorus remained in the slag phase. Since the separation of iron grains and P-bearing slag was not achieved at the low temperature under the conventional conditions, separate experiments of the iron phase and the P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 °C) by super gravity were carried out in this study. Based on the iron-slag separation by super gravity, phosphorus was removed effectively from the iron phase at the temperature below the melting point of iron. Iron grains moved along the super-gravity direction, joined, and concentrated as the iron phase on the filter, whereas the slag phase containing apatite crystals broke through the barriers of the iron grains and went through the filter. Consequently, increasing the gravity coefficient was definitely beneficial for the separation of the P-bearing slag phase from the iron phase. With the gravity coefficient of G = 1200, the mass fractions of separated slag and iron phases were close to their respective theoretical values, and the mass fraction of MFe in the separated iron phase was up to 98.09 wt pct and that of P was decreased to 0.083 wt pct. The recovery of MFe in the iron phase and that of P in the slag phase were up to 99.19 and 95.83 pct, respectively.

  13. Formation of porous crystals via viscoelastic phase separation

    NASA Astrophysics Data System (ADS)

    Tsurusawa, Hideyo; Russo, John; Leocmach, Mathieu; Tanaka, Hajime

    2017-10-01

    Viscoelastic phase separation of colloidal suspensions can be interrupted to form gels either by glass transition or by crystallization. With a new confocal microscopy protocol, we follow the entire kinetics of phase separation, from homogeneous phase to different arrested states. For the first time in experiments, our results unveil a novel crystallization pathway to sponge-like porous crystal structures. In the early stages, we show that nucleation requires a structural reorganization of the liquid phase, called stress-driven ageing. Once nucleation starts, we observe that crystallization follows three different routes: direct crystallization of the liquid phase, the Bergeron process, and Ostwald ripening. Nucleation starts inside the reorganized network, but crystals grow past it by direct condensation of the gas phase on their surface, driving liquid evaporation, and producing a network structure different from the original phase separation pattern. We argue that similar crystal-gel states can be formed in monatomic and molecular systems if the liquid phase is slow enough to induce viscoelastic phase separation, but fast enough to prevent immediate vitrification. This provides a novel pathway to form nanoporous crystals of metals and semiconductors without dealloying, which may be important for catalytic, optical, sensing, and filtration applications.

  14. Two-neutron sequential decay of O 24

    DOE PAGES

    Jones, M. D.; Frank, N.; Baumann, T.; ...

    2015-11-25

    In this study, a two-neutron unbound excited state of 24O was populated through a (d,d') reaction at 83.4 MeV/nucleon. A state at E=715±110 (stat) ±45 (sys) keV with a width of Γ<2 MeV was observed above the two-neutron separation energy placing it at 7.65 ± 0.2 MeV with respect to the ground state. Three-body correlations for the decay of 24O → 22O + 2n show clear evidence for a sequential decay through an intermediate state in 23O. Neither a di-neutron nor phase-space model for the three-body breakup were able to describe these correlations.

  15. Two-neutron sequential decay of O 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M. D.; Frank, N.; Baumann, T.

    In this study, a two-neutron unbound excited state of 24O was populated through a (d,d') reaction at 83.4 MeV/nucleon. A state at E=715±110 (stat) ±45 (sys) keV with a width of Γ<2 MeV was observed above the two-neutron separation energy placing it at 7.65 ± 0.2 MeV with respect to the ground state. Three-body correlations for the decay of 24O → 22O + 2n show clear evidence for a sequential decay through an intermediate state in 23O. Neither a di-neutron nor phase-space model for the three-body breakup were able to describe these correlations.

  16. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, J.C.; Bertch, P.M.

    1998-12-08

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  17. In-situ groundwater remediation by selective colloid mobilization

    DOEpatents

    Seaman, John C.; Bertch, Paul M.

    1998-01-01

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  18. The primary structure of the hemoglobin of spectacled bear (Tremarctos ornatus, Carnivora).

    PubMed

    Hofmann, O; Braunitzer, G

    1987-08-01

    The complete primary structure of the alpha- and beta-chains of the hemoglobin of Spectacled Bear (Tremarctos ornatus) is presented. Following cleavage of the heme-protein link and chain separation by RP-HPLC, their amino-acid sequences were determined by Edman degradation in liquid- and gas-phase sequenators. The hemoglobin of Spectacled Bear displays only five amino-acid exchanges to that of Polar Bear (Ursus maritimus, Ursinae) and Asiatic Black Bear (Ursus tibetanus, Ursinae) whereas 8 and 12 replacements, respectively, to Giant Panda (Ailuropoda melanoleuca) and Lesser Panda (Ailurus fulgens) can be found. This clearly demonstrates that the Spectacled Bear, the most aberrant bear of the Ursidae, is somewhat intermediate between Pandas and Ursinae.

  19. Phase separation of self-propelled ballistic particles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac R.; Glotzer, Sharon C.

    2018-04-01

    Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τF, the mean time particles spend between collisions; and τC, the mean lifetime of a collision. We show that only when τF<τC do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.

  20. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  1. Temperature-Induced Phase Separation in Molecular Assembly of Nanotubes Comprising Amphiphilic Polypeptide with Poly( N-Ethyl Glycine) in Water by a Hydrophilic-Region Driven Type Mechanism.

    PubMed

    Hattori, Tetsuya; Itagaki, Toru; Uji, Hirotaka; Kimura, Shunsaku

    2018-06-20

    Two kinds of amphiphilic polypeptides having different types of hydrophilic polypeptoids, poly(sarcosine)-b-(L-Leu-Aib)6 (ML12) and poly(N-ethyl glycine)-b-(L-Leu-Aib)6 (EL12), were self-assembled via two paths to phase-separated nanotubes. One path was via sticking ML12 nanotubes with EL12 nanotubes, and the other was a preparation from a mixture of ML12 and EL12 in solution. In either case, nanotubes showed temperature-induced phase separation along the long axis, which was observed by two methods of labeling one phase with gold nanoparticles and fluorescence resonance energy transfer between the components. The phase-separation was ascribed to aggregation of poly(N-ethyl glycine) blocks over the cloud point temperature. The addition of 5% trifluoroethanol was needed for the phase separation, because the tight association of the helices in the hydrophobic region should be loosened to allow lateral diffusion of the components to be separated. The phase-separation in molecular assemblies in water based on the hydrophilic-region driven type mechanism therefore requires sophisticated balances of association forces exerting among the hydrophilic and hydrophobic regions of the amphiphilic polypeptoids.

  2. Impinging jet separators for liquid metal magnetohydrodynamic power cycles

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1973-01-01

    In many liquid metal MHD power, cycles, it is necessary to separate the phases of a high-speed liquid-gas flow. The usual method is to impinge the jet at a glancing angle against a solid surface. These surface separators achieve good separation of the two phases at a cost of a large velocity loss due to friction at the separator surface. This report deals with attempts to greatly reduce the friction loss by impinging two jets against each other. In the crude impinging jet separators tested to date, friction losses were greatly reduced, but the separation of the two phases was found to be much poorer than that achievable with surface separators. Analyses are presented which show many lines of attack (mainly changes in separator geometry) which should yield much better separation for impinging jet separators).

  3. Observations of liquid-liquid phase separation in several types of secondary organic materials free of inorganic salts

    NASA Astrophysics Data System (ADS)

    Song, M.; Liu, P.; Martin, S. T.; Bertram, A. K.; Ham, S.

    2016-12-01

    Particles consisting of secondary organic materials (SOMs) are ubiquitous in the atmosphere. In order to predict the role of these particles in climate, visibility, and atmospheric chemistry, knowledge of the phase states of the particles is required. However, the phase states of the SOMs are still poorly understood. Herein we focused on liquid-liquid phase separation in different types of SOM particles free of inorganic salts produced by the ozonolysis of β-caryophyllene, ozonolysis of limonene, photo-oxidation of isoprene, and photo-oxidation of toluene. Liquid-liquid phase separation was investigated using optical microscopy and SOM particle mass concentrations ranging from 15 µg·m-3 to 7000 µg·m-3. During humidity cycles, liquid-liquid phase separation was observed in β-caryophyllene-derived SOM and limonene-derived SOM particles while no liquid-liquid phase separation was observed in isoprene-derived SOM and toluene-derived SOM particles. Results from the studies will be presented.

  4. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1985-01-01

    In a reduced gravity environment the two polymer phases will not separate via density driven settling in an acceptably short length of time. It is to be expected that a certain amount of phase separation will take place, however, driven by the reduction in free energy gained when the interfacial area is reduced. This stage of separation process will therefore depend directly on the magnitude of the interfacial tension between the phases. In order to induce complete phase separation in a short time, electric field-induced separation which occurs because the droplets of one phase in the other have high electrophoretic mobilities which increase with droplet size was investigated. These mobilities are significant only in the presence of certain salts, particularly phosphates. The presence of such salts, in turn has a strong effect on the cell partition behavior in dextran-poly (ethylene glycol) (PEG) systems. The addition of the salts necessary to produce phase drop mobilities has a large effect on the interfacial tensions in the systems.

  5. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification

    PubMed Central

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942

  6. A simple tool for tubing modification to improve spiral high-speed counter-current chromatography for protein purification.

    PubMed

    Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert

    2016-01-01

    A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.

  7. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    PubMed

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A Family of Well-Clear Boundary Models for the Integration of UAS in the NAS

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.; Narkawicz, Anthony; Chamberlain, James; Consiglio, Maria; Upchurch, Jason

    2014-01-01

    The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defines the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. For these models, algorithms that predict well-clear violations along aircraft current trajectories are provided. These algorithms are analogous to conflict detection algorithms but instead of predicting loss of separation, they predict whether well-clear violations will occur during a given lookahead time interval. Analytical techniques are used to study the properties and relationships satisfied by the models.

  9. Binary Colloidal Alloy Test-5: Phase Separation

    NASA Technical Reports Server (NTRS)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  10. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  11. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    PubMed

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  12. Integral equation theory study on the phase separation in star polymer nanocomposite melts.

    PubMed

    Zhao, Lei; Li, Yi-Gui; Zhong, Chongli

    2007-10-21

    The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.

  13. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-11-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  14. Extent and mechanism of phase separation during the extrusion of calcium phosphate pastes.

    PubMed

    O'Neill, Rory; McCarthy, Helen O; Cunningham, Eoin; Montufar, Edgar; Ginebra, Maria-Pau; Wilson, D Ian; Lennon, Alex; Dunne, Nicholas

    2016-02-01

    The aim of this study was to increase understanding of the mechanism and dominant drivers influencing phase separation during ram extrusion of calcium phosphate (CaP) paste for orthopaedic applications. The liquid content of extrudate was determined, and the flow of liquid and powder phases within the syringe barrel during extrusion were observed, subject to various extrusion parameters. Increasing the initial liquid-to-powder mass ratio, LPR, (0.4-0.45), plunger rate (5-20 mm/min), and tapering the barrel exit (45°-90°) significantly reduced the extent of phase separation. Phase separation values ranged from (6.22 ± 0.69 to 18.94 ± 0.69 %). However altering needle geometry had no significant effect on phase separation. From powder tracing and liquid content determination, static zones of powder and a non-uniform liquid distribution was observed within the barrel. Measurements of extrudate and paste LPR within the barrel indicated that extrudate LPR remained constant during extrusion, while LPR of paste within the barrel decreased steadily. These observations indicate the mechanism of phase separation was located within the syringe barrel. Therefore phase separation can be attributed to either; (1) the liquid being forced downstream by an increase in pore pressure as a result of powder consolidation due to the pressure exerted by the plunger or (2) the liquid being drawn from paste within the barrel, due to suction, driven by dilation of the solids matrix at the barrel exit. Differentiating between these two mechanisms is difficult; however results obtained suggest that suction is the dominant phase separation mechanism occurring during extrusion of CaP paste.

  15. Comparing the selectivity and chiral separation of d- and l- fluorenylmethyloxycarbonyl chloride protected amino acids in analytical high performance liquid chromatography and supercritical fluid chromatography; evaluating throughput, economic and environmental impact.

    PubMed

    Vera, C M; Shock, D; Dennis, G R; Farrell, W; Shalliker, R A

    2017-04-14

    The chiral separation of d- and l- FMOC amino acids was undertaken using the Lux Cellulose-1 polysaccharide based chiral column in HPLC (normal phase and reverse phase) and SFC conditions. This was done to compare the relative selectivity and separation between the three separation modes and to evaluate the potential benefits of SFC separations with regards to resolution, throughput, economic and environmental impact. It was established that the separation of d- and l- FMOC amino acids in SFC displayed behaviours that were similar to both normal phase and reversed phase, rather than distinctly one or the other. Additionally, although reversed phase conditions yielded significantly higher resolution values between enantiomers across the range of amino acids studied, improvements in selectivity in SFC via the introduction of higher concentrations of formic acid in the mobile phase allowed for better resolution per unit of time. Moreover since the SFC mobile phase is composed mostly of recyclable CO 2 , there is a reduction in organic solvent consumption, which minimises the economic and environmental costs. Copyright © 2017. Published by Elsevier B.V.

  16. Nanoscopy of Phase Separation in InxGa1-xN Alloys.

    PubMed

    Abate, Yohannes; Seidlitz, Daniel; Fali, Alireza; Gamage, Sampath; Babicheva, Viktoriia; Yakovlev, Vladislav S; Stockman, Mark I; Collazo, Ramon; Alden, Dorian; Dietz, Nikolaus

    2016-09-07

    Phase separations in ternary/multinary semiconductor alloys is a major challenge that limits optical and electronic internal device efficiency. We have found ubiquitous local phase separation in In1-xGaxN alloys that persists to nanoscale spatial extent by employing high-resolution nanoimaging technique. We lithographically patterned InN/sapphire substrates with nanolayers of In1-xGaxN down to few atomic layers thick that enabled us to calibrate the near-field infrared response of the semiconductor nanolayers as a function of composition and thickness. We also developed an advanced theoretical approach that considers the full geometry of the probe tip and all the sample and substrate layers. Combining experiment and theory, we identified and quantified phase separation in epitaxially grown individual nanoalloys. We found that the scale of the phase separation varies widely from particle to particle ranging from all Ga- to all In-rich regions and covering everything in between. We have found that between 20 and 25% of particles show some level of Ga-rich phase separation over the entire sample region, which is in qualitative agreement with the known phase diagram of In1-xGaxN system.

  17. Low density microcellular foams

    DOEpatents

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  18. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites.

    PubMed

    Bischak, Connor G; Hetherington, Craig L; Wu, Hao; Aloni, Shaul; Ogletree, D Frank; Limmer, David T; Ginsberg, Naomi S

    2017-02-08

    The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.

  19. Solar fuels generator

    DOEpatents

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  20. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  1. Ordering-separation phase transitions in a Co3V alloy

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.

    2017-01-01

    The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.

  2. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  3. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation.

    PubMed

    Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C

    2009-11-17

    As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to >10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.

  4. Phase Separation in Solutions of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  5. Lo/Ld phase coexistence modulation induced by GM1.

    PubMed

    Puff, Nicolas; Watanabe, Chiho; Seigneuret, Michel; Angelova, Miglena I; Staneva, Galya

    2014-08-01

    Lipid rafts are assumed to undergo biologically important size-modulations from nanorafts to microrafts. Due to the complexity of cellular membranes, model systems become important tools, especially for the investigation of the factors affecting "raft-like" Lo domain size and the search for Lo nanodomains as precursors in Lo microdomain formation. Because lipid compositional change is the primary mechanism by which a cell can alter membrane phase behavior, we studied the effect of the ganglioside GM1 concentration on the Lo/Ld lateral phase separation in PC/SM/Chol/GM1 bilayers. GM1 above 1mol % abolishes the formation of the micrometer-scale Lo domains observed in GUVs. However, the apparently homogeneous phase observed in optical microscopy corresponds in fact, within a certain temperature range, to a Lo/Ld lateral phase separation taking place below the optical resolution. This nanoscale phase separation is revealed by fluorescence spectroscopy, including C12NBD-PC self-quenching and Laurdan GP measurements, and is supported by Gaussian spectral decomposition analysis. The temperature of formation of nanoscale Lo phase domains over an Ld phase is determined, and is shifted to higher values when the GM1 content increases. A "morphological" phase diagram could be made, and it displays three regions corresponding respectively to Lo/Ld micrometric phase separation, Lo/Ld nanometric phase separation, and a homogeneous Ld phase. We therefore show that a lipid only-based mechanism is able to control the existence and the sizes of phase-separated membrane domains. GM1 could act on the line tension, "arresting" domain growth and thereby stabilizing Lo nanodomains. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Study Of Phase Separation In Glass

    NASA Technical Reports Server (NTRS)

    Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.

    1989-01-01

    Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.

  7. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns

    PubMed Central

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-01-01

    1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507

  8. The Role of RNA in Biological Phase Separations.

    PubMed

    Fay, Marta M; Anderson, Paul J

    2018-05-10

    Phase transitions that alter the physical state of ribonucleoprotein particles contribute to the spacial and temporal organization of the densely packed intracellular environment. This allows cells to organize biologically coupled processes as well as respond to environmental stimuli. RNA plays a key role in phase separation events that modulate various aspects of RNA metabolism. Here, we review the role that RNA plays in ribonucleoprotein phase separations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Liquid Metering Centrifuge Sticks (LMCS): A Centrifugal Approach to Metering Known Sample Volumes for Colorimetric Solid Phase Extraction (C-SPE)

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.

    2007-01-01

    Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.

  10. Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study.

    PubMed

    Topaz, Tom; Egozi, Roey; Eshel, Gil; Chefetz, Benny

    2018-06-01

    Cultivated land is a major source of pesticides, which are transported with the runoff water and eroded soil during rainfall events and pollute riverine and estuarine environments. Common ecotoxicological assessments of riverine systems are mainly based on water sampling and analysis of only the dissolved phase, and address a single pesticide's toxicological impact under laboratory conditions. A clear overview of mixtures of pesticides in the adsorbed and dissolved phases is missing, and therefore the full ecotoxicological impact is not fully addressed. The aim of this study was to characterize and quantify pesticide concentrations in both suspended sediment and dissolved phases, to provide a better understanding of pesticide-load dynamics during storm events in coastal streams in a Mediterranean climate. High-resolution sampling campaigns of seven flood events were conducted during two rainy seasons in Alexander stream, Israel. Samples of suspended sediments were separated from the solution and both media were analyzed separately for 250 pesticides. A total of 63 pesticides were detected; 18 and 16 pesticides were found solely in the suspended sediments and solution, respectively. Significant differences were observed among the pesticide groups: only 7% of herbicide, 20% of fungicide and 42% of insecticide load was transported with the suspended sediments. However, in both dissolved and adsorbed phases, a mix of pesticides was found which were graded from "mobile" to "non-mobile" with varied distribution coefficients. Diuron, and tebuconazole were frequently found in large quantities in both phases. Whereas insecticide and fungicide transport is likely governed by application time and method, the governing factor for herbicide load was the magnitude of the stream discharge. The results show a complex dynamic of pesticide load affected by excessive use of pesticides, which should be taken into consideration when designing projects to monitor riverine and estuarine water quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuinier, R.; de Kruif, C. G.

    1999-05-01

    Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.

  12. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  13. Phenomenological model and phase behavior of saturated and unsaturated lipids and cholesterol.

    PubMed

    Putzel, G Garbès; Schick, M

    2008-11-15

    We present a phenomenological theory for the phase behavior of ternary mixtures of cholesterol and saturated and unsaturated lipids, one that describes both liquid and gel phases. It leads to the following description of the mechanism of the phase behavior: In a binary system of the lipids, phase separation occurs when the saturated chains are well ordered, as in the gel phase, simply due to packing effects. In the liquid phase, the saturated ones are not sufficiently well ordered for separation to occur. The addition of cholesterol, however, increases the saturated lipid order to the point that phase separation is once again favorable. Our theory addresses this last mechanism-the means by which cholesterol-mediated ordering of membrane lipids leads to liquid-liquid immiscibility. It produces, for the system above the main chain transition of the saturated lipid, phase diagrams in which there can be liquid-liquid phase separation in the ternary system but not in any of the binary ones, while below that temperature it yields the more common phase diagram in which a gel phase, rich in saturated lipid, appears in addition to the two liquid phases.

  14. Separation of gas from liquid in a two-phase flow system

    NASA Technical Reports Server (NTRS)

    Hayes, L. G.; Elliott, D. G.

    1973-01-01

    Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.

  15. Microscopic origin of the magnetoelectronic phase separation in Sr-doped LaCoO3

    NASA Astrophysics Data System (ADS)

    Németh, Zoltán; Szabó, András; Knížek, Karel; Sikora, Marcin; Chernikov, Roman; Sas, Norbert; Bogdán, Csilla; Nagy, Dénes Lajos; Vankó, György

    2013-07-01

    The nanoscopic magnetoelectronic phase separation in doped La1-xSrxCoO3 perovskites was studied with local probes. The phase separation is directly observed by Mössbauer spectroscopy in the studied doping range of 0.05 ≤ x ≤ 0.25 both at room temperature and in the low-temperature magnetic phase. Extended with current synchrotron-based x-ray spectroscopies, these data help to characterize the volume as well as the local electric and magnetic properties of the distinct phases. A simple model based on a random distribution of the doping Sr ions describes well both the evolution of the separated phases and the variation of the Co spin state. The experiments suggest that Sr doping initiates small droplets and a high degree of doping-driven cobalt spin-state transition, while the Sr-free second phase vanishes rapidly with increasing Sr content.

  16. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  17. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  18. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE PAGES

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; ...

    2017-08-04

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  19. Visualization of entry flow separation for oscillating flow in tubes

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang; Simon, Terence W.

    1992-01-01

    Neutrally buoyant helium-filled soap bubbles with laser illumination are used to document entry flow separation for oscillating flow in tubes. For a symmetric entry case, the size of the separation zone appears to mildly depend on Reynolds number in the acceleration phase, but is roughly Reynolds number independent in the deceleration phase. For the asymmetric entry case, the separation zone was larger and appeared to grow somewhat during the deceleration phase. The separation zones for both entry geometry cases remain relatively small throughout the cycle. This is different from what would be observed in all-laminar, oscillator flows and is probably due to the high turbulence of the flow, particularly during the deceleration phase of the cycle.

  20. [Influence of mobile phase composition on chiral separation of organic selenium racemates].

    PubMed

    Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren

    2002-05-01

    The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.

  1. Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion.

    PubMed

    Hoekstra, D

    1982-06-08

    The relationship between lipid phase separation and fusion of small unilamellar phosphatidylserine-containing vesicles was investigated. The kinetics of phase separation were monitored by following the increase of self-quenching of the fluorescent phospholipid analogue N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine, which occurs when the local concentration of the probe increases upon Ca2+-induced phase separation in phosphatidylserine (PS) bilayers [Hoekstra, D. (1982) Biochemistry 21, 1055-1061]. Fusion was determined by using the resonance energy transfer fusion assay [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which monitors the mixing of fluorescent lipid donor and acceptor molecules, resulting in an increase in energy transfer efficiency. The results show that in the presence of Ca2+, fusion proceeds much more rapidly (t 1/2 less than 5 s) than the process of phase separation (T 1/2 congruent to 1 min). Mg2+ also induced fusion, albeit at higher concentrations than Ca2+. Mg2+-induced phase separation were not detected, however. Subthreshold concentrations of Ca2+ (0.5 mM) or Mg2+ (2 mM) induced extensive fusion of PS-containing vesicles in poly(ethylene glycol) containing media. This effect did not appear to be a poly(ethylene glycol)-facilitated enhancement of cation binding to the bilayer, and consequently Ca2+-induced phase separation was not observed. The results suggest that macroscopic phase separation may facilitate but does not induced the fusion process and is therefore, not directly involved in the actual fusion mechanism. The fusion experiments performed in the presence of poly(ethylene glycol) suggest that the degree of bilayer dehydration and the creation of "point defects" in the bilayer without rigorous structural rearrangements in the membrane are dominant factors in the initial fusion events.

  2. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    PubMed

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Low density microcellular foams

    DOEpatents

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  4. A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results

    NASA Astrophysics Data System (ADS)

    Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.

    2017-05-01

    It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.

  5. Elongated phase separation domains in spin-cast polymer blend thin films characterized using a panoramic image.

    PubMed

    Zhang, Hong; Okamura, Yosuke

    2018-02-14

    Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldini, Maria; Muramatsu, Takaki; Sherafati, Mohammad

    Phase separation is a crucial ingredient of the physics of manganites; however, the role of mixed phases in the development of the colossal magnetoresistance (CMR) phenomenon still needs to be clarified. In this paper, we report the realization of CMR in a single-valent LaMnO 3 manganite. We found that the insulator-to-metal transition at 32 GPa is well described using the percolation theory. Pressure induces phase separation, and the CMR takes place at the percolation threshold. A large memory effect is observed together with the CMR, suggesting the presence of magnetic clusters. The phase separation scenario is well reproduced, solving amore » model Hamiltonian. Finally, our results demonstrate in a clean way that phase separation is at the origin of CMR in LaMnO 3.« less

  7. Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.

    PubMed

    You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin

    2013-06-28

    The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.

  8. Luminous blue variables and the fates of very massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2017-09-01

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  9. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  10. Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.

    PubMed

    Valto, Piia; Knuutinen, Juha; Alén, Raimo

    2011-04-01

    A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Aprotic Solvents on the Dynamics of a Room Temperature Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Osti, Naresh; van Aken, Katherine; Thompson, Matthew; Tiet, Felix; Jiang, De-En; Cummings, Peter; Gogotsi, Yury; Mamontov, Eugene

    Room temperature ionic liquids (RTILs) have attracted much attention as electrolytes in energy storage devices because of their peculiar physical and chemical characteristics. However, their remarkably high viscosity, which results in low conductivity and diffusivity, may adversely affect the charging and discharging rates. Despite changing molecular configurations, use of aprotic solvent allows to enhance the transport properties of ionic liquids by disrupting the cation-anion interactions. We explore the impact of dipole moment of aprotic solvents on the cation-anion interaction and transport in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM +][Tf2N-], RTIL using molecular dynamics (MD) simulations and quasi-elastic neutrons scattering (QENS) measurements. We observed an increase in cation diffusivity with the increasing dipole moment of the solvent. This effect is due to a decrease in the solvation free energy induced by the increasing solvent polarity. A clear nano-phase separation into ionic liquid-rich and ionic liquid-poor phases as observed by QENS will be also discussed.

  12. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  13. Gas-Liquid Processing in Microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin

    Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less

  14. Phase separation in solutions of monoclonal antibodies and the effect of human serum albumin

    PubMed Central

    Wang, Ying; Lomakin, Aleksey; Latypov, Ramil F.; Benedek, George B.

    2011-01-01

    We report the observation of liquid-liquid phase separation in a solution of human monoclonal antibody, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective interprotein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable proetin condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia. PMID:21921237

  15. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    PubMed

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  16. Critical review: Injectability of calcium phosphate pastes and cements.

    PubMed

    O'Neill, R; McCarthy, H O; Montufar, E B; Ginebra, M-P; Wilson, D I; Lennon, A; Dunne, N

    2017-03-01

    Calcium phosphate cements (CPC) have seen clinical success in many dental and orthopaedic applications in recent years. The properties of CPC essential for clinical success are reviewed in this article, which includes properties of the set cement (e.g. bioresorbability, biocompatibility, porosity and mechanical properties) and unset cement (e.g. setting time, cohesion, flow properties and ease of delivery to the surgical site). Emphasis is on the delivery of calcium phosphate (CaP) pastes and CPC, in particular the occurrence of separation of the liquid and solid components of the pastes and cements during injection; and established methods to reduce this phase separation. In addition a review of phase separation mechanisms observed during the extrusion of other biphasic paste systems and the theoretical models used to describe these mechanisms are discussed. Occurrence of phase separation of calcium phosphate pastes and cements during injection limits their full exploitation as a bone substitute in minimally invasive surgical applications. Due to lack of theoretical understanding of the phase separation mechanism(s), optimisation of an injectable CPC that satisfies clinical requirements has proven difficult. However, phase separation of pastes during delivery has been the focus across several research fields. Therefore in addition to a review of methods to reduce phase separation of CPC and the associated constraints, a review of phase separation mechanisms observed during extrusion of other pastes and the theoretical models used to describe these mechanisms is presented. It is anticipated this review will benefit future attempts to develop injectable calcium phosphate based systems. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  17. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  18. Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers.

    PubMed Central

    Schram, V; Thompson, T E

    1997-01-01

    We have investigated the effect of the intrinsic membrane protein bacteriorhodopsin of Halobacterium halobium on the lateral organization of the lipid phase structure in the coexistence region of an equimolar mixture of dimyristoylphos-phatidylcholine and distearoylphosphatidylcholine. The fluorescence recovery after photobleaching (FRAP) technique was used to monitor the diffusion of both a lipid analog (N-(7-nitrobenzoxa-2,3-diazol-4-yl)-dimyristoylphosphatidyle thanolamine, NBD-DMPE) and fluorescein-labeled bacteriorhodopsin (Fl-BR). In the presence of bacteriorhodopsin, the mobile fractions of the two fluorescent probes display a shift of the percolation threshold toward lower temperatures (larger gel-phase fractions), independent of the protein concentration, from 43 degrees C (without bacteriorhodopsin) to 39 degrees C and 41 degrees C for NBD-DMPE and Fl-BR, respectively. Moreover, in the presence of bacteriorhodopsin, the gel-phase domains are much less efficient in restricting the diffusion of both probes than they are in the absence of the protein in the two-phase coexistence region. Bacteriorhodopsin itself, however, obstructs diffusion of NBD-DMPE and Fl-BR to about the same extent in the fluid phase of the two-phase region as it does in the homogeneous fluid phase. These observations suggest that 1) the protein induces the formation of much larger and/or more centrosymmetrical gel-phase domains than those formed in its absence, and 2) bacteriorhodopsin partitions almost equally between the coexisting fluid and gel phases. Although the molecular mechanisms involved are not clear, this phenomenon is fully consistent with the effect of the transmembrane peptide pOmpA of Escherichia coli investigated by electron spin resonance in the same lipid system. PMID:9129824

  19. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  20. Coil planet centrifugation as a means for small particle separation

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  1. Reversed phase liquid chromatography with UV absorbance and flame ionization detection using a water mobile phase and a cyano propyl stationary phase Analysis of alcohols and chlorinated hydrocarbons.

    PubMed

    Quigley, W W; Ecker, S T; Vahey, P G; Synovec, R E

    1999-10-01

    The development of liquid chromatography with a commercially available cyano propyl stationary phase and a 100% water mobile phase is reported. Separations were performed at ambient temperature, simplifying instrumental requirements. Excellent separation efficiency using a water mobile phase was achieved, for example N=18 800, or 75 200 m(-1), was obtained for resorcinol, at a retention factor of k'=4.88 (retention time of 9.55 min at 1 ml min(-1) for a 25 cmx4.6 mm i.d. column, packed with 5 mum diameter particles with the cyano propyl stationary phase). A separation via reversed phase liquid chromatography (RP-LC) with a 100% water mobile phase of six phenols and related compounds was compared to a separation of the same compounds by traditional RP-LC, using octadecylsilane (ODS), i.e. C18, bound to silica and an aqueous mobile phase modified with acetonitrile. Nearly identical analysis time was achieved for the separation of six phenols and related compounds using the cyano propyl stationary phase with a 100% water mobile phase, as compared to traditional RP-LC requiring a relatively large fraction of organic solvent modifier in the mobile phase (25% acetonitrile:75% water). Additional understanding of the retention mechanism with the 100% water mobile phase was obtained by relating measured retention factors of aliphatic alcohols, phenols and related compounds, and chlorinated hydrocarbons to their octanol:water partition coefficients. The retention mechanism is found to be consistent with a RP-LC mechanism coupled with an additional retention effect due to residual hydroxyl groups on the cyano propyl stationary phase. Advantages due to a 100% water mobile phase for the chemical analysis of alcohol mixtures and chlorinated hydrocarbons are reported. By placing an absorbance detector in-series and preceding a novel drop interface to a flame ionization detector (FID), selective detection of a separated mixture of phenols and related compounds and aliphatic alcohols is achieved. The compound class of aliphatic alcohols is selectively and sensitively detected by the drop interface/FID, and the phenols and related compounds are selectively and sensitively detected by absorbance detection at 200 nm. The separation and detection of chlorinated hydrocarbons in a water sample matrix further illustrated the advantages of this methodology. The sensitivity and selectivity of the FID signal for the chlorinated hydrocarbons are significantly better than absorbance detection, even at 200 nm. This methodology is well suited to continuous and automated monitoring of water samples. The applicability of samples initially in an organic solvent matrix is explored, since an organic sample matrix may effect retention and efficiency. Separations in acetonitrile and isopropyl alcohol sample matrices compared well to separations with a water sample matrix.

  2. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  3. Continuum theory of phase separation kinetics for active Brownian particles.

    PubMed

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E

    2013-10-04

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  4. 76 FR 19512 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... clearing organizations. In the internal cross-margining program, there is no need for two separate accounts... Organizations; The Options Clearing Corporation; Notice of Filing of Proposed Rule Change to Allow for an Expansion of OCC's Internal Cross-Margining Program to Include the Ability of a Pair of Affiliated Clearing...

  5. Histology and surface ultrastructure during early healing after gingival augmentation with a three-dimensional collagen matrix: A report of six cases.

    PubMed

    Rusu, Darian; Stratul, Stefan-Ioan; Festila, Dana; Surlin, Petra; Kasaj, Adrian; Baderca, Flavia; Boariu, Marius; Jentsch, Holger; Locovei, Cosmin; Calenic, Bogdan

    2017-01-01

    The objective of the present case series is to describe the histology and surface ultrastructure of augmented keratinized gingival mucosa in humans during the early healing phase after surgical placement of a xenogeneic collagen matrix. Six patients underwent surgical augmentation of keratinized tissue by placement of a three-dimensional (3D) xenogeneic collagen matrix. Full-depth mucosal biopsies including original attached gingiva, augmented gingiva, and the separation zone were performed at baseline and at postoperative days 7 and 14. The specimens were stained with hematoxylin-eosin, Masson-trichrome, picrosirius red, and Papanicolaou's trichrome. Low-vacuum scanning electron microscopy (SEM) surface analysis was correlated with histology. The separation zone was clearly visible upon histologic and SEM examination at 7 days. The portions of augmented mucosa consisted of well-structured, immature gingival tissue with characteristics of per secundam healing underlying a completely detached amorphous collagenous membrane-like structure of approximately 100 μm thick. At 14 days, histologic and ultrastructural examinations showed an almost complete maturation process. There were no detectable remnants of the collagen matrix within the newly formed tissues at either time point. Within their limits the results suggest that the 3D collagen matrix appears to play an indirect role during the early phase of wound healing by protecting the newly formed underlying tissue and guiding the epithelialization process.

  6. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1: Primary Results

    NASA Technical Reports Server (NTRS)

    Rorie, Conrad; Fern, Lisa; Monk, Kevin; Roberts, Zach; Brandt, Summer

    2017-01-01

    This presentation covers the primary results of the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Terminal Operations Foundational Human-in-the-Loop (HITL) simulation. The study tasked 16 pilots (half with manned piloting experience, and the other half with unmanned piloting experience) with maintaining "well clear" from other traffic while performing three different types of approaches into the Santa Rosa airport. A detect and avoid (DAA) system was provided to pilots to assist their ability to manage separation. The DAA system used in this test conformed to the criteria defined by RTCA Special Committee 228 (SC-228) in their Phase 1 Minimum Operational Performance Standards (MOPS) for UAS intending to operate in the NAS. The Phase 1 system was not designed to account for terminal operations, focusing instead on en route operations. To account for this, three different alerting and guidance configurations were presently tested in order to determine their effect on pilots operating the system in the terminal area. Results indicated that pilots with the alerting and guidance condition that provided the least amount of assistance (fewer alert levels and guidance types) experienced slightly increased pilot response times and rates of losses of separation. Additional data is presented on the effects of approach type and descriptive data on pilot maneuver preferences and ATC interoperability.

  7. Effect of Detergents on the Thermal Behavior of Elastin-like Polypeptides

    PubMed Central

    Thapa, Arjun; Han, Wei; Simons, Robin H.; Chilkoti, Ashutosh; Chi, Eva Y.; López, Gabriel P.

    2012-01-01

    Elastin-like polypeptide (ELP) fusions have been designed to allow large scale, non-chromatographic purification of many soluble proteins using the inverse transition cycling (ITC) method; however, the sensitivity of the aqueous lower critical solubility phase transition temperature (Tt) of ELPs to the addition of cosolutes, including detergents, may be a potential hindrance in purification of proteins with surface hydrophobicity in such a manner. To identify detergents that are known to solubilize such proteins (e.g., membrane proteins) and that have little effect on the Tt of the ELP, we screened a number of detergents with respect to their effects on the Tt and secondary structures of a model ELP (denoted here as ELP180). We found that mild detergents (e.g., DDM, Triton-X100, and CHAPS) do not alter the phase transition behavior or structure (as probed by circular dichroism) of ELP180. This result is in contrast to previous studies that showed a strong effect of other detergents (e.g., SDS) on the Ttof ELPs. Our results clearly indicate that mild detergents do not preclude ITC-based separation of ELPs, and thus that ELP fusions may prove to be useful in the purification of detergent-solubilized recombinant hydrophobic proteins, including membrane proteins, which are otherwise notoriously difficult to extract and purify by conventional separation methods (e.g., chromatography). PMID:23097230

  8. Green chiral HPLC enantiomeric separations using high temperature liquid chromatography and subcritical water on Chiralcel OD and Chiralpak AD.

    PubMed

    Droux, Serge; Félix, Guy

    2011-01-01

    We report here the application of subcritical water in chiral separations on two popular polysaccharide chiral stationary phases (CSPs): Chiralpak AD and Chiralcel OD. The behavior of these two CSPs was studied under reversed phase conditions at room temperature to discover the maximum percentage of water in the mobile phase, which provided the separation of enantiomers of flavanone and benzoin, respectively, in a reasonable time (i.e., less than 1 h). Then, the stability of Chiralpak AD and Chiralcel OD versus temperature was investigated and discussed. Chiralcel OD separation of flavanone racemate was obtained at 120 °C with water and 2-propanol (80/20) as the mobile phase, while benzoin racemate was separated in pure water at 160 °C. Separations of several racemates were also presented, and advantages and limitations of the technique were discussed. Copyright © 2011 Wiley Periodicals, Inc.

  9. Optimization of the high-performance liquid chromatographic separation of a complex mixture containing urinary steroids, boldenone and bolasterone: application to urine samples.

    PubMed

    Gonzalo-Lumbreras, R; Izquierdo-Hornillos, R

    2000-05-26

    An HPLC separation of a complex mixture containing 13 urinary anabolics and corticoids, and boldenone and bolasterone (synthetic anabolics) has been carried out. The applied optimization method involved the use of binary, ternary and quaternary mobile phases containing acetonitrile, methanol or tetrahydrofuran as organic modifiers. The effect of different reversed-phase packings and temperature on the separation was studied. The optimum separation was achieved by using a water-acetonitrile (60:40, v/v) mobile phase in reversed-phase HPLC at 30 degrees C, allowing the separation of all the analytes in about 24 min. Calibration graphs were obtained using bolasterone or methyltestosterone as internal standards. Detection limits were in the range 0.012-0.107 microg ml(-1). The optimized separation was applied to the analysis, after liquid-liquid extraction, of human urine samples spiked with steroids.

  10. Phase separation in the t-J model. [in theory of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Emery, V. J.; Lin, H. Q.; Kivelson, S. A.

    1990-01-01

    A detailed understanding of the motion of 'holes' in an antiferromagnet is of fundamental importance for the theory of high-temperature superconductors. It is shown here that, for the t-J model, dilute holes in an antiferromagnet are unstable against phase separation into a hole-rich and a no-hole phase. When the spin-exchange interaction J exceeds a critical value Jc, the hole-rich phase has no electrons. It is proposed that, for J slightly less than Jc, the hole-rich phase is a low-density superfluid of electron pairs. Phase separation in related models is briefly discussed.

  11. Secretory proteins in the reproductive tract of the snapping turtle, Chelhydra serpentina.

    PubMed

    Mahmoud, I Y; Paulson, J R; Dudley, M; Patzlaff, J S; Al-Kindi, A Y A

    2004-12-01

    SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.

  12. The liquid-liquid transition in supercooled ST2 water: a comparison between umbrella sampling and well-tempered metadynamics.

    PubMed

    Palmer, Jeremy C; Car, Roberto; Debenedetti, Pablo G

    2013-01-01

    We investigate the metastable phase behaviour of the ST2 water model under deeply supercooled conditions. The phase behaviour is examined using umbrella sampling (US) and well-tempered metadynamics (WT-MetaD) simulations to compute the reversible free energy surface parameterized by density and bond-orientation order. We find that free energy surfaces computed with both techniques clearly show two liquid phases in coexistence, in agreement with our earlier US and grand canonical Monte Carlo calculations [Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2012, 137, 214505; Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2009, 131, 104508]. While we demonstrate that US and WT-MetaD produce consistent results, the latter technique is estimated to be more computationally efficient by an order of magnitude. As a result, we show that WT-MetaD can be used to study the finite-size scaling behaviour of the free energy barrier separating the two liquids for systems containing 192, 300 and 400 ST2 molecules. Although our results are consistent with the expected N(2/3) scaling law, we conclude that larger systems must be examined to provide conclusive evidence of a first-order phase transition and associated second critical point.

  13. Separation of O/X Polarization Modes on Oblique Ionospheric Soundings

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Cervera, M. A.; Pederick, L. H.; Quinn, A. D.

    2017-12-01

    The oblique-incidence sounder (OIS) is a well-established instrument for determining the state of the ionosphere, with several advantages over vertical-incidence sounders (VIS). However, the processing and interpretation of OIS ionograms is more complicated than that of VIS ionograms. Due to the Earth's magnetic field, the ionosphere is birefringent at radio frequencies and a VIS or OIS will typically see two distinct ionospheric returns, known as the O and X modes. The separation of these two modes on a VIS, using a polarimetric receive antenna, is a well-established technique. However, this process is more complicated on an OIS due to a variable separation in the phase difference between the two modes, as measured between the two arms of a polarimetric antenna. Using a polarimetric antenna that can be rotated and tilted, we show that this variation in phase separation within an ionogram is caused by the variation in incidence angle, with some configurations leading to greater variation in phase separation. We then develop an algorithm for separating O and X modes in oblique ionograms that can account for the variation in phase separation, and we demonstrate successful separation even in relatively difficult cases. The variation in phase separation can also be exploited to estimate the incident elevation, a technique which may be useful for other applications of HF radio.

  14. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity

    NASA Astrophysics Data System (ADS)

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K.; Wiltshire, Benjamin D.; Kisslinger, Ryan; Shankar, Karthik

    2018-01-01

    Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  15. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  16. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity.

    PubMed

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K; Wiltshire, Benjamin D; Kisslinger, Ryan; Shankar, Karthik

    2018-01-05

    Anodically formed, vertically oriented, self-organized cylindrical TiO 2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO 2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  17. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    PubMed

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. The "Cheshire Cat" escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection.

    PubMed

    Frada, Miguel; Probert, Ian; Allen, Michael J; Wilson, William H; de Vargas, Colomban

    2008-10-14

    The coccolithophore Emiliania huxleyi is one of the most successful eukaryotes in modern oceans. The two phases in its haplodiploid life cycle exhibit radically different phenotypes. The diploid calcified phase forms extensive blooms, which profoundly impact global biogeochemical equilibria. By contrast, the ecological role of the noncalcified haploid phase has been completely overlooked. Giant phycodnaviruses (Emiliania huxleyi viruses, EhVs) have been shown to infect and lyse diploid-phase cells and to be heavily implicated in the regulation of populations and the termination of blooms. Here, we demonstrate that the haploid phase of E. huxleyi is unrecognizable and therefore resistant to EhVs that kill the diploid phase. We further show that exposure of diploid E. huxleyi to EhVs induces transition to the haploid phase. Thus we have clearly demonstrated a drastic difference in viral susceptibility between life cycle stages with different ploidy levels in a unicellular eukaryote. Resistance of the haploid phase of E. huxleyi provides an escape mechanism that involves separation of meiosis from sexual fusion in time, thus ensuring that genes of dominant diploid clones are passed on to the next generation in a virus-free environment. These "Cheshire Cat" ecological dynamics release host evolution from pathogen pressure and thus can be seen as an opposite force to a classic "Red Queen" coevolutionary arms race. In E. huxleyi, this phenomenon can account for the fact that the selective balance is tilted toward the boom-and-bust scenario of optimization of both growth rates of calcifying E. huxleyi cells and infectivity of EhVs.

  19. The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection

    PubMed Central

    Frada, Miguel; Probert, Ian; Allen, Michael J.; Wilson, William H.; de Vargas, Colomban

    2008-01-01

    The coccolithophore Emiliania huxleyi is one of the most successful eukaryotes in modern oceans. The two phases in its haplodiploid life cycle exhibit radically different phenotypes. The diploid calcified phase forms extensive blooms, which profoundly impact global biogeochemical equilibria. By contrast, the ecological role of the noncalcified haploid phase has been completely overlooked. Giant phycodnaviruses (Emiliania huxleyi viruses, EhVs) have been shown to infect and lyse diploid-phase cells and to be heavily implicated in the regulation of populations and the termination of blooms. Here, we demonstrate that the haploid phase of E. huxleyi is unrecognizable and therefore resistant to EhVs that kill the diploid phase. We further show that exposure of diploid E. huxleyi to EhVs induces transition to the haploid phase. Thus we have clearly demonstrated a drastic difference in viral susceptibility between life cycle stages with different ploidy levels in a unicellular eukaryote. Resistance of the haploid phase of E. huxleyi provides an escape mechanism that involves separation of meiosis from sexual fusion in time, thus ensuring that genes of dominant diploid clones are passed on to the next generation in a virus-free environment. These “Cheshire Cat” ecological dynamics release host evolution from pathogen pressure and thus can be seen as an opposite force to a classic “Red Queen” coevolutionary arms race. In E. huxleyi, this phenomenon can account for the fact that the selective balance is tilted toward the boom-and-bust scenario of optimization of both growth rates of calcifying E. huxleyi cells and infectivity of EhVs. PMID:18824682

  20. Observation of Resonant Quantum Magnetoelectric Effect in a Multiferroic Metal-Organic Framework.

    PubMed

    Tian, Ying; Shen, Shipeng; Cong, Junzhuang; Yan, Liqin; Wang, Shouguo; Sun, Young

    2016-01-27

    A resonant quantum magnetoelectric coupling effect has been demonstrated in the multiferroic metal-organic framework of [(CH3)2NH2]Fe(HCOO)3. This material shows a coexistence of a spin-canted antiferromagnetic order and ferroelectricity as well as clear magnetoelectric coupling below TN ≈ 19 K. In addition, a component of single-ion quantum magnets develops below ∼ 8 K because of an intrinsic magnetic phase separation. The stair-shaped magnetic hysteresis loop at 2 K signals resonant quantum tunneling of magnetization. Meanwhile, the magnetic field dependence of dielectric permittivity exhibits sharp peaks just at the critical tunneling fields, evidencing the occurrence of resonant quantum magnetoelectric coupling effect. This resonant effect enables a simple electrical detection of quantum tunneling of magnetization.

  1. Yogurt fermentation in the presence of starch-lipid composite.

    PubMed

    Singh, M; Kim, S

    2009-03-01

    The fermentation of yogurt in the presence of 0.5%, 1.0%, 1.5%, and 2.0% starch-lipid composite (SLC) was investigated. The pH, viscosity, and morphology of the mix were monitored during the fermentation process. The rate of drop in pH with time during incubation was not affected by the addition of SLC. However, it was found that the presence of SLC caused faster aggregation, which was clearly evidenced by the viscosity variation during the process of fermentation. An examination of the morphologies confirmed that aggregation occurred earlier in the presence of SLC and SLC did not form phase-separated domains. This study concludes that SLC would serve as a good additive (fat replacer and stabilizer) for the production of yogurt.

  2. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  3. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  4. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  5. 33 CFR 155.380 - Oily water separating equipment and bilge alarm approval standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PREVENTION REGULATIONS FOR VESSELS Vessel Equipment § 155.380 Oily water separating equipment and bilge alarm approval standards. (a) On U.S. inspected ships, oily water separating equipment and bilge alarms must be... routine maintenance of the oily water separating equipment and the bilge alarm must be clearly defined by...

  6. Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip

    2016-01-01

    The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.

  7. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Nihat Berker, A.

    1997-02-01

    Superfluidity and phase separation in 3-4He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low 4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel.

  8. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  9. Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography.

    PubMed

    Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang

    2009-05-01

    A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.

  10. Preparation and evaluation of a silica-based 1-alkyl-3-(propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography.

    PubMed

    Qiu, Hongdeng; Jiang, Qiong; Wei, Zheng; Wang, Xusheng; Liu, Xia; Jiang, Shengxiang

    2007-09-07

    A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.

  11. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    PubMed

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  13. 49 CFR 1242.62 - Clearing wrecks (account XX-51-63).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Clearing wrecks (account XX-51-63). 1242.62 Section 1242.62 Transportation Other Regulations Relating to Transportation (Continued) SURFACE...-Transportation § 1242.62 Clearing wrecks (account XX-51-63). Separate common expenses according to specific...

  14. 49 CFR 1242.69 - Clearing wrecks (account XX-52-63).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Clearing wrecks (account XX-52-63). 1242.69 Section 1242.69 Transportation Other Regulations Relating to Transportation (Continued) SURFACE...-Transportation § 1242.69 Clearing wrecks (account XX-52-63). Separate common expenses according to specific...

  15. Temperature-responsive chromatography for the separation of biomolecules.

    PubMed

    Kanazawa, Hideko; Okano, Teruo

    2011-12-09

    Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  17. Texas A&M vortex type phase separator

    NASA Astrophysics Data System (ADS)

    Best, Frederick

    2000-01-01

    Phase separation is required for regenerative biological and chemical process systems as well as thermal transport and rejection systems. Liquid and gas management requirements for future spacecraft will demand small, passive systems able to operate over wide ranges of inlet qualities. Conservation and recycling of air and water is a necessary part of the construction and operation of the International Space Station as well as future long duration space missions. Space systems are sensitive to volume, mass, and power. Therefore, it is necessary to develop a method to recycle wastewater with minimal power consumption. Regenerative life support systems currently being investigated require phase separation to separate the liquid from the gas produced. The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetal driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two-phase flow is injected tangentially along the inner wall of this cylinder producing a radial acceleration gradient. The gradient produced from the intrinsic momentum of the injected mixture results in a rotating flow that drives the buoyancy process by the production of a hydrostatic pressure gradient. Texas A&M has flown several KC-135 flights with separator. These flights have included scaling studies, stability and transient investigations, and tests for inventory instrumentation. Among the hardware tested have been passive devices for separating mixed vapor/liquid streams into single-phase streams of vapor only and liquid only. .

  18. Limitation of predictive 2-D liquid chromatography in reducing the database search space in shotgun proteomics: in silico studies.

    PubMed

    Moskovets, Eugene; Goloborodko, Anton A; Gorshkov, Alexander V; Gorshkov, Mikhail V

    2012-07-01

    A two-dimensional (2-D) liquid chromatography (LC) separation of complex peptide mixtures that combines a normal phase utilizing hydrophilic interactions and a reversed phase offers reportedly the highest level of 2-D LC orthogonality by providing an even spread of peptides across multiple LC fractions. Matching experimental peptide retention times to those predicted by empirical models describing chromatographic separation in each LC dimension leads to a significant reduction in a database search space. In this work, we calculated the retention times of tryptic peptides separated in the C18 reversed phase at different separation conditions (pH 2 and pH 10) and in TSK gel Amide-80 normal phase. We show that retention times calculated for different 2-D LC separation schemes utilizing these phases start to correlate once the mass range of peptides under analysis becomes progressively narrow. This effect is explained by high degree of correlation between retention coefficients in the considered phases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Process boundaries of irreversible scCO2 -assisted phase separation in biphasic whole-cell biocatalysis.

    PubMed

    Brandenbusch, Christoph; Glonke, Sebastian; Collins, Jonathan; Hoffrogge, Raimund; Grunwald, Klaudia; Bühler, Bruno; Schmid, Andreas; Sadowski, Gabriele

    2015-11-01

    The formation of stable emulsions in biphasic biotransformations catalyzed by microbial cells turned out to be a major hurdle for industrial implementation. Recently, a cost-effective and efficient downstream processing approach, using supercritical carbon dioxide (scCO2 ) for both irreversible emulsion destabilization (enabling complete phase separation within minutes of emulsion treatment) and product purification via extraction has been proposed by Brandenbusch et al. (2010). One of the key factors for a further development and scale-up of the approach is the understanding of the mechanism underlying scCO2 -assisted phase separation. A systematic approach was applied within this work to investigate the various factors influencing phase separation during scCO2 treatment (that is pressure, exposure of the cells to CO2 , and changes of cell surface properties). It was shown that cell toxification and cell disrupture are not responsible for emulsion destabilization. Proteins from the aqueous phase partially adsorb to cells present at the aqueous-organic interface, causing hydrophobic cell surface characteristics, and thus contribute to emulsion stabilization. By investigating the change in cell-surface hydrophobicity of these cells during CO2 treatment, it was found that a combination of catastrophic phase inversion and desorption of proteins from the cell surface is responsible for irreversible scCO2 mediated phase separation. These findings are essential for the definition of process windows for scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. © 2015 Wiley Periodicals, Inc.

  20. Effects of temperature and solvent condition on phase separation induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures.

    PubMed

    Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng

    2018-05-14

    Effects of temperature and solvent condition on phase separation-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. Phase diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom phases, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The phase separation-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of phase separation-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on phase separation-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the phase separation induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of Coriolis force on counter-current chromatographic separation by centrifugal partition chromatography.

    PubMed

    Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro

    2004-02-06

    The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.

  2. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shi-Yu, E-mail: buaasyliu@gmail.com; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Liu, Shiyang

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustainedmore » complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.« less

  3. Extracellular ice phase transitions in insects.

    PubMed

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  4. Traffic jams induce dynamical phase transition in spatial rock-paper-scissors game

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Ichinose, Genki; Tainaka, Kei-ichi

    2018-02-01

    Spatial and temporal behaviors of the rock-paper-scissors (RPS) game is key to understanding not only biodiversity but also a variety of cyclic systems. It has been demonstrated that, in the stochastic cellular automaton of RPS game, three species cannot survive on one-dimensional (1-d) lattice; only a single species survives. Previous studies have shown that three species are able to coexist if the migration of species is considered. However, their definitions of migration are the swapping of two species or the random walk of species, which rarely occurs in nature. Here, we investigate the effect of migration by using the 1-d lattice traffic model in which species can move rightward if the site ahead is empty. Computer simulations reveal that three species can survive at the same time within the wide range of parameter values. At low densities, all species can coexist. In contrast, the extinction of two species occurs if the density exceeds the critical limit of the jamming transition. This dynamical phase transition between the coexistence and single (non-coexistence) phase clearly separates due to the self-organized pattern: condensation and rarefaction in the stripe-pattern of three species.

  5. Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels.

    PubMed

    La, Thanh-Giang; Li, Xinda; Kumar, Amit; Fu, Yiyang; Yang, Shu; Chung, Hyun-Joong

    2017-09-27

    In a cold night, a clear window that will become opaque while retaining the indoor heat is highly desirable for both privacy and energy efficiency. A thermally responsive material that controls both the transmittance of solar radiance (predominantly in the visible and near-infrared wavelengths) and blackbody radiation (mainly in the mid-infrared) can realize such windows with minimal energy consumption. Here, we report a smart coating made from polyampholyte hydrogel (PAH) that transforms from a transparency state to opacity to visible radiation and strengthens opacity to mid-infrared when lowering the temperature as a result of phase separation between the water-rich and polymer-rich phases. To match a typical temperature fluctuation during the day, we fine-tune the phase transition temperature between 25 and 55 °C by introducing a small amount of relatively hydrophobic monomers (0.1 to 0.5 wt % to PAH). To further demonstrate an actively controlled, highly flexible, and high-contrast smart window, we build in an array of electric heaters made of printed elastomeric composite. The multipixelated window offers rapid switching, ∼70 s per cycle, whereas the device can withstand high strain (up to 80%) during operations.

  6. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  7. Measurement of salivary aldosterone: validation by low-dose ACTH test and gender differences.

    PubMed

    Hlavacova, N; Kerlik, J; Radikova, Z; Izakova, L; Jezova, D

    2013-10-01

    The aim of the present study was to validate the feasibility of measurement of the salivary aldosterone concentrations by performing a low-dose adrenocorticotropic hormone (ACTH) test. Moreover, the presence of gender differences in salivary aldosterone, considering the phase of the menstrual cycle in women, was verified. The sample consisted of 107 volunteers (60 men, 21 women in the follicular phase and 26 women in the luteal phase of the menstrual cycle). Saliva samples were taken by the subjects themselves around 08:00 AM, at least 60 min after awaking. A separate group of female subjects in the follicular phase underwent low-dose ACTH test (1µg synthetic ACTH i.v.) performed at 08:30 AM with blood and saliva sampling every 30 min for 120 min. Modification of the commercial aldosterone radioimmunoassay methodology for the salivary aldosterone measurement was performed. Salivary aldosterone concentrations rose in response to low-dose ACTH test and positive significant correlation in aldosterone concentrations between plasma and saliva was found. The results showed that women in the luteal phase of the menstrual cycle exhibited significantly higher morning concentrations in salivary aldosterone than men and women in the follicular phase. This study clearly demonstrates suitability of measurement of salivary aldosterone concentrations in the low-dose ACTH test and reveals gender differences in salivary aldosterone levels. The results show high validity of the presented method and its usefulness for assessment of the aldosterone concentrations in saliva.

  8. A pilot hospital-school educational program to address teen motor vehicle safety.

    PubMed

    Unni, Purnima; Morrow, Stephen E; Shultz, Barbara L; Tian, Tina T

    2013-10-01

    Texting while driving has emerged as a significant distracted driving behavior among teenage drivers. A unique hospital-school collaborative pilot intervention (called "Be in the Zone" or "BITZ") was implemented to combat this growing problem. This intervention was hypothesized to lead to a decline in texting while driving among high school students. This collaborative intervention consisted of two separate phases. In Phase 1, small groups of high school student leaders participated in a half-day interactive educational session in a pediatric hospital. Pre- and post-follow-up surveys were administered to this group. In Phase 2, these same students took the lessons they learned from the hospital to plan and implement a yearlong peer-to-peer campaign that focused on a clear "no texting while driving" message at their schools. Two unannounced driver observations were conducted to evaluate the effectiveness of the pilot program. Sixty-one high school students participated in Phase 1. Self-reported texting while driving rates decreased significantly among the participants after Phase 1. Two schools were recruited to participate in Phase 2. Unannounced driver observations were conducted before the campaign and toward the end of the campaign. Postintervention, there was a significant decrease in the percentage of drivers who texted while driving. Preliminary results from this pilot program suggest that a strategy of combining hospital-school partnerships with a peer-driven educational approach can be effective in reducing texting while driving among teenagers in the short-term.

  9. Characterization of singly and multiply PEGylated insulin isomers by reversed-phase ultra-performance liquid chromatography interfaced with ion mobility mass spectrometry.

    PubMed

    Gerislioglu, Selim; Adams, Scott R; Wesdemiotis, Chrys

    2018-04-03

    Conjugation of poly(ethylene glycol) (PEG) to protein drugs (PEGylation) is increasingly utilized in the biotherapeutics field because it improves significantly the drugs' circulatory half-life, solubility, and shelf-life. The activity of a PEGylated drug depends on the number, size, and location of the attached PEG chain(s). This study introduces a 2D separation approach, including reversed-phase ultra-performance liquid chromatography (RP-UPLC) and ion mobility mass spectrometry (IM-MS), in order to determine the structural properties of the conjugates, as demonstrated for a PEGylated insulin sample that was prepared by random amine PEGylation. The UPLC dimension allowed separation based on polarity. Electrospray ionization (ESI) of the eluates followed by in-source dissociation (ISD) truncated the PEG chains and created insulin fragments that provided site-specific information based on whether they contained a marker at the potential conjugation sites. Separation of the latter fragments by size and charge in the orthogonal IM dimension (pseudo-4D UPLC-ISD-IM-MS approach) enabled clear detection and identification of the positional isomers formed upon PEGylation. The results showed a highly heterogeneous mixture of singly and multiply conjugated isomers plus unconjugated material. PEGylation was observed on all three possible attachment sites (ε-NH 2 of LysB29, A- and B-chain N-termini). Each PEGylation site was validated by analysis of the same product after disulfide bond cleavage, so that the PEGylated A- and B- chain could be individually characterized with the same pseudo-4D UPLC-ISD-IM-MS method. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Creating Drug Solubilization Compartments via Phase Separation in Multicomponent Buccal Patches Prepared by Direct Hot Melt Extrusion-Injection Molding.

    PubMed

    Alhijjaj, Muqdad; Bouman, Jacob; Wellner, Nikolaus; Belton, Peter; Qi, Sheng

    2015-12-07

    Creating in situ phase separation in solid dispersion based formulations to allow enhanced functionality of the dosage form, such as improving dissolution of poorly soluble model drug as well as being mucoadhesive, can significantly maximize the in vitro and in vivo performance of the dosage form. This formulation strategy can benefit a wide range of solid dosage forms for oral and alternative routes of delivery. This study using buccal patches as an example created separated phases in situ of the buccal patches by selecting the excipients with different miscibility with each other and the model drug. The quaternary dispersion based buccal patches containing PEG, PEO, Tween 80, and felodipine were prepared by direct hot melt extrusion-injection molding (HME-IM). The partial miscibility between Tween 80 and semicrystalline PEG-PEO led to the phase separation after extrusion. The Tween phases acted as drug solubilization compartments, and the PEG-PEO phase had the primary function of providing mucoadhesion and carrier controlled dissolution. As felodipine was preferably solubilized in the amorphous regions of PEG-PEO, the high crystallinity of PEG-PEO resulted in an overall low drug solubilizing capacity. Tween 80 was added to improve the solubilization capacity of the system as the model drug showed good solubility in Tween. Increasing the drug loading led to the supersaturation of drug in Tween compartments and crystalline drug dispersed in PEG-PEO phases. The spatial distribution of these phase-separated compartments was mapped using X-ray micro-CT, which revealed that the domain size and heterogeneity of the phase separation increased with increasing the drug loading. The outcome of this study provides new insights into the applicability of in situ formed phase separation as a formulation strategy for the delivery of poorly soluble drugs and demonstrated the basic principle of excipient selection for such technology.

  11. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    PubMed

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives

    USGS Publications Warehouse

    Abidi, Sharon L.

    1989-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  13. Impurity-limited resistance and phase interference of localized impurities under quasi-one dimensional nano-structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Nobuyuki, E-mail: sano@esys.tsukuba.ac.jp

    2015-12-28

    The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point outmore » a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The physical origin of this “self-averaging” under the fully coherent environments is attributed to the broadness of the energy spectrum of the in-coming electrons from the reservoirs.« less

  14. Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene

    NASA Astrophysics Data System (ADS)

    Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.

    2017-11-01

    In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.

  15. Polymerization- and Solvent-Induced Phase Separation in Hydrophilic-rich Dentin Adhesive Mimic

    PubMed Central

    Abedin, Farhana; Ye, Qiang; Good, Holly J; Parthasarathy, Ranganathan; Spencer, Paulette

    2014-01-01

    Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99wt% hydroxyethylmethacrylate (HEMA) and 5 and 1wt% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane (BisGMA) prior to light curing. Viscosity of the formulations decreased with increased water content. The photo-polymerization kinetics study was carried out by time-resolved FTIR spectrum collector. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water content of 10-30%wt. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increased water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation (PIPs) and solvent-induced phase separation (SIPs) for the model hydrophilic-rich phase of dental resin. PMID:24631658

  16. Laser-induced phase separation of silicon carbide

    PubMed Central

    Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae

    2016-01-01

    Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015

  17. Sequence control of phase separation and dewetting in PS/PVME blend thin films by changing molecular weight of PS.

    PubMed

    Xia, Tian; Qin, Yaping; Huang, Yajiang; Huang, Ting; Xu, Jianhui; Li, Youbing

    2016-11-28

    The morphology evolution mechanism of polystyrene (PS)/poly (vinyl methyl ether) (PVME) blend thin films with different PS molecular weights (M w ) was studied. It was found that the morphology evolution was closely related to the molecular weight asymmetry between PS and PVME. In the film where M w (PS) ≈ M w (PVME), dewetting happened at the interface between the bottom layer and substrate after SD phase separation. While in the film where M w (PS) > M w (PVME), dewetting happened at the interface between the middle PS/PVME blend layer and bottom PVME layer near the substrate prior to phase separation. The different sequences of phase separation and dewetting and different interface for dewetting occurrence were studied by regarding the competitive effects of viscoelasticity contrast between polymer components and preferential wetting between PVME and the substrate. The viscoelastic nature of the PS component played a crucial role in the sequence of phase separation and dewetting.

  18. Formation and Maturation of Phase Separated Liquid Droplets by RNA Binding Proteins

    PubMed Central

    Lin, Yuan; Protter, David S. W.; Rosen, Michael K.; Parker, Roy

    2015-01-01

    Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components, and the full-length granule protein hnRNPA1, can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules. PMID:26412307

  19. Dynamics of polymerization induced phase separation in reactive polymer blends

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung

    Mechanisms and dynamics of phase decomposition following polymerization induced phase separation (PIPS) of reactive polymer blends have been investigated experimentally and theoretically. The phenomenon of PIPS is a non-equilibrium and non-linear dynamic process. The mechanism of PIPS has been thought to be a nucleation and growth (NG) type originally, however, newer results indicate spinodal decomposition (SD). In PIPS, the coexistence curve generally passes through the reaction temperature at off-critical compositions, thus phase separation has to be initiated first in the metastable region where nucleation occurs. When the system farther drifts from the metastable to unstable region, the NG structure transforms to the SD bicontinuous morphology. The crossover behavior of PIPS may be called nucleation initiated spinodal decomposition (NISD). The formation of newer domains between the existing ones is responsible for the early stage of PIPS. Since PIPS is non- equilibrium kinetic process, it would not be surprising to discern either or both structures. The phase separation dynamics of DGEBA/CTBN mixtures having various kinds of curing agents from low reactivity to high reactivity and various amount of curing agents were examined at various reaction temperatures. The phase separation behavior was monitored by a quantity of scattered light intensity experimentally and by a quantity of collective structure factor numerically. Prior to the study of phase separation dynamics, a preliminary investigation on the isothermal cure behavior of the mixtures were executed in order to determine reaction kinetics parameters. The cure behavior followed the overall second order reaction kinetics. Next, based on the knowledge obtained from the phase separation dynamics study of DGEBA/CTBN mixtures, the phase separation dynamics of various composition of DGEBA/R45EPI mixtures having MDA as a curing agent were investigated. The phase separation behavior was quite dependent upon the composition variation. R45EPI itself can react with itself or with DGEBA without curing, therefore three-component system was considered in this mixture. For the numerical studies of this three- component mixture, a system that is composed of a reactive component-1 that is miscible with its growing molecules and another reactive component-2 that is not miscible with its growing molecules was considered with crosslinking reaction kinetics of the each component.

  20. Direct visualization of phase separation between superconducting and nematic domains in Co-doped CaFe2As2 close to a first-order phase transition

    NASA Astrophysics Data System (ADS)

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; Kreyssig, Andreas; Ran, S.; Bud'ko, Sergey L.; Canfield, Paul C.; Mompean, Federico J.; García-Hernández, Mar; Munuera, Carmen; Guillamón, Isabel; Suderow, Hermann

    2018-01-01

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co-substituted CaFe2As2 . We use atomic force, magnetic force, and scanning tunneling microscopy to identify the domains and characterize their properties, finding in particular that tetragonal superconducting domains are very elongated, more than several tens of micrometers long and about 30 nm wide; have the same Tc as unstrained samples; and hold vortices in a magnetic field. Thus, biaxial strain produces a phase-separated state, where each phase is equivalent to what is found on either side of the first-order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of the order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first-order quantum phase transitions lead to nanometric-size phase separation under the influence of strain.

  1. Direct visualization of phase separation between superconducting and nematic domains in Co-doped CaFe 2 As 2 close to a first-order phase transition

    DOE PAGES

    Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; ...

    2018-01-09

    We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less

  2. Investigation of foam flotation and phase partitioning techniques

    NASA Technical Reports Server (NTRS)

    Currin, B. L.

    1985-01-01

    The present status of foam flotation as a separation process is evaluated and limitations for cells and proteins are determined. Possible applications of foam flotation to separations in microgravity are discussed. Application of the fluid mechanical aspects of foam separation techniques is made to phase partitioning in order to investigate the viscous drag forces that may effect the partitioning of cells in a two phase poly(ethylene glycol) and dextran system.

  3. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    PubMed Central

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  4. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3

    PubMed Central

    Smith, Jarrett; Calidas, Deepika; Schmidt, Helen; Lu, Tu; Rasoloson, Dominique; Seydoux, Geraldine

    2016-01-01

    RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time. DOI: http://dx.doi.org/10.7554/eLife.21337.001 PMID:27914198

  5. Linear separability in superordinate natural language concepts.

    PubMed

    Ruts, Wim; Storms, Gert; Hampton, James

    2004-01-01

    Two experiments are reported in which linear separability was investigated in superordinate natural language concept pairs (e.g., toiletry-sewing gear). Representations of the exemplars of semantically related concept pairs were derived in two to five dimensions using multidimensional scaling (MDS) of similarities based on possession of the concept features. Next, category membership, obtained from an exemplar generation study (in Experiment 1) and from a forced-choice classification task (in Experiment 2) was predicted from the coordinates of the MDS representation using log linear analysis. The results showed that all natural kind concept pairs were perfectly linearly separable, whereas artifact concept pairs showed several violations. Clear linear separability of natural language concept pairs is in line with independent cue models. The violations in the artifact pairs, however, yield clear evidence against the independent cue models.

  6. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  7. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOEpatents

    Black, Stuart K.; Hames, Bonnie R.; Myers, Michele D.

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  8. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    PubMed

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques

    NASA Astrophysics Data System (ADS)

    Pires, Carlos A. L.; Ribeiro, Andreia F. S.

    2017-02-01

    We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes (positive and negative phases of the Arctic Oscillation and of the North Atlantic Oscillation). Triads are also likely in the QG model but of weaker expression than dyads due to the imposed shape and dimension. The study emphasizes the existence of nonlinear dyadic and triadic nonlinear teleconnections.

  10. Origin of colossal magnetoresistance in LaMnO 3 manganite

    DOE PAGES

    Baldini, Maria; Muramatsu, Takaki; Sherafati, Mohammad; ...

    2015-08-13

    Phase separation is a crucial ingredient of the physics of manganites; however, the role of mixed phases in the development of the colossal magnetoresistance (CMR) phenomenon still needs to be clarified. In this paper, we report the realization of CMR in a single-valent LaMnO 3 manganite. We found that the insulator-to-metal transition at 32 GPa is well described using the percolation theory. Pressure induces phase separation, and the CMR takes place at the percolation threshold. A large memory effect is observed together with the CMR, suggesting the presence of magnetic clusters. The phase separation scenario is well reproduced, solving amore » model Hamiltonian. Finally, our results demonstrate in a clean way that phase separation is at the origin of CMR in LaMnO 3.« less

  11. Cyclohexylamine additives for enhanced peptide separations in reversed phase liquid chromatography.

    PubMed

    Cole, S R; Dorsey, J G

    1997-01-01

    While the choice of stationary phase, organic modifier, and gradient strength can have significant effects on biomolecule separations, mobile phase additives can also have a significant effect on the chromatographic selectivity, recovery, efficiency and resolution. Given the importance of stationary phase coverage, the beneficial, silanol-masking properties of amines, and the potential for selectivity modification through ion-pair interactions, cyclohexylamine was examined as a mobile phase additive and compared with triethylamine and trifluoroacetic acid. Greatly improved separation was possible when cyclohexylamine was used as compared with phosphate buffer, and cyclohexylamine did not require purification before use, while triethylamine required distillation before 'clean' chromatograms were obtained.

  12. Renormalization-Group Theory Study of Superfluidity and Phase Separation of Helium Mixtures Immersed in Jungle-Gym Aerogel

    NASA Astrophysics Data System (ADS)

    Lopatnikova, Anna; Berker, A. Nihat

    1997-03-01

    Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.

  13. Renormalization-group study of superfluidity and phase separation of helium mixtures immersed in a nonrandom aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatnikova, A.; Berker, A.N.

    1997-02-01

    Superfluidity and phase separation in {sup 3}He-{sup 4}He mixtures immersed in a jungle-gym (nonrandom) aerogel are studied by renormalization-group theory. Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low {sup 4}He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena and trends with respect to aerogel concentration are explained by the connectivity and tenuousness of a jungle-gym aerogel. {copyright} {ital 1997} {ital The American Physical Society}

  14. Phase separation and the formation of cellular bodies

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.

    Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.

  15. Influence of particle size and shell thickness of core-shell packing materials on optimum experimental conditions in preparative chromatography.

    PubMed

    Horváth, Krisztián; Felinger, Attila

    2015-08-14

    The applicability of core-shell phases in preparative separations was studied by a modeling approach. The preparative separations were optimized for two compounds having bi-Langmuir isotherms. The differential mass balance equation of chromatography was solved by the Rouchon algorithm. The results show that as the size of the core increases, larger particles can be used in separations, resulting in higher applicable flow rates, shorter cycle times. Due to the decreasing volume of porous layer, the loadability of the column dropped significantly. As a result, the productivity and economy of the separation decreases. It is shown that if it is possible to optimize the size of stationary phase particles for the given separation task, the use of core-shell phases are not beneficial. The use of core-shell phases proved to be advantageous when the goal is to build preparative column for general purposes (e.g. for purification of different products) in small scale separations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Development of Electrospun Nanomaterials and their Applications in Separation Science

    NASA Astrophysics Data System (ADS)

    Newsome, Toni Elwell

    In separations, efficiency is inversely related to the diameter of the sorbent particles of the stationary phase. Thus, materials research in separation science has primarily been directed towards reducing the diameter of the sorbent particle used in the stationary phase. In this dissertation, innovative methods designed for the fabrication and application of electrospun sorbent nanomaterials for separation science are described. Electrospinning is a facile, cost-effective technique that relies on repulsive electrostatic forces to produce nanofibers from a viscoelastic solution. Here, electrospinning is used to generate polymer, carbon, and silica-based nanofibers which are employed as sorbent nanomaterials in extractions and separations. Electrospun carbon nanofibers have proven to be ideal extractive phases for solid-phase microextraction (SPME) when coupled to gas chromatography (GC) for headspace sampling of volatile analytes. Herein, these carbon nanofibers were employed in the direct extraction of nonvolatile analytes and coupled to liquid chromatography (LC) for the first time. The high surface area of the coatings led to enhanced extraction efficiencies; they offered a 3-33 fold increase in efficiency relative to a commercial SPME phase. Carbon nanofibers proved to be stable when immersed in liquids common to LC demonstrating the enhanced stability of these coatings in SPME coupled to LC relative to conventional SPME fibers. The enhanced chemical and mechanical stability of the carbon SPME coatings considerably expanded the range of compounds applicable to SPME and extended the lifetimes of the fibers. Electrospun nanofibers have also proven to be ideal stationary phases in ultra-thin layer chromatography (UTLC). Nanofibers provide faster separations and enhanced separation efficiencies compared to commercial particle-based stationary phases in a relatively short distance. Here, the electrospun-UTLC technology was extended for the first time to nanofibers composed of silica, the most commonly used surface for TLC. An electrospinning method was optimized to produce silica-based nanofibers with the smallest diameter possible (300-380 nm) while maintaining homogenous nanofiber morphology. Highly efficient separations were performed in 15 mm with observed plate heights as low as 8.6 mum. Silica-based nanofibers proved to be chemically stable with a wide variety of TLC reagents demonstrating the enhanced compatibility of these phases with common TLC methods relative to polymer and carbon nanofiber UTLC plates. The extension of electrospun UTLC to silica-based nanofibers vastly expanded the range of analytes and TLC methods which can be used with this technology. The main disadvantage of conventional TLC development methods is that the mobile phase velocity decreases with increasing separation distance. Here, the chromatographic performance of electrospun polymer stationary phases was further improved by using a forced-flow mobile phase in planar electrochromatography (PEC) in which mobile phase velocity does not diminish with increasing distance. Separations were performed on polymer nanofiber UTLC plates in 1-2 min. Compared to UTLC, PEC offered unique selectivity, decreased analysis times (> 4 times faster), and enhanced efficiency (2-3 times lower plate height). In addition, two-dimensional (2D) separations of a complex analyte mixture using UTLC followed by PEC required only 11 min and exhibited a significant increase in separation number (70-77).

  17. Effects of Swirler Shape on Two-Phase Swirling Flow in a Steam Separator

    NASA Astrophysics Data System (ADS)

    Kataoka, Hironobu; Shinkai, Yusuke; Tomiyama, Akio

    Experiments on two-phase swirling flow in a separator are carried out using several swirlers having different vane angles, different hub diameters and different number of vanes to seek a way for improving steam separators of uprated boiling water reactors. Ratios of the separated liquid flow rate to the total liquid flow rate, flow patterns, liquid film thicknesses and pressure drops are measured to examine the effects of swirler shape on air-water two-phase swirling annular flows in a one-fifth scale model of the separator. As a result, the following conclusions are obtained for the tested swirlers: (1) swirler shape scarcely affects the pressure drop in the barrel of the separator, (2) decreasing the vane angle is an effective way for reducing the pressure drop in the diffuser of the separator, and (3) the film thickness at the inlet of the pick-off-ring of the separator is not sensitive to swirler shape, which explains the reason why the separator performance does not depend on swirler shape.

  18. Recovery of cesium

    DOEpatents

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  19. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  20. Luminescence quenching and scintillation response in the Ce3+ doped GdxY3-xAl5O12 (x = 0.75, 1, 1.25, 1.5, 1.75, 2) single crystals

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Mares, J. A.; Beitlerova, A.; Nikl, M.

    2017-01-01

    The luminescence and scintillation properties of the gadolinium yttrium aluminium garnets, (Gd,Y)3Al5O12 doped with Ce3+ are investigated as a function of the Gd/Y ratio with the aim of an improved understanding of the luminescence quenching, energy transfer and phase stability in these materials. An increase of both crystal field strength and instability of the garnet phase with increasing content of Gd3+ is observed. The instability of the garnet phase results in an appearance of the perovskite phase inclusions incorporated into the garnet phase. The luminescence features of Ce3+ in the perovskite phase inclusions and in the main garnet phase are studied separately. The thermal quenching of the 5 d → 4f emission of Ce3+ in the latter phase is determined by temperature dependence of the photoluminescence decay time. The results show that the onset of the thermal quenching is moved to lower temperatures with increasing gadolinium content. The measurements of temperature dependence of delayed radiative recombination do not reveal a clear evidence that the thermal quenching is caused by thermally induced ionization of the Ce3+ 5d1 excited state. Therefore, the main mechanism responsible for the luminescence quenching is due to the non-radiative relaxation from 5d1 excited state to 4f ground state of Ce3+. The energy transfer processes between Gd3+ and Ce3+ as well as between perovskite and garnet phases are evidenced by the photoluminescence excitation and emission spectra as well as decay kinetic measurements. Thermally stimulated luminescence (TSL) studies in the temperature range 77-497 K and scintillation decays under γ excitation complete the material characterization.

  1. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  2. Time-resolved x-ray diffraction and calorimetric studies at low scan rates

    PubMed Central

    Yao, Haruhiko; Hatta, Ichiro; Koynova, Rumiana; Tenchov, Boris

    1992-01-01

    The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (Lc → Lα), lamellar gel/lamellar liquid-crystalline (Lβ → Lα), and lamellar liquid-crystalline/lamellar gel (Lα → Lβ) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5°C/min. At constant temperature within the region of the Lβ → Lα transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5°C, has been observed in the cooling transition (Lα → Lβ) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the Lα phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering. Imagesp689-aFIGURE 9 PMID:19431820

  3. Merger and reconnection of Weibel separated relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.

    2018-02-01

    The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].

  4. Amino acid ionic liquids.

    PubMed

    Ohno, Hiroyuki; Fukumoto, Kenta

    2007-11-01

    The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.

  5. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol)

    PubMed Central

    Bromberg, Lev; Rashba-Step, Julia; Scott, Terrence

    2005-01-01

    Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, tind) ranged from tens to several hundreds of seconds. The dependence of tind on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2–3.4 and 2.2 mJ/m2 at equilibrium temperatures of 25 and 37°C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation. PMID:16254391

  6. Adhesive phase separation at the dentin interface under wet bonding conditions.

    PubMed

    Spencer, Paulette; Wang, Yong

    2002-12-05

    Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an impervious 3-dimensional collagen/polymer network but a porous web characterized by hydrophobic BisGMA-rich particles distributed in a hydrophilic HEMA-rich matrix. Copyright 2002 Wiley Periodicals, Inc.

  7. Phase-Separated Polyaniline/Graphene Composite Electrodes for High-Rate Electrochemical Supercapacitors.

    PubMed

    Wu, Jifeng; Zhang, Qin'e; Zhou, An'an; Huang, Zhifeng; Bai, Hua; Li, Lei

    2016-12-01

    Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Device for two-dimensional gas-phase separation and characterization of ion mixtures

    DOEpatents

    Tang, Keqi [Richland, WA; Shvartsburg, Alexandre A [Richland, WA; Smith, Richard D [Richland, WA

    2006-12-12

    The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.

  9. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    PubMed

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required to suppress phase separation decreases relative to longer polymers. Collectively, our results demonstrate that crowded, membrane-bound polymers are highly efficient suppressors of phase separation and suggest that the ability of lipid domains to resist steric pressure depends on both their lipid composition and the size and concentration of the membrane-bound polymers they incorporate.

  10. Magnetic properties of the Bled El Hadba phosphate-bearing formation (Djebel Onk, Algeria): Consequences of the enrichment of the phosphate ore deposit

    NASA Astrophysics Data System (ADS)

    Bezzi, Nacer; Aïfa, Tahar; Merabet, Djoudi; Pivan, Jean-Yves

    2008-02-01

    To improve the enrichment of the Thanetian marine phosphate ore deposit from the quarry of Bled El Hadba (Djebel Onk, Algeria) before its exploitation, we first conducted a joint study using different techniques for comparison. These studies reveal that magnetic minerals play a significant role within the matrix of the central productive unit which is squeezed between two other units. Magnetic separation procedures show that there are some positive correlations between magnetic susceptibility and grain size fraction (80-250 μm). These dolomite-rich fractions are more clearly separated. Different tools were used to characterize the magnetic minerals (X-ray, microprobe, differential scanning calorimetry, thermogravimetric and thermomagnetic analyses). They show correlations between magnetic phases and the presence of associated magnetic minerals within the matrix or included in the phosphate ore deposit. They enabled us to distinguish a series of magnetic minerals (magnetite, hematite, maghemite, goethite, ilmenite, pyrite, iron-titanium oxide and titanium oxide sulphate) and to determine that Fe and Ti are prevalent in the separated fractions, following the same variation as Mg. The phosphorous (phosphate) rate is higher in the non-magnetic material, especially in the layers that are rich in dolomitic carbonates (upper and lower units), which could be trapped within the dolomitic matrix, while Magnesium (dolomite) is more important in the magnetic fraction. The separation of phosphate elements and dolomite carbonates is effective and therefore the ore can be enriched through magnetic procedures. Comparison between products enriched by magnetic separation, flotation and calcination showed important differences, chemically, economically and technically speaking.

  11. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.

    2016-06-01

    Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).

  12. An atom probe perspective on phase separation and precipitation in duplex stainless steels

    DOE PAGES

    Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel A.; ...

    2016-05-16

    Here, three-dimensional chemical imaging of Fe–Cr alloys showing Fe-rich (α)/Cr-rich (α') phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe–Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100–10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni–Mn–Si–Cu-rich G-phase precipitates form at the α/α' interfaces in both alloys. For the 2101more » alloy, Cu clusters act to form a nucleus, around which a Ni–Mn–Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core–shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby–Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30–36).« less

  13. Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation

    PubMed Central

    Yoo, Seungmin; Kim, Jung-Hwan; Shin, Myoungsoo; Park, Hyungmin; Kim, Jeong-Hoon; Lee, Sang-Young; Park, Soojin

    2015-01-01

    The rational design and realization of revolutionary porous structures have been long-standing challenges in membrane science. We demonstrate a new class of amphiphilic polystyrene-block-poly(4-vinylpyridine) block copolymer (BCP)–based porous membranes featuring hierarchical multiscale hyperporous structures. The introduction of surface energy–modifying agents and the control of major phase separation parameters (such as nonsolvent polarity and solvent drying time) enable tunable dual-phase separation of BCPs, eventually leading to macro/nanoscale porous structures and chemical functionalities far beyond those accessible with conventional approaches. Application of this BCP membrane to a lithium-ion battery separator affords exceptional improvement in electrochemical performance. The dual-phase separation–driven macro/nanopore construction strategy, owing to its simplicity and tunability, is expected to be readily applicable to a rich variety of membrane fields including molecular separation, water purification, and energy-related devices. PMID:26601212

  14. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    PubMed

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter content of 4.5% and 20.8% solid phase with a dry matter content of 19.3%. Dry matter, volatile solids and carbon, raw ash and phosphate--in relation to the mass--accumulated strongly in the solid phase. Nitrogen and ammonia nitrogen were slightly enriched in the solid phase. Only the potassium content decreased slightly in the solid phase.

  15. Microfluidic Droplet Dehydration for Concentrating Processes in Biomolecules

    NASA Astrophysics Data System (ADS)

    Anna, Shelley

    2014-03-01

    Droplets in microfluidic devices have proven useful as picoliter reactors for biochemical processing operations such as polymerase chain reaction, protein crystallization, and the study of enzyme kinetics. Although droplets are typically considered to be self-contained, constant volume reactors, there can be significant transport between the dispersed and continuous phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to influence gellation, crystallization, and phase separation processes. By examining these concentrating processes in many trapped drops at once we gain insight into the stochastic nature of the events. In one example, we show that dehydration rate impacts the probability of forming a specific crystal habit in a crystallizing amino acid. In another example, we phase separate a common aqueous two-phase system within droplets and use the ensuing two phases to separate DNA from an initial mixture. We further influence wetting conditions between the two aqueous polymer phases and the continuous oil, promoting complete de-wetting and physical separation of the polymer phases. Thus, controlled dehydration of droplets allows for concentration, separation, and purification of important biomolecules on a chip.

  16. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems

    PubMed Central

    Szczepanski, Caroline R.; Pfeifer, Carmem S.; Stansbury, Jeffrey W.

    2012-01-01

    Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously. The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733

  17. Linear solvation energy relationships in normal phase chromatography based on gradient separations.

    PubMed

    Wu, Di; Lucy, Charles A

    2017-09-22

    Coupling the modified Soczewiñski model and one gradient run, a gradient method was developed to build a linear solvation energy relationship (LSER) for normal phase chromatography. The gradient method was tested on dinitroanilinopropyl (DNAP) and silica columns with hexane/dichloromethane (DCM) mobile phases. LSER models built based on the gradient separation agree with those derived from a series of isocratic separations. Both models have similar LSER coefficients and comparable goodness of fit, but the LSER model based on gradient separation required fewer trial and error experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of a passive phase separator for space and earth applications

    PubMed Central

    Wu, Xiongjun; Loraine, Greg; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    The limited amount of liquids and gases that can be carried to space makes it imperative to recycle and reuse these fluids for extended human operations. During recycling processes gas and liquid phases are often intermixed. In the absence of gravity, separating gases from liquids is challenging due to the absence of buoyancy. This paper describes development of a passive phase separator that is capable of efficiently and reliably separating gas–liquid mixtures of both high and low void fractions in a wide range of flow rates that is applicable to for both space and earth applications. PMID:29628785

  19. Toxicology as a nanoscience? – Disciplinary identities reconsidered

    PubMed Central

    Kurath, Monika; Maasen, Sabine

    2006-01-01

    Toxicology is about to establish itself as a leading scientific discipline in addressing potential health effects of materials on the nanosize level. Entering into a cutting-edge field, has an impact on identity-building processes within the involved academic fields. In our study, we analyzed the ways in which the entry into the field of nanosciences impacts on the formation of disciplinary identities. Using the methods of qualitative interviews with particle toxicologists in Germany, Holland, Switzerland and the USA, we could demonstrate that currently, toxicology finds itself in a transitional phase. The development of its disciplinary identity is not yet clear. Nearly all of our interview partners stressed the necessity of repositioning toxicology. However, they each suggested different approaches. While one part is already propagandizing the establishment of a new discipline – 'nanotoxicology'- others are more reserved and are demanding a clear separation of traditional and new research areas. In phases of disciplinary new-orientation, research communities do not act consistently. Rather, they establish diverse options. By expanding its disciplinary boundaries, participating in new research fields, while continuing its previous research, and only vaguely defining its topics, toxicology is feeling its way into the new fields without giving up its present self-conception. However, the toxicological research community is also discussing a new disciplinary identity. Within this, toxicology could develop from an auxiliary into a constitutive position, and take over a basic role in the cognitive, institutional and social framing of the nanosciences. PMID:16646961

  20. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    PubMed

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  2. Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun

    2017-11-01

    Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.

  3. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  4. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  5. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua; Zhao, Chenglong

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperaturemore » is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.« less

  6. The effect of protein on phase separation in giant unilamellar lipid vesicles.

    NASA Astrophysics Data System (ADS)

    Hutchison, J. B.; Weis, R. M.; Dinsmore, A. D.

    2009-03-01

    We explore the coarsening and out of plane curvature (budding) of domains in lipid bilayer vesicles composed of DOPC (unsaturated), PSM (saturated), and cholesterol. Green fluorescent protein (GFP) was added to the membrane in controlled amounts by binding to the Ni-chelating lipid, Ni-DOGS. Vesicles with diameters between 10 and 50 microns were prepared via a standard electroformation procedure. As a sample is lowered through temperature Tmix, a previously homogeneous vesicle phase separates into two fluid phases with distinct compositions. Phase-separated domains have a line tension (energy/length) at the boundary with the major phase which competes with bending energy and lateral tension to determine the overall configuration of the vesicle. Domain budding and coarsening were observed and recorded using both bright field and fluorescence microscopy during temperature scans and with varying concentrations of GFP. The addition of a model protein into our system allows for a broader understanding of the effect of protein, which are ubiquitous in cell membranes, on phase separation, budding, and coarsening.

  7. Equilibrium polymerization models of re-entrant self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  8. Phase separation of electrons strongly coupled with phonons in cuprates and manganites

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sasha

    2009-03-01

    Recent advanced Monte Carlo simulations have not found superconductivity and phase separation in the Hubbard model with on-site repulsive electron-electron correlations. I argue that microscopic phase separations in cuprate superconductors and colossal magnetoresistance (CMR) manganites originate from a strong electron-phonon interaction (EPI) combined with unavoidable disorder. Attractive electron correlations, caused by an almost unretarded EPI, are sufficient to overcome the direct inter-site Coulomb repulsion in these charge-transfer Mott-Hubbard insulators, so that low energy physics is that of small polarons and small bipolarons. They form clusters localized by disorder below the mobility edge, but propagate as the Bloch states above the mobility edge. I identify the Froehlich EPI as the most essential for pairing and phase separation in superconducting layered cuprates. The pairing of oxygen holes into heavy bipolarons in the paramagnetic phase (current-carrier density collapse (CCDC)) explains also CMR and high and low-resistance phase coexistence near the ferromagnetic transition of doped manganites.

  9. A Laterally-Mobile Mixed Polymer/Polyelectrolyte Brush Undergoes a Macroscopic Phase Separation

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Park, Hae-Woong; Tsouris, Vasilios; Choi, Je; Mustafa, Rafid; Lim, Yunho; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2013-03-01

    We studied mixed PEO and PDMAEMA brushes. The question we attempted to answer was: When the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Two different model mixed PEO/PDMAEMA brush systems were prepared: a mobile mixed brush by spreading a mixture of two diblock copolymers, PEO-PnBA and PDMAEMA-PnBA, onto the air-water interface, and an inseparable mixed brush using a PEO-PnBA-PDMAEMA triblock copolymer having respective brush molecular weights matched to those of the diblock copolymers. These two systems were investigated by surface pressure-area isotherm, X-ray reflectivity and AFM imaging measurements. The results suggest that the mobile mixed brush undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the inseparable system is only microscopically phase separated under comparable brush density conditions. We also conducted an SCF analysis of the phase behavior of the mixed brush system. This analysis further supported the experimental findings. The macroscopic phase separation observed in the mobile system is in contrast to the microphase separation behavior commonly observed in two-dimensional laterally-mobile small molecule mixtures.

  10. Thermal vacancies and phase separation in bcc mixtures of helium-3 and helium-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraass, Benedick Andrew

    1980-01-01

    Thermal vacancy concentrations in crystals of 3He- 4He mixtures have been determined. A new x-ray diffractometer-position sensitive detector system is used to make measurements of the absolute lattice parameter of the helium crystals with an accuracy of 300 ppM, and measurements of changes in lattice parameters to better than 60 ppM. The phase separation of the concentrated 3He- 4He mixtures has been studied in detail with the x-ray measurements. Vacancy concentrations in crystals with 99%, 51%, 28%, 12%, and 0% 3He have been determined. Phase separation has been studied in mixed crystals with concentrations of 51%, 28%, and 12% 3Hemore » and melting pressures between 3.0 and 6.1 MPa. The phase separation temperatures determined in this work are in general agreement with previous work. The pressure dependence of T c, the phase separation temperature for a 50% mixture, is found to be linear: dT c/dP = -34 mdeg/MPa. The x-ray measurements are used to make several comments on the low temperature phase diagram of the helium mixtures.« less

  11. Hybrid films with phase-separated domains: A new class of functional materials

    NASA Astrophysics Data System (ADS)

    Kang, Minjee; Leal, Cecilia

    The cell membrane is highly compartmentalized over micro-and nano scale. The compartmentalized domains play an important role in regulating the diffusion and distribution of species within and across the membrane. In this work, we introduced nanoscale heterogeneities into lipid films for the purpose of developing nature-mimicking phase-separated materials. The mixtures of phospholipids and amphiphilic block copolymers self-assemble into supported 1D multi-bilayers. We observed that in each lamella, mixtures of lipid and polymer phase-separate into domains that differ in their composition akin to sub-phases in cholesterol-containing lipid bilayers. Interestingly, we found evidence that like-domains are in registry across multilayers, making phase separation three-dimensional. To exploit such distinctive domain structure for surface-mediated drug delivery, we incorporated pharmaceutical molecules into the films. The drug release study revealed that the presence of domains in hybrid films modifies the diffusion pathways of drugs that become confined within phase-separated domains. A comprehensive domain structure coupled with drug diffusion pathways in films will be presented, offering new perspectives in designing a thin-film matrix system for controlled drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1554435.

  12. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.

    PubMed

    Beilke, Michael C; Beres, Martin J; Olesik, Susan V

    2016-03-04

    A "green" hydrophilic interaction liquid chromatography (HILIC) technique for separating the components of mixtures with a broad range of polarities is illustrated using enhanced-fluidity liquid mobile phases. Enhanced-fluidity liquid chromatography (EFLC) involves the addition of liquid CO2 to conventional liquid mobile phases. Decreased mobile phase viscosity and increased analyte diffusivity results when a liquefied gas is dissolved in common liquid mobile phases. The impact of CO2 addition to a methanol:water (MeOH:H2O) mobile phase was studied to optimize HILIC gradient conditions. For the first time a fast separation of 16 ribonucleic acid (RNA) nucleosides/nucleotides was achieved (16min) with greater than 1.3 resolution for all analyte pairs. By using a gradient, the analysis time was reduced by over 100% compared to similar separations conducted under isocratic conditions. The optimal separation using MeOH:H2O:CO2 mobile phases was compared to MeOH:H2O and acetonitrile:water (ACN:H2O) mobile phases. Based on chromatographic performance parameters (efficiency, resolution and speed of analysis) and an assessment of the environmental impact of the mobile phase mixtures, MeOH:H2O:CO2 mixtures are preferred over ACN:H2O or MeOH:H2O mobile phases for the separation of mixtures of RNA nucleosides and nucleotides. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of atomic disorder on the magnetic phase separation.

    PubMed

    Groshev, A G; Arzhnikov, A K

    2018-05-10

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  14. Effect of atomic disorder on the magnetic phase separation

    NASA Astrophysics Data System (ADS)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  15. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  16. A new submarine oil-water separation system

    NASA Astrophysics Data System (ADS)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-12-01

    In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.

  17. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  18. Target-guided separation of Bougainvillea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry.

    PubMed

    Jerz, Gerold; Wybraniec, Sławomir; Gebers, Nadine; Winterhalter, Peter

    2010-07-02

    In this study, preparative ion-pair high-speed countercurrent chromatography was directly coupled to an electrospray ionization mass-spectrometry device (IP-HSCCC/ESI-MS-MS) for target-guided fractionation of high molecular weight acyl-oligosaccharide linked betacyanins from purple bracts of Bougainvillea glabra (Nyctaginaceae). The direct identification of six principal acyl-oligosaccharide linked betacyanins in the mass range between m/z 859 and m/z 1359 was achieved by positive ESI-MS ionization and gave access to the genuine pigment profile already during the proceeding of the preparative separation. Inclusively, all MS/MS-fragmentation data were provided during the chromatographic run for a complete analysis of substitution pattern. On-line purity evaluation of the recovered fractions is of high value in target-guided screening procedures and for immediate decisions about suitable fractions used for further structural analysis. The applied preparative hyphenation was shown to be a versatile screening method for on-line monitoring of countercurrent chromatographic separations of polar crude pigment extracts and also traced some minor concentrated compounds. For the separation of 760mg crude pigment extract the biphasic solvent system tert.-butylmethylether/n-butanol/acetonitrile/water 2:2:1:5 (v/v/v/v) was used with addition of ion-pair forming reagent trifluoroacetic acid. The preparative HSCCC-eluate had to be modified by post-column addition of a make-up solvent stream containing formic acid to reduce ion-suppression caused by trifluoroacetic acid and later significantly maximized response of ESI-MS/MS detection of target substances. A variable low-pressure split-unit guided a micro-eluate to the ESI-MS-interface for sensitive and direct on-line detection, and the major volume of the effluent stream was directed to the fraction collector for preparative sample recovery. The applied make-up solvent mixture significantly improved smoothness of the continuously measured IP-HSCCC-ESI-MS base peak ion trace in the experimental range of m/z 50-2200 by masking stationary phase bleeding and generating a stable single solvent phase for ESI-MS/MS detection. Immediate structural data were retrieved throughout the countercurrent chromatography run containing complete MS/MS-fragmentation pattern of the separated acyl-substituted betanidin oligoglycosides. Single ion monitoring indicated clearly the base-line separation of higher concentrated acylated betacyanin components. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.

    1976-01-01

    A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.

  20. Crustal Structure of the Middle East from Regional Seismic Studies

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Sibol, Matthew; Caron, Pierre; Ghalib, Hafidh; Chen, Youlin

    2010-05-01

    We present results of crustal studies obtained with seismic data from the Northern Iraq Seismic Network (NISN). NISN has operated ten broadband stations in north-eastern Iraq since late 2005. This network was supplemented by the five-element broadband Iraq Seismic Array (KSIRS) in 2007. More recently, the former Iraq Seismic Network (ISN), destroyed during the war with Iran, was reestablished with the deployment of six broadband stations throughout Iraq. The aim of the present study is to derive models of the local and regional crustal structure of the Middle East, including Eastern Turkey, Iraq and Iran. To achieve this goal, we derive crustal velocity models using receiver function, surface wave and body wave analyses. These refined velocity models will eventually be used to obtain accurate hypocenter locations and event focal mechanisms. Our analysis of preliminary hypocenter locations produced a clearer picture of the seismicity associated with the tectonics of the region. The largest seismicity rate is confined to the active northern section of the Zagros thrust zone, while it decreases towards the southern end, before the intensity increases in the Bandar Abbas region again. Additionally, the rift zones in the Red Sea and the Gulf of Aden are clearly demarked by high seismicity rates. Surface wave velocity analysis resulted in a clear demarcation of the tectonic features in the region. The Arabian shield, Zagros thrust zone and the Red Sea are apparent through distinct velocity distributions separating them from each other. Furthermore, the shear wave velocity of the crust in North Iraq appears to be 10% higher than that of the Iranian plateau. The velocity anomaly of the Zagros mountains appears to be present into the upper mantle beyond the resolving limit of our model. Analysis of waveform data for obstructed pathways indicates clear propagation paths from the west or south-west across the Arabian shield as well as from the north and east into NISN. Phases including Pn, Pg, Sn, Lg, as well as LR are clearly observed on these seismograms. In contrast, blockage or attenuation of Pg and Sg-wave energy is observed for propagation paths across the Zagros-Makran zone from the south, while Pn and Sn phases are not affected. These findings are in support of earlier tectonic models that suggested the existence of multiple parallel listric faults splitting off the main Zagros fault zone in westerly direction. These faults appear to attenuate the crustal phases while the refracted phases, propagating across the mantle lid, remain unaffected. Azimuthal phase count and velocity analyses of body waves support the findings of blockage by the Zagros-Makran zone as well as higher shear wave velocities for the crust in Northern Iraq. In combination with receiver function and refraction studies, our first structural model of the crust beneath north-eastern Iraq indicates crustal depth of 40-45 km for the foothills, which increases to 45-50 km below the core of the Zagros-Bitlis zone.

  1. Prediction of Phase Separation of Immiscible Ga-Tl Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho

    2017-06-01

    Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.

  2. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    PubMed

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The chiral separation of triazole pesticides enantiomers by amylose-tris (3,5-dimethylphenylcarbamate) chiral stationary phase.

    PubMed

    Wang, Peng; Liu, Donghui; Jiang, Shuren; Xu, Yangguang; Zhou, Zhiqiang

    2008-10-01

    The amylose-tris(3,5-dimethylphenylcarbamate) chiral stationary phase was synthesized and used to separate the enantiomers of triazole pesticides by high-performance liquid chromatography. The mobile phase was n-hexane-isopropanol applying a flow rate of 1.0 mL/min. Six triazole pesticides were enantioselectively separated. Myclobutanil, paclobutrazol, tebuconazole, and uniconazole obtained complete separation with the resolution factors of 5.73, 2.99, 1.72, and 2.07, respectively, and imazalil and diniconazole obtained partial separation with the resolution factors of 0.79 and 0.77 under the optimized conditions. The effect of the content of isopropanol as well as column temperature on the separation was investigated. A circular dichroism detector was used to identify the enantiomers and determine the elution orders. The results showed the low temperature was good for the chiral separation except for diniconazole. The thermodynamic parameters calculated based on linear Van't Hoff plots showed the chiral separations were controlled by enthalpy.

  4. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation phenomena. The design and fabrication of a micropost plate-lamina Hele-Shaw (HS) cell was performed which served as a computationally attainable geometric structure facilitating direct comparison between physical phenomena observed in our laboratory and the LB software predictions.

  5. Analyses of procyanidins in foods using Diol phase HPLC

    USDA-ARS?s Scientific Manuscript database

    Separation of procyanidins using silica-based HPLC suffered from poor resolution for higher oligomers and low sensitivity due to the fluorescence quenching effects of methylene chloride in the mobile phase. Optimization of a published Diol-phase HPLC method resulted in near baseline separation for p...

  6. Identifying Effective Design Approaches to Allocate Genotypes in Two-Phase Designs: A Case Study in Pelargonium zonale.

    PubMed

    Molenaar, Heike; Boehm, Robert; Piepho, Hans-Peter

    2017-01-01

    Robust phenotypic data allow adequate statistical analysis and are crucial for any breeding purpose. Such data is obtained from experiments laid out to best control local variation. Additionally, experiments frequently involve two phases, each contributing environmental sources of variation. For example, in a former experiment we conducted to evaluate production related traits in Pelargonium zonale , there were two consecutive phases, each performed in a different greenhouse. Phase one involved the propagation of the breeding strains to obtain the stem cutting count, and phase two involved the assessment of root formation. The evaluation of the former study raised questions regarding options for improving the experimental layout: (i) Is there a disadvantage to using exactly the same design in both phases? (ii) Instead of generating a separate layout for each phase, can the design be optimized across both phases, such that the mean variance of a pair-wise treatment difference (MVD) can be decreased? To answer these questions, alternative approaches were explored to generate two-phase designs either in phase-wise order (Option 1) or across phases (Option 2). In Option 1 we considered the scenarios (i) using in both phases the same experimental design and (ii) randomizing each phase separately. In Option 2, we considered the scenarios (iii) generating a single design with eight replicates and splitting these among the two phases, (iv) separating the block structure across phases by dummy coding, and (v) design generation with optimal alignment of block units in the two phases. In both options, we considered the same or different block structures in each phase. The designs were evaluated by the MVD obtained by the intra-block analysis and the joint inter-block-intra-block analysis. The smallest MVD was most frequently obtained for designs generated across phases rather than for each phase separately, in particular when both phases of the design were separated with a single pseudo-level. The joint optimization ensured that treatment concurrences were equally balanced across pairs, one of the prerequisites for an efficient design. The proposed alternative approaches can be implemented with any model-based design packages with facilities to formulate linear models for treatment and block structures.

  7. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  8. FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions.

    PubMed

    Qamar, Seema; Wang, GuoZhen; Randle, Suzanne J; Ruggeri, Francesco Simone; Varela, Juan A; Lin, Julie Qiaojin; Phillips, Emma C; Miyashita, Akinori; Williams, Declan; Ströhl, Florian; Meadows, William; Ferry, Rodylyn; Dardov, Victoria J; Tartaglia, Gian G; Farrer, Lindsay A; Kaminski Schierle, Gabriele S; Kaminski, Clemens F; Holt, Christine E; Fraser, Paul E; Schmitt-Ulms, Gerold; Klenerman, David; Knowles, Tuomas; Vendruscolo, Michele; St George-Hyslop, Peter

    2018-04-19

    Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular β-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    PubMed

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  11. In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT

    PubMed Central

    Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei

    2012-01-01

    Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447

  12. Numerical analysis of wet separation of particles by density differences

    NASA Astrophysics Data System (ADS)

    Markauskas, D.; Kruggel-Emden, H.

    2017-07-01

    Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.

  13. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.

    PubMed

    Šatínský, Dalibor; Brabcová, Ivana; Maroušková, Alena; Chocholouš, Petr; Solich, Petr

    2013-07-01

    A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A "green" mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04% (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15 × 4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min(-1). The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid-base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, -0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914-0.99997, n = 6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100 ± 5% for all compounds. The intraday method precision was determined as RSD, and the values were lower than 1.00%.

  14. Supramolecular separation mechanism of pentafluorophenyl column using ibuprofen and omeprazole as markers: LC-MS and simulation study.

    PubMed

    Hussain, Afzal; AlAjmi, Mohamed F; Ali, Imran

    2018-06-01

    The pentafluorophenyl (PFP) column is emerging as a new advancement in separation science to analyze a wide range of analytes and, thus, its separation mechanism at supramolecular level is significant. We developed a mechanism for the separation of ibuprofen and omeprazole using different combinations (ranging from 50:50 to 60:40) of water-acetonitrile containing 0.1% formic acid as the mobile phase. The column used was Waters Acquity UPLC HSS PFP (75 × 2.1 mm, 1.8 μm). The reverse order of elution was observed in different combinations of the mobile phases. The docking study indicated hydrogen bonding between ibuprofen and PFP stationary phase (binding energy was -11.30 kJ/mol). Separation at PFP stationary phase is controlled by hydrogen bonding along with π-π interactions. This stationary phase may be used to analyze both aromatic and aliphatic analytes. The developed mechanism will be useful to separate various analytes by considering the possible interactions, leading to saving of energy, time and money. In addition, this work will be highly useful in preparative chromatography where separation is the major problem at a large scale. Moreover, the developed LC-MS-QTOF method may be used to analyze ibuprofen and omeprazole in an unknown sample owing to the low value of detection limits. Copyright © 2018 John Wiley & Sons, Ltd.

  15. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  16. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides.

    PubMed

    Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek

    2017-05-19

    This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Using Apollo 17 high-Ti mare basalts as windows to the lunar mantle

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    The Apollo 17 high-Ti mare basalts are derived from source regions containing plagioclase that was not retained in the residue. Ilmenite appears to remain as a residual phase, but plagioclase is exhausted. The open-system behavior of the type B2 basalts results in slightly higher Yb/Hf and La/Sm ratios. The nature of the added component is not clear, but may be a KREEP derivative or residue. The recognition of plagioclase in the source(s) of these basalts suggests that the location of the source region(s) would be more likely to be less than 150 km (i.e., closer to the plagioclase-rich crust), which would allow incorporation of plagioclase into the source through incomplete separation of crustal feldspar.

  19. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2014-04-01

    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  20. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases.

    PubMed

    Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H

    2015-12-07

    This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.

  1. Molecular dynamics studies of interpenetrating polymer networks for actuator devices

    NASA Astrophysics Data System (ADS)

    Brandell, Daniel; Kasemägi, Heiki; Citérin, Johann; Vidal, Frédéric; Chevrot, Claude; Aabloo, Alvo

    2008-03-01

    Molecular Dynamics (MD) techniques have been used to study the structure and dynamics of a model system of an interpenetrating polymer (IPN) network for actuator devices. The systems simulated were generated using a Monte Carlo-approach, and consisted of poly(ethylene oxide) (PEO) and poly(butadiene) (PB) in a 80-20 percent weight ratio immersed into propylene carbonate (PC) solutions of LiClO 4. The total polymer content was 32%, in order to model experimental conditions. The dependence of LiClO 4 concentration in PC has been studied by studying five different concentrations: 0.25, 0.5, 0.75, 1.0 and 1.25 M. After equilibration, local structural properties and dynamical features such as phase separation, coordination, cluster stability and ion conductivity were studied. In an effort to study the conduction processes more carefully, external electric fields of 1×10 6 V/m and 5×10 6 V/m has been applied to the simulation boxes. A clear relationship between the degree of local phase separation and ion mobility is established. It is also shown that although the ion pairing increases with concentration, there are still significantly more potential charge carriers in the higher concentrated systems, while concentrations around 0.5-0.75 M of LiClO 4 in PC seem to be favorable in terms of ion mobility. Furthermore, the anions exhibit higher conductivity than the cations, and there are tendencies to solvent drag from the PC molecules.

  2. Stability of Mixed Preparations Consisting of Commercial Moisturizing Creams with an Ointment Base Investigated by Magnetic Resonance Imaging.

    PubMed

    Onuki, Yoshinori; Funatani, Chiaki; Yamamoto, Yoshihisa; Fukami, Toshiro; Koide, Tatsuo; Hayashi, Yoshihiro; Takayama, Kozo

    2017-01-01

    A moisturizing cream mixed with a steroid ointment is frequently prescribed to patients suffering from atopic dermatitis. However, there is a concern that the mixing operation causes destabilization. The present study was performed to investigate the stability of such preparations closely using magnetic resonance imaging (MRI). As sample preparations, five commercial moisturizing creams that are popular in Japan were mixed with an ointment base, a white petrolatum, at a volume ratio of 1 : 1. The mixed preparations were stored at 60°C to accelerate the destabilization processes. Subsequently, the phase separations induced by the storage test were monitored using MRI. Using advanced MR technologies including spin-spin relaxation time (T 2 ) mapping and MR spectroscopy, we successfully characterized the phase-separation behavior of the test samples. For most samples, phase separations developed by the bleeding of liquid oil components. From a sample consisting of an oil-in-water-type cream, Urepearl Cream 10%, a distinct phase-separation mode was observed, which was initiated by the aqueous component separating from the bottom part of the sample. The resultant phase separation was the most distinct among the test samples. To investigate the phase separation quantitatively and objectively, we conducted a histogram analysis on the acquired T 2 maps. The water-in-oil type creams were found to be much more stable after mixing with ointment base than those of oil-in-water type creams. This finding strongly supported the validity of the mixing operation traditionally conducted in pharmacies.

  3. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Tolbert, M. A.

    2013-05-01

    Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2 : 1 mixtures of organic polyols (1,2,6-hexanetriol and 1 : 1 1,2,6-hexanetriol + 2,2,6,6-tetrakis(hydroxymethyl)cyclohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicate that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase-separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.

  4. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Tolbert, M. A.

    2012-12-01

    Atmospheric ice nucleation on aerosol particles relevant to cirrus clouds remains one of the least understood processes in the atmosphere. Upper tropospheric aerosols as well as sub-visible cirrus residues are known to be enhanced in both sulfates and organics. The hygroscopic phase transitions of organic-sulfate particles can have an impact on both the cirrus cloud formation mechanism and resulting cloud microphysical properties. In addition to deliquescence and efflorescence, organic-sulfate particles are known to undergo another phase transition known as liquid-liquid phase separation. The ice nucleation properties of particles that have undergone liquid-liquid phase separation are unknown. Here, Raman microscopy coupled with an environmental cell was used to study the low temperature deliquescence, efflorescence, and liquid-liquid phase separation behavior of 2:1 mixtures of organic polyols (1,2,6-hexanetriol, and 1:1 1,2,6-hexanetriol +2,2,6,6-tetrakis(hydroxymethyl)cycohexanol) and ammonium sulfate from 240-265 K. Further, the ice nucleation efficiency of these organic-sulfate systems after liquid-liquid phase separation and efflorescence was investigated from 210-235 K. Raman mapping and volume-geometry analysis indicates that these particles contain solid ammonium sulfate cores fully engulfed in organic shells. For the ice nucleation experiments, we find that if the organic coatings are liquid, water vapor diffuses through the shell and ice nucleates on the ammonium sulfate core. In this case, the coatings minimally affect the ice nucleation efficiency of ammonium sulfate. In contrast, if the coatings become semi-solid or glassy, ice instead nucleates on the organic shell. Consistent with recent findings that glasses can be efficient ice nuclei, the phase separated particles are nearly as efficient at ice nucleation as pure crystalline ammonium sulfate.

  5. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants.

    PubMed

    Caban, Magda; Stepnowski, Piotr

    2017-05-15

    The main advantage of alkylimidazolium cation-based ionic liquids (ILs) as phase additives in RP-HPLC is believed to be the suppression of deleterious residual free silanols in chemically modified silica stationary phases. However, up to now, the influence of ILs was usually evaluated having in mind a particular IL salt as one compound, not as a specific mixture of cations and anions. This in fact led to some misinterpretation of observed results, very often related to the suppression effect, while in fact caused by the nature of IL anions, which contribute to the elevated chaotropicity of the separation phases. In the present study, we have attempted to consider the effect gained due to the presence of both ionic liquid entities in the mobile phase used for the separation of basic compounds. Tri-cyclic antidepressants (TCAs) were taken as representative analytes. The effect of ILs on the chromatographic separation of TCAs was investigated in comparison to common mobile phase additives and by the presentation of retention factors, tailing factors and theoretical plates. In addition, an overloading study was performed for the IL-based phases for the first time. In general, it was found that the effect of chaotropic hexafluorophosphate anions in ILs is much stronger and opposite to that caused by imidazolium cations. The overloading study gives interesting information on how imidazolium cations affect the separation of cationic analytes. Finally, the usefulness of imidazolium-based ILs as mobile phase modifiers in the RP-HPLC separation of basic compounds was discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field.

    PubMed

    Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza

    2015-12-01

    Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available.

  7. Processing factors affecting the clarity of a rapid-curing clear acrylic resin.

    PubMed

    Keng, S B; Cruickshanks-Boyd, D W; Davies, E H

    1979-10-01

    The difficulty in repeatedly producing unblemished, clear acrylic resin in the dental laboratory has hindered its wider use, despite its many advantages over coloured material. Recently, rapid-cure dental acrylics have been introduced, which are available in both clear and coloured forms. This investigation examined various factors which may influence the production of unblemished, rapid-curing, clear acrylic resin. Utilizing a quantitative assessment of clarity, the most important factor influencing the clarity of the resin is shown to be the choice of separating medium. Tin-foil produces extremely high clarity, but alginate mould separator causes surface blanching. However, this surface blanching can be removed by polishing. Porosity, caused by too rapid curing, and stone model dryness are of only secondary importance. Possible water contamination of the monomer liquid due to accidental exposure only affects clarity at very high levels of contamination.

  8. Separation as an Important Risk Factor for Suicide: A Systematic Review

    ERIC Educational Resources Information Center

    Ide, Naoko; Wyder, Marianne; Kolves, Kairi; De Leo, Diego

    2010-01-01

    Examining how different phases of relationship separation effects the development of suicidal behaviors has been largely ignored in suicide studies. The few studies conducted suggest that individuals experiencing the acute phase of marital/de facto separation may be at greater risk of suicide compared with those experiencing long-term separation…

  9. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  10. Environmentally friendly gamma-MnO2 hexagon-based nanoarchitectures: structural understanding and their energy-saving applications.

    PubMed

    Wu, Changzheng; Xie, Wei; Zhang, Miao; Bai, Liangfei; Yang, Jinlong; Xie, Yi

    2009-01-01

    Although about 200,000 metric tons of gamma-MnO(2) are used annually worldwide for industrial applications, the gamma-MnO(2) structure is still known to possess a highly ambiguous crystal lattice. To better understand the gamma-MnO(2) atomic structure, hexagon-based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon-based nanoarchitectures, clearly show the coexistence of akhtenskite (epsilon-MnO(2)), pyrolusite (beta-MnO(2)), and ramsdellite in the so-called gamma-MnO(2) phase and verified the heterogeneous phase assembly of the gamma-MnO(2) state, which violates the well-known "De Wolff" model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous gamma-MnO(2) assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous gamma-MnO(2) system have structural similarities and a high lattice matches with pyrolusite (beta-MnO(2)). The as-obtained gamma-MnO(2) nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase-change materials of inorganic salts, such as phase separation and supercooling-effects, thereby showing prospect in energy-saving applications in future "smart-house" systems.

  11. Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell

    NASA Astrophysics Data System (ADS)

    Supasai, Thidarat; Amornkitbamrung, Vittaya; Thanachayanont, Chanchana; Tang, I.-Ming; Sutthibutpong, Thana; Rujisamphan, Nopporn

    2017-11-01

    Visualizing and controlling the phase separation of the donor and acceptor domains in organic bulk-hetero-junction (BHJ) solar devices made with poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)carbon-yl]thieno[3,4-bthiophenediyl]) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) are needed to achieve high power conversion efficiency (PCE). Traditional bright-field (BF) imaging, especially of polymeric materials, produces images of poor contrast when done at the nanoscale level. Clear nanoscale morphologies of the PTB7:PC71BM blends prepared with different 1,8-diiodooctane (DIO) concentrations were seen when using the energy-filtered transmission electron microscopy (EFTEM). The electron energy loss (EELS) spectra of the pure PTB7 and PC71BM samples are centered at 22.7 eV and 24.5 eV, respectively. Using the electrons whose energy losses are in the range of 16-30 eV, detail information of the phase morphology at the nanoscale was obtained. Correlations between the improvement in the photovoltaic performances and the increased electron mobility were seen. These correlations are discussed in terms of the changes (at the nanoscale level) in blending phase morphology when different DIO concentrations are added.

  12. Effects of organoclay to miscibility, mechanical and thermal properties of poly(lactic acid) and propylene-ethylene copolymer blends

    NASA Astrophysics Data System (ADS)

    Wacharawichanant, S.; Ounyai, C.; Rassamee, P.

    2017-07-01

    The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.

  13. Combination of Complex-Based and Magnitude-Based Multiecho Water-Fat Separation for Accurate Quantification of Fat-Fraction

    PubMed Central

    Yu, Huanzhou; Shimakawa, Ann; Hines, Catherine D. G.; McKenzie, Charles A.; Hamilton, Gavin; Sirlin, Claude B.; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude-based” methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat-fraction can be estimated with improved accuracy at low fat-fractions. PMID:21695724

  14. Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields

    NASA Astrophysics Data System (ADS)

    Wang, Heping; Li, Xiaoguang; Lin, Kejun; Geng, Xingguo

    2018-05-01

    This paper explores the effect of the shear frequency and Prandtl number ( Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.

  15. The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    NASA Technical Reports Server (NTRS)

    Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.

    2015-01-01

    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.

  16. A two-dimensional phase separation on the spherical surface of the metallic glass Au55Pb22.5Sb22.5

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Johnson, W. L.

    1982-01-01

    Recent experiments indicate that a phase separation in a spherical sample of the metallic glass Au55Pb22.5Sb22.5 occurs near the surface of the sphere. This strongly suggests either a contribution of surface-free energy to the decomposition process or a possible influence of near surface impurities absorbed during synthesis of the sphere. The surface phase separation has been studied as a function of cooling rate of the sphere. At high cooling rates (small sphere sizes), the surface separation disappears altogether suggesting that the surface of the parent liquid droplet is initially homogeneous.

  17. 3D CFD simulation of Multi-phase flow separators

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiying

    2017-10-01

    During the exploitation of natural gas, some water and sands are contained. It will be better to separate water and sands from natural gas to insure favourable transportation and storage. In this study, we use CFD to analyse the effect of multi-phase flow separator, whose detailed geometrical parameters are designed in advanced. VOF model and DPM are used here. From the results of CFD, we can draw a conclusion that separated effect of multi-phase flow achieves better results. No solid and water is carried out from gas outlet. CFD simulation provides an economical and efficient approach to shed more light on details of the flow behaviour.

  18. Polymer Dispersed Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Doane, J. William

    The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES

  19. Separation of VX, RVX and GB Enantiomers Using Liquid ChromatographyTime-of-Flight Mass Spectrometry

    DTIC Science & Technology

    2016-02-01

    Torrance, CA). The mobile phase consisted of n - hexane (A) and isopropyl alcohol (B), and sample volume was 10 µL. Separation was achieved using...level for preparative separation. All reagents and solvents were high-performance LC grade. Hexane and isopropyl alcohol were purchased from Fisher...1 column and normal-phase LC were used with a mobile phase of 96/4 (v/v %) hexane /isopropyl alcohol at a flow rate of 0.6 mL/min. The enantiomers

  20. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  1. A nitromethane-based HPLC system alternative to acetonitrile for carotenoid analysis of fruit and vegetables.

    PubMed

    Sandmann, Gerhard

    2010-01-01

    Acetonitrile-based HPLC systems are the most commonly used for carotenoid analysis from different plant tissues. Because of the acetonitrile shortage, an HPLC system for the separation of carotenoids on C(18) reversed-phase columns was developed in which an acetonitrile-alcohol-based mobile phase was replaced by nitromethane. This solvent comes closest to acetonitrile with respect to its elutrophic property. Our criterion was to obtain similar separation and retention times for a range of differently structured carotenoids. This was achieved by further increase in the lipophilicity with ethylacetate. For all the carotenoids which we tested, we found co-elution only of β-cryptoxanthin and lycopene. By addition of 1% of water, separation of this pair of carotenoids was also achieved. The final recommended mobile phase consisted of nitromethane : 2-propanol : ethyl acetate : water (79 : 10 : 10 : 1, by volume). On Nucleosil C(18) columns and related ones like Hypersil C(18), we obtained separation of carotenes, hydroxyl, epoxy and keto derivatives, which resembles the excellent separation properties of acetonitrile-based mobile phases on C(18) reversed phase columns. We successfully applied the newly developed HPLC system to the separation of carotenoids from different vegetables and fruit. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    PubMed

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enemy Combatant Detainees: Habeas Corpus Challenges in Federal Court

    DTIC Science & Technology

    2007-07-25

    40 Separation of Powers Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Eliminating...specifically intended to grant the authority of the President to adjudicate or remedy treaty violations could violate the doctrine of separation of powers , as...not serve to insulate such legislation from constitutional scrutiny. Separation of Powers Issues It is also clear that Congress may not exercise its

  4. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    PubMed

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Water outlet control mechanism for fuel cell system operation in variable gravity environments

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)

    2007-01-01

    A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.

  6. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    PubMed

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  7. STS-42 Phase Partitioning Experiment (PPE) closeup taken onboard OV-103

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Phase Partitioning Experiment (PPE), an International Microgravity Laboratory 1 (IML-1) experiment, is documented in a closeup taken onboard Discovery, Orbiter Vehicle (OV) 103. Phase partitioning is a very effective technique used by biochemists and cell biologists to obtain fairly pure cells. Cells are separated and collected in a mixture of two immiscible liquids (fluids that tend not to mix) by their surface characteristics. In the PPE, investigators feel they will be able to separate closely related cells because cell density and convection flows are not factors in the phase partitioning process in space. They also hope to study other factors that influence the process. Phase partitioning is used to separate biological materials such as bone marrow cells for cancer treatment.

  8. Thermodynamics and structural transition of binary atomic Bose-Fermi mixtures in box or harmonic potentials: A path-integral study

    NASA Astrophysics Data System (ADS)

    Kim, Tom; Chien, Chih-Chun

    2018-03-01

    Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures and interactions are also derived. The structural transition can be identified as a loop of the effective potential curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures, we use the local density approximation to map out the finite-temperature density profiles and present typical trap structures, including the mixture, partially separated phases, and fully separated phases.

  9. Phase segregation due to simultaneous migration and coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    1994-01-01

    The primary objective of the research is to perform ground-based analysis and experiments on the interaction and coalescence of drops (or bubbles) leading to macroscopic phase separation. Migration of the drops occurs as a result of the individual and collective action of gravity and thermocapillary effects. Larger drops migrate faster than smaller ones, leading to the possibility of collisions and coalescence. Coalescence increases the rate of macroscopic phase separation, since the result is larger drops with higher migration rates. It is hoped that the understanding gained will lead to the design of microgravity experiments to further elucidate the mechanisms governing coalescence and phase separation.

  10. Clouds above the Martin Limb: Viking observations

    NASA Technical Reports Server (NTRS)

    Martin, L. J.; Baum, W. A.; Wasserman, L. H.; Kreidl, T. J.

    1984-01-01

    Whenever Viking Orbiter images included the limb of Mars, they recorded one or more layers of clouds above the limb. The height above the limb and the brightness (reflectivity) of these clouds were determined in a selected group of these images. Normalized individual brightness profiles of three separate traverses across the limb of each image are shown. The most notable finding is that some of these clouds can be very high. Many reach heights of over 60 km, and several are over 70 km above the limb. Statistically, the reflectivity of the clouds increases with phase angle. Reflectivity and height both appear to vary with season, but the selected images spanned only one Martian year, so the role of seasons cannot be isolated. Limb clouds in red-filter images tend to be brighter than violet-filter images, but both season and phase appear to be more dominant factors. Due to the limited sample available, the possible influences of latitude and longitude are less clear. The layering of these clouds ranges from a single layer to five or more layers. Reflectivity gradients range from smooth and gentle to steep and irregular.

  11. Pharmacokinetics of 13-cis-retinoic acid in patients with advanced cancer.

    PubMed

    Goodman, G E; Einspahr, J G; Alberts, D S; Davis, T P; Leigh, S A; Chen, H S; Meyskens, F L

    1982-05-01

    13-cis-Retinoic acid (13-CRA) is a synthetic analog of vitamin A effective reversing preneoplastic lesions in both humans and animals. To study its physiochemical properties and disposition kinetics, we developed a rapid, sensitive, and precise high-performance liquid chromatography assay for 13-CRA in biological samples. This assay system resulted in a clear separation of 13-CRA from all-trans-retinoic acid and retinol and had a detection limit of 20 ng/ml plasma. Recovery was 89 +/- 6% (S.D.) at equivalent physiological concentrations with a precision of 8%. To study the disposition kinetics in humans, 13 patients received a p.o. bolus of 13-CRA and had blood samples collected at timed intervals. For the 10 patients studied on the first day of 13-CRA administration, the mean time to peak plasma concentration was 222 +/- 102 min. Interpatient peak 13-CRA plasma concentrations were found to be variable, suggesting irregular gastrointestinal absorption. Beta-Phase t 1/2 was approximately 25 hr. The prolonged terminal-phase plasma half-life may represent biliary excretion and enterohepatic circulation.

  12. Luminous blue variables and the fates of very massive stars.

    PubMed

    Smith, Nathan

    2017-10-28

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40  M ⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  13. Velocity of mist droplets and suspending gas imaged separately

    NASA Astrophysics Data System (ADS)

    Kuethe, Dean O.; McBride, Amber; Altobelli, Stephen A.

    2012-03-01

    Nuclear Magnetic Resonance Images (MRIs) of the velocity of water droplets and velocity of the suspending gas, hexafluoroethane, are presented for a vertical and horizontal mist pipe flow. In the vertical flow, the upward velocity of the droplets is clearly slower than the upward velocity of the gas. The average droplet size calculated from the average falling velocity in the upward flow is larger than the average droplet size of mist drawn from the top of the pipe measured with a multi-stage aerosol impactor. Vertical flow concentrates larger particles because they have a longer transit time through the pipe. In the horizontal flow there is a gravity-driven circulation with high-velocity mist in the lower portion of the pipe and low-velocity gas in the upper portion. MRI has the advantages that it can image both phases and that it is unperturbed by optical opacity. A drawback is that the droplet phase of mist is difficult to image because of low average spin density and because the signal from water coalesced on the pipe walls is high. To our knowledge these are the first NMR images of mist.

  14. Water Capture Device Signal Integration Board

    NASA Technical Reports Server (NTRS)

    Chamberlin, Kathryn J.; Hartnett, Andrew J.

    2018-01-01

    I am a junior in electrical engineering at Arizona State University, and this is my second internship at Johnson Space Center. I am an intern in the Command and Data Handling Branch of Avionics Division (EV2), my previous internship was also in EV2. During my previous internship I was assigned to the Water Capture Device payload, where I designed a prototype circuit board for the electronics system of the payload. For this internship, I have come back to the Water Capture Device project to further the work on the electronics design I completed previously. The Water Capture Device is an experimental payload to test the functionality of two different phase separators aboard the International Space Station (ISS). A phase separator sits downstream of a condensing heat exchanger (CHX) and separates the water from the air particles for environmental control on the ISS. With changing CHX technology, new phase separators are required. The goal of the project is to develop a test bed for the two phase separators to determine the best solution.

  15. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    PubMed

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase.

    PubMed

    Liu, Jing-fu; Liu, Rui; Yin, Yong-guang; Jiang, Gui-bin

    2009-03-28

    Capable of preserving the sizes and shapes of nanomaterials during the phase transferring, Triton X-114 based cloud point extraction provides a general, simple, and cost-effective route for reversible concentration/separation or dispersion of various nanomaterials in the aqueous phase.

  18. SEPARATION OF SOME RARE EARTHS BY REVERSED-PHASE PARTITION CHROMATOGRAPHY. Report No. 129/V; Rozdzielenie Niektorych Ziem Rzadkich za Pomoca Chromatografii Podzialowej z Odwroconymi Fazami

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekierski, S.; Fidelis, I.

    1960-01-01

    The reversed phase partition chromatography was applied to the separation of small amounts of some rare earths. As a stationary phase TBP was used. and the elution was carried out with concentrated HNO/sub 3/. (auth)

  19. Effects of the dynamic modification of stationary phases by sorbates in gas chromatography: The possibility of separating enantiomers in achiral systems

    NASA Astrophysics Data System (ADS)

    Zenkevich, I. G.; Pavlovskii, A. A.

    2016-10-01

    It is shown that the gas chromatographic separation of enantiomers on columns with achiral nonpolar stationary phases is principally possible as a result of the dynamic modification of stationary phases by sorbates under analysis. It is found that a number of key characteristic features is intrinsic to such separation: it can be only partial, it does not occur for all chromatographic columns, and it is observed only for some compounds and only within narrow ranges of quantities of sorbates that are close to the limits of mass overload of chromatographic systems. These characteristic features are illustrated by the examples of separating (1 R,5 R)-(+)- and (1 S,5 S)-(-)-α-pinenes on a WCOT column with an RTX-5 phase. The main characteristic feature of the separation of enantiomers as a result of the dynamic modification of stationary phases is the nonconformity of peaks in chromatograms with two individual enantiomers, compared to other ways and means for their separation; the first eluting peak belongs to the enantiomer that predominates in a mixture irrespective of its configuration, while the second peak corresponds to the racemic mixture of enantiomers; i.e., the ratio of peak areas in chromatograms does not correspond to the actual ratio of enantiomers in samples under analysis and is strongly distorted as a result of their incomplete separation. It is concluded that the separation of racemic mixtures in achiral systems is fundamentally impossible under any conditions, and this is one of the key criteria of the validity of the considered concept as a whole.

  20. Phase separation and crystallization process of amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhgalin, V. V.; Lad’yanov, V. I.

    2015-08-17

    The influence of the melt heat treatment on the structure and crystallization process of the rapidly quenched amorphous Fe{sub 78}B{sub 12}Si{sub 9}Ni{sub 1} alloys have been investigated by means of x-ray diffraction, DSC and TEM. Amorphous phase separation has been observed in the alloys quenched after the preliminary high temperature heat treatment of the liquid alloy (heating above 1400°C). Comparative analysis of the pair distribution functions demonstrates that this phase separation accompanied by a changes in the local atomic arrangement. It has been found that crystallization process at heating is strongly dependent on the initial amorphous phase structure - homogeneousmore » or phase separated. In the last case crystallization goes through the formation of a new metastable hexagonal phase [a=12.2849(9) Ǻ, c=7.6657(8) Ǻ]. At the same time the activation energy for crystallization (Ea) reduces from 555 to 475 kJ mole{sup −1}.« less

  1. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Bischak, Connor G.; Hetherington, Craig L.; Wu, Hao; Aloni, Shaul; Ogletree, D. Frank; Limmer, David T.; Ginsberg, Naomi S.

    2017-02-01

    Nonequilibrium processes occurring in functional materials can significantly impact device efficiencies and are often difficult to characterize due to the broad range of length and time scales involved. In particular, mixed halide hybrid perovskites are promising for optoelectronics, yet the halides reversibly phase separate when photo-excited, significantly altering device performance. By combining nanoscale imaging and multiscale modeling, we elucidate the mechanism underlying this phenomenon, demonstrating that local strain induced by photo-generated polarons promotes halide phase separation and leads to nucleation of light-stabilized iodide-rich clusters. This effect relies on the unique electromechanical properties of hybrid materials, characteristic of neither their organic nor inorganic constituents alone. Exploiting photo-induced phase separation and other nonequilibrium phenomena in hybrid materials, generally, could enable new opportunities for expanding the functional applications in sensing, photoswitching, optical memory, and energy storage.

  2. Antibody enhancement of free-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Cohly, H. H. P.; Morrison, Dennis R.; Atassi, M. Zouhair

    1988-01-01

    Specific T cell clones and antibodies (ABs) were developed to study the efficiency of purifying closely associated T cells using Continuous Flow Electrophoresis System. Enhanced separation is accomplished by tagging cells first with ABs directed against the antigenic determinants on the cell surface and then with ABs against the Fc portion of the first AB. This second AB protrudes sufficiently beyond the cell membrane and glycocalyx to become the major overall cell surface potential determinant and thus causes a reduction of electrophoretic mobility. This project was divided into three phases. Phase one included development of specific T cell clones and separation of these specific clones. Phase two extends these principles to the separation of T cells from spleen cells and immunized lymph node cells. Phase three applies this double antibody technique to the separation of T cytotoxic cells from bone marrow.

  3. Movie of phase separation during physics of colloids in space experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  4. Phase separation during the Experiment on Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  5. Comparison of analytical protein separation characteristics for three amine-based capillary-channeled polymer (C-CP) stationary phases.

    PubMed

    Jiang, Liuwei; Marcus, R Kenneth

    2016-02-01

    Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.

  6. Shuttle unified navigation filter, revision 1

    NASA Technical Reports Server (NTRS)

    Muller, E. S., Jr.

    1973-01-01

    Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).

  7. Modeling phase separation in mixtures of intrinsically-disordered proteins

    NASA Astrophysics Data System (ADS)

    Gu, Chad; Zilman, Anton

    Phase separation in a pure or mixed solution of intrinsically-disordered proteins (IDPs) and its role in various biological processes has generated interest from the theoretical biophysics community. Phase separation of IDPs has been implicated in the formation of membrane-less organelles such as nucleoli, as well as in a mechanism of selectivity in transport through the nuclear pore complex. Based on a lattice model of polymers, we study the phase diagram of IDPs in a mixture and describe the selective exclusion of soluble proteins from the dense-phase IDP aggregates. The model captures the essential behaviour of phase separation by a minimal set of coarse-grained parameters, corresponding to the average monomer-monomer and monomer-protein attraction strength, as well as the protein-to-monomer size ratio. Contrary to the intuition that strong monomer-monomer interaction increases exclusion of soluble proteins from the dense IDP aggregates, our model predicts that the concentration of soluble proteins in the aggregate phase as a function of monomer-monomer attraction is non-monotonic. We corroborate the predictions of the lattice model using Langevin dynamics simulations of grafted polymers in planar and cylindrical geometries, mimicking various in-vivo and in-vitro conditions.

  8. An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures.

    PubMed

    Kostanyan, Artak E; Shishilov, Oleg N

    2018-06-01

    Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Separator for lithium-sulfur battery based on polymer blend membrane

    NASA Astrophysics Data System (ADS)

    Freitag, Anne; Stamm, Manfred; Ionov, Leonid

    2017-09-01

    In this work we report a novel way of reducing the polysulfide shuttle in lithium-sulfur batteries by a new separator material. Polyvinylsulfate potassium salt (PVSK) as polymeric additive is introduced into a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix membrane to improve the battery performance. PVSK is expected to lower the polysulfide mobility due to interaction with the sulfonic group. PVdF-HFP/PVSK blend membranes are prepared and an UV/Vis polysulfide diffusion test clearly demonstrates the positive effect of PVSK. Electrochemical testing reveals a significant improvement of cycling stability up to more than 200 cycles. In addition, the effect of separator porosity to the polysulfide shuttle is investigated with PVdF-HFP membranes of different porosity. A simple polysulfide diffusion test and potentiostatic charge/discharge cycling clearly demonstrate that low separator porosity is favorable in a lithium-sulfur cell.

  10. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  11. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  12. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation ontomore » that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.« less

  14. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  15. Demulsification of water/oil/solid emulsions by hollow-fiber membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirmizi, N.P.; Raghuraman, B.; Wiencek, J.

    1996-05-01

    The demulsification techniques investigated use preferential surface wetting to allow separation of oil and water phases in ultrafiltration and microfiltration membranes. A hydrophobic membrane allows the permeation of an oil phase at almost zero pressure and retains the water phase, even though the molecular weight of the water molecule (18) is much smaller than that of the oil molecule (198 for tetradecane, used in this study). Hydrophobic membranes having pore sizes from 0.02 to 0.2 {micro}m were tested for demulsification of water-in-oil emulsions and water/oil/solid mixtures. The dispersed (aqueous)-phase drop sizes ranged from 1 to 5 {micro}m. High separation rates,more » as well as good permeate quality, were obtained with microfiltration membranes. Water content of permeating oil was 32--830 ppm depending on operating conditions and interfacial properties. For emulsions with high surfactant content, simultaneous operation of a hydrophobic and hydrophilic membrane, or simultaneous membrane separation with electric demulsification was more efficient in obtaining complete phase separation.« less

  16. Iptycene-based stationary phase with three-dimensional aromatic structure for highly selective separation of H-bonding analytes and aromatic isomers.

    PubMed

    Yang, Xiaohong; Han, Ying; Qi, Meiling; Chen, Chuanfeng

    2016-05-06

    Unique structures and molecular recognition ability endow iptycene derivatives with great potential as stationary phases in chromatography, which, however, has not been explored yet. Herein, we report the first example of utilizing a pentiptycene quinone (PQ) for gas chromatographic (GC) separations. Remarkably, the statically coated capillary column with the stationary phase achieved extremely high column efficiency of 4800 plates/m. It exhibited preferential retention and high resolving capability for H-bonding and aromatic analytes and positional isomers, showing advantages over the ordinary polysiloxane phase. Moreover, the fabricated iptycene column showed excellent separation repeatability with RSD values of 0.02-0.06% for intra-day, 0.20-0.35% for inter-day and 3.1-5.5% for between-column, respectively. In conclusion, iptycene derivatives as a new class of stationary phases show promising future for their use in GC separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. De-vitrification of nanoscale phase-separated amorphous thin films in the immiscible copper-niobium system

    NASA Astrophysics Data System (ADS)

    Puthucode, A.; Devaraj, A.; Nag, S.; Bose, S.; Ayyub, P.; Kaufman, M. J.; Banerjee, R.

    2014-05-01

    Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu-Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200 °C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300 °C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.

  18. Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, D.L.

    1977-07-19

    A process is described for making a fuel by combining turpentine, alcohol and blending agent and reducing the temperature of a batch to form two separate phases of differing densities, both of which are separately useable as fuels for internal combustion engines. The proportions of combustion favor the denser phase. However, under certain conditions, the less dense phase may be desired. Either phase may also be combined with gasoline to enhance the performance of the gasoline.

  19. Discussion of Priorities

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Microgravity Science Division identifies four priority ratings for microgravity research and technology issues: 1) Critical; 2) Severely Limiting; 3) Enhancements; 4) Communication. Reduced gravity instabilities are critical, while severely limiting issues include phase separation, phase change, and flow through components. Enhancements are listed for passive phase separation and phase change. This viewgraph presentation also classifies microgravity issues as spaceflight, ground-based, or other for the time periods 2003-2008, 2009-2015, and beyond.

  20. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    PubMed Central

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-01

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379

  1. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic oligonucleotide separation and purification. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Measurement of very low amounts of arsenic in soils and waters: is ICP-MS the indispensable analytical tool?

    NASA Astrophysics Data System (ADS)

    López-García, Ignacio; Marín-Hernández, Juan Jose; Perez-Sirvent, Carmen; Hernandez-Cordoba, Manuel

    2017-04-01

    The toxicity of arsenic and its wide distribution in the nature needs nowadays not to be emphasized, and the convenience of reliable analytical tools for arsenic determination at very low levels is clear. Leaving aside atomic fluorescence spectrometers specifically designed for this purpose, the task is currently carried out by using inductively coupled plasma mass spectrometry (ICP-MS), a powerful but expensive technique that is not available in all laboratories. However, as the recent literature clearly shows, a similar or even better analytical performance for the determination of several elements can be achieved by replacing the ICP-MS instrument by an AAS spectrometer (which is commonly present in any laboratory and involves low acquisition and maintenance costs) provided that a simple microextraction step is used to preconcentrate the sample. This communication reports the optimization and results obtained with a new analytical procedure based on this idea and focused to the determination of very low concentrations of arsenic in waters and extracts from soils and sediments. The procedure is based on a micro-solid phase extraction process for the separation and preconcentration of arsenic that uses magnetic particles covered with silver nanoparticles functionalized with the sodium salt of 2-mercaptoethane-sulphonate (MESNa). This composite is obtained in an easy way in the laboratory. After the sample is treated with a low amount (only a few milligrams) of the magnetic material, the solid phase is separated by means of a magnetic field, and then introduced into an electrothermal atomizer (ETAAS) for arsenic determination. The preconcentration factor is close to 200 with a detection limit below 0.1 µg L-1 arsenic. Speciation of As(III) and As(V) can be achieved by means of two extractions carried out at different acidity. The results for total arsenic are verified using certified reference materials. The authors are grateful to the Comunidad Autonóma de la Región de Murcia , Spain (Fundación Séneca, 19888/GERM/15) and to the Spanish MINECO (Project CTQ2015-68049-R) for financial support

  3. 77 FR 5990 - Special Conditions: Learjet Inc., Model LJ-200-1A10 Airplane, Pilot-Compartment View Through...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... airflow to maintain a clear-vision area. The heavy rain and high speed conditions specified in the current... to maintain a sufficiently clear area of the windshield in low-speed flight or during surface... airflow disturbance or separation on the windshield could cause failure to maintain a clear-vision area on...

  4. Regional rates of myocardial fatty acid metabolism: comparison with coronary angiography and ventriculography.

    PubMed

    Schad, N; Wagner, R K; Hallermeier, J; Daus, H J; Vattimo, A; Bertelli, P

    1990-01-01

    In 50 patients, 1 mCi 123I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates.

  5. Spatially modulated structural colour in bird feathers.

    PubMed

    Parnell, Andrew J; Washington, Adam L; Mykhaylyk, Oleksandr O; Hill, Christopher J; Bianco, Antonino; Burg, Stephanie L; Dennison, Andrew J C; Snape, Mary; Cadby, Ashley J; Smith, Andrew; Prevost, Sylvain; Whittaker, David M; Jones, Richard A L; Fairclough, J Patrick A; Parker, Andrew R

    2015-12-21

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes.

  6. Sodium triflate decreases interaggregate repulsion and induces phase separation in cationic micelles.

    PubMed

    Lima, Filipe S; Cuccovia, Iolanda M; Buchner, Richard; Antunes, Filipe E; Lindman, Björn; Miguel, Maria G; Horinek, Dominik; Chaimovich, Hernan

    2015-03-10

    Dodecyltrimethylammonium triflate (DTATf) micelles possess lower degree of counterion dissociation (α), lower hydration, and higher packing of monomers than other micelles of similar structure. Addition of sodium triflate ([NaTf] > 0.05 M) to DTATf solutions promotes phase separation. This phenomenon is commonly observed in oppositely charged surfactant mixtures, but it is rare for ionic surfactants and relatively simple counterions. While the properties of DTATf have already been reported, the driving forces for the observed phase separation with added salt remain unclear. Thus, we propose an interpretation for the observed phase separation in cationic surfactant solutions. Addition of up to 0.03 M NaTf to micellar DTATf solutions led to a limited increase of the aggregation number, to interface dehydration, and to a progressive decrease in α. The viscosity of DTATf solutions of higher concentration ([DTATf] ≥ 0.06 M) reached a maximum with increasing [NaTf], though the aggregation number slightly increased, and no shape change occurred. We hypothesize that this maximum results from a decrease in interaggregate repulsion, as a consequence of increased ion binding. This reduction in micellar repulsion without simultaneous infinite micellar growth is, probably, the major driving force for phase separation at higher [NaTf].

  7. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    PubMed Central

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-01-01

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase. PMID:26938567

  8. Spatially modulated structural colour in bird feathers

    PubMed Central

    Parnell, Andrew J.; Washington, Adam L.; Mykhaylyk, Oleksandr O.; Hill, Christopher J.; Bianco, Antonino; Burg, Stephanie L.; Dennison, Andrew J. C.; Snape, Mary; Cadby, Ashley J.; Smith, Andrew; Prevost, Sylvain; Whittaker, David M.; Jones, Richard A. L.; Fairclough, J. Patrick. A.; Parker, Andrew R.

    2015-01-01

    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. PMID:26686280

  9. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases.

    PubMed

    Mosiashvili, L; Chankvetadze, L; Farkas, T; Chankvetadze, B

    2013-11-22

    This article reports the systematic study of the effect of basic and acidic additives on HPLC separation of enantiomers of some basic chiral drugs on polysaccharide-based chiral columns under polar organic mobile-phase conditions. In contrary to generally accepted opinion that the basic additives improve the separation of enantiomers of basic compounds, the multiple scenarios were observed including the increase, decrease, disappearance and appearance of separation, as well as the reversal of the enantiomer elution order of studied basic compounds induced by the acidic additives. These effects were observed on most of the studied 6 chiral columns in 2-propanol and acetonitrile as mobile phases and diethylamine as a basic additive. As acidic additives formic acid was used systematically and acetic acid and trifluoroacetic acid were applied for comparative purposes. This study illustrates that the minor acidic additives to the mobile phase can be used as for the adjustment of separation selectivity and the enantiomer elution order of basic compounds, as well as for study of chiral recognition mechanisms with polysaccharide-based chiral stationary phases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  11. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Barcelo, D.

    2001-01-01

    An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.

  12. Intrinsic crystal phase separation in the antiferromagnetic superconductor Rb(y)Fe(2-x)Se2: a diffraction study.

    PubMed

    Yu Pomjakushin, V; Krzton-Maziopa, A; Pomjakushina, E V; Conder, K; Chernyshov, D; Svitlyk, V; Bosak, A

    2012-10-31

    The crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically phase-separated state with two distinct-by-symmetry phases. The main phase has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins. The minority phase does not have √5 × √5-type of ordering and has a smaller in-plane lattice constant a and larger tetragonal c-axis and can be well described by assuming the parent average vacancy disordered structure (I4/mmm space group) with the refined stoichiometry Rb(0.60(5))(Fe(1.10(5))Se)(2). The minority phase amounts to 8-10% mass fraction. The unit cell volume of the minority phase is 3.2% smaller than the one of the main phase at T = 2 K and has quite different temperature dependence. The minority phase merges with the main vacancy ordered phase on heating above the phase separation temperature T(P) = 475 K. The spatial dimensions of the phase domains strongly increase above T(P) from 1000 to >2500 Å due to the integration of the regions of the main phase that were separated by the second phase at low temperatures. Additional annealing of the crystals at a temperature T = 488 K, close to T(P), for a long time drastically reduces the amount of the minority phase.

  13. Evaluation of the Granada agar plate for detection of vaginal and rectal group B streptococci in pregnant women.

    PubMed

    Gil, E G; Rodríguez, M C; Bartolomé, R; Berjano, B; Cabero, L; Andreu, A

    1999-08-01

    Granada medium was evaluated for the detection of group B streptococci (GBS) in vaginal and rectal swabs compared with selective Columbia blood agar and selective Lim broth. From May 1996 to March 1998, 702 pregnant women (35 to 37 weeks of gestation) participated in this three-phase study; 103 (14.7%) of these women carried GBS. In the first phase of the experiment (n = 273 women), vaginorectal specimens were collected on the same swab; the sensitivities of Granada tube, selective Columbia blood agar, and Lim broth were 31.4, 94.3, and 74.3%, respectively. In the second and third phases (n = 429 women), vaginal and rectal specimens were collected separately; the sensitivities of Granada plate, selective Columbia blood agar, and Lim broth (subcultured at 4 h on selective Columbia agar in the second phase and at 18 to 24 h in Granada plate in the third phase) were 91.1, 83.9, and 75%, respectively, in the second phase and 88.5, 90.4, and 63.5%, respectively, in the third phase. There were no statistically significant differences in GBS recovery between the Granada agar plate and selective Columbia blood agar, but the Granada plate provided a clear advantage; the characteristic red-orange colonies produced overnight by GBS can be identified by the naked eye and is so specific that further identification is unnecessary. The use of the Granada tube and Lim broth did not result in increased isolation of GBS. In conclusion, the Granada agar plate is highly sensitive for detecting GBS in vaginal and rectal swabs from pregnant women and can provide results in 18 to 24 h.

  14. Phase-specific Geochemistry of Ni: a Tracer of Geosphere-Biosphere Co-evolution?

    NASA Astrophysics Data System (ADS)

    Ciscato, E. R.; Vance, D.; Bontognali, T. R. R.; Poulton, S.

    2016-12-01

    Metalloproteome analyses and culturing studies have suggested that trace metals, such as Cu, Fe, Mo, Ni, and Zn, were selectively utilized by different organisms and specific metabolisms throughout the evolution of the biosphere. Methanogens have a particular requirement for Ni and culturing studies have shown that they fractionate Ni isotopes upon uptake. It is not clear, however, whether a resulting Ni isotopic signal can be preserved in the geological record. We have developed a new approach that enables us to analyze phase-specific authigenic trace metal enrichments, and their respective isotopic signatures, in (predominantly organic-rich) sediments from the geological record. An acid digestion step followed by high-pressure ashing allows us to separate an `organic matter + Pyrite' phase from an `HF-extractable' phase. We have applied this approach to investigate the distribution of Ni isotopes in a variety of modern sediments, including organic-rich sediments from upwelling margins and a hypersaline lagoonal setting where methanogenesis is likely to be an active process. Preliminary results on geological record samples show a δ60Ni for the `HF-extractable' phases that agrees with the average continental crust, whereas the `organic matter + Pyrite' phases are heavier and shifted in the direction of modern seawater. By combining this data with our δ60Ni dataset from modern sediments, we investigate the dynamics of Ni cycling in environments with different O2 and H2S availabilities both in the modern and throughout the past 3.2 billion years. Our phase-specific δ60Ni record is of instrumental importance in determining whether a biologically induced fractionation imparted by methanogens is indeed observable, and if it can be used as a biosignature for tracing the predominance of methanogenic pathways throughout the co-evolution of the geosphere and biosphere.

  15. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-01-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Pei, Yuanchao; Wang, Jianji

    2018-05-15

    It is significant to develop sustainable strategies for the selective separation of rare earth from transition metals from fundamental and practical viewpoint. In this work, an environmentally friendly solvent extraction approach has been developed to selectively separate neodymium (III) from cobalt (II) and nickel (II) by using an ionic liquid-based aqueous two phase system (IL-ATPS). For this purpose, a hydrophilic ionic liquid (IL) tetrabutylphosphonate nitrate ([P 4444 ][NO 3 ]) was prepared and used for the formation of an ATPS with NaNO 3 . Binodal curves of the ATPSs have been determined for the design of extraction process. The extraction parameters such as contact time, aqueous phase pH, content of phase-formation components of NaNO 3 and the ionic liquid have been investigated systematically. It is shown that under optimal conditions, the extraction efficiency of neodymium (III) is as high as 99.7%, and neodymium (III) can be selectively separated from cobalt (II) and nickel (II) with a separation factor of 10 3 . After extraction, neodymium (III) can be stripped from the IL-rich phase by using dilute aqueous sodium oxalate, and the ILs can be quantitatively recovered and reused in the next extraction process. Since [P 4444 ][NO 3 ] works as one of the components of the ATPS and the extractant for the neodymium, no organic diluent, extra etractant and fluorinated ILs are used in the separation process. Thus, the strategy described here shows potential in green separation of neodymium from cobalt and nickel by using simple IL-based aqueous two-phase system. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    PubMed

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  19. Cleaning and dewatering fine coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also bemore » used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.« less

  20. Specific features of the cathodoluminescence spectra of AlInGaN QWs, caused by the influence of phase separation and internal electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsova, Ya. V., E-mail: yana@mail.ioffe.ru; Jmerik, V. N.; Nechaev, D. V.

    2016-07-15

    The specific features of the cathodoluminescence (CL) spectra in AlInGaN heterostructures, caused by the influence of phase separation and internal electric fields, observed at varied CL excitation density, are studied. It is shown that the evolution of the CL spectrum and the variation in the spectral position of emission lines of nanoscale layers with current density in the primary electron beam makes it possible to identify the occurrence of phase separation in the layer and, in the absence of this separation, to estimate the electric-field strength in the active region of the structure.

  1. Evaluation of Inorganic/Organic Separators

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1976-01-01

    Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.

  2. Separation of {sup 32}P-postlabeled DNA adducts of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons by HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, L.C.; Gallagher, J.E.; Lewtas, J.

    The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less

  3. Identifying Effective Design Approaches to Allocate Genotypes in Two-Phase Designs: A Case Study in Pelargonium zonale

    PubMed Central

    Molenaar, Heike; Boehm, Robert; Piepho, Hans-Peter

    2018-01-01

    Robust phenotypic data allow adequate statistical analysis and are crucial for any breeding purpose. Such data is obtained from experiments laid out to best control local variation. Additionally, experiments frequently involve two phases, each contributing environmental sources of variation. For example, in a former experiment we conducted to evaluate production related traits in Pelargonium zonale, there were two consecutive phases, each performed in a different greenhouse. Phase one involved the propagation of the breeding strains to obtain the stem cutting count, and phase two involved the assessment of root formation. The evaluation of the former study raised questions regarding options for improving the experimental layout: (i) Is there a disadvantage to using exactly the same design in both phases? (ii) Instead of generating a separate layout for each phase, can the design be optimized across both phases, such that the mean variance of a pair-wise treatment difference (MVD) can be decreased? To answer these questions, alternative approaches were explored to generate two-phase designs either in phase-wise order (Option 1) or across phases (Option 2). In Option 1 we considered the scenarios (i) using in both phases the same experimental design and (ii) randomizing each phase separately. In Option 2, we considered the scenarios (iii) generating a single design with eight replicates and splitting these among the two phases, (iv) separating the block structure across phases by dummy coding, and (v) design generation with optimal alignment of block units in the two phases. In both options, we considered the same or different block structures in each phase. The designs were evaluated by the MVD obtained by the intra-block analysis and the joint inter-block–intra-block analysis. The smallest MVD was most frequently obtained for designs generated across phases rather than for each phase separately, in particular when both phases of the design were separated with a single pseudo-level. The joint optimization ensured that treatment concurrences were equally balanced across pairs, one of the prerequisites for an efficient design. The proposed alternative approaches can be implemented with any model-based design packages with facilities to formulate linear models for treatment and block structures. PMID:29354145

  4. Enemy Combatant Detainees: Habeas Corpus Challenges in Federal Court

    DTIC Science & Technology

    2007-06-26

    Separation of Powers Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Eliminating Federal Court Jurisdiction Where There...specifically intended to grant the authority of the President to adjudicate or remedy treaty violations could violate the doctrine of separation of powers , as...does not serve to insulate such legislation from constitutional scrutiny. Separation of Powers Issues It is also clear that Congress may not

  5. Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys

    NASA Astrophysics Data System (ADS)

    Li, Boyan; Hu, Shenyang; Li, Chengliang; Li, Qiulin; Chen, Jun; Shu, Guogang; Henager, Chuck, Jr.; Weng, Yuqing; Xu, Ben; Liu, Wei

    2017-09-01

    For reactor pressure vessel steels, the addition of Cu, Mn, and Ni has a positive effect on their mechanical, corrosion and radiation resistance properties. However, experiments show that radiation-enhanced segregation and/or phase separation is one of the important material property degradation processes. In this work, we develop a model integrating rate theory and phase-field approaches to investigate the effect of irradiation on solute segregation and phase separation. The rate theory is used to describe the accumulation and clustering of radiation defects, while the phase-field approach describes the effect of radiation defects on phase stability and microstructure evolution. The Fe-Cu-Mn ternary alloy is taken as a model system. The free energies used in the phase-field model are from CALPHAD. Spatial dependent radiation damage from atomistic simulations is introduced into the simulation cell for a given radiation dose rate. The radiation effect on segregation and phase separation is taken into account through the defect concentration dependence of solute mobility. Using the model, the effect of temperature and radiation rates on Cu and Mn segregation and Cu-rich phase nucleation were systematically investigated. The segregation and nucleation mechanisms were analyzed. The simulations demonstrate that the nucleus of Cu precipitates has a core-shell composition profile, i.e. Cu-rich at the center and Mn-rich at the interface, in good agreement with theoretical calculations as well as experimental observations.

  6. Nano-phase separation and structural ordering in silica-rich mixed network former glasses.

    PubMed

    Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng

    2018-06-13

    We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; McCloy, John S.; Kukkadapu, Ravi

    Two sizes of iron/iron-oxide (Fe/Fe-oxide) nanoclusters (NCs) of 10 nm and 35 nm diameters were prepared using a cluster deposition technique. Both these NCs displayed XRD peaks due to body-centered cubic (bcc) Fe0 and magnetite-like phase. Mossbauer spectroscopy (MS) measurements: a) confirmed the core-shell nature of the NCs, b) the Fe-oxide shell to be nanocrystalline and partially oxidized, and c) the Fe-oxide spins are significantly canted. In addition to the bcc Fe and magnetite-like phases, a phase similar to tetragonal σ-Fe-Cr (8% Cr) was CLEARLY evident in the larger NC, based on X-ray diffraction. Origin of the tetragonallike phase inmore » the larger NC was not clear but could be due to significant distortion of the Fe0 core lattice planes; subtle peaks due to this phase were also apparent in the smaller NC. Unambiguous evidence for the presence of such a phase, however, was not clear from MS, X-ray photoelectron spectroscopy, vibrating sample magnetometry, X-ray magnetic circular dichroism, nor transmission electron microscopy. To our knowledge, this is the first report of tetragonallike phase in the Fe/Fe-oxide core-shell systems.« less

  8. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  9. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    NASA Technical Reports Server (NTRS)

    Cone, Andrew; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the minimum operational performance standards (MOPS) of detect-and-avoid (DAA) systems for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance could be provided during recovery of well clear separation with a non-cooperative VFR aircraft in addition to horizontal maneuver guidance. Although suppressing vertical maneuver guidance in these situations increased the minimum horizontal separation from 500 to 800 feet, the maximum severity of loss of well clear increased in about 35 of the encounters compared to when a vertical maneuver was preferred and allowed. Additionally, analysis of individual cases led to the identification of a class of encounter where vertical rate error had a large effect on horizontal maneuvers due to the difficulty of making the correct left-right turn decision: crossing conflict with intruder changing altitude. These results supported allowing vertical maneuvers when UAS vertical performance exceeds the relative vertical position and velocity accuracy of the DAA tracker given the current velocity of the UAS and the relative vertical position and velocity estimated by the DAA tracker. Looking ahead, these results indicate a need to improve guidance algorithms by utilizing maneuver stability and near mid-air collision risk when determining maneuver guidance to regain well clear separation.

  10. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation

    PubMed Central

    Brady, Jacob P.; Farber, Patrick J.; Sekhar, Ashok; Lin, Yi-Hsuan; Huang, Rui; Bah, Alaji; Chan, Hue Sun; Forman-Kay, Julie D.; Kay, Lewis E.

    2017-01-01

    Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid “membraneless organelles” that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, Ddx4cond, diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing Ddx4cond to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of Ddx4cond have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in Ddx4cond are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in Ddx4cond are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes. PMID:28894006

  11. Electronic Phase Separation in Iron Selenide (Li,Fe)OHFeSe Superconductor System

    NASA Astrophysics Data System (ADS)

    Mao, Yiyuan; Li, Jun; Huan, Yulong; Yuan, Jie; Li, Zi-an; Chai, Ke; Ma, Mingwei; Ni, Shunli; Tian, Jinpeng; Liu, Shaobo; Zhou, Huaxue; Zhou, Fang; Li, Jianqi; Zhang, Guangming; Jin, Kui; Dong, Xiaoli; Zhao, Zhongxian

    2018-05-01

    The phenomenon of phase separation into antiferromagnetic (AFM) and superconducting (SC) or normal-state regions has great implication for the origin of high-temperature (high-Tc) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the Tc of (Li, Fe)OHFeSe superconductor is questioned. Here we report a systematic study on a series of (Li, Fe)OHFeSe single crystal samples with Tc up to ~41 K. We observe an evident drop in the static magnetization at Tafm ~125 K, in some of the SC (Tc < ~38 K, cell parameter c < ~9.27 {\\AA}) and non-SC samples. We verify that this AFM signal is intrinsic to (Li, Fe)OHFeSe. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal (below Tafm) or SC (below Tc) state in (Li, Fe)OHFeSe. We explain such coexistence by electronic phase separation, similar to that in high-Tc cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of (Li, Fe)OHFeSe, particularly it is never observed in the SC samples of Tc > ~38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. It is suggested that the microscopic static phase separation reaches vanishing point in high-Tc (Li, Fe)OHFeSe, by the occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as Tafm reported previously for a (Li, Fe)OHFeSe (Tc ~42 K) single crystal. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-Tc superconductivity.

  12. Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations.

    PubMed

    Zhao, Yuling; Wang, Huiyong; Pei, Yuanchao; Liu, Zhiping; Wang, Jianji

    2016-08-17

    Recently, it has been found experimentally that two different amino acid ionic liquids (ILs) can be mixed to show unique lowest critical solution temperature (LCST) phase separation in water. However, little is known about the mechanism of phase separation in these IL/water mixtures at the molecular level. In this work, five kinds of amino acid ILs were chosen to study the mechanism of LCST-type phase separation by molecular dynamics (MD) simulations. Toward this end, a series of all-atom MD simulations were carried out on the ternary mixtures consisting of two different ILs and water at different temperatures. The various interaction energies and radial distribution functions (RDFs) were calculated and analyzed for these mixed systems. It was found that for amino acid ILs, the -NH2 or -COOH group of one anion could have a hydrogen bonding interaction with the -COO(-) group of another anion. With the increase of temperature, this kind of hydrogen bonding interaction between anions was strengthened and then the anion-H2O electrostatic interaction was weakened, which led to the LCST-type phase separation of the mixed ILs in water. In addition, a series of MD simulations for [P6668]1[Lys]n[Asp]1-n/H2O systems were also performed to study the effect of the mixing ratio of ILs on phase separation. It was also noted that the experimental critical composition corresponding to the lowest critical solution temperature was well predicted from the total electrostatic interaction energies as a function of mole fraction of [P6668][Lys] in these systems. The conclusions drawn from this study may provide new insight into the LCST-type phase behavior of ILs in water, and motivate further studies on practical applications.

  13. Exploring Liquid Sequential Injection Chromatography to Teach Fundamentals of Separation Methods: A Very Fast Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Penteado, Jose C.; Masini, Jorge Cesar

    2011-01-01

    Influence of the solvent strength determined by the addition of a mobile-phase organic modifier and pH on chromatographic separation of sorbic acid and vanillin has been investigated by the relatively new technique, liquid sequential injection chromatography (SIC). This technique uses reversed-phase monolithic stationary phase to execute fast…

  14. Separation and characterization of polycyclic aromatic hydrocarbons and alkylphenols in coal derived solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtubise, R.J.; Allen, T.W.; Hussain, A.

    1981-03-29

    Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less

  15. Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography.

    PubMed

    Wang, Xiaogang; Qi, Meiling; Fu, Ruonong

    2014-12-05

    Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.

    PubMed

    Romu, Thobias; Dahlström, Nils; Leinhard, Olof Dahlqvist; Borga, Magnus

    2017-09-01

    The purpose of this work was to develop and evaluate a robust water-fat separation method for T1-weighted symmetric two-point Dixon data. A method for water-fat separation by phase unwrapping of the opposite-phase images by phase-sensitive reconstruction (PSR) is introduced. PSR consists of three steps; (1), identification of clusters of tissue voxels; (2), unwrapping of the phase in each cluster by solving Poisson's equation; and (3), finding the correct sign of each unwrapped opposite-phase cluster, so that the water-fat images are assigned the correct identities. Robustness was evaluated by counting the number of water-fat swap artifacts in a total of 733 image volumes. The method was also compared to commercial software. In the water-fat separated image volumes, the PSR method failed to unwrap the phase of one cluster and misclassified 10. One swap was observed in areas affected by motion and was constricted to the affected area. Twenty swaps were observed surrounding susceptibility artifacts, none of which spread outside the artifact affected regions. The PSR method had fewer swaps when compared to commercial software. The PSR method can robustly produce water-fat separated whole-body images based on symmetric two-echo spoiled gradient echo images, under both ideal conditions and in the presence of common artifacts. Magn Reson Med 78:1208-1216, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy.

    PubMed

    Saboo, Sugandha; Taylor, Lynne S

    2017-08-30

    The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Recovery Of Chromium Metal (VI) Using Supported Liquid Membrane (SLM) Method, A study of Influence of NaCl and pH in Receiving Phase on Transport

    NASA Astrophysics Data System (ADS)

    Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.

    2017-06-01

    Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.

  20. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    PubMed

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

Top