Sasaki, Hirokazu; Otomo, Shinya; Minato, Ryuichiro; Yamamoto, Kazuo; Hirayama, Tsukasa
2014-06-01
Phase-shifting electron holography and Lorentz microscopy were used to map dopant distributions in GaAs compound semiconductors with step-like dopant concentration. Transmission electron microscope specimens were prepared using a triple beam focused ion beam (FIB) system, which combines a Ga ion beam, a scanning electron microscope, and an Ar ion beam to remove the FIB damaged layers. The p-n junctions were clearly observed in both under-focused and over-focused Lorentz microscopy images. A phase image was obtained by using a phase-shifting reconstruction method to simultaneously achieve high sensitivity and high spatial resolution. Differences in dopant concentrations between 1 × 10(19) cm(-3) and 1 × 10(18) cm(-3) regions were clearly observed by using phase-shifting electron holography. We also interpreted phase profiles quantitatively by considering inactive layers induced by ion implantation during the FIB process. The thickness of an inactive layer at different dopant concentration area can be measured from the phase image. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Performance of repaired defects and attPSM in EUV multilayer masks
NASA Astrophysics Data System (ADS)
Deng, Yunfei; La Fontaine, Bruno; Neureuther, Andrew R.
2002-12-01
The imaging performance of non-planar topographies in EUV masks for both partially repaired defects and non-planar attenuating phase-shifting masks made with repair treatments are evaluated using rigorous electromagnetic simulation with TEMPEST. Typical topographies produced by treatment techniques in the literature such as removal of top layers and compaction produced by electron-beam heating are considered. Isolated defects on/near the surface repaired by material removal are shown to result in an image intensity within 5% of the clear field value. Deeply buried defects within the multilayer treated by electron-beam heating can be repaired to 3% of the clear field but over repair can result in some degradation. Compaction from a 6.938 nm period to a 6.312 nm period shows a 540° phase-shift and an intensity reduced to about 6% suggesting such a treatment may be used to create attenuated phase-shifting masks for EUV. The quality of the aerial image for such a mask is studied as a function of the lateral transition distance between treated and untreated regions.
Observation of a superfluid He-3 A- B phase transition in silica aerogel
Barker; Lee; Polukhina; Osheroff; Hrubesh; Poco
2000-09-04
New NMR studies of 3He in high-porosity aerogel reveal a phase transition from an A-like to a B-like phase on cooling. The evidence includes frequency shift and magnetic susceptibility data, and similar behavior is found in two quite different aerogel samples. The A-like phase is stable only very near to T(c) but can be supercooled to below 0.8T(c). This behavior has been seen clearly at 32- and 24-bar pressures, and the presence of negative frequency shifts suggests that an A-like phase exists near T(c) at pressures as low as 12 bars in a magnetic field of 28.4 mT.
NASA Astrophysics Data System (ADS)
Zhao, Y.-G.; Wu, A.; Lu, H.-L.; Chang, S.; Lu, W.-K.; Ho, S. T.; van der Boom, M. E.; Marks, T. J.
2001-07-01
Traveling-wave electro-optic modulators based on chromophoric self-assembled superlattices (SASs) possessing intrinsically polar microstructures have been designed and fabricated. Although the thickness of the SAS layer is only ˜150 nm, a π-phase shift is clearly observed. From the measured Vπ value, the effective electro-optic coefficient of the SAS film is determined to be ˜21.8 pm/V at an input wavelength of 1064 nm.
A circadian rhythm in optic nerve impulses from an isolated eye in darkness.
NASA Technical Reports Server (NTRS)
Jacklet, J. W.
1971-01-01
Study of the circadian rhythm of optic nerve potentials recorded from the isolated eye of the sea hare Aplysia. The optic nerve activity in constant conditions is found to be clearly circadian and to obey the circadian rule for diurnal animals. In addition, the period length depends on the in vitro culturing solution. In seawater it is about 22 hr, but in culture medium it is 27 hr. The rhythm can be completely phase-shifted in one trial if the phase of the LD 12:12 Zeitgeber is advanced or delayed 4 hr. The rhythm in one eye can be phase-shifted in vivo independently of the other eye and in vitro independently of the rest of the animal. Thus, in the animal, the eye oscillators are, at most, only slightly influenced by each other or by other oscillators in the animal.
Double-image storage optimized by cross-phase modulation in a cold atomic system
NASA Astrophysics Data System (ADS)
Qiu, Tianhui; Xie, Min
2017-09-01
A tripod-type cold atomic system driven by double-probe fields and a coupling field is explored to store double images based on the electromagnetically induced transparency (EIT). During the storage time, an intensity-dependent signal field is applied further to extend the system with the fifth level involved, then the cross-phase modulation is introduced for coherently manipulating the stored images. Both analytical analysis and numerical simulation clearly demonstrate a tunable phase shift with low nonlinear absorption can be imprinted on the stored images, which effectively can improve the visibility of the reconstructed images. The phase shift and the energy retrieving rate of the probe fields are immune to the coupling intensity and the atomic optical density. The proposed scheme can easily be extended to the simultaneous storage of multiple images. This work may be exploited toward the end of EIT-based multiple-image storage devices for all-optical classical and quantum information processings.
Laser-induced separation of hydrogen isotopes in the liquid phase
Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.
1980-01-01
Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.
Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B
2011-04-25
We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.
Garavan, H; Morgan, R E; Mactutus, C F; Levitsky, D A; Booze, R M; Strupp, B J
2000-08-01
This study assessed the effects of prenatal cocaine exposure on cognitive functioning, using an intravenous (IV) rodent model that closely mimics the pharmacokinetics seen in humans after smoking or IV injection and that avoids maternal stress and undernutrition. Cocaine-exposed males were significantly impaired on a 3-choice, but not 2-choice, olfactory serial reversal learning task. Both male and female cocaine-exposed rats were significantly impaired on extradimensional shift tasks that required shifting from olfactory to spatial cues; however, they showed no impairment when required to shift from spatial to olfactory cues. In-depth analyses of discrete learning phases implicated deficient selective attention as the basis of impairment in both tasks. These data provide clear evidence that prenatal cocaine exposure produces long-lasting cognitive dysfunction, but they also underscore the specificity of the impairment.
NASA Astrophysics Data System (ADS)
McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick
2006-03-01
The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.
Features of Talbot effect on phase diffraction grating
NASA Astrophysics Data System (ADS)
Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.
2018-01-01
The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.
Ion track etching revisited: II. Electronic properties of aged tracks in polymers
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.
2018-02-01
We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.
NASA Astrophysics Data System (ADS)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.
2016-01-01
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar
2014-10-01
Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.
Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space
NASA Astrophysics Data System (ADS)
Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.
2014-05-01
We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.
Characteristics Associated with the Madden-Julian Oscillation at Manus Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liping; McFarlane, Sally A.; Flaherty, Julia E.
2013-05-15
Ground-based high temporal and vertical resolution datasets from 2002 to 2008 of observations at the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site on Manus Island, Papua New Guinea are used to examine the evolution of clouds and rainfall associated with the MJO life cycle. A composite MJO event is developed based on the NOAA MJO Index 4 using 13 events. The analysis shows that the cloud evolution during the composited MJO life cycle depicts a two-phase structure consisting of a development phase and a mature phase. During the development phase, congestus is the most important cloud type; duringmore » the mature phase, deep convection is the dominant cloud type. Consistent with this two-phase structure, the heavy rainfall frequency also shows a two-peak structure during the MJO life cycle. Light rainfall does not show a clear relation to the MJO life cycle, but shows variability on shorter time scales. From the development phase to the mature phase, the MJO structure shifts from the Type I to Type II structure, showing a different phase relationship between convection and dynamic fields (or wave motion) in the development and mature phases. During the shift, mid-level clouds play an important role in moving moisture to the mid-troposphere and preparing the atmosphere for the following deep convection. The discharge-recharge theory explains some of observed features of the MJO evolution at the ARM TWP Manus Island site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less
Thickness-dependent phase transition in graphite under high magnetic field
NASA Astrophysics Data System (ADS)
Taen, Toshihiro; Uchida, Kazuhito; Osada, Toshihito
2018-03-01
Various electronic phases emerge when applying high magnetic fields in graphite. However, the origin of a semimetal-insulator transition at B ≃30 T is still not clear, while an exotic density-wave state is theoretically proposed. In order to identify the electronic state of the insulator phase, we investigate the phase transition in thin-film graphite samples that were fabricated on silicon substrate by a mechanical exfoliation method. The critical magnetic fields of the semimetal-insulator transition in thin-film graphite shift to higher magnetic fields, accompanied by a reduction in temperature dependence. These results can be qualitatively reproduced by a density-wave model by introducing a quantum size effect. Our findings establish the electronic state of the insulator phase as a density-wave state standing along the out-of-plane direction, and help determine the electronic states in other high-magnetic-field phases.
Research on effects of phase error in phase-shifting interferometer
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai
2007-12-01
Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.
NASA Astrophysics Data System (ADS)
Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian
2016-12-01
During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small relaxation time formed at the electrodes interface). Therefore, this dielectric response should be taken into account at high frequency to better analytically separate the medium own response from that linked to the measuring electrodes used. We modeled this effect by adding a capacitance connected in parallel with the traditional equivalent electric circuit used to describe the dielectric response of medium.
Erratum: Erratum: Denoising Phase Unwrapping Algorithm for Precise Phase Shifting Interferometry
NASA Astrophysics Data System (ADS)
Phuc, Phan Huy; Rhee, Hyug-Gyo; Ghim, Young-Sik
2018-06-01
This is a revision of the reference list reported in the original article. In order to clear the contribution of the previous work on the incremental breadth-first search (IBFS) method applied to the PUMA algorithm, we add one more reference to the existing reference list, as in this erratum. Page 83 : In this paper, we propose an algorithm that modifies the Boykov-Kolmogorov (BK) algorithm using the incremental breadth-first search (IBFS) method [27, 28] to find paths from the source to the sink of a graph. [28] S. Ali, H. Khan, I. Shaik and F. Ali, Int. J. Eng. and Technol. 7, 254 (2015).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Hui; He, Jiansen; Young, Peter R.
An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s{sup −1} and a derived electron density of at least 5.4 × 10{sup 10} cm{sup −3}, the observed short-period oscillation is most likely the global fast sausage mode ofmore » a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.« less
Kadota, K; Walter, S; Claveria, F G; Igarashi, I; Taylor, D; Fujisaki, K
2003-11-01
The ultrastructure and characteristics of hemocytes of argasid tick species, Ornithodoros moubata, during the ecdysdial phase are herein presented. Hemocyte classes/populations characterized based on their affinity with Giemsa stain and ultrastructural differences comprised the prohemocytes, nongranular cells (Nc), eosinophilic granular cells (Ec), basophilic granular cells (Bc), and unidentified cells. Significant changes/shift in the ratio of hemocyte classes/population was apparent in ticks before and after the ecdysial phase. The granule-scant basophilic granular cells (sBc) constituted the most abundant hemocyte population in the ecdysial phase. Nymphs in ecdysis showed increases in Nc and sBc and decrease in Ec, a phenomenon that was reversed in unengorged nymphs and adults ticks. The significant increase in total Bc population in ecdysis relative to nonengorged ticks clearly point to blastogenesis of Bc taking place during the ecdysial phase and Bc's important role in the process of tissue remodeling.
Nonlinear aspects of infrasonic pressure transfer into the perilymph.
Krukowski, B; Carlborg, B; Densert, O
1980-06-01
The perilymphatic pressure was studied in response to various low frequency pressure changes in the ear canal. The pressure transfer was analysed and found to be nonlinear in many aspects. The pressure response was found to contain two time constants representing the inner ear pressure regulating mechanisms. The time constants showed an asymmetry in response to positive and negative going inputs--the effects to some extent proportional to input levels. Further nonlinearities were found when infrasonic sine waves were applied to the ear. Harmonic distortion and modulation appeared. When short bursts of infrasound were introduced a clear d.c. shift was observed as a consequence of an asymmetry in the response to positive and negative going pressure inputs. A temporary change in mean perilymphatic pressure was thus achieved and continued throughout the duration of the signal. At very low frequencies a distinct phase shift was detected in the sine waves. This appeared as a phase lead, breaking the continuity of the output sine wave.
Tomographic image reconstruction using x-ray phase information
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi
1996-04-01
We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.
NASA Astrophysics Data System (ADS)
Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao
2018-05-01
A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.
Development of the osteocranium in Corydoras aeneus (Gill, 1858) Callichthyidae, Siluriformes.
Huysentruyt, Frank; Geerinckx, Tom; Brunain, Marleen; Adriaens, Dominique
2011-05-01
Development in the osteocranium of Corydoras aeneus was studied based on 48 cleared and stained specimens and 10 series of serial sections. Development overall follows the general trends observed in siluriform development, with ossifications appearing as a response to functional demands. Early development of the skull occurs in two distinct phases. In a first phase, several new bony elements, all of dermal origin and related to feeding, appear shortly after yolk depletion (4.4 mm SL). Between 5 and 8 mm SL, developmental priorities seem to shift to size increase of the cartilaginous skull and no new bony elements appear. Finally, a second phase of osteogenesis occurs from 8 to 18 mm SL, in which all remaining dermal and perichondral bones appear. Copyright © 2011 Wiley-Liss, Inc.
High-speed optical phase-shifting apparatus
Zortman, William A.
2016-11-08
An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.
Beam shuttering interferometer and method
Deason, V.A.; Lassahn, G.D.
1993-07-27
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Beam shuttering interferometer and method
Deason, Vance A.; Lassahn, Gordon D.
1993-01-01
A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.
Storage Ring Technology for Free Electron Lasers.
1984-04-01
aperture of the iris is controlled from outsideplac d in a vacuutm chamber. The pressure inside this the vacuum chamber. The rotational motion needed... motions (two translations and The mechanical assembly of these various parts is one rotational for the iris aperture) are severe in this shown in Fig. 3...expression -4- for the small signal gain spectrum, including the phase shift of the slowly varying wave z V y(9) It is clear from (8) and (9) that care must
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Mass-independent isotope fractionation of Mo, Ru, Cd, and Te
NASA Astrophysics Data System (ADS)
Fujii, T.; Moynier, F.; Albarède, F.
2006-12-01
The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the odd atomic mass isotope ^{125}Te clearly deviates from this correlation. The nuclear field shift theory shows that there is no effect on ^{130}Te but that the ^{125}Te anomaly is real. Carbonaceous chondrites do not reveal significant isotope fractionation of Cd isotopes, but a nuclear field shift effect is clearly present in type-3 (unequilibrated) ordinary chondrites. The nuclear field shift effect is temperature dependent and is probably more frequent in nature than commonly thought. It remains, together with nucleosynthetric anomalies, perfectly visible through the normalization of isotopic ratios to a reference value. In meteorites, this effect may originate both during condensation/evaporation processes in the nebular gas and during the metamorphism of the meteorite parent bodies.
Ab initio-aided CALPHAD thermodynamic modeling of the Sn-Pb binary system under current stressing
Lin, Shih-kang; Yeh, Chao-kuei; Xie, Wei; Liu, Yu-chen; Yoshimura, Masahiro
2013-01-01
Soldering is an ancient process, having been developed 5000 years ago. It remains a crucial process with many modern applications. In electronic devices, electric currents pass through solder joints. A new physical phenomenon – the supersaturation of solders under high electric currents – has recently been observed. It involves (1) un-expected supersaturation of the solder matrix phase, and (2) the formation of unusual “ring-shaped” grains. However, the origin of these phenomena is not yet understood. Here we provide a plausible explanation of these phenomena based on the changes in the phase stability of Pb-Sn solders. Ab initio-aided CALPHAD modeling is utilized to translate the electric current-induced effect into the excess Gibbs free energies of the phases. Hence, the phase equilibrium can be shifted by current stressing. The Pb-Sn phase diagrams with and without current stressing clearly demonstrate the change in the phase stabilities of Pb-Sn solders under current stressing. PMID:24060995
Umeki, Takeshi; Takara, Hidehiko; Miyamoto, Yutaka; Asobe, Masaki
2012-10-22
We demonstrated the simultaneous amplification of a coherent multi-carrier signal using a χ(2)-based non-degenerate phase sensitive amplifier (PSA). The signal-to-noise ratio (SNR), which is degraded by the additional amplified spontaneous emission (ASE) noise, can be recovered due to the gain difference between a phase-correlated signal-idler pair and uncorrelated excess noise. Utilizing the second harmonic pumping of a χ(2)-based PSA enables us to observe the SNR recovery directly by comparing the SNR for the input with that for the PSA output. A 3-dB optical-SNR (OSNR) improvement was obtained as a result of the gain difference. We also achieved a 3-dB SNR improvement in the electric domain by reducing the signal-ASE beat noise. The receiver sensitivity for a 10 Gbit/s phase shift keying signal was clearly improved with the PSA.
Stone, Julia E; Sletten, Tracey L; Magee, Michelle; Ganesan, Saranea; Mulhall, Megan D; Collins, Allison; Howard, Mark; Lockley, Steven W; Rajaratnam, Shantha M W
2018-06-01
Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night shifts. Our findings provide evidence that the phase resetting that does occur is based on individual light exposure patterns relative to an individual's baseline circadian phase. Thus, a 'one size fits all' approach to promoting adaptation to shift work using light therapy, implemented without knowledge of circadian phase, may not be efficacious for all individuals. © 2018 Monash University. The Journal of Physiology © 2018 The Physiological Society.
In-line phase shift tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammonds, Jeffrey C.; Price, Ronald R.; Pickens, David R.
2013-08-15
Purpose: The purpose of this work is to (1) demonstrate laboratory measurements of phase shift images derived from in-line phase-contrast radiographs using the attenuation-partition based algorithm (APBA) of Yan et al.[Opt. Express 18(15), 16074–16089 (2010)], (2) verify that the APBA reconstructed images obey the linearity principle, and (3) reconstruct tomosynthesis phase shift images from a collection of angularly sampled planar phase shift images.Methods: An unmodified, commercially available cabinet x-ray system (Faxitron LX-60) was used in this experiment. This system contains a tungsten anode x-ray tube with a nominal focal spot size of 10 μm. The digital detector uses CsI/CMOS withmore » a pixel size of 50 × 50 μm. The phantoms used consisted of one acrylic plate, two polystyrene plates, and a habanero pepper. Tomosynthesis images were reconstructed from 51 images acquired over a ±25° arc. All phase shift images were reconstructed using the APBA.Results: Image contrast derived from the planar phase shift image of an acrylic plate of uniform thickness exceeded the contrast of the traditional attenuation image by an approximate factor of two. Comparison of the planar phase shift images from a single, uniform thickness polystyrene plate with two polystyrene plates demonstrated an approximate linearity of the estimated phase shift with plate thickness (−1600 rad vs −2970 rad). Tomographic phase shift images of the habanero pepper exhibited acceptable spatial resolution and contrast comparable to the corresponding attenuation image.Conclusions: This work demonstrated the feasibility of laboratory-based phase shift tomosynthesis and suggests that phase shift imaging could potentially provide a new imaging biomarker. Further investigation will be needed to determine if phase shift contrast will be able to provide new tissue contrast information or improved clinical performance.« less
Imaging the Gouy phase shift in photonic jets with a wavefront sensor.
Bon, Pierre; Rolly, Brice; Bonod, Nicolas; Wenger, Jérôme; Stout, Brian; Monneret, Serge; Rigneault, Hervé
2012-09-01
A wavefront sensor is used as a direct observation tool to image the Gouy phase shift in photonic nanojets created by micrometer-sized dielectric spheres. The amplitude and phase distributions of light are found in good agreement with a rigorous electromagnetic computation. Interestingly the observed phase shift when travelling through the photonic jet is a combination of the awaited π Gouy shift and a phase shift induced by the bead refraction. Such direct spatial phase shift observation using wavefront sensors would find applications in microscopy, diffractive optics, optical trapping, and point spread function engineering.
NASA Astrophysics Data System (ADS)
Jost, Elliott; Jack, David; Moore, David
2018-04-01
At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. This work presents a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between a material's speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. The investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.
PSK Shift Timing Information Detection Using Image Processing and a Matched Filter
2009-09-01
phase shifts are enhanced. Develop, design, and test the resulting phase shift identification scheme. xx Develop, design, and test an optional...and the resulting phase shift identification algorithm is investigated for SNR levels in the range -2dB to 12 dB. Detection performances are derived...test the resulting phase shift identification scheme. Develop, design, and test an optional analysis window overlapping technique to improve phase
Alternating phase-shifted mask for logic gate levels, design, and mask manufacturing
NASA Astrophysics Data System (ADS)
Liebmann, Lars W.; Graur, Ioana C.; Leipold, William C.; Oberschmidt, James M.; O'Grady, David S.; Regaill, Denis
1999-07-01
While the benefits of alternating phase shifted masks in improving lithographic process windows at increased resolution are well known throughout the lithography community, broad implementation of this potentially powerful technique has been slow due to the inherent complexity of the layout design and mask manufacturing process. This paper will review a project undertaken at IBM's Semiconductor Research and Development Center and Mask Manufacturing and Development facility to understand the technical and logistical issues associated with the application of alternating phase shifted mask technology to the gate level of a full microprocessor chip. The work presented here depicts an important milestone toward integration of alternating phase shifted masks into the manufacturing process by demonstrating an automated design solution and yielding a functional alternating phase shifted mask. The design conversion of the microprocessor gate level to a conjugate twin shifter alternating phase shift layout was accomplished with IBM's internal design system that automatically scaled the design, added required phase regions, and resolved phase conflicts. The subsequent fabrication of a nearly defect free phase shifted mask, as verified by SEM based die to die inspection, highlights the maturity of the alternating phase shifted mask manufacturing process in IBM's internal mask facility. Well defined and recognized challenges in mask inspection and repair remain and the layout of alternating phase shifted masks present a design and data preparation overhead, but the data presented here demonstrate the feasibility of designing and building manufacturing quality alternating phase shifted masks for the gate level of a microprocessor.
Effect of Phase Shift from Corals to Zoantharia on Reef Fish Assemblages
Cruz, Igor C. S.; Loiola, Miguel; Albuquerque, Tiago; Reis, Rodrigo; de Anchieta C. C. Nunes, José; Reimer, James D.; Mizuyama, Masaru; Kikuchi, Ruy K. P.; Creed, Joel C.
2015-01-01
Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated. PMID:25629532
New color-shifting security devices
NASA Astrophysics Data System (ADS)
Moia, Franco
2004-06-01
The unbroken global increase of forgery and counterfeiting of valuable documents and products steadily requires improved types of optical security devices. Hence, the "security world" is actively seeking for new features which meet high security standards, look attractively and allow easy recognition. One special smart security device created by ROLIC's technology represents a cholesteric device combined with a phase image. On tilting, such devices reveal strong color shifts which are clearly visible to the naked eye. The additional latent image is invisible under normal lighting conditions but can be revealed to human eyes by means of a simple, commercially available linear sheet polarizer. Based on our earlier work, first published in 1981, we now have developed phase change guest-host devices combined with dye-doped cholesteric material for application in new security features. ROLIC has developed sophisticated material systems of cross-linkable cholesteric liquid crystals and suitable cross-linkable dyes which allow to create outstanding cholesteric color-shifting effects not only on light absorbing dark backgrounds but also on bright or even white backgrounds preserving the circularly polarizing state. The new security devices combine unambiguously 1st and 2nd level inspection features and show brilliant colors on black as well as on white substrates. On tilting, the security devices exhibit remarkable color shifts while the integrated hidden images can be revealed by use of a sheet polarizer. Furthermore, due to its very thin material layers, even demanding applications, such as on banknotes can be considered.
NASA Astrophysics Data System (ADS)
Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel
2018-03-01
Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevelsted, Tine F.; Herfort, Duncan; Skibsted, Jørgen, E-mail: jskib@chem.au.dk
2013-10-15
{sup 13}C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed {sup 13}C MAS or {sup 13}C({sup 1}H) CP/MAS NMR spectra (9.4 T or 14.1 T) for {sup 13}C in natural abundance. The variation in the {sup 13}C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in {sup 13}C MAS NMR spectra. However, it is shown that by combining {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR carbonate anions in anhydrousmore » and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends {sup 29}Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in {sup 27}Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •{sup 13}C chemical shift anisotropies for inorganic carbonates from {sup 13}C MAS NMR. •Narrow {sup 13}C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by {sup 13}C MAS and {sup 13}C({sup 1}H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase.« less
NASA Astrophysics Data System (ADS)
Singh Mehta, Dalip; Srivastava, Vishal
2012-11-01
We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.
Phase shifts and the role of herbivory in the resilience of coral reefs
NASA Astrophysics Data System (ADS)
Ledlie, M. H.; Graham, N. A. J.; Bythell, J. C.; Wilson, S. K.; Jennings, S.; Polunin, N. V. C.; Hardcastle, J.
2007-09-01
Cousin Island marine reserve (Seychelles) has been an effectively protected no-take marine protected area (MPA) since 1968 and was shown in 1994 to support a healthy herbivorous fish assemblage. In 1998 Cousin Island reefs suffered extensive coral mortality following a coral bleaching event, and a phase shift from coral to algal dominance ensued. By 2005 mean coral cover was <1%, structural complexity had fallen and there had been a substantial increase in macroalgal cover, up to 40% in some areas. No clear trends were apparent in the overall numerical abundance and biomass of herbivorous fishes between 1994 and 2005, although smaller individuals became relatively scarce, most likely due to the loss of reef structure. Analysis of the feeding habits of six abundant and representative herbivorous fish species around Cousin Island in 2006 demonstrated that epilithic algae were the preferred food resource of all species and that macroalgae were avoided. Given the current dominance of macroalgae and the apparent absence of macroalgal consumers, it is suggested that the increasing abundance of macroalgae is reducing the probability of the system reverting to a coral dominated state.
Repp, Bruno H
2011-01-01
When tapping is paced by an auditory sequence containing small phase shift (PS) perturbations, the phase correction response (PCR) of the tap following a PS increases with the baseline interonset interval (IOI), leading eventually to overcorrection (B. H. Repp, 2008). Experiment 1 shows that this holds even for fixed-size PSs that become imperceptible as the IOI increases (here, from 400 to 1200 ms). Earlier research has also shown (but only for IOI=500 ms) that the PCR is proportionally smaller for large than for small PSs (B. H. Repp, 2002a, 2002b). Experiment 2 introduced large PSs and found smaller PCRs than in Experiment 1, at all of the same IOIs. In Experiments 3A and 3B, the author investigated whether the change in slope of the sigmoid function relating PCR and PS magnitudes occurs at a fixed absolute or relative PS magnitude across different IOIs (600, 1000, 1400 ms). The results suggest no clear answer; the exact shape of the function may depend on the range of PSs used in an experiment. Experiment 4 examined the PCR in the IOI range from 1000 to 2000 ms and found overcorrection throughout, but with the PCR increasing much more gradually than in Experiment 1. These results provide important new information about the phase correction process and pose challenges for models of sensorimotor synchronization, which presently cannot explain nonlinear PCR functions and overcorrection. Copyright © Taylor & Francis Group, LLC
Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F
2008-11-10
Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.
Parallel-quadrature phase-shifting digital holographic microscopy using polarization beam splitter
Das, Bhargab; Yelleswarapu, Chandra S; Rao, DVGLN
2012-01-01
We present a digital holography microscopy technique based on parallel-quadrature phase-shifting method. Two π/2 phase-shifted holograms are recorded simultaneously using polarization phase-shifting principle, slightly off-axis recording geometry, and two identical CCD sensors. The parallel phase-shifting is realized by combining circularly polarized object beam with a 45° degree polarized reference beam through a polarizing beam splitter. DC term is eliminated by subtracting the two holograms from each other and the object information is reconstructed after selecting the frequency spectrum of the real image. Both amplitude and phase object reconstruction results are presented. Simultaneous recording eliminates phase errors caused by mechanical vibrations and air turbulences. The slightly off-axis recording geometry with phase-shifting allows a much larger dimension of the spatial filter for reconstruction of the object information. This leads to better reconstruction capability than traditional off-axis holography. PMID:23109732
Influence of chronobiology on the nanoparticle-mediated drug uptake into the brain.
Kreuter, Jörg
2015-02-03
Little attention so-far has been paid to the influence of chronobiology on the processes of nanoparticle uptake and transport into the brain, even though this transport appears to be chronobiologically controlled to a significant degree. Nanoparticles with specific surface properties enable the transport across the blood-brain barrier of many drugs that normally cannot cross this barrier. A clear dependence of the central antinociceptive (analgesic) effects of a nanoparticle-bound model drug, i.e., the hexapeptide dalargin, on the time of day was observable after intravenous injection in mice. In addition to the strongly enhanced antinociceptive effect due to the binding to the nanoparticles, the minima and maxima of the pain reaction with the nanoparticle-bound drug were shifted by almost half a day compared to the normal circadian nociception: The maximum in the pain reaction after i.v. injection of the nanoparticle-bound dalargin occurred during the later rest phase of the animals whereas the normal pain reaction and that of a dalargin solution was highest during the active phase of the mice in the night. This important shift could be caused by an enhanced endo- and exocytotic particulates transport activity of the brain capillary endothelial cells or within the brain during the rest phase.
Silicon RFIC Techniques for Reconfigurable Military Applications
2008-12-01
21 3.2.1 Motivation ...2008-295 21 3.2 Distributed Cascode LNAs at 20 GHz 3.2.1 Motivation Millimetrewave integrated circuits are traditionally implemented using...ZRef=50. Ohm Phase=-45. PhaseShiftSML PS4 ZRef=50. Ohm Phase=-22.5 PhaseShiftSML PS7 ZRef=50. Ohm Phase=-180 PhaseShiftSML PS8 ZRef=50. Ohm Phase=-180
Ultra narrow flat-top filter based on multiple equivalent phase shifts
NASA Astrophysics Data System (ADS)
Wang, Fei; Zou, Xihua; Yin, Zuowei; Chen, Xiangfei; Shen, Haisong
2008-11-01
Instead of real phase shifts, equivalent phase shifts (EPS) are adopted to construct ultra narrow phase-shifted band-pass filer in sampled Bragg gratings (SBG). Two optimized distributions of multiple equivalent phase shifts, using 2 and 5 EPSs respectively, are given in this paper to realize flat-top and ripple-free transmission characteristics simultaneously. Also two demonstrations with 5 EPSs both on hydrogen-loaded and photosensitive fibers are presented and their spectrums are examined by an optical vector analyzer (OVA). Given only ordinary phase mask and sub-micrometer precision control, ultra-narrowband flat-top filters with expected performance can be achieved flexibly and cost-effectively.
Tomii, Naoki; Yamazaki, Masatoshi; Arafune, Tatsuhiko; Kamiya, Kaichiro; Nakazawa, Kazuo; Honjo, Haruo; Shibata, Nitaro; Sakuma, Ichiro
2018-03-09
The action mechanism of stimulation toward spiral waves (SWs) owing to the complex excitation patterns that occur just after point stimulation has not yet been experimentally clarified. This study sought to test our hypothesis that the effect of capturing excitable gap of SW by stimulation can also be explained as the interaction of original phase singularity (PS) and PSs induced by the stimulation on the wave tail (WT) of the original SW. Phase variance analysis was used to quantitatively analyze the post-shock PS trajectories. In a two-dimensional subepicardial layer of Langendorff-perfused rabbit hearts, optical mapping was utilized to record the excitation pattern during stimulation. After SW was induced by S1-S2 shock, single biphasic point stimulation S3 was applied. In 70 of the S1-S2-S3 stimulation episodes applied on six hearts, the original PS was clearly observed just before the S3 point stimulation in 37 episodes. Pairwise PSs were newly induced by the S3 in 20 episodes. The original PS collided with the newly-induced PSs in 16 episodes; otherwise, they did not interact with the original PS. SW shift occurred most efficiently when the S3 shock was applied at the relative refractory period, and PS shifted in the direction of WT. Quantitative tracking of PS clarified that stimulation in desirable conditions induces pairwise PSs on WT and that the collision of PSs causes SW shift along the WT. Results of this study indicate the importance of the interaction of shock-induced excitation with the WT for effective stimulation.
Dark goggles and bright light improve circadian rhythm adaptation to night-shift work.
Eastman, C I; Stewart, K T; Mahoney, M P; Liu, L; Fogg, L F
1994-09-01
We compared the contributions of bright light during the night shift and dark goggles during daylight for phase shifting the circadian rhythm of temperature to realign with a 12-hour shift of sleep. After 10 baseline days there were 8 night-work/day-sleep days. Temperature was continuously recorded from 50 subjects. There were four groups in a 2 x 2 design: light (bright, dim), goggles (yes, no). Subjects were exposed to bright light (about 5,000 lux) for 6 hours on the first 2 night shifts. Dim light was < 500 lux. Both bright light and goggles were significant factors for producing circadian rhythm phase shifts. The combination of bright light plus goggles was the most effective, whereas the combination of dim light and no goggles was the least effective. The temperature rhythm either phase advanced or phase delayed when it aligned with daytime sleep. However, when subjects did not have goggles only phase advances occurred. Goggles were necessary for producing phase delays. The most likely explanation is that daylight during the travel-home window after a night shift inhibits phase-delay shifts, and goggles can prevent this inhibition. Larger temperature-rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better mood.
NASA Astrophysics Data System (ADS)
Van Den Broeke, Douglas J.; Laidig, Thomas L.; Chen, J. Fung; Wampler, Kurt E.; Hsu, Stephen D.; Shi, Xuelong; Socha, Robert J.; Dusa, Mircea V.; Corcoran, Noel P.
2004-08-01
Imaging contact and via layers continues to be one of the major challenges to be overcome for 65nm node lithography. Initial results of using ASML MaskTools' CPL Technology to print contact arrays through pitch have demonstrated the potential to further extend contact imaging to a k1 near 0.30. While there are advantages and disadvantages for any potential RET, the benefits of not having to solve the phase assignment problem (which can lead to unresolvable phase conflicts), of it being a single reticle - single exposure technique, and its application to multiple layers within a device (clear field and dark field) make CPL an attractive, cost effective solution to low k1 imaging. However, real semiconductor circuit designs consist of much more than regular arrays of contact holes and a method to define the CPL reticle design for a full chip circuit pattern is required in order for this technique to be feasible in volume manufacturing. Interference Mapping Lithography (IML) is a novel approach for defining optimum reticle patterns based on the imaging conditions that will be used when the wafer is exposed. Figure 1 shows an interference map for an isolated contact simulated using ASML /1150 settings of 0.75NA and 0.92/0.72/30deg Quasar illumination. This technique provides a model-based approach for placing all types features (scattering bars, anti-scattering bars, non-printing assist features, phase shifted and non-phase shifted) for the purpose of enhancing the resolution of the target pattern and it can be applied to any reticle type including binary (COG), attenuated phase shifting mask (attPSM), alternating aperture phase shifting mask (altPSM), and CPL. In this work, we investigate the application of IML to generate CPL reticle designs for random contact patterns that are typical for 65nm node logic devices. We examine the critical issues related to using CPL with Interference Mapping Lithography including controlling side lobe printing, contact patterns with odd symmetry, forbidden pitch regions, and reticle manufacturing constraints. Multiple methods for deriving the interference map used to define reticle patterns for various RET's will be discussed. CPL reticle designs that were created from implementing automated algorithms for contact pattern decomposition using MaskWeaver will also be presented.
Nonphotic phase shifting in female Syrian hamsters: interactions with the estrous cycle.
Young Janik, L; Janik, Daniel
2003-08-01
Nonphotic phase shifting of circadian rhythms was examined in female Syrian hamsters. Animals were stimulated at zeitgeber time 4.5 by either placing them in a novel running wheel or by transferring them to a clean home cage. Placement in a clean home cage was more effective than novel wheel treatment in stimulating large (> 1.5 h) phase shifts. Peak phase shifts (ca. 3.5 h) and the percentage of females showing large phase shifts were comparable to those found in male hamsters stimulated with novel wheels. The amount of activity induced by nonphotic stimulation and the amount of phase shifting varied slightly with respect to the 4-day estrous cycle. Animals tended to run less and shift less on the day of estrus. Nonphotic stimulation on proestrus often resulted in a 1-day delay of the estrous cycle reflected in animals' postovulatory vaginal discharge and the expression of sexual receptivity (lordosis). This delay of the estrous cycle was associated with large phase advances and high activity. These results extend the generality of nonphotic phase shifting to females for the first time and raise the possibility that resetting of circadian rhythms can induce changes in the estrous cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, Elliott; Jack, David; Moore, David G.
At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. In this paper, we present a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between amore » material’s speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. Lastly, the investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.« less
Jost, Elliott; Jack, David; Moore, David G.
2018-04-01
At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. In this paper, we present a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between amore » material’s speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. Lastly, the investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.« less
Alternative stable states and phase shifts in coral reefs under anthropogenic stress.
Fung, Tak; Seymour, Robert M; Johnson, Craig R
2011-04-01
Ecosystems with alternative stable states (ASS) may shift discontinuously from one stable state to another as environmental parameters cross a threshold. Reversal can then be difficult due to hysteresis effects. This contrasts with continuous state changes in response to changing environmental parameters, which are less difficult to reverse. Worldwide degradation of coral reefs, involving "phase shifts" from coral to algal dominance, highlights the pressing need to determine the likelihood of discontinuous phase shifts in coral reefs, in contrast to continuous shifts with no ASS. However, there is little evidence either for or against the existence of ASS for coral reefs. We use dynamic models to investigate the likelihood of continuous and discontinuous phase shifts in coral reefs subject to sustained environmental perturbation by fishing, nutrification, and sedimentation. Our modeling results suggest that coral reefs with or without anthropogenic stress can exhibit ASS, such that discontinuous phase shifts can occur. We also find evidence to support the view that high macroalgal growth rates and low grazing rates on macroalgae favor ASS in coral reefs. Further, our results suggest that the three stressors studied, either alone or in combination, can increase the likelihood of both continuous and discontinuous phase shifts by altering the competitive balance between corals and algae. However, in contrast to continuous phase shifts, we find that discontinuous shifts occur only in model coral reefs with parameter values near the extremes of their empirically determined ranges. This suggests that continuous shifts are more likely than discontinuous shifts in coral reefs. Our results also suggest that, for ecosystems in general, tackling multiple human stressors simultaneously maximizes resilience to phase shifts, ASS, and hysteresis, leading to improvements in ecosystem health and functioning.
EUV phase-shifting masks and aberration monitors
NASA Astrophysics Data System (ADS)
Deng, Yunfei; Neureuther, Andrew R.
2002-07-01
Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.
Frequency stabilization in nonlinear MEMS and NEMS oscillators
Lopez, Omar Daniel; Antonio, Dario
2014-09-16
An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.
Direct Measurement of Large, Diffuse, Optical Structures
NASA Technical Reports Server (NTRS)
Saif, Babak N.; Keski-Kuha, Ritva; Feinberg, Lee; Wyant, J. C.; Atkinson, C.
2004-01-01
Digital Speckle Pattern Interferometry (DSPI) is a well-established method for the measurement of diffuse objects in experimental mechanics. DSPIs are phase shifting interferometers. Three or four bucket temporal phase shifting algorithms are commonly used to provide phase shifting. These algorithms are sensitive to vibrations and can not be used to measure large optical structures far away from the interferometer. In this research a simultaneous phase shifted interferometer, PhaseCam product of 4D Technology Corporation in Tucson Arizona, is modified to be a Simultaneous phase shifted Digital Speckle Pattern Interferometer (SDSPI). Repeatability, dynamic range, and accuracy of the SDSPI are characterized by measuring a 5 cm x 5 cm carbon fiber coupon.
NASA Astrophysics Data System (ADS)
Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming
2018-01-01
A new method to extract quantitative phases for each wavelength from three-wavelength in-line phase-shifting interferograms is proposed. Firstly, seven interferograms with positive negative 2π phase shifts are sequentially captured by using the phase-shifting technique. Secondly, six dc-term suppressed intensities can be achieved by the use of the algebraic algorithm. Finally, the wrapped phases at the three wavelengths can be acquired simultaneously from these six interferograms add-subtracting by employing the trigonometric function method. The surface morphology with increased ambiguity-free range at synthetic beat wavelength can be obtained, while maintaining the low noise precision of the single wavelength measurement, by combining this method with three-wavelength phase unwrapping method. We illustrate the principle of this algorithm, and the simulated experiments of the spherical cap and the HeLa cell are conducted to prove our proposed method, respectively.
3D measurement using combined Gray code and dual-frequency phase-shifting approach
NASA Astrophysics Data System (ADS)
Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin
2018-04-01
The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.
Etched-multilayer phase shifting masks for EUV lithography
Chapman, Henry N.; Taylor, John S.
2005-04-05
A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.
Constant frequency pulsed phase-locked loop measuring device
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Cantrell, John H. (Inventor)
1993-01-01
A measuring apparatus is presented that uses a fixed frequency oscillator to measure small changes in the phase velocity ultrasonic sound when a sample is exposed to environmental changes such as changes in pressure, temperature, etc. The invention automatically balances electrical phase shifts against the acoustical phase shifts in order to obtain an accurate measurement of electrical phase shifts.
Absolute Definition of Phase Shift in the Elastic Scattering of a Particle from Compound Systems
NASA Technical Reports Server (NTRS)
Temkin, A.
1961-01-01
The projection of the target wave function on the total wave function of a scattered particle interacting with the target system is used to define an absolute phase shift including any multiples of pi. With this definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of pi. One can further show that at least one pi of this phase shift is not connected with the existence of a bound state of the H- ion.
Phase-contrast scanning transmission electron microscopy.
Minoda, Hiroki; Tamai, Takayuki; Iijima, Hirofumi; Hosokawa, Fumio; Kondo, Yukihito
2015-06-01
This report introduces the first results obtained using phase-contrast scanning transmission electron microscopy (P-STEM). A carbon-film phase plate (PP) with a small center hole is placed in the condenser aperture plane so that a phase shift is introduced in the incident electron waves except those passing through the center hole. A cosine-type phase-contrast transfer function emerges when the phase-shifted scattered waves interfere with the non-phase-shifted unscattered waves, which passed through the center hole before incidence onto the specimen. The phase contrast resulting in P-STEM is optically identical to that in phase-contrast transmission electron microscopy that is used to provide high contrast for weak phase objects. Therefore, the use of PPs can enhance the phase contrast of the STEM images of specimens in principle. The phase shift resulting from the PP, whose thickness corresponds to a phase shift of π, has been confirmed using interference fringes displayed in the Ronchigram of a silicon single crystal specimen. The interference fringes were found to abruptly shift at the edge of the PP hole by π. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2009-12-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2010-03-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Columnar Self-Assembly of Electron-Deficient Dendronized Bay-Annulated Perylene Bisimides.
Gupta, Ravindra Kumar; Shankar Rao, Doddamane S; Prasad, S Krishna; Achalkumar, Ammathnadu S
2018-03-07
Three new heteroatom bay-annulated perylene bisimides (PBIs) have been synthesized by microwave-assisted synthesis in excellent yield. N-annulated and S-annulated perylene bisimides exhibited columnar hexagonal phase, whereas Se-annulated perylene bisimide exhibited low temperature columnar oblique phase in addition to the high temperature columnar hexagonal phase. The cup shaped bay-annulated PBIs pack into columns with enhanced intermolecular interactions. In comparison to PBI, these molecules exhibited lower melting and clearing temperature, with good solubility. A small red shift in the absorption was seen in the case of N-annulated PBI, whereas S- and Se-annulated PBIs exhibited blue-shifted absorption spectra. Bay-annulation increased the HOMO and LUMO levels of the N-annulated perylene bisimide, whereas a slight increase in the LUMO level and a decrease in the HOMO levels were observed in the case of S- and Se-annulated perylene bisimides, in comparison to the simple perylene bisimide. The band gaps of PBI and PBI-N were almost same, whereas an increase in the band gaps were observed in the case of S- and Se-annulated PBIs. The tendency to freeze in the ordered glassy columnar phase for PBI-N and PBI-S will help to overcome the charge traps due to crystallization, which are detrimental to one-dimensional charge carrier mobility. These solution processable electron deficient columnar semiconductors possessing good thermal stability may form an easily accessible promising class of n-type materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Janssen, Paul M L; Stull, Linda B; Marbán, Eduardo
2002-02-01
The majority of studies aimed at characterizing basic contractile mechanisms have been conducted at room temperature. To elucidate the mechanism of cardiac relaxation under more physiological conditions, we investigated contractile function and calcium handling in ultrathin rat cardiac trabeculae. Active developed tension was unaltered between 22.5 and 30.0 degrees C (from 89 +/- 10 to 86 +/- 11 mN/mm(2), P = not significant) but steeply declined at 37.5 degrees C (30 +/- 5 mN/mm(2)). Meanwhile, the speed of relaxation (time from peak force to 50% relaxation) declined from 22.5 to 30.0 degrees C (from 360 +/- 40 to 157 +/- 17 ms) and further declined at 37.5 degrees C to 76 +/- 13 ms. Phase-plane analysis of calcium versus force revealed that, with increasing temperature, the relaxation phase is shifted rightward, indicating that the rate-limiting step of relaxation tends to depend more on calcium kinetics as temperature rises. The force-frequency relationship, which was slightly negative at 22.5 degrees C (0.1 vs. 1 Hz: 77 +/- 12 vs. 66 +/- 7 mN/mm(2)), became clearly positive at 37.5 degrees C (1 vs. 10 Hz: 30 +/- 5 vs. 69 +/- 9 mN/mm(2)). Phase-plane analyses indicated that, with increasing frequency, the relaxation phase is shifted leftward. We conclude that temperature independently affects contraction and relaxation, and cross-bridge cycling kinetics become rate limiting for cardiac relaxation under experimental conditions closest to those in vivo.
NASA Astrophysics Data System (ADS)
Liao, Hua; Xu, Zhen-Hua; Shi, Nai; Wu, Jin-Guang; Xu, Guang-Xian
1989-12-01
In the previous investigation, the saponification of naphthenic acid extractant system has been proved to be a process of the formation of a microemulsion of 14/0 type, and its full extraction of rare earths is a process of destruction of the W/O microemulsion[1]. When NdCl3 is partially extracted with NaA (sodium naphthenate) secoctylalcohol-- kerosine-- water microemulsion system (ME), both the NdA3 and the NaA co-exist in the same organic phase. However,the formation mechanism of microemulsion containing neodymium has not been much studied. In this paper, 10 aliquots of fully saponificated extractants were equilibrated with various amounts of NdC13 solutions respectively, then ten organic phases with different extraction efficiencies of neodymium from 094 to 9094 were obtained. After extraction,the volume of neodymium containing organic phase increased by 5 to 4594, because of the transfer of water molecules. The appearance of these organic phase still remained clear and transparent. The average hydrodynamic radius of the drops were found to be 100-300 Angstrom by using light scattering techniques. The results give a direct evidence of the microemulsion formation in the organic phase. Their FT-IR spectra were measured with CaFa liquid cells utilizing a Nicolet 7199B FT-IR spectrometer. The presence of various amounts of water in the organic phases was clearly detected from the relative intensity changes of 1644 cm-I, which is assigned to the bending mode of 1110 molecules. Fig.1 shows the change of water contents to the percent extraction of neodymium. Comparsion with the FT-IR spectra, it is seen that the 1560 cm-1 peak of the full saponificated extractant is attributed to the asym. stretching vibration of COO''' group, it shifted to 1536 for 100% extration of Nd ions, indicating the formation of neodymium naphthenate (NdA ) from ionic sodium naphthenate. The sym. strethching vibration of COO''' located at 1406 cm-1, it shifted to 1408 cm in 45% Nd extration. and disappeared when the percentage extration of Nd3+ was larger than 50%, at the same time, the water content dropped sharply (Fig.1).These results suggested that a series of microemulsion containing Nd ions formed in these organic phases, at the transition region ( more than 50 percentage extration of neodymium), a morphological change of the W/0 dispersion system might occur.
NASA Astrophysics Data System (ADS)
Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo
2017-04-01
We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feister, S., E-mail: feister.7@osu.edu; Orban, C.; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459
Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiersmore » synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements with instantaneous plasma profiles and for enabling realistic Particle-in-Cell simulations of the ultra-intense laser-matter interaction.« less
Spectral changes induced by a phase modulator acting as a time lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.
2015-07-06
We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phasemore » shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyasaka, Hiromasa; Harrison, Fiona A.; Fürst, Felix
The Nuclear Spectroscopic Telescope Array hard X-ray telescope observed the transient Be/X-ray binary GS 0834–430 during its 2012 outburst—the first active state of this system observed in the past 19 yr. We performed timing and spectral analysis and measured the X-ray spectrum between 3-79 keV with high statistical significance. We find the phase-averaged spectrum to be consistent with that observed in many other magnetized, accreting pulsars. We fail to detect cyclotron resonance scattering features that would allow us to constrain the pulsar's magnetic field in either phase-averaged or phase-resolved spectra. Timing analysis shows a clearly detected pulse period of ∼12.29more » s in all energy bands. The pulse profiles show a strong, energy-dependent hard phase lag of up to 0.3 cycles in phase, or about 4 s. Such dramatic energy-dependent lags in the pulse profile have never before been reported in high-mass X-ray binary pulsars. Previously reported lags have been significantly smaller in phase and restricted to low energies (E < 10 keV). We investigate the possible mechanisms that might produce this energy-dependent pulse phase shift. We find the most likely explanation for this effect is a complex beam geometry.« less
NASA Astrophysics Data System (ADS)
Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun
2018-02-01
Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.
Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra
Wolf, Thomas; Holzmeier, Fabian; Wagner, Isabella; ...
2017-07-01
Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine's neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependentmore » dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.« less
Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A
2013-03-15
We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.
In-line digital holography with phase-shifting Greek-ladder sieves
NASA Astrophysics Data System (ADS)
Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang
2018-04-01
Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.
Influence of inhalation anesthetics on ion transport across a planar bilayer lipid membrane.
Hichiri, Kei; Shirai, Osamu; Kano, Kenji
2012-01-01
Ion transport from one aqueous phase (W1) to another (W2) across a planar bilayer lipid membrane (BLM) in the presence of inhalation anesthetics was electrochemically investigated. In the absence of inhalation anesthetics in the BLM system, no ion transport current flowed between W1 and W2 across the BLM. When inhalation anesthetics such as halothane, chloroform, diethyl ether and trichloroethylene were added to the two aqueous phases or the BLM, the ion transport current quite clearly appeared. When the ratio of the concentration of KCl or NaCl in W1 to that in W2 was varied, the zero current potential across the BLM was shifted. By considering the magnitude of the potential shift, we concluded that the ion transport current can be predominantly ascribed to the transport of Cl(-) across the BLM. Since the dielectric constants of these anesthetics are larger than that of the inner hydrophobic domain of the BLM, the concentration of hydrophilic electrolyte ions in the BLM increases with the increase in the dielectric constant of the inner hydrophobic domain caused by addition of these anesthetics. These situations lead to an increase in the ion permeability coefficient.
Repp, B H
2001-06-01
Recent studies of synchronized finger tapping have shown that perceptually subliminal phase shifts in an auditory sequence are rapidly compensated for in the motor activity (B. H. Repp, 2000a). Experiment 1 used a continuation-tapping task to confirm that this compensation is indeed a phase correction, not an adjustment of the central timekeeper period. Experiments 2-5 revealed that this phase correction occurs even when there is no ordinary sensorimotor asynchrony--when the finger taps are in antiphase or arbitrary phase relative to the auditory sequence (Experiments 2 and 3) or when the tap coinciding with the sequence phase shift is withheld (Experiments 4 and 5). The phase correction observed in the latter conditions was instantaneous, which suggests that phase resetting occurs when the motor activity is discontinuous. A prolonged phase shift suggestive of overcompensation was observed in some conditions, which poses a challenge to pure phase correction models.
Phase-Shift Interferometry with a Digital Photocamera
ERIC Educational Resources Information Center
Vannoni, Maurizio; Trivi, Marcelo; Molesini, Giuseppe
2007-01-01
A phase-shift interferometry experiment is proposed, working on a Twyman-Green optical configuration with additional polarization components. A guideline is provided to modern phase-shift interferometry, using concepts and laboratory equipment at the level of undergraduate optics courses. (Contains 5 figures.)
Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis
2011-02-28
We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.
NASA Astrophysics Data System (ADS)
Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.
2018-04-01
The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.
Doppler radar with multiphase modulation of transmitted and reflected signal
NASA Technical Reports Server (NTRS)
Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)
1989-01-01
A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.
Fabrication and Test of an Optical Magnetic Mirror
NASA Technical Reports Server (NTRS)
Hagopian, John G.; Roman, Patrick A.; Shiri, Shahram; Wollack, Edward J.; Roy, Madhumita
2011-01-01
Traditional mirrors at optical wavelengths use thin metalized or dielectric layers of uniform thickness to approximate a perfect electric field boundary condition. The electron gas in such a mirror configuration oscillates in response to the incident photons and subsequently re-emits fields where the propagation and electric field vectors have been inverted and the phase of the incident magnetic field is preserved. We proposed fabrication of sub-wavelength-scale conductive structures that could be used to interact with light at a nano-scale and enable synthesis of the desired perfect magnetic-field boundary condition. In a magnetic mirror, the interaction of light with the nanowires, dielectric layer and ground plate, inverts the magnetic field vector resulting in a zero degree phase shift upon reflection. Geometries such as split ring resonators and sinusoidal conductive strips were shown to demonstrate magnetic mirror behavior in the microwave and then in the visible. Work to design, fabricate and test a magnetic mirror began in 2007 at the NASA Goddard Space Flight Center (GSFC) under an Internal Research and Development (IRAD) award Our initial nanowire geometry was sinusoidal but orthogonally asymmetric in spatial frequency, which allowed clear indications of its behavior by polarization. We report on the fabrication steps and testing of magnetic mirrors using a phase shifting interferometer and the first far-field imaging of an optical magnetic mirror.
Eastman, Charmane I; Suh, Christina; Tomaka, Victoria A; Crowley, Stephanie J
2015-02-11
Successful adaptation to modern civilization requires the internal circadian clock to make large phase shifts in response to circumstances (e.g., jet travel and shift work) that were not encountered during most of our evolution. We found that the magnitude and direction of the circadian clock's phase shift after the light/dark and sleep/wake/meal schedule was phase-advanced (made earlier) by 9 hours differed in European-Americans compared to African-Americans. European-Americans had larger phase shifts, but were more likely to phase-delay after the 9-hour advance (to phase shift in the wrong direction). The magnitude and direction of the phase shift was related to the free-running circadian period, and European-Americans had a longer circadian period than African-Americans. Circadian period was related to the percent Sub-Saharan African and European ancestry from DNA samples. We speculate that a short circadian period was advantageous during our evolution in Africa and lengthened with northern migrations out of Africa. The differences in circadian rhythms remaining today are relevant for understanding and treating the modern circadian-rhythm-based disorders which are due to a misalignment between the internal circadian rhythms and the times for sleep, work, school and meals.
NASA Astrophysics Data System (ADS)
Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun
2018-01-01
To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.
Nonadiabatic conditional geometric phase shift with NMR.
Xiang-Bin, W; Keiji, M
2001-08-27
A conditional geometric phase shift gate, which is fault tolerant to certain types of errors due to its geometric nature, was realized recently via nuclear magnetic resonance (NMR) under adiabatic conditions. However, in quantum computation, everything must be completed within the decoherence time. The adiabatic condition makes any fast conditional Berry phase (cyclic adiabatic geometric phase) shift gate impossible. Here we show that by using a newly designed sequence of simple operations with an additional vertical magnetic field, the conditional geometric phase shift gate can be run nonadiabatically. Therefore geometric quantum computation can be done at the same rate as usual quantum computation.
Forster, G.A.
1963-09-24
between master and slave synchros is described. A threephase a-c power source is connected to the stators of the synchros and an error detector is connected to the rotors of the synchros to measure the phasor difference therebetween. A phase shift network shifts the phase of one of the rotors 90 degrees and a demodulator responsive thereto causes the phasor difference signal of the rotors to shift phase 180 degrees whenever the 90 degree phase shifted signal goes negative. The phase shifted difference signal has a waveform which, with the addition of small values of resistance and capacitance, gives a substantially pure d-c output whose amplitude and polarity is proportional to the magnitude and direction of the difference in the angular positions of the synchro's rotors. (AEC)
Tahara, Tatsuki; Otani, Reo; Omae, Kaito; Gotohda, Takuya; Arai, Yasuhiko; Takaki, Yasuhiro
2017-05-15
We propose multiwavelength in-line digital holography with wavelength-multiplexed phase-shifted holograms and arbitrary symmetric phase shifts. We use phase-shifting interferometry selectively extracting wavelength information to reconstruct multiwavelength object waves separately from wavelength-multiplexed monochromatic images. The proposed technique obtains systems of equations for real and imaginary parts of multiwavelength object waves from the holograms by introducing arbitrary symmetric phase shifts. Then, the technique derives each complex amplitude distribution of each object wave selectively and analytically by solving the two systems of equations. We formulate the algorithm in the case of an arbitrary number of wavelengths and confirm its validity numerically and experimentally in the cases where the number of wavelengths is two and three.
NASA Technical Reports Server (NTRS)
Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi
2012-01-01
Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.
RF power recovery feedback circulator
Sharamentov, Sergey I [Bolingbrook, IL
2011-03-29
A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.
Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos
2008-05-26
An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.
NASA Astrophysics Data System (ADS)
Wolf, Alexey; Dostovalov, Alexandr; Skvortsov, Mikhail; Raspopin, Kirill; Parygin, Alexandr; Babin, Sergey
2018-05-01
In this work, long high-quality fiber Bragg gratings with phase shifts in the structure are inscribed directly in the optical fiber by point-by-point technique using femtosecond laser pulses. Phase shifts are introduced during the inscription process with a piezoelectric actuator, which rapidly shifts the fiber along the direction of its movement in a chosen point of the grating with a chosen shift value. As examples, single and double π phase shifts are introduced in fiber Bragg gratings with a length up to 34 mm in passive fibers, which provide corresponding transmission peaks with bandwidth less than 1 pm. It is shown that 37 mm π -phase-shifted grating inscribed in an active Er-doped fiber forms high-quality DFB laser cavity generating single-frequency radiation at 1550 nm with bandwidth of 20 kHz and signal-to-noise ratio of >70 dB. The inscription technique has a high degree of performance and flexibility and can be easily implemented in fibers of various types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wexler, D.B.; Moore-ede, M.C.
1986-12-01
Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophasemore » shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function. 13 references.« less
NASA Technical Reports Server (NTRS)
Wexler, D. B.; Moore-Ede, M. C.
1986-01-01
Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophase shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function.
Pelton, Trudy A; Johannsen, Leif; Huiya Chen; Wing, Alan M
2010-06-01
Walking in time with a metronome is associated with improved spatiotemporal parameters in hemiparetic gait; however, the mechanism linking auditory and motor systems is poorly understood. Hemiparetic cadence control with metronome synchronization was examined to determine specific influences of metronome timing on treadmill walking. A within-participant experiment examined correction processes used to maintain heel strike synchrony with the beat by applying perturbations to the timing of a metronome. Eight chronic hemiparetic participants (mean age = 70 years; standard deviation = 12) were required to synchronize heel strikes with metronome pulses set according to each individual's comfortable speed (mean 0.4 m/s). During five 100-pulse trials, a fixed-phase baseline was followed by 4 unpredictable metronome phase shifts (20% of the interpulse interval), which amounted to 10 phase shifts on each foot. Infrared cameras recorded the motion of bilateral heel markers at 120 Hz. Relative asynchrony between heel strike responses and metronome pulses was used to index compensation for metronome phase shifts. Participants demonstrated compensation for phase shifts with convergence back to pre-phase shift asynchrony. This was significantly slower when the error occurred on the nonparetic side (requiring initial correction with the paretic limb) compared with when the error occurred on the paretic side (requiring initial nonparetic correction). Although phase correction of gait is slowed when the phase shift is delivered to the nonparetic side compared with the paretic side, phase correction is still present. This may underlie the utility of rhythmic auditory cueing in hemiparetic gait rehabilitation.
NASA Astrophysics Data System (ADS)
Baek, Tae Hyun
Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.
Mechanisms of Choice Behavior Shift Using Cue-approach Training.
Bakkour, Akram; Leuker, Christina; Hover, Ashleigh M; Giles, Nathan; Poldrack, Russell A; Schonberg, Tom
2016-01-01
Cue-approach training has been shown to effectively shift choices for snack food items by associating a cued button-press motor response to particular food items. Furthermore, attention was biased toward previously cued items, even when the cued item is not chosen for real consumption during a choice phase. However, the exact mechanism by which preferences shift during cue-approach training is not entirely clear. In three experiments, we shed light on the possible underlying mechanisms at play during this novel paradigm: (1) Uncued, wholly predictable motor responses paired with particular food items were not sufficient to elicit a preference shift; (2) Cueing motor responses early - concurrently with food item onset - and thus eliminating the need for heightened top-down attention to the food stimulus in preparation for a motor response also eliminated the shift in food preferences. This finding reinforces our hypothesis that heightened attention at behaviorally relevant points in time is key to changing choice behavior in the cue-approach task; (3) Crucially, indicating choice using eye movements rather than manual button presses preserves the effect, thus demonstrating that the shift in preferences is not governed by a learned motor response but more likely via modulation of subjective value in higher associative regions, consistent with previous neuroimaging results. Cue-approach training drives attention at behaviorally relevant points in time to modulate the subjective value of individual items, providing a mechanism for behavior change that does not rely on external reinforcement and that holds great promise for developing real world behavioral interventions.
vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.
2009-01-01
Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510
A three pulse phase response curve to three milligrams of melatonin in humans
Burgess, Helen J; Revell, Victoria L; Eastman, Charmane I
2008-01-01
Exogenous melatonin is increasingly used for its phase shifting and soporific effects. We generated a three pulse phase response curve (PRC) to exogenous melatonin (3 mg) by administering it to free-running subjects. Young healthy subjects (n = 27) participated in two 5 day laboratory sessions, each preceded by at least a week of habitual, but fixed sleep. Each 5 day laboratory session started and ended with a phase assessment to measure the circadian rhythm of endogenous melatonin in dim light using 30 min saliva samples. In between were three days in an ultradian dim light (< 150 lux)–dark cycle (LD 2.5 : 1.5) during which each subject took one pill per day at the same clock time (3 mg melatonin or placebo, double blind, counterbalanced). Each individual's phase shift to exogenous melatonin was corrected by subtracting their phase shift to placebo (a free-run). The resulting PRC has a phase advance portion peaking about 5 h before the dim light melatonin onset, in the afternoon. The phase delay portion peaks about 11 h after the dim light melatonin onset, shortly after the usual time of morning awakening. A dead zone of minimal phase shifts occurred around the first half of habitual sleep. The fitted maximum advance and delay shifts were 1.8 h and 1.3 h, respectively. This new PRC will aid in determining the optimal time to administer exogenous melatonin to achieve desired phase shifts and demonstrates that using exogenous melatonin as a sleep aid at night has minimal phase shifting effects. PMID:18006583
The legacy of large regime shifts in shallow lakes.
Ramstack Hobbs, Joy M; Hobbs, William O; Edlund, Mark B; Zimmer, Kyle D; Theissen, Kevin M; Hoidal, Natalie; Domine, Leah M; Hanson, Mark A; Herwig, Brian R; Cotner, James B
2016-12-01
Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. We examine the modern and historical stability of 11 shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 yr suggest that (1) the diatom assemblage is characteristic of either clear or turbid lakes, (2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state, (3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 yr and have since remained in a regime where turbid-water predominates, and (4) top-down impacts to the lake food-web from fish introductions appear to be the dominant driver of strong regime shifts and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.
2018-05-01
Cadmium selenide (CdSe) nanostructured thin films have been grown on fluorine doped tin oxide (FTO) coated glass substrates by potentiostatic electrochemical deposition (ECD) technique for use in solar energy conversion devices. The effect of bath temperature on the structural, morphological and optical properties of prepared CdSe films has been explored. X-ray diffraction (XRD) and Raman spectroscopy clearly show that the CdSe films are polycrystalline and exhibit phase transformation from wurtzite to zincblende structure with increase in bath temperature. Optical spectra reveal that the nanostructured CdSe films have high absorbance in visible region and the films show a red shift in direct optical energy band gap from 1.90 to 1.65 eV with increase in bath temperature due to change in phase and bandgap tuning related to quantum confinement effect.
Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro
2015-06-15
Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.
Phase-shift, stimuli-responsive drug carriers for targeted delivery
O’Neill, Brian E; Rapoport, Natalya
2011-01-01
The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed. PMID:22059114
Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.
Flight controller alertness and performance during MOD shiftwork operations
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Rosekind, Mark R.; Dinges, David F.; Miller, Donna L.; Gillen, Kelly A.; Gregory, Kevin B.; Aguilar, Ronald D.; Smith, Roy M.
1994-01-01
Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations. During STS operations, MOD personnel provide 24 hr. coverage of critical tasks. A joint JSC and ARC project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during STS-53 in Dec. 1992. The study measures included a background questionnaire, a subjective daily logbook completed on a 24 hr. basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen Flight controllers representing the 3 Orbit shifts participated. The initial results clearly support further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further extended duration orbiters, timelines and planning for 24 circadian disruption will remain highly relevant in the MOD environment.
Digital phase shifter synchronizes local oscillators
NASA Technical Reports Server (NTRS)
Ali, S. M.
1978-01-01
Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.
On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2014-11-01
We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.
Takamura, Yusaku; Imanishi, Maho; Osaka, Madoka; Ohmatsu, Satoko; Tominaga, Takanori; Yamanaka, Kentaro; Morioka, Shu; Kawashima, Noritaka
2016-11-01
Unilateral spatial neglect is a common neurological syndrome following predominantly right hemispheric stroke. While most patients lack insight into their neglect behaviour and do not initiate compensatory behaviours in the early recovery phase, some patients recognize it and start to pay attention towards the neglected space. We aimed to characterize visual attention capacity in patients with unilateral spatial neglect with specific focus on cortical processes underlying compensatory gaze shift towards the neglected space during the recovery process. Based on the Behavioural Inattention Test score and presence or absence of experience of neglect in their daily life from stroke onset to the enrolment date, participants were divided into USN++ (do not compensate, n = 15), USN+ (compensate, n = 10), and right hemisphere damage groups (no neglect, n = 24). The patients participated in eye pursuit-based choice reaction tasks and were asked to pursue one of five horizontally located circular objects flashed on a computer display. The task consisted of 25 trials with 4-s intervals, and the order of highlighted objects was randomly determined. From the recorded eye tracking data, eye movement onset and gaze shift were calculated. To elucidate the cortical mechanism underlying behavioural results, electroencephalagram activities were recorded in three USN++, 13 USN+ and eight patients with right hemisphere damage. We found that while lower Behavioural Inattention Test scoring patients (USN++) showed gaze shift to non-neglected space, some higher scoring patients (USN+) showed clear leftward gaze shift at visual stimuli onset. Moreover, we found a significant correlation between Behavioural Inattention Test score and gaze shift extent in the unilateral spatial neglect group (r = -0.62, P < 0.01). Electroencephalography data clearly demonstrated that the extent of increase in theta power in the frontal cortex strongly correlated with the leftward gaze shift extent in the USN++ and USN+ groups. Our results revealed a compensatory strategy (continuous attention to the neglected space) and its neural correlates in patients with unilateral spatial neglect. In conclusion, patients with unilateral spatial neglect who recognized their own neglect behaviour intentionally focused on the neglected space as a compensatory strategy to avoid careless oversight. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana
2012-03-01
We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.
A self-reference PRF-shift MR thermometry method utilizing the phase gradient
NASA Astrophysics Data System (ADS)
Langley, Jason; Potter, William; Phipps, Corey; Huang, Feng; Zhao, Qun
2011-12-01
In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.
Tsai, Cheng-Tao; Tseng, Sheng-Yu
2013-01-01
This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521
The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.
González, César A; Rubinsky, Boris
2006-06-01
The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.
Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu
2013-01-01
This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.
Advanced Receiver For Phase-Shift-Keyed Signals
NASA Technical Reports Server (NTRS)
Hinedi, Sami M.
1992-01-01
ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.
Palese, Alvisa; Basso, Felix; Del Negro, Elena; Achil, Illarj; Ferraresi, Annamaria; Morandini, Marzia; Moreale, Renzo; Mansutti, Irene
2017-05-01
Some nursing programmes offer night shifts for students while others do not, mainly due to the lack of evidence regarding their effectiveness on clinical learning. The principal aims of the study were to describe nursing students' perceptions and to explore conditions influencing effectiveness on learning processes during night shifts. An explanatory mixed-method study design composed of a cross-sectional study (primary method, first phase) followed by a descriptive phenomenological study design (secondary method, second phase) in 2015. Two bachelor of nursing degree programmes located in Northern Italy, three years in length and requiring night shifts for students starting in the second semester of the 1st year, were involved. First phase: all nursing students ending their last clinical placement of the academic year attended were eligible; 352 out the 370 participated. Second phase: a purposeful sample of nine students among those included in the first phase and who attended the highest amount of night shifts were interviewed. First phase: a questionnaire composed of closed and open-ended questions was adopted; data was analyzed through descriptive statistical methods. Second phase: an open-ended face-to-face audio-recorded interview was adopted and data was analyzed through content analysis. Findings from the quantitative phase, showed that students who attended night shifts reported satisfaction (44.7%) less frequently than those who attended only day shifts (55.9%). They also reported boredom (23.5%) significantly more often compared to day shift students (p=0001). Understanding of the nursing role and learning competence was significantly inferior among night shift students as compared to day shift students, while the perception of wasting time was significantly higher among night shift students compared to their counterparts. Night shift students performed nursing rounds (288; 98.2%), non-nursing tasks (247; 84.3%) and/or less often managed clinical problems (insomnia 37; 12.6% and disorientation/confusion 32; 10.9%). Findings from the qualitative phase showed night shifts are experienced by students as a "time potentially capable of generating clinical learning": learning is maximized when students play an active role, encounter patients' clinical problems and develop relationships with patients, caregivers and staff. Night shifts remains ambiguous from the students' perspective and their introduction in nursing education should be approached with care, considering the learning aims expected by students in their clinical placements and the education of clinical mentors education who should be capable of effectively involving students in the process of night care by avoiding non-nursing tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optical π phase shift created with a single-photon pulse.
Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan
2016-04-01
A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.
Eastman, C I; Liu, L; Fogg, L F
1995-07-01
We compared bright-light durations of 6, 3 and 0 hours (i.e. dim light) during simulated night shifts for phase shifting the circadian rectal temperature rhythm to align with a 12-hour shift of the sleep schedule. After 10 baseline days there were 8 consecutive night-work, day-sleep days, with 8-hour sleep (dark) periods. The bright light (about 5,000 lux, around the baseline temperature minimum) was used during all 8 night shifts, and dim light was < 500 lux. This was a field study in which subjects (n = 46) went outside after the night shifts and slept at home. Substantial circadian adaptation (i.e. a large cumulative temperature rhythm phase shift) was produced in many subjects in the bright light groups, but not in the dim light group. Six and 3 hours of bright light were each significantly better than dim light for phase shifting the temperature rhythm, but there was no significant difference between 6 and 3 hours. Thus, durations > 3 hours are probably not necessary in similar shift-work situations. Larger temperature rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better overall mood.
S-Matrix to potential inversion of low-energy α-12C phase shifts
NASA Astrophysics Data System (ADS)
Cooper, S. G.; Mackintosh, R. S.
1990-10-01
The IP S-matrix to potential inversion procedure is applied to phase shifts for selected partial waves over a range of energies below the inelastic threshold for α-12C scattering. The phase shifts were determined by Plaga et al. Potentials found by Buck and Rubio to fit the low-energy alpha cluster resonances need only an increased attraction in the surface to accurately reproduce the phase-shift behaviour. Substantial differences between the potentials for odd and even partial waves are necessary. The surface tail of the potential is postulated to be a threshold effect.
NASA Astrophysics Data System (ADS)
Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong
2016-11-01
We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.
Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert
2009-03-10
In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.
NASA Astrophysics Data System (ADS)
Hénault, François; Carlotti, Alexis; Vérinaud, Christophe
2017-09-01
With the recent commissioning of ground instruments such as SPHERE or GPI and future space observatories like WFIRST-AFTA, coronagraphy should probably become the most efficient tool for identifying and characterizing extrasolar planets in the forthcoming years. Coronagraphic instruments such as Phase mask coronagraphs (PMC) are usually based on a phase mask or plate located at the telescope focal plane, spreading the starlight outside the diameter of a Lyot stop that blocks it. In this communication is investigated the capability of a PMC to act as a phase-shifting wavefront sensor for better control of the achieved star extinction ratio in presence of the coronagraphic mask. We discuss the two main implementations of the phase-shifting process, either introducing phase-shifts in a pupil plane and sensing intensity variations in an image plane, or reciprocally. Conceptual optical designs are described in both cases. Numerical simulations allow for better understanding of the performance and limitations of both options, and optimizing their fundamental parameters. In particular, they demonstrate that the phase-shifting process is a bit more efficient when implemented into an image plane, and is compatible with the most popular phase masks currently employed, i.e. fourquadrants and vortex phase masks.
Tide-associated biological rhythms of some White Sea littoral invertebrates.
Gusev, O A; Golubev, A I
2001-01-01
We report the results from two years of laboratory observations of the tide-associated rhythms of activity of White Sea intertidal invertebrates, Mya arenaria (Bivalvia) and Gammarus finmarchicus (Amphipoda). The tidal associated activity of these invertebrates could not be estimate as a clear circatidal clock. Gammarus activity could be phase shifted by a 0.5 h exposure to turbulent water twice a day for 2-3 days. Mya's rhythm could be changed by a single drainage of aquariums lasting about 15 min. This kind of timing system may be a relatively primitive evolution feature. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Hasegawa, Shin-ya; Hirata, Ryo
2018-04-01
The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih
2012-07-01
A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 π rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.
3D motion picture of transparent gas flow by parallel phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu
2018-03-01
Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Burdine, Robert V. (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
NASA Technical Reports Server (NTRS)
Kegley, Jeff; Stahl, H. Philip (Technical Monitor)
2002-01-01
A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature SiO2 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.
NASA Astrophysics Data System (ADS)
Missan, Sergey; Hrytsenko, Olga
2015-03-01
Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.
White-light diffraction phase microscopy at doubled space-bandwidth product.
Shan, Mingguang; Kandel, Mikhail E; Majeed, Hassaan; Nastasa, Viorel; Popescu, Gabriel
2016-12-12
White light diffraction microscopy (wDPM) is a quantitative phase imaging method that benefits from both temporal and spatial phase sensitivity, granted, respectively, by the common-path geometry and white light illumination. However, like all off-axis quantitative phase imaging methods, wDPM is characterized by a reduced space-bandwidth product compared to phase shifting approaches. This happens essentially because the ultimate resolution of the image is governed by the period of the interferogram and not just the diffraction limit. As a result, off-axis techniques generates single-shot, i.e., high time-bandwidth, phase measurements, at the expense of either spatial resolution or field of view. Here, we show that combining phase-shifting and off-axis, the original space-bandwidth is preserved. Specifically, we developed phase-shifting diffraction phase microscopy with white light, in which we measure and combine two phase shifted interferograms. Due to the white light illumination, the phase images are characterized by low spatial noise, i.e., <1nm pathlength. We illustrate the operation of the instrument with test samples, blood cells, and unlabeled prostate tissue biopsy.
A two dimensional power spectral estimate for some nonstationary processes. M.S. Thesis
NASA Technical Reports Server (NTRS)
Smith, Gregory L.
1989-01-01
A two dimensional estimate for the power spectral density of a nonstationary process is being developed. The estimate will be applied to helicopter noise data which is clearly nonstationary. The acoustic pressure from the isolated main rotor and isolated tail rotor is known to be periodically correlated (PC) and the combined noise from the main and tail rotors is assumed to be correlation autoregressive (CAR). The results of this nonstationary analysis will be compared with the current method of assuming that the data is stationary and analyzing it as such. Another method of analysis is to introduce a random phase shift into the data as shown by Papoulis to produce a time history which can then be accurately modeled as stationary. This method will also be investigated for the helicopter data. A method used to determine the period of a PC process when the period is not know is discussed. The period of a PC process must be known in order to produce an accurate spectral representation for the process. The spectral estimate is developed. The bias and variability of the estimate are also discussed. Finally, the current method for analyzing nonstationary data is compared to that of using a two dimensional spectral representation. In addition, the method of phase shifting the data is examined.
A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology
NASA Technical Reports Server (NTRS)
Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank
2013-01-01
This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.
Lateral geniculate lesions block circadian phase-shift responses to a benzodiazepine.
Johnson, R F; Smale, L; Moore, R Y; Morin, L P
1988-01-01
Several pharmacological treatments, including application of an excitatory neurotoxin to the lateral geniculate nucleus (LGN) and systemic administration of triazolam, a clinically effective benzodiazepine, can elicit large phase shifts in a circadian rhythm according to the time of administration. The hypothesis that the LGN might mediate the effect of triazolam on circadian clock function was tested. Bilateral lesions of the LGN, which destroyed the connection from the intergeniculate leaflet to the suprachiasmatic nucleus, blocked phase-shift responses to triazolam. The requirement of an intact LGN for triazolam to shift circadian phase suggests that the LGN may be a site through which stimuli gain access to the circadian clock to modulate rhythm phase and entrainment. Images PMID:3293053
Mechanisms of Choice Behavior Shift Using Cue-approach Training
Bakkour, Akram; Leuker, Christina; Hover, Ashleigh M.; Giles, Nathan; Poldrack, Russell A.; Schonberg, Tom
2016-01-01
Cue-approach training has been shown to effectively shift choices for snack food items by associating a cued button-press motor response to particular food items. Furthermore, attention was biased toward previously cued items, even when the cued item is not chosen for real consumption during a choice phase. However, the exact mechanism by which preferences shift during cue-approach training is not entirely clear. In three experiments, we shed light on the possible underlying mechanisms at play during this novel paradigm: (1) Uncued, wholly predictable motor responses paired with particular food items were not sufficient to elicit a preference shift; (2) Cueing motor responses early – concurrently with food item onset – and thus eliminating the need for heightened top–down attention to the food stimulus in preparation for a motor response also eliminated the shift in food preferences. This finding reinforces our hypothesis that heightened attention at behaviorally relevant points in time is key to changing choice behavior in the cue-approach task; (3) Crucially, indicating choice using eye movements rather than manual button presses preserves the effect, thus demonstrating that the shift in preferences is not governed by a learned motor response but more likely via modulation of subjective value in higher associative regions, consistent with previous neuroimaging results. Cue-approach training drives attention at behaviorally relevant points in time to modulate the subjective value of individual items, providing a mechanism for behavior change that does not rely on external reinforcement and that holds great promise for developing real world behavioral interventions. PMID:27047435
NASA Technical Reports Server (NTRS)
Guild, Liane S.; Sa, Tatiana D. A.; Carvalho, Claudio J. R.; Potter, Christopher S.; Wickel, Albert J.; Brienza, Silvio, Jr.; Kato, Maria doSocorro A.; Kato, Osvaldo; Brass, James (Technical Monitor)
2002-01-01
Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of capoeira. is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Nino events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and agriculture more resilient to the effects of agricultural pressures and drought through (1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and (2) greater rooting depth of trees planted for fallow improvement. This experimental practice (moto mechanized chop-and-mulch with fallow improvement) has resulted increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira and agricultural fields are susceptible to extreme climate events (drought) under contrasting landuse/clearing practices.
Phase gradient algorithm based on co-axis two-step phase-shifting interferometry and its application
NASA Astrophysics Data System (ADS)
Wang, Yawei; Zhu, Qiong; Xu, Yuanyuan; Xin, Zhiduo; Liu, Jingye
2017-12-01
A phase gradient method based on co-axis two-step phase-shifting interferometry, is used to reveal the detailed information of a specimen. In this method, the phase gradient distribution can only be obtained by calculating both the first-order derivative and the radial Hilbert transformation of the intensity difference between two phase-shifted interferograms. The feasibility and accuracy of this method were fully verified by the simulation results for a polystyrene sphere and a red blood cell. The empirical results demonstrated that phase gradient is sensitive to changes in the refractive index and morphology. Because phase retrieval and tedious phase unwrapping are not required, the calculation speed is faster. In addition, co-axis interferometry has high spatial resolution.
Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.
Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik
2012-03-01
Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.
NASA Astrophysics Data System (ADS)
Wang, Wenyun; Guo, Yingfu
2008-12-01
Phase-shifting methods for 3-D shape measurement have long been employed in optical metrology for their speed and accuracy. For real-time, accurate, 3-D shape measurement, a four-step phase-shifting algorithm which has the advantage of its symmetry is a good choice; however, its measurement error is sensitive to any fringe image errors caused by various sources such as motion blur. To alleviate this problem, a fast two-plus-one phase-shifting algorithm is proposed in this paper. This kind of technology will benefit many applications such as medical imaging, gaming, animation, computer vision, computer graphics, etc.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
On-chip WDM mode-division multiplexing interconnection with optional demodulation function.
Ye, Mengyuan; Yu, Yu; Chen, Guanyu; Luo, Yuchan; Zhang, Xinliang
2015-12-14
We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1 dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are -1.5, -3 and -3.5 dB for TE₀-TE₀, TE₀-TE₁ and TE₀-TE₂ mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.
Superswollen microemulsions stabilized by shear and trapped by a temperature quench.
Roger, Kevin; Olsson, Ulf; Zackrisson-Oskolkova, Malin; Lindner, Peter; Cabane, Bernard
2011-09-06
We studied the solubilization of oil in the C(16)E(8)/hexadecane/H(2)O system. Close to the phase inversion temperature (PIT), the system, at equilibrium, can form either homogeneous states (i.e., microemulsions) at high surfactant concentrations or three-phase states at lower concentrations. We show that, under gentle shear, at a line we named the clearing boundary (CB), located a few degrees below the PIT, the system is homogeneous regardless of the surfactant concentration. We relate this shift of the microemulsion boundary to shear-induced disruption of the asymmetric bicontinuous structure. Although this state quickly relaxes to equilibrium when shear is stopped, we show that it is still possible to trap it into a metastable state through a temperature quench. This method is the sub-PIT emulsification that we described in a previous work (Roger Langmuir 2010, 26, 3860-3867). © 2011 American Chemical Society
A Mathematical Model of the Circadian Phase-Shifting Effects of Exogenous Melatonin
Breslow, Emily R.; Phillips, Andrew J.K.; Huang, Jean M.; St. Hilaire, Melissa A.; Klerman, Elizabeth B.
2013-01-01
Melatonin is endogenously produced and released in humans during nighttime darkness and is suppressed by ocular light exposure. Exogenous melatonin is used to induce circadian phase shifts and sleep. The circadian phase-shifting ability of a stimulus (e.g., melatonin or light) relative to its timing may be displayed as a phase response curve (PRC). Published PRCs to exogenous melatonin show a transition from phase advances to delays approximately 1 h after dim light melatonin onset. A previously developed mathematical model simulates endogenous production and clearance of melatonin as a function of circadian phase, light-induced suppression, and resetting of circadian phase by light. We extend this model to include the pharmacokinetics of oral exogenous melatonin and phase-shifting effects via melatonin receptors in the suprachiasmatic nucleus of the mammalian hypothalamus. Model parameters are fit using 2 data sets: (1) blood melatonin concentration following a 0.3- or 5.0-mg dose, and (2) a PRC to a 3.0-mg dose of melatonin. After fitting to the 3.0-mg PRC, the model correctly predicts that, by comparison, the 0.5-mg PRC is slightly decreased in amplitude and shifted to a later circadian phase. This model also reproduces blood concentration profiles of various melatonin preparations that differ only in absorption rate and percentage degradation by first-pass hepatic metabolism. This model can simulate experimental protocols using oral melatonin, with potential application to guide dose size and timing to optimally shift and entrain circadian rhythms. PMID:23382594
Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart
2013-11-12
A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P.
2016-05-06
Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectramore » and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.« less
Voigt, Aiko; Pincus, Robert; Stevens, Bjorn; ...
2017-04-03
Previous modeling work showed that aerosol can affect the position of the tropical rain belt, i.e., the intertropical convergence zone (ITCZ). Yet it remains unclear which aspects of the aerosol impact are robust across models, and which are not. Here we present simulations with seven comprehensive atmosphere models that study the fast and slow impacts of an idealized anthropogenic aerosol on the zonal-mean ITCZ position. The fast impact, which results from aerosol atmospheric heating and land cooling before sea-surface temperature (SST) has time to respond, causes a northward ITCZ shift. Yet the fast impact is compensated locally by decreased evaporationmore » over the ocean, and a clear northward shift is only found for an unrealistically large aerosol forcing. The local compensation implies that while models differ in atmospheric aerosol heating, this does not contribute to model differences in the ITCZ shift. The slow impact includes the aerosol impact on the ocean surface energy balance and is mediated by SST changes. The slow impact is an order of magnitude more effective than the fast impact and causes a clear southward ITCZ shift for realistic aerosol forcing. Models agree well on the slow ITCZ shift when perturbed with the same SST pattern. However, an energetic analysis suggests that the slow ITCZ shifts would be substantially more model-dependent in interactive-SST setups due to model differences in clear-sky radiative transfer and clouds. In conclusion, we also discuss implications for the representation of aerosol in climate models and attributions of recent observed ITCZ shifts to aerosol.« less
NASA Astrophysics Data System (ADS)
Li, Huiqin; Sun, Limin; Shen, Guangxia; Liang, Qi
2012-02-01
In this work, we investigated the bulk phase distinguishing of the poly(ɛ-caprolactone)-polybutadiene-poly(ɛ-caprolactone) (PCL-PB-PCL) triblock copolymer blended in epoxy resin by tapping mode atomic force microscopy (TM-AFM). We found that at a set-point amplitude ratio ( r sp) less than or equal to 0.85, a clear phase contrast could be obtained using a probe with a force constant of 40 N/m. When r sp was decreased to 0.1 or less, the measured size of the PB-rich domain relatively shrank; however, the height images of the PB-rich domain would take reverse (translating from the original light to dark) at r sp = 0.85. Force-probe measurements were carried out on the phase-separated regions by TM-AFM. According to the phase shift angle vs. r sp curve, it could be concluded that the different force exerting on the epoxy matrix or on the PB-rich domain might result in the height and phase image reversion. Furthermore, the indentation depth vs. r sp plot showed that with large tapping force (lower r sp), the indentation depth for the PB-rich domain was nearly identical for the epoxy resin matrix.
Gao, Liang; Chen, Xiangfei; Xiong, Jintian; Liu, Shengchun; Pu, Tao
2012-01-30
Based on reconstruction-equivalent-chirp (REC) technique, a novel solution for fabricating low-cost long fiber Bragg gratings (FBGs) with desired properties is proposed and initially studied. A proof-of-concept experiment is demonstrated with two conventional uniform phase masks and a submicron-precision translation stage, successfully. It is shown that the original phase shift (OPS) caused by phase mismatch of the two phase masks can be compensated by the equivalent phase shift (EPS) at the ±1st channels of sampled FBGs, separately. Furthermore, as an example, a π phase-shifted FBG of about 90 mm is fabricated by using these two 50mm-long uniform phase masks based on the presented method.
Tau-independent Phase Analysis: A Novel Method for Accurately Determining Phase Shifts.
Tackenberg, Michael C; Jones, Jeff R; Page, Terry L; Hughey, Jacob J
2018-06-01
Estimations of period and phase are essential in circadian biology. While many techniques exist for estimating period, comparatively few methods are available for estimating phase. Current approaches to analyzing phase often vary between studies and are sensitive to coincident changes in period and the stage of the circadian cycle at which the stimulus occurs. Here we propose a new technique, tau-independent phase analysis (TIPA), for quantifying phase shifts in multiple types of circadian time-course data. Through comprehensive simulations, we show that TIPA is both more accurate and more precise than the standard actogram approach. TIPA is computationally simple and therefore will enable accurate and reproducible quantification of phase shifts across multiple subfields of chronobiology.
Optical Fibers Would Sense Local Strains
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1994-01-01
Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.
NASA Astrophysics Data System (ADS)
Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.
2018-05-01
The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic → paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M = 24 J kg‑1 K‑1 at 298 K) and magnetoresistance (= ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigt, Aiko; Pincus, Robert; Stevens, Bjorn
Previous modeling work showed that aerosol can affect the position of the tropical rain belt, i.e., the intertropical convergence zone (ITCZ). Yet it remains unclear which aspects of the aerosol impact are robust across models, and which are not. Here we present simulations with seven comprehensive atmosphere models that study the fast and slow impacts of an idealized anthropogenic aerosol on the zonal-mean ITCZ position. The fast impact, which results from aerosol atmospheric heating and land cooling before sea-surface temperature (SST) has time to respond, causes a northward ITCZ shift. Yet the fast impact is compensated locally by decreased evaporationmore » over the ocean, and a clear northward shift is only found for an unrealistically large aerosol forcing. The local compensation implies that while models differ in atmospheric aerosol heating, this does not contribute to model differences in the ITCZ shift. The slow impact includes the aerosol impact on the ocean surface energy balance and is mediated by SST changes. The slow impact is an order of magnitude more effective than the fast impact and causes a clear southward ITCZ shift for realistic aerosol forcing. Models agree well on the slow ITCZ shift when perturbed with the same SST pattern. However, an energetic analysis suggests that the slow ITCZ shifts would be substantially more model-dependent in interactive-SST setups due to model differences in clear-sky radiative transfer and clouds. In conclusion, we also discuss implications for the representation of aerosol in climate models and attributions of recent observed ITCZ shifts to aerosol.« less
Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer
NASA Technical Reports Server (NTRS)
Olczak, Eugene (Inventor)
2014-01-01
A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.
Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.
Hibino, Kenichi; Kim, Yangjin
2016-08-10
In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.
NASA Astrophysics Data System (ADS)
Gallego, E. E.; Ascorbe, J.; Del Villar, I.; Corres, J. M.; Matias, I. R.
2018-05-01
This work describes the process of nanofabrication of phase-shifted Bragg gratings on the end facet of a multimode optical fiber with a pulsed DC sputtering system based on a single target. Several structures have been explored as a function of parameters such as the number of layers or the phase-shift. The experimental results, corroborated with simulations based on plane-wave propagation in a stack of homogeneous layers, indicate that the phase-shift can be controlled with a high degree of accuracy. The device could be used both in communications, as a filter, or in the sensors domain. As an example of application, a humidity sensor with wavelength shifts of 12 nm in the range of 30 to 90% relative humidity (200 pm/% relative humidity) is presented.
Improved phase shift approach to the energy correction of the infinite order sudden approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, B.; Eno, L.; Rabitz, H.
1980-07-15
A new method is presented for obtaining energy corrections to the infinite order sudden (IOS) approximation by incorporating the effect of the internal molecular Hamiltonian into the IOS wave function. This is done by utilizing the JWKB approximation to transform the Schroedinger equation into a differential equation for the phase. It is found that the internal Hamiltonian generates an effective potential from which a new improved phase shift is obtained. This phase shift is then used in place of the IOS phase shift to generate new transition probabilities. As an illustration the resulting improved phase shift (IPS) method is appliedmore » to the Secrest--Johnson model for the collinear collision of an atom and diatom. In the vicinity of the sudden limit, the IPS method gives results for transition probabilities, P/sub n/..-->..n+..delta..n, in significantly better agreement with the 'exact' close coupling calculations than the IOS method, particularly for large ..delta..n. However, when the IOS results are not even qualitatively correct, the IPS method is unable to satisfactorily provide improvements.« less
Method, memory media and apparatus for detection of grid disconnect
Ye, Zhihong [Clifton Park, NY; Du, Pengwei [Troy, NY
2008-09-23
A phase shift procedure for detecting a disconnect of a power grid from a feeder that is connected to a load and a distributed generator. The phase shift procedure compares a current phase shift of the output voltage of the distributed generator with a predetermined threshold and if greater, a command is issued for a disconnect of the distributed generator from the feeder. To extend the range of detection, the phase shift procedure is used when a power mismatch between the distributed generator and the load exceeds a threshold and either or both of an under/over frequency procedure and an under/over voltage procedure is used when any power mismatch does not exceed the threshold.
NASA Astrophysics Data System (ADS)
Thompson, G. E.
1984-12-01
For transmitting digital information over bandpass channels, M-ary Phase Shift Keying 8(PSK) schemes are used to conserve bandwidth at the expense of signal power. A block of k bits is used to change the phase of the carrier. These k bits represent M possible phase shifts since M = 2. Common forms of M-ary PSK use equally spaced phase angles. For example, if M = 8 and k=3, 8-ary PSK uses eight phase angles spaced 45 degrees apart. This thesis considers a hybrid form of PSK when M = 8 and k = 3. Each of eight blocks of data with three bits per block are represented by different phase shifts of the carrier. The phase angles are chosen to give an equal distance between states (symbols) when projected onto the sine axis and the cosine axis of a phasor diagram. Thus, when the three bits are recovered, using two coherent phase detectors, the separation of the decision regions (voltage levels) are equal.
Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals
NASA Astrophysics Data System (ADS)
Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.
2018-04-01
Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.
Calculations of the Electric Fields in Liquid Solutions
Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.
2014-01-01
The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155
Liu, Weilin; Yao, Jianping
2014-02-15
A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Dong, Zhichao; Cheng, Haobo
2018-01-01
A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.
Simultaneous phase-shifting interferometry study based on the common-path Fizeau interferometer
NASA Astrophysics Data System (ADS)
Liu, Feng-wei; Wu, Yong-qian
2014-09-01
A simultaneous phase-shifting interferometry(SPSI) based on the common-path Fizeau interferometer has been discussed.In this system,two orthogonal polarized beams, using as the reference beam and test beam ,are detached by a particular Wollaston prism at a very small angle,then four equal sub-beams are achieved by a combination of three non-polarizing beam splitters(NPBS),and the phase shifts are introduced by four polarizers whose polarization azimuths are 0°, 45°, 90°, 135° with the horizontal direction respectively,the four phase shift interferograms are collected simultaneously by controlling the CCDs working at the same time .The SPSI principle is studied at first,then is the error analysis, finally we emulate the process of surface recovery by four steps phase shifts algorithm,the results indicate that, to ensure the feasibility of the SPSI system, we have to control the polarization azimuth error of the polarizer in +/- 0.5°.
NASA Technical Reports Server (NTRS)
Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana
2011-01-01
This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.
Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks
Wolff, Gretchen; Duncan, Marilyn J.
2013-01-01
Shifting the onset of light, acutely or chronically, can profoundly affect responses to infection, tumor progression, development of metabolic disease, and mortality in mammals. To date, the majority of phase-shifting studies have focused on acute exposure to a shift in the timing of the light cycle, whereas the consequences of chronic phase shifts alone on molecular rhythms in peripheral tissues such as skeletal muscle have not been studied. In this study, we tested the effect of chronic phase advance on the molecular clock mechanism in two phenotypically different skeletal muscles. The phase advance protocol (CPA) involved 6-h phase advances (earlier light onset) every 4 days for 8 wk. Analysis of the molecular clock, via bioluminescence recording, in the soleus and flexor digitorum brevis (FDB) muscles and lung demonstrated that CPA advanced the phase of the rhythm when studied immediately after CPA. However, if the mice were placed into free-running conditions (DD) for 2 wk after CPA, the molecular clock was not phase shifted in the two muscles but was still shifted in the lung. Wheel running behavior remained rhythmic in CPA mice; however, the endogenous period length of the free-running rhythm was significantly shorter than that of control mice. Core body temperature, cage activity, and heart rate remained rhythmic throughout the experiment, although the onset of the rhythms was significantly delayed with CPA. These results provide clues that lifestyles associated with chronic environmental desynchrony, such as shift work, can have disruptive effects on the molecular clock mechanism in peripheral tissues, including both types of skeletal muscle. Whether this can contribute, long term, to increased incidence of insulin resistance/metabolic disease requires further study. PMID:23703115
Development of Michelson interferometer based spatial phase-shift digital shearography
NASA Astrophysics Data System (ADS)
Xie, Xin
Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.
Knowledge-based support for the participatory design and implementation of shift systems.
Gissel, A; Knauth, P
1998-01-01
This study developed a knowledge-based software system to support the participatory design and implementation of shift systems as a joint planning process including shift workers, the workers' committee, and management. The system was developed using a model-based approach. During the 1st phase, group discussions were repeatedly conducted with 2 experts. Thereafter a structure model of the process was generated and subsequently refined by the experts in additional semistructured interviews. Next, a factual knowledge base of 1713 relevant studies was collected on the effects of shift work. Finally, a prototype of the knowledge-based system was tested on 12 case studies. During the first 2 phases of the system, important basic information about the tasks to be carried out is provided for the user. During the 3rd phase this approach uses the problem-solving method of case-based reasoning to determine a shift rota which has already proved successful in other applications. It can then be modified in the 4th phase according to the shift workers' preferences. The last 2 phases support the final testing and evaluation of the system. The application of this system has shown that it is possible to obtain shift rotas suitable to actual problems and representative of good ergonomic solutions. A knowledge-based approach seems to provide valuable support for the complex task of designing and implementing a new shift system. The separation of the task into several phases, the provision of information at all stages, and the integration of all parties concerned seem to be essential factors for the success of the application.
NASA Astrophysics Data System (ADS)
Yang, Hui; Deng, Yan
2017-12-01
All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.
NASA Astrophysics Data System (ADS)
Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.
2010-12-01
Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global climate change emphasize the need for more effective identification and protection of ecosystem components that are critical for the prevention of coral reef phase shifts.
NASA Astrophysics Data System (ADS)
Ramírez Suárez, O. L.; Sparenberg, J.-M.
2017-09-01
We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
The Study of Phase-shift Super-Frequency Induction Heating Power Supply
NASA Astrophysics Data System (ADS)
Qi, Hairun; Peng, Yonglong; Li, Yabin
This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis
Li, Beiwen; Liu, Ziping; Zhang, Song
2016-10-03
We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.
An approach to instrument qualified visual range
NASA Astrophysics Data System (ADS)
Courtade, Benoît; Bonnet, Jordan; Woodruff, Chris; Larson, Josiah; Giles, Andrew; Sonde, Nikhil; Moore, C. J.; Schimon, David; Harris, David Money; Pond, Duane; Way, Scott
2008-04-01
This paper describes a system that calculates aircraft visual range with instrumentation alone. A unique message is encoded using modified binary phase shift keying and continuously flashed at high speed by ALSF-II runway approach lights. The message is sampled at 400 frames per second by an aircraft borne high-speed camera. The encoding is designed to avoid visible flicker and minimize frame rate. Instrument qualified visual range is identified as the largest distance at which the aircraft system can acquire and verify the correct, runway-specific signal. Scaled testing indicates that if the system were implemented on one full ALSF-II fixture, instrument qualified range could be established at 5 miles in clear weather conditions.
Magnetic Spin Correlations in the One-dimensional Frustrated Spin-chain System Ca3Co2O6
NASA Astrophysics Data System (ADS)
Månsson, M.; Sugiyama, J.; Roessli, B.; Hitti, B.; Ikedo, Y.; Zivkovic, I.; Nozaki, H.; Harada, M.; Sassa, Y.; Andreica, D.; Goko, T.; Amato, A.; Ofer, O.; Ansaldo, E. J.; Brewer, J. H.; Chow, K. H.; Yi, H. T.; Cheong, S.-W.; Prsa, K.
In this work we present a combination of zero-field and high transverse-field muon spin rotation/relaxation (μ+SR) measurements. The current μ+SR Knight-shift measurements clearly shows that Ca3Co2O6 display strong spin correlations even at room-temperature. Further, several anomalies in the temperature dependent data are proposed to be connected to the onset of a quasi-one-dimensional (Q1D) ferrimagnetic order. Further, we suggest that in the low-temperature regime, the Q1D ferrimagnetic order co-exist within a long-range antiferromagnetic phase, which has been confirmed by our recent neutron scattering studies.
Spectroscopic Doppler analysis for visible-light optical coherence tomography
NASA Astrophysics Data System (ADS)
Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.
2017-12-01
Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.
NASA Technical Reports Server (NTRS)
Jewett, M. E.; Duffy, J. F.; Czeisler, C. A.
2000-01-01
A double-stimulus experiment was conducted to evaluate the phase of the underlying circadian clock following light-induced phase shifts of the human circadian system. Circadian phase was assayed by constant routine from the rhythm in core body temperature before and after a three-cycle bright-light stimulus applied near the estimated minimum of the core body temperature rhythm. An identical, consecutive three-cycle light stimulus was then applied, and phase was reassessed. Phase shifts to these consecutive stimuli were no different from those obtained in a previous study following light stimuli applied under steady-state conditions over a range of circadian phases similar to those at which the consecutive stimuli were applied. These data suggest that circadian phase shifts of the core body temperature rhythm in response to a three-cycle stimulus occur within 24 h following the end of the 3-day light stimulus and that this poststimulus temperature rhythm accurately reflects the timing of the underlying circadian clock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toriyama, Koichi; Oguchi, Akihide; Morinaga, Atsuo
2011-12-15
We investigate the phenomenon that a Berry phase evolving linearly in time induces a frequency shift of the resonance transition between two eigenstates, regardless of whether or not they are superposed. Using the magnetic-field-insensitive two-photon microwave--radio-frequency transition, which is free of any other dynamical frequency shift, we demonstrate that the frequency shift caused by a uniform rotation of the magnetic field corresponds to the derivative of the Berry phase with respect to time and depends on the direction of rotation of the magnetic field.
Application of ANFIS to Phase Estimation for Multiple Phase Shift Keying
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for estimating phase in Multiple Phase Shift Keying (M-PSK) modulation. A brief overview of communications phase estimation is provided. The modeling of both general open-loop, and closed-loop phase estimation schemes for M-PSK symbols with unknown structure are discussed. Preliminary performance results from simulation of the above schemes are presented.
Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki
2016-07-01
Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Q-band 4-state phase shifter in planar technology: Circuit design and performance analysis.
Villa, E; Cagigas, J; Aja, B; de la Fuente, L; Artal, E
2016-09-01
A 30% bandwidth phase shifter with four phase states is designed to be integrated in a radio astronomy receiver. The circuit has two 90° out-of-phase microwave phase-shifting branches which are combined by Wilkinson power dividers. Each branch is composed of a 180° phase shifter and a band-pass filter. The 180° phase shifter is made of cascaded hybrid rings with microwave PIN diodes as switching devices. The 90° phase shift is achieved with the two band-pass filters. Experimental characterization has shown significant results, with average phase shift values of -90.7°, -181.7°, and 88.5° within the operation band, 35-47 GHz, and mean insertion loss of 7.4 dB. The performance of its integration in a polarimetric receiver for radio astronomy is analyzed, which validates the use of the presented phase shifter in such type of receiver.
Method for the manufacture of phase shifting masks for EUV lithography
Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton
2006-04-04
A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.
Basic Studies on High Pressure Air Plasmas
2006-08-30
which must be added a 1.5 month salary to A. Bugayev for assistance in laser and optic techniques. 2 Part II Technical report Plasma-induced phase shift...two-wavelength heterodyne interferometry applied to atmospheric pressure air plasma 11.1 .A. Plasma-induced phase shift - Electron density...a driver, since the error on the frequency leads to an error on the phase shift. (c) Optical elements Mirrors Protected mirrors must be used to stand
Broadband one-dimensional photonic crystal wave plate containing single-negative materials.
Chen, Yihang
2010-09-13
The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.
Flexible digital modulation and coding synthesis for satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Budinger, James; Hoerig, Craig; Tague, John
1991-01-01
An architecture and a hardware prototype of a flexible trellis modem/codec (FTMC) transmitter are presented. The theory of operation is built upon a pragmatic approach to trellis-coded modulation that emphasizes power and spectral efficiency. The system incorporates programmable modulation formats, variations of trellis-coding, digital baseband pulse-shaping, and digital channel precompensation. The modulation formats examined include (uncoded and coded) binary phase shift keying (BPSK), quatenary phase shift keying (QPSK), octal phase shift keying (8PSK), 16-ary quadrature amplitude modulation (16-QAM), and quadrature quadrature phase shift keying (Q squared PSK) at programmable rates up to 20 megabits per second (Mbps). The FTMC is part of the developing test bed to quantify modulation and coding concepts.
Quantum phase gate based on electromagnetically induced transparency in optical cavities
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
Functional decoupling of melatonin suppression and circadian phase resetting in humans.
Rahman, Shadab A; St Hilaire, Melissa A; Gronfier, Claude; Chang, Anne-Marie; Santhi, Nayantara; Czeisler, Charles A; Klerman, Elizabeth B; Lockley, Steven W
2018-06-01
There is assumed to be a monotonic association between melatonin suppression and circadian phase resetting induced by light exposure. We tested the association between melatonin suppression and phase resetting in humans. Sixteen young healthy participants received nocturnal bright light (∼9500 lux) exposure of continuous or intermittent patterns, and different durations ranging from 12 min to 6.5 h. Intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every bright light stimulus in an intermittent exposure pattern induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest that phase shifts and melatonin suppression are functionally independent such that one cannot be used as a proxy measure of the other. Continuous experimental light exposures show that, in general, the conditions that produce greater melatonin suppression also produce greater phase shift, leading to the assumption that one can be used as a proxy for the other. We tested this association in 16 healthy individuals who participated in a 9-day inpatient protocol by assessing melatonin suppression and phase resetting in response to a nocturnal light exposure (LE) of different patterns: (i) dim-light control (<3 lux; n = 6) or (ii) two 12-min intermittent bright light pulses (IBL) separated by 36 min of darkness (∼9500 lux; n = 10). We compared these results with historical data from additional LE patterns: (i) dim-light control (<3 lux; n = 11); (ii) single continuous bright light exposure of 12 min (n = 9), 1.0 h (n = 10) or 6.5 h (n = 6); or (iii) an IBL light pattern consisting of six 15-min pulses with 1.0 h dim-light recovery intervals between them during a total of 6.5 h (n = 7). All light exposure groups had significantly greater phase-delay shifts than the dim-light control condition (P < 0.0001). While a monotonic association between melatonin suppression and circadian phase shift was observed, intermittent exposure patterns showed significant phase shifts with disproportionately less melatonin suppression. Each and every IBL stimulus induced a similar degree of melatonin suppression, but did not appear to cause an equal magnitude of phase shift. These results suggest unique specificities in how light-induced phase shifts and melatonin suppression are mediated such that one cannot be used as a proxy measure of the other. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Moreno, Patricio I; Vilanova, I; Villa-Martínez, R; Garreaud, R D; Rojas, M; De Pol-Holz, R
2014-07-10
Late twentieth-century instrumental records reveal a persistent southward shift of the Southern Westerly Winds during austral summer and autumn associated with a positive trend of the Southern Annular Mode (SAM) and contemporaneous with glacial recession, steady increases in atmospheric temperatures and CO2 concentrations at a global scale. However, despite the clear importance of the SAM in the modern/future climate, very little is known regarding its behaviour during pre-Industrial times. Here we present a stratigraphic record from Lago Cipreses (51°S), southwestern Patagonia, that reveals recurrent ~200-year long dry/warm phases over the last three millennia, which we interpret as positive SAM-like states. These correspond in timing with the Industrial revolution, the Mediaeval Climate Anomaly, the Roman and Late Bronze Age Warm Periods and alternate with cold/wet multi-centennial phases in European palaeoclimate records. We conclude that SAM-like changes at centennial timescales in southwestern Patagonia represent in-phase interhemispheric coupling of palaeoclimate over the last 3,000 years through atmospheric teleconnections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, G. G.; Ye, D. F.; Graduate School, China Academy of Engineering Physics, Beijing 100088
2010-12-15
In the present paper, we investigate the correlated electron emission of atoms irradiated by a few-cycle laser pulse, with emphasis on the correlated longitudinal momentum spectra. We find that the spectra show clear v-shaped structures, in analogy to what was observed recently in long-pulse experiments. Moreover, the patterns of the spectra depend sensitively on the carrier-envelope phase as well as the laser intensity. The v-shaped structure is more pronounced at lower and higher intensities and becomes obscure at medium intensity. At a lower intensity, upon change of the phase from 0 to {pi}/2, the v-shaped structure shifts from the firstmore » quadrant to the third quadrant and the ratios between the double ionization yields in the first and third quadrants are found to increase by a few orders of magnitude. The semiclassical rescattering model is exploited in the preceding calculations and the underlying mechanisms are uncovered by analyzing the subcycle dynamics of classical trajectories.« less
Zhang, Siyuan; Cui, Zhiwei; Xu, Tianqi; Liu, Pan; Li, Dapeng; Shang, Shaoqiang; Xu, Ranxiang; Zong, Yujin; Niu, Gang; Wang, Supin; He, Xijing; Wan, Mingxi
2017-01-01
This paper compared the effects of flowing phase-shift nanodroplets (NDs) and lipid-shelled microbubbles (MBs) on subsequent cavitation during focused ultrasound (FUS) exposures. The cavitation activity was monitored using a passive cavitation detection method as solutions of either phase-shift NDs or lipid-shelled MBs flowed at varying velocities through a 5-mm diameter wall-less vessel in a transparent tissue-mimicking phantom when exposed to FUS. The intensity of cavitation for the phase-shift NDs showed an upward trend with time and cavitation for the lipid-shelled MBs grew to a maximum at the outset of the FUS exposure followed by a trend of decreases when they were static in the vessel. Meanwhile, the increase of cavitation for the phase-shift NDs and decrease of cavitation for the lipid-shelled MBs had slowed down when they flowed through the vessel. During two discrete identical FUS exposures, while the normalized inertial cavitation dose (ICD) value for the lipid-shelled MB solution was higher than that for the saline in the first exposure (p-value <0.05), it decreased to almost the same level in the second exposure. For the phase-shift NDs, the normalized ICD was 0.71 in the first exposure and increased to 0.97 in the second exposure. At a low acoustic power, the normalized ICD values for the lipid-shelled MBs tended to increase with increasing velocities from 5 to 30cm/s (r>0.95). Meanwhile, the normalized ICD value for the phase-shift NDs was 0.182 at a flow velocity of 5cm/s and increased to 0.188 at a flow velocity of 15cm/s. As the flow velocity increased to 20cm/s, the normalized ICD was 0.185 and decreased to 0.178 at a flow velocity of 30cm/s. At high acoustic power, the normalized ICD values for both the lipid-shelled MBs and the phase-shift NDs increased with increasing flow velocities from 5 to 30cm/s (r>0.95). The effects of the flowing phase-shift NDs vaporized into gas bubbles as cavitation nuclei on the subsequent cavitation were inverse to those of the flowing lipid-shelled MBs destroyed after focused ultrasound exposures. Copyright © 2016 Elsevier B.V. All rights reserved.
Blind phase error suppression for color-encoded digital fringe projection profilometry
NASA Astrophysics Data System (ADS)
Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.
2012-04-01
Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
Effects of modulation phase on profile analysis in normal-hearing and hearing-impaired listeners
NASA Astrophysics Data System (ADS)
Rogers, Deanna; Lentz, Jennifer
2003-04-01
The ability to discriminate between sounds with different spectral shapes in the presence of amplitude modulation was measured in normal-hearing and hearing-impaired listeners. The standard stimulus was the sum of equal-amplitude modulated tones, and the signal stimulus was generated by increasing the level of half the tones (up components) and decreasing the level of half the tones (down components). The down components had the same modulation phase, and a phase shift was applied to the up components to encourage segregation from the down tones. The same phase shift was used in both standard and signal stimuli. Profile-analysis thresholds were measured as a function of the phase shift between up and down components. The phase shifts were 0, 30, 45, 60, 90, and 180 deg. As expected, thresholds were lowest when all tones had the same modulation phase and increased somewhat with increasing phase disparity. This small increase in thresholds was similar for both groups. These results suggest that hearing-impaired listeners are able to use modulation phase to group sounds in a manner similar to that of normal listeners. [Work supported by NIH (DC 05835).
Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation.
Wu, Hung-Yi; Lee, Po-Lei; Chang, Hsiang-Chih; Hsieh, Jen-Chuen
2011-05-01
This study proposes a novel biphasic stimulation technique to solve the issue of phase drifts in steady-state visual evoked potential (SSVEPs) in phase-tagged systems. Phase calibration was embedded in stimulus sequences using a biphasic flicker, which is driven by a sequence with alternating reference and phase-shift states. Nine subjects were recruited to participate in off-line and online tests. Signals were bandpass filtered and segmented by trigger signals into reference and phase-shift epochs. Frequency components of SSVEP in the reference and phase-shift epochs were extracted using the Fourier method with a 50% overlapped sliding window. The real and imaginary parts of the SSVEP frequency components were organized into complex vectors in each epoch. Hotelling's t-square test was used to determine the significances of nonzero mean vectors. The rejection of noisy data segments and the validation of gaze detections were made based on p values. The phase difference between the valid mean vectors of reference and phase-shift epochs was used to identify user's gazed targets in this system. Data showed an average information transfer rate of 44.55 and 38.21 bits/min in off-line and online tests, respectively. © 2011 IEEE
Dojo, Kumiko; Yamaguchi, Yoshiaki; Fustin, Jean-Michel; Doi, Masao; Kobayashi, Masaki; Okamura, Hitoshi
2017-04-01
Among nonphotic stimulants, a classic cholinergic agonist, carbachol, is known to have a strong and unique phase-resetting effect on the circadian clock: Intracerebroventricular carbachol treatment causes phase delays during the subjective early night and phase advances in the subjective late night, but the effects of this drug on the suprachiasmatic nucleus (SCN) in vivo and in vitro are still controversial. In the present study, we succeeded in reproducing the biphasic phase-shifting effect of carbachol on clock gene expression in organotypic SCN slices prepared from mice carrying a Per1-promoter fused luciferase gene ( Per1-luc). Since this biphasic effect of carbachol in Per1-luc SCN was prevented by atropine but not by mecamylamine, we concluded that these phase shifts were muscarinic receptor-dependent. Next, we analyzed the expression of muscarinic receptors in the SCN by in situ hybridization and found that M3 and M4 subtypes were expressed in SCN cells. These signals appeared neonatally and reached adult levels at postnatal day 10. Together, these findings suggest that carbachol has a phase-dependent phase-shifting effect on the SCN clock through muscarinic receptor subtypes expressed in the SCN.
A High Resolution Phase Shifting Interferometer.
NASA Astrophysics Data System (ADS)
Bayda, Michael; Bartscher, Christoph; Wilkinson, Allen
1997-03-01
Configuration, operation, and performance details of a high resolution phase shifting Twyman-Green interferometer are presented. The instrument was used for density relaxation experiments of very compressible liquid-vapor critical fluids.(A companion talk in the Nonequilibrium Phenomena session under Complex Fluids presents density equilibration work.) A sample assembly contained the cell, beam splitter, phase shifter, and mirrors inside a 6 cm diameter by 6 cm long aluminum cylinder. This sample assembly was contained inside a thermostat stable to 50 μK RMS deviation. A thin phase retarding Liquid Crystal Cell (LCC) was placed in the reference arm of the interferometer. The LCC provided four cumulative 90 degree phase shifts to produce four images used in computing each phase map. The Carré technique was used to calculate a phase value for each pixel from the four intensities of each pixel. Four images for one phase map could be acquired in less than two seconds. The spatial resolution was 25 μm. The phase resolution of the interferometer in a six second period was better than λ/400. The phase stability of the interferometer during 25 hours was better than λ/70. Factors affecting timing, resolution, and other phase shifting devices will be discussed. WWW Presentation
NASA Astrophysics Data System (ADS)
Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo
2017-07-01
In extreme ultraviolet (EUV) lithography, development of review tools for EUV mask pattern and phase defect at working wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern (50 - 70 nm thick) and Mo/Si multilayer (280 nm thick) on a glass substrate. This mask pattern seems three-dimensional (3D) structure. This 3D structure would modulate EUV reflection phase, which would cause focus and pattern shifts. Thus, EUV phase imaging is important to evaluate this phase modulation. We have developed coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. EUV phase and intensity image are reconstructed with diffraction images by ptychography with coherent EUV illumination. The high-harmonic-generation (HHG) EUV source was employed for standalone CSM system. In this study, we updated HHG system of pump-laser reduction and gas-pressure control. Two types of EUV mask absorber patterns were observed. An 88-nm lines-and-spaces and a cross-line patterns were clearly reconstructed by ptychography. In addition, a natural defect with 2-μm diameter on the cross-line was well reconstructed. This demonstrated the high capability of the standalone CSM, which system will be used in the factories, such as mask shops and semiconductor fabrication plants.
Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave
NASA Astrophysics Data System (ADS)
Wen, Biyang; Li, Ke
2016-08-01
Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.
NASA Astrophysics Data System (ADS)
Chatterjee, Julius
This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.
Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope
Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.
2012-01-01
Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580
Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry
NASA Astrophysics Data System (ADS)
Feng, Shijie; Zuo, Chao; Tao, Tianyang; Hu, Yan; Zhang, Minliang; Chen, Qian; Gu, Guohua
2018-04-01
Phase-shifting profilometry (PSP) is a widely used approach to high-accuracy three-dimensional shape measurements. However, when it comes to moving objects, phase errors induced by the movement often result in severe artifacts even though a high-speed camera is in use. From our observations, there are three kinds of motion artifacts: motion ripples, motion-induced phase unwrapping errors, and motion outliers. We present a novel motion-compensated PSP to remove the artifacts for dynamic measurements of rigid objects. The phase error of motion ripples is analyzed for the N-step phase-shifting algorithm and is compensated using the statistical nature of the fringes. The phase unwrapping errors are corrected exploiting adjacent reliable pixels, and the outliers are removed by comparing the original phase map with a smoothed phase map. Compared with the three-step PSP, our method can improve the accuracy by more than 95% for objects in motion.
NASA Astrophysics Data System (ADS)
Kumagai, Toshiki; Hibino, Kenichi; Nagaike, Yasunari
2017-03-01
Internally scattered light in a Fizeau interferometer is generated from dust, defects, imperfect coating of the optical components, and multiple reflections inside the collimator lens. It produces additional noise fringes in the observed interference image and degrades the repeatability of the phase measurement. A method to reduce the phase measurement error is proposed, in which the test surface is mechanically translated between each phase measurement in addition to an ordinary phase shift of the reference surface. It is shown that a linear combination of several measured phases at different test surface positions can reduce the phase errors caused by the scattered light. The combination can also compensate for the nonuniformity of the phase shift that occurs in spherical tests. A symmetric sampling of the phase measurements can cancel the additional primary spherical aberrations that occur when the test surface is out of the null position of the confocal configuration.
Retinal nerve fiber layer thickness map and blood flow pulsation measured with SDOCT
NASA Astrophysics Data System (ADS)
Mujat, Mircea; Chan, Raymond C.; Cense, Barry; Pierce, Mark; Park, Hyle; Joo, Chulmin; Chen, Teresa C.; de Boer, Johannes F.
2006-02-01
Spectral-Domain Optical Coherence Tomography (SDOCT) allows for in-vivo video-rate investigation of biomedical tissue depth structure intended for non-invasive optical diagnostics. It has been suggested that OCT can be used for di-agnosis of glaucoma by measuring the thickness of the Retinal Nerve Fiber Layer (RNLF). We present an automated method for determining the RNFL thickness from a 3-D dataset based on edge detection using a deformable spline algo-rithm. The RNFL thickness map is combined with an integrated reflectance map and retinal cross-sectional images to provide the ophthalmologist with a familiar image for interpreting the OCT data. The video-rate capabilities of our SDOCT system allow for mapping the true retinal topography since motion artifacts are significantly reduced as com-pared to slower time-domain systems. Combined with Doppler Velocimetry, SDOCT also provides information on retinal blood flow dynamics. We analyzed the pulsatile nature of the bidirectional flow dynamics in an artery-vein pair for a healthy volunteer at different locations and for different blood vessel diameters. The Doppler phase shift is determined as the phase difference at the same point of adjacent depth profiles, and is integrated over the area delimited by two circles corresponding to the blood vessels location. Its temporal evolution clearly shows the blood flow pulsatile nature, the cardiac cycle, in both artery and vein. The artery is identified as having a stronger variation of the integrated phase shift. We observe that artery pulsation is always easily detectable, while vein pulsation seems to depend on the veins diameter.
Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor.
You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen
2017-03-31
The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face.
Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor
You, Yong; Shen, Yang; Zhang, Guocai; Xing, Xiuwen
2017-01-01
The 3D measuring range and accuracy in traditional active optical sensing, such as Fourier transform profilometry, are influenced by the zero frequency of the captured patterns. The phase-shifting technique is commonly applied to remove the zero component. However, this phase-shifting method must capture several fringe patterns with phase difference, thereby influencing the real-time performance. This study introduces a smart active optical sensor, in which a composite pattern is utilized. The composite pattern efficiently combines several phase-shifting fringes and carrier frequencies. The method can remove zero frequency by using only one pattern. Model face reconstruction and human face measurement were employed to study the validity and feasibility of this method. Results show no distinct decrease in the precision of the novel method unlike the traditional phase-shifting method. The texture mapping technique was utilized to reconstruct a nature-appearance 3D digital face. PMID:28362349
Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu
2015-07-16
To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation.
NASA Astrophysics Data System (ADS)
Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.
2018-06-01
A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.
Manipulation of wavefront using helical metamaterials.
Yang, Zhenyu; Wang, Zhaokun; Tao, Huan; Zhao, Ming
2016-08-08
Helical metamaterials, a kind of 3-dimensional structure, has relatively strong coupling effect among the helical nano-wires. Therefore, it is expected to be a good candidate for generating phase shift and controlling wavefront with high efficiency. In this paper, using the finite-difference time-domain (FDTD) method, we studied the phase shift properties in the helical metamaterials. It is found that the phase shift occurs for both transmitted and reflected light waves. And the maximum of reflection coefficients can reach over 60%. In addition, the phase shift (φ) is dispersionless in the range of 600 nm to 860 nm, that is, it is only dominated by the initial angle (θ) of the helix. The relationship between them is φ = ± 2θ. Using Jones calculus we give a further explanation for these properties. Finally, by arranging the helixes in an array with a constant phase gradient, the phenomenon of anomalous refraction was also observed in a broad wavelength range.
Isochronic carrier-envelope phase-shift compensator.
Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter
2008-11-15
A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.
The Phase Shift in the Jumping Ring
NASA Astrophysics Data System (ADS)
Jeffery, Rondo N.; Amiri, Farhang
2008-09-01
The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation. A method is given for measuring the phase shift with results for aluminum and brass rings.
PHASE-SHIFT, STIMULI-RESPONSIVE PERFLUOROCARBON NANODROPLETS FOR DRUG DELIVERY TO CANCER
2012-01-01
This review focuses on phase-shift perfluorocarbon nanoemulsions whose action depends on an ultrasound-triggered phase shift from a liquid to gas state. For drug-loaded perfluorocarbon nanoemulsions, microbubbles are formed under the action of tumor-directed ultrasound and drug is released locally into tumor volume in this process. This review covers in detail mechanisms involved in the droplet-to-bubble transition as well as mechanisms of ultrasound-mediated drug delivery. PMID:22730185
Doppler-corrected differential detection system
NASA Technical Reports Server (NTRS)
Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)
1991-01-01
Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.
NASA Astrophysics Data System (ADS)
Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.
2002-10-01
A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.
Two solitons oblique collision in anisotropic non-extensive dusty plasma
NASA Astrophysics Data System (ADS)
El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; Fouda, S. M.
2017-03-01
Using an extended Poincaré-Lighthill-Kue method, the oblique collision of two dust acoustic solitons (DASs) in a magnetized non-extensive plasma with the effect of dust pressure anisotropy is studied. The dust fluid is supposed to have an arbitrary charge. A couple of Korteweg-de Vries (KdV) equations are derived for the colliding DASs. The phase shift of each soliton is obtained. It is found that the dust pressure anisotropy, the non-extensive parameter for electrons and ions, plays an important role in determining the collision phase shifts. The present results show that, for the negative dust case, the phase shift of the first soliton decreases, while that of the second soliton increases as either the dust pressure ratio increases or the ion non-extensive parameter decreases. On the other hand, for the positive dust case, the phase shift of the first soliton decreases, while the phase shift of the second soliton increases as either the dust pressure ratio or the ion non-extensive parameter increases. The application of the present findings to some dusty plasma phenomena occurring in space and laboratory plasmas is briefly discussed.
Coma measurement by transmission image sensor with a PSM
NASA Astrophysics Data System (ADS)
Wang, Fan; Wang, Xiangzhao; Ma, Mingying; Zhang, Dongqing; Shi, Weijie; Hu, Jianming
2005-01-01
As feature size decreases, especially with the use of resolution enhancement technique such as off axis illumination and phase shifting mask, fast and accurate in-situ measurement of coma has become very important in improving the performance of modern lithographic tools. The measurement of coma can be achieved by the transmission image sensor, which is an aerial image measurement device. The coma can be determined by measuring the positions of the aerial image at multiple illumination settings. In the present paper, we improve the measurement accuracy of the above technique with an alternating phase shifting mask. Using the scalar diffraction theory, we analyze the effect of coma on the aerial image. To analyze the effect of the alternating phase shifting mask, we compare the pupil filling of the mark used in the above technique with that of the phase-shifted mark used in the new technique. We calculate the coma-induced image displacements of the marks at multiple partial coherence and NA settings, using the PROLITH simulation program. The simulation results show that the accuracy of coma measurement can increase approximately 20 percent using the alternating phase shifting mask.
NASA Astrophysics Data System (ADS)
Viswanathan, Balakrishnan; Gea-Banacloche, Julio
2017-04-01
We analyze a recent scheme proposed by Xia et al. to induce a conditional phase shift between two single-photon pulses by having them propagate at different speeds through a nonlinear medium with a nonlocal response. We have obtained an analytical solution for the case they considered, which supports their claim that a π phase shift with unit fidelity is possible in principle. We discuss the conditions that have to be met and the challenges and opportunities that this might present to the realization of a single-photon conditional phase gate.
Phase-shifting interference microscope with extendable field of measurement
NASA Astrophysics Data System (ADS)
Lin, Shyh-Tsong; Hsu, Wei-Feng; Wang, Ming-Shiang
2018-04-01
An innovative phase-shifting interference microscope aimed at extending the field of measurement is proposed in this paper. The microscope comprises a light source module, a phase modulation module, and an interferometric module, which reconstructs the micro-structure contours of samples using the five-step phase-shifting algorithm. This paper discusses the measurement theory and outlines the configuration, experimental setup, and experimental results obtained using the proposed interference microscope. The results confirm the efficacy of the microscope, achieving a standard deviation of 2.4 nm from a step height of 86.2 nm in multiple examinations.
Optimal control of the gear shifting process for shift smoothness in dual-clutch transmissions
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Görges, Daniel
2018-03-01
The control of the transmission system in vehicles is significant for the driving comfort. In order to design a controller for smooth shifting and comfortable driving, a dynamic model of a dual-clutch transmission is presented in this paper. A finite-time linear quadratic regulator is proposed for the optimal control of the two friction clutches in the torque phase for the upshift process. An integral linear quadratic regulator is introduced to regulate the relative speed difference between the engine and the slipping clutch under the optimization of the input torque during the inertia phase. The control objective focuses on smoothing the upshift process so as to improve the driving comfort. Considering the available sensors in vehicles for feedback control, an observer design is presented to track the immeasurable variables. Simulation results show that the jerk can be reduced both in the torque phase and inertia phase, indicating good shift performance. Furthermore, compared with conventional controllers for the upshift process, the proposed control method can reduce shift jerk and improve shift quality.
Electron microscope phase enhancement
Jin, Jian; Glaeser, Robert M.
2010-06-15
A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.
Hobbs, William O; Hobbs, Joy M Ramstack; LaFrançois, Toben; Zimmer, Kyle D; Theissen, Kevin M; Edlund, Mark B; Michelutti, Neal; Butler, Malcolm G; Hanson, Mark A; Carlson, Thomas J
2012-07-01
Multiple stressors to a shallow lake ecosystem have the ability to control the relative stability of alternative states (clear, macrophyte-dominated or turbid, algal-dominated). As a consequence, the use of remedial biomanipulations to induce trophic cascades and shift a turbid lake to a clear state is often only a temporary solution. Here we show the instability of short-term manipulations in the shallow Lake Christina (Minnesota, USA) is governed by the long-term state following a regime shift in the lake. During the modern, managed period of the lake, three top-down manipulations (fish kills) were undertaken inducing temporary (5-10 years) unstable clear-water states. Paleoecological remains of diatoms, along with proxies of primary production (total chlorophyll a and total organic carbon accumulation rate) and trophic state (total P) from sediment records clearly show a single regime shift in the lake during the early 1950s; following this shift, the functioning of the lake ecosystem is dominated by a persistent turbid state. We find that multiple stressors contributed to the regime shift. First, the lake began to eutrophy (from agricultural land use and/or increased waterfowl populations), leading to a dramatic increase in primary production. Soon after, the construction of a dam in 1936 effectively doubled the depth of the lake, compounded by increases in regional humidity; this resulted in an increase in planktivorous and benthivorous fish reducing phytoplankton grazers. These factors further conspired to increase the stability of a turbid regime during the modern managed period, such that switches to a clear-water state were inherently unstable and the lake consistently returned to a turbid state. We conclude that while top-down manipulations have had measurable impacts on the lake state, they have not been effective in providing a return to an ecosystem similar to the stable historical period. Our work offers an example of a well-studied ecosystem forced by multiple stressors into a new long-term managed period, where manipulated clear-water states are temporary, managed features.
Carrier recovery techniques on satellite mobile channels
NASA Technical Reports Server (NTRS)
Vucetic, B.; Du, J.
1990-01-01
An analytical method and a stored channel model were used to evaluate error performance of uncoded quadrature phase shift keying (QPSK) and M-ary phase shift keying (MPSK) trellis coded modulation (TCM) over shadowed satellite mobile channels in the presence of phase jitter for various carrier recovery techniques.
Cheng, Jingchi; Tang, Ming; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2013-04-01
We show for the first time, to the best of our knowledge, that, in a coherent communication system that employs a phase-shift-keying signal and Raman amplification, besides the pump relative intensity noise (RIN) transfer to the amplitude, the signal's phase will also be affected by pump RIN through the pump-signal cross-phase modulation. Although the average pump power induced linear phase change can be compensated for by the phase-correction algorithm, a relative phase noise (RPN) parameter has been found to characterize pump RIN induced stochastic phase noise. This extra phase noise brings non-negligible system impairments in terms of the Q-factor penalty. The calculation shows that copumping leads to much more stringent requirements to pump RIN, and relatively larger fiber dispersion helps to suppress the RPN induced impairment. A higher-order phase-shift keying (PSK) signal is less tolerant to noise than a lower-order PSK.
Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers
NASA Astrophysics Data System (ADS)
Jiang, Chufan; Li, Beiwen; Zhang, Song
2017-04-01
This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.
Motion compensation and noise tolerance in phase-shifting digital in-line holography.
Stenner, Michael D; Neifeld, Mark A
2006-05-15
We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.
Concatenated shift registers generating maximally spaced phase shifts of PN-sequences
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Welch, L. R.
1977-01-01
A large class of linearly concatenated shift registers is shown to generate approximately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number generation. A constructive method is presented for finding members of this class, for almost all degrees for which primitive trinomials exist. The sequences which result are not normally characterized by trinomial recursions, which is desirable since trinomial sequences can have some undesirable randomness properties.
Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo
2016-01-01
Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.
Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia
Januar, Indra; Wild, Christian; Kunzmann, Andreas
2016-01-01
Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20–60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m−2 d−1). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts. PMID:27904802
Relative phase shifts for metaplectic isotopies acting on mixed Gaussian states
NASA Astrophysics Data System (ADS)
de Gosson, Maurice A.; Nicacio, Fernando
2018-05-01
We address in this paper the notion of relative phase shift for mixed quantum systems. We study the Pancharatnam-Sjöqvist phase shift φ (t ) =ArgTr(U^ tρ ^ ) for metaplectic isotopies acting on Gaussian mixed states. We complete and generalize the previous results obtained by one of us, while giving rigorous proofs. The key actor in this study is the theory of the Conley-Zehnder index which is an intersection index related to the Maslov index.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
Digital second-order phase-locked loop
NASA Technical Reports Server (NTRS)
Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.
1975-01-01
Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.
Watanabe, K; Deboer, T; Meijer, J H
2001-12-01
The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.
Prosser, Rebecca A.; Mangrum, Charles A.; Glass, J. David
2008-01-01
Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by non-photic signals, including serotonin. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or D-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between serotonin and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse. PMID:18313227
Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events
NASA Technical Reports Server (NTRS)
Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert
2012-01-01
Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.
Marti, Andrea Rørvik; Meerlo, Peter; Grønli, Janne; van Hasselt, Sjoerd Johan; Mrdalj, Jelena; Pallesen, Ståle; Pedersen, Torhild Thue; Henriksen, Tone Elise Gjøtterud; Skrede, Silje
2016-11-08
Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.
NASA Astrophysics Data System (ADS)
Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh
2016-03-01
We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.
Speciation of mercury and mode of transport from placer gold mine tailings
Slowey, A.J.; Rytuba, J.J.; Brown, Gordon E.
2005-01-01
Historic placer gold mining in the Clear Creek tributary to the Sacramento River (Redding, CA) has highly impacted the hydrology and ecology of an important salmonid spawning stream. Restoration of the watershed utilized dredge tailings contaminated with mercury (Hg) introduced during gold mining, posing the possibility of persistent Hg release to the surrounding environment, including the San Francisco Bay Delta. Column experiments have been performed to evaluate the extent of Hg transport under chemical conditions potentially similar to those in river restoration projects utilizing dredge tailings such as at Clear Creek. Physicochemical perturbations, in the form of shifts in column influent ionic strength and the presence of a low molecular weight organic acid, were applied to coarse and fine sand placer tailings containing 109-194 and 69-90 ng of Hg/g, respectively. Significant concentrations of mercury, up to 16 ??g/L, leach from these sediments in dissolved and particle-associated forms. Sequential chemical extractions (SCE) of these tailings indicate that elemental Hg initially introduced during gold mining has been transformed to readily soluble species, such as mercury oxides and chlorides (3-4%), intermediately extractable phases that likely include (in)organic sorption complexes and amalgams (75-87%), and fractions of highly insoluble forms such as mercury sulfides (6-20%; e.g., cinnabar and metacinnabar). Extended X-ray absorption fine structure (EXAFS) spectroscopic analysis of colloids obtained from column effluent identified cinnabar particles as the dominant mobile mercury-bearing phase. The fraction of intermediately extractable Hg phases also likely includes mobile colloids to which Hg is adsorbed. ?? 2005 American Chemical Society.
Correction of phase-shifting error in wavelength scanning digital holographic microscopy
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-05-01
Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.
Precise determination of lattice phase shifts and mixing angles
Lu, Bing -Nan; Lähde, Timo A.; Lee, Dean; ...
2016-07-09
Here, we introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles formore » all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.« less
Comprehensive time average digital holographic vibrometry
NASA Astrophysics Data System (ADS)
Psota, Pavel; Lédl, Vít; Doleček, Roman; Mokrý, Pavel; Vojtíšek, Petr; Václavík, Jan
2016-12-01
This paper presents a method that simultaneously deals with drawbacks of time-average digital holography: limited measurement range, limited spatial resolution, and quantitative analysis of the measured Bessel fringe patterns. When the frequency of the reference wave is shifted by an integer multiple of frequency at which the object oscillates, the measurement range of the method can be shifted either to smaller or to larger vibration amplitudes. In addition, phase modulation of the reference wave is used to obtain a sequence of phase-modulated fringe patterns. Such fringe patterns can be combined by means of phase-shifting algorithms, and amplitudes of vibrations can be straightforwardly computed. This approach independently calculates the amplitude values in every single pixel. The frequency shift and phase modulation are realized by proper control of Bragg cells and therefore no additional hardware is required.
NASA Astrophysics Data System (ADS)
Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.
2017-12-01
Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.
The cholinergic forebrain arousal system acts directly on the circadian pacemaker
Yamakawa, Glenn R.; Basu, Priyoneel; Cortese, Filomeno; MacDonnell, Johanna; Whalley, Danica; Smith, Victoria M.
2016-01-01
Sleep and wake states are regulated by a variety of mechanisms. One such important system is the circadian clock, which provides temporal structure to sleep and wake. Conversely, changes in behavioral state, such as sleep deprivation (SD) or arousal, can phase shift the circadian clock. Here we demonstrate that the level of wakefulness is critical for this arousal resetting of the circadian clock. Specifically, drowsy animals with significant power in the 7- to 9-Hz band of their EEGs do not exhibit phase shifts in response to a mild SD procedure. We then show that treatments that both produce arousal and reset the phase of circadian clock activate (i.e., induce Fos expression in) the basal forebrain. Many of the activated cells are cholinergic. Using retrograde tract tracing, we demonstrate that cholinergic cells activated by these arousal procedures project to the circadian clock in the suprachiasmatic nuclei (SCN). We then demonstrate that arousal-induced phase shifts are blocked when animals are pretreated with atropine injections to the SCN, demonstrating that cholinergic activity at the SCN is necessary for arousal-induced phase shifting. Finally, we demonstrate that electrical stimulation of the substantia innominata of the basal forebrain phase shifts the circadian clock in a manner similar to that of our arousal procedures and that these shifts are also blocked by infusions of atropine to the SCN. These results establish a functional link between the major forebrain arousal center and the circadian system. PMID:27821764
NASA Astrophysics Data System (ADS)
Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei
2018-01-01
The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.
Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.; Kalogerakis, Georgios; Shaw, Wei-Tao
2006-12-01
Homodyne phase-shift-keying systems can achieve the best receiver sensitivity and the longest transmission distance among all optical communication systems. This paper reviews recent research efforts in the field and examines future possibilities that might lead toward potential practical use of these systems. Additionally, phase estimation techniques based on feed-forward phase recovery and digital delay-lock loop approaches are examined, simulated, and compared.
Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity
NASA Astrophysics Data System (ADS)
Sreekanth, Kandammathe Valiyaveedu; Ouyang, Qingling; Han, Song; Yong, Ken-Tye; Singh, Ranjan
2018-04-01
In this letter, we experimentally demonstrate thirtyfold enhancement in Goos-Hänchen shift at the Brewster angle of a nanophotonic cavity that operates at the wavelength of 632.8 nm. In particular, the point-of-darkness and the singular phase are achieved using a four-layered metal-dielectric-dielectric-metal asymmetric Fabry-Perot cavity. A highly absorbing ultra-thin layer of germanium in the stack gives rise to the singular phase and the enhanced Goos-Hänchen shift at the point-of-darkness. The obtained giant Goos-Hänchen shift in the lithography-free nanophotonic cavity could enable many intriguing applications including cost-effective label-free biosensors.
Robust phase-shifting interferometry resistant to multiple disturbances
NASA Astrophysics Data System (ADS)
Liu, Qian; Yue, Xiaobin; Li, Lulu; Zhang, Hui; He, Jianguo
2018-04-01
Phase-shifting interferometry (PSI) is sensitive to many disturbances, including the environmental vibration, laser instability, phase-shifting error and camera nonlinearity. A robust PSI (RPSI) based on the temporal spectrum analysis is proposed to suppress the effects of these common disturbances. RPSI retrieves wavefront phase from the temporal Fourier spectrum peak, which is identified by detecting the modulus of spectrum, and a referencing method is presented to improve the phase extracting accuracy. Simulations demonstrate the feasibility and effectiveness of RPSI. Experimental results indicate that RPSI is resistant to common disturbances in implementing PSI and achieves accuracy better than 0.03 rad in the disturbed environment. RPSI relaxes requirements on the hardware, environment and operator, and provides an easy-to-use design of an interferometer.
Edge effects in phase-shifting masks for 0.25-µm lithography
NASA Astrophysics Data System (ADS)
Wong, Alfred K. K.; Neureuther, Andrew R.
1993-03-01
The impact on image quality of scattering from phase-shifter edges and of interactions between phase-shifter and chrome edges is assessed using rigorous electromagnetic simulation. Effects of edge taper in phase-shift masks, spacing between phase-shifter and chrome edges, small outrigger features with a trench phase-shifter, and of the repair of phase defects by etching to 360 degree(s) are considered. Near field distributions and diffraction efficiencies are examined and images are compared with more approximate results from the commonly used Hopkins' theory of imaging.
Shift Work and Cognitive Flexibility: Decomposing Task Performance.
Cheng, Philip; Tallent, Gabriel; Bender, Thomas John; Tran, Kieulinh Michelle; Drake, Christopher L
2017-04-01
Deficits in cognitive functioning associated with shift work are particularly relevant to occupational performance; however, few studies have examined how cognitive functioning is associated with specific components of shift work. This observational study examined how circadian phase, nocturnal sleepiness, and daytime insomnia in a sample of shift workers ( N = 30) were associated with cognitive flexibility during the night shift. Cognitive flexibility was measured using a computerized task-switching paradigm, which produces 2 indexes of flexibility: switch cost and set inhibition. Switch cost represents the additional cognitive effort required in switching to a different task and can impact performance when multitasking is involved. Set inhibition is the efficiency in returning to previously completed tasks and represents the degree of cognitive perseveration, which can lead to reduced accuracy. Circadian phase was measured via melatonin assays, nocturnal sleepiness was assessed using the Multiple Sleep Latency Test, and daytime insomnia was assessed using the Insomnia Severity Index. Results indicated that those with an earlier circadian phase, insomnia, and sleepiness exhibited reduced cognitive flexibility; however, specific components of cognitive flexibility were differentially associated with circadian phase, insomnia, and sleepiness. Individuals with an earlier circadian phase (thus more misaligned to the night shift) exhibited larger switch costs, which was also associated with reduced task efficiency. Shift workers with more daytime insomnia demonstrated difficulties with cognitive inhibition, whereas nocturnal sleepiness was associated with difficulties in reactivating previous tasks. Deficits in set inhibition were also related to reduced accuracy and increased perseverative errors. Together, this study indicates that task performance deficits in shift work are complex and are variably impacted by different mechanisms. Future research may examine phenotypic differences in shift work and the associated consequences. Results also suggest that fatigue risk management strategies may benefit from increased scope and specificity in assessment of sleep, sleepiness, and circadian rhythms in shift workers.
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...
2017-05-16
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-01-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866
Nematic biaxiality in a bent-core material
NASA Astrophysics Data System (ADS)
Yoon, Hyung Guen; Kang, Shin-Woong; Dong, Ronald Y.; Marini, Alberto; Suresh, Kattera A.; Srinivasarao, Mohan; Kumar, Satyendra
2010-05-01
The results of a recent investigation of the nematic biaxiality in a bent-core mesogen (A131) are in apparent disagreement with earlier claims. Samples of mesogen A131 used in the two studies were investigated with polarized optical microscopy, conoscopy, carbon-13 NMR, and crossover frequency measurements. The results demonstrate that textural changes associated with the growth of biaxial nematic order appear at ˜149°C . The Maltese cross observed in the conoscopic figure gradually splits into two isogyres at lower temperatures indicating phase biaxiality. Presence of the uniaxial to biaxial nematic phase transition is further confirmed by temperature trends of local order parameters based on C13 chemical shifts in NMR experiments. Frequency switching measurements also clearly reveal a transition at 149°C . Differences between the two reports appear to be related to the presence of solvent, impurities, and/or adsorbed gases in samples of A131 used in the study of Van Le [Phys. Rev. E 79, 030701 (2009)].
Averkin, Robert G; Szemenyei, Viktor; Bordé, Sándor; Tamás, Gábor
2016-11-23
Ultra-high-frequency network events in the hippocampus are instrumental in a dialogue with the neocortex during memory formation, but the existence of transient ∼200 Hz network events in the neocortex is not clear. Our recordings from neocortical layer II/III of freely behaving rats revealed field potential events at ripple and high-gamma frequencies repeatedly occurring at troughs of spindle oscillations during sleep. Juxtacellular recordings identified subpopulations of fast-spiking, parvalbumin-containing basket cells with epochs of firing at ripple (∼200 Hz) and high-gamma (∼120 Hz) frequencies detected during spindles and centered with millisecond precision at the trough of spindle waves in phase with field potential events but phase shifted relative to pyramidal cell firing. The results suggest that basket cell subpopulations are involved in spindle-nested, high-frequency network events that hypothetically provide repeatedly occurring neocortical temporal reference states potentially involved in mnemonic processes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.
2017-05-01
Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.
Control of the spin geometric phase in semiconductor quantum rings.
Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku
2013-01-01
Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng
2018-03-01
Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules
2016-09-07
Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.
NASA Astrophysics Data System (ADS)
Al-Asadi, H. A.
2013-02-01
We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.
Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots
NASA Astrophysics Data System (ADS)
You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen
2016-03-01
We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.
Towards the control of the modal energy transfer in transverse mode instabilities
NASA Astrophysics Data System (ADS)
Stihler, Christoph; Jauregui, Cesar; Tünnermann, Andreas; Limpert, Jens
2018-02-01
Thermally-induced refractive index gratings (RIG) in high-power fiber laser systems lead to transverse mode instabilities (TMI) above a certain average power threshold. The effect of TMI is currently the main limitation for the further average power scaling of fiber lasers and amplifiers with nearly diffraction-limited beam quality. In this work we experimentally investigate, for the first time, the growth of the RIG strength by introducing a phase-shift between the RIG and the modal interference pattern in a fiber amplifier. The experiments reveal that the RIG is strong enough to couple energy between different transverse modes even at powers significantly below the TMI threshold, provided that the introduced phase-shift is high enough. This indicates that, as the strength of the RIG further increases with increasing average output power, the RIG becomes more and more sensitive to even small noise-induced phase-shifts, which ultimately trigger TMI. Furthermore, it is shown that a beam cleaning also occurs when a positive phase-shift is introduced, even above the TMI threshold. This finding will pave the way for the development of a new class of mitigation strategies for TMI, which key feature is the control of the introduced phase-shift.
Phase shifts in I = 2 ππ-scattering from two lattice approaches
NASA Astrophysics Data System (ADS)
Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.
2013-12-01
We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.
NASA Astrophysics Data System (ADS)
Kakue, T.; Endo, Y.; Shimobaba, T.; Ito, T.
2014-11-01
We report frequency estimation of loudspeaker diaphragm vibrating at high speed by parallel phase-shifting digital holography which is a technique of single-shot phase-shifting interferometry. This technique records multiple phaseshifted holograms required for phase-shifting interferometry by using space-division multiplexing. We constructed a parallel phase-shifting digital holography system consisting of a high-speed polarization-imaging camera. This camera has a micro-polarizer array which selects four linear polarization axes for 2 × 2 pixels. We set a loudspeaker as an object, and recorded vibration of diaphragm of the loudspeaker by the constructed system. By the constructed system, we demonstrated observation of vibration displacement of loudspeaker diaphragm. In this paper, we aim to estimate vibration frequency of the loudspeaker diaphragm by applying the experimental results to frequency analysis. Holograms consisting of 128 × 128 pixels were recorded at a frame rate of 262,500 frames per second by the camera. A sinusoidal wave was input to the loudspeaker via a phone connector. We observed displacement of the loudspeaker diaphragm vibrating by the system. We also succeeded in estimating vibration frequency of the loudspeaker diaphragm by applying frequency analysis to the experimental results.
Protonated Alcohols Are Examples of Complete Charge-Shift Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Peter; Petit, Alban; Ho, Junming
2014-10-15
Accurate gas-phase and solution-phase valence bond calculations reveal that protonation of the hydroxyl group of aliphatic alcohols transforms the C–O bond from a principally covalent bond to a complete charge-shift bond with principally “no-bond” character. All bonding in this charge-shift bond is due to resonance between covalent and ionic structures, which is a different bonding mechanism from that of traditional covalent bonds. Until now, charge-shift bonds have been previously identified in inorganic compounds or in exotic organic compounds. This work showcases that charge-shift bonds can occur in common organic species.
Reaching quantum limits for phase-shift detection with semiclassical states
NASA Astrophysics Data System (ADS)
Luis, Alfredo
2004-01-01
We present two measuring strategies reaching the Heisenberg limit for phase-shift measurements using semiclassical coherent states exclusively. We examine their performance by assuming practical experimental conditions such as losses and nonideal detectors.
A Phase-Shifting Zernike Wavefront Sensor for the Palomar P3K Adaptive Optics System
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Crawford, Sam; Loya, Frank; Moore, James
2012-01-01
A phase-shifting Zernike wavefront sensor has distinct advantages over other types of wavefront sensors. Chief among them are: 1) improved sensitivity to low-order aberrations and 2) efficient use of photons (hence reduced sensitivity to photon noise). We are in the process of deploying a phase-shifting Zernike wavefront sensor to be used with the realtime adaptive optics system for Palomar. Here we present the current state of the Zernike wavefront sensor to be integrated into the high-order adaptive optics system at Mount Palomar's Hale Telescope.
PT-symmetry of coupled fiber lasers
NASA Astrophysics Data System (ADS)
Smirnov, Sergey V.; Churkin, Dmitry V.; Makarenko, Maxim; Vatnik, Ilya; Suchkov, Sergey V.; Sukhorukov, Andrey A.
2017-10-01
In this work, we propose a concept of a coupled fiber laser exhibiting PT-symmetry properties. We consider a system operated via Raman gain. The scheme comprises two identical fiber loops (ring cavities) connected by means of two fiber couplers with variable phase shift between them. We show that by changing the phase shift one can switch between generation regimes, realizing either PT-symmetric or PT-broken solution. Furthermore, the paper investigates some peculiarities of the system such as power oscillations and the role of nonlinear phase shift in fiber rings.
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
Challet, E; Turek, F W; Laute, M; Van Reeth, O
2001-08-03
The circadian pacemaker in the suprachiasmatic nuclei is primarily synchronized to the daily light-dark cycle. The phase-shifting and synchronizing effects of light can be modulated by non-photic factors, such as behavioral, metabolic or serotonergic cues. The present experiments examine the effects of sleep deprivation on the response of the circadian pacemaker to light and test the possible involvement of serotonergic and/or metabolic cues in mediating the effects of sleep deprivation. Photic phase-shifting of the locomotor activity rhythm was analyzed in mice transferred from a light-dark cycle to constant darkness, and sleep-deprived for 8 h from Zeitgeber Time 6 to Zeitgeber Time 14. Phase-delays in response to a 10-min light pulse at Zeitgeber Time 14 were reduced by 30% in sleep-deprived mice compared to control mice, while sleep deprivation without light exposure induced no significant phase-shifts. Stimulation of serotonin neurotransmission by fluoxetine (10 mg/kg), a serotonin reuptake inhibitor that decreases light-induced phase-delays in non-deprived mice, did not further reduce light-induced phase-delays in sleep-deprived mice. Impairment of serotonin neurotransmission with p-chloroamphetamine (three injections of 10 mg/kg), which did not increase light-induced phase-delays in non-deprived mice significantly, partially normalized light-induced phase-delays in sleep-deprived mice. Injections of glucose increased light-induced phase-delays in control and sleep-deprived mice. Chemical damage of the ventromedial hypothalamus by gold-thioglucose (600 mg/kg) prevented the reduction of light-induced phase-delays in sleep-deprived mice, without altering phase-delays in control mice. Taken together, the present results indicate that sleep deprivation can reduce the light-induced phase-shifts of the mouse suprachiasmatic pacemaker, due to serotonergic and metabolic changes associated with the loss of sleep.
Digital Phase Meter for a Laser Heterodyne Interferometer
NASA Technical Reports Server (NTRS)
Loya, Frank
2008-01-01
The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).
Integrated reformer and shift reactor
Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.
2006-06-27
A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.
Threshold secret sharing scheme based on phase-shifting interferometry.
Deng, Xiaopeng; Shi, Zhengang; Wen, Wei
2016-11-01
We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.
NASA Technical Reports Server (NTRS)
Wang, C.-W.; Stark, W.
2005-01-01
This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.
Advanced repair solution of clear defects on HTPSM by using nanomachining tool
NASA Astrophysics Data System (ADS)
Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu
2015-10-01
As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.
Marti, Andrea Rørvik; Meerlo, Peter; Grønli, Janne; van Hasselt, Sjoerd Johan; Mrdalj, Jelena; Pallesen, Ståle; Pedersen, Torhild Thue; Henriksen, Tone Elise Gjøtterud; Skrede, Silje
2016-01-01
Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery. PMID:27834804
Suppression of contrast-related artefacts in phase-measuring structured light techniques
NASA Astrophysics Data System (ADS)
Burke, Jan; Zhong, Liang
2017-06-01
Optical metrology using phase measurements has benefited significantly from the introduction of phase-shifting methods, first in interferometry, then also in fringe projection and fringe reflection. As opposed to interferometry, the latter two techniques generally use a spatiotemporal phase-shifting approach: A sequence of fringe patterns with varying spacing is used, and a phase map of each is generated by temporal phase shifting, to allow unique assignments of projector or screen pixels to camera pixels. One ubiquitous problem with phase-shifting structured-light techniques is that phase artefacts appear near regions of the image where the modulation amplitude of the projected or reflected fringes changes abruptly, e.g. near dirt/dust particles on the surface in deflectometry or bright-dark object colour transitions in fringe projection. Near the bright-dark boundaries, responses in the phase maps appear that are not plausible as actual surface features. The phenomenon has been known for a long time but is usually ignored because it does not compromise the overall reliability of results. In deflectometry, however, often the objective is to find and classify small defects, and of course it is then important to distinguish between bogus phase responses caused by fringe modulation changes, and actual surface defects. We present, for what we believe is the first time, an analytical derivation of the error terms, study the parameters influencing the phase artefacts (in particular the fringe period), and suggest some simple algorithms to minimise them.
Larocque, Hugo; Lu, Ping; Bao, Xiaoyi
2016-04-01
Phase-shift detection in a fast-Fourier-transform (FFT)-based spectrum analysis technique for temperature sensing using a tapered fiber microknot resonator is proposed and demonstrated. Multiple transmission peaks in the FFT spectrum of the device were identified as optical modes having completed different amounts of round trips within the ring structure. Temperature variation induced phase shifts for each set of peaks were characterized, and experimental results show that different peaks have distinct temperature sensitivities reaching values up to -0.542 rad/°C, which is about 10 times greater than that of a regular adiabatic taper Mach-Zehnder interferometer when using similar phase-tracking schemes.
Phase-Shifting Zernike Interferometer Wavefront Sensor
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Rao, Shanti; Jensen-Clemb, Rebecca M.; Serabyn, Gene
2011-01-01
The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument
Phase-Shifting Zernike Interferometer Wavefront Sensor
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Rao, Shanti; Jensen-Clem, Rebecca M.
2011-01-01
The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/diameter) of the PSF which is intermediate between the input and output plane. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective, and second the phase shift in the central core of the PSF is dynamic and can be made arbitrarily large. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.
Ngo, Nam Quoc
2007-12-01
A theoretical study of a new application of a simple pi-phase-shifted waveguide Bragg grating (PSWBG) in reflection mode as a high-speed optical dark-soliton detector is presented. The PSWBG consists of two concatenated identical uniform waveguide Bragg gratings with a pi phase shift between them. The reflective PSWBG, with grating reflectivities equal to 0.9, a free spectral range of 1.91 THz, and a nonlinear phase response, can convert a 40 Gbit/s noisy dark-soliton signal into a high-quality 40 Gbit/s return-to-zero signal with a peak power level of approximately 17.5 dB greater than that by the existing Mach-Zehnder interferometer with free spectral range of 1.91 THz and a linear phase response.
"Phase capture" in amblyopia: the influence function for sampled shape.
Levi, Dennis M; Li, Roger W; Klein, Stanley A
2005-06-01
This study was concerned with what stimulus information humans with amblyopia use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as the test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature. We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. Our results, consistent with previous studies, show that amblyopes are imprecise in shape discrimination, showing elevated thresholds for both lines and curves. We found that amblyopes often make much larger perceptual errors (biases) than do normal observers in the absence of phase shifts. These errors tend to be largest for curved shapes and at large separations. In normal observers, shifting the phase of inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). While several amblyopic observers showed reduced capture by the phase of the inner patches, to our surprise, several of the amblyopes were sensitive to the phase of the outer patches. We used linear multiple regression to determine the weights of all cues to the task: the carrier phase of the inner patches, carrier phase of the outer patches and the envelope of the outer patches. Compared to normal observers, some amblyopes show a weaker influence of the phase of the inner patches, and a stronger influence of both the phase and envelope of the outer patches. We speculate that this may be a consequence of abnormal "crowding" of the inner patches by the outer ones.
NASA Astrophysics Data System (ADS)
Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.
2014-09-01
The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.
Work, Thierry M.; Aeby, G.S.; Maragos, J.E.
2008-01-01
Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Various reasons have been proposed to explain this phenomenon including increased human disturbance, pollution, or changes in coral reef biota that serve a major ecological function such as depletion of grazers. However, pinpointing the actual factors potentially responsible can be problematic. Here we show a phase shift from coral to the corallimorpharian Rhodactis howesii associated with a long line vessel that wrecked in 1991 on an isolated atoll (Palmyra) in the central Pacific Ocean. We documented high densities of R. howesii near the ship that progressively decreased with distance from the ship whereas R. howesii were rare to absent in other parts of the atoll. We also confirmed high densities of R. howesii around several buoys recently installed on the atoll in 2001. This is the first time that a phase shift on a coral leef has been unambiguously associated with man-made structures. This association was made, in part, because of the remoteness of Palmyra and its recent history of minimal human habitation or impact. Phase shifts can have long-term negative ramification for coral reefs, and eradication of organisms responsible for phase shifts in marine ecosystems can be difficult, particularly if such organisms cover a large area. The extensive R. howesii invasion and subsequent loss of coral reef habitat at Palmyra also highlights the importance of rapid removal of shipwrecks on corals reefs to mitigate the potential of reef overgrowth by invasives.
Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue
NASA Astrophysics Data System (ADS)
González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.
2013-04-01
Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.
Preliminary results for mask metrology using spatial heterodyne interferometry
NASA Astrophysics Data System (ADS)
Bingham, Philip R.; Tobin, Kenneth; Bennett, Marylyn H.; Marmillion, Pat
2003-12-01
Spatial heterodyne interferometry (SHI) is an imaging technique that captures both the phase and amplitude of a complex wavefront in a single high-speed image. This technology was developed at the Oak Ridge National Laboratory (ORNL) and is currently being implemented for semiconductor wafer inspection by nLine Corporation. As with any system that measures phase, metrology and inspection of surface structures is possible by capturing a wavefront reflected from the surface. The interpretation of surface structure heights for metrology applications can become very difficult with the many layers of various materials used on semiconductor wafers, so inspection (defect detection) has been the primary focus for semiconductor wafers. However, masks used for photolithography typically only contain a couple well-defined materials opening the doors to high-speed mask metrology in 3 dimensions in addition to inspection. Phase shift masks often contain structures etched out of the transparent substrate material for phase shifting. While these structures are difficult to inspect using only intensity, the phase and amplitude images captured with SHI can produce very good resolution of these structures. The phase images also provide depth information that is crucial for these phase shift regions. Preliminary testing has been performed to determine the feasibility of SHI for high-speed non-contact mask metrology using a prototype SHI system with 532 nm wavelength illumination named the Visible Alpha Tool (VAT). These results show that prototype SHI system is capable of performing critical dimension measurements on 400nm lines with a repeatability of 1.4nm and line height measurements with a repeatability of 0.26nm. Additionally initial imaging of an alternating aperture phase shift mask has shown the ability of SHI to discriminate between typical phase shift heights.
Crowley, Stephanie J.; Eastman, Charmane I.
2015-01-01
OBJECTIVE Efficient treatments to phase advance human circadian rhythms are needed to attenuate circadian misalignment and the associated negative health outcomes that accompany early morning shift work, early school start times, jet lag, and delayed sleep phase disorder. This study compared three morning bright light exposure patterns from a single light box (to mimic home treatment) in combination with afternoon melatonin. METHODS Fifty adults (27 males) aged 25.9±5.1 years participated. Sleep/dark was advanced 1 hour/day for 3 treatment days. Participants took 0.5 mg melatonin 5 hours before baseline bedtime on treatment day 1, and an hour earlier each treatment day. They were exposed to one of three bright light (~5000 lux) patterns upon waking each morning: four 30-minute exposures separated by 30 minutes of room light (2 h group); four 15-minute exposures separated by 45 minutes of room light (1 h group), and one 30-minute exposure (0.5 h group). Dim light melatonin onsets (DLMOs) before and after treatment determined the phase advance. RESULTS Compared to the 2 h group (phase shift=2.4±0.8 h), smaller phase advance shifts were seen in the 1 h (1.7±0.7 h) and 0.5 h (1.8±0.8 h) groups. The 2-hour pattern produced the largest phase advance; however, the single 30-minute bright light exposure was as effective as 1 hour of bright light spread over 3.25 h, and produced 75% of the phase shift observed with 2 hours of bright light. CONCLUSIONS A 30-minute morning bright light exposure with afternoon melatonin is an efficient treatment to phase advance human circadian rhythms. PMID:25620199
Crowley, Stephanie J; Eastman, Charmane I
2015-02-01
Efficient treatments to phase-advance human circadian rhythms are needed to attenuate circadian misalignment and the associated negative health outcomes that accompany early-morning shift work, early school start times, jet lag, and delayed sleep phase disorder. This study compared three morning bright-light exposure patterns from a single light box (to mimic home treatment) in combination with afternoon melatonin. Fifty adults (27 males) aged 25.9 ± 5.1 years participated. Sleep/dark was advanced 1 h/day for three treatment days. Participants took 0.5 mg of melatonin 5 h before the baseline bedtime on treatment day 1, and an hour earlier each treatment day. They were exposed to one of three bright-light (~5000 lux) patterns upon waking each morning: four 30-min exposures separated by 30 min of room light (2-h group), four 15-min exposures separated by 45 min of room light (1-h group), and one 30-min exposure (0.5-h group). Dim-light melatonin onsets (DLMOs) before and after treatment determined the phase advance. Compared to the 2-h group (phase shift = 2.4 ± 0.8 h), smaller phase-advance shifts were seen in the 1-h (1.7 ± 0.7 h) and 0.5-h (1.8 ± 0.8 h) groups. The 2-h pattern produced the largest phase advance; however, the single 30-min bright-light exposure was as effective as 1 h of bright light spread over 3.25 h, and it produced 75% of the phase shift observed with 2 h of bright light. A 30-min morning bright-light exposure with afternoon melatonin is an efficient treatment to phase-advance human circadian rhythms. Copyright © 2014 Elsevier B.V. All rights reserved.
Multiple-frequency continuous wave ultrasonic system for accurate distance measurement
NASA Astrophysics Data System (ADS)
Huang, C. F.; Young, M. S.; Li, Y. C.
1999-02-01
A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
Statistical Methods for Passive Vehicle Classification in Urban Traffic Surveillance and Control
DOT National Transportation Integrated Search
1980-01-01
A statistical approach to passive vehicle classification using the phase-shift signature from electromagnetic presence-type vehicle detectors is developed with digitized samples of the analog phase-shift signature, the problem of classifying vehicle ...
Clark, James W; Fixaris, Michael C; Belanger, Gabriel V; Rosenwasser, Alan M
2007-10-01
Chronic disruption of sleep and other circadian biological rhythms, such as occurs in shift work or in frequent transmeridian travel, appears to represent a significant source of allostatic load, leading to the emergence of stress-related physical and psychological illness. Recent animal experiments have shown that these negative health effects may be effectively modeled by exposure to repeated phase shifts of the daily light-dark (LD) cycle. As chronobiological disturbances are thought to promote relapse in abstinent alcoholics, and may also be associated with increased risk of subsequent alcohol abuse in nonalcoholic populations, the present experiment was designed to examine the effects of repeated LD phase shifts on voluntary ethanol intake in rats. A selectively bred, high alcohol-drinking (HAD1) rat line was utilized to increase the likelihood of excessive alcoholic-like drinking. Male and female rats of the selectively bred HAD1 rat line were maintained individually under a LD 12:12 cycle with both ethanol (10% v/v) and water available continuously. Animals in the experimental group were subjected to repeated 6-hour LD phase advances at 3 to 4 week intervals, while control rats were maintained under a stable LD cycle throughout the study. Contact-sensing drinkometers were used to monitor circadian lick patterns, and ethanol and water intakes were recorded weekly. Control males showed progressively increasing ethanol intake and ethanol preference over the course of the study, but males exposed to chronic LD phase shifts exhibited gradual decreases in ethanol drinking. In contrast, control females displayed decreasing ethanol intake and ethanol preference over the course of the experiment, while females exposed to experimental LD phase shifts exhibited a slight increase in ethanol drinking. Chronic circadian desynchrony induced by repeated LD phase shifts resulted in sex-specific modulation of voluntary ethanol intake, reducing ethanol intake in males while slightly increasing intake in females. While partially contrary to initial predictions, these results are consistent with extensive prior research showing that chronic stress may either increase or decrease ethanol intake, depending on strain, sex, stressor type, and experimental history. Thus, repeated LD phase shifts may provide a novel chronobiological model for the analysis of stress effects on alcohol intake.
Tsuji, Toshikazu; Nagata, Kenichiro; Kawashiri, Takehiro; Yamada, Takaaki; Irisa, Toshihiro; Murakami, Yuko; Kanaya, Akiko; Egashira, Nobuaki; Masuda, Satohiro
2016-01-01
There are many reports regarding various medical institutions' attempts at the prevention of dispensing errors. However, the relationship between occurrence timing of dispensing errors and subsequent danger to patients has not been studied under the situation according to the classification of drugs by efficacy. Therefore, we analyzed the relationship between position and time regarding the occurrence of dispensing errors. Furthermore, we investigated the relationship between occurrence timing of them and danger to patients. In this study, dispensing errors and incidents in three categories (drug name errors, drug strength errors, drug count errors) were classified into two groups in terms of its drug efficacy (efficacy similarity (-) group, efficacy similarity (+) group), into three classes in terms of the occurrence timing of dispensing errors (initial phase errors, middle phase errors, final phase errors). Then, the rates of damage shifting from "dispensing errors" to "damage to patients" were compared as an index of danger between two groups and among three classes. Consequently, the rate of damage in "efficacy similarity (-) group" was significantly higher than that in "efficacy similarity (+) group". Furthermore, the rate of damage is the highest in "initial phase errors", the lowest in "final phase errors" among three classes. From the results of this study, it became clear that the earlier the timing of dispensing errors occurs, the more severe the damage to patients becomes.
A Critical Interpersonal Distance Switches between Two Coordination Modes in Kendo Matches
Okumura, Motoki; Kijima, Akifumi; Kadota, Koji; Yokoyama, Keiko; Suzuki, Hiroo; Yamamoto, Yuji
2012-01-01
In many competitive sports, players need to quickly and continuously execute movements that co-adapt to various movements executed by their opponents and physical objects. In a martial art such as kendo, players must be able to skillfully change interpersonal distance in order to win. However, very little information about the task and expertise properties of the maneuvers affecting interpersonal distance is available. This study investigated behavioral dynamics underlying opponent tasks by analyzing changes in interpersonal distance made by expert players in kendo matches. Analysis of preferred interpersonal distances indicated that players tended to step toward and away from their opponents based on two distances. The most preferred distance enabled the players to execute both striking and defensive movements immediately. The relative phase analysis of the velocities at which players executed steps toward and away revealed that players developed anti-phase synchronizations at near distances to maintain safe distances from their opponents. Alternatively, players shifted to in-phase synchronization to approach their opponents from far distances. This abrupt phase-transition phenomenon constitutes a characteristic bifurcation dynamics that regularly and instantaneously occurs between in- and anti-phase synchronizations at a critical interpersonal distance. These dynamics are profoundly affected by the task constraints of kendo and the physical constraints of the players. Thus, the current study identifies the clear behavioral dynamics that emerge in a sport setting. PMID:23284799
Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry
NASA Astrophysics Data System (ADS)
Fang, Chao; Xiang, Yang; Qi, Keqi; Chen, Dawei
2018-04-01
In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration error is proportional to the phase shifting error and zeroth order effect. The calibration method is verified using simulations and experiments. The simulation results show that the phase-restoration error is approximately proportional to the phase shift error and zeroth order effect, when the phase shifting error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that compared with the conventional method with 9-frame interferograms, the calibration method with 5-frame interferograms achieves nearly the same restoration accuracy.
Phase stable RF transport system
Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.
1992-01-01
An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.
NASA Astrophysics Data System (ADS)
Deckers, Katleen; Pessin, Hugues
2010-09-01
Vegetation changes are reconstructed based on more than 51,000 charcoal fragments of more than 380 samples from nine Bronze Age sites in northern Syria and southern Turkey. In addition to fragment proportions, special attention was paid to the frequency of Pistacia relative to Quercus and Populus/ Salix relative to Tamarix, fruit-tree ubiquity, and riverine diversity in order to gain an improved understanding of the human versus climatic impact on the vegetation. The results indicate that human impacts first took place within the riverine forest. This phase was followed by land clearing within the woodland steppe, especially in the northern portion of the study area. In the south near Emar, the woodland steppe probably disappeared by the Late Bronze Age. It is uncertain whether this was caused by aridification and/or human clearing. The northward shift of the Pistacia-woodland steppe is very likely a result of climatic drying that occurred throughout the entire period under investigation. Although increased deforestation is evident through time, the small proportions of imported wood indicate that local resources were still available.
Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.
Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean
2009-10-01
Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.
Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.
Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B
2017-10-01
Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often managed for the clear-water state due to increased value as wildlife habitat. However, our results indicate lake state also influences N biogeochemistry, such that managing shallow lakes for the clear-water state may also mitigate excess N levels at a landscape scale. © 2017 by the Ecological Society of America.
Schram, V; Thompson, T E
1997-01-01
We have investigated the effect of the intrinsic membrane protein bacteriorhodopsin of Halobacterium halobium on the lateral organization of the lipid phase structure in the coexistence region of an equimolar mixture of dimyristoylphos-phatidylcholine and distearoylphosphatidylcholine. The fluorescence recovery after photobleaching (FRAP) technique was used to monitor the diffusion of both a lipid analog (N-(7-nitrobenzoxa-2,3-diazol-4-yl)-dimyristoylphosphatidyle thanolamine, NBD-DMPE) and fluorescein-labeled bacteriorhodopsin (Fl-BR). In the presence of bacteriorhodopsin, the mobile fractions of the two fluorescent probes display a shift of the percolation threshold toward lower temperatures (larger gel-phase fractions), independent of the protein concentration, from 43 degrees C (without bacteriorhodopsin) to 39 degrees C and 41 degrees C for NBD-DMPE and Fl-BR, respectively. Moreover, in the presence of bacteriorhodopsin, the gel-phase domains are much less efficient in restricting the diffusion of both probes than they are in the absence of the protein in the two-phase coexistence region. Bacteriorhodopsin itself, however, obstructs diffusion of NBD-DMPE and Fl-BR to about the same extent in the fluid phase of the two-phase region as it does in the homogeneous fluid phase. These observations suggest that 1) the protein induces the formation of much larger and/or more centrosymmetrical gel-phase domains than those formed in its absence, and 2) bacteriorhodopsin partitions almost equally between the coexisting fluid and gel phases. Although the molecular mechanisms involved are not clear, this phenomenon is fully consistent with the effect of the transmembrane peptide pOmpA of Escherichia coli investigated by electron spin resonance in the same lipid system. PMID:9129824
NASA Astrophysics Data System (ADS)
Viswanathan, Balakrishnan; Gea-Banacloche, Julio
2018-03-01
It has been suggested that second-order nonlinearities could be used for quantum logic at the single-photon level. Specifically, successive two-photon processes in principle could accomplish the phase shift (conditioned on the presence of two photons in the low-frequency modes) |011 〉→i |100 〉→-|011 〉 . We have analyzed a recent scheme proposed by Xia et al. [Phys. Rev. Lett. 116, 023601 (2016)], 10.1103/PhysRevLett.116.023601 to induce such a conditional phase shift between two single-photon pulses propagating at different speeds through a nonlinear medium with a nonlocal response. We present here an analytical solution for the most general case, i.e., for an arbitrary response function, initial state, and pulse velocity, which supports their numerical observation that a π phase shift with unit fidelity is possible, in principle, in an appropriate limit. We also discuss why this is possible in this system, despite the theoretical objections to the possibility of conditional phase shifts on single photons that were raised some time ago by Shapiro [Phys. Rev. A 73, 062305 (2006)], 10.1103/PhysRevA.73.062305 and by Gea-Banacloche [Phys. Rev. A 81, 043823 (2010)], 10.1103/PhysRevA.81.043823 one of us.
Automatic oscillator frequency control system
NASA Technical Reports Server (NTRS)
Smith, S. F. (Inventor)
1985-01-01
A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.
Rizvydeen, Muneer; Fogg, Louis F.; Keshavarzian, Ali
2016-01-01
Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n = 10 light drinkers, 24–45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n = 14 light drinkers, 22–44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P ≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. PMID:26936778
Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali
2016-04-15
Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. Copyright © 2016 the American Physiological Society.
Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Lyon, Richard G.
2012-01-01
Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).
Phase-step retrieval for tunable phase-shifting algorithms
NASA Astrophysics Data System (ADS)
Ayubi, Gastón A.; Duarte, Ignacio; Perciante, César D.; Flores, Jorge L.; Ferrari, José A.
2017-12-01
Phase-shifting (PS) is a well-known technique for phase retrieval in interferometry, with applications in deflectometry and 3D-profiling, which requires a series of intensity measurements with certain phase-steps. Usually the phase-steps are evenly spaced, and its knowledge is crucial for the phase retrieval. In this work we present a method to extract the phase-step between consecutive interferograms. We test the proposed technique with images corrupted by additive noise. The results were compared with other known methods. We also present experimental results showing the performance of the method when spatial filters are applied to the interferograms and the effect that they have on their relative phase-steps.
Microstrip Antennas with Broadband Integrated Phase Shifting
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Romanofsky, Robert R. (Technical Monitor)
2001-01-01
The goal of this research was to investigate the feasibility of using a spiral microstrip antenna that incorporates a thin ferroelectric layer to achieve both radiation and phase shifting. This material is placed between the conductive spiral antenna structure and the grounded substrate. Application of a DC bias between the two arms of the spiral antenna will change the effective permittivity of the radiating structure and the degree of coupling between contiguous spiral arms, therefore changing the phase of the RF signal transmitted or received by the antenna. This could eliminate the need for a separate phase shifter apart from the antenna structure. The potential benefits of such an antenna element compared to traditional phased array elements include: continuous, broadband phase shifting at the antenna, lower overall system losses, lighter, more efficient, and more compact phased arrays, and simpler control algorithms. Professor Jennifer Bernhard, graduate student Gregory Huff, and undergraduate student Brian Huang participated in this effort from March 1, 2000 to February 28, 2001. No inventions resulted from the research undertaken in this cooperative agreement.
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
Welchko, Brian A [Torrance, CA
2012-02-14
Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.
Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong'en
2017-03-16
A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating.
NASA Astrophysics Data System (ADS)
Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong'En
2017-03-01
A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating.
Qian, Tingting; Li, Jinhong; Feng, Wuwei; Nian, Hong’en
2017-01-01
A striking contrast in the thermal conductivities of polyethylene glycol (PEG)/diatomite form-stable phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive has been reported in our present study. Compared to the pure PEG, the thermal conductivity of the prepared fs-PCC has increased from 0.24 W/mK to 0.87 W/Mk with a small SWCNs loading of 2 wt%. SWCNs are decorated on the inner surface of diatomite pores whilst retaining its porous structure. Compared to PEG/diatomite fs-PCC, the melting and solidification time of the PEG/diatomite/SWCNs fs-PCC are respectively decreased by 54.7% and 51.1%, and its thermal conductivity is 2.8 times higher. The composite can contain PEG as high as 60 wt% and maintain its original shape perfectly without any PEG leakage after subjected to 200 melt-freeze cycles. DSC results indicates that the melting point of the PEG/diatomite/SWCNs fs-PCC shifts to a lower temperature while the solidification point shifts to a higher temperature due to the presence of SWCNs. Importantly, the use of SWCNs is found to have clear beneficial effects for enhancing the thermal conductivity and thermal storage/release rates, without affecting thermal properties, chemical compatibility and thermal stability. The prepared PEG/diatomite/SWCNs fs-PCC exhibits excellent chemical and thermal durability and has potential application in solar thermal energy storage and solar heating. PMID:28300191
The experience of being a shift-leader in a hospital ward.
Goldblatt, Hadass; Granot, Michal; Admi, Hanna; Drach-Zahavy, Anat
2008-07-01
This paper is a report of a study to explore the experience of being a shift-leader, and how these nurses view the management of their shift. Professional demands on skilled and capable shift-leaders, who competently handle multi-disciplinary staff and patients, as well as operations and information, call for the development of efficient nursing leadership roles. Nevertheless, knowledge of shift-leaders' perspectives concerning their task management and leadership styles is relatively limited. Twenty-eight Registered Nurses working in an Israeli medical centre participated in this qualitative study. Data were gathered through in-depth interviews conducted in two phases between February and October 2005: three focus group interviews (phase 1) followed by seven individual interviews (phase 2). Content analysis revealed two major themes which constitute the essence of being a shift-leader: (1) a burden of responsibility, where the shift-leader moves between positions of maximum control and delegating some responsibility to other nurses; (2) the role's temporal dimension, expressed as a strong desire to reach the end of the shift safely, and taking managerial perspectives beyond the boundaries of the specific shift. The core of the shift-leader's position is an immense sense of responsibility. However, this managerial role is transient and therefore lacks an established authority. A two-dimensional taxonomy of these themes reveals four types of potential and actual coping among shift-leaders, indicating the need to train them in leadership skills and systemic thinking. Interventions to limit the potential stress hazards should be focused simultaneously on shift-leaders themselves and on job restructuring.
NASA Astrophysics Data System (ADS)
Zhang, Xuanni; Zhang, Hui; Wang, Yijun
2016-02-01
The optical Doppler Michelson imaging interferometer is widely used for wind measurements. Four interferograms obtained simultaneously are needed to immune to environmental disturbances. Thus, a static and divided mirror Michelson interferometer is proposed. Its highlight is the phase-shifting reflector array, which divides one mirror into four quadrants coated by different multilayer films with high reflectance, specified phase steps π/2 and little polarization effects. By combining analytical and empirical method, four coatings are designed with software TFCalc. The simulated results showed good agreement with the desired optical properties. Due to the limitation of the optical material and function of the software TFCalc, there are some design errors within tolerance.
Computer modeling of in terferograms of flowing plasma and determination of the phase shift
NASA Astrophysics Data System (ADS)
Blažek, J.; Kříž, P.; Stach, V.
2000-03-01
Interferograms of the flowing gas contain information about the phase shift between the object and the reference beams. The determination of the phase shift is the first step in getting information about the inner distribution of the density in cylindrically symmetric discharges. Slightly modified Takeda method based on the Fourier transformation is applied to determine the phase information from the interferogram. The least squares spline approximation is used for approximation and smoothing intensity profiles. At the same time, cubic splines with their end-knots conditions naturally realize “hanning windows” eliminating unwanted edge effects. For the purpose of numerical testing of the method, we developed a code that for a density given in advance reconstructs the corresponding interferogram.
C IV Doppler shifts observed in active region filaments
NASA Technical Reports Server (NTRS)
Klimchuk, J. A.
1986-01-01
The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.
Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones
Shera, Christopher A.; Abdala, Carolina
2016-01-01
When distortion-product otoacoustic emissions (DPOAEs) are evoked using stimuli whose instantaneous frequencies change rapidly and continuously with time (swept tones), the oscillatory interference pattern known as distortion-product fine structure shifts slightly along the frequency axis in the same direction as the sweep. By analogy with the temporal mechanisms thought to underlie the differing efficacies of up- and down-swept stimuli as perceptual maskers (e.g., Schroeder-phase complexes), fine-structure shifts have been ascribed to the phase distortion associated with dispersive wave propagation in the cochlea. This paper tests an alternative hypothesis and finds that the observed shifts arise predominantly as a methodological side effect of the analysis procedures commonly used to extract delayed emissions from the measured time waveform. Approximate expressions for the frequency shifts of DPOAE distortion and reflection components are derived, validated with computer simulations, and applied to account for DPOAE fine-structure shifts measured in human subjects. Component magnitudes are shown to shift twice as much as component phases. Procedures for compensating swept-tone measurements to obtain estimates of the total DPOAE and its components measured at other sweep rates or in the sinusoidal steady state are presented. PMID:27586726
Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B
2014-06-01
To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.
Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael
2015-08-28
A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases. Copyright © 2015 Elsevier B.V. All rights reserved.
Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits
Navarrete, Erika; Ortega-Bernal, Juan Roberto; Trejo-Muñoz, Lucero; Díaz, Georgina; Montúfar-Chaveznava, Rodrigo; Caldelas, Ivette
2016-01-01
Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb. PMID:27305041
Schwartz, Michael D.; Congdon, Seth; de la Iglesia, Horacio O.
2010-01-01
The ability of the circadian pacemaker within the suprachiasmatic nucleus (SCN) to respond to light stimulation in a phase-specific manner constitutes the basis for photic entrainment of circadian rhythms. The neural basis for this phase-specificity is unclear. We asked whether a lack of synchrony between SCN neurons, as reflected in phase misalignment between dorsomedial (dmSCN) and ventrolateral (vlSCN) neuronal oscillators in the rat, would impact the pacemaker’s ability to respond to phase-resetting light pulses. Light pulses delivered at maximal phase-misalignment between the vl-and dmSCN oscillators increased expression of Per1 mRNA, irrespective of the circadian phase of the dmSCN. However, phase shifts of locomotor activity were only observed when the vl-and dmSCN were phase-aligned at the time of stimulation. Our results fit a model in which a vlSCN oscillator phase-gates its own response to light and in turn relays light information to a dmSCN oscillator. This model predicts that the phase misalignment that results from circadian internal desynchronization could preserve the ability of light to induce gene expression within the master circadian clock but impair its ability to induce behavioral phase shifts. PMID:20881133
Compensating temperature-induced ultrasonic phase and amplitude changes
NASA Astrophysics Data System (ADS)
Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.
2016-04-01
In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.
A Simple Ultrasonic Experiment Using a Phase Shift Detection Technique.
ERIC Educational Resources Information Center
Yunus, W. Mahmood Mat; Ahmad, Maulana
1996-01-01
Describes a simple ultrasonic experiment that can be used to measure the purity of liquid samples by detecting variations in the velocity of sound. Uses a phase shift detection technique that incorporates the use of logic gates and a piezoelectric transducer. (JRH)
Hybrid Theory of P-Wave Electron-Hydrogen Elastic Scattering
NASA Technical Reports Server (NTRS)
Bhatia, Anand
2012-01-01
We report on a study of electron-hydrogen scattering, using a combination of a modified method of polarized orbitals and the optical potential formalism. The calculation is restricted to P waves in the elastic region, where the correlation functions are of Hylleraas type. It is found that the phase shifts are not significantly affected by the modification of the target function by a method similar to the method of polarized orbitals and they are close to the phase shifts calculated earlier by Bhatia. This indicates that the correlation function is general enough to include the target distortion (polarization) in the presence of the incident electron. The important fact is that in the present calculation, to obtain similar results only 35-term correlation function is needed in the wave function compared to the 220-term wave function required in the above-mentioned previous calculation. Results for the phase shifts, obtained in the present hybrid formalism, are rigorous lower bounds to the exact phase shifts.
Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime
NASA Astrophysics Data System (ADS)
Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay
2017-06-01
We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.
Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.
2014-01-01
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065
Circadian system of mice integrates brief light stimuli.
Van Den Pol, A N; Cao, V; Heller, H C
1998-08-01
Light is the primary sensory stimulus that synchronizes or entrains the internal circadian rhythms of animals to the solar day. In mammals photic entrainment of the circadian pacemaker residing in the suprachiasmatic nuclei is due to the fact that light at certain times of day can phase shift the pacemaker. In this study we show that the circadian system of mice can integrate extremely brief, repeated photic stimuli to produce large phase shifts. A train of 2-ms light pulses delivered as one pulse every 5 or 60 s, with a total light duration of 120 ms, can cause phase shifts of several hours that endure for weeks. Single 2-ms pulses of light were ineffective. Thus these data reveal a property of the mammalian circadian clock: it can integrate and store latent sensory information in such a way that a series of extremely brief photic stimuli, each too small to cause a phase shift individually, together can cause a large and long-lasting change in behavior.
Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime
NASA Astrophysics Data System (ADS)
Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay
2018-05-01
We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.
ρ resonance from the I = 1 ππ potential in lattice QCD
NASA Astrophysics Data System (ADS)
Kawai, Daisuke
2018-03-01
We calculate the phase shift for the I = 1 ππ scattering in 2+1 flavor lattice QCD at mπ = 410 MeV, using all-to-all propagators with the LapH smearing. We first investigate the sink operator independence of the I = 2 ππ scattering phase shift to estimate the systematics in the LapH smearing scheme in the HAL QCD method at mπ = 870 MeV. The difference in the scattering phase shift in this channel between the conventional point sink scheme and the smeared sink scheme is reasonably small as long as the next-toleading analysis is employed in the smeared sink scheme with larger smearing levels. We then extract the I = 1 ππ potential with the smeared sink operator, whose scattering phase shift shows a resonant behavior (ρ resonance). We also examine the pole of the S-matrix corresponding to the ρ resonance in the complex energy plane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Pham, Hai Huy, E-mail: haihuynguyenpham135@s.ee.es.osaka-u.ac.jp; Hisatake, Shintaro, E-mail: hisatake@ee.es.osaka-u.ac.jp; Nagatsuma, Tadao, E-mail: nagatuma@ee.es.osaka-u.ac.jp
2016-05-09
The generation of the terajet at the terahertz (THz) frequency with the capability of subwavelength beam-compression has been attracting increasing research interest, as did the generation of the nanojet at the optical frequency. In particular, a terajet generated from a dielectric cuboid was not previously studied experimentally in the THz region. We here experimentally demonstrate three-dimensional visualizations and characterization of a terajet generated from a dielectric cuboid with a refractive index of n = 1.46 at 125 GHz. The subwavelength compressed beam and the Gouy phase shift phenomena of the terajet are directly observed. It is also found out that a calculation modelmore » of Gouy phase shift based on focused Gaussian beam by a lens cannot explain the Gouy phase shift of compressed beam by the terajet. The intensity enhancement of about 7.4 dB and full width at half maximum of 0.6λ are obtained at the distance 0.5λ from the cuboid.« less
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2016-11-01
When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.
Formation of Fourier phase shifts in the solar Ni I 6768 A line
NASA Technical Reports Server (NTRS)
Jones, Harrison P.
1989-01-01
A formalism is developed to understand better how Doppler shifts of spectrum lines as inferred from phase shifts in the Fourier transforms of line profiles are related to the underlying velocity structures which they are intended to measure. With a standard model atmosphere and a simplified, quasi-LTE treatment of line formation, the formalism is applied to the Ni I 6768 A line, which has been selected for use with a network of imaging interferometers under development by the Global Oscillations Network Group for research in helioseismology. Fourier phase shifts are found to be a remarkably linear measure of velocity even in the presence of gradients and unresolved lateral variations in the assumed velocity field. An assumed outward increase in amplitude of a model oscillatory velocity is noticeably reflected in the center-to-limb behavior of the simulated velocity measure, and a sample model of solar granulation is found to have a strong influence on the formation of the Fourier phase.
Single-photon frequency conversion via cascaded quadratic nonlinear processes
NASA Astrophysics Data System (ADS)
Xiang, Tong; Sun, Qi-Chao; Li, Yuanhua; Zheng, Yuanlin; Chen, Xianfeng
2018-06-01
Frequency conversion of single photons is an important technology for quantum interface and quantum communication networks. Here, single-photon frequency conversion in the telecommunication band is experimentally demonstrated via cascaded quadratic nonlinear processes. Using cascaded quasi-phase-matched sum and difference frequency generation in a periodically poled lithium niobate waveguide, the signal photon of a photon pair from spontaneous down-conversion is precisely shifted to identically match its counterpart, i.e., the idler photon, in frequency to manifest a clear nonclassical dip in the Hong-Ou-Mandel interference. Moreover, quantum entanglement between the photon pair is maintained after the frequency conversion, as is proved in time-energy entanglement measurement. The scheme is used to switch single photons between dense wavelength-division multiplexing channels, which holds great promise in applications in realistic quantum networks.
Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime
NASA Astrophysics Data System (ADS)
Dharma-wardana, M. W. C.
2016-06-01
We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.
Circadian phase resetting in older people by ocular bright light exposure.
Klerman, E B; Duffy, J F; Dijk, D J; Czeisler, C A
2001-01-01
Aging is associated with frequent complaints about earlier bedtimes and waketimes. These changes in sleep timing are associated with an earlier timing of multiple endogenous rhythms, including core body temperature (CBT) and plasma melatonin, driven by the circadian pacemaker. One possible cause of the age-related shift of endogenous circadian rhythms and the timing of sleep relative to clock time is a change in the phase-shifting capacity of the circadian pacemaker in response to the environmental light-dark cycle, the principal synchronizer of the human circadian system. We studied the response of the circadian system of 24 older men and women and 23 young men to scheduled exposure to ocular bright light stimuli. Light stimuli were 5 hours in duration, administered for 3 consecutive days at an illuminance of approximately 10,000 lux. Light stimuli were scheduled 1.5 or 3.5 hours after the CBT nadir to induce shifts of endogenous circadian pacemaker to an earlier hour (phase advances) or were scheduled 1.5 hours before the CBT nadir to induce shifts to a later hour (phase delays). The rhythms of CBT and plasma melatonin assessed under constant conditions served as markers of circadian phase. Bright light stimuli elicited robust responses of the circadian timing system in older people; both phase advances and phase delays were induced. The magnitude of the phase delays did not differ significantly between older and younger individuals, but the phase advances were significantly attenuated in older people. The attenuated response to light stimuli that induce phase advances does not explain the advanced phase of the circadian pacemaker in older people. The maintained responsiveness of the circadian pacemaker to light implies that scheduled bright light exposure can be used to treat circadian phase disturbances in older people.
Yao, Zhongqi; Luo, Jie; Lai, Yun
2017-12-11
In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.
NASA Technical Reports Server (NTRS)
Deroshia, C. W.; Winget, C. M.; Bond, G. H.
1976-01-01
A model developed by Wever (1966) is considered. The model describes the behavior of circadian rhythms in response to photoperiod phase shifts simulating time zone changes, as a function of endogenous periodicity, light intensity, and direction of phase shift. A description is given of an investigation conducted to test the model upon the deep body temperature rhythm in unrestrained subhuman primates. An evaluation is conducted regarding the applicability of the model in predicting the type and duration of desynchronization induced by simulated time zone changes as a function of endogenous periodicity.
Optical Hilbert transform using fiber Bragg gratings
NASA Astrophysics Data System (ADS)
Ge, Jing; Wang, Chinhua; Zhu, Xiaojun
2010-11-01
In this paper, we demonstrate that a simple and practical phase-shifted fiber Bragg grating (PSFBG) operated in reflection can provide the required spectral response for implementing an all-optical Hilbert transformer (HT), including both integer and fractional orders. The PSFBG consists of two concatenated identical uniform FBGs with a phase shift between them. It can be proved that the phase shift of the FBG and the apodizing profile of the refractive index modulation determine the order of the transform. The device shows a good accuracy in calculating the Hilbert transform of the complex field of an arbitrary input optical waveforms when compared with the theoretical results.
Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia.
Placek, Michał M; Wachel, Paweł; Iskander, D Robert; Smielewski, Peter; Uryga, Agnieszka; Mielczarek, Arkadiusz; Szczepański, Tomasz A; Kasprowicz, Magdalena
2017-01-01
Classic methods for assessing cerebral autoregulation involve a transfer function analysis performed using the Fourier transform to quantify relationship between fluctuations in arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV). This approach usually assumes the signals and the system to be stationary. Such an presumption is restrictive and may lead to unreliable results. The aim of this study is to present an alternative method that accounts for intrinsic non-stationarity of cerebral autoregulation and the signals used for its assessment. Continuous recording of CBFV, ABP, ECG, and end-tidal CO2 were performed in 50 young volunteers during normocapnia and hypercapnia. Hypercapnia served as a surrogate of the cerebral autoregulation impairment. Fluctuations in ABP, CBFV, and phase shift between them were tested for stationarity using sphericity based test. The Zhao-Atlas-Marks distribution was utilized to estimate the time-frequency coherence (TFCoh) and phase shift (TFPS) between ABP and CBFV in three frequency ranges: 0.02-0.07 Hz (VLF), 0.07-0.20 Hz (LF), and 0.20-0.35 Hz (HF). TFPS was estimated in regions locally validated by statistically justified value of TFCoh. The comparison of TFPS with spectral phase shift determined using transfer function approach was performed. The hypothesis of stationarity for ABP and CBFV fluctuations and the phase shift was rejected. Reduced TFPS was associated with hypercapnia in the VLF and the LF but not in the HF. Spectral phase shift was also decreased during hypercapnia in the VLF and the LF but increased in the HF. Time-frequency method led to lower dispersion of phase estimates than the spectral method, mainly during normocapnia in the VLF and the LF. The time-frequency method performed no worse than the classic one and yet may offer benefits from lower dispersion of phase shift as well as a more in-depth insight into the dynamic nature of cerebral autoregulation.
Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam
NASA Astrophysics Data System (ADS)
Lin, Han; Gu, Min
2013-02-01
Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.
Bifurcation study of phase oscillator systems with attractive and repulsive interaction.
Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman
2014-08-01
We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.
Bifurcation study of phase oscillator systems with attractive and repulsive interaction
NASA Astrophysics Data System (ADS)
Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman
2014-08-01
We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.
Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces
Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal
2016-01-01
Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471
Aspheric figure generation using feedback from an infrared phase-shifting interferometer.
NASA Astrophysics Data System (ADS)
Stahl, H. P.; Ketelsen, D.
This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments and how it is affected by the surface roughness produced by each generator tool.
Aspects of Clock Resetting in Flowering of Xanthium 1
Papenfuss, Herbert D.; Salisbury, Frank B.
1967-01-01
Flowering is induced in Xanthium strumarium by a single dark period exceeding about 8.3 hours in length (the critical night). To study the mechanism which measures this dark period, plants were placed in growth chambers for about 2 days under constant light and temperature, given a phasing dark period terminated by an intervening light period (1 min to several hrs in duration), and finally a test dark period long enough normally to induce flowering. In some experiments, light interruptions during the test dark period were given to establish the time of maximum sensitivity. If the phasing dark period was less than 5 hours long, its termination by a light flash only broadened the subsequent time of maximum sensitivity to a light flash, but the critical night was delayed. In causing the delay, the end of the intervening light period was acting like the dusk signal which initiated time measurement at the beginning of the phasing dark period. If the phasing dark period was 6 hours or longer, time of maximum sensitivity during the subsequent test dark period was shifted by as much as 10 to 14 hours. In this case the light terminating the phasing dark period acted as a rephaser or a dawn signal. Following a 7.5-hour phasing dark period, intervening light periods of 1 minute to 5 hours did not shift the subsequent time of maximum sensitivity, but with intervening light periods longer than 5 hours, termination of the light acts clearly like a dusk signal. The clock appears to be suspended during intervening light periods longer than 5 to 15 hours. It is restarted by a dusk signal. There is an anomaly with intervening light periods of 10 to 13 hours, following which time of maximum sensitivity is actually less than the usual 8 hours after dusk. Ability of the clock in Xanthium to be rephased, suspended, restarted, or delayed, depending always upon conditions of the experiment, is characteristic of an oscillating timer and may confer upon this plant its ability to respond to a single inductive cycle. It is suggested that phytochrome may influence only the phase of the clock and not other aspects of flowering such as synthesis of flowering hormone. PMID:16656693
The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; ...
2012-02-16
The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi
2017-03-01
Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Axial strain insensitivity of weakly guiding optical fibers
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1993-01-01
A numerical model has been developed to calculate the modal phase shift of circular step index profile weakly guiding fibers under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each mode change. In consequence, the phase of each mode is also modified. A relationship for the modal phase shift is presented. This relation is applied to both single mode and two-mode fibers in order to determine the sensitivity characteristics of strained fibers. It was found that the phase shift is strongly dependent on the core refractive index, n(co). It was also found that it is possible to design fibers which are insensitive to axial strain. Practical applications of strain insensitive fibers are discussed.
MWP phase shifters integrated in PbS-SU8 waveguides.
Hervás, Javier; Suárez, Isaac; Pérez, Joaquín; Cantó, Pedro J Rodríguez; Abargues, Rafael; Martínez-Pastor, Juan P; Sales, Salvador; Capmany, José
2015-06-01
We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.
Model-based multi-fringe interferometry using Zernike polynomials
NASA Astrophysics Data System (ADS)
Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan
2018-06-01
In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.
Ultra-wideband microwave photonic phase shifter with configurable amplitude response.
Pagani, M; Marpaung, D; Eggleton, B J
2014-10-15
We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.
Phase rainbow refractometry for accurate droplet variation characterization.
Wu, Yingchun; Promvongsa, Jantarat; Saengkaew, Sawitree; Wu, Xuecheng; Chen, Jia; Gréhan, Gérard
2016-10-15
We developed a one-dimensional phase rainbow refractometer for the accurate trans-dimensional measurements of droplet size on the micrometer scale as well as the tiny droplet diameter variations at the nanoscale. The dependence of the phase shift of the rainbow ripple structures on the droplet variations is revealed. The phase-shifting rainbow image is recorded by a telecentric one-dimensional rainbow imaging system. Experiments on the evaporating monodispersed droplet stream show that the phase rainbow refractometer can measure the tiny droplet diameter changes down to tens of nanometers. This one-dimensional phase rainbow refractometer is capable of measuring the droplet refractive index and diameter, as well as variations.
NASA Astrophysics Data System (ADS)
Huang, Chuan; Guo, Peng; Yang, Aiying; Qiao, Yaojun
2018-07-01
In single channel systems, the nonlinear phase noise only comes from the channel itself through self-phase modulation (SPM). In this paper, a fast-nonlinear effect estimation method is proposed based on fractional Fourier transformation (FrFT). The nonlinear phase noise caused by Self-phase modulation effect is accurately estimated for single model 10Gbaud OOK and RZ-QPSK signals with the fiber length range of 0-200 km and the launch power range of 1-10 mW. The pulse windowing is adopted to search the optimum fractional order for the OOK and RZ-QPSK signals. Since the nonlinear phase shift caused by the SPM effect is very small, the accurate optimum fractional order of the signal cannot be found based on the traditional method. In this paper, a new method magnifying the phase shift is proposed to get the accurate optimum order and thus the nonlinear phase shift is calculated. The simulation results agree with the theoretical analysis and the method is applicable to signals whose pulse type has the similar characteristics with Gaussian pulse.
Shift-phase code multiplexing technique for holographic memories and optical interconnection
NASA Astrophysics Data System (ADS)
Honma, Satoshi; Muto, Shinzo; Okamoto, Atsushi
2008-03-01
Holographic technologies for optical memories and interconnection devices have been studied actively because of high storage capacity, many wiring patterns and high transmission rate. Among multiplexing techniques such as angular, phase code and wavelength-multiplexing, speckle multiplexing technique have gotten attention due to the simple optical setup having an adjustable random phase filter in only one direction. To keep simple construction and to suppress crosstalk among adjacent page data or wiring patterns for efficient holographic memories and interconnection, we have to consider about optimum randomness of the phase filter. The high randomness causes expanding an illumination area of reference beam on holographic media. On the other hands, the small randomness causes the crosstalk between adjacent hologram data. We have proposed the method of holographic multiplexing, shift-phase code multiplexing with a two-dimensional orthogonal matrix phase filter. A lot of orthogonal phase codes can be produced by shifting the phase filter in one direction. It is able to read and record the individual holograms with low crosstalk. We give the basic experimental result on holographic data multiplexing and consider the phase pattern of the filter to suppress the crosstalk between adjacent holograms sufficiently.
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2006-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
Measurement and Calibration of PSD with Phase-shifting Interferometers
NASA Technical Reports Server (NTRS)
Lehan, J. P.
2008-01-01
We discuss the instrumental aspects affecting the measurement accuracy when determining PSD with phase shifting interferometers. These include the source coherence, optical train effects, and detector effects. The use of a carefully constructed calibration standard will also be discussed. We will end with a recommended measurement and data handling procedure.
Phase-shifting response to light in older adults
Kim, Seong Jae; Benloucif, Susan; Reid, Kathryn Jean; Weintraub, Sandra; Kennedy, Nancy; Wolfe, Lisa F; Zee, Phyllis C
2014-01-01
Abstract Age-related changes in circadian rhythms may contribute to the sleep disruption observed in older adults. A reduction in responsiveness to photic stimuli in the circadian timing system has been hypothesized as a possible reason for the advanced circadian phase in older adults. This project compared phase-shifting responses to 2 h of broad-spectrum white light at moderate and high intensities in younger and older adults. Subjects included 29 healthy young (25.1 ± 4.1 years; male to female ratio: 8: 21) and 16 healthy older (66.5 ± 6.0 years; male to female ratio: 5: 11) subjects, who participated in two 4-night and 3-day laboratory stays, separated by at least 3 weeks. Subjects were randomly assigned to one of three different time-points, 8 h before (−8), 3 h before (−3) or 3 h after (+3) the core body temperature minimum (CBTmin) measured on the baseline night. For each condition, subjects were exposed in a randomized order to 2 h light pulses of two intensities (2000 lux and 8000 lux) during the two different laboratory stays. Phase shifts were analysed according to the time of melatonin midpoint on the nights before and after light exposure. Older subjects in this study showed an earlier baseline phase and lower amplitude of melatonin rhythm compared to younger subjects, but there was no evidence of age-related changes in the magnitude or direction of phase shifts of melatonin midpoint in response to 2 h of light at either 2000 lux or 8000 lux. These results indicate that the acute phase-shifting response to moderate- or high-intensity broad spectrum light is not significantly affected by age. PMID:24144880
Decoherence and Collisional Frequency Shifts of Trapped Bosons and Fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibble, Kurt; LNE-SYRTE, Observatoire de Paris, 75014 Paris
2009-09-11
We perform exact calculations of collisional frequency shifts for several fermions or bosons using a singlet and triplet basis for pairs of particles. The 'factor of 2 controversy' for bosons becomes clear - the factor is always 2. Decoherence is described by singlet states and they are unaffected by spatially uniform clock fields. Spatial variations are critical, especially for fermions which were previously thought to be immune to collision shifts. The spatial variations lead to decoherence and a novel frequency shift that is not proportional to the partial density of internal states.
Ji, Yun-Yun; Fan, Fei; Chen, Meng; Yang, Lei; Chang, Sheng-Jiang
2017-05-15
A dielectric metasurface with line-square compound lattice structure has been fabricated and demonstrated in the terahertz (THz) regime by the THz time-domain spectroscopy and numerical simulation. A polarization dependent electromagnetically induced transparency (EIT) effect is achieved in this metasurface due to the mode coupling and interference between the resonance modes in line and square subunits of the metasurface. Accompany with the EIT effect, a large artificial birefringence effect between two orthogonal polarization states is also observed in this compound metasurface, of which birefringence is over 0.6. Furthermore, the liquid crystals are filled on the surface of this dielectric metasurface to fabricate an electrically tunable THz LC phase shifter. The experimental results show that its tunable phase shift under the biased electric field reaches 0.33π, 1.8 times higher than the bare silicon, which confirms the enhancement role of THz microstructure on the LC phase shift in the THz regime. The large birefringence phase shift of this compound metasurface and its LC tunable phase shifter will be of great significance for potential applications in THz polarization and phase devices.
A portable intra-oral scanner based on sinusoidal pattern of fast phase-shifting
NASA Astrophysics Data System (ADS)
Jan, Chia-Ming; Lin, Ying-Chieh
2016-03-01
This paper presented our current research about the intra-oral scanner made by MIRDC. Utilizing the sinusoidal pattern for fast phase-shifting technique to deal with 3D digitalization of human dental surface profile, the development of pseudo-phase shifting digital projection can easily achieve one type of full-field scanning instead of the common technique of the laser line scanning. Based on traditional Moiré method, we adopt projecting fringes and retrieve phase reconstruction to forward phase unwrapping. The phase difference between the plane and object can be exactly calculated from the desired fringe images, and the surface profile of object was probably reconstructed by using the phase differences information directly. According to our algorithm of space mapping between projections and capturing orientation exchange of our intra-oral scanning configuration, the system we made certainly can be proved to achieve the required accuracy of +/-10μm to deal with intra-oral scanning on the basis of utilizing active triangulation method. The final purpose aimed to the scanning of object surface profile with its size about 10x10x10mm3.
NASA Astrophysics Data System (ADS)
Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu
2018-06-01
Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.
Marzin, Claude; Leibfritz, Dieter; Hawkes, Geoffrey E.; Roberts, John D.
1973-01-01
Lanthanide-induced shfits of 13C nuclear magnetic resonances are reported for several amines and n-butyl isocyanide. Contact contributions to such shifts, especially of β carbons, are clearly important for the chelates of Eu+3 and Pr+3. The importance of contact terms is shown to change in a rather predictable manner with the structure of the amine. PMID:16592062
75 FR 13336 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... Approved for Collection at Key West International Airport (EYW) and Use at EYW: Runway safety area design. Runway safety area construction. Approach clearing--design. Runway obstruction clearing--design. Runway obstruction clearing, phase II--construction. Noise implementation plan, phase 6--design. Noise implementation...
Vajtay, Thomas J; St Thomas, Jeremy J; Takacs, Tyrus E; McGann, Eric G; Weber, E Todd
2017-10-01
Photic entrainment of the murine circadian system can typically be explained with a discrete model in which light exposures near dusk and dawn can either advance or delay free-running rhythms to match the external light cycle period. In most mouse strains, the magnitude of those phase shifts is limited to several hours per day; however, the BALB/cJ mouse can re-entrain to large (6-8hour) phase advances of the light/dark cycle. In this study, we demonstrate that the circadian responses of BALB/cJ mice are dependent on duration as well as timing of light exposure, with significantly larger phase shifts resulting from >6-hour light exposures, yet loss of entrainment to photoperiods of <2-3hours per day or to skeleton photoperiods. Intermittent light exposures of the same total duration but distributed differentially over the same period of time as that of a 6-hour phase advance of the light cycle yielded phase shifts of different magnitudes depending on the pattern of exposure. Both negative and positive masking responses to light and darkness, respectively, were exaggerated in BALB/cJ mice under a T7 light cycle, but were not responsible for their rapid re-entrainment to chronic phase shifting of the light dark cycle. These results collectively suggest that the innately jetlag-resistant BALB/cJ mouse circadian system provides an alternative murine model in which to elucidate the limitations of photic entrainment observed in other commonly used strains of mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of partial circadian adjustments on sleep and vigilance quality during simulated night work.
Chapdelaine, Simon; Paquet, Jean; Dumont, Marie
2012-08-01
In most situations, complete circadian adjustment is not recommended for night workers. With complete adjustment, workers experience circadian misalignment when returning on a day-active schedule, causing repeated circadian phase shifts and internal desynchrony. For this reason, partial circadian realignment was proposed as a good compromise to stabilize internal circadian rhythms in night shift workers. However, the extent of partial circadian adjustment necessary to improve sleep and vigilance quality is still a matter of debate. In this study, the effects of small but statistically significant partial circadian adjustments on sleep and vigilance quality were assessed in a laboratory simulation of night work to determine whether they were also of clinical significance. Partial adjustments obtained by phase delay or by phase advance were quantified not only by the phase shift of dim light salivary melatonin onset, but also by the overlap of the episode of melatonin production with the sleep-wake cycle adopted during simulated night work. The effects on daytime sleep and night-time vigilance quality were modest. However, they suggest that even small adjustments by phase delay may decrease the accumulation of sleep debt, whereas the advance strategy improves subjective alertness and mood during night work. Furthermore, absolute phase shifts, by advance or by delay, were associated with improved subjective alertness and mood during the night shift. These strategies need to be tested in the field, to determine whether they can be adapted to real-life situations and provide effective support to night workers. © 2012 European Sleep Research Society.
Phase calibration target for quantitative phase imaging with ptychography.
Godden, T M; Muñiz-Piniella, A; Claverley, J D; Yacoot, A; Humphry, M J
2016-04-04
Quantitative phase imaging (QPI) utilizes refractive index and thickness variations that lead to optical phase shifts. This gives contrast to images of transparent objects. In quantitative biology, phase images are used to accurately segment cells and calculate properties such as dry mass, volume and proliferation rate. The fidelity of the measured phase shifts is of critical importance in this field. However to date, there has been no standardized method for characterizing the performance of phase imaging systems. Consequently, there is an increasing need for protocols to test the performance of phase imaging systems using well-defined phase calibration and resolution targets. In this work, we present a candidate for a standardized phase resolution target, and measurement protocol for the determination of the transfer of spatial frequencies, and sensitivity of a phase imaging system. The target has been carefully designed to contain well-defined depth variations over a broadband range of spatial frequencies. In order to demonstrate the utility of the target, we measure quantitative phase images on a ptychographic microscope, and compare the measured optical phase shifts with Atomic Force Microscopy (AFM) topography maps and surface profile measurements from coherence scanning interferometry. The results show that ptychography has fully quantitative nanometer sensitivity in optical path differences over a broadband range of spatial frequencies for feature sizes ranging from micrometers to hundreds of micrometers.
Nonlinear wavenumber shift of large amplitude Langmuir waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dehui, E-mail: dhli@ipp.ac.cn; Wang, Shaojie
2016-07-15
Nonlinear particle-in-cell simulation is carried out to investigate the nonlinear behavior of the Langmuir wave launched with a fixed frequency in a uniform plasma. It is found that in the strong driving case, the launched wave propagates in a phase velocity larger than that predicted by the linear theory; there appears a nonlinear down-shift of wavenumber. The phase velocity of the nonlinear wave and the down-shift of the wavenumber are demonstrated to be determined by the velocity of nonlinearly accelerated resonant electrons.
NASA Astrophysics Data System (ADS)
Feng, Xianglian; Wu, Zhihang; Wang, Tianshu; Zhang, Peng; Li, Xiaoyan; Jiang, Huilin; Su, Yuwei; He, Hongwei; Wang, Xiaoyan; Gao, Shiming
2018-03-01
Advanced multi-level modulation formats have shown their great potential in high-speed and high-spectral-efficiency optical communications. Using quadrature phase-shift keying (QPSK) modulation format for free-space optical (FSO) communication, a bidirectional high-speed FSO transmission link with the bit rates of up to 40 Gbit/s over ∼1 km, between two buildings in the campus of Changchun University of Science and Technology, Changchun, China, is experimentally demonstrated cooperating by capture and tracking systems. The eye-diagrams and constellation diagrams of the transmitted QPSK signals are clearly observed. By comparing the bit error rate (BER) curves before and after transmission, one can find that the receiving powers are both less than -16.5 dBm for the forward and backward transmissions of the bidirectional 20, 30, and 40 Gbit/s FSO links, and their power penalties due to the phase fluctuation of the atmospheric channel are both less than 2.6 dB, at the BER of 3.8 ×10-3.
High-resolution spectroscopy of the extremely iron-poor post-AGB star CC Lyr
NASA Astrophysics Data System (ADS)
Aoki, Wako; Matsuno, Tadafumi; Honda, Satoshi; Parthasarathy, Mudumba; Li, Haining; Suda, Takuma
2017-04-01
High-resolution optical spectroscopy was conducted for the metal-poor post-AGB star CC Lyr to determine its chemical abundances and spectral line profiles. Our standard abundance analysis confirms its extremely low metallicity ([Fe/H] < -3.5) and a clear correlation between abundance ratios and the condensation temperature for 11 elements, indicating that dust depletion is the cause of the abundance anomaly of this object. The very low abundances of Sr and Ba, which are detected for the first time for this object, suggest that heavy neutron-capture elements are not significantly enhanced in this object by the s-process during its evolution through the AGB phase. The radial velocity of this object and profiles of some atomic absorption lines show variations depending on pulsation phases, which could be formed by dynamics of the atmosphere rather than by binarity or contributions of circumstellar absorption. On the other hand, the Hα emission with double peaks shows no evident velocity shift, suggesting that the emission is originating from the circumstellar matter, presumably the rotating disk around the object.
NASA Astrophysics Data System (ADS)
Fallah, Bijan; Sodoudi, Sahar; Cubasch, Ulrich
2016-05-01
This study tackles one of the most debated questions around the evolution of Central Asian climate: the "Puzzle" of moisture changes in Arid Central Asia (ACA) throughout the past millennium. A state-of-the-art Regional Climate Model (RCM) is subsequently employed to investigate four different 31-year time slices of extreme dry and wet spells, chosen according to changes in the driving data, in order to analyse the spatio-temporal evolution of the moisture variability in two different climatological epochs: Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). There is a clear regime behavior and bimodality in the westerly Jet phase space throughout the past millennium in ACA. The results indicate that the regime changes during LIA show a moist ACA and a dry East China. During the MCA, the Kazakhstan region shows a stronger response to the westerly jet equatorward shift than during the LIA. The out-of-phase pattern of moisture changes between India and ACA exists during both the LIA and the MCA. However, the pattern is more pronounced during the LIA.
Experiments with d-wave Superconductors
NASA Astrophysics Data System (ADS)
Mannhart, J.; Hilgenkamp, H.; Hammerl, G.; Schneider, C. W.
2003-10-01
The predominant d
Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces.
Zhu, Hongfei; Semperlotti, Fabio
2016-07-15
The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A_{0}) either when using a symmetric (S_{0}) or antisymmetric (A_{0}) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.
Free flux flow in two single crystals of V3Si with slightly different pinning strengths
NASA Astrophysics Data System (ADS)
Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.
2010-10-01
Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data already confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) very low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predict a clear deviation from BS. In this study, ρf(H) is confirmed to be consistent with predictions of KZ, as will be discussed.
NASA Astrophysics Data System (ADS)
Neuville, Amélie; Thuy Luu, Thi; Dysthe, Dag Kristian; Vinningland, Jan Ludvig; Hiorth, Aksel
2015-04-01
Direct in situ observation of the pore structure changes that occur when chalk is flooded with brines could resolve many of the open questions that remain about the interactions between mineralogical alterations and oil-liberating mechanisms. Experiments on core scale and field tests that have been carried out the last decade have clearly shown that water chemistry affects the final oil recovery. However, there is generally no consensus in the scientific community of why additional oil is released. In this work, our aim is to focus on in-situ observations of single phase flow and interactions at the pore scale. To do so, we create several types of custom-made microsystems with chalk and calcite crystals. We then do experiments with reacting fluids in these microsystems. During these experiments, we realize in-situ observations (geometrical characteristics, reaction rate) using microsopy techniques (white light vertical/phase shift interferometric microscopy, and classical microscopy), and show how they vary as function as the water chemistry. In simple systems made of calcite, we obtain reactive rates that are coherent with the litterature and with numerical simulations based on Lattice-Boltzmann methods.
Phase imaging using shifted wavefront sensor images.
Zhang, Zhengyun; Chen, Zhi; Rehman, Shakil; Barbastathis, George
2014-11-01
We propose a new approach to the complete retrieval of a coherent field (amplitude and phase) using the same hardware configuration as a Shack-Hartmann sensor but with two modifications: first, we add a transversally shifted measurement to resolve ambiguities in the measured phase; and second, we employ factored form descent (FFD), an inverse algorithm for coherence retrieval, with a hard rank constraint. We verified the proposed approach using both numerical simulations and experiments.
Singular-value demodulation of phase-shifted holograms.
Lopes, Fernando; Atlan, Michael
2015-06-01
We report on phase-shifted holographic interferogram demodulation by singular-value decomposition. Numerical processing of optically acquired interferograms over several modulation periods was performed in two steps: (1) rendering of off-axis complex-valued holograms by Fresnel transformation of the interferograms; and (2) eigenvalue spectrum assessment of the lag-covariance matrix of hologram pixels. Experimental results in low-light recording conditions were compared with demodulation by Fourier analysis, in the presence of random phase drifts.
Melatonin and cortisol assessment of circadian shifts in astronauts before flight
NASA Technical Reports Server (NTRS)
Whitson, P. A.; Putcha, L.; Chen, Y. M.; Baker, E.
1995-01-01
Melatonin and cortisol were measured in saliva and urine samples to assess the effectiveness of a 7-day protocol combining bright-light exposure with sleep shifting in eliciting a 12-hr phase-shift delay in eight U.S. Space Shuttle astronauts before launch. Baseline acrophases for 15 control subjects with normal sleep-wake cycles were as follows: cortisol (saliva) at 0700 (0730 in urine); melatonin (saliva) at 0130 (6-hydroxymelatonin sulfate at 0230 in urine). Acrophases of the astronaut group fell within 2.5 hr of these values before the treatment protocols were begun. During the bright-light and sleep-shifting treatments, both absolute melatonin production and melatonin rhythmicity were diminished during the first 3 treatment days; total daily cortisol levels remained constant throughout the treatment. By the fourth to sixth day of the 7-day protocol, seven of the eight crew members showed phase delays in all four measures that fell within 2 hr of the expected 11- to 12-hr shift. Although cortisol and melatonin rhythms each corresponded with the phase shift, the rhythms in these two hormones did not correspond with each other during the transition.
Melatonin and cortisol assessment of circadian shifts in astronauts before flight.
Whitson, P A; Putcha, L; Chen, Y M; Baker, E
1995-04-01
Melatonin and cortisol were measured in saliva and urine samples to assess the effectiveness of a 7-day protocol combining bright-light exposure with sleep shifting in eliciting a 12-hr phase-shift delay in eight U.S. Space Shuttle astronauts before launch. Baseline acrophases for 15 control subjects with normal sleep-wake cycles were as follows: cortisol (saliva) at 0700 (0730 in urine); melatonin (saliva) at 0130 (6-hydroxymelatonin sulfate at 0230 in urine). Acrophases of the astronaut group fell within 2.5 hr of these values before the treatment protocols were begun. During the bright-light and sleep-shifting treatments, both absolute melatonin production and melatonin rhythmicity were diminished during the first 3 treatment days; total daily cortisol levels remained constant throughout the treatment. By the fourth to sixth day of the 7-day protocol, seven of the eight crew members showed phase delays in all four measures that fell within 2 hr of the expected 11- to 12-hr shift. Although cortisol and melatonin rhythms each corresponded with the phase shift, the rhythms in these two hormones did not correspond with each other during the transition.
Regente, J; de Zeeuw, J; Bes, F; Nowozin, C; Appelhoff, S; Wahnschaffe, A; Münch, M; Kunz, D
2017-05-01
In single night shifts, extending habitual wake episodes leads to sleep deprivation induced decrements of performance during the shift and re-adaptation effects the next day. We investigated whether short-wavelength depleted (=filtered) bright light (FBL) during a simulated night shift would counteract such effects. Twenty-four participants underwent a simulated night shift in dim light (DL) and in FBL. Reaction times, subjective sleepiness and salivary melatonin concentrations were assessed during both nights. Daytime sleep was recorded after both simulated night shifts. During FBL, we found no melatonin suppression compared to DL, but slightly faster reaction times in the second half of the night. Daytime sleep was not statistically different between both lighting conditions (n = 24) and there was no significant phase shift after FBL (n = 11). To conclude, our results showed positive effects from FBL during simulated single night shifts which need to be further tested with larger groups, in more applied studies and compared to standard lighting. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie
2016-12-01
Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four different phase shifters, including conventional inertance tube, gas-liquid and spring-oscillator phase shifters, as well as a power recovery displacer. Distributed models based on the electro-acoustic analogy are developed to estimate the phase shifting capacity and the acoustic power dissipation of the three phase shifters without power recovery. The results show that both gas-liquid and spring-oscillator phase shifters have the distinctive capacity of phase shifting with a significant reduction in the inertial component length. Furthermore, full distributed models of SPTCs connected with different phase shifters are developed. The cooling performance of SPTCs using all four phase shifters are presented and typical phase relations are analyzed. The comparison reveals that the power recovery displacer with a more complicated configuration provides the highest efficiency. The gas-liquid and spring-oscillator phase shifters show equivalent efficiency compared with the inertance tube phase shifter. Approximately 10-20% of the acoustic power is dissipated by the phase shifters without power recovery, while 15-20% of the acoustic power can be recovered by the power recovery displacer, leading to a maximum coefficient of performance (COP) above 0.14 at 80 K. A merit analysis is also done by presenting the pros and cons of different phase shifters.
Thermal residual stress evaluation based on phase-shift lateral shearing interferometry
NASA Astrophysics Data System (ADS)
Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan
2018-06-01
An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.
Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection
NASA Astrophysics Data System (ADS)
Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu
2017-09-01
We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.
Threshold multi-secret sharing scheme based on phase-shifting interferometry
NASA Astrophysics Data System (ADS)
Deng, Xiaopeng; Wen, Wei; Shi, Zhengang
2017-03-01
A threshold multi-secret sharing scheme is proposed based on phase-shifting interferometry. The K secret images to be shared are firstly encoded by using Fourier transformation, respectively. Then, these encoded images are shared into many shadow images based on recording principle of the phase-shifting interferometry. In the recovering stage, the secret images can be restored by combining any 2 K + 1 or more shadow images, while any 2 K or fewer shadow images cannot obtain any information about the secret images. As a result, a (2 K + 1 , N) threshold multi-secret sharing scheme can be implemented. Simulation results are presented to demonstrate the feasibility of the proposed method.
Phase shift in atom interferometry due to spacetime curvature
NASA Astrophysics Data System (ADS)
Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Brown, Daniel; Hogan, Jason; Kasevich, Mark
2017-04-01
In previous matter wave interferometers, the interferometer arm separation was small enough that gravitational tidal forces across the arms can be neglected. Gravitationally-induced phase shifts in such experiments arise from the acceleration of the interfering particles with respect to the interferometer beam splitters and mirrors. By increasing the interferometer arm separation, we enter a new regime in which the arms experience resolvably different gravitational forces. Using a single-source gravity gradiometer, we measure a phase shift associated with the tidal forces induced by a nearby test mass. This is the first observation of spacetime curvature across the spatial extent of a single quantum system. CO acknowledges funding from the Stanford Graduate Fellowship.
Quadrature demultiplexing using a degenerate vector parametric amplifier.
Lorences-Riesgo, Abel; Liu, Lan; Olsson, Samuel L I; Malik, Rohit; Kumpera, Aleš; Lundström, Carl; Radic, Stojan; Karlsson, Magnus; Andrekson, Peter A
2014-12-01
We report on quadrature demultiplexing of a quadrature phase-shift keying (QPSK) signal into two cross-polarized binary phase-shift keying (BPSK) signals with negligible penalty at bit-error rate (BER) equal to 10(-9). The all-optical quadrature demultiplexing is achieved using a degenerate vector parametric amplifier operating in phase-insensitive mode. We also propose and demonstrate the use of a novel and simple phase-locked loop (PLL) scheme based on detecting the envelope of one of the signals after demultiplexing in order to achieve stable quadrature decomposition.
Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José
2011-08-29
A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.
Pulsed spatial phase-shifting digital shearography based on a micropolarizer camera
NASA Astrophysics Data System (ADS)
Aranchuk, Vyacheslav; Lal, Amit K.; Hess, Cecil F.; Trolinger, James Davis; Scott, Eddie
2018-02-01
We developed a pulsed digital shearography system that utilizes the spatial phase-shifting technique. The system employs a commercial micropolarizer camera and a double pulse laser, which allows for instantaneous phase measurements. The system can measure dynamic deformation of objects as large as 1 m at a 2-m distance during the time between two laser pulses that range from 30 μs to 30 ms. The ability of the system to measure dynamic deformation was demonstrated by obtaining phase wrapped and unwrapped shearograms of a vibrating object.
Sensing device and method for measuring emission time delay during irradiation of targeted samples
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2000-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H
2015-12-07
This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.
Two-step phase-shifting SPIDER
NASA Astrophysics Data System (ADS)
Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang
2016-09-01
Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Renyu; Demory, Brice-Olivier; Seager, Sara
2015-03-20
Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent both thermal emission and scattering from the planets. Here we present a semi-analytical model framework that can be applied to study Kepler and future visible-wavelength phase curve observations of exoplanets. The model efficiently computes reflection and thermal emission components for both rocky andmore » gaseous planets, considering both homogeneous and inhomogeneous surfaces or atmospheres. We analyze the phase curves of the gaseous planet Kepler- 7 b and the rocky planet Kepler- 10 b using the model. In general, we find that a hot exoplanet’s visible-wavelength phase curve having a significant phase offset can usually be explained by two classes of solutions: one class requires a thermal hot spot shifted to one side of the substellar point, and the other class requires reflective clouds concentrated on the same side of the substellar point. Particularly for Kepler- 7 b, reflective clouds located on the west side of the substellar point can best explain its phase curve. The reflectivity of the clear part of the atmosphere should be less than 7% and that of the cloudy part should be greater than 80%, and the cloud boundary should be located at 11° ± 3° to the west of the substellar point. We suggest single-band photometry surveys could yield valuable information on exoplanet atmospheres and surfaces.« less
Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I
2009-07-17
Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode delayed the circadian clock an average of ~1.5 hours. There was no evidence that iris color influenced the magnitude of the phase shift. Future studies are needed to replicate our findings that iris color does not impact the magnitude of light-induced circadian phase shifts, and that the previously reported differences may be due to race.
A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance
Fung, Tak; Garza-Pérez, Joaquín Rodrigo; Acosta-González, Gilberto; Bozec, Yves-Marie; Johnson, Craig R.
2017-01-01
Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica. PMID:28445546
Two-phase charge-coupled device
NASA Technical Reports Server (NTRS)
Kosonocky, W. F.; Carnes, J. E.
1973-01-01
A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.
A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance.
Arias-González, Jesús Ernesto; Fung, Tak; Seymour, Robert M; Garza-Pérez, Joaquín Rodrigo; Acosta-González, Gilberto; Bozec, Yves-Marie; Johnson, Craig R
2017-01-01
Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica.
Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals
NASA Astrophysics Data System (ADS)
Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing
2003-12-01
Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.
2007-03-01
32 4.4 Algorithm Pseudo - Code ...................................................................................34 4.5 WIND Interface With a...difference estimates of xc temporal derivatives, or by using a polynomial fit to the previous values of xc. 34 4.4 ALGORITHM PSEUDO - CODE Pseudo ...Phase Shift Keying DQPSK Differential Quadrature Phase Shift Keying EVM Error Vector Magnitude FFT Fast Fourier Transform FPGA Field Programmable
A 100-Gb/s noncoherent silicon receiver for PDM-DBPSK/DQPSK signals.
Klamkin, Jonathan; Gambini, Fabrizio; Faralli, Stefano; Malacarne, Antonio; Meloni, Gianluca; Berrettini, Gianluca; Contestabile, Giampiero; Potì, Luca
2014-01-27
An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.
Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K
2014-08-22
Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.
Han, Guebum; Hess, Cole; Eriten, Melih; Henak, Corinne R
2018-04-26
This paper studies uncoupled poroelastic (flow-dependent) and intrinsic viscoelastic (flow-independent) energy dissipation mechanisms via their dependence on characteristic lengths to understand the root of cartilage's broadband dissipation behavior. Phase shift and dynamic modulus were measured from dynamic microindentation tests conducted on hydrated cartilage at different contact radii, as well as on dehydrated cartilage. Cartilage weight and thickness were recorded during dehydration. Phase shifts revealed poroelastic- and viscoelastic-dominant dissipation regimes in hydrated cartilage. Specifically, phase shift at a relatively small radius was governed by poroviscoelasticity, while phase shift at a relatively large radius was dominantly governed by intrinsic viscoelasticity. The uncoupled dissipation mechanisms demonstrated that intrinsic viscoelastic dissipation provided sustained broadband dissipation for all length scales, and additional poroelastic dissipation increased total dissipation at small length scales. Dehydration decreased intrinsic viscoelastic dissipation of cartilage. The findings demonstrated a possibility to measure poroelastic and intrinsic viscoelastic properties of cartilage at similar microscale lengths. Also they encouraged development of broadband cartilage like-dampers and provided important design parameters to maximize their performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pradhan, Rajib
2014-06-10
This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry-Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.
Lo, Men-Tzung; Peng, C.K.; Novak, Vera; Schmidt, Eric A.; Kumar, Ajay; Czosnyka, Marek
2009-01-01
Abstract Reliable and noninvasive assessment of cerebral blood flow regulation is a major challenge in acute care monitoring. This study assessed dynamics of flow regulation and its relationship to asymmetry of initial computed tomography (CT) scan using multimodal pressure flow (MMPF) analysis. Data of 27 patients (38 ± 15 years old) with traumatic brain injury (TBI) were analyzed. Patients were selected from bigger cohort according to criteria of having midline shift on initial CT scan and intact skull (no craniotomy or bone flap). The MMPF analysis was used to extract the oscillations in cerebral perfusion pressure (CPP) and blood flow velocity (BFV) signals at frequency of artificial ventilation, and to calculate the instantaneous phase difference between CPP and BFV oscillations. Mean CPP-BFV phase difference was used to quantify pressure and flow relationship. The TBI subjects had smaller mean BP-BFV phase shifts (left, 8.7 ± 9.6; right 10.2 ± 8.3 MCAs, mean ± SD) than values previously obtained in healthy subjects (left, 37.3 ± 7.6 degrees; right, 38.0 ± 8.9 degrees; p < 0.0001), suggesting impaired blood flow regulation after TBI. The difference in phase shift between CPP and BFV in the left and right side was strongly correlated to the midline shift (R = 0.78; p < 0.0001). These findings indicate that the MMPF method allows reliable assessment of alterations in pressure and flow relationship after TBI. Moreover, mean pressure-flow phase shift is sensitive to the displacement of midline of the brain, and may potentially serve as a marker of asymmetry of cerebral autoregulation. PMID:19196074
NASA Astrophysics Data System (ADS)
Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki
2016-02-01
The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.
Digitally controlled distributed phase shifter
Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.
1993-08-17
A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.
Digitally controlled distributed phase shifter
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1993-01-01
A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.
"Phase capture" in the perception of interpolated shape: cue combination and the influence function.
Levi, Dennis M; Wing-Hong Li, Roger; Klein, Stanley A
2003-09-01
This study was concerned with what stimulus information observers use to judge the shape of simple objects. We used a string of four Gabor patches to define a contour. A fifth, center patch served as a test pattern. The observers' task was to judge the location of the test pattern relative to the contour. The contour was either a straight line, or an arc with positive or negative curvature (the radius of curvature was either 2 or 6 deg). We asked whether phase shifts in the inner or outer pairs of patches distributed along the contour influence the perceived shape. That is, we measured the phase shift influence function. We found that shifting the inner patches of the string by 0.25 cycle results in almost complete phase capture (attraction) at the smallest separation (2 lambda), and the capture effect falls off rapidly with separation. A 0.25 cycle shift of the outer pair of patches has a much smaller effect, in the opposite direction (repulsion). In our experiments, the contour is defined by two cues--the cue provided by the Gabor carrier (the 'feature' cue) and that defined by the Gaussian envelope (the 'envelope' cue). Our phase shift influence function can be thought of as a cue combination task. An ideal observer would weight the cues by the inverse variance of the two cues. The variance in each of these cues predicts the main features of our results quite accurately.
Columnar shifts as symmetry-breaking degrees of freedom in molecular perovskites
NASA Astrophysics Data System (ADS)
Boström, Hanna L. B.; Hill, Joshua A.; Goodwin, Andrew L.
We introduce columnar shifts---collective rigid-body translations---as a structural degree of freedom relevant to the phase behaviour of molecular perovskites ABX$_{\\textrm3}$ (X = molecular anion). Like the well-known octahedral tilts of conventional perovskites, shifts also preserve the octahedral coordination geometry of the B-site cation in molecular perovskites, and so are predisposed to influencing the low-energy dynamics and displacive phase transitions of these topical systems. We present a qualitative overview of the interplay between shift activation and crystal symmetry breaking, and introduce a generalised terminology to allow characterisation of simple shift distortions, drawing analogy to the "Glazer notation" for octahedral tilts. We apply our approach to the interpretation of a representative selection of azide and formate perovskite structures, and discuss the implications for functional exploitation of shift degrees of freedom in negative thermal expansion materials and hybrid ferroelectrics.
Langoju, Rajesh; Patil, Abhijit; Rastogi, Pramod
2007-11-20
Signal processing methods based on maximum-likelihood theory, discrete chirp Fourier transform, and spectral estimation methods have enabled accurate measurement of phase in phase-shifting interferometry in the presence of nonlinear response of the piezoelectric transducer to the applied voltage. We present the statistical study of these generalized nonlinear phase step estimation methods to identify the best method by deriving the Cramér-Rao bound. We also address important aspects of these methods for implementation in practical applications and compare the performance of the best-identified method with other bench marking algorithms in the presence of harmonics and noise.
NASA Astrophysics Data System (ADS)
Jin, Chengying; Li, Dahai; Kewei, E.; Li, Mengyang; Chen, Pengyu; Wang, Ruiyang; Xiong, Zhao
2018-06-01
In phase measuring deflectometry, two orthogonal sinusoidal fringe patterns are separately projected on the test surface and the distorted fringes reflected by the surface are recorded, each with a sequential phase shift. Then the two components of the local surface gradients are obtained by triangulation. It usually involves some complicated and time-consuming procedures (fringe projection in the orthogonal directions). In addition, the digital light devices (e.g. LCD screen and CCD camera) are not error free. There are quantization errors for each pixel of both LCD and CCD. Therefore, to avoid the complex process and improve the reliability of the phase distribution, a phase extraction algorithm with five-frame crossed fringes is presented in this paper. It is based on a least-squares iterative process. Using the proposed algorithm, phase distributions and phase shift amounts in two orthogonal directions can be simultaneously and successfully determined through an iterative procedure. Both a numerical simulation and a preliminary experiment are conducted to verify the validity and performance of this algorithm. Experimental results obtained by our method are shown, and comparisons between our experimental results and those obtained by the traditional 16-step phase-shifting algorithm and between our experimental results and those measured by the Fizeau interferometer are made.
The Southern Ocean in the Coupled Model Intercomparison Project phase 5
Meijers, A. J. S.
2014-01-01
The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses of the historical and projected wind, sea ice, circulation and bulk properties of the Southern Ocean in the updated Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble. Improvements to the models include higher resolutions, more complex and better-tuned parametrizations of ocean mixing, and improved biogeochemical cycles and atmospheric chemistry. CMIP5 largely reproduces the findings of CMIP3, but with smaller inter-model spreads and biases. By the end of the twenty-first century, mid-latitude wind stresses increase and shift polewards. All water masses warm, and intermediate waters freshen, while bottom waters increase in salinity. Surface mixed layers shallow, warm and freshen, whereas sea ice decreases. The upper overturning circulation intensifies, whereas bottom water formation is reduced. Significant disagreement exists between models for the response of the Antarctic Circumpolar Current strength, for reasons that are as yet unclear. PMID:24891395
NASA Astrophysics Data System (ADS)
Halal, George; STAR Collaboration
2017-09-01
The properties of the nearly perfect liquid, Quark Gluon Plasma (QGP), which filled the universe a microsecond after the Big Bang are studied by colliding heavy-ions at relativistic energies. Our project focuses on building and testing an Event Plane Detector (EPD) for the STAR experiment and analyzing the data collected from collisions. When a minimum ionizing particle hits one of the optically-isolated tiles of this detector, which are made of scintillator plastic, it lights up. The light then travels through a wavelength-shifting fiber embedded in the tile to a clear optical fiber to be detected by silicon photo-multipliers. This detector is an improved version of the Beam-Beam Counter, which is currently at STAR. It will help us measure the centrality and event plane of collisions with more precision. Data collected will aid us in mapping out the transition phase between the QGP and hadronic matter, which evolved into the chemical elements we see today, and in searching for a unique critical point in the phase diagram of Quantum Chromodynamics matter. In 2017, a commissioning run has taken place at RHIC, colliding protons at 510 GeV and gold ions at 54.4 GeV. Some data analysis from one eighth of the EPD that is installed will also be discussed.
Raman spectroscopy of KxCo2-ySe2 single crystals near the ferromagnet-paramagnet transition
Opacic, M.; Lazarevic, N.; Radonjic, M. M.; ...
2016-10-05
Polarized Raman scattering spectra of the K xCo 2-ySe 2 (x = :::; y = :::) single crystals reveal the presence of two phonon modes, assigned as of the A1g and B1g symmetry. Absence of additional modes excludes the possibility of vacancy ordering, unlike in K xCo 2-ySe 2 . The ferromagnetic (FM) phase transition at Tc 74 K leaves a clear fingerprint on the temperature dependence of the Raman mode energy and linewidth. For T > Tc the temperature dependence looks conventional, driven by the thermal expansion and anharmonicity. The Raman modes are rather broad due to the electron-phononmore » coupling increased by the disorder and spin fluctuation e ects. In the FM phase the phonon frequency of both modes increases, while an opposite trend is seen in their linewidth: the A1g mode narrows in the FM phase, whereas the B 1g mode broadens. We argue that the large asymmetry and anomalous frequency shift of the B 1g mode is due to the coupling of spin fluctuations and vibration. Our density functional theory (DFT) calculations for the phonon frequencies agree rather well with the Raman measurements, with some discrepancy being expected since the DFT calculations neglect the spin fluctuations.« less
NASA Astrophysics Data System (ADS)
Ge, Huazhi; Zhang, Xi; Fletcher, Leigh; Orton, Glenn S.; Sinclair, James Andrew; Fernandes,, Joshua; Momary, Thomas W.; Warren, Ari; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya
2017-10-01
Many brown dwarfs exhibit infrared rotational light curves with amplitude varying from a fewpercent to twenty percent (Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750,105). Recently, it was claimed that weather patterns, especially planetary-scale waves in thebelts and cloud spots, are responsible for the light curves and their evolutions on brown dwarfs(Apai et al. 2017, Science, 357, 683). Here we present a clear relationship between the direct IRemission maps and light curves of Jupiter at multiple wavelengths, which might be similar withthat on cold brown dwarfs. Based on infrared disk maps from Subaru/COMICS and VLT/VISIR,we constructed full maps of Jupiter and rotational light curves at different wavelengths in thethermal infrared. We discovered a strong relationship between the light curves and weatherpatterns on Jupiter. The light curves also exhibit strong multi-bands phase shifts and temporalvariations, similar to that detected on brown dwarfs. Together with the spectra fromTEXES/IRTF, our observations further provide detailed information of the spatial variations oftemperature, ammonia clouds and aerosols in the troposphere of Jupiter (Fletcher et al. 2016,Icarus, 2016 128) and their influences on the shapes of the light curves. We conclude that waveactivities in Jupiter’s belts (Fletcher et al. 2017, GRL, 44, 7140), cloud holes, and long-livedvortices such as the Great Red Spot and ovals control the shapes of IR light curves and multi-wavelength phase shifts on Jupiter. Our finding supports the hypothesis that observed lightcurves on brown dwarfs are induced by planetary-scale waves and cloud spots.
NASA Astrophysics Data System (ADS)
Bahr, André; Hoffmann, Julia; Schönfeld, Joachim; Schmidt, Matthew W.; Nürnberg, Dirk; Batenburg, Sietske J.; Voigt, Silke
2018-01-01
Changes in Atlantic Meridional Overturning Circulation (AMOC) strength exert a major influence on global atmospheric circulation patterns. However, the pacing and mechanisms of low-latitude responses to high-latitude forcing are insufficiently constrained so far. To elucidate the interaction of atmospheric and oceanic forcing in tropical South America during periods of major AMOC reductions (Heinrich Stadial 1 and the Younger Dryas) we generated a high-resolution foraminiferal multi-proxy record from off the Orinoco River based on Ba/Ca and Mg/Ca ratios, as well as stable isotope measurements. The data clearly indicate a three-phased structure of HS1 based on the reconfiguration of ocean currents in the tropical Atlantic Ocean. The initial phase (HS1a) is characterized by a diminished North Brazil Current, a southward displacement of the ITCZ, and moist conditions dominating northeastern Brazil. During subsequent HS1b, the NBC was even more diminished or yet reversed and the ITCZ shifted to its southernmost position. Hence, dryer conditions prevailed in northern South America, while eastern Brazil experienced maximally wet conditions. During the final stage, HS1c, conditions are similar to HS1a. The YD represents a smaller amplitude version of HS1 with a southward-shifted ITCZ. Our findings imply that the low-latitude continental climate response to high-latitude forcing is mediated by reconfigurations of surface ocean currents in low latitudes. Our new records demonstrate the extreme sensitivity of the terrestrial realm in tropical South America to abrupt perturbations in oceanic circulation during periods of unstable climate conditions.
Harmonics rejection in pixelated interferograms using spatio-temporal demodulation.
Padilla, J M; Servin, M; Estrada, J C
2011-09-26
Pixelated phase-mask interferograms have become an industry standard in spatial phase-shifting interferometry. These pixelated interferograms allow full wavefront encoding using a single interferogram. This allows the study of fast dynamic events in hostile mechanical environments. Recently an error-free demodulation method for ideal pixelated interferograms was proposed. However, non-ideal conditions in interferometry may arise due to non-linear response of the CCD camera, multiple light paths in the interferometer, etc. These conditions generate non-sinusoidal fringes containing harmonics which degrade the phase estimation. Here we show that two-dimensional Fourier demodulation of pixelated interferograms rejects most harmonics except the complex ones at {-3(rd), +5(th), -7(th), +9(th), -11(th),…}. We propose temporal phase-shifting to remove these remaining harmonics. In particular, a 2-step phase-shifting algorithm is used to eliminate the -3(rd) and +5(th) complex harmonics, while a 3-step one is used to remove the -3(rd), +5<(th), -7(th) and +9(th) complex harmonics. © 2011 Optical Society of America
Impact of Disorder on the Superconducting Phase Diagram in BaFe2(As1-xPx)2
NASA Astrophysics Data System (ADS)
Mizukami, Yuta; Konczykowski, Marcin; Matsuura, Kohei; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada
2017-08-01
In many classes of unconventional superconductors, the question of whether the superconductivity is enhanced by the quantum-critical fluctuations on the verge of an ordered phase remains elusive. One of the most direct ways of addressing this issue is to investigate how the superconducting dome traces a shift of the ordered phase. Here, we study how the phase diagram of the iron-based superconductor BaFe2(As1-xPx)2 changes with disorder via electron irradiation, which keeps the carrier concentrations intact. With increasing disorder, we find that the magneto-structural transition is suppressed, indicating that the critical concentration is shifted to the lower side. Although the superconducting transition temperature Tc is depressed at high concentrations (x ≳ 0.28), it shows an initial increase at lower x. This implies that the superconducting dome tracks the shift of the antiferromagnetic phase, supporting the view of the crucial role played by quantum-critical fluctuations in enhancing superconductivity in this iron-based high-Tc family.
NASA Astrophysics Data System (ADS)
Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua
2018-02-01
In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.
Flight controller alertness and performance during spaceflight shiftwork operations.
Kelly, S M; Rosekind, M R; Dinges, D F; Miller, D L; Gillen, K A; Gregory, K B; Aguilar, R D; Smith, R M
1998-09-01
Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations personnel. During Space Transportation System (STS) operations, Mission Operations Directorate (MOD) personnel provide 24-hr. coverage of critical tasks. A joint NASA Johnson Space Center and NASA Ames Research Center project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during the STS-53 mission in December 1992. The study measures included a Background Questionnaire, a subjective daily logbook completed on a 24-hour basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen flight controllers representing the 3 Orbit shifts participated. The initial results clearly support the need for further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. Countermeasure strategies specific to the MOD environment are being developed to minimize the adverse effects of fatigue, sleep loss, and circadian disruption engendered by shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further EDO (extended duration orbiters), and timelines and planning for 24-hour Space Station operations continue, alertness and performance issues related to sleep and circadian disruption will remain highly relevant in the MOD environment.
Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter
NASA Technical Reports Server (NTRS)
Atakturk, Serhad S.; Katsaros, Kristina B.
1993-01-01
Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.
Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes
NASA Astrophysics Data System (ADS)
Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2016-11-01
Floating gate memory operations are demonstrated in a single-electron transistor (SET) fabricated by a chemical assembly using the Au nanogap electrodes and the chemisorbed Au nanoparticles. By applying pulse voltages to the control gate, phase shifts were clearly and stably observed both in the Coulomb oscillations and in the Coulomb diamonds. Writing and erasing operations on the floating gate memory were reproducibly observed, and the charges on the floating gate electrodes were maintained for at least 12 h. By considering the capacitance of the floating gate electrode, the number of electrons in the floating gate electrode was estimated as 260. Owing to the stability of the fabricated SET, these writing and erasing operations on the floating gate memory can be applied to reconfigurable SET circuits fabricated by a chemically assembled technique.
Liquid metal-organic frameworks
NASA Astrophysics Data System (ADS)
Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier
2017-11-01
Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.
A review of pulse tube refrigeration
NASA Technical Reports Server (NTRS)
Radebaugh, Ray
1990-01-01
This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.
Liquid metal-organic frameworks.
Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A; Chapman, Karena W; Keen, David A; Bennett, Thomas D; Coudert, François-Xavier
2017-11-01
Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including 'defective by design' crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.
Liquid metal–organic frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.
Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study themore » melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.« less
Szafrański, Marek; Katrusiak, Andrzej
2016-09-01
Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.
Yamanaka, Yujiro; Hashimoto, Satoko; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi
2010-03-01
Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues. During the shift schedule, the exercise group (n = 9) performed physical exercise with a bicycle ergometer in the early and middle waking period for 2 h each. The control group (n = 8) sat on a chair at those times. Their sleep-wake cycles were monitored every day by polysomnography and/or weight sensor equipped with a bed. The circadian rhythm in plasma melatonin was measured on the baseline day before phase shift: on the 4th day of shift schedule and the 5th day of free-run. As a result, the sleep-onset on the first day of free-run in the exercise group was significantly phase-advanced from that in the control and from the baseline. On the other hand, the circadian melatonin rhythm was significantly phase-delayed in the both groups, showing internal desynchronization of the circadian rhythms. The sleep-wake cycle resynchronized to the melatonin rhythm by either phase-advance or phase-delay shifts in the free-run session. These findings indicate that the reentrainment of the sleep-wake cycle to a phase-advanced schedule occurs independent of the circadian pacemaker and is accelerated by timed physical exercise.
NASA Astrophysics Data System (ADS)
Vermaire, J. C.; Taranu, Z. E.; MacDonald, G. K.; Velghe, K.; Bennett, E.; Gregory-Eaves, I.
2015-12-01
Rapid changes in ecosystem states have occurred naturally throughout Earth's history. However, environmental changes that have taken place since the start of the Anthropocene may be destabilizing ecosystems and increasing the frequency of regime shifts in response to abrupt changes in external drivers or local intrinsic dynamics. To evaluate the relative influence of these forcers and improve our understanding of the impact of future change, we examined the effects of historical catchment phosphorus loading associated with agricultural land use on lake ecosystems, and whether this caused a shift from a stable, clear-water, regime to a turbid, cyanobacteria-dominated, state. The sedimentary pigments, diatom, and zooplankton (Cladocera) records from a currently clear-water shallow lake (Roxton Pond) and a turbid-water shallow lake (Petit lac Saint-François; PSF) were examined to determine if a cyanobacteria associated pigment (i.e. echinenone) showed an abrupt non-linear response to continued historical phosphorus load index (determined by phosphorus budget) over the last ~100 years. While PSF lake is presently in the turbid-water state, pigment and diatom analyses indicated that both lakes were once in the clear-water state, and that non-linear increases in catchment phosphorus balance resulted in an abrupt transition to cyanobacteria dominated states in each record. These results show that phosphorus loading has resulted in state shifts in shallow lake ecosystems that has been recorded across multiple paleolimnological indicators preserved in the sedimentary record.
NASA Astrophysics Data System (ADS)
Xu, Wenrui; Lai, Dong
2017-10-01
In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.
Stanley, David A.; Talathi, Sachin S.; Parekh, Mansi B.; Cordiner, Daniel J.; Zhou, Junli; Mareci, Thomas H.; Ditto, William L.
2013-01-01
For over a century epileptic seizures have been known to cluster at specific times of the day. Recent studies have suggested that the circadian regulatory system may become permanently altered in epilepsy, but little is known about how this affects neural activity and the daily pattern of seizures. To investigate, we tracked long-term changes in the rate of spontaneous hippocampal EEG spikes (SPKs) in a rat model of temporal lobe epilepsy. In healthy animals, SPKs oscillated with near 24-h period; however, after injury by status epilepticus, a persistent phase shift of ∼12 h emerged in animals that later went on to develop chronic spontaneous seizures. Additional measurements showed that global 24-h rhythms, including core body temperature and theta state transitions, did not phase shift. Instead, we hypothesized that locally impaired circadian input to the hippocampus might be responsible for the SPK phase shift. This was investigated with a biophysical computer model in which we showed that subtle changes in the relative strengths of circadian input could produce a phase shift in hippocampal neural activity. MRI provided evidence that the medial septum, a putative circadian relay center for the hippocampus, exhibits signs of damage and therefore could contribute to local circadian impairment. Our results suggest that balanced circadian input is critical to maintaining natural circadian phase in the hippocampus and that damage to circadian relay centers, such as the medial septum, may disrupt this balance. We conclude by discussing how abnormal circadian regulation may contribute to the daily rhythms of epileptic seizures and related cognitive dysfunction. PMID:23678009
Broadband Achromatic Phase Shifter for a Nulling Interferometer
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Lyon, Richard G.
2011-01-01
Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with an average error of 5.97 x 10(exp -8) radians and standard deviation of 3.07 x 10(exp -4) radians. To reduce ghost reflections and interference effects from neighboring elements, the glass plates are tilted such that the beam does not strike each plate at normal incidence. Reflections will therefore walk out of the system and not contribute to the intensity when the beams are recombined. Tilting the glass plates, however, introduces several other problems that must be mitigated: (1) the polarization of a beam changes when refracted at an interface at non-normal incidence; (2) the beam experiences lateral chromatic spread as it traverses multiple glass plates; (3) at each surface, wavelength- dependent intensity losses will occur due to reflection. For a fixed angle of incidence, each of these effects must be balanced between each arm of the interferometer in order to ensure a deep null. The solution was found using a nonlinear optimization routine that minimized an objective function relating phase shift, intensity difference, chromatic beam spread, and polarization difference to the desired parameters: glass plate material and thickness. In addition to providing a uniform, broadband phase shift, the configuration achieves an average difference in intensity transmission between the two arms of the interferometer of 0.016 percent with a standard deviation of 3.64 x 10(exp -4) percent, an average difference in polarization between the two arms of the interferometer of 5.47 x 10(exp -5) percent with a standard deviation of 1.57 x 10(exp -6) percent, and an average chromatic beam shift between the two arms of the interferometer of -47.53 microns with a wavelength-by-wavelength spread of 0.389 microns.
Carrier-separating demodulation of phase shifting self-mixing interferometry
NASA Astrophysics Data System (ADS)
Tao, Yufeng; Wang, Ming; Xia, Wei
2017-03-01
A carrier separating method associated with noise-elimination had been introduced into a sinusoidal phase-shifting self-mixing interferometer. The conventional sinusoidal phase shifting self-mixing interferometry was developed into a more competitive instrument with high computing efficiency and nanometer accuracy of λ / 100 in dynamical vibration measurement. The high slew rate electro-optic modulator induced a sinusoidal phase carrier with ultralow insertion loss in this paper. In order to extract phase-shift quickly and precisely, this paper employed the carrier-separating to directly generate quadrature signals without complicated frequency domain transforms. Moreover, most noises were evaluated and suppressed by a noise-elimination technology synthesizing empirical mode decomposition with wavelet transform. The overall laser system was described and inherent advantages such as high computational efficiency and decreased nonlinear errors of the established system were demonstrated. The experiment implemented on a high precision PZT (positioning accuracy was better than 1 nm) and compared with laser Doppler velocity meter. The good agreement of two instruments shown that the short-term resolution had improved from 10 nm to 1.5 nm in dynamic vibration measurement with reduced time expense. This was useful in precision measurement to improve the SMI with same sampling rate. The proposed signal processing was performed in pure time-domain requiring no preprocessing electronic circuits.
FBG wavelength demodulation based on a radio frequency optical true time delay method.
Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong
2018-06-01
A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.
Redden, Maurine; Wotton, Karen
2002-06-01
Third-space fluid shift, the movement of body fluid to a non-functional space, is a frequently occurring and potentially fatal clinical phenomenon. Little published research exists however in medical or nursing journals concerning its incidence, significance and ramifications in elderly patients undergoing major gastrointestinal surgery. This initial article, part I, explores fluid movement between fluid compartments and uses these principles to discuss the pathophysiology of the two distinct phases of third-space fluid shift. Part II will examine the criteria nurses could use in the clinical assessment of patients in both first and second phases third-space fluid shift and discuss the clinical reliability of these criteria.
Wavelet filtered shifted phase-encoded joint transform correlation for face recognition
NASA Astrophysics Data System (ADS)
Moniruzzaman, Md.; Alam, Mohammad S.
2017-05-01
A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.
Holtzman, Tahl; Jörntell, Henrik
2011-01-01
Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297
Plasmon Geometric Phase and Plasmon Hall Shift
NASA Astrophysics Data System (ADS)
Shi, Li-kun; Song, Justin C. W.
2018-04-01
The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.
Thermally controlled femtosecond pulse shaping using metasurface based optical filters
NASA Astrophysics Data System (ADS)
Rahimi, Eesa; Şendur, Kürşat
2018-02-01
Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.
Compression of computer generated phase-shifting hologram sequence using AVC and HEVC
NASA Astrophysics Data System (ADS)
Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic
2013-09-01
With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.
NASA Astrophysics Data System (ADS)
Jiang, Yajun; Liu, Chi; Li, Dong; Yang, Dexing; Zhao, Jianlin
2018-04-01
A novel method for simultaneous measurement of temperature and strain using a single phase-shifted fiber Bragg grating (PS-FBG) is proposed. The PS-FBG is produced by exposing the fusion-spliced fiber with a femtosecond laser and uniform phase mask. Due to the non-uniform structure and strain distribution in the fusion-spliced region, the phase-shift changes with different responses during increases to the temperature and strain; by measuring the central wavelengths and the loss difference of two transmission dips, temperature and strain can be determined simultaneously. The resolutions of this particular sensor in measuring temperature and strain are estimated to be ±1.5 °C and ±12.2 µɛ in a range from -50 °C to 150 °C and from 0 µɛ to 2070 µɛ.
Lashkari, Negin; Poshtan, Javad; Azgomi, Hamid Fekri
2015-11-01
The three-phase shift between line current and phase voltage of induction motors can be used as an efficient fault indicator to detect and locate inter-turn stator short-circuit (ITSC) fault. However, unbalanced supply voltage is one of the contributing factors that inevitably affect stator currents and therefore the three-phase shift. Thus, it is necessary to propose a method that is able to identify whether the unbalance of three currents is caused by ITSC or supply voltage fault. This paper presents a feedforward multilayer-perceptron Neural Network (NN) trained by back propagation, based on monitoring negative sequence voltage and the three-phase shift. The data which are required for training and test NN are generated using simulated model of stator. The experimental results are presented to verify the superior accuracy of the proposed method. Copyright © 2015. Published by Elsevier Ltd.
Suzuki, S.; Katagiri, S.; Nakashima, H.
1996-01-01
Two newly isolated mutant strains of Neurospora crassa, cpz-1 and cpz-2, were hypersensitive to chlorpromazine with respect to mycelial growth but responded differently to the drug with respect to the circadian conidiation rhythm. In the wild type, chlorpromazine caused shortening of the period length of the conidiation rhythm. Pulse treatment with the drug shifted the phase and inhibited light-induced phase shifting in Neurospora. By contrast to the wild type, the cpz-2 strain was resistant to these inhibitory effects of chlorpromazine. Inhibition of cpz-2 function by chlorpromazine affected three different parameters of circadian conidiation rhythm, namely, period length, phase and light-induced phase shifting. These results indicate that the cpz-2 gene must be involved in or related closely to the clock mechanism of Neurospora. By contrast, the cpz-1 strain was hypersensitive to chlorpromazine with respect to the circadian conidiation rhythm. PMID:8807291
Nonlinearity response correction in phase-shifting deflectometry
NASA Astrophysics Data System (ADS)
Nguyen, Manh The; Kang, Pilseong; Ghim, Young-Sik; Rhee, Hyug-Gyo
2018-04-01
Owing to the nonlinearity response of digital devices such as screens and cameras in phase-shifting deflectometry, non-sinusoidal phase-shifted fringe patterns are generated and additional measurement errors are introduced. In this paper, a new deflectometry technique is described for overcoming these problems using a pre-distorted pattern combined with an advanced iterative algorithm. The experiment results show that this method can reconstruct the 3D surface map of a sample without fringe print-through caused by the nonlinearity response of digital devices. The proposed technique is verified by measuring the surface height variations in a deformable mirror and comparing them with the measurement result obtained using a coordinate measuring machine. The difference between the two measurement results is estimated to be less than 13 µm.
Tunable optical filter based on Sagnac phase-shift using single optical ring resonator
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Asghari, Fatemeh
2010-02-01
In this paper, a single optical ring resonator connected to a Sagnac loop is used to demonstrate theoretically a novel narrow band optical filter response that is based on Sagnac phase-shift Δ φ. The given filter structure permits the Sagnac rotation to control the filter response. It is shown that by changing the Sagnac rotation rate, we can tune the filter response for desired bandwidths. To increase the wavelength selectivity of the filter, the Sagnac phase-shift should be as small as possible that is limited by the loop length. For Δ φ=0.1 rad, the obtained FWHM is 2.63 MHz for tuning loop length of 2 m. The simulation response agrees fairly with the recently reported experimental result.
Jing, Wencai; Zhang, Yimo; Zhou, Ge
2002-07-15
A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.
Inducing jet-lag in older people: directional asymmetry
NASA Technical Reports Server (NTRS)
Monk, T. H.; Buysse, D. J.; Carrier, J.; Kupfer, D. J.
2000-01-01
Twenty healthy elderly subjects (12 female, 8 male; mean age 81 years, range 67-87 years) each experienced a 15-day time isolation protocol in which they lived individually in a special laboratory apartment in which sleep and circadian rhythm measures could be taken. There were two experiments: one (6 females, 4 males) involved a 6-h phase advance of the sleep/wake cycle, and the other (6 females, 4 males) a 6-h phase delay. Each started with 5 baseline days, immediately followed by the phase shift. The subject was then held to the phase shifted routine for the remainder of the study. Rectal temperatures were recorded minute-by-minute throughout the entire experiment and each night of sleep was recorded using polysomnography. A directional asymmetry in phase-shift effects was apparent, with significantly more sleep disruption and circadian rhythm amplitude disruption after the phase advance than after the phase delay. Sleep disruption was reflected in reduced time spent asleep, and in changed REM latency, which increased in the phase advance direction but decreased in the phase delay direction. Although the phase advance led to a significant increase in wakefulness in the first half of the night, the phase delay did not lead to an equivalent increase in wakefulness during the second half of the night. Examination of both raw and 'demasked' circadian rectal temperature rhythms confirmed that phase adjustment was slow in both directions, but was less slow (and more monotonic) after the phase delay than after the phase advance. Subjective alertness suffered more disruption after the phase advance than after the phase delay.
Graphical method to design multilayer phase retarders.
Apfel, J H
1981-03-15
When multilayer reflectors are used at nonnormal incidence, the two planes of polarization generally have different phase shifts. This difference, known as phase retardance, depends on the multilayer design, the incidence angle, and the wavelength. Heretofore, the design of reflectors with specific phase retardance has been carried out by computer optimization except for the case of a single layer on a metal substrate. A graph of phase retardance D vs the average phase shift A as a function of layer thickness provides a means for visualization that is useful in reflector designs. A D-A graph predicts the phase properties of a reflector as a function of the index and thickness of an added layer. Graphs of phase retardance vs average phase for two different materials can be superposed to predict the composite performance of a multilayer reflector. This graphical technique is employed to design and analyze reflectors with specified phase retardance.
Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy
NASA Astrophysics Data System (ADS)
Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.
2014-06-01
Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.
Random sequences generation through optical measurements by phase-shifting interferometry
NASA Astrophysics Data System (ADS)
François, M.; Grosges, T.; Barchiesi, D.; Erra, R.; Cornet, A.
2012-04-01
The development of new techniques for producing random sequences with a high level of security is a challenging topic of research in modern cryptographics. The proposed method is based on the measurement by phase-shifting interferometry of the speckle signals of the interaction between light and structures. We show how the combination of amplitude and phase distributions (maps) under a numerical process can produce random sequences. The produced sequences satisfy all the statistical requirements of randomness and can be used in cryptographic schemes.
Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation
NASA Astrophysics Data System (ADS)
Saljoshi, P. S.; Autee, A. T.
2017-09-01
Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.
Phase-specific Geochemistry of Ni: a Tracer of Geosphere-Biosphere Co-evolution?
NASA Astrophysics Data System (ADS)
Ciscato, E. R.; Vance, D.; Bontognali, T. R. R.; Poulton, S.
2016-12-01
Metalloproteome analyses and culturing studies have suggested that trace metals, such as Cu, Fe, Mo, Ni, and Zn, were selectively utilized by different organisms and specific metabolisms throughout the evolution of the biosphere. Methanogens have a particular requirement for Ni and culturing studies have shown that they fractionate Ni isotopes upon uptake. It is not clear, however, whether a resulting Ni isotopic signal can be preserved in the geological record. We have developed a new approach that enables us to analyze phase-specific authigenic trace metal enrichments, and their respective isotopic signatures, in (predominantly organic-rich) sediments from the geological record. An acid digestion step followed by high-pressure ashing allows us to separate an `organic matter + Pyrite' phase from an `HF-extractable' phase. We have applied this approach to investigate the distribution of Ni isotopes in a variety of modern sediments, including organic-rich sediments from upwelling margins and a hypersaline lagoonal setting where methanogenesis is likely to be an active process. Preliminary results on geological record samples show a δ60Ni for the `HF-extractable' phases that agrees with the average continental crust, whereas the `organic matter + Pyrite' phases are heavier and shifted in the direction of modern seawater. By combining this data with our δ60Ni dataset from modern sediments, we investigate the dynamics of Ni cycling in environments with different O2 and H2S availabilities both in the modern and throughout the past 3.2 billion years. Our phase-specific δ60Ni record is of instrumental importance in determining whether a biologically induced fractionation imparted by methanogens is indeed observable, and if it can be used as a biosignature for tracing the predominance of methanogenic pathways throughout the co-evolution of the geosphere and biosphere.
Comment on radiative magnetic energy shifts in hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calmet, J.; Grotch, H.; Owen, D.A.
It is shown that the magnetic radiative energy shift derived from the relativistic-Lamb-shift expression of Erickson and Yennie reduces in the nonrelativistic limit to a formula given by Grotch and Hegstrom, which was derived starting from the nonrelativistic theory. This clears up a discrepancy between those two approaches. The corresponding correction to the g factor, which exists only for states with l not = 0, is estimated to be -0.24 ..cap alpha../sup 3/ for the 2P state of hydrogen.
Instantaneous phase-shifting Fizeau interferometry with high-speed pixelated phase-mask camera
NASA Astrophysics Data System (ADS)
Yatagai, Toyohiko; Jackin, Boaz Jessie; Ono, Akira; Kiyohara, Kosuke; Noguchi, Masato; Yoshii, Minoru; Kiyohara, Motosuke; Niwa, Hayato; Ikuo, Kazuyuki; Onuma, Takashi
2015-08-01
A Fizeou interferometer with instantaneous phase-shifting ability using a Wollaston prism is designed. to measure dynamic phase change of objects, a high-speed video camera of 10-5s of shutter speed is used with a pixelated phase-mask of 1024 × 1024 elements. The light source used is a laser of wavelength 532 nm which is split into orthogonal polarization states by passing through a Wollaston prism. By adjusting the tilt of the reference surface it is possible to make the reference and object beam with orthogonal polarizations states to coincide and interfere. Then the pixelated phase-mask camera calculate the phase changes and hence the optical path length difference. Vibration of speakers and turbulence of air flow were successfully measured in 7,000 frames/sec.
Nikpour, Maryam; Tirgar, Aram; Ebadi, Abbas; Ghaffari, Fatemeh; Firouzbakht, Mojgan; Hajiahmadi, Mahmod
2018-02-06
Although shift works is a certain treat for female reproductive health, but currently, there is no standardized instrument for measuring reproductive health among female shift workers. This study aims to develop and evaluate the psychometric properties of a Women Shift Workers' Reproductive Health Questionnaire (WSW-RHQ). This is a sequential exploratory mixed-method study with a qualitative and a quantitative phase. In the qualitative phase, semi-structured interviews will be held with female shift workers who live in Mazandaran Province, Iran, additionally, the literature review will be performed by searching electronic databases. Sampling will be done in different workplaces and with maximum variation respecting female shift workers' age and job and educational and different economic situation. Interview data will be analyzed using conventional content analysis and then, the primary item pool for the questionnaire will be developed. In the quantitative phase, we will evaluate the psychometric properties of the questionnaire, i.e. its face, content, construct as well as reliability via the internal consistency, stability. Finally, a scoring system will be developed for the questionnaire. The development of WSW-RHQ will facilitate the promotion and implementation of reproductive health interventions and assessment of their effectiveness. Other scholars can cross-culturally adapt and use the questionnaire according to their immediate contexts.
Observation of FeGe skyrmions by electron phase microscopy with hole-free phase plate
NASA Astrophysics Data System (ADS)
Kotani, Atsuhiro; Harada, Ken; Malac, Marek; Salomons, Mark; Hayashida, Misa; Mori, Shigeo
2018-05-01
We report application of hole-free phase plate (HFPP) to imaging of magnetic skyrmion lattices. Using HFPP imaging, we observed skyrmions in FeGe, and succeeded in obtaining phase contrast images that reflect the sample magnetization distribution. According to the Aharonov-Bohm effect, the electron phase is shifted by the magnetic flux due to sample magnetization. The differential processing of the intensity in a HFPP image allows us to successfully reconstruct the magnetization map of the skyrmion lattice. Furthermore, the calculated phase shift due to the magnetization of the thin film was consistent with that measured by electron holography experiment, which demonstrates that HFPP imaging can be utilized for analysis of magnetic fields and electrostatic potential distribution at the nanoscale.
Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-04-01
A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing
2016-08-01
Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L; Zhang, Y; Harris, W
2015-06-15
Purpose: To develop an automatic markerless 4D-CBCT projection sorting technique by using a patient respiratory motion model extracted from the planning 4D-CT images. Methods: Each phase of onboard 4D-CBCT is considered as a deformation of one phase of the prior planning 4D-CT. The deformation field map (DFM) is represented as a linear combination of three major deformation patterns extracted from the planning 4D-CT using principle component analysis (PCA). The coefficients of the PCA deformation patterns are solved by matching the digitally reconstructed radiograph (DRR) of the deformed volume to the onboard projection acquired. The PCA coefficients are solved for eachmore » single projection, and are used for phase sorting. Projections at the peaks of the Z direction coefficient are sorted as phase 1 and other projections are assigned into 10 phase bins by dividing phases equally between peaks. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the proposed technique. Three scenarios were simulated, with different tumor motion amplitude (3cm to 2cm), tumor spatial shift (8mm SI), and tumor body motion phase shift (2 phases) from prior to on-board images. Projections were simulated over 180 degree scan-angle for the 4D-XCAT. The percentage of accurately binned projections across entire dataset was calculated to represent the phase sorting accuracy. Results: With a changed tumor motion amplitude from 3cm to 2cm, markerless phase sorting accuracy was 100%. With a tumor phase shift of 2 phases w.r.t. body motion, the phase sorting accuracy was 100%. With a tumor spatial shift of 8mm in SI direction, phase sorting accuracy was 86.1%. Conclusion: The XCAT phantom simulation results demonstrated that it is feasible to use prior knowledge and motion modeling technique to achieve markerless 4D-CBCT phase sorting. National Institutes of Health Grant No. R01-CA184173 Varian Medical System.« less
From Power to Empowerment: A Paradigm Shift in Leadership
ERIC Educational Resources Information Center
Dambe, M.; Moorad, F.
2008-01-01
This article argues that there has been a clear shift in leadership approaches from those where the leader is in control and commanding i.e., power-based leadership to one where there is empowerment. Here the power comes from the followers and is shared. Burns concepts of transactional and transformational leadership are used interchangeably with…
A Liquid Optical Phase Shifter with an Embedded Electrowetting Actuator
Ashtiani, Alireza Ousati; Jiang, Hongrui
2017-01-01
We demonstrate an electrowetting-based liquid optical phase shifter. The phase shifter consists of two immiscible liquid layers with different refractive indices. Sandwiched between the two liquids is a rigid membrane that moves freely along the optical axis and supported by a compliant surround. When applied with a pressure, the thicknesses of both liquid layers change, which induces a difference in optical path, resulting in a phase shift. A miniaturized electrowetting-based actuator is used to produce hydraulic pressure. A multi-layered SU8 bonded structure was fabricated. A phase shift of 171° was observed when the device was incorporated in a Mach-Zehnder interferometer and driven with 100 V. PMID:29038640
Decadal Seasonal Shifts of Precipitation and Temperature in TRMM and AIRS Data
NASA Technical Reports Server (NTRS)
Savtchenko, Andrey; Huffman, George; Meyer, David; Vollmer, Bruce
2018-01-01
We present results from an analysis of seasonal phase shifts in the global precipitation and surface temperatures. We use data from the TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Algorithm (TMPA), and the Atmospheric Infrared Sounder (AIRS) on Aqua satellite, all hosted at NASA Goddard Earth Science Data and Information Services Center (GES DISC). We explore the information content and data usability by first aggregating daily grids from the entire records of both missions to pentad (5-day) series which are then processed using Singular Value Decomposition approach. A strength of this approach is the normalized principal components that can then be easily converted from real to complex time series. Thus, we can separate the most informative, the seasonal, components and analyze unambiguously for potential seasonal phase drifts. TMPA and AIRS records represent correspondingly 20 and 15 years of data, which allows us to run simple “phase learning†from the first 5 years of records and use it as reference. The most recent 5 years are then phase-compared with the reference. We demonstrate that the seasonal phase of global precipitation and surface temperatures has been stable in the past two decades. However, a small global trend of delayed precipitation, and earlier arrival of surface temperatures seasons, are detectable at 95% confidence level. Larger phase shifts are detectable at regional level, in regions recognizable from the Eigen vectors to having strong seasonal patterns. For instance, in Central North America, including the North American Monsoon region, confident phase shifts of 1-2 days per decade are detected at 95% confidence level. While seemingly symbolic, these shifts are indicative of larger changes in the Earth Climate System. We thus also demonstrate a potential usability scenario of Earth Science Data Records curated at the NASA GES DISC in partnership with Earth Science Missions.
Douchamps, Vincent; Jeewajee, Ali; Blundell, Pam; Burgess, Neil; Lever, Colin
2013-01-01
The formation of new memories requires new information to be encoded in the face of proactive interference from the past. Two solutions have been proposed for hippocampal region CA1: 1) acetylcholine, released in novelty, selectively suppresses excitatory projections to CA1 from CA3 (mediating the products of retrieval), while sparing entorhinal inputs (mediating novel sensory information); 2) encoding preferentially occurs at the pyramidal-layer theta peak, coincident with input from entorhinal cortex, and retrieval occurs at the trough, coincident with input from CA3, consistent with theta-phase-dependent synaptic plasticity. We examined three predictions of these models: 1) In novel environments, the preferred theta phase of CA1 place cell firing should shift closer to the CA1 pyramidal-layer theta peak, shifting the encoding-retrieval balance towards encoding; 2) The encoding-related shift in novel environments should be disrupted by cholinergic antagonism; 3) In familiar environments, cholinergic antagonism should shift the preferred theta firing phase closer to the theta trough, shifting the encoding-retrieval balance even further towards retrieval. We tested these predictions by recording from CA1 pyramidal cells in freely moving rats as they foraged in open field environments under the influence of scopolamine (an amnestic cholinergic antagonist) or vehicle (saline). Results confirmed all three predictions, supporting both the theta phase and cholinergic models of encoding-vs-retrieval dynamics. Also consistent with cholinergic enhancement of encoding, scopolamine attenuated the formation of distinct spatial representations in a new environment, reducing the extent of place cell “remapping”. PMID:23678113
Sensitivity-Enhanced CMOS Phase Luminometry System Using Xerogel-Based Sensors.
Lei Yao; Khan, R; Chodavarapu, V P; Tripathi, V S; Bright, F V
2009-10-01
We present the design and implementation of a phase luminometry sensor system with improved and tunable detection sensitivity achieved using a complementary metal-oxide semiconductor (CMOS) integrated circuit. We use sol-gel derived xerogel thin films as an immobilization media to house oxygen (O2) responsive luminescent molecules. The sensor operates on the principal of phase luminometry wherein a sinusoidal modulation signal is used to excite the luminophores encapsulated in the porous xerogel films and the corresponding phase shift of the emission signals is monitored. The phase shift is directly related to excited state lifetimes of the luminophores which in turn are related to the concentration of the target analyte species present in the vicinity of the luminophores. The CMOS IC, which consists of a 16 times 16 high-gain phototransistor array, current-to-voltage converter, amplifier and tunable phase shift detector, consumes an average power of 14 mW with 5-V power supply operating at a 38-kHz modulation frequency. The output of the IC is a dc voltage that corresponds to the detected luminescence phase shift with respect to the excitation signal. As a prototype, we demonstrate an oxygen sensor system by encapsulating the luminophore tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) within the xerogel matrices. The sensor system showed a fast response on the order of few seconds and we obtained a detection sensitivity of 118 mV per 1% change in O2 concentration. The system demonstrates a novel concept to tune and improve the detection sensitivity for specific concentrations of the target analyte in many biomedical monitoring applications.
High-speed single-pixel digital holography
NASA Astrophysics Data System (ADS)
González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús
2017-06-01
The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.
Human Adolescent Phase Response Curves to Bright White Light.
Crowley, Stephanie J; Eastman, Charmane I
2017-08-01
Older adolescents are particularly vulnerable to circadian misalignment and sleep restriction, primarily due to early school start times. Light can shift the circadian system and could help attenuate circadian misalignment; however, a phase response curve (PRC) to determine the optimal time for receiving light and avoiding light is not available for adolescents. We constructed light PRCs for late pubertal to postpubertal adolescents aged 14 to 17 years. Participants completed 2 counterbalanced 5-day laboratory sessions after 8 or 9 days of scheduled sleep at home. Each session included phase assessments to measure the dim light melatonin onset (DLMO) before and after 3 days of free-running through an ultradian light-dark (wake-sleep) cycle (2 h dim [~20 lux] light, 2 h dark). In one session, intermittent bright white light (~5000 lux; four 20-min exposures) was alternated with 10 min of dim room light once per day for 3 consecutive days. The time of light varied among participants to cover the 24-h day. For each individual, the phase shift to bright light was corrected for the free-run derived from the other laboratory session with no bright light. One PRC showed phase shifts in response to light start time relative to the DLMO and another relative to home sleep. Phase delay shifts occurred around the hours corresponding to home bedtime. Phase advances occurred during the hours surrounding wake time and later in the afternoon. The transition from delays to advances occurred at the midpoint of home sleep. The adolescent PRCs presented here provide a valuable tool to time bright light in adolescents.
Hoehmann, D; Müller, S; Dornhoffer, J L
1995-01-01
Low-frequency acoustic biasing using an intensive phase-shifted, low-frequency masker was studied according to its ability to determine disorders of cochlear micromechanics following noise trauma in the guinea pig as animal model. Statistical analyses proved that this technique allowed electrophysiological differentiation of controls versus groups with different degrees of experimentally induced threshold shifts. To substantiate group differences an intensity of at least 70 dB SPL was required for the 52 Hz masker and the difference in relation to the test-tone intensity had to be +/- 10 or +/- 20 dB SPL. The noise-traumatized cochlea could be identified by means of a threshold shift for the 5 microV pseudothreshold, a low modulation span of the compound action potential amplitude (< 25-50 microV frequency dependent), and reduced positive summating potential amplitude with negative non-modulating values within the different measurement phases for 1 and 2 kHz stimulation.
Quantum displacement receiver for M-ary phase-shift-keyed coherent states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izumi, Shuro; Takeoka, Masahiro; Fujiwara, Mikio
2014-12-04
We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.
The Phase Shift in the Jumping Ring
ERIC Educational Resources Information Center
Jeffery, Rondo N.; Amiri, Farhang
2008-01-01
The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…
Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele
2008-07-01
Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.
A new ultrasonic temperature measurement system for air conditioners in automobiles
NASA Astrophysics Data System (ADS)
Liao, Teh-Lu; Tsai, Wen-Yuan; Huang, Chih-Feng
2004-02-01
This paper presents a microcomputer-based ultrasonic temperature sensor system to measure the temperature of an air conditioner (AC) in an automobile. It uses the ultrasonic measurement of the changes in the speed of sound in the air to determine the temperature of the environmental air. The changes in the speed of sound are calculated by combining time-of-flight (TOF) and phase shift techniques. This method can work in a wider range than using phase shift alone and is more accurate than the TOF scheme. In the proposed system, we use 40 ± 2 kHz ultrasonic transducers and adopt a single-pass operation. An 89c51 single-chip microcomputer-based binary frequency shift-keyed (BFSK) signal generator and phase detector are designed to record and calculate the TOF, phase shift of the two frequencies and temperature. These data are then sent to either an LCD display or to a PC for calibration and examination. Experimental results show that the proposed measurement system has a high accuracy of ± 0.4 °C from 0 to 80 °C and can reflect the temperature change within 100 ms.
Characterization of vector stimulated Brillouin scattering gain over wide power range
NASA Astrophysics Data System (ADS)
Li, Yongqian; An, Qi; Li, Xiaojuan; Zhang, Lixin
2017-07-01
The wide range power dependence of vector stimulated Brillouin scattering (SBS) gain is theoretically and experimentally characterized by a mathematical model and measurement system based on the heterodyne pump-Stokes technique. The results show that SBS phase shift is much more tolerant of pump depletion than SBS amplitude gain, hence the performance improvement of the SBS-based distributed sensing system can be achieved by measuring the SBS phase shift spectrum. The discussion about the measured Brillouin spectrum width versus pump power at different Stokes powers reveals that the occurrence of nonnegligible pump depletion imposes a restriction on the determination of pump and Stokes powers in an SBS amplitude gain-based application system. The amplitude gain and phase shift of vector SBS gain increase with the increase of pump power and decrease with the increase of Stokes power, which indicates that the design strategy with smaller Stokes power and higher pump power is reasonable. And the measured center-asymmetry of the SBS phase shift spectrum is mainly caused by the nonlinear refractive index, which puts a limitation on the maximum pump power. The obtained results can provide a useful basis for the optimal design of practical vector SBS gain-based application systems.
Yuan, Wenjia; Shen, Weidong; Zhang, Yueguang; Liu, Xu
2014-05-05
Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter (DOAP) was presented for the first time to our knowledge. The optimal parameters for the beam splitter are Tp = 78.9%, Ts = 21.1% and Δr - Δt = π/2 at 532nm at an angle of incidence of 45°. Multilayer anti-reflection coating with low phase shift was applied to reduce the backside reflection. Different design strategies that can achieve all optimal targets at the wavelength were tested. Two design methods were presented to optimize the differential phase shift. The samples were prepared by ion beam sputtering (IBS). The experimental results show good agreement with those of the design. The ellipsometric parameters of samples were measured in reflection (ψr, Δr) = (26.5°, 135.1°) and (28.2°, 133.5°), as well as in transmission (ψt, Δt) = (62.5°, 46.1°) and (63.5°, 46°) at 532.6nm. The normalized determinant of instrument matrix to evaluate the performance of samples is respectively 0.998 and 0.991 at 532.6nm.
Ouyang, Yang; Liu, Jianxia; Xu, Xiaofeng; Zhao, Yujia; Zhou, Ai
2018-04-11
A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG) fabricated by electric arc discharge (EAD) is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m -1 and -51.5 pm/m -1 , respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.
Phase measurement system using a dithered clock
Fairley, C.R.; Patterson, S.R.
1991-05-28
A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.
Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.
Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A
2016-02-26
Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.
Detection of the mid-latitude Sporadic-E signal using GNSS/TEC and ALOS2 InSAR data
NASA Astrophysics Data System (ADS)
Suzuki, T.; Maeda, J.; Furuya, M.; Heki, K.
2016-12-01
Sporadic E (Es) is known to generate unusual propagation of VHF waves over long distances, which is caused by a layer of ionization that irregularly appears within the E region of the ionosphere. However, the generation mechanism of Es remains unclear, because the conventional ionosonde observation of Es has limited spatial resolution. Maeda et al. (2016) succeeded in capturing mid-latitude Es signal over Japan two-dimensionally as an image, using InSAR, and demonstrated the detailed spatial structure of Es. As InSAR is clearly useful for capturing Es, we aim to detect mid-latitude Es over Japan by InSAR, following Maeda et al. (2016). First, we chose the dates whose critical frequencies of Es (foEs) were more than 15MHz at ionosonde in Kokubunji, Wakkanai and Yamagawa in the morning and noon in 2016 from May to June; Es is known to be frequent in the local daytime of summer season. Secondly, we chose the ALOS-2/PALSAR-2 data sets whose observation area, dates and time matches the data above as closely as possible. Thirdly, we generated Global Navigation Satellite System - Total Electron Content (GNSS-TEC) map whose areas, dates and time become the same as the above and if Es appeared in GNSS-TEC map, we generate interferogram. We could detect interesting phase changes in the pair of February 17, 2016 (Master) and May 25, 2016 (Slave) along a track from Tottori to Okayama. The location of the phase shift is close to the Es on the GNSS-TEC image. Therefore, we can consider the phase shift as the edge of Es. This is the second successful detection of Es signals, using InSAR. Also, we are going to separate the Es signal from other non-dispersive signals, using split-band InSAR technique.
Autobalanced Ramsey Spectroscopy
NASA Astrophysics Data System (ADS)
Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard
2018-01-01
We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone
Very large phase shift of microwave signals in a 6 nm Hf x Zr1-x O2 ferroelectric at ±3 V
NASA Astrophysics Data System (ADS)
Dragoman, Mircea; Modreanu, Mircea; Povey, Ian M.; Iordanescu, Sergiu; Aldrigo, Martino; Romanitan, Cosmin; Vasilache, Dan; Dinescu, Adrian; Dragoman, Daniela
2017-09-01
In this letter, we report for the first time very large phase shifts of microwaves in the 1-10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf x Zr1-x O2 ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO2 could play an important role in the future development of wireless communication systems for very low power applications.
4Pi microscopy deconvolution with a variable point-spread function.
Baddeley, David; Carl, Christian; Cremer, Christoph
2006-09-20
To remove the axial sidelobes from 4Pi images, deconvolution forms an integral part of 4Pi microscopy. As a result of its high axial resolution, the 4Pi point spread function (PSF) is particularly susceptible to imperfect optical conditions within the sample. This is typically observed as a shift in the position of the maxima under the PSF envelope. A significantly varying phase shift renders deconvolution procedures based on a spatially invariant PSF essentially useless. We present a technique for computing the forward transformation in the case of a varying phase at a computational expense of the same order of magnitude as that of the shift invariant case, a method for the estimation of PSF phase from an acquired image, and a deconvolution procedure built on these techniques.
The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.
Oh, Geum-Yoon; Kim, Doo Gun; Choi, Young-Wan
2009-11-09
We have explicated the Goos-Hänchen (GH) shift in a mum-order Kretchmann-Raether configuration embedded in an optical waveguide structure by using the finite-difference time-domain method. For optical waveguide-type surface plasmon resonance (SPR) devices, the precise derivation of the GH shift has become critical. Artmann's equation, which is accurate enough for bulk optics, is difficult to apply to waveguide-type SPR devices. This is because Artmann's equation, based on the differentiation of the phase shift, is inaccurate at the critical and resonance angles where drastic phase changes occur. In this study, we accurately identified both the positive and the negative GH shifts around the incidence angle of resonance. In a waveguide-type Kretchmann-Raether configuration with an Au thin film of 50 nm, positive and negative lateral shifts of -0.75 and + 1.0 microm are obtained on the SPR with the incident angles of 44.4 degrees and 47.5 degrees, respectively, at a wavelength of 632.8 nm.
Gómez-Acebo, Inés; Dierssen-Sotos, Trinidad; Papantoniou, Kyriaki; García-Unzueta, María Teresa; Santos-Benito, María Francisca; Llorca, Javier
2015-02-01
The present study aims to compare 6-sulfatoxymelatonin (aMT6s) secretion patterns and levels of cortisol and sex hormones (estradiol, progesterone, DHEA, DHEAS, and testosterone) among rotating night-shift workers and day-shift workers. We performed a cross-sectional study in Cantabria (northern Spain) including 136 women (73 day-shift workers and 63 rotating night-shift workers). Blood and urine samples were obtained after two consecutive working days. Differences in means were estimated using ANCOVA, stratified by menopausal status, ovulation phase, and adjusted for season, age, body mass index, consumption of cigarettes in the last 24 h. aMT6s circadian rhythm was analyzed using the cosinor analysis. The present study showed that rotating night-shift workers had lower excretion of aMT6s than day-shift workers (mesor = 50.26 ng aMT6s/mg creatinine in women with rotating night shift versus 88.79 ng aMT6s/mg creatinine in women with day shift), lower fluctuation (amplitude = 45.24 ng aMT6s/mg creatinine in rotating night-shift workers versus 79.71 ng aMT6s/mg creatinine in day-shift workers), and a later acrophase (aMT6s peak time: 08:31 in rotating night-shift workers versus 07:13 h in day-shift workers). Additionally, women with rotating night shift had higher estradiol and progesterone levels, compared to day workers, especially in the follicular phase on the menstrual cycle.
Interference Confocal Microscope Integrated with Spatial Phase Shifter.
Wang, Weibo; Gu, Kang; You, Xiaoyu; Tan, Jiubin; Liu, Jian
2016-08-24
We present an interference confocal microscope (ICM) with a new single-body four-step simultaneous phase-shifter device designed to obtain high immunity to vibration. The proposed ICM combines the respective advantages of simultaneous phase shifting interferometry and bipolar differential confocal microscopy to obtain high axis resolution, large dynamic range, and reduce the sensitivity to vibration and reflectance disturbance seamlessly. A compact single body spatial phase shifter is added to capture four phase-shifted interference signals simultaneously without time delay and construct a stable and space-saving simplified interference confocal microscope system. The test result can be obtained by combining the interference phase response and the bipolar property of differential confocal microscopy without phase unwrapping. Experiments prove that the proposed microscope is capable of providing stable measurements with 1 nm of axial depth resolution for either low- or high-numerical aperture objective lenses.
Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali
2018-05-01
Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.
Frequency-Modulation Correlation Spectrometer
NASA Technical Reports Server (NTRS)
Margolis, J. S.; Martonchik, J. V.
1985-01-01
New type of correlation spectrometer eliminates need to shift between two cells, one empty and one containing reference gas. Electrooptical phase modulator sinusoidally shift frequencies of sample transmission spectrum.
Application of constrained equilibrium thermodynamics to irradiated alloy systems
NASA Astrophysics Data System (ADS)
Holloway, James Paul; Stubbins, James F.
1984-05-01
Equilibrium thermodynamics are applied to systems with an excess of point defects to calculate the relative stability of phases. It is possible to model systems with supersaturation levels of vacancies and interstitials, such as those found under irradiation. The calculations reveal the extent to which phase compositional boundaries could shift when one phase or both in a two phase system contain an excess of point defects. Phase boundary shifts in the Ni-Si, Fe-Ni, Ni-Cr, and Fe-Cr systems are examined as a function of the number of excess defects in each phase. It is also found that the critical temperature of the sigma phase in the Fe-Cr system and the fcc-bcc transition in the Fe-Ni are sensitive to excess defect concentrations. These results may apply to local irradiation-induced phase transformations in the presence of solute segregation.
Higher-order differential phase shift keyed modulation
NASA Astrophysics Data System (ADS)
Vanalphen, Deborah K.; Lindsey, William C.
1994-02-01
Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.
Micropatterned photoalignment for wavefront controlled switchable optical devices
NASA Astrophysics Data System (ADS)
Glazar, Nikolaus
Photoalignment is a well-established technique for surface alignment of the liquid crystal director. Previously, chrome masks were necessary for patterned photoalignment but were difficult to use, costly, and inflexible. To extend the capabilities of photoalignment we built an automated maskless multi-domain photoalignment device based on a DMD (digital multimirror device) projection system. The device is capable of creating arbitrary photoalignment patterns with micron-sized features. Pancharatnam-Berry phase (PB-phase) is a geometric phase that arises from cyclic change of polarization state. By varying the azimuthal anchoring angle in a hybrid-aligned liquid crystal cell we can control the spatial variation of the PB-phase shift. Using our automated photoalignment device to align the liquid crystal arbitrary wave front manipulations are possible. The PB-phase shift effect is maximized when the cell is tuned to have a half-wave retardation and disappears at full-wave retardation, so the cell can be switched on and off by applying a voltage. Two wavefront controlled devices developed using this technique will be discussed: A switchable liquid crystal phase shift mask for creating sub-diffraction sized photolithographic features, and a transparent diffractive display that utilizes a switchable liquid crystal diffraction grating.
Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K
2009-01-01
Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.
Phase-sensitive flow cytometer
Steinkamp, John A.
1993-01-01
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.
Ikeda, Taro; Takahashi, Kazunori; Kanamori, Yoshiaki; Hane, Kazuhiro
2010-03-29
Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0pi at the displacement of 1.0 mum at the voltage of 31 V. The dimension of the fabricated device is 50microm wide and 85microm long.
The CLEAR[TM] Problem-Solving Model: Discovering Strengths and Solutions
ERIC Educational Resources Information Center
Koehler, Nancy; Seger, Vikki
2011-01-01
This article introduces a unique team approach to planning and positive behavior support. The young person becomes a key participant in solving problems and setting goals for growth. The CLEAR Team Problem Solving model shifts the focus from deficits to strengths and solutions. The goal is to identify how a child's private logic and interpersonal…
Analysis of grating doublets for achromatic beam-splitting
Pacheco, Shaun; Milster, Tom; Liang, Rongguang
2015-01-01
Achromatic beam-splitting grating doublets are designed for both continuous phase and binary phase gratings. By analyzing the sensitivity to lateral shifts between the two grating layers, it is shown that continuous-profile grating doublets are extremely difficult to fabricate. Achromatic grating doublets that have profiles with a constant first spatial derivative are significantly more resistant to lateral shifts between grating layers, where one design case showed a 17 times improvement in performance. Therefore, binary phase, multi-level phase, and blazed grating doublets perform significantly better than continuous phase grating doublets in the presence of a lateral shift between two grating layers. By studying the sensitivity to fabrication errors in the height of both grating layers, one grating layer height can be adjusted to maintain excellent performance over a large wavelength range if the other grating layer is fabricated incorrectly. It is shown in one design case that the performance of an achromatic Dammann grating doublet can be improved by a factor of 215 if the heights of the grating layers are chosen to minimize the performance change in the presence of fabrication errors. PMID:26368261
Ps laser pulse induced stimulated Raman scattering of ammonium nitrate dissolved in water
NASA Astrophysics Data System (ADS)
Kumar, V. Rakesh; Kiran, P. Prem
2018-04-01
An intense picosecond laser pulse focused into a liquid medium generates a shock wave in the focal region. This shock wave while propagating into the medium varies the pressure and temperature of the liquid locally leading to the appearance of novel phases which are manifested by the appearance of Raman peaks. We present the phase changes of ammonium nitrate (AN) dissolved in water by studying the forward and backward stimulated Raman Scattering (FSRS and BSRS) signals due to propagation of 30 ps laser pulse induced shockwaves. The dominant peak corresponding to the NO3- symmetric stretching mode is observed with a Raman shift of 1045 cm-1 which represents phase IV of AN with an orthogonal crystalline structure. Apart from this peak, the dominant mode of liquid phase of water with a Raman shift of 3400 cm-1 and an ice VII peak at a Raman shift of 3050 cm-1 confirming the pressure of 10 GPa is observed. The effect of the concentration and input energy on the appearance of the phases will be presented.
Matsuda, Atsushi; Schermelleh, Lothar; Hirano, Yasuhiro; Haraguchi, Tokuko; Hiraoka, Yasushi
2018-05-15
Correction of chromatic shift is necessary for precise registration of multicolor fluorescence images of biological specimens. New emerging technologies in fluorescence microscopy with increasing spatial resolution and penetration depth have prompted the need for more accurate methods to correct chromatic aberration. However, the amount of chromatic shift of the region of interest in biological samples often deviates from the theoretical prediction because of unknown dispersion in the biological samples. To measure and correct chromatic shift in biological samples, we developed a quadrisection phase correlation approach to computationally calculate translation, rotation, and magnification from reference images. Furthermore, to account for local chromatic shifts, images are split into smaller elements, for which the phase correlation between channels is measured individually and corrected accordingly. We implemented this method in an easy-to-use open-source software package, called Chromagnon, that is able to correct shifts with a 3D accuracy of approximately 15 nm. Applying this software, we quantified the level of uncertainty in chromatic shift correction, depending on the imaging modality used, and for different existing calibration methods, along with the proposed one. Finally, we provide guidelines to choose the optimal chromatic shift registration method for any given situation.
NASA Astrophysics Data System (ADS)
Roozegar, M.; Angeles, J.
2018-05-01
In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.
Zhang, Xiao; Liu, Shirong; Li, Xiangzhen; Wang, Jingxin; Ding, Qiong; Wang, Hui; Tian, Chao; Yao, Minjie; An, Jiaxing; Huang, Yongtao
2016-03-01
To understand the temporal responses of soil prokaryotic communities to clear-cutting disturbance, we examined the changes in soil bacterial and archaeal community composition, structure and diversity along a chronosequence of forest successional restoration using high-throughput 16S rRNA gene sequencing. Our results demonstrated that clear-cutting significantly altered soil bacterial community structure, while no significant shifts of soil archaeal communities were observed. The hypothesis that soil bacterial communities would become similar to those of surrounding intact primary forest with natural regeneration was supported by the shifts in the bacterial community composition and structure. Bacterial community diversity patterns induced by clear-cutting were consistent with the intermediate disturbance hypothesis. Dynamics of bacterial communities was mostly driven by soil properties, which collectively explained more than 70% of the variation in bacterial community composition. Community assembly data revealed that clear-cutting promoted the importance of the deterministic processes in shaping bacterial communities, coinciding with the resultant low resource environments. But assembly processes in the secondary forest returned a similar level compared to the intact primary forest. These findings suggest that bacterial community dynamics may be predictable during the natural recovery process. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Phase contrast STEM for thin samples: Integrated differential phase contrast.
Lazić, Ivan; Bosch, Eric G T; Lazar, Sorin
2016-01-01
It has been known since the 1970s that the movement of the center of mass (COM) of a convergent beam electron diffraction (CBED) pattern is linearly related to the (projected) electrical field in the sample. We re-derive a contrast transfer function (CTF) for a scanning transmission electron microscopy (STEM) imaging technique based on this movement from the point of view of image formation and continue by performing a two-dimensional integration on the two images based on the two components of the COM movement. The resulting integrated COM (iCOM) STEM technique yields a scalar image that is linear in the phase shift caused by the sample and therefore also in the local (projected) electrostatic potential field of a thin sample. We confirm that the differential phase contrast (DPC) STEM technique using a segmented detector with 4 quadrants (4Q) yields a good approximation for the COM movement. Performing a two-dimensional integration, just as for the COM, we obtain an integrated DPC (iDPC) image which is approximately linear in the phase of the sample. Beside deriving the CTFs of iCOM and iDPC, we clearly point out the objects of the two corresponding imaging techniques, and highlight the differences to objects corresponding to COM-, DPC-, and (HA) ADF-STEM. The theory is validated with simulations and we present first experimental results of the iDPC-STEM technique showing its capability for imaging both light and heavy elements with atomic resolution and a good signal to noise ratio (SNR). Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, J.; Roy, B.; Tanatar, M. A.
We report 75As nuclear magnetic resonance (NMR) measurements of single-crystalline Ca(Fe 1–xCo x) 2As 2 (x=0.023, 0.028, 0.033, and 0.059) annealed at 350°C for 7 days. From the observation of a characteristic shape of 75As NMR spectra in the stripe-type antiferromagnetic (AFM) state, as in the case of x=0 (T N=170 K), clear evidence for the commensurate AFM phase transition with the concomitant structural phase transition is observed in x=0.023 (T N=106 K) and x=0.028 (T N=53 K). Through the temperature dependence of the Knight shifts and the nuclear spin lattice relaxation rates (1/T 1), although stripe-type AFM spin fluctuationsmore » are realized in the paramagnetic state as in the case of other iron pnictide superconductors, we found a gradual decrease of the AFM spin fluctuations below a crossover temperature T* that was nearly independent of Co-substitution concentration, and it is attributed to a pseudogaplike behavior in the spin excitation spectra of these systems. The T* feature finds correlation with features in the temperature-dependent interplane resistivity, ρc(T), but not with the in-plane resistivity ρa(T). The temperature evolution of anisotropic stripe-type AFM spin fluctuations is tracked in the paramagnetic and pseudogap phases by the 1/T 1 data measured under magnetic fields parallel and perpendicular to the c axis. As a result, based on our NMR data, we have added a pseudogaplike phase to the magnetic and electronic phase diagram of Ca(Fe 1–xCo x) 2As 2.« less
High-order above-threshold photoemission from nanotips controlled with two-color laser fields
NASA Astrophysics Data System (ADS)
Seiffert, Lennart; Paschen, Timo; Hommelhoff, Peter; Fennel, Thomas
2018-07-01
We investigate the process of phase-controlled high-order above-threshold photoemission from metallic nanotips under bichromatic laser fields. Experimental photoelectron spectra resulting from two-color excitation with a moderately intense near-infrared fundamental field (1560 nm) and its weak second harmonic show a strong sensitivity on the relative phase and clear indications for a plateau-like structure that is attributed to elastic backscattering. To explore the relevant control mechanisms, characteristic features, and particular signatures from the near-field inhomogeneity, we performed systematic quantum simulations employing a one-dimensional nanotip model. Besides rich phase-dependent structures in the simulated above-threshold ionization photoelectron spectra we find ponderomotive shifts as well as substantial modifications of the rescattering cutoff as function of the decay length of the near-field. To explore the quantum or classical nature of the observed features and to discriminate the two-color effects stemming from electron propagation and from the ionization rate we compare the quantum results to classical trajectory simulations. We show that signatures from direct electrons as well as the modulations in the plateau region mainly stem from control of the ionization probability, while the modulation in the cutoff region can only be explained by the impact of the two-color field on the electron trajectory. Despite the complexity of the phase-dependent features that render two-color strong-field photoemission from nanotips intriguing for sub-cycle strong-field control, our findings support that the recollision features in the cutoff region provide a robust and reliable method to calibrate the relative two-color phase.