Brewer, D E
2000-09-01
The results of cardiac tests must always be interpreted through the lens of pretest probabilities created by the history and the physical examination. Tests should be chosen with a clear diagnostic and prognostic purpose in mind. A clear understanding of the relationship between the history and physical examination and more technologic diagnostic testing improves the primary care physician's ability to evaluate potential cardiac disease in an efficient and cost-effective manner.
Gravitational Self-Energy as the Litmus of Reality
NASA Astrophysics Data System (ADS)
Jones, K. R. W.
It is argued that the correct physical treatment of self-energy in Newtonian quantum gravity offers a constrained and predictive discriminator for the interpretation of ψ, and thus a clear point of departure for the unification of modern physics.
Educating through the Physical--Behavioral Interpretation
ERIC Educational Resources Information Center
Eldar, Eitan
2008-01-01
Background: Physical activity holds great promise as a natural and enjoyable setting for learning and for behavioral change. Despite claims that engagement in physical activity can promote socially desired behaviors, there remains a lack of a clear conceptual base that can guide interventions as well as research endeavors in this field. This…
Getting the measure of things: the physical biology of stem cells.
Lowell, Sally
2013-10-01
In July 2013, the diverse fields of biology, physics and mathematics converged to discuss 'The Physical Biology of Stem Cells', the subject of the third annual symposium of the Cambridge Stem Cell Institute, UK. Two clear themes resonated throughout the meeting: the new insights gained from advances in the acquisition and interpretation of quantitative data; and the importance of 'thinking outside the nucleus' to consider physical influences on cell fate.
NASA Astrophysics Data System (ADS)
Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.
2014-04-01
Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.
Maximum entropy models of ecosystem functioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, Jason, E-mail: jason.bertram@anu.edu.au
2014-12-05
Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on themore » information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.« less
Best Practices for Administering Concept Inventories
ERIC Educational Resources Information Center
Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.
2017-01-01
There is a plethora of concept inventories available for faculty to use, but it is not always clear exactly why you would use these tests, or how you should administer them and interpret the results. These research-based tests about physics and astronomy concepts are valuable because they allow for standardized comparisons among institutions,…
Propagation considerations in land mobile satellite transmission
NASA Technical Reports Server (NTRS)
Vogel, W. J.; Smith, E. K.
1985-01-01
It appears likely that the Land Mobile Satellite Services (LMSS) will be authorized by the FCC for operation in the 800 to 900 MHz (UHF) and possibly near 1500 MHz (L-band). Propagation problems are clearly an important factor in the effectiveness of this service, but useful measurements are few, and produced contradictory interpretations. A first order overview of existing measurements is presented with particular attention to the first two NASA balloon to mobile vehicle propagation experiments. Some physical insight into the interpretation of propagation effects in LMSS transmissions is provided.
NASA Astrophysics Data System (ADS)
Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin
2016-06-01
This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.
On a biologically inspired topology optimization method
NASA Astrophysics Data System (ADS)
Kobayashi, Marcelo H.
2010-03-01
This work concerns the development of a biologically inspired methodology for the study of topology optimization in engineering and natural systems. The methodology is based on L systems and its turtle interpretation for the genotype-phenotype modeling of the topology development. The topology is analyzed using the finite element method, and optimized using an evolutionary algorithm with the genetic encoding of the L system and its turtle interpretation, as well as, body shape and physical characteristics. The test cases considered in this work clearly show the suitability of the proposed method for the study of engineering and natural complex systems.
Western, Max J.; Peacock, Oliver J.; Stathi, Afroditi; Thompson, Dylan
2015-01-01
Background Innovative physical activity monitoring technology can be used to depict rich visual feedback that encompasses the various aspects of physical activity known to be important for health. However, it is unknown whether patients who are at risk of chronic disease would understand such sophisticated personalised feedback or whether they would find it useful and motivating. The purpose of the present study was to determine whether technology-enabled multidimensional physical activity graphics and visualisations are comprehensible and usable for patients at risk of chronic disease. Method We developed several iterations of graphics depicting minute-by-minute activity patterns and integrated physical activity health targets. Subsequently, patients at moderate/high risk of chronic disease (n=29) and healthcare practitioners (n=15) from South West England underwent full 7-days activity monitoring followed by individual semi-structured interviews in which they were asked to comment on their own personalised visual feedback Framework analysis was used to gauge their interpretation and of personalised feedback, graphics and visualisations. Results We identified two main components focussing on (a) the interpretation of feedback designs and data and (b) the impact of personalised visual physical activity feedback on facilitation of health behaviour change. Participants demonstrated a clear ability to understand the sophisticated personal information plus an enhanced physical activity knowledge. They reported that receiving multidimensional feedback was motivating and could be usefully applied to facilitate their efforts in becoming more physically active. Conclusion Multidimensional physical activity feedback can be made comprehensible, informative and motivational by using appropriate graphics and visualisations. There is an opportunity to exploit the full potential created by technological innovation and provide sophisticated personalised physical activity feedback as an adjunct to support behaviour change. PMID:25938455
What does physics have to do with cancer?
Michor, Franziska; Liphardt, Jan; Ferrari, Mauro; Widom, Jonathan
2013-01-01
Large-scale cancer genomics, proteomics and RNA-sequencing efforts are currently mapping in fine detail the genetic and biochemical alterations that occur in cancer. However, it is becoming clear that it is difficult to integrate and interpret these data and to translate them into treatments. This difficulty is compounded by the recognition that cancer cells evolve, and that initiation, progression and metastasis are influenced by a wide variety of factors. To help tackle this challenge, the US National Cancer Institute Physical Sciences-Oncology Centers initiative is bringing together physicists, cancer biologists, chemists, mathematicians and engineers. How are we beginning to address cancer from the perspective of the physical sciences? PMID:21850037
Are strategies in physics discrete? A remote controlled investigation
NASA Astrophysics Data System (ADS)
Heck, Robert; Sherson, Jacob F.; www. scienceathome. org Team; players Team
2017-04-01
In science, strategies are formulated based on observations, calculations, or physical insight. For any given physical process, often several distinct strategies are identified. Are these truly distinct or simply low dimensional representations of a high dimensional continuum of solutions? Our online citizen science platform www.scienceathome.org used by more than 150,000 people recently enabled finding solutions to fast, 1D single atom transport [Nature2016]. Surprisingly, player trajectories bunched into discrete solution strategies (clans) yielding clear, distinct physical insight. Introducing the multi-dimensional vector in the direction of other local maxima we locate narrow, high-yield ``bridges'' connecting the clans. This demonstrates for this problem that a continuum of solutions with no clear physical interpretation does in fact exist. Next, four distinct strategies for creating Bose-Einstein condensates were investigated experimentally: hybrid and crossed dipole trap configurations in combination with either large volume or dimple loading from a magnetic trap. We find that although each conventional strategy appears locally optimal, ``bridges'' can be identified. In a novel approach, the problem was gamified allowing 750 citizen scientists to contribute to the experimental optimization yielding nearly a factor two improvement in atom number.
Limits of predictions in thermodynamic systems: a review
NASA Astrophysics Data System (ADS)
Marsland, Robert, III; England, Jeremy
2018-01-01
The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.
2011-03-28
particular topic of interest. Paper -based documents require the availability of a physical instance of a document, involving the transport of documents...repository of documents via the World Wide Web and search engines offer support in locating documents that are likely to contain relevant information. The... Web , with news agencies, newspapers, various organizations, and individuals as sources. Clearly the analysis, interpretation, and integration of
Disentangling Quasar Nomenclature
NASA Astrophysics Data System (ADS)
Ross, Nicholas; Goulding, Andrew D.
2015-01-01
The terms Type 1, Type 2, Obscured, Unobscured, Compton-thin and Compton-thick are cemented naming conventions for describing AGN and QSOs. However, all too often, they are used interchangeably to describe seemingly similar/different entities, leading to confusion towards the physical mechanisms that give rise to them. Furthermore, as is often the case in scientific discovery, initial designations and acronyms become obsolete. In this poster, using data and new results from the SDSS, SDSS-III BOSS, Bootes, DEEP2 and WISE surveys, we present a comprehensive QSO Glossary giving clear definitions of numerous AGN terms and the physical interpretation behind them. We further elucidate to the physical nature of hot dust obscured galaxy population (``hot DOGs'') and the long-sought after high-z Type 2 QSO population.
A compact disc under skimming light rays
NASA Astrophysics Data System (ADS)
De Luca, R.; Di Mauro, M.; Fiore, O.; Naddeo, A.
2018-03-01
The optical properties of a compact disc (CD) under "skimming" light rays have been analyzed. We have noticed that a clear green line can be detected when the disc is irradiated with light rays coming from a lamp in such a way that only those skimming the CD, held horizontally, are selected. We provide a physical interpretation of this phenomenon on the basis of elementary optics concepts. Extension of these concepts to digital versatile discs (DVDs) is given.
The Design of Hand Gestures for Human-Computer Interaction: Lessons from Sign Language Interpreters.
Rempel, David; Camilleri, Matt J; Lee, David L
2015-10-01
The design and selection of 3D modeled hand gestures for human-computer interaction should follow principles of natural language combined with the need to optimize gesture contrast and recognition. The selection should also consider the discomfort and fatigue associated with distinct hand postures and motions, especially for common commands. Sign language interpreters have extensive and unique experience forming hand gestures and many suffer from hand pain while gesturing. Professional sign language interpreters (N=24) rated discomfort for hand gestures associated with 47 characters and words and 33 hand postures. Clear associations of discomfort with hand postures were identified. In a nominal logistic regression model, high discomfort was associated with gestures requiring a flexed wrist, discordant adjacent fingers, or extended fingers. These and other findings should be considered in the design of hand gestures to optimize the relationship between human cognitive and physical processes and computer gesture recognition systems for human-computer input.
Stanley, W.D.; Blakely, R.J.
1995-01-01
The Geysers-Clear Lake geothermal area encompasses a large dry-steam production area in The Geysers field and a documented high-temperature, high-pressure, water-dominated system in the area largely south of Clear Lake, which has not been developed. An updated view is presented of the geological/geophysical complexities of the crust in this region in order to address key unanswered questions about the heat source and tectonics. Forward modeling, multidimensional inversions, and ideal body analysis of the gravity data, new electromagnetic sounding models, and arguments made from other geophysical data sets suggest that many of the geophysical anomalies have significant contributions from rock property and physical state variations in the upper 7 km and not from "magma' at greater depths. Regional tectonic and magmatic processes are analyzed to develop an updated scenario for pluton emplacement that differs substantially from earlier interpretations. In addition, a rationale is outlined for future exploration for geothermal resources in The Geysers-Clear Lake area. -from Authors
Bohm's Quantum Potential and the Visualization of Molecular Structure
NASA Technical Reports Server (NTRS)
Levit, Creon; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.
Best Practices for Administering Concept Inventories
NASA Astrophysics Data System (ADS)
Madsen, Adrian; McKagan, Sarah B.; Sayre, Eleanor C.
2017-12-01
There is a plethora of concept inventories available for faculty to use, but it is not always clear exactly why you would use these tests, or how you should administer them and interpret the results. These research-based tests about physics and astronomy concepts are valuable because they allow for standardized comparisons among institutions, instructors, or over time. In order for these comparisons to be meaningful, you should use best practices for administering the tests. In interviews with 24 physics faculty, we have identified common questions that faculty members have about concept inventories. We have written this article to address common questions from these interviews and provide a summary of best practices for administering concept inventories.
Radin, Dean
2014-01-01
With one exception, near-death experiences (NDEs) may be interpreted as unusual forms of hallucinations associated with the injured or dying brain. The exception involves perceptions described from vantage points outside the body that are later confirmed to be correct and could not have been inferred. Over a century of laboratory studies have investigated whether it is possible in principle for the mind to transcend the physical boundaries of the brain. The cumulative experimental database strongly indicates that it can. It is not clear that this implies the mind is separate from the brain, but it does suggest that a comprehensive explanation for NDEs will require revisions to present scientific assumptions about the brain-mind relationship.
The Design of Hand Gestures for Human-Computer Interaction: Lessons from Sign Language Interpreters
Rempel, David; Camilleri, Matt J.; Lee, David L.
2015-01-01
The design and selection of 3D modeled hand gestures for human-computer interaction should follow principles of natural language combined with the need to optimize gesture contrast and recognition. The selection should also consider the discomfort and fatigue associated with distinct hand postures and motions, especially for common commands. Sign language interpreters have extensive and unique experience forming hand gestures and many suffer from hand pain while gesturing. Professional sign language interpreters (N=24) rated discomfort for hand gestures associated with 47 characters and words and 33 hand postures. Clear associations of discomfort with hand postures were identified. In a nominal logistic regression model, high discomfort was associated with gestures requiring a flexed wrist, discordant adjacent fingers, or extended fingers. These and other findings should be considered in the design of hand gestures to optimize the relationship between human cognitive and physical processes and computer gesture recognition systems for human-computer input. PMID:26028955
A radiation scalar for numerical relativity.
Beetle, Christopher; Burko, Lior M
2002-12-30
This Letter describes a scalar curvature invariant for general relativity with a certain, distinctive feature. While many such invariants exist, this one vanishes in regions of space-time which can be said unambiguously to contain no gravitational radiation. In more general regions which incontrovertibly support nontrivial radiation fields, it can be used to extract local, coordinate-independent information partially characterizing that radiation. While a clear, physical interpretation is possible only in such radiation zones, a simple algorithm can be given to extend the definition smoothly to generic regions of space-time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, L.; Tskhakaya, D. D.; Jelić, N.
2015-09-15
Recent decades have seen research into the conditions necessary for the formation of the monotonic potential shape in the sheath, appearing at the plasma boundaries like walls, in fluid, and kinetic approximations separately. Although either of these approaches yields a formulation commonly known as the much-acclaimed Bohm criterion (BC), the respective results involve essentially different physical quantities that describe the ion gas behavior. In the fluid approach, such a quantity is clearly identified as the ion directional velocity. In the kinetic approach, the ion behavior is formulated via a quantity (the squared inverse velocity averaged by the ion distribution function)more » without any clear physical significance, which is, moreover, impractical. In the present paper, we try to explain this difference by deriving a condition called here the Unified Bohm Criterion, which combines an advanced fluid model with an upgraded explicit kinetic formula in a new form of the BC. By introducing a generalized polytropic coefficient function, the unified BC can be interpreted in a form that holds, irrespective of whether the ions are described kinetically or in the fluid approximation.« less
Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill
2018-03-21
Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.
Bustamante, Alcibíades; Beunen, Gastón; Maia, José
2012-06-01
Construct percentile charts and physical fitness (PF) reference values stratified by age and sex of children and adolescents from Peru's central region. The sample was comprised of 7,843 subjects (4,155 females and 3,688 males) between the ages of 6 to 17 years old. Physical fitness was assessed using six tests developed by EUROFIT, FITNESSGRAM and AAPHERD. Percentile charts were developed separately for males and females using the LMS method calculated with LMSchartmaker software. Results. Males showed higher PF values with the exception of flexibility; a clear increase in PF with increasing age was verified. Inter-individual variability in both sexes is substantial. Charts and specific reference values by age and sex may be used for the assessment and interpretation of children's and adolescents' PF levels in Peru's central region. These findings may be of help to educators, public health professionals, parents, and policy-makers when assessing schools' physical education programs.
Soldati, Gino; Demi, Marcello
2017-06-01
In recent years, great advances have been made in the use of lung ultrasound to detect pulmonary edema and interstitial changes in the lung. However, it is clear that B-lines oversimplify the description of the physical phenomena associated with their presence. The artifactual images that ultrasounds provide in interstitial pulmonary pathology are merely the ultimate outcome of the complex interaction of a specific acoustic wave with a specific three-dimensional biological structure. This interaction lacks a solid physical interpretation of the acoustic signs to support it. The aim of this paper was to describe the differences between the sonographic interstitial syndrome related to lung diseases and that related to cardiogenic edema in the light of current knowledge regarding the pleural plane's response to ultrasound waves.
Condensation to a strongly correlated dark fluid of two dimensional dipolar excitons
NASA Astrophysics Data System (ADS)
Mazuz-Harpaz, Yotam; Cohen, Kobi; Rapaport, Ronen
2017-08-01
Recently we reported on the condensation of cold, electrostatically trapped dipolar excitons in GaAs bilayer heterostructure into a new, dense and dark collective phase. Here we analyze and discuss in detail the experimental findings and the emerging evident properties of this collective liquid-like phase. We show that the phase transition is characterized by a sharp increase of the number of non-emitting dipoles, by a clear contraction of the fluid spatial extent into the bottom of the parabolic-like trap, and by spectral narrowing. We extract the total density of the condensed phase which we find to be consistent with the expected density regime of a quantum liquid. We show that there are clear critical temperature and excitation power onsets for the phase transition and that as the power further increases above the critical power, the strong darkening is reduced down until no clear darkening is observed. At this point another transition appears which we interpret as a transition to a strongly repulsive yet correlated e-h plasma. Based on the experimental findings, we suggest that the physical mechanism that may be responsible for the transition is a dynamical final-state stimulation of the dipolar excitons to their dark spin states, which have a long lifetime and thus support the observed sharp increase in density. Further experiments and modeling will hopefully be able to unambiguously identify the physical mechanism behind these recent observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, W.D.; Livingston, P.M.; Rutter, R.L.
Of considerable interest from both a physical and practical viewpoint is the coupling of electromagnetic energy from a nuclear explosion into various electrical systems in the vicinity of the burst. A series of electromagnetic measurements were made on Shots Little Feller I, Little Feller II, and Johnie Boy. It is clear from the records that radiation shielding must be given closer consideration in future tests. Due to equipment failure and radiation inactivation, only the Johnie Boy dynamic current measurement and the passive peak current indicators on all three events are interpretable.
Hillslope Evolution by Bedrock Landslides
Densmore; Anderson; McAdoo; Ellis
1997-01-17
Bedrock landsliding is a dominant geomorphic process in a number of high-relief landscapes, yet is neglected in landscape evolution models. A physical model of sliding in beans is presented, in which incremental lowering of one wall simulates baselevel fall and generates slides. Frequent small slides produce irregular hillslopes, on which steep toes and head scarps persist until being cleared by infrequent large slides. These steep segments are observed on hillslopes in high-relief landscapes and have been interpreted as evidence for increases in tectonic or climatic process rates. In certain cases, they may instead reflect normal hillslope evolution by landsliding.
Stretched exponential distributions in nature and economy: ``fat tails'' with characteristic scales
NASA Astrophysics Data System (ADS)
Laherrère, J.; Sornette, D.
1998-04-01
To account quantitatively for many reported "natural" fat tail distributions in Nature and Economy, we propose the stretched exponential family as a complement to the often used power law distributions. It has many advantages, among which to be economical with only two adjustable parameters with clear physical interpretation. Furthermore, it derives from a simple and generic mechanism in terms of multiplicative processes. We show that stretched exponentials describe very well the distributions of radio and light emissions from galaxies, of US GOM OCS oilfield reserve sizes, of World, US and French agglomeration sizes, of country population sizes, of daily Forex US-Mark and Franc-Mark price variations, of Vostok (near the south pole) temperature variations over the last 400 000 years, of the Raup-Sepkoski's kill curve and of citations of the most cited physicists in the world. We also discuss its potential for the distribution of earthquake sizes and fault displacements. We suggest physical interpretations of the parameters and provide a short toolkit of the statistical properties of the stretched exponentials. We also provide a comparison with other distributions, such as the shifted linear fractal, the log-normal and the recently introduced parabolic fractal distributions.
The realist interpretation of the atmosphere
NASA Astrophysics Data System (ADS)
Anduaga, Aitor
The discovery of a clearly stratified structure of layers in the upper atmosphere has been--and still is--invoked too often as the great paradigm of atmospheric sciences in the 20th century. Behind this vision, an emphasis--or better, an overstatement--on the reality of the concept of layer lies. One of the few historians of physics who have not ignored this phenomenon of reification, C. Stewart Gillmor, attributed it to--somewhat ambiguous-- cultural (or perhaps, more generally, contextual) factors, though he never specified their nature. In this essay, I aim to demonstrate that, in the interwar years, most radiophysicists and some atomic physicists, for reasons principally related to extrinsic influences and to a lesser extent to internal developments of their own science, fervidly embraced a realist interpretation of the ionosphere. We will focus on the historical circumstances in which a specific social and commercial environment came to exert a strong influence on upper atmospheric physicists, and in which realism as a product validating the "truth" of certain practices and beliefs arose. This realist commitment I attribute to the mutual reinforcement of atmospheric physics and commercial and imperial interests in long-distance communications.
The Loud, Clear, and Transporting Voice of Oral Interpretation.
ERIC Educational Resources Information Center
Vartabedian, Robert A.
This essay examines the art of oral interpretation from a "vocal" perspective--that is, it focuses on the crucial nature of vocal dimensions in oral interpretation. Moreover, the essay argues for an interpreter's hierarchy of vocal needs (modeled after Abraham Maslow's 1970 theory). The interpreter's hierarchy of vocal needs involves…
Wurz, Amanda; Brunet, Jennifer
2017-09-01
Physical activity is increasingly being studied as a way to improve psychosocial outcomes (e.g., quality of life, self-efficacy, physical self-perceptions, self-esteem, body image, posttraumatic growth) among survivors of adolescent and young adult (AYA) cancer. Assessing levels of and associations between self-reported physical activity and psychosocial outcomes requires clear, appropriate, and relevant questionnaires. To explore how survivors of AYA cancer interpreted and responded to the following eight published questionnaires: Leisure Time Exercise Questionnaire, Exercise Self-Efficacy Scale, Physical Self-Description Questionnaire, Rosenberg Global Self-Esteem Scale, Multidimensional Body-Self Relations Questionnaire, Posttraumatic Growth Inventory, Functional Assessment of Cancer Therapy-General (FACT-G), RAND 36-Item Health Survey 1.0 (RAND-36), cognitive interviews were conducted with three men and four women age 18-36 years who were diagnosed with cancer at age 16-35 years. Initially, the first seven questionnaires listed above were assessed. Summaries of the interviews were prepared and compared across participants. Potential concerns were identified with the FACT-G; thus, a second interview was conducted with participants to explore the clarity, appropriateness, and relevance of the RAND-36. Concerns identified for the FACT-G related mostly to the lack of relevance of items pertaining to cancer-specific aspects of quality of life given that participants were posttreatment. No or few concerns related to comprehension and/or structure/logic were identified for the other questionnaires. In general, the questionnaires assessed were clear, appropriate, and relevant. Participants' feedback suggested they could be used to assess self-reported physical activity and varied psychosocial outcomes in studies with survivors of AYA cancer, either with or without slight modifications.
A galactic microquasar mimicking winged radio galaxies.
Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M
2017-11-24
A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... interpretation with respect to the treatment and clearing of options and security futures on SPDR Gold Shares.\\2... amended the interpretation to extend similar treatment to options and security futures on iShares[supreg... rule filing SR-OCC-2009-20, which extended similar treatment to options and security futures on ETFS...
Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk
NASA Astrophysics Data System (ADS)
Sondergeld, Carl H.
This book is divided into seven chapters that cover rock physics, statistical rock physics, seismic inversion techniques, case studies, and work flows. On balance, the emphasis is on rock physics. Included are 56 color figures that greatly help in the interpretation of more complicated plots and displays.The domain of rock physics falls between petrophysics and seismics. It is the basis for interpreting seismic observations and therefore is pivotal to the understanding of this book. The first two chapters are dedicated to this topic (109 pages).
Theoretical and observational planetary physics
NASA Technical Reports Server (NTRS)
Caldwell, J.
1986-01-01
This program supports NASA's deep space exploration missions, particularly those to the outer Solar System, and also NASA's Earth-orbital astronomy missions, using ground-based observations, primarily with the NASA IRTF at Mauna Kea, Hawaii, and also with such instruments as the Kitt Peak 4 meter Mayall telescope and the NRAO VLA facility in Socorro, New Mexico. An important component of the program is the physical interpretation of the observations. There were two major scientific discoveries resulting from 8 micrometer observations of Jupiter. The first is that at that wavelength there are two spots, one near each magnetic pole, which are typically the brightest and therefore warmest places on the planet. The effect is clearly due to precipitating high energy magnetospheric particles. A second ground-based discovery is that in 1985, Jupiter exhibited low latitude (+ or - 18 deg.) stratospheric wave structure.
About Essence of the Wave Function on Atomic Level and in Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulov, A. V.
The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less
NASA Astrophysics Data System (ADS)
Klouch, Nawel; Riane, Houaria; Hamdache, Fatima; Addi, Djamel
2013-05-01
We are interested in modeling the interaction between light and biological tissue from the Monte Carlo method which is an approach used to solve modeling problems in different physical domains. Through the Monte Carlo approach we are going to try to interpret the spectral response absorption, reflectance, transmittance of normal human tissue under its three dominant tints in the visible range (350-700) nm. Then we will focus on the spectral response of the human tissue with varicosities in order to determinate the optimal conditions of operating the semiconductor laser for esthetic aim.
New biorthogonality relations for inhomogeneous biisotropic planar waveguides
NASA Astrophysics Data System (ADS)
Topa, Antonio L.; Paiva, Carlos R.; Barbosa, Afonso M.
1994-04-01
Using a linear operator formalism this paper presents new biorthogonality relations for the hybrid modes supported by planar waveguides inhomogeneously filled with general biisotropic media. In the special case of lossless biisotropic media, the linear operator is self-adjoint, the original and adjoint waveguides are identical, and new orthogonality relations can be derived. As an example of application, the radiation modes of a grounded nonreciprocal and lossless biisotropic slab waveguide are analyzed in terms of a pair of incident transverse electric (ITE) and incident transverse magnetic (ITM) continuous modes, which have the advantage of being mutually orthogonal and of having a clear physical interpretation.
Validity and reliability of a video questionnaire to assess physical function in older adults.
Balachandran, Anoop; N Verduin, Chelsea; Potiaumpai, Melanie; Ni, Meng; Signorile, Joseph F
2016-08-01
Self-report questionnaires are widely used to assess physical function in older adults. However, they often lack a clear frame of reference and hence interpreting and rating task difficulty levels can be problematic for the responder. Consequently, the usefulness of traditional self-report questionnaires for assessing higher-level functioning is limited. Video-based questionnaires can overcome some of these limitations by offering a clear and objective visual reference for the performance level against which the subject is to compare his or her perceived capacity. Hence the purpose of the study was to develop and validate a novel, video-based questionnaire to assess physical function in older adults independently living in the community. A total of 61 community-living adults, 60years or older, were recruited. To examine validity, 35 of the subjects completed the video questionnaire, two types of physical performance tests: a test of instrumental activity of daily living (IADL) included in the Short Physical Functional Performance battery (PFP-10), and a composite of 3 performance tests (30s chair stand, single-leg balance and usual gait speed). To ascertain reliability, two-week test-retest reliability was assessed in the remaining 26 subjects who did not participate in validity testing. The video questionnaire showed a moderate correlation with the IADLs (Spearman rho=0.64, p<0.001; 95% CI (0.4, 0.8)), and a lower correlation with the composite score of physical performance tests (Spearman rho=0.49, p<0.01; 95% CI (0.18, 0.7)). The test-retest assessment yielded an intra-class correlation (ICC) of 0.87 (p<0.001; 95% CI (0.70, 0.94)) and a Cronbach's alpha of 0.89 demonstrating good reliability and internal consistency. Our results show that the video questionnaire developed to evaluate physical function in community-living older adults is a valid and reliable assessment tool; however, further validation is needed for definitive conclusions. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Durang, Xavier; Henkel, Malte
2017-12-01
Motivated by an analogy with the spherical model of a ferromagnet, the three Arcetri models are defined. They present new universality classes, either for the growth of interfaces, or else for lattice gases. They are distinct from the common Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes. Their non-equilibrium evolution can be studied by the exact computation of their two-time correlators and responses. In both interpretations, the first model has a critical point in any dimension and shows simple ageing at and below criticality. The exact universal exponents are found. The second and third model are solved at zero temperature, in one dimension, where both show logarithmic sub-ageing, of which several distinct types are identified. Physically, the second model describes a lattice gas and the third model describes interface growth. A clear physical picture on the subsequent time and length scales of the sub-ageing process emerges.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
NASA Astrophysics Data System (ADS)
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities
ERIC Educational Resources Information Center
Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.
2016-01-01
Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…
A pedestrian approach to the measurement problem in quantum mechanics
NASA Astrophysics Data System (ADS)
Boughn, Stephen; Reginatto, Marcel
2013-09-01
The quantum theory of measurement has been a matter of debate for over eighty years. Most of the discussion has focused on theoretical issues with the consequence that other aspects (such as the operational prescriptions that are an integral part of experimental physics) have been largely ignored. This has undoubtedly exacerbated attempts to find a solution to the "measurement problem". How the measurement problem is defined depends to some extent on how the theoretical concepts introduced by the theory are interpreted. In this paper, we fully embrace the minimalist statistical (ensemble) interpretation of quantum mechanics espoused by Einstein, Ballentine, and others. According to this interpretation, the quantum state description applies only to a statistical ensemble of similarly prepared systems rather than representing an individual system. Thus, the statistical interpretation obviates the need to entertain reduction of the state vector, one of the primary dilemmas of the measurement problem. The other major aspect of the measurement problem, the necessity of describing measurements in terms of classical concepts that lay outside of quantum theory, remains. A consistent formalism for interacting quantum and classical systems, like the one based on ensembles on configuration space that we refer to in this paper, might seem to eliminate this facet of the measurement problem; however, we argue that the ultimate interface with experiments is described by operational prescriptions and not in terms of the concepts of classical theory. There is no doubt that attempts to address the measurement problem have yielded important advances in fundamental physics; however, it is also very clear that the measurement problem is still far from being resolved. The pedestrian approach presented here suggests that this state of affairs is in part the result of searching for a theoretical/mathematical solution to what is fundamentally an experimental/observational question. It suggests also that the measurement problem is, in some sense, ill-posed and might never be resolved. This point of view is tenable so long as one is willing to view physical theories as providing models of nature rather than complete descriptions of reality. Among other things, these considerations lead us to suggest that the Copenhagen interpretation's insistence on the classicality of the measurement apparatus should be replaced by the requirement that a measurement, which is specified operationally, should simply be of sufficient precision.
Teaching and Understanding of Quantum Interpretations in Modern Physics Courses
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2010-01-01
Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…
Isotope effects in aqueous solvation of simple halides
NASA Astrophysics Data System (ADS)
Videla, Pablo E.; Rossky, Peter J.; Laria, D.
2018-03-01
We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.
Search for Chemically Bound Water in the Surface Layer of Mars Based on HEND/Mars Odyssey Data
NASA Technical Reports Server (NTRS)
Basilevsky, A. T.; Litvak, M. L.; Mitrofanov, I. G.; Boynton, W.; Saunders, R. S.
2003-01-01
This study is emphasized on search for signatures of chemically bound water in surface layer of Mars based on data acquired by High Energy Neutron Detector (HEND) which is part of the Mars Odyssey Gamma Ray Spectrometer (GRS). Fluxes of epithermal (probe the upper 1-2 m) and fast (the upper 20-30 cm) neutrons, considered in this work, were measured since mid February till mid June 2002. First analysis of this data set with emphasis of chemically bound water was made. Early publications of the GRS results reported low neutron flux at high latitudes, interpreted as signature of ground water ice, and in two low latitude areas: Arabia and SW of Olympus Mons (SWOM), interpreted as 'geographic variations in the amount of chemically and/or physically bound H2O and or OH...'. It is clear that surface materials of Mars do contain chemically bound water, but its amounts are poorly known and its geographic distribution was not analyzed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... Change To Clarify OCC's Existing Policy Regarding Use of Clearing Fund Assets in Anticipation of a... assets in anticipation of a clearing member default. Specifically, OCC proposes to add an interpretation... obtain, funds from third parties in anticipation of a potential default by, or suspension of, a clearing...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-16
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70366; File No. SR-OCC-2013-805] Self... Existing Interpretation and Policy To Give OCC Discretion Not To Grant a Particular Clearing Member Margin... Payment, Clearing, and Settlement Supervision Act of 2010 (``Clearing Supervision Act'') \\1\\ and Rule 19b...
78 FR 54373 - Records of Failed Insured Depository Institutions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... interpreted. A broad interpretation would encompass not only all documentary material that clearly relates to... of microfilm and microfiche. If the term ``records'' were interpreted to encompass all documentary... (January 22, 2013). II. Explanation of the Final Rule Under the final rule, documentary material will be...
Romagnoli, Marco; Alis, Rafael; Aloe, Rosalia; Salvagno, Gian Luca; Basterra, Javier; Pareja-Galeano, Helios; Sanchis-Gomar, Fabian; Lippi, Giuseppe
2014-04-01
Short, middle, and long-term exercise, as well as the relative intensity of the physical effort, may influence a broad array of laboratory results, and it is thereby of pivotal importance to appropriately differentiate the 'physiologic' from the 'pathological' effects of exercise. Therefore, the values of some biomarkers in physically active subjects may be cautiously interpreted since the results may fall outside the conventional reference ranges. It has been demonstrated that middle and long-term endurance and/or strenuous exercise triggers transient elevations of muscular and cardiac biomarkers. However, no data have been published about the effect of short-term maximal exercise test on the most useful muscular, hepatic and cardiovascular biomarkers. The aim of the present study was to assess the baseline concentrations of muscular, hepatic, and cardiovascular makers between trained and untrained subjects, along with changes induced by maximal exercise test. We measured C reactive protein (CRP), procalcitonin (PCT), gamma glutamyltransferase (GGT), creatine kinase-MB isoenzyme (CK-MB), Hs-TnT, NT-proBNP, CK, LDH, AST, and ALT in serum samples of physically active (trained) and physically inactive (sedentary) male collected before, immediately after a maximal exercise test and after a 30-min recovery period. Trained subjects tend to have significantly raised base concentrations of CK, CK-MB, ALT, and LDH compared to sedentary individuals, and this can be clearly interpreted as a mild injury of skeletal muscle. A single maximal exercise was also effective to transiently increase the concentrations of NT-proBNP, but not those of Hs-TnT, thus suggesting that the cardiac involvement is mostly benign in nature.
NASA Astrophysics Data System (ADS)
Vinjusveen Myhrehagen, Henning; Bungum, Berit
2016-09-01
The thought experiment ‘Schrödinger’s cat’ exposes fundamental dilemmas in how we interpret quantum physics, and has a potential for deepening students’ understanding of this part of modern physics, including its philosophical consequences. In this paper we report results from the project ReleQuant on how Norwegian physics students in upper secondary schools interpret the thought experiment. The analysis resulted in nine categories, and we discuss how these relate to interpretations made by physicists, in particular the concept of superposition. Even if students’ responses in many cases can be related to interpretations that make sense in physics, we conclude that lack of knowledge about the purpose and the historical context of the thought experiment limits students understanding of the physics content. Exploring the thought experiment from a historical perspective might deepen student understanding of key concepts in quantum physics as well as of how physics develops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L.; Boone, John M.
2013-11-15
Purpose: The scanner-reported CTDI{sub vol} for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI{sub vol} at constant mA, resulting in the dichotomy “CTDI{sub vol} of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.Methods: Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI{sub vol} clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the samemore » scanner-reported CTDI{sub vol}.Results: These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current i(z) due to the strong influence of scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” does not represent a local dose but rather only a relative i(z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI{sub vol} of the second kind which lacks relevance.Conclusions: While the traditional CTDI{sub vol} at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust between variable i(z) TCM and constant current i{sub 0} techniques, both depending only on the total mAs = t{sub 0}=i{sub 0} t{sub 0} during the beam-on time t{sub 0}.« less
NASA Technical Reports Server (NTRS)
Nakagawa, Y.
1981-01-01
The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.
Slowest kinetic modes revealed by metabasin renormalization
NASA Astrophysics Data System (ADS)
Okushima, Teruaki; Niiyama, Tomoaki; Ikeda, Kensuke S.; Shimizu, Yasushi
2018-02-01
Understanding the slowest relaxations of complex systems, such as relaxation of glass-forming materials, diffusion in nanoclusters, and folding of biomolecules, is important for physics, chemistry, and biology. For a kinetic system, the relaxation modes are determined by diagonalizing its transition rate matrix. However, for realistic systems of interest, numerical diagonalization, as well as extracting physical understanding from the diagonalization results, is difficult due to the high dimensionality. Here, we develop an alternative and generally applicable method of extracting the long-time scale relaxation dynamics by combining the metabasin analysis of Okushima et al. [Phys. Rev. E 80, 036112 (2009), 10.1103/PhysRevE.80.036112] and a Jacobi method. We test the method on an illustrative model of a four-funnel model, for which we obtain a renormalized kinematic equation of much lower dimension sufficient for determining slow relaxation modes precisely. The method is successfully applied to the vacancy transport problem in ionic nanoparticles [Niiyama et al., Chem. Phys. Lett. 654, 52 (2016), 10.1016/j.cplett.2016.04.088], allowing a clear physical interpretation that the final relaxation consists of two successive, characteristic processes.
NASA Astrophysics Data System (ADS)
Logan, Jonothan
2010-03-01
Samuel Goudsmit, a pioneering atomic theorist who specialized in the exacting, quantitative art of interpreting line spectra and who, with George Uhlenbeck, discovered electron spin, also contributed key studies of nuclear moments, neutron scattering, and the statistics of experimental measurement. Beyond the traditional ambit of laboratory, desk, and blackboard, Goudsmit was drawn to a wider world of inquiry -- to museums and archaeological sites in Cairo as a respected amateur Egyptologist; to the MIT Radiation Lab early in WWII and to the briefing rooms of British pilots, analyzing the effectiveness of radar; and across wartime Europe by jeep, as head of an Allied mission in pursuit of clear information on Germany's secret fission program. After the war he took up chairmanship of a major physics department and editorship of the Physical Review, where he created the ambitious new journal, Physical Review Letters. The present author, Goudsmit's assistant at the journal forty years ago, looks for a common element that might explain this extraordinary diversity of interests and contributions, and finds one in Goudsmit's abiding delight in solving puzzles of every kind, coupled with a detective's keen eye for clues.
Refined Characterization of Student Perspectives on Quantum Physics
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2010-01-01
The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Change To Provide Clarifying Language To Conform Interpretive Guidance Concerning Options Overlying Fund... providing clarifying language to conform interpretive guidance concerning options on fund shares with...
Ultrasound: Bladder (For Parents)
... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...
Ultrasound: Pelvis (For Parents)
... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...
Walton, David M; Beattie, Tyler; Putos, Joseph; MacDermid, Joy C
2016-06-01
The Brief Pain Inventory is composed of two quantifiable scales: pain severity and pain interference. The reported factor structure of the interference subscale is not consistent in the extant literature, with no clear choice between a single- or two-factor structure. Here, we report on the results of Rasch-based analysis of the interference subscale using a large population-based ambulatory patient database (the Quebec Pain Registry). Observational cohort. A total of 1,000 responses were randomly drawn from a total database of 5,654 for this analysis. Both the original 7-item and an expanded 10-item version (Tyler 2002) of the interference subscale were evaluated. Rasch analysis revealed significant misfit of both versions of the scale, with the original 7-item version outperforming the expanded 10-item version. Analysis of dimensionality revealed that both versions showed improved model fit when considered two subscales (affective and physical interference) with the item on sleep interference removed or considered separately. Additionally, significant uniform differential item functioning was identified for 6 of the 7 original items when the sample was stratified by age above or below 55 years. The interference subscale achieved adequate model fit when considered as two separate subscales with age as a mediator of response, while interpreting the sleep interference item separately. A transformation matrix revealed that in all cases, ordinal-level change at the extreme ends of the scale appears to be more meaningful than does a similar change at the midpoints. The Interference subscale of the BPI should be interpreted as two separate subscales (Affective Interference, Physical Interference) with the sleep item removed or interpreted separately for optimal fit to the Rasch model. Implications for research and clinical use are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Uncertain for a century: quantum mechanics and the dilemma of interpretation.
Frank, Adam
2015-12-01
Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.
Light leptonic new physics at the precision frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Dall, Matthias, E-mail: mledall@uvic.ca
2016-06-21
Precision probes of new physics are often interpreted through their indirect sensitivity to short-distance scales. In this proceedings contribution, we focus on the question of which precision observables, at current sensitivity levels, allow for an interpretation via either short-distance new physics or consistent models of long-distance new physics, weakly coupled to the Standard Model. The electroweak scale is chosen to set the dividing line between these scenarios. In particular, we find that inverse see-saw models of neutrino mass allow for light new physics interpretations of most precision leptonic observables, such as lepton universality, lepton flavor violation, but not for themore » electron EDM.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-23
... existing interpretation, which relates to the treatment and clearing of options on the CBOE Gold ETF... jurisdictional status CBOE Gold ETF Volatility Index and clarifies that OCC will clear and treat as securities... relative performance index is an ETF designed to measure the return of gold [[Page 72484
ERIC Educational Resources Information Center
Cauthen, Cramer R.
Despite Stanley Fish's assertion that the interpretive communities basic to his theory of literary and legal interpretation are "engines of change," it seems clear that in Fish's conception of change, "plus ca change, c'est plus la meme chose." In particular, Fish denies that the legal profession can achieve the more…
ERIC Educational Resources Information Center
Forster, Patricia A.
2004-01-01
Interpretation and construction of graphs are central to the study of physics and to performance in physics. In this paper, I explore the interpretation and construction processes called upon in questions with a graphical component, in Western Australian Physics Tertiary Entrance Examinations. In addition, I list errors made by students as…
Fresnel's original interpretation of complex numbers in 19th century optics
NASA Astrophysics Data System (ADS)
Karam, Ricardo
2018-04-01
In 1823, Fresnel published an original (physical) interpretation of complex numbers in his investigations of refraction and reflection of polarized light. This is arguably the first time that complex numbers were given a physical interpretation, which led to a better understanding of elliptical and circular polarizations. This rather unknown episode of the history of physics is described in this work, and some of the pedagogical lessons that can be extracted from it are discussed.
NASA Technical Reports Server (NTRS)
1987-01-01
Remote sensing is the process of acquiring physical information from a distance, obtaining data on Earth features from a satellite or an airplane. Advanced remote sensing instruments detect radiations not visible to the ordinary camera or the human eye in several bands of the spectrum. These data are computer processed to produce multispectral images that can provide enormous amounts of information about Earth objects or phenomena. Since every object on Earth emits or reflects radiation in its own unique signature, remote sensing data can be interpreted to tell the difference between one type of vegetation and another, between densely populated urban areas and lightly populated farmland, between clear and polluted water or in the archeological application between rain forest and hidden man made structures.
From Einstein's theorem to Bell's theorem: a history of quantum non-locality
NASA Astrophysics Data System (ADS)
Wiseman, H. M.
2006-04-01
In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.
Saturn ring spokes: an overview of their near-infrared spectral properties from Cassini/VIMS data
NASA Astrophysics Data System (ADS)
D'Aversa, E.; Bellucci, G.; Nicholson, P. D.; Brown, R. H.; Altieri, F.; Carrozzo, F. G.
2013-09-01
The B ring of Saturn is known to periodically host weak elongated features called spokes. They have been clearly detected by the Voyagers, by the Hubble Space Telescope and by Cassini instruments ISS and VIMS. These observations were conducted during three different Saturn equinoxes in 1980, 1995, and 2009 respectively, bringing to the current view of the spoke's physical nature: thin clouds of fine electrically-charged grains levitating over the larger ring boulders. In respect to the previous available datasets, the VIMS one has widened our view of spokes outside the visible spectral range for the first time (longward of 1 micron). On the other hand, the VIMS spatial resolution is often comparable with the typical sizes of spokes, and considerable image processing is needed in order to enhance the spoke images and for the spectra extraction. Here we will report about advances in the spoke spectral analysis with VIMS data and will discuss the possible physical interpretations under the assumption of low spoke optical thickness.
Savel'ev, Sergey E; Zagoskin, Alexandre M
2018-06-25
A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.
Relativities of fundamentality
NASA Astrophysics Data System (ADS)
McKenzie, Kerry
2017-08-01
S-dualities have been held to have radical implications for our metaphysics of fundamentality. In particular, it has been claimed that they make the fundamentality status of a physical object theory-relative in an important new way. But what physicists have had to say on the issue has not been clear or consistent, and in particular seems to be ambiguous between whether S-dualities demand an anti-realist interpretation of fundamentality talk or merely a revised realism. This paper is an attempt to bring some clarity to the matter. After showing that even antecedently familiar fundamentality claims are true only relative to a raft of metaphysical, physical, and mathematical assumptions, I argue that the relativity of fundamentality inherent in S-duality nevertheless represents something new, and that part of the reason for this is that it has both realist and anti-realist implications for fundamentality talk. I close by discussing the broader significance that S-dualities have for structuralist metaphysics and for fundamentality metaphysics more generally.
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2001-11-01
Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics
HYDICE data from Lake Tahoe: comparison to coincident AVIRIS and in-situ measurements
NASA Astrophysics Data System (ADS)
Kappus, Mary E.; Davis, Curtiss O.; Rhea, W. J.
1996-11-01
Coordinated flights of two calibrated airborne imaging spectrometers, HYDICE and AVIRIS, were conducted on June 22, 1995 over Lake Tahoe. As part of HYDICE's first operational mission, one objective was to test the system performance over the dark homogeneous target provided by the clear deep waters of the lake. The high altitude and clear atmosphere makes Lake Tahoe a simpler test target than near-shore marine environments, where large aerosols complicate atmospheric correction and sediment runoff and high chlorophyll levels make interpretation of he data difficult. Calibrated data from both runoff and high chlorophyll levels make interpretation of the data difficult. Calibrated data from both sensors was provided in physical units of radiance. The atmospheric radiative transfer code, MODTRAN was used to remove the path radiance between the ground and sensor and the skylight reflected from the water surface. The resulting water-leaving spectrometer, and with values calculated form in-water properties using the HYDROLIGHT radiative transfer code. The agreement of the water-leaving radiance for the HYDICE data, the ground-truth spectral measurements, and the results of the radiative transfer code are excellent for wavelengths greater than 0.45 micrometers . The AVIRIS flight took place more than an hour closer to noon, which makes the radiance measurements not directly comparable. Comparisons to radiative transfer output for this later time indicate that the AVIRIS data is strongly by sun glint. Because water-leaving radiance is dependent upon the characteristics of the water, it can be analyzed for some of those properties. Using the CZCS algorithm based on the water-leaving radiance at two wavelengths, the chlorophyll content of Lake Tahoe was computed from the HYDICE and ground-truth data. Resulting values are slightly higher than measurements made two weeks earlier from water samples, indicating a growth in the phytoplankton population which is very plausible given the intervening atmospheric conditions. The success in determining water-leaving radiance and interpreting it for pigment concentration are very positive results for this early HYDICE flight. The interpretations made so far do not make use of the full spectral content of the data, so much room for advancement remains.
NASA Astrophysics Data System (ADS)
Fallahpour, Mojtaba Behzad; Dehghani, Hamid; Jabbar Rashidi, Ali; Sheikhi, Abbas
2018-05-01
Target recognition is one of the most important issues in the interpretation of the synthetic aperture radar (SAR) images. Modelling, analysis, and recognition of the effects of influential parameters in the SAR can provide a better understanding of the SAR imaging systems, and therefore facilitates the interpretation of the produced images. Influential parameters in SAR images can be divided into five general categories of radar, radar platform, channel, imaging region, and processing section, each of which has different physical, structural, hardware, and software sub-parameters with clear roles in the finally formed images. In this paper, for the first time, a behaviour library that includes the effects of polarisation, incidence angle, and shape of targets, as radar and imaging region sub-parameters, in the SAR images are extracted. This library shows that the created pattern for each of cylindrical, conical, and cubic shapes is unique, and due to their unique properties these types of shapes can be recognised in the SAR images. This capability is applied to data acquired with the Canadian RADARSAT1 satellite.
NASA Astrophysics Data System (ADS)
Mears, Paul C.; Mc Leod, Roger D.
2002-10-01
Historic, and current Native American attitude considers that time can be considered in a cyclic sense that contrasts against a majority view of physicists that time varies in a linear algebraic sense. Precognition experiences offer evidence that time has a more subtle substance. The Bible clearly delineates "prophetic awareness of the future." Embedded "Bible codes" are touted as mathematical evidence for the existence of God. His existence is better served if "past-tense" information of events can propagate backward relative to our "present-tense" time. Barbour, p39: [some] " physicists entertain the idea time truly does not exist applies to motion .suggestion; it too is pure illusion." The concept of prophecy has been interpreted as evidence or "proof" of the existence of "Manitou" or God. Our interpretation is that, according to Native American legends, or the Bible, for as yet unspecified reasons, time behaves as though it can convey information in a backward, or forward, sense. It is like an f (t ± ti).
The Local Geometry of Multiattribute Tradeoff Preferences
McGeachie, Michael; Doyle, Jon
2011-01-01
Existing representations for multiattribute ceteris paribus preference statements have provided useful treatments and clear semantics for qualitative comparisons, but have not provided similarly clear representations or semantics for comparisons involving quantitative tradeoffs. We use directional derivatives and other concepts from elementary differential geometry to interpret conditional multiattribute ceteris paribus preference comparisons that state bounds on quantitative tradeoff ratios. This semantics extends the familiar economic notion of marginal rate of substitution to multiple continuous or discrete attributes. The same geometric concepts also provide means for interpreting statements about the relative importance of different attributes. PMID:21528018
NASA Astrophysics Data System (ADS)
Kuwatani, T.; Toriumi, M.
2009-12-01
Recent advances in methodologies of geophysical observations, such as seismic tomography, seismic reflection method and geomagnetic method, provide us a large amount and a wide variety of data for physical properties of a crust and upper mantle (e.g. Matsubara et al. (2008)). However, it has still been difficult to specify a rock type and its physical conditions, mainly because (1) available data usually have a lot of error and uncertainty, and (2) physical properties of rocks are greatly affected by fluid and microstructures. The objective interpretation and quantitative evaluation for lithology and fluid-related structure require the statistical analyses of integrated geophysical and geological data. Self-Organizing Maps (SOMs) are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data (Kohonen 2001). SOMs are powerful neural network techniques to classify and interpret multiattribute data sets. Results of SOM classifications can be represented as 2D images, called feature maps which illustrate the complexity and interrelationships among input data sets. Recently, some works have used SOM in order to interpret multidimensional, non-linear, and highly noised geophysical data for purposes of geological prediction (e.g. Klose 2006; Tselentis et al. 2007; Bauer et al. 2008). This paper describes the application of SOM to the 3D velocity structure beneath the whole Japan islands (e.g. Matsubara et al. 2008). From the obtained feature maps, we can specify the lithology and qualitatively evaluate the effect of fluid-related structures. Moreover, re-projection of feature maps onto the 3D velocity structures resulted in detailed images of the structures within the plates. The Pacific plate and the Philippine Sea plate subducting beneath the Eurasian plate can be imaged more clearly than the original P- and S-wave velocity structures. In order to understand more precise prediction of lithology and its structure, we will use the additional input data sets, such as tomographic images of random velocity fluctuation (Takahashi et al. 2009) and b-value mapping data. Additionally, different kinds of data sets, including the experimental and petrological results (e.g. Christensen 1991; Hacker et al. 2003) can be applied to our analyses.
Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films
Zhu, L. J.; Nie, S. H.; Xiong, P.; ...
2016-02-24
The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less
Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, L. J.; Nie, S. H.; Xiong, P.
The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less
Recent progress in tissue optical clearing
Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V
2013-01-01
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874
The medium is the message: thoughts on picture perfect presentation.
Jupiter, Daniel C
2013-01-01
Clear presentation of results leads to easier interpretation and appreciation by readers. Opinions and tips are offered to ease clear communication. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Henriksen, Ellen Karoline; Angell, Carl; Vistnes, Arnt Inge; Bungum, Berit
2018-03-01
Quantum physics describes light as having both particle and wave properties; however, there is no consensus about how to interpret this duality on an ontological level. This article explores how pre-university physics students, while working with learning material focusing on historical-philosophical aspects of quantum physics, interpreted the wave-particle duality of light and which views they expressed on the nature of physics. A thematic analysis was performed on 133 written responses about the nature of light, given in the beginning of the teaching sequence, and 55 audio-recorded small-group discussions addressing the wave-particle duality, given later in the sequence. Most students initially expressed a wave and particle view of light, but some of these gave an "uncritical duality description", accepting without question the two ontologically different descriptions of light. In the small-group discussions, students expressed more nuanced views. Many tried to reconcile the two descriptions using semi-classical reasoning; others entered into philosophical discussions about the status of the current scientific description of light and expected science to come up with a better model. Some found the wave description of light particularly challenging and lacked a conception of "what is waving". Many seemed to implicitly take a realist view on the description of physical phenomena, contrary with the Copenhagen interpretation which is prevalent in textbooks. Results are discussed in light of different interpretations of quantum physics, and we conclude by arguing for a historical-philosophical perspective as an entry point for upper secondary physics students to explore the development and interpretation of quantum physical concepts.
14 CFR Sec. 1-7 - Interpretation of accounts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS General Accounting Provisions Sec. 1-7 Interpretation of accounts. To the end that uniform accounting may be maintained, questions involving matters of accounting significance which are not clearly provided...
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2015-01-01
Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…
Perturbational formulation of principal component analysis in molecular dynamics simulation.
Koyama, Yohei M; Kobayashi, Tetsuya J; Tomoda, Shuji; Ueda, Hiroki R
2008-10-01
Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.
Perturbational formulation of principal component analysis in molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.
2008-10-01
Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.
APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels
NASA Astrophysics Data System (ADS)
Klüser, L.; Killius, N.; Gesell, G.
2015-10-01
The cloud processing scheme APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. It builds upon the physical principles that have served well in the original APOLLO scheme. Nevertheless, a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is no longer performed as a binary yes/no decision based on these physical principles. It is rather expressed as cloud probability for each satellite pixel. Consequently, the outcome of the algorithm can be tuned from being sure to reliably identify clear pixels to conditions of reliably identifying definitely cloudy pixels, depending on the purpose. The probabilistic approach allows retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for application to large amounts of historical satellite data. The radiative transfer solution is approximated by the same two-stream approach which also had been used for the original APOLLO. This allows the algorithm to be applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e., within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from NOAA-18 are presented.
APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels
NASA Astrophysics Data System (ADS)
Klüser, L.; Killius, N.; Gesell, G.
2015-04-01
The cloud processing scheme APOLLO (Avhrr Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. While building upon the physical principles having served well in the original APOLLO a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is not performed as a binary yes/no decision based on these physical principals but is expressed as cloud probability for each satellite pixel. Consequently the outcome of the algorithm can be tuned from clear confident to cloud confident depending on the purpose. The probabilistic approach allows to retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for the application with large amounts of historical satellite data. Thus the radiative transfer solution is approximated by the same two stream approach which also had been used for the original APOLLO. This allows the algorithm to be robust enough for being applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e. within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from on NOAA-18 are presented.
The role of physics in shaping music
NASA Astrophysics Data System (ADS)
Townsend, Peter
2015-07-01
Physics and technology have played a major role in shaping the development, performance, interpretation and composition of music for many centuries. From the twentieth century, electronics and communications have provided recording and broadcasting that gives access to worldwide music and performers of many musical genres. Early scientific influence came via improved or totally new instruments, plus larger and better concert halls. Instrument examples range from developments of violins or pianos to keyed and valved wood wind and brass that offer chromatic performance. New sounds appeared by inventions of totally new instruments, such as the saxophone or the Theremin, to all the modern electronic influence on keyboards and synthesisers. Electronic variants of guitars are effectively new instruments that have spawned totally original musical styles. All such advances have encouraged more virtuosic performance, larger halls, a wider range of audiences and a consequent demand and ability of composers to meet the new challenges. Despite this immense impact, the role of physics and technology over the last few centuries has mostly been ignored, although it was often greater than any links to arts or culture. Recorded and broadcast music has enhanced our expectations on performance and opened gateways to purely electronically generated sounds, of the now familiar electronic keyboards and synthesisers. This brief review traces some of the highlights in musical evolution that were enabled by physics and technology and their impact on the musical scene. The pattern from the past is clear, and so some of the probable advances in the very near future are also predicted. Many are significant as they will impinge on our appreciation of both current and past music, as well as compositional styles. Mention is made of the difference in sound between live and recorded music and the reasons why none of us ever have precisely the same musical experience twice, even from the same recording. Similarly, it is impossible to appreciate earlier music from the same perspective as occurred when it was first composed and performed, or indeed from later interpretations.
Model reduction for Space Station Freedom
NASA Technical Reports Server (NTRS)
Williams, Trevor
1992-01-01
Model reduction is an important practical problem in the control of flexible spacecraft, and a considerable amount of work has been carried out on this topic. Two of the best known methods developed are modal truncation and internal balancing. Modal truncation is simple to implement but can give poor results when the structure possesses clustered natural frequencies, as often occurs in practice. Balancing avoids this problem but has the disadvantages of high computational cost, possible numerical sensitivity problems, and no physical interpretation for the resulting balanced 'modes'. The purpose of this work is to examine the performance of the subsystem balancing technique developed by the investigator when tested on a realistic flexible space structure, in this case a model of the Permanently Manned Configuration (PMC) of Space Station Freedom. This method retains the desirable properties of standard balancing while overcoming the three difficulties listed above. It achieves this by first decomposing the structural model into subsystems of highly correlated modes. Each subsystem is approximately uncorrelated from all others, so balancing them separately and then combining yields comparable results to balancing the entire structure directly. The operation count reduction obtained by the new technique is considerable: a factor of roughly r(exp 2) if the system decomposes into r equal subsystems. Numerical accuracy is also improved significantly, as the matrices being operated on are of reduced dimension, and the modes of the reduced-order model now have a clear physical interpretation; they are, to first order, linear combinations of repeated-frequency modes.
NASA Astrophysics Data System (ADS)
Kim, K.; Lees, J. M.
2011-03-01
Numerical modeling of waveform diffractions along the rim of a volcano vent shows high correlation to observed explosion signals at Karymsky Volcano, Kamchatka, Russia. The finite difference modeling assumed a gaussian source time function and an axisymmetric geometry. A clear demonstration of the significant distortion of infrasonic wavefronts was caused by diffraction at the vent rim edge. Data collected at Karymsky in 1997 and 1998 were compared to synthetic waveforms and variations of vent geometry were determined via grid search. Karymsky exhibited a wide range of variation in infrasonic waveforms, well explained by the diffraction, and modeled as changing vent geometry. Rim diffraction of volcanic infrasound is shown to be significant and must be accounted for when interpreting source physics from acoustic observations.
Sanz, J M; Saiz, J M; González, F; Moreno, F
2011-07-20
In this research, the polar decomposition (PD) method is applied to experimental Mueller matrices (MMs) measured on two-dimensional microstructured surfaces. Polarization information is expressed through a set of parameters of easier physical interpretation. It is shown that evaluating the first derivative of the retardation parameter, δ, a clear indication of the presence of defects either built on or dug in the scattering flat surface (a silicon wafer in our case) can be obtained. Although the rule of thumb thus obtained is established through PD, it can be easily implemented on conventional surface polarimetry. These results constitute an example of the capabilities of the PD approach to MM analysis, and show a direct application in surface characterization. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Pivac, Ivan; Barbir, Frano
2016-09-01
The results of electrochemical impedance spectroscopy of proton exchange membrane (PEM) fuel cells may exhibit inductive phenomena at low frequencies. The occurrence of inductive features at high frequencies is explained by the cables and wires of the test system. However, explanation of inductive loop at low frequencies requires a more detailed study. This review paper discusses several possible causes of such inductive behavior in PEM fuel cells, such as side reactions with intermediate species, carbon monoxide poisoning, and water transport, also as their equivalent circuit representations. It may be concluded that interpretation of impedance spectra at low frequencies is still ambiguous, and that better equivalent circuit models are needed with clearly defined physical meaning of each of the circuit elements.
Approximation of super-ions for single-file diffusion of multiple ions through narrow pores.
Kharkyanen, Valery N; Yesylevskyy, Semen O; Berezetskaya, Natalia M
2010-11-01
The general theory of the single-file multiparticle diffusion in the narrow pores could be greatly simplified in the case of inverted bell-like shape of the single-particle energy profile, which is often observed in biological ion channels. There is a narrow and deep groove in the energy landscape of multiple interacting ions in such profiles, which corresponds to the pre-defined optimal conduction pathway in the configurational space. If such groove exists, the motion of multiple ions can be reduced to the motion of single quasiparticle, called the superion, which moves in one-dimensional effective potential. The concept of the superions dramatically reduces the computational complexity of the problem and provides very clear physical interpretation of conduction phenomena in the narrow pores.
NASA Astrophysics Data System (ADS)
Baily, Charles Raymond
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora's Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.
NASA Astrophysics Data System (ADS)
Purba, Siska Wati Dewi; Hwang, Wu-Yuin
2017-06-01
In this study, we designed and developed an app called Ubiquitous-Physics (U-Physics) for mobile devices like tablet PC or smart phones to help students learn the principles behind a simple pendulum in Physics. The unique characteristic of U-Physics is the use of sensors on mobile devices to collect acceleration and velocity data during pendulum swings. The data collected are transformed to facilitate students' understanding of the pendulum time period. U-Physics helped students understand the effects of pendulum mass, length, and angle in relation to its time period. In addition, U-Physics was equipped with an annotation function such as textual annotation to help students interpret and understand the concepts and phenomena of the simple pendulum. U-Physics also generated graphs automatically to demonstrate the time period during which the pendulum was swinging. Results showed a significant positive correlation between interpreting graphs and applying formula. This finding indicated that the ability to interpret graphs has an important role in scientific learning. Therefore, we strongly recommend that physics teachers use graphs to enrich students' information content and understanding and negative correlation between pair coherence and interpreting graphs. It may be that most of the participants (vocational high school students) have limited skill or confidence in physics problem solving; so, they often seek help from teachers or their high-achieving peers. In addition, the findings also indicated that U-Physics can enhance students' achievement during a 3-week time period. We hope that this app can be globally used to learn physics in the future.
Do location specific forecasts pose a new challenge for communicating uncertainty?
NASA Astrophysics Data System (ADS)
Abraham, Shyamali; Bartlett, Rachel; Standage, Matthew; Black, Alison; Charlton-Perez, Andrew; McCloy, Rachel
2015-04-01
In the last decade, the growth of local, site-specific weather forecasts delivered by mobile phone or website represents arguably the fastest change in forecast consumption since the beginning of Television weather forecasts 60 years ago. In this study, a street-interception survey of 274 members of the public a clear first preference for narrow weather forecasts above traditional broad weather forecasts is shown for the first time, with a clear bias towards this preference for users under 40. The impact of this change on the understanding of forecast probability and intensity information is explored. While the correct interpretation of the statement 'There is a 30% chance of rain tomorrow' is still low in the cohort, in common with previous studies, a clear impact of age and educational attainment on understanding is shown, with those under 40 and educated to degree level or above more likely to correctly interpret it. The interpretation of rainfall intensity descriptors ('Light', 'Moderate', 'Heavy') by the cohort is shown to be significantly different to official and expert assessment of the same descriptors and to have large variance amongst the cohort. However, despite these key uncertainties, members of the cohort generally seem to make appropriate decisions about rainfall forecasts. There is some evidence that the decisions made are different depending on the communication format used, and the cohort expressed a clear preference for tabular over graphical weather forecast presentation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Interpretation by the General Counsel of § 73.55 of this chapter; illumination and physical search requirements. 8.5 Section 8.5 Energy NUCLEAR REGULATORY... 0220, Draft Interim Acceptance Criteria for a Physical Security Plan for Nuclear Power Plants (March...
Nikola Tesla, the Ether and his Telautomaton
NASA Astrophysics Data System (ADS)
Milar, Kendall
2014-03-01
In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.
NASA Astrophysics Data System (ADS)
Wang, P. K.; Cheng, K. Y.; Lindsey, D. T.
2017-12-01
Deep convective clouds play an important role in the transport of momentum, energy, and chemical species from the surface to upper troposphere and lower stratosphere (UT/LS), but exactly how these processes occur and how important they are as compared to other processes are still up to debate. The main hurdle to the complete understanding of these transport processes is the difficulty in observing storm systems directly. Remote sensing data such as those obtained by radars and satellites are very valuable but they need correct interpretation before we can use them profitably. We have performed numerical simulations of thunderstorms using a physics-based cloud resolving model and compared model results with satellite observations. Many major features of observed satellite storm top images, such as cold-V, close in warm area, above anvil cirrus plumes, are successfully simulated and can be interpreted by the model physics. However, due to the limitation of resolution and other ambiguities, we have been unable to determine the real cause of some features such as the conversion of jumping cirrus to long trail plumes and whether or no small scale ( < 1 km) wave breaking occur. We are fortunate to have encountered a line of sea breeze storms along the coast of China during a flight from Beijing to Taipei in July 2106. The flight was at an altitude such that storm tops could be clearly observed. Nearly all of the mature storm cells that can be identified had very vigorous storm top activities, indicating very strong stratosphere/troposphere exchange (STE). There is no doubt that the signatures of wave breaking, i.e., jumping cirrus, occurs from very small scale (< 1 km) to tens of km. this matches our previous model results very well. Furthermore, one storm cell shows very clearly the process whereby a jumping cirrus is being transformed into a long trail cirrus plume which was often observed in satellite images. We have also obtained the corresponding Himawari-8 satellite images for this line of storms. Aircraft observation, satellite images and model results will be compared and the implications to STE discussed.
Interpretation of the impacts of land disturbances on hydrology is confounded by climate variations. Clear definition of the anthropogenic impacts has been difficult, especially in cases where a clearly defined base line or reference point is absent. This study investigates the d...
Rehabilitating the regulative use of reason: Kant on empirical and chemical laws.
McNulty, Michael Bennett
2015-12-01
In his Kritik der reinen Vernunft, Kant asserts that laws of nature "carry with them an expression of necessity" (A159/B198). There is, however, widespread interpretive disagreement regarding the nature and source of the necessity of empirical laws of natural sciences in Kant's system. It is especially unclear how chemistry-a science without a clear, straightforward connection to the a priori principles of the understanding-could contain such genuine, empirical laws. Existing accounts of the necessity of causal laws unfortunately fail to illuminate the possibility of non-physical laws. In this paper, I develop an alternative, 'ideational' account of natural laws, according to which ideas of reason necessitate the laws of some non-physical sciences. Chemical laws, for instance, are grounded on ideas of the elements, and the chemist aims to reduce her phenomena to these elements via experimentation. Although such ideas are beyond the possibility of experience, their postulation is necessary for the achievement of reason's theoretical ends: the unification and explanation of the cognitions of science. Copyright © 2015 Elsevier Ltd. All rights reserved.
Which Kind of Mathematics for Quantum Mechanics? the Relevance of H. Weyl's Program of Research
NASA Astrophysics Data System (ADS)
Drago, Antonino
In 1918 Weyl's book Das Kontinuum planned to found anew mathematics upon more conservative bases than both rigorous mathematics and set theory. It gave birth to the so-called Weyl's elementary mathematics, i.e. an intermediate mathematics between the mathematics rejecting at all actual infinity and the classical one including it almost freely. The present paper scrutinises the subsequent Weyl's book Gruppentheorie und Quantenmechanik (1928) as a program for founding anew theoretical physics - through quantum theory - and at the same time developing his mathematics through an improvement of group theory; which, according to Weyl, is a mathematical theory effacing the old distinction between discrete and continuous mathematics. Evidence from Weyl's writings is collected for supporting this interpretation. Then Weyl's program is evaluated as unsuccessful, owing to some crucial difficulties of both physical and mathematical nature. The present clear-cut knowledge of Weyl's elementary mathematics allows us to re-evaluate Weyl's program in order to look for more adequate formulations of quantum mechanics in any weaker kind of mathematics than the classical one.
Vaginismus: a Franco-American story.
Cryle, Peter
2012-01-01
In November 1861, Dr. J. Marion Sims, an American gynecologist, named and described the syndrome of vaginismus, which linked symptoms of vaginal hypersensitivity to muscular spasm. The only rational treatment for this disorder, said Sims, was surgery. His work was taken up immediately in France, but the story of its interpretation and application is a rather complicated one. Félix Roubaud, a leading specialist on matters of impotence and sterility, revised earlier writings in order to make a clear place for Sims's theories. But in the succeeding decades, Sims was subject to more and more criticism in French medical circles. Some argued that French specialists had already identified all the key elements of vaginismus, and that Sims was no more than a successful publicist. Others-and these were finally the most influential-argued against surgical treatment. More and more French writers on sexual medicine argued that vaginismus was a "moral" disorder that could not properly be treated by physical methods. And within French medical circles the Sims operation for vaginismus came to represent an "American" approach that was too rational, and too straightforwardly physical.
Shoreline Change and Storm-Induced Beach Erosion Modeling: A Collection of Seven Papers
1990-03-01
reducing, and analyzing the data in a systematic manner. Most physical data needed for evaluating and interpreting shoreline and beach evolution processes...proposed development concepts using both physical and numerical models. b. Analyzed and interpreted model results. c. Provided technical documentation of... interpret study results in the context required for "Confirmation" hearings. 26 The Corps of Engineers, Los Angeles District (SPL), has also begun studies
Bruno, Nicola; Uccelli, Stefano; Viviani, Eva; de'Sperati, Claudio
2016-10-01
According to a previous report, the visual coding of size does not obey Weber's law when aimed at guiding a grasp (Ganel et al., 2008a). This result has been interpreted as evidence for a fundamental difference between sensory processing in vision-for-perception, which needs to compress a wide range of physical objects to a restricted range of percepts, and vision-for-action when applied to the much narrower range of graspable and reachable objects. We compared finger aperture in a motor task (precision grip) and perceptual task (cross modal matching or "manual estimation" of the object's size). Crucially, we tested the whole range of graspable objects. We report that both grips and estimations clearly violate Weber's law with medium-to-large objects, but are essentially consistent with Weber's law with smaller objects. These results differ from previous characterizations of perception-action dissociations in the precision of representations of object size. Implications for current functional interpretations of the dorsal and ventral processing streams in the human visual system are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global Patterns of Lightning Properties Derived by OTD and LIS
NASA Technical Reports Server (NTRS)
Beirle, Steffen; Koshak, W.; Blakeslee, R.; Wagner, T.
2014-01-01
The satellite instruments Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) provide unique empirical data about the frequency of lightning flashes around the globe (OTD), and the tropics (LIS), which 5 has been used before to compile a well received global climatology of flash rate densities. Here we present a statistical analysis of various additional lightning properties derived from OTD/LIS, i.e. the number of so-called "events" and "groups" per flash, as well as 10 the mean flash duration, footprint and radiance. These normalized quantities, which can be associated with the flash "strength", show consistent spatial patterns; most strikingly, oceanic flashes show higher values than continental flashes for all properties. Over land, regions with high (Eastern US) 15 and low (India) flash strength can be clearly identified. We discuss possible causes and implications of the observed regional differences. Although a direct quantitative interpretation of the investigated flash properties is difficult, the observed spatial patterns provide valuable information for the 20 interpretation and application of climatological flash rates. Due to the systematic regional variations of physical flash characteristics, viewing conditions, and/or measurement sensitivities, parametrisations of lightning NOx based on total flash rate densities alone are probably affected by regional biases.
Can physics help to explain embryonic development? An overview.
Fleury, V
2013-10-01
Recent technical advances including digital imaging and particle image velocimetry can be used to extract the full range of embryonic movements that constitute the instantaneous 'morphogenetic fields' of a developing animal. The final shape of the animal results from the sum over time (integral) of the movements that make up the velocity fields of all the tissue constituents. In vivo microscopy can be used to capture the details of vertebrate development at the earliest embryonic stages. The movements thus observed can be quantitatively compared to physical models that provide velocity fields based on simple hypotheses about the nature of living matter (a visco-elastic gel). This approach has cast new light on the interpretation of embryonic movement, folding, and organisation. It has established that several major discontinuities in development are simple physical changes in boundary conditions. In other words, with no change in biology, the physical consequences of collisions between folds largely explain the morphogenesis of the major structures (such as the head). Other discontinuities result from changes in physical conditions, such as bifurcations (changes in physical behaviour beyond specific yield points). For instance, beyond a certain level of stress, a tissue folds, without any new gene being involved. An understanding of the physical features of movement provides insights into the levers that drive evolution; the origin of animals is seen more clearly when viewed under the light of the fundamental physical laws (Newton's principle, action-reaction law, changes in symmetry breaking scale). This article describes the genesis of a vertebrate embryo from the shapeless stage (round mass of tissue) to the development of a small, elongated, bilaterally symmetric structure containing vertebral precursors, hip and shoulder enlarges, and a head. Copyright © 2013. Published by Elsevier Masson SAS.
Arens, Amanda M; Puchalski, Sarah M; Whitcomb, Mary Beth; Bell, Robin; Gardner, Ian A; Stover, Susan M
2013-01-01
To define scintigraphic, physical examination, and scapular ultrasonographic findings consistent with bone fragility syndrome (BFS) in horses; develop indices of BFS severity; and assess accuracy of physical examination, scapular ultrasonography, and serum biomarkers for BFS diagnosis. Prospective case-control study. 48 horses (20 horses with BFS and 28 control horses). Horses underwent forelimb scintigraphic evaluation, physical examination, scapular ultrasonography, and serum collection. Scintigraphy was used as a reference standard to which physical examination, scapular ultrasonography, and concentrations of serum biomarkers (carboxy-terminal telopeptide of collagen crosslinks and bone-specific alkaline phosphatase activity) were compared for assessing accuracy in BFS diagnosis. A diagnosis of BFS was strongly supported on scintigraphy by ≥ 2 regions of increased radiopharmaceutical uptake, including 1 region in the scapular spine and 1 region in the scapular body or ribs; on physical examination by lateral bowing of the scapulae; and on ultrasonography by widening of the scapular spine. None of the tests evaluated were accurate enough to replace scintigraphy for mild disease; however, physical examination and scapular ultrasonography were accurate in horses with moderate to severe BFS. Serum biomarkers were not accurate for BFS diagnosis. Scintigraphy remained the most informative diagnostic modality for BFS, providing insight into disease severity and distribution; however, physical examination and scapular ultrasonographic abnormalities were diagnostic in horses with moderate to severe disease. Proposed severity indices classified the spectrum of disease manifestations. Clearly defined criteria for interpretation of diagnostic tests aid in the detection of BFS. Severity indices may be useful for assessing disease progression and response to treatment.
A Non-Intuitionist's Approach To The Interpretation Problem Of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Grelland, Hans Herlof
2005-02-01
A philosophy of physics called "linguistic empiricism" is presented and applied to the interpretation problem of quantum mechanics. This philosophical position is based on the works of Jacques Derrida. The main propositions are (i) that meaning, included the meaning attached to observations, are language-dependent and (ii) that mathematics in physics should be considered as a proper language, not necessary translatable to a more basic language of intuition and immediate experience. This has fundamental implications for quantum mechanics, which is a mathematically coherent and consistent theory; its interpretation problem is associated with its lack of physical images expressible in ordinary language.
The Role of Conceptual and Linguistic Ontologies in Interpreting Spatial Discourse
ERIC Educational Resources Information Center
Bateman, John; Tenbrink, Thora; Farrar, Scott
2007-01-01
This article argues that a clear division between two sources of information--one oriented to world knowledge, the other to linguistic semantics--offers a framework within which mechanisms for modelling the highly flexible relation between language and interpretation necessary for natural discourse can be specified and empirically validated.…
31 CFR 50.9 - Procedure for requesting general interpretations of statute.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Procedure for requesting general interpretations of statute. 50.9 Section 50.9 Money and Finance: Treasury Office of the Secretary of the Treasury... requester should segregate and mark any confidential business or trade secret information clearly. Treasury...
29 CFR 790.17 - “Administrative regulation, order, ruling, approval, or interpretation.”
Code of Federal Regulations, 2010 CFR
2010-07-01
... (93 Cong. Rec. 5281). 107 That this is true on and after the effective date of the Act is clear from... Administrator's letter, not learning of the Administrator's subsequent published statement rescinding his contrary interpretations, continued to rely upon the Administrator's letter after the effective date of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false What to file. 205.81 Section 205.81 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Interpretation § 205.81 What to file. (a) A person filing under this subpart shall file a “Request for Interpretation,” which should be clearly labeled as...
Interpretation of Medical Findings in Suspected Child Sexual Abuse: An Update for 2018.
Adams, Joyce A; Farst, Karen J; Kellogg, Nancy D
2018-06-01
Most sexually abused children will not have signs of genital or anal injury, especially when examined nonacutely. A recent study reported that only 2.2% (26 of 1160) of sexually abused girls examined nonacutely had diagnostic physical findings, whereas among those examined acutely, the prevalence of injuries was 21.4% (73 of 340). It is important for health care professionals who examine children who might have been sexually abused to be able to recognize and interpret any physical signs or laboratory results that might be found. In this review we summarize new data and recommendations concerning documentation of medical examinations, testing for sexually transmitted infections, interpretation of lesions caused by human papillomavirus and herpes simplex virus in children, and interpretation of physical examination findings. Updates to a table listing an approach to the interpretation of medical findings is presented, and reasons for changes are discussed. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.
The metaphysics of quantum mechanics: Modal interpretations
NASA Astrophysics Data System (ADS)
Gluck, Stuart Murray
2004-11-01
This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.
Honda, Takayuki; Tozuka, Minoru
2015-09-01
In the reversed clinicopathological conference (R-CPC), three specialists in laboratory medicine interpreted routine laboratory data independently in order to understand the detailed state of a patient. R-CPC is an educational method to use laboratory data appropriately, and it is also important to select differential diagnoses in a process of clinical reasoning in addition to the present illness and physical examination. Routine laboratory tests can be performed repeatedly at a relatively low cost, and their time-series analysis can be performed. Interpretation of routine laboratory data is almost the same as taking physical findings. General findings are initially checked and then the state of each organ is examined. Although routine laboratory tests cost little, we can gain much more information from them about the patient than physical examinations.
Statutory Interpretation: General Principles and Recent Trends
2006-03-30
although the Court’s pathway through the mix is often not clearly foreseeable, an understanding of interpretational possibilities may nonetheless lessen...dictionary definitions to interpret the word “ marketing ” as used in the Plant Variety Protection Act,24 and the word “principal” as used to modify a...exclusive”conditions that can rule out mixing and matching. United States v. Williams, 326 F.3d 535, 541 (4th Cir. 2003) (“a crime may qualify as a
Epigenetics: origins and implications for cancer epidemiology.
Nise, Melissa S; Falaturi, Puran; Erren, Thomas C
2010-02-01
This paper provides information on the evolution of the 'epigenetics' concept since Aristotle and draws attention to the importance of epigenetic implications for cancer epidemiology in the years to come. Clearly, to understand origins of the concept of epigenetics, it is worthwhile to consider historical arguments associated with evolution. Equally clearly, in the last half of the 20th century, great advances in the understanding of epigenetics and, more specifically, great advances in the understanding of epigenetics in cancer have been made. However, reaping the full benefits of epigenetics lies beyond the predominant experimental studies of today. In general, epigenetics opens many doors in the field of cancer, but it also adds another level of complex, inter-related, and multi-dimensional information to research, and to its interpretation. Overall, future cancer studies should consider, or at least be sensitive to, epigenetic effects and mechanisms. Moving the focus beyond 'pristine' inheritance via DNA alone, cancer epidemiology investigating epigenetic exposures such as environmental factors (exposure to heavy metals, air pollution, arsenic and other toxins), dietary patterns (starvation, famine, contamination), and lifestyle habits (smoking, level of physical activity, and BMI) in populations has the prospect to significantly benefit future cancer prevention and treatment schemes.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1986-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1989-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
Sherman, Karen J.; Heagerty, Patrick J.; Mock, Charles; Jarvik, Jeffrey G.
2015-01-01
Background Among older adults, it is not clear how different types or amounts of physical therapy may be associated with improvements in back pain and function. Objective The study objective was to investigate the association between types or amounts of physical therapist services and 1-year outcomes among older adults with back pain. Design This was a prospective cohort study. Methods A total of 3,771 older adults who were enrolled in a cohort study and who had a new primary care visit for back pain participated. Physical therapy use was ascertained from electronic health records. The following patient-reported outcomes were collected over 12 months: back-related disability (Roland-Morris Disability Questionnaire) and back and leg pain intensity (11-point numerical rating scale). Marginal structural models were used to estimate average effects of different amounts of physical therapy use on disability and pain for all types of physical therapy and for active, passive, and manual physical therapy. Results A total of 1,285 participants (34.1%) received some physical therapy. There was no statistically significant gradient in relationships between physical therapy use and back-related disability score. The use of passive or manual therapy was not consistently associated with pain outcomes. Higher amounts of active physical therapy were associated with decreased back and leg pain and increased odds of clinically meaningful improvements in back and leg pain relative to results obtained with no active physical therapy. Limitations The fact that few participants had high amounts of physical therapy use limited precision and the ability to test for nonlinear relationships for the amount of use. Conclusions Higher amounts of active physical therapy were most consistently related to the greatest improvements in pain intensity; however, as with all observational studies, the results must be interpreted with caution. PMID:25278334
Student reasoning about graphs in different contexts
NASA Astrophysics Data System (ADS)
Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka
2016-06-01
This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the Faculty of Science, University of Zagreb. Students were asked to provide explanations and/or mathematical procedures with their answers. Students' main strategies and difficulties identified through the analysis of those explanations and procedures are described. Student strategies of graph interpretation were found to be largely context dependent and domain specific. A small fraction of students have used the same strategy in all three domains (mathematics, physics, and other contexts) on most sets of parallel questions. Some students have shown indications of transfer of knowledge in the sense that they used techniques and strategies developed in physics for solving (or attempting to solve) other context problems. In physics, the preferred strategy was the use of formulas, which sometimes seemed to block the use of other, more productive strategies which students displayed in other domains. Students' answers indicated the presence of slope-height confusion and interval-point confusion in all three domains. Students generally better interpreted graph slope than the area under a graph, although the concept of slope still seemed to be quite vague for many. The interpretation of the concept of area under a graph needs more attention in both physics and mathematics teaching.
Real-Time Analysis of Global Waves Accompanying Coronal Mass Ejections
2016-06-30
within the community with regards to the physical properties of “EIT waves” and the nature of their relationship with Moreton–Ramsey waves. Whereas...interpretation, with the paper currently in review by Solar Physics (Long et al. 2016). Although this interpretation suggests a strong correlation...recently accepted for publication in Solar Physics by Francile et al. (2016). Examining the event from 06 December 2006 ensures that the algorithm
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.
Properties and relative measure for quantifying quantum synchronization
NASA Astrophysics Data System (ADS)
Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan
2017-07-01
Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.
An information theory model for dissipation in open quantum systems
NASA Astrophysics Data System (ADS)
Rogers, David M.
2017-08-01
This work presents a general model for open quantum systems using an information game along the lines of Jaynes’ original work. It is shown how an energy based reweighting of propagators provides a novel moment generating function at each time point in the process. Derivatives of the generating function give moments of the time derivatives of observables. Aside from the mathematically helpful properties, the ansatz reproduces key physics of stochastic quantum processes. At high temperature, the average density matrix follows the Caldeira-Leggett equation. Its associated Langevin equation clearly demonstrates the emergence of dissipation and decoherence time scales, as well as an additional diffusion due to quantum confinement. A consistent interpretation of these results is that decoherence and wavefunction collapse during measurement are directly related to the degree of environmental noise, and thus occur because of subjective uncertainty of an observer.
Enhancing high-order harmonic generation by sculpting waveforms with chirp
NASA Astrophysics Data System (ADS)
Peng, Dian; Frolov, M. V.; Pi, Liang-Wen; Starace, Anthony F.
2018-05-01
We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies. Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses are considered: (ω , 2 ω ) and (ω , 3 ω ). Our results show how changing the signs of the chirps in each of the two component pulses leads to drastic changes in the HHG spectra. Our theoretical analysis is based on numerical solutions of the time-dependent Schrödinger equation and on a semiclassical analytical approach that affords a clear physical interpretation of how our optimized waveforms lead to enhanced HHG spectra.
An ancient revisits cosmology.
Greenstein, J L
1993-01-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403
NASA Astrophysics Data System (ADS)
Greenstein, Jesse L.
1993-06-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... Regulations or other official interpretations thereunder (collectively ``FATCA''). II. Self-Regulatory... changes allow ICE Clear Europe to be in compliance with FATCA Regulations. \\8\\ 15 U.S.C. 78q-1. B. Self... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-70283; File No. SR-ICEEU-2013-08] Self...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... criteria specified in the Financial Accounting Standards Board's Interpretation No. 39, Offsetting of... Clarity With Respect to the Close Out Netting of the Government Securities Division in the Event of the Fixed Income Clearing Corporation's Default or Insolvency October 5, 2010. I. Introduction On August 12...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... operational capacity to effect a settlement with each clearing member, on an intraday basis, either routinely... 1301(c) provides OCC with the authority to effect intraday settlements and Interpretation and Policy .01 of Rule 1301 states OCC's policy of not requiring intraday variation payments while reserving OCC...
Connecting Symbolic Integrals to Physical Meaning in Introductory Physics
NASA Astrophysics Data System (ADS)
Amos, Nathaniel R.
This dissertation presents a series of studies pertaining to introductory physics students' abilities to derive physical meaning from symbolic integrals (e.g., the integral of vdt) and their components, namely differentials and differential products (e.g., dt and vdt, respectively). Our studies focus on physical meaning in the form of interpretations (e.g., "the total displacement of an object") and units (e.g., "meters"). Our first pair of studies independently attempted to identify introductory-level mechanics students' common conceptual difficulties with and unproductive interpretations of physics integrals and their components, as well as to estimate the frequencies of these difficulties. Our results confirmed some previously-observed incorrect interpretations, such as the notion that differentials are physically meaningless; however, we also uncovered two new conceptualizations of differentials, the "rate" (differentials are "rates" or "derivatives") and "instantaneous value" (differentials are values of physical variables "at an instant") interpretations, which were exhibited by more than half of our participants at least once. Our next study used linear regression analysis to estimate the strengths of the inter-connections between the abilities to derive physical meaning from each of differentials, differential products, and integrals in both first- and second-semester, calculus-based introductory physics. As part of this study, we also developed a highly reliable, multiple choice assessment designed to measure students' abilities to connect symbolic differentials, differential products, and integrals with their physical interpretations and units. Findings from this study were consistent with statistical mediation via differential products. In particular, students' abilities to extract physical meaning from differentials were seen to be strongly related to their abilities to derive physical meaning from differential products, and similarly differential products to integrals; there was seen to be almost no direct connection between the abilities to derive physical meaning from differentials and the abilities to derive physical meaning from integrals. Our final pair of studies intended to implement and quantitatively assess the efficacy of specially-designed instructional tutorials in controlled experiments (with several treatment factors that may impact performance, most notably the effect of feedback during training) for the purpose of promoting better connection between symbolic differentials, differential products, and integrals with their corresponding physical meaning. Results from both experiments consistently and conclusively demonstrated that the ability to connect verbal and symbolic representations of integrals and their components is greatly improved by the provision of electronic feedback during training. We believe that these results signify the first instance of a large, controlled experiment involving introductory physics students that has yielded significantly stronger connection of physics integrals and their components to physical meaning, compared to untrained peers.
Using High-Resolution Airborne Remote Sensing to Study Aerosol Near Clouds
NASA Technical Reports Server (NTRS)
Levy, Robert; Munchak, Leigh; Mattoo, Shana; Marshak, Alexander; Wilcox, Eric; Gao, Lan; Yorks, John; Platnick, Steven
2016-01-01
The horizontal space in between clear and cloudy air is very complex. This so-called twilight zone includes activated aerosols that are not quite clouds, thin cloud fragments that are not easily observable, and dying clouds that have not quite disappeared. This is a huge challenge for satellite remote sensing, specifically for retrieval of aerosol properties. Identifying what is cloud versus what is not cloud is critically important for attributing radiative effects and forcings to aerosols. At the same time, the radiative interactions between clouds and the surrounding media (molecules, surface and aerosols themselves) will contaminate retrieval of aerosol properties, even in clear skies. Most studies on aerosol cloud interactions are relevant to moderate resolution imagery (e.g. 500 m) from sensors such as MODIS. Since standard aerosol retrieval algorithms tend to keep a distance (e.g. 1 km) from the nearest detected cloud, it is impossible to evaluate what happens closer to the cloud. During Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), the NASA ER-2 flew with the enhanced MODIS Airborne Simulator (eMAS), providing MODIS-like spectral observations at high (50 m) spatial resolution. We have applied MODIS-like aerosol retrieval for the eMAS data, providing new detail to characterization of aerosol near clouds. Interpretation and evaluation of these eMAS aerosol retrievals is aided by independent MODIS-like cloud retrievals, as well as profiles from the co-flying Cloud Physics Lidar (CPL). Understanding aerosolcloud retrieval at high resolution will lead to better characterization and interpretation of long-term, global products from lower resolution (e.g.MODIS) satellite retrievals.
Approach to the Child with Fractures
Boyce, Alison M.
2011-01-01
Evaluation of the child with fractures is challenging, as no clear guidelines exist to distinguish traumatic from pathological fractures. Although most fractures in childhood are benign, recurrent fractures may be associated with a wide variety of primary skeletal diseases as well as secondary causes, necessitating a careful history and physical exam to guide the evaluation. There is no “gold standard” for the evaluation and treatment of children with fractures and low bone mineral density (BMD); therefore, the diagnosis of osteoporosis in a pediatric patient should be made using a combination of clinical and radiographic features. Interpretation of bone densitometry in growing patients presents a unique set of challenges because areal BMD measured by dual-energy x-ray absorptiometry depends on multiple dynamic variables. Interpretation of pediatric dual-energy x-ray absorptiometry should be based on Z-scores (sd scores compared to age, sex, and ethnicity-matched controls), using normative databases specific to the brand of densitometer and the patient population. Given the skeleton's ability to recover from low BMD through modeling and remodeling, optimizing management of underlying conditions leading to bone fragility is the initial step. Conservative measures including calcium and vitamin D supplementation and weight-bearing physical activity are important interventions that should not be overlooked. The use of bisphosphonates in children and adolescents is controversial due to lack of long-term efficacy and safety data and should be limited to clinical trials and compassionate therapy in children with significantly compromised quality of life. Close monitoring is required, and further study is necessary to assess their long-term safety and efficacy in children. PMID:21734001
NASA Astrophysics Data System (ADS)
Zagoni, M.
2017-12-01
Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.
Deriving allowable properties of lumber : a practical guide for interpretation of ASTM standards
Alan Bendtsen; William L. Galligan
1978-01-01
The ASTM standards for establishing clear wood mechanical properties and for deriving structural grades and related allowable properties for visually graded lumber can be confusing and difficult for the uninitiated to interpret. This report provides a practical guide to using these standards for individuals not familiar with their application. Sample stress...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... of Purpose of, and Statutory Basis for, the Proposed Rule Change Under Article VI, Section 11 of the... purpose. Interpretation and Policy .01 (``Interpretation'') under Article VI, Section 11A of OCC's By-Laws... under Section 3 of Article XII (applicable to security futures), under which the Committee could under...
[Electrocardiographic interpretation in athletes : 2017 recommendations for non-cardiologists].
Meyer, Philippe; Gabus, Vincent
2017-07-12
A resting electrocardiogram (ECG) is recommended for screening of sudden cardiac death in young athletes. However, ECG interpretation in athletes requires an adequate training because normal physiological training adaptations in athletes can sometimes be hardly distinguished from abnormal findings suggestive of underlying pathology. In 2017, a consensus of international experts established new recommendations for a clear and accurate interpretation of ECGs in athletes. This article aims to guide non-cardiologists according to these new data, allowing a better triage of anomalies requiring further investigations.
NASA Astrophysics Data System (ADS)
Esfeld, Michael
2010-10-01
The paper makes a case for there being causation in the form of causal properties or causal structures in the domain of fundamental physics. That case is built in the first place on an interpretation of quantum theory in terms of state reductions so that there really are both entangled states and classical properties, GRW being the most elaborate physical proposal for such an interpretation. I then argue that the interpretation that goes back to Everett can also be read in a causal manner, the splitting of the world being conceivable as a causal process. Finally, I mention that the way in which general relativity theory conceives the metrical field opens up the way for a causal conception of the metrical properties as well.
Dotto, G L; Pinto, L A A; Hachicha, M A; Knani, S
2015-03-15
In this work, statistical physics treatment was employed to study the adsorption of food dyes onto chitosan films, in order to obtain new physicochemical interpretations at molecular level. Experimental equilibrium curves were obtained for the adsorption of four dyes (FD&C red 2, FD&C yellow 5, FD&C blue 2, Acid Red 51) at different temperatures (298, 313 and 328 K). A statistical physics formula was used to interpret these curves, and the parameters such as, number of adsorbed dye molecules per site (n), anchorage number (n'), receptor sites density (NM), adsorbed quantity at saturation (N asat), steric hindrance (τ), concentration at half saturation (c1/2) and molar adsorption energy (ΔE(a)) were estimated. The relation of the above mentioned parameters with the chemical structure of the dyes and temperature was evaluated and interpreted. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lynch, Andrew D; Dodds, Nathan E; Yu, Lan; Pilkonis, Paul A; Irrgang, James J
2016-05-11
The content and wording of the Patient Reported Outcome Measurement Information System (PROMIS) Physical Function and Pain Interference item banks have not been qualitatively assessed by individuals with knee joint impairments. The purpose of this investigation was to identify items in the PROMIS Physical Function and Pain Interference Item Banks that are irrelevant, unclear, or otherwise difficult to respond to for individuals with impairment of the knee and to suggest modifications based on cognitive interviews. Twenty-nine individuals with knee joint impairments qualitatively assessed items in the Pain Interference and Physical Function Item Banks in a mixed-methods cognitive interview. Field notes were analyzed to identify themes and frequency counts were calculated to identify items not relevant to individuals with knee joint impairments. Issues with clarity were identified in 23 items in the Physical Function Item Bank, resulting in the creation of 43 new or modified items, typically changing words within the item to be clearer. Interpretation issues included whether or not the knee joint played a significant role in overall health and age/gender differences in items. One quarter of the original items (31 of 124) in the Physical Function Item Bank were identified as irrelevant to the knee joint. All 41 items in the Pain Interference Item Bank were identified as clear, although individuals without significant pain substituted other symptoms which interfered with their life. The Physical Function Item Bank would benefit from additional items that are relevant to individuals with knee joint impairments and, by extension, to other lower extremity impairments. Several issues in clarity were identified that are likely to be present in other patient cohorts as well.
Practical experience using speleothem data in multi-proxy climate reconstructions
NASA Astrophysics Data System (ADS)
Graham, N.
2009-04-01
Speleothem records have clear potential to extend and sharpen our understanding of past climate change. Many speleothem records feature both high sample resolution and precision age models, characteristics generally available only in tree-ring records, among terrestrial climate proxies. Speleothem records also avoid some processes that add uncertainty to the interpretation of biological proxy records. At the same time, model results suggest that even if speleothems did provide long and perfect records of meteoric water isotope concentrations, it would not be always be obvious how to interpret the isotopic fluctuations unambiguously in terms of precipitation or temperature variability. Other uncertainties can arise from local hydrologic and speleothem growth processes, as well as sampling and calibration uncertainties. Similar comments apply to other sorts of speleothem-derived records, e.g., verve thickness. These issues of interpretation are especially important in cases where data availability makes calibration to local climate data problematic and when past climate conditions limit the relevance of such calibrations. The presentation will focus broadly on the use of speleothem records together with other sorts of proxy records either to get a general idea of climatic change during some period, or for more formal climate field reconstruction. Examples from few such efforts will be given. Results from simulations with models incorporating stable water isotopes will be discussed, with consideration of what the results imply about the climatic interpretation of speleothem isotope records. The views will be those a climate scientist trying to make better use of speleothem data, a perspective which will highlight 1) where climate researchers would benefit from better understanding of isotope and speleothem processes, and 2) what steps that speleothem researchers could take to tighten the physical interpretation of their records. Convergence on these points will allow us to take better take advantage of the precision and spatial distribution of speleothem records offer for the understanding of past climate.
The physical origins of the uncertainty theorem
NASA Astrophysics Data System (ADS)
Giese, Albrecht
2013-10-01
The uncertainty principle is an important element of quantum mechanics. It deals with certain pairs of physical parameters which cannot be determined to an arbitrary level of precision at the same time. According to the so-called Copenhagen interpretation of quantum mechanics, this uncertainty is an intrinsic property of the physical world. - This paper intends to show that there are good reasons for adopting a different view. According to the author, the uncertainty is not a property of the physical world but rather a limitation of our knowledge about the actual state of a physical process. This view conforms to the quantum theory of Louis de Broglie and to Albert Einstein's interpretation.
NASA Technical Reports Server (NTRS)
Elmer, Nicholas J.; Berndt, Emily; Jedlovec, Gary J.
2016-01-01
Red-Green-Blue (RGB) composites (EUMETSAT User Services 2009) combine information from several channels into a single composite image. RGB composites contain the same information as the original channels, but presents the information in a more efficient manner. However, RGB composites derived from infrared imagery of both polar-orbiting and geostationary sensors are adversely affected by the limb effect, which interferes with the qualitative interpretation of RGB composites at large viewing zenith angles. The limb effect, or limb-cooling, is a result of an increase in optical path length of the absorbing atmosphere as viewing zenith angle increases (Goldberg et al. 2001; Joyce et al. 2001; Liu and Weng 2007). As a result, greater atmospheric absorption occurs at the limb, causing the sensor to observe anomalously cooler brightness temperatures. Figure 1 illustrates this effect. In general, limb-cooling results in a 4-11 K decrease in measured brightness temperature (Liu and Weng 2007) depending on the infrared band. For example, water vapor and ozone absorption channels display much larger limb-cooling than infrared window channels. Consequently, RGB composites created from infrared imagery not corrected for limb effects can only be reliably interpreted close to nadir, which reduces the spatial coverage of the available imagery. Elmer (2015) developed a reliable, operational limb correction technique for clear regions. However, many RGB composites are intended to be used and interpreted in cloudy regions, so a limb correction methodology valid for both clear and cloudy regions is needed. This paper presents a limb correction technique valid for both clear and cloudy regions, which is described in Section 2. Section 3 presents several RGB case studies demonstrating the improved functionality of limb-corrected RGBs in both clear and cloudy regions, and Section 4 summarizes and presents the key conclusions of this work.
Climate Proxies: An Inquiry-Based Approach to Discovering Climate Change on Antarctica
NASA Astrophysics Data System (ADS)
Wishart, D. N.
2016-12-01
An attractive way to advance climate literacy in higher education is to emphasize its relevance while teaching climate change across the curriculum to science majors and non-science majors. An inquiry-based pedagogical approach was used to engage five groups of students on a "Polar Discovery Project" aimed at interpreting the paleoclimate history of ice cores from Antarctica. Learning objectives and student learning outcomes were clearly defined. Students were assigned several exercises ranging from examination of Antarctic topography to the application of physical and chemical measurements as proxies for climate change. Required materials included base and topographic maps of Antarctica; graph sheets for construction of topographic cross-sectional profiles from profile lines of the Western Antarctica Ice Sheet (WAIS) Divide and East Antarctica; high-resolution photographs of Antarctic ice cores; stratigraphic columns of ice cores; borehole and glaciochemical data (i.e. anions, actions, δ18O, δD etc.); and isotope data on greenhouse gases (CH4, O2, N2) extracted from gas bubbles in ice cores. The methodology was to engage students in (2) construction of topographic profiles; (2) suggest directions for ice flow based on simple physics; (3) formulate decisions on suitable locations for drilling ice cores; (4) visual ice stratigraphy including ice layer counting; (5) observation of any insoluble particles (i.e. meteoritic and volcanic material); (6) analysis of borehole temperature profiles; and (7) the interpretation of several datasets to derive a paleoclimate history of these areas of the continent. The overall goal of the project was to improve the students analytical and quantitative skills; their ability to evaluate relationships between physical and chemical properties in ice cores, and to advance the understanding the impending consequences of climate change while engaging science, technology, engineering and mathematics (STEM). Student learning outcomes were assessed at the completion of the `Polar Discovery Project' for their curiosity, analytical strength, creativity, group collaboration, problem-solving, innovation, and interest in level climate change and the implications of the its effects on polar regions.
Workplace Statistical Literacy for Teachers: Interpreting Box Plots
ERIC Educational Resources Information Center
Pierce, Robyn; Chick, Helen
2013-01-01
As a consequence of the increased use of data in workplace environments, there is a need to understand the demands that are placed on users to make sense of such data. In education, teachers are being increasingly expected to interpret and apply complex data about student and school performance, and, yet it is not clear that they always have the…
Cuddy, Monica M; Winward, Marcia L; Johnston, Mary M; Lipner, Rebecca S; Clauser, Brian E
2016-01-01
To add to the small body of validity research addressing whether scores from performance assessments of clinical skills are related to performance in supervised patient settings, the authors examined relationships between United States Medical Licensing Examination (USMLE) Step 2 Clinical Skills (CS) data gathering and data interpretation scores and subsequent performance in history taking and physical examination in internal medicine residency training. The sample included 6,306 examinees from 238 internal medicine residency programs who completed Step 2 CS for the first time in 2005 and whose performance ratings from their first year of residency training were available. Hierarchical linear modeling techniques were used to examine the relationships among Step 2 CS data gathering and data interpretation scores and history-taking and physical examination ratings. Step 2 CS data interpretation scores were positively related to both history-taking and physical examination ratings. Step 2 CS data gathering scores were not related to either history-taking or physical examination ratings after other USMLE scores were taken into account. Step 2 CS data interpretation scores provide useful information for predicting subsequent performance in history taking and physical examination in supervised practice and thus provide validity evidence for their intended use as an indication of readiness to enter supervised practice. The results show that there is less evidence to support the usefulness of Step 2 CS data gathering scores. This study provides important information for practitioners interested in Step 2 CS specifically or in performance assessments of medical students' clinical skills more generally.
Plon, Sharon E.; Eccles, Diana M.; Easton, Douglas; Foulkes, William D.; Genuardi, Maurizio; Greenblatt, Marc S.; Hogervorst, Frans B.L.; Hoogerbrugge, Nicoline; Spurdle, Amanda B.; Tavtigian, Sean
2011-01-01
Genetic testing of cancer susceptibility genes is now widely applied in clinical practice to predict risk of developing cancer. In general, sequence-based testing of germline DNA is used to determine whether an individual carries a change that is clearly likely to disrupt normal gene function. Genetic testing may detect changes that are clearly pathogenic, clearly neutral or variants of unclear clinical significance. Such variants present a considerable challenge to the diagnostic laboratory and the receiving clinician in terms of interpretation and clear presentation of the implications of the result to the patient. There does not appear to be a consistent approach to interpreting and reporting the clinical significance of variants either among genes or among laboratories. The potential for confusion among clinicians and patients is considerable and misinterpretation may lead to inappropriate clinical consequences. In this article we review the current state of sequence-based genetic testing, describe other standardized reporting systems used in oncology and propose a standardized classification system for application to sequence based results for cancer predisposition genes. We suggest a system of five classes of variants based on the degree of likelihood of pathogenicity. Each class is associated with specific recommendations for clinical management of at-risk relatives that will depend on the syndrome. We propose that panels of experts on each cancer predisposition syndrome facilitate the classification scheme and designate appropriate surveillance and cancer management guidelines. The international adoption of a standardized reporting system should improve the clinical utility of sequence-based genetic tests to predict cancer risk. PMID:18951446
Access to safe legal abortion in Malaysia: women's insights and health sector response.
Low, Wah-Yun; Tong, Wen-Ting; Wong, Yut-Lin; Jegasothy, Ravindran; Choong, Sim-Poey
2015-01-01
Malaysia has an abortion law, which permits termination of pregnancy to save a woman's life and to preserve her physical and mental health (Penal Code Section 312, amended in 1989). However, lack of clear interpretation and understanding of the law results in women facing difficulties in accessing abortion information and services. Some health care providers were unaware of the legalities of abortion in Malaysia and influenced by their personal beliefs with regard to provision of abortion services. Accessibility to safer abortion techniques is also an issue. The development of the 2012 Guidelines on Termination of Pregnancy and Guidelines for Management of Sexual and Reproductive Health among Adolescents in Health Clinics by the Ministry of Health, Malaysia, is a step forward toward increasing women's accessibility to safe abortion services in Malaysia. This article provides an account of women's accessibility to abortion in Malaysia and the health sector response in addressing the barriers. © 2014 APJPH.
Lieberman, Matthew D.; Eisenberger, Naomi I.
2015-01-01
Dorsal anterior cingulate cortex (dACC) activation is commonly observed in studies of pain, executive control, conflict monitoring, and salience processing, making it difficult to interpret the dACC’s specific psychological function. Using Neurosynth, an automated brainmapping database [of over 10,000 functional MRI (fMRI) studies], we performed quantitative reverse inference analyses to explore the best general psychological account of the dACC function P(Ψ process|dACC activity). Results clearly indicated that the best psychological description of dACC function was related to pain processing—not executive, conflict, or salience processing. We conclude by considering that physical pain may be an instance of a broader class of survival-relevant goals monitored by the dACC, in contrast to more arbitrary temporary goals, which may be monitored by the supplementary motor area. PMID:26582792
[Multifamily therapy in children with learning disabilities].
Retzlaff, Rüdiger; Brazil, Susanne; Goll-Kopka, Andrea
2008-01-01
Multifamily therapy is an evidence-based method used in the treatment and prevention of severe psychiatric disorders, behavioral problems and physical illnesses in children, adolescents and adults. For preventive family-oriented work with children with learning disorders there is a lack of therapeutic models. This article presents results from an innovative pilot project--multiple family groups for families with a learning disabled child of primary school age (six to eleven years old). Based on a systemic approach, this resource-oriented program integrates creative, activity-based interventions and group therapy techniques and conveys a comprehensive understanding of the challenges associated with learning disorders. Because of the pilot character of the study and the small sample size, the results have to be interpreted with care. The results do however clearly support the wider implementation and evaluation of the program in child guidance clinics, social-pediatric centers, as well as child and adolescent clinics and schools.
NASA Astrophysics Data System (ADS)
Hacyan, Shahen
2006-11-01
Since the famous Einstein-Podolsky-Rosen (EPR) paper, it is clear that there is a serious incompatibility between local realism and quantum mechanics. Einstein believed that a complete quantum theory should be free of what he once called "spooky actions at distance". However, all experiments in quantum optics and atomic physics performed in the last two decades confirm the existence of quantum correlations that seem to contradict local realism. According to Bohr, the apparent contradictions disclose only the inadequacy of our customary concepts for the description of the quantum world. Are space and time such customary concepts? In this presentation, I argue that the Copenhagen interpretation is compatible with Kant's transcendental idealism and that, in particular, EPR type paradoxes are consistent with Kant's transcendental aesthetics, according to which space and time have no objective reality but are pure forms of sensible intuition.
Sleep Apnea and Driving. Recommendations for Interpreting Spanish Regulations for Drivers.
Terán-Santos, Joaquín; Egea Santaolalla, Carlos; Montserrat, Jose María; Masa Jiménez, Fernando; Librada Escribano, Maria Villar; Mirabet, Enrique; Valdés Rodríguez, Elena
2017-06-01
Road traffic accidents are one of the main causes of death worldwide and are clearly associated with sleepiness. Individuals with undiagnosed sleep apnea-hypopnea syndrome (SAHS) are among the population with a high risk of experiencing sleepiness at the wheel and, consequently, road traffic accidents. Treatment with continuous positive airway pressure (CPAP) has been shown to reduce the risk of accidents among drivers with SAHS. For this reason, the European Union has included this disease in the psychological and physical criteria for obtaining or renewing a driving license. To comply with this European Directive, Spain has updated its driving laws accordingly. To facilitate the implementation of the new regulations, a group of experts from various medical societies and institutions has prepared these guidelines that include questionnaires to screen for SAHS, diagnostic and therapeutic criteria, and physician's report templates. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Favourable Changes of the Risk-Benefit Ratio in Alpine Skiing
Burtscher, Martin; Ruedl, Gerhard
2015-01-01
During the past five decades recreational alpine skiing has become increasingly safer. The numerous annual media reports on ski injuries have to be interpreted on the basis of the tremendous numbers of skiers. These favourable changes seem primarily be due to the introduction of short carving skis, more rigid and comfortable ski boots, the use of protective gear like helmets, and the optimized preparation of ski slopes. The associated health benefits from skiing, especially arising from its association with a healthier life style, and possibly also from effects related to hypoxia preconditioning and increasing subjective vitality by natural elements clearly outweigh the health hazards. Technical improvements will likely help further reducing the injury risk. At least hypothetically, each individual skier could help to prevent injuries by the development of an appropriate physical fitness and responsible behaviour on ski slopes thereby optimizing the risk-benefit ratio of alpine skiing. PMID:26035659
On simulation of no-slip condition in the method of discrete vortices
NASA Astrophysics Data System (ADS)
Shmagunov, O. A.
2017-10-01
When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.
Alterations in physiology and anatomy during pregnancy.
Tan, Eng Kien; Tan, Eng Loy
2013-12-01
Pregnant women undergo profound anatomical and physiological changes so that they can cope with the increased physical and metabolic demands of their pregnancies. The cardiovascular, respiratory, haematological, renal, gastrointestinal and endocrine systems all undergo important physiological alterations and adaptations needed to allow development of the fetus and to allow the mother and fetus to survive the demands of childbirth. Such alterations in anatomy and physiology may cause difficulties in interpreting signs, symptoms, and biochemical investigations, making the clinical assessment of a pregnant woman inevitably confusing but challenging. Understanding these changes is important for every practicing obstetrician, as the pathological deviations from the normal physiological alterations may not be clear-cut until an adverse outcome has resulted. Only with a sound knowledge of the physiology and anatomy changes can the care of an obstetric parturient be safely optimized for a better maternal and fetal outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.
He, Wanlin; Yang, Jianjun; Guo, Chunlei
2017-03-06
The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.
76 FR 43851 - Large Trader Reporting for Physical Commodity Swaps
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... position, or gross long and gross short futures equivalent positions on a non-delta-adjusted basis if the... from clearing organizations, clearing members and swap dealers and apply non-routine reporting... implementing and conducting effective surveillance of economically equivalent physical commodity futures...
Francis, Claire E; Longmuir, Patricia E; Boyer, Charles; Andersen, Lars Bo; Barnes, Joel D; Boiarskaia, Elena; Cairney, John; Faigenbaum, Avery D; Faulkner, Guy; Hands, Beth P; Hay, John A; Janssen, Ian; Katzmarzyk, Peter T; Kemper, Han C; Knudson, Duane; Lloyd, Meghann; McKenzie, Thomas L; Olds, Tim S; Sacheck, Jennifer M; Shephard, Roy J; Zhu, Weimo; Tremblay, Mark S
2016-02-01
The Canadian Assessment of Physical Literacy (CAPL) was conceptualized as a tool to monitor children's physical literacy. The original model (fitness, activity behavior, knowledge, motor skill) required revision and relative weights for calculating/interpreting scores were required. Nineteen childhood physical activity/fitness experts completed a 3-round Delphi process. Round 1 was open-ended questions. Subsequent rounds rated statements using a 5-point Likert scale. Recommendations were sought regarding protocol inclusion, relative importance within composite scores and score interpretation. Delphi participant consensus was achieved for 64% (47/73) of statement topics, including a revised conceptual model, specific assessment protocols, the importance of longitudinal tracking, and the relative importance of individual protocols and composite scores. Divergent opinions remained regarding the inclusion of sleep time, assessment/ scoring of the obstacle course assessment of motor skill, and the need for an overall physical literacy classification. The revised CAPL model (overlapping domains of physical competence, motivation, and knowledge, encompassed by daily behavior) is appropriate for monitoring the physical literacy of children aged 8 to 12 years. Objectively measured domains (daily behavior, physical competence) have higher relative importance. The interpretation of CAPL results should be reevaluated as more data become available.
Solving a Higgs optimization problem with quantum annealing for machine learning.
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-18
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
NASA Astrophysics Data System (ADS)
Teodorani, M.
1999-03-01
The psycho-sociological reasons why the academic science is not willing to face operatively and officially a hard problem such as the 'UFO phenomenon', are introduced in the ambit of an episthemological discussion. It is shown how such a phenomenon, due to his peculiar nature, might impose a drastic revision of the laws of physics which are commonly accepted. It is demonstrated how a strict application of the measurement methods which are normally adopted by physics can permit to obtain relevant quantitative results, whatever they are. As an example of such a procedure, the anomalous light phenomenology which reoccurs in the Hessdalen valley in Norway is presented, by showing that it represents so far the ideal worldly physical laboratory for the study of luminous phenomena in the low atmosphere. After describing the multiform morphologic and dynamic characteristics of the luminous component of the phenomenon as they are deduced from visual and photographic reports, the results coming out from the magnetometric, radiometric and radar monitoring operations which were carried out by Project Hessdalen in 1984, are presented in detail. Subsequently, the postumous analysis carried out by the author is shown, by pointing out the clear cohexistence of the magnetic and the optical phenomenology and the apparent correlation of the magnetic component of the phenomenon with maxima of solar activity. In a subsequent phase, the most credited physical theories, which have been proposed so far in order to interpret the phenomenon, are described and discussed, together with 'non-canonical hypotheses'. Finally, it is pointed out how the physical parameters which are expected to be measured with the proper instrumented equipment and aimed tactics and strategies, resemble strictly the methodology which is normally used during astrophysical observations.
Solving a Higgs optimization problem with quantum annealing for machine learning
NASA Astrophysics Data System (ADS)
Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria
2017-10-01
The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.
HyperCLIPS: A HyperCard interface to CLIPS
NASA Technical Reports Server (NTRS)
Pickering, Brad; Hill, Randall W., Jr.
1990-01-01
HyperCLIPS combines the intuitive, interactive user interface of the Apple Macintosh(TM) with the powerful symbolic computation of an expert system interpreter. HyperCard(TM) is an excellent environment for quickly developing the front end of an application with buttons, dialogs, and pictures, while the CLIPS interpreter provides a powerful inference engine for complex problem solving and analysis. By integrating HyperCard and CLIPS the advantages and uses of both packages are made available for a wide range of uses: rapid prototyping of knowledge-based expert systems, interactive simulations of physical systems, and intelligent control of hypertext processes, to name a few. Interfacing HyperCard and CLIPS is natural. HyperCard was designed to be extended through the use of external commands (XCMDs), and CLIPS was designed to be embedded through the use of the I/O router facilities and callable interface routines. With the exception of some technical difficulties which will be discussed later, HyperCLIPS implements this interface in a straight forward manner, using the facilities provided. An XCMD called 'ClipsX' was added to HyperCard to give access to the CLIPS routines: clear, load, reset, and run. And an I/O router was added to CLIPS to handle the communication of data between CLIPS and HyperCard.
Stable Isotope Analysis of Extant Lamnoid Shark Centra: A New Tool in Age Determination?
NASA Astrophysics Data System (ADS)
Labs, J.
2003-12-01
The oxygen isotopes of fourteen vertebral centra from ten extant lamnoid sharks (including Carcharodon carcharias [great white], Isurus paucus [longfin mako], and Isurus oxyrinchus [shortfin mako]) were sampled and measured along the growth axis to determine the periodicity of incremental growth represented in the centra. As part of the internal (endochondral) skeleton, shark centra are composed initially of hyaline cartilage, which then secondarily ossifies during ontogeny forming calcified hydroxyapatite bone. The incremental growth of shark centra forms definite growth rings, with darker denser portions being deposited during slower growth times (i.e., winter) and lighter portions being deposited during more rapid growth (i.e., summer). Thus, shark centra, whether they are extant or extinct, are characterized by clearly delineated incremental growth couplets. The problem with this general rule is that there are several factors in which the growth of these couplets can vary depending upon physical environment (including temperature and water depth), food availability, and stress. The challenge for paleobiological interpretations is how to interpret the periodicity of this growth. It can generally be assumed that these bands are annual, but it is uncertain the extent to which exceptions to the rule occur. Stable isotopic analysis provides the potential to independently determine the periodicity of the growth increments and ultimately the ontogenetic age of an individual.
Hassett, Brenna R
2014-03-01
Linear enamel hypoplasia (LEH), the presence of linear defects of dental enamel formed during periods of growth disruption, is frequently analyzed in physical anthropology as evidence for childhood health in the past. However, a wide variety of methods for identifying and interpreting these defects in archaeological remains exists, preventing easy cross-comparison of results from disparate studies. This article compares a standard approach to identifying LEH using the naked eye to the evidence of growth disruption observed microscopically from the enamel surface. This comparison demonstrates that what is interpreted as evidence of growth disruption microscopically is not uniformly identified with the naked eye, and provides a reference for the level of consistency between the number and timing of defects identified using microscopic versus macroscopic approaches. This is done for different tooth types using a large sample of unworn permanent teeth drawn from several post-medieval London burial assemblages. The resulting schematic diagrams showing where macroscopic methods achieve more or less similar results to microscopic methods are presented here and clearly demonstrate that "naked-eye" methods of identifying growth disruptions do not identify LEH as often as microscopic methods in areas where perikymata are more densely packed. Copyright © 2013 Wiley Periodicals, Inc.
An introductory review on gravitational-deformation induced structures, fabrics and modeling
NASA Astrophysics Data System (ADS)
Jaboyedoff, Michel; Penna, Ivanna; Pedrazzini, Andrea; Baroň, Ivo; Crosta, Giovanni B.
2013-10-01
Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.
On the peculiar shapes of some pulsar bow-shock nebulae
NASA Astrophysics Data System (ADS)
Bandiera, Rino
Pulsar bow-shock nebulae are pulsar-wind nebulae formed by the direct interaction of pulsar relativistic winds with the interstellar medium. The bow-shock morphology, well outlined in Hα for some objects, is an effect of the supersonic pulsar motion with respect to the ambient medium. However, in a considerable fraction of cases (e.g. the nebulae associated to PSR B2224+65, PSR B0740-28, PSR J2124-3358) clear deviations from the classical bow shock shape are observed. Such deviations are usually interpreted as due to ambient density gradients and/or to pulsar-wind anisotropies. Here I present a different interpretation, aiming at explaining deviations from the standard morphology as signs of the peculiar physical conditions present in these objects. Using dimensional arguments, I show that, unlike normal pulsar-wind nebulae, in pulsar bow-shock nebulae the mean free path of the highest-energy particles may be comparable with the bow-shock head. I then investigate whether this may affect the shape of the bow-shock; for instance, whether a conical bow shock (like that observed in the "Guitar", the nebula associated to PSR B2224+65) does really imply an ambient density gradient. Finally, I discuss some other possible signatures of these high-energy, long mean-free-path particles.
Student Use of Physics to Make Sense of Incomplete but Functional VPython Programs in a Lab Setting
NASA Astrophysics Data System (ADS)
Weatherford, Shawn A.
2011-12-01
Computational activities in Matter & Interactions, an introductory calculus-based physics course, have the instructional goal of providing students with the experience of applying the same set of a small number of fundamental principles to model a wide range of physical systems. However there are significant instructional challenges for students to build computer programs under limited time constraints, especially for students who are unfamiliar with programming languages and concepts. Prior attempts at designing effective computational activities were successful at having students ultimately build working VPython programs under the tutelage of experienced teaching assistants in a studio lab setting. A pilot study revealed that students who completed these computational activities had significant difficultly repeating the exact same tasks and further, had difficulty predicting the animation that would be produced by the example program after interpreting the program code. This study explores the interpretation and prediction tasks as part of an instructional sequence where students are asked to read and comprehend a functional, but incomplete program. Rather than asking students to begin their computational tasks with modifying program code, we explicitly ask students to interpret an existing program that is missing key lines of code. The missing lines of code correspond to the algebraic form of fundamental physics principles or the calculation of forces which would exist between analogous physical objects in the natural world. Students are then asked to draw a prediction of what they would see in the simulation produced by the VPython program and ultimately run the program to evaluate the students' prediction. This study specifically looks at how the participants use physics while interpreting the program code and creating a whiteboard prediction. This study also examines how students evaluate their understanding of the program and modification goals at the beginning of the modification task. While working in groups over the course of a semester, study participants were recorded while they completed three activities using these incomplete programs. Analysis of the video data showed that study participants had little difficulty interpreting physics quantities, generating a prediction, or determining how to modify the incomplete program. Participants did not base their prediction solely from the information from the incomplete program. When participants tried to predict the motion of the objects in the simulation, many turned to their knowledge of how the system would evolve if it represented an analogous real-world physical system. For example, participants attributed the real-world behavior of springs to helix objects even though the program did not include calculations for the spring to exert a force when stretched. Participants rarely interpreted lines of code in the computational loop during the first computational activity, but this changed during latter computational activities with most participants using their physics knowledge to interpret the computational loop. Computational activities in the Matter & Interactions curriculum were revised in light of these findings to include an instructional sequence of tasks to build a comprehension of the example program. The modified activities also ask students to create an additional whiteboard prediction for the time-evolution of the real-world phenomena which the example program will eventually model. This thesis shows how comprehension tasks identified by Palinscar and Brown (1984) as effective in improving reading comprehension are also effective in helping students apply their physics knowledge to interpret a computer program which attempts to model a real-world phenomena and identify errors in their understanding of the use, or omission, of fundamental physics principles in a computational model.
SDE decomposition and A-type stochastic interpretation in nonequilibrium processes
NASA Astrophysics Data System (ADS)
Yuan, Ruoshi; Tang, Ying; Ao, Ping
2017-12-01
An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehler, M.; Bame, D.
1985-03-01
A study of the spectral properties of the waveforms recorded during hydraulic fracturing earthquakes has been carried out to obtain information about the physical dimensions of the earthquakes. We find two types of events. The first type has waveforms with clear P and S arrivals and spectra that are very similar to earthquakes occurring in tectonic regions. These events are interpreted as being due to shear slip along fault planes. The second type of event has waveforms that are similar in many ways to long period earthquakes observed at volcanoes and is called long period. Many waveforms of these eventsmore » are identical, which implies that these events represent repeated activation of a given source. We propose that the source of these long period events is the sudden opening of a channel that connects two cracks filled with fluid at different pressures. The sizes of the two cracks differ, which causes two or more peaks to appear in the spectra, each peak being associated with one physical dimension of the crack. From the frequencies at which spectral peaks occur, we estimate crack dimensions of between 3 and 22m. 13 refs., 8 figs.« less
There are no particles, there are only fields
NASA Astrophysics Data System (ADS)
Hobson, Art
2013-03-01
Quantum foundations are still unsettled, with mixed effects on science and society. By now it should be possible to obtain consensus on at least one issue: Are the fundamental constituents fields or particles? As this paper shows, experiment and theory imply that unbounded fields, not bounded particles, are fundamental. This is especially clear for relativistic systems, implying that it's also true of nonrelativistic systems. Particles are epiphenomena arising from fields. Thus, the Schrödinger field is a space-filling physical field whose value at any spatial point is the probability amplitude for an interaction to occur at that point. The field for an electron is the electron; each electron extends over both slits in the two-slit experiment and spreads over the entire pattern; and quantum physics is about interactions of microscopic systems with the macroscopic world rather than just about measurements. It's important to clarify this issue because textbooks still teach a particles- and measurement-oriented interpretation that contributes to bewilderment among students and pseudoscience among the public. This article reviews classical and quantum fields, the two-slit experiment, rigorous theorems showing particles are inconsistent with relativistic quantum theory, and several phenomena showing particles are incompatible with quantum field theories.
Multivariate-data-visualization-based investigation of projectiles in sports
NASA Astrophysics Data System (ADS)
Shah, Agam; Chauhan, Yagnesh; Patel, Prithvi; Chaudhury, Bhaskar
2018-07-01
The kinematics and dynamics of projectiles in sports is a complex topic involving several physical quantities and variables such as time, distance, velocity, acceleration, momentum, force, energy, viscosity, pressure, torque, bounce, sliding, rolling, etc. The analysis of these complex sets of multidimensional information, including the correlation between different variables, is an important requirement for the clear understanding of projectile trajectories in sports. However, those who do not have a strong mechanics or physics background find it difficult to interpret the data and comprehend the results in terms of the interacting forces and mutual interaction, which perpetuate the motion of the ball (or projectile). To address this issue, we propose a novel multivariate-data-visualization-based understanding of projectiles in sports inspired by the basic Gestalt principle that the whole is greater than the sum of its parts. The data representation approach involves the use of a single two-dimensional plane for the representation of multidimensional dynamic variables, and thereby completely removes the requirement of using several 2D plots for analysing and comprehending the meaning behind all of the data and how it correlates. For this study, we have considered the dynamics of two ball sports, namely volleyball and table tennis, as well as the sport of badminton, which involves high-drag projectile motion. We have presented a basic computational model incorporating the important forces to study projectile motion in sports. The data generated by the simulation is investigated using the proposed visualization methodology, and we show how this helps it to be interpreted easily, improving the clarity of our understanding of projectile trajectories in sports using both force and energy language.
[Clinical signs in late pregnant mares].
Neuhauser, Stefanie; Gösele, Patricia; Handler, Johannes
2018-06-01
During the peripartal period, interpretation of basic clinical signs may be challenging. In the present study, heart rate (HR), respiratory rate (RR) and body temperature (BT) were evaluated in healthy mares of different breed types and compared to reference values for adult horses from the literature. During daily physical exams of periparturient mares, the HR, RR and BT were evaluated. Differences according to the horse's size were investigated and in large breeds, the influence of dystocia or retained placenta was analysed. During the last weeks before parturition (a. p.), the HR significantly increased and was clearly lower after parturition (p. p.; p < 0.05). In larger horses, the RR increased a. p. and decreased p. p. (p < 0.05). The BT underwent changes in all groups during the periparturient period and was higher p. p. (p < 0.05). In general, values for HR, RR and BT were highest in ponies (p < 0.05) while the lowest RR was measured in large horses (p < 0.05). There was no difference in the HR between mares with eutocia or with dystocia (p > 0.05). By contrast, the RR was significantly higher in mares with dystocia on day 1 p. p. (p < 0.05). Differences in the BT a. p. and p. p. occurred only in mares with eutocia (p < 0.05) and remained within the normal values. Mares with retained placenta did not exhibit significant changes in the HR (p > 0.05), but the BT was higher on day 1 p. p. (p < 0.05). Increased HR, RR and BT in mares during late pregnancy suggest a distinct physical performance for a prolonged period of time. Interpretation of these parameters in relation to the mare's reproductive state is essential to diagnose potential disorders and to determine whether therapy is required. Schattauer GmbH.
Commentary: China Will Change Our Teaching
ERIC Educational Resources Information Center
Parslow, Graham R.
2013-01-01
The current spurt in life science activity in China has been driven by repatriating researchers trained in the prestigious institutions of the world. China's publications show a clear concentration in the physical sciences and technology, with materials science, chemistry, and physics predominant. Also clear is that the growth areas include…
ERIC Educational Resources Information Center
Borisov, Christine; Reid, Greg
2010-01-01
This study investigated the perceived benefits of five adolescents with an intellectual disability functioning as tutors or teacher assistants in physical education. Their personal experiences and interpretations were ascertained by interviews, video recording, photographs, and field observations. An interpretative phenomenological analysis…
[The effects of interpretation bias for social events and automatic thoughts on social anxiety].
Aizawa, Naoki
2015-08-01
Many studies have demonstrated that individuals with social anxiety interpret ambiguous social situations negatively. It is, however, not clear whether the interpretation bias discriminatively contributes to social anxiety in comparison with depressive automatic thoughts. The present study investigated the effects of negative interpretation bias and automatic thoughts on social anxiety. The Social Intent Interpretation-Questionnaire, which measures the tendency to interpret ambiguous social events as implying other's rejective intents, the short Japanese version of the Automatic Thoughts Questionnaire-Revised, and the Anthropophobic Tendency Scale were administered to 317 university students. Covariance structure analysis indicated that both rejective intent interpretation bias and negative automatic thoughts contributed to mental distress in social situations mediated by a sense of powerlessness and excessive concern about self and others in social situations. Positive automatic thoughts reduced mental distress. These results indicate the importance of interpretation bias and negative automatic thoughts in the development and maintenance of social anxiety. Implications for understanding of the cognitive features of social anxiety were discussed.
Secular trends in storm-level geomagnetic activity
Love, J.J.
2011-01-01
Analysis is made of K-index data from groups of ground-based geomagnetic observatories in Germany, Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. Methods include nonparametric measures of trends and statistical significance used by the hydrological and climatological research communities. Among the three observatory groups, German K data systematically record the highest disturbance levels, followed by the British and, then, the Australian data. Signals consistently seen in K data from all three observatory groups can be reasonably interpreted as physically meaninginful: (1) geomagnetic activity has generally increased over the past 141 years. However, the detailed secular evolution of geomagnetic activity is not well characterized by either a linear trend nor, even, a monotonic trend. Therefore, simple, phenomenological extrapolations of past trends in solar and geomagnetic activity levels are unlikely to be useful for making quantitative predictions of future trends lasting longer than a solar cycle or so. (2) The well-known tendency for magnetic storms to occur during the declining phase of a sunspot-solar cycles is clearly seen for cycles 14-23; it is not, however, clearly seen for cycles 11-13. Therefore, in addition to an increase in geomagnetic activity, the nature of solar-terrestrial interaction has also apparently changed over the past 141 years. ?? Author(s) 2011.
Souza, Vanderlei Sebastião de
2016-01-01
The article analyzes Brazilian anthropologist Edgard Roquette-Pinto's participation in the international debate that involved the field of physical anthropology and discussions on miscegenation in the first decades of the twentieth century. Special focus is on his readings and interpretations of a group of US anthropologists and eugenicists and his controversies with them, including Charles Davenport, Madison Grant, and Franz Boas. The article explores the various ways in which Roquette-Pinto interpreted and incorporated their ideas and how his anthropological interpretations took on new meanings when they moved beyond Brazil's borders.
Mergoni, A
1994-01-01
Without underestimating the undeniable benefit which can be achieved from various physical and mental relaxation exercises, the author expresses the conviction that the didactic and cultural aspect of preparative courses during pregnancy by definition improve, to a greater extent than is widely believed, the positive outcome of obstetric psychoprophylaxis. It is therefore opportune that the didactic part of courses should cover a wider and more detailed range than is usually the case, in particular including a more exhaustive and accurate description of the mechanical phenomenon of birth. Without a clear knowledge and awareness of such mechanical aspects, pregnant women will not feel prepared for and in full and rational control of her own labour. Given that a correct knowledge of the physiology of labour inevitably includes aspects which will enrich the pregnant woman's psyche, the author hopes that interest will soon be reawakened in the physiology of labour whose interpretation has for a long time contained a number of basic and unresolved problems. In order to rectify and further our knowledge of the physiology of labour, it is important to be willing to consider other interpretative models which differ from the traditional one. On this subject, the author aims to rediscuss one model in which Pascal's principle is recognised as the decisive cause of the majority of the mechanical phenomena of labour, and which, in addition to providing solutions to many unresolved problems, makes the teaching of preparative courses during pregnancy more edifying in psychological terms.
Kalil, Andre C; Sun, Junfeng
2014-10-01
To review Bayesian methodology and its utility to clinical decision making and research in the critical care field. Clinical, epidemiological, and biostatistical studies on Bayesian methods in PubMed and Embase from their inception to December 2013. Bayesian methods have been extensively used by a wide range of scientific fields, including astronomy, engineering, chemistry, genetics, physics, geology, paleontology, climatology, cryptography, linguistics, ecology, and computational sciences. The application of medical knowledge in clinical research is analogous to the application of medical knowledge in clinical practice. Bedside physicians have to make most diagnostic and treatment decisions on critically ill patients every day without clear-cut evidence-based medicine (more subjective than objective evidence). Similarly, clinical researchers have to make most decisions about trial design with limited available data. Bayesian methodology allows both subjective and objective aspects of knowledge to be formally measured and transparently incorporated into the design, execution, and interpretation of clinical trials. In addition, various degrees of knowledge and several hypotheses can be tested at the same time in a single clinical trial without the risk of multiplicity. Notably, the Bayesian technology is naturally suited for the interpretation of clinical trial findings for the individualized care of critically ill patients and for the optimization of public health policies. We propose that the application of the versatile Bayesian methodology in conjunction with the conventional statistical methods is not only ripe for actual use in critical care clinical research but it is also a necessary step to maximize the performance of clinical trials and its translation to the practice of critical care medicine.
Composition in the Quantum World
NASA Astrophysics Data System (ADS)
Hall, Edward Jonathan
This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.
49 CFR Appendix D to Part 37 - Construction and Interpretation of Provisions of 49 CFR Part 37
Code of Federal Regulations, 2013 CFR
2013-10-01
... January 26, 1992, the decision should be in the direction of service that will help to comply with post... system, fit clearly into one category or the other. Other systems may not so clearly fall into one of the... making this determination, one of the key factors to be considered is whether the individual, in order to...
49 CFR Appendix D to Part 37 - Construction and Interpretation of Provisions of 49 CFR Part 37
Code of Federal Regulations, 2011 CFR
2011-10-01
... direction of service that will help to comply with post-January 1992 requirements. A recipient that severely..., like a typical city bus system or a dial-a-ride van system, fit clearly into one category or the other. Other systems may not so clearly fall into one of the categories. Nevertheless, because how a system is...
49 CFR Appendix D to Part 37 - Construction and Interpretation of Provisions of 49 CFR Part 37
Code of Federal Regulations, 2012 CFR
2012-10-01
... January 26, 1992, the decision should be in the direction of service that will help to comply with post... system, fit clearly into one category or the other. Other systems may not so clearly fall into one of the... making this determination, one of the key factors to be considered is whether the individual, in order to...
49 CFR Appendix D to Part 37 - Construction and Interpretation of Provisions of 49 CFR Part 37
Code of Federal Regulations, 2014 CFR
2014-10-01
... January 26, 1992, the decision should be in the direction of service that will help to comply with post... system, fit clearly into one category or the other. Other systems may not so clearly fall into one of the... making this determination, one of the key factors to be considered is whether the individual, in order to...
Interpretation of a Landsat image of an unusual flood phenomenon in Australia
Robinove, Charles J.
1978-01-01
A Landsat image of part of the flooded area of Cooper Creek, Queensland, Australia, in February 1974, shows large dark areas within the flooded valley. The dark areas are believed to be wet, but unflooded, areas of dark alluvial soil. These striking features, which have not previously been identified on Landsat images, must be properly interpreted so as not to confuse them with clear water.
The Kantian element in the Copenhagen interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cale, David Lee
In Quantum Physics and the Philosophical Tradition, Aage Petersen makes the troubling claim that the entirety of the tradition of Western philosophy is "deconstructed" by quantum mechanics. This viewpoint applies, especially, to the relationship between Kantian philosophy and quantum theory. It is generally accepted that quantum mechanics, in its Copenhagen interpretation, has destroyed all validity for the classical belief in a deterministic underlying reality, a belief sustained throughout the nineteenth century through a philosophical ground in Kant's critical philosophy. This dissertation takes on the daunting task of determining what, if any, relationship can be had between contemporary physics and Kantian philosophy. It begins with a historical review of the challenges posed for Kant's arguments and proposed solutions, especially those offered by Cassirer. It then turns to the task of providing the Western philosophical tradition with an interpretation apart from Petersen's, which sees it as concerned only with the problem of being. The offered solution is the suggestion that Western philosophy be understood as a struggle, between epistemological and ontological perspectives, to provide a context for the various descriptions of nature provided by human scientific progress. Kant's philosophy is then interpreted as an effort to provide Newtonian physics with a valid context in the face of Hume's skepticism. The finding is that Kant was the first to suggest that an object does not acquire the spatio-temporal properties used in its physical description until introduced to an observer. The dissertation concludes that the authors of the Copenhagen interpretation were essentially engaged in Kant's enterprise through their attempt to provide an observer based context for the spatio-temporal descriptive principles used in the physics of their time.
Segmentation, modeling and classification of the compact objects in a pile
NASA Technical Reports Server (NTRS)
Gupta, Alok; Funka-Lea, Gareth; Wohn, Kwangyoen
1990-01-01
The problem of interpreting dense range images obtained from the scene of a heap of man-made objects is discussed. A range image interpretation system consisting of segmentation, modeling, verification, and classification procedures is described. First, the range image is segmented into regions and reasoning is done about the physical support of these regions. Second, for each region several possible three-dimensional interpretations are made based on various scenarios of the objects physical support. Finally each interpretation is tested against the data for its consistency. The superquadric model is selected as the three-dimensional shape descriptor, plus tapering deformations along the major axis. Experimental results obtained from some complex range images of mail pieces are reported to demonstrate the soundness and the robustness of our approach.
The 2008 North Atlantic Spring Bloom Experiment I: Overview and Strategy
NASA Astrophysics Data System (ADS)
D'Asaro, E. A.; Lee, C.; Perry, M.; Fennel, K.; Rehm, E.; Gray, A.; Briggs, N.; Gudmundsson, K.
2008-12-01
The 2008 North Atlantic Spring Bloom Experiment (NAB08) aimed to understand carbon export from this globally important event by combining a new generation of autonomous floats and gliders equipped with a new generation of sensors, and traditional and modern shipboard observational methods. Measurements were made from early April to late June 2008 in a region southeast of Iceland near the JGOFS and MLML sites. Although Sverdrup's classical explanation for the bloom is probably broadly correct, previous observations have revealed a large degree of spatial and temporal variability, often on scales of a few kilometers, which have made detailed tests of Sverdrup's hypothesis difficult. The experiment was designed to continuously sample the bloom and its temporal and spatial 'patchiness' from the pre-bloom, wintertime conditions through the Spring and early Summer. The spatial scales were sampled by 4 Seagliders operating together as a mobile array. Measurements were made in a Lagrangian, water-following coordinate system which minimized the effects of horizontal advection and most clearly separated temporal and spatial scales. The coordinate system was defined by two Lagrangian Floats, one of which was chosen as the center of the Seaglider array. Proper measurement of the bloom by the autonomous vehicles required a robust and redundant array of sensors measuring key physical, chemical and biological variables including temperature, salinity, spectral light, oxygen, multiple optical proxies for carbon (chlorophyll fluorescence, beam-c attenuation and optical backscatter coefficients) and nitrate. Redundant measurements were made whenever possible, with nearly identical sensors on many platforms and multiple sensors measuring similar quantities on the same platform. Such care is clearly necessary, since the current generation of biogeochemical sensor require considerable efforts in calibration and interpretation. The autonomous platforms provided good coverage in space and time, but could not sample the entire range of processes that control the bloom. More detailed measurements and multiple calibrations of the autonomous platforms were made on 4 cruises, particularly a 21-day Knorr cruise in May 2008 that included collaborators from five US and five international institutions. These measurements included nutrients; particulate organic carbon and nitrogen; characterization of plankton composition and physiology by size, imaging, genomics, HPLC pigments, absorption spectra, 14C-primary productivity, and variable fluorescence; particle flux from floating sediment traps; and ADCP and CTD measurements. The experiment clearly demonstrated the ability of autonomous platforms to make biogeochemically relevant measurements of blooms. Its success, however, required intensive shipboard support for sensor calibration and interpretation. Further development of sensor technology, validation protocols, and understanding is clearly required if these measurements are to made routinely and easily.
ERIC Educational Resources Information Center
Hills, Laura
2007-01-01
Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…
Estimation of clear-sky insolation using satellite and ground meteorological data
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Darnell, W. L.; Gupta, S. K.
1983-01-01
Ground based pyranometer measurements were combined with meteorological data from the Tiros N satellite in order to estimate clear-sky insolations at five U.S. sites for five weeks during the spring of 1979. The estimates were used to develop a semi-empirical model of clear-sky insolation for the interpretation of input data from the Tiros Operational Vertical Sounder (TOVS). Using only satellite data, the estimated standard errors in the model were about 2 percent. The introduction of ground based data reduced errors to around 1 percent. It is shown that although the errors in the model were reduced by only 1 percent, TOVS data products are still adequate for estimating clear-sky insolation.
NASA Astrophysics Data System (ADS)
Svenson, Eric Johan
Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.
Geeske Peeters, G M E E; Rainbird, Sophia; Lorimer, Michelle; Dobson, Annette J; Mishra, Gita D; Graves, Stephen E
2017-04-01
Background and purpose - There are concerns that mental health (MH) may influence outcomes of total knee arthroplasty (TKA) or total hip arthroplasty (THA). We examined effects of poor MH before surgery on long-term outcomes of osteoarthritis-related TKA or THA in women. Patients and methods - The data were from 9,737 middle-aged participants (47-52 years) and 9,292 older participants (73-78 years) in the Australian Longitudinal Study on Women's Health who completed surveys between 1998 and 2013. Dates of arthroplasties were obtained from the Australian Orthopaedics Association National Joint Replacement Registry. Participants without procedures were matched with participants with procedures. Trajectories of the Short-Form 36 scores for physical functioning, bodily pain, social functioning, and mental health based on mixed modeling were plotted for participants with and without surgery (stratified according to mental health, separately for TKA and THA, and for middle-aged and older participants). Results - In middle-aged women with poor and good MH, TKA improved physical function and reduced bodily pain, with improvements sustained up to 10 years after surgery. TKA contributed to restoration of social function in women with good MH, but this was less clear in women with poor MH. In both MH groups, mental health appeared to be unaffected by TKA. Similar patterns were observed after THA, and in older women. Interpretation - Recovery of physical and social function and reductions in pain were sustained for up to 10 years after surgery. Improvements in physical function and pain were also observed in women with poor mental health. Thus, in our view poor mental health should not be a contraindication for arthroplasty.
2D radiative-magnetohydrostatic model of a prominence observed by Hinode, SoHO/SUMER and Meudon/MSDP
NASA Astrophysics Data System (ADS)
Berlicki, A.; Gunar, S.; Heinzel, P.; Schmieder, B.; Schwartz, P.
2011-06-01
Aims: Prominences observed by Hinode show very dynamical and intriguing structures. To understand the mechanisms that are responsible for these moving structures, it is important to know the physical conditions that prevail in fine-structure threads. In the present work we analyse a quiescent prominence with fine structures, which exhibits dynamic behaviour, which was observed in the hydrogen Hα line with Hinode/SOT, Meudon/MSDP and Ondřejov/HSFA2, and simultaneously in hydrogen Lyman lines with SoHO/SUMER during a coordinated campaign. We derive the fine-structure physical parameters of this prominence and also address the questions of the role of the magnetic dips and of the interpretation of the flows. Methods: We calibrate the SoHO/SUMER and Meudon/MSDP data and obtain the line profiles of the hydrogen Lyman series (Lβ to L6), the Ciii (977.03 Å) and Svi (933.40 Å), and Hα along the slit of SoHO/SUMER that crosses the Hinode/SOT prominence. We employ a complex 2D radiation-magnetohydrostatic (RMHS) modelling technique to properly interpret the observed spectral lines and derive the physical parameters of interest. The model was constrained not only with integrated intensities of the lines, but also with the hydrogen line profiles. Results: The slit of SoHO/SUMER is crossing different prominence structures: threads and dark bubbles. Comparing the observed integrated intensities, the depressions of Hα bubbles are clearly identified in the Lyman, Ciii, and Svi lines. To fit the observations, we propose a new 2D model with the following parameters: T = 8000 K, pcen = 0.035 dyn cm-2, B = 5 Gauss, ne = 1010 cm-3, 40 threads each 1000 km wide, plasma β is 3.5 × 10-2. Conclusions: The analysis of Ciii and Svi emission in dark Hα bubbles allows us to conclude that there is no excess of a hotter plasma in these bubbles. The new 2D model allows us to diagnose the orientation of the magnetic field versus the LOS. The 40 threads are integrated along the LOS. We demonstrate that integrated intensities alone are not sufficient to derive the realistic physical parameters of the prominence. The profiles of the Lyman lines and also those of the Hα line are necessary to constrain 2D RMHS models. The magnetic field in threads is horizontal, perpendicular to the LOS, and in the form of shallow dips. With this geometry the dynamics of fine structures in prominences could be interpreted by a shrinkage of the quasi-horizontal magnetic field lines and apparently is not caused by the quasi-vertical bulk flows of the plasma, as Hinode/SOT movies seemingly suggest.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-24
... Organizations; ICE Clear Credit LLC; Order Approving Proposed Rule Change To Add Rules Related to the Clearing of Emerging Markets Sovereigns October 18, 2011. I. Introduction On August 30, 2011, ICE Clear Credit... Contracts by ICE Trust), 26D- 315 (Terms of the Cleared SES Contract), 26D-316 (Relevant Physical Settlement...
Initial observations from seismometers frozen into a borehole through the McMurdo Ice Shelf.
NASA Astrophysics Data System (ADS)
Prior, David; Eccles, Jennifer; Cooper, Joanna; Craw, Lisa; van Haastrecht, Laurine; Hamish Bowman, M.; Stevens, Craig; Gamble Rosevear, Madi; Hulbe, Christina; Gorman, Andrew; Horgan, Huw; Pyne, Alex
2017-04-01
A seismometer cable with two, three-component seismometers was frozen into a hot water borehole through the McMurdo Ice Shelf at Windless Bight in late December 2016. The seismometers are at 39m and 189m depth. The upper seismometer lies just below the firn-ice transition ( 37m) and very close to sea level ( 38m). The lower seismometer is positioned 30m above the base of the ice shelf ( 222m). The seismometers froze in within 40 (upper) to 60 (lower) hours of the last reaming operation. The temperature evolution during freezing is complicated, particularly for the lower seismometer. The complications are interpreted as the result of brine expulsion and brine pocket migration. We conducted an active source experiment using the frozen-in seismometers together with a surface seismometer and four lines of geophones radiating from the borehole, at 45-degree angles, to a distance of 240m. Sources included a traditional hammer and surface plate, two types of hammer activated surface shear wave sources (for hard and soft surfaces) and a hammer activated borehole source. The frozen-in seismometers show excellent separation of P - wave and S - wave arrivals for all sources, particularly on the lower seismometer. The surface shear sources give clearer separation of arrivals on the vertical and horizontal components. For some source to receiver geometries the surface shear sources give no P - wave arrival on the horizontal seismometer components and a very strong S - wave arrival that is partitioned between the horizontal components in correspondence with the source orientation. The borehole source (at 3 to 10m in the firn) also gives clearer separation of P - wave and S - wave arrivals compared to a surface hammer and plate. The frozen-in seismometers were also used to listen for natural events in the ice. Comparing the same events recorded at the surface and at depth, the latter are much less noisy than the former, leading to more clear interpretation. As in the active source experiments, P-wave and S-wave arrivals are clear and the partitioning onto different components (vertical and horizontal) is very clear. Using seismology to interpret the physical properties of ice masses is dependent on quality data. The patterns of anisotropy related to ice crystallographic preferred orientations (CPOs) are particularly rich for S - waves and the ability to measure S - wave velocities and shear wave splitting is of particular importance in using seismology to constrain CPOs. Our initial observations suggest that seismometers frozen-in at depth, together with artificial sources with controlled shear wave kinematics have great potential to help us constrain ice CPOs and resultant plastic anisotropy through seismic data.
ERIC Educational Resources Information Center
Maina, Michael P.; Maina, Julie Schlegel; Hunt, Kevin
2016-01-01
As teachers prepare children for the future, the need for developing critical thinking skills in students becomes clearly evident. One way to promote this process is through initiative games. Initiative games are clearly defined problems that a group must find a solution to through cooperation, physical effort and cognitive functioning. The…
Kinnett-Hopkins, Dominique; Learmonth, Yvonne; Hubbard, Elizabeth; Pilutti, Lara; Roberts, Sarah; Fanning, Jason; Wójcicki, Thomas; McAuley, Edward; Motl, Robert
2017-11-07
This study adopted a qualitative research design with directed content analysis and examined the interpretations of physical activity, exercise, and sedentary behaviour by persons with multiple sclerosis. Fifty three persons with multiple sclerosis who were enrolled in an exercise trial took part in semi-structured interviews regarding personal interpretations of physical activity, exercise, and sedentary behaviours. Forty three percent of participants indicated a consistent understanding of physical activity, 42% of participants indicated a consistent understanding of exercise, and 83% of participants indicated a consistent understanding of sedentary behaviour with the standard definitions. There was evidence of definitional ambiguity (i.e., 57, 58, and 11% of the sample for physical activity, exercise, and sedentary behaviour, respectively); 6% of the sample inconsistently defined sedentary behaviour with standard definitions. Some participants described physical activity in a manner that more closely aligned with exercise and confused sedentary behaviour with exercise or sleeping/napping. Results highlight the need to provide and utilise consistent definitions for accurate understanding, proper evaluation and communication of physical activity, exercise, and sedentary behaviours among persons with multiple sclerosis. The application of consistent definitions may minimise ambiguity, alleviate the equivocality of findings in the literature, and translate into improved communication about these behaviours in multiple sclerosis. Implications for Rehabilitation The symptoms of multiple sclerosis can be managed through participation in physical activity and exercise. Persons with multiple sclerosis are not engaging in sufficient levels of physical activity and exercise for health benefits. Rehabilitation professionals should use established definitions of physical activity, exercise, and sedentary behaviours when communicating about these behaviours among persons with multiple sclerosis.
A gentle introduction to Rasch measurement models for metrologists
NASA Astrophysics Data System (ADS)
Mari, Luca; Wilson, Mark
2013-09-01
The talk introduces the basics of Rasch models by systematically interpreting them in the conceptual and lexical framework of the International Vocabulary of Metrology, third edition (VIM3). An admittedly simple example of physical measurement highlights the analogies between physical transducers and tests, as they can be understood as measuring instruments of Rasch models and psychometrics in general. From the talk natural scientists and engineers might learn something of Rasch models, as a specifically relevant case of social measurement, and social scientists might re-interpret something of their knowledge of measurement in the light of the current physical measurement models.
Frequency and direction of competitive anger in contact sports.
Robazza, B; Bertollo, M; Bortoli, L
2006-09-01
The purpose of the present study was to investigate whether athletes involved in physical contact sports may interpret their feelings of anger as facilitative of performance, and to examine differences in the interpretation of anger as a function of the type of sport (team vs individual) or the competitive skill level (high vs low). A modified version of the State-Trait Anger Expression Inventory was administered to 100 Italian adult male athletes practicing rugby or individual combat sports (judo, freestyle wrestling, or Greco-Roman wrestling). The questionnaire was intended to measure the frequency and the direction (i.e., the facilitative-debilitative interpretation) of competitive anger. Many athletes engaged in contact sports tended interpret their competitive anger as facilitative of performance rather than debilitative. The type of sport and the athlete's standard level can mediate the individual's interpretation of the effects of anger symptoms upon performance. Competitors can interpret their anger as helpful to energize behavior and channel physical and mental resources for skill execution. Practitioners should assist athletes in gaining control over anger rather than attempting to suppress it.
ERIC Educational Resources Information Center
Bao, Lei; Redish, Edward F.
2002-01-01
Explains the critical role of probability in making sense of quantum physics and addresses the difficulties science and engineering undergraduates experience in helping students build a model of how to think about probability in physical systems. (Contains 17 references.) (Author/YDS)
Code of Federal Regulations, 2010 CFR
2010-07-01
... of a type contemplated in § 17.103(b), the waiver question should be referred in accordance with the... and material evidence, fraud, a change in law or interpretation of law, or clear and unmistakable...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of a type contemplated in § 17.103(b), the waiver question should be referred in accordance with the... and material evidence, fraud, a change in law or interpretation of law, or clear and unmistakable...
Smith, Jénine; Swartz, Leslie; Kilian, Sanja; Chiliza, Bonginkosi
2013-08-01
Many mental health clinicians in South Africa use informal interpreters, who are employed to perform other functions, such as cleaners and security guards; there are no formally trained interpreters. Drawing on qualitative semistructured interviews, this paper examines the experiences of informal interpreters working within a psychiatric setting. Furthermore, this paper explores how working in this invisible capacity affects informal interpreters' views of themselves and the contribution they feel they are making by acting as interpreters. An interpretative phenomenological approach enabled an in-depth analysis of the experiences of the ad hoc interpreters. The results of this study reveal a dilemma. On the one hand, informal interpreters interviewed jeopardize ethical principles by breaching confidentiality and reporting on patient behaviour without their consent. On the other hand, they report fulfilling an additional beneficial role in terms of the overall care of patients which goes beyond the ambit of the interpreting session. The impact and extent of the informal interpreters' involvement in care could not be ascertained solely from the data obtained in this study, but it is clear that informal interpreting may usefully be viewed as a form of hidden care work. A detailed ethnographic study aimed at exploring this further is therefore recommended.
Darwinism in disguise? A comparison between Bohr's view on quantum mechanics and QBism.
Faye, Jan
2016-05-28
The Copenhagen interpretation is first and foremost associated with Niels Bohr's philosophy of quantum mechanics. In this paper, I attempt to lay out what I see as Bohr's pragmatic approach to science in general and to quantum physics in particular. A part of this approach is his claim that the classical concepts are indispensable for our understanding of all physical phenomena, and it seems as if the claim is grounded in his reflection upon how the evolution of language is adapted to experience. Another, recent interpretation, QBism, has also found support in Darwin's theory. It may therefore not be surprising that sometimes QBism is said to be of the same breed as the Copenhagen interpretation. By comparing the two interpretations, I conclude, nevertheless, that there are important differences. © 2016 The Author(s).
Liao, David; Tlsty, Thea D.
2014-01-01
The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely ‘empirical’ equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752
NASA Astrophysics Data System (ADS)
Guzmán, Gema; Cabezas, José Manuel; Bauer, Thomas; Strauss, Peter; Winter, Silvia; Zaller, Johann; Gómez, José Alfonso
2017-04-01
The effect soil management on several indicators frequently used in the assessment of soil quality it is not always reflected unambiguously when measured at the field although it is normally assumed that this relation is straightforward. Within the European project VineDivers (www.vinedivers.eu), sixteen commercial vineyards belonging to the Appellation of Origin "Montilla-Moriles" (Córdoba) and covering a wide range of textural classes were selected. These farms were classified 'a priori' under two soil management categories: temporal cover crop and bare soil during the whole year. In each of the vineyards one representative inter-row was selected in order to characterise different physical, chemical and biological parameters to evaluate some aspects related to soil quality. Results indicate that the studied indicators respond clearly to soil textural class and vegetation cover biomass. However, there was no clear difference in above-ground biomass of the two management categories (Guzmán et al., 2016). These results suggest that the interpretation and extrapolation of the indicators evaluated should incorporate complementary information to characterise small variations of soil management intensity among vineyards that are apparently managed under the same management category. The communication presents this analysis based on the number and type of soil disturbance events of all vineyards. The high variability found among vineyards under the same management highlights the relevance of measuring these soil parameters used as quality indicators, instead of extrapolating from other vineyards or agricultural systems, and interpreting them according to baseline levels. References: Guzmán G., Cabezas J.M., Gómez J.A. 2016. Evaluación preliminar del efecto del manejo del suelo en indicadores que determinan su calidad en viñedos de la Denominación de Origen Montilla Moriles. II Jornadas de Viticultura SECH. Madrid.
Somerville, Lyndsay; Bryant, Dianne; Willits, Kevin; Johnson, Andrew
2013-02-08
Shoulder complaints are the third most common musculoskeletal problem in the general population. There are an abundance of physical examination maneuvers for diagnosing shoulder pathology. The validity of these maneuvers has not been adequately addressed. We propose a large Phase III study to investigate the accuracy of these tests in an orthopaedic setting. We will recruit consecutive new shoulder patients who are referred to two tertiary orthopaedic clinics. We will select which physical examination tests to include using a modified Delphi process. The physician will take a thorough history from the patient and indicate their certainty about each possible diagnosis (certain the diagnosis is absent, present or requires further testing). The clinician will only perform the physical examination maneuvers for diagnoses where uncertainty remains. We will consider arthroscopy the reference standard for patients who undergo surgery within 8 months of physical examination and magnetic resonance imaging with arthrogram for patients who do not. We will calculate the sensitivity, specificity and positive and negative likelihood ratios and investigate whether combinations of the top tests provide stronger predictions of the presence or absence of disease. There are several considerations when performing a diagnostic study to ensure that the results are applicable in a clinical setting. These include, 1) including a representative sample, 2) selecting an appropriate reference standard, 3) avoiding verification bias, 4) blinding the interpreters of the physical examination tests to the interpretation of the gold standard and, 5) blinding the interpreters of the gold standard to the interpretation of the physical examination tests. The results of this study will inform clinicians of which tests, or combination of tests, successfully reduce diagnostic uncertainty, which tests are misleading and how physical examination may affect the magnitude of the confidence the clinician feels about their diagnosis. The results of this study may reduce the number of costly and invasive imaging studies (MRI, CT or arthrography) that are requisitioned when uncertainty about diagnosis remains following history and physical exam. We also hope to reduce the variability between specialists in which maneuvers are used during physical examination and how they are used, all of which will assist in improving consistency of care between centres.
Polanski, Jaroslaw; Tkocz, Aleksandra; Kucia, Urszula
2017-09-11
On the one hand, ligand efficiency (LE) and the binding efficiency index (BEI), which are binding properties (B) averaged versus the heavy atom count (HAC: LE) or molecular weight (MW: BEI), have recently been declared a novel universal tool for drug design. On the other hand, questions have been raised about the mathematical validity of the LE approach. In fact, neither the critics nor the advocates are precise enough to provide a generally understandable and accepted chemistry of the LE metrics. In particular, this refers to the puzzle of the LE trends for small and large molecules. In this paper, we explain the chemistry and mathematics of the LE type of data. Because LE is a weight metrics related to binding per gram, its hyperbolic decrease with an increasing number of heavy atoms can be easily understood by its 1/MW dependency. Accordingly, we analyzed how this influences the LE trends for ligand-target binding, economic big data or molecular descriptor data. In particular, we compared the trends for the thermodynamic ∆G data of a series of ligands that interact with 14 different target classes, which were extracted from the BindingDB database with the market prices of a commercial compound library of ca. 2.5 mln synthetic building blocks. An interpretation of LE and BEI that clearly explains the observed trends for these parameters are presented here for the first time. Accordingly, we show that the main misunderstanding of the chemical meaning of the BEI and LE parameters is their interpretation as molecular descriptors that are connected with a single molecule, while binding is a statistical effect in which a population of ligands limits the formation of ligand-receptor complexes. Therefore, LE (BEI) should not be interpreted as a molecular (physicochemical) descriptor that is connected with a single molecule but as a property (binding per gram). Accordingly, the puzzle of the surprising behavior of LE is explained by the 1/MW dependency. This effect clearly explains the hyperbolic LE trend not as a real increase in binding potency but as a physical limitation due to the different population of ligands with different MWs in a 1 g sample available for the formation of ligand-receptor complexes. Graphical abstract .
Interpretive Experiments: An Interpretive Experiment in Ion Cyclotron Resonance Spectroscopy.
ERIC Educational Resources Information Center
Burnier, R. C.; Freiser, B. S.
1979-01-01
Provides a discussion which is intended for chemistry college students on the ion cyclotron resonance (ICR) spectroscopy, the physical basis for ion cyclotron resonance, and the experimental methodology employed by ICR spectroscopists. (HM)
Interpreting New Data from the High Energy Frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thaler, Jesse
2016-09-26
This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.
Reductionist versus holistic approaches to the study of river meandering: An ideal dialogue
NASA Astrophysics Data System (ADS)
Seminara, G.; Pittaluga, M. Bolla
2012-08-01
We discuss some recent attempts to apply the theory of nonlinear dynamical systems to the interpretation of the long term morphodynamic evolution of meandering rivers. To make the discussion attractive for the reader, we employ the method of a Socratic dialogue between a member of the so called 'reductionist community', who is inclined to support only theories based on physical principles and who is skeptical about fashionable new paradigms, and a member of the 'holistic community', who supports the idea that new paradigms are needed because rivers are complex systems, whose response can only be interpreted using tools that analyze the system "as a whole". The dialogue focuses on a selection of recent contributions which assesses the progress in understanding of meander dynamics achieved by the use of the above new paradigms. The discussion suggests that some consensus has been reached on the fractal nature of meandering patterns, with the fractal dimension playing the role of a morphometric parameter. On the contrary, despite different early suggestions, recent thorough analysis has been unable to detect any clear evidence that the evolution of meanders displays the characters of either a chaotic or a self organized critical process. The dialogue is concluded with some consensus on the perspective that well founded cellular models may possibly help reconciling the reductionist and holistic viewpoints.
The psychoacoustics of musical articulation
NASA Astrophysics Data System (ADS)
Spiegelberg, Scott Charles
This dissertation develops psychoacoustical definitions of notated articulations, the necessary first step in articulation research. This research can be useful to theorists interested in timbre analysis, the psychology of performance, analysis and performance, the psychology of style differentiation, and performance pedagogy. An explanation of wavelet transforms precedes the development of new techniques for analyzing transient sounds. A history of timbre perception research reveals the inadequacies of current sound segmentation models, resulting in the creation of a new model, the Pitch/Amplitude/Centroid Trajectory (PACT) model of sound segmentation. The new analysis techniques and PACT model are used to analyze recordings of performers playing a melodic fragment in a series of notated articulations. Statistical tests showed that the performers generally agreed on the interpretation of five different articulation groups. A cognitive test of articulation similarity, using musicians and non-musicians as participants, revealed a close correlation between similarity judgments and physical attributes, though additional unknown factors are clearly present. A second psychological test explored the perceptual salience of articulation notation, by asking musically-trained participants to match stimuli to the same notations the performers used. The participants also marked verbal descriptors for each articulation, such as short/long, sharp/dull, loud/soft, harsh/gentle, and normal/extreme. These results were matched against the results of Chapters Five and Six, providing an overall interpretation of the psychoacoustics of articulation.
On the representability problem and the physical meaning of coarse-grained models
NASA Astrophysics Data System (ADS)
Wagner, Jacob W.; Dama, James F.; Durumeric, Aleksander E. P.; Voth, Gregory A.
2016-07-01
In coarse-grained (CG) models where certain fine-grained (FG, i.e., atomistic resolution) observables are not directly represented, one can nonetheless identify indirect the CG observables that capture the FG observable's dependence on CG coordinates. Often, in these cases it appears that a CG observable can be defined by analogy to an all-atom or FG observable, but the similarity is misleading and significantly undermines the interpretation of both bottom-up and top-down CG models. Such problems emerge especially clearly in the framework of the systematic bottom-up CG modeling, where a direct and transparent correspondence between FG and CG variables establishes precise conditions for consistency between CG observables and underlying FG models. Here we present and investigate these representability challenges and illustrate them via the bottom-up conceptual framework for several simple analytically tractable polymer models. The examples provide special focus on the observables of configurational internal energy, entropy, and pressure, which have been at the root of controversy in the CG literature, as well as discuss observables that would seem to be entirely missing in the CG representation but can nonetheless be correlated with CG behavior. Though we investigate these problems in the framework of systematic coarse-graining, the lessons apply to top-down CG modeling also, with crucial implications for simulation at constant pressure and surface tension and for the interpretations of structural and thermodynamic correlations for comparison to experiment.
ERIC Educational Resources Information Center
Nethersole, Reingard
1972-01-01
The lyric poem is the most concentrated form of literary communication. The formulation of an approach to interpretation can be a useful tool for the instructor. The poem to be interpreted should be examined in six aspects: (1) information provided in the title, (2) the sound of the poem as read aloud, (3) the clear understanding of the meaning of…
NASA Astrophysics Data System (ADS)
Cocco, M.; Feuillet, N.; Nostro, C.; Musumeci, C.
2003-04-01
We investigate the mechanical interactions between tectonic faults and volcanic sources through elastic stress transfer and discuss the results of several applications to Italian active volcanoes. We first present the stress modeling results that point out a two-way coupling between Vesuvius eruptions and historical earthquakes in Southern Apennines, which allow us to provide a physical interpretation of their statistical correlation. Therefore, we explore the elastic stress interaction between historical eruptions at the Etna volcano and the largest earthquakes in Eastern Sicily and Calabria. We show that the large 1693 seismic event caused an increase of compressive stress along the rift zone, which can be associated to the lack of flank eruptions of the Etna volcano for about 70 years after the earthquake. Moreover, the largest Etna eruptions preceded by few decades the large 1693 seismic event. Our modeling results clearly suggest that all these catastrophic events are tectonically coupled. We also investigate the effect of elastic stress perturbations on the instrumental seismicity caused by magma inflation at depth both at the Etna and at the Alban Hills volcanoes. In particular, we model the seismicity pattern at the Alban Hills volcano (central Italy) during a seismic swarm occurred in 1989-90 and we interpret it in terms of Coulomb stress changes caused by magmatic processes in an extensional tectonic stress field. We verify that the earthquakes occur in areas of Coulomb stress increase and that their faulting mechanisms are consistent with the stress perturbation induced by the volcanic source. Our results suggest a link between faults and volcanic sources, which we interpret as a tectonic coupling explaining the seismicity in a large area surrounding the volcanoes.
Some Learning Problems Concerning the Use of Symbolic Language in Physics.
ERIC Educational Resources Information Center
De Lozano, Silvia Ragout; Cardenas, Marta
2002-01-01
Draws the attention of teachers of basic university physics courses to student problems concerning the interpretation of the symbolic language used in physics. Reports specific difficulties found in the first physics course related to different kinds of statements expressed in the mathematical language. (Contains 15 references.) (Author/YDS)
Henningsen, Peter; Gündel, Harald; Kop, Willem J; Löwe, Bernd; Martin, Alexandra; Rief, Winfried; Rosmalen, Judith G M; Schröder, Andreas; van der Feltz-Cornelis, Christina; Van den Bergh, Omer
2018-06-01
The mechanisms underlying the perception and experience of persistent physical symptoms are not well understood, and in the models, the specific relevance of peripheral input versus central processing, or of neurobiological versus psychosocial factors in general, is not clear. In this article, we proposed a model for this clinical phenomenon that is designed to be coherent with an underlying, relatively new model of the normal brain functions involved in the experience of bodily signals. Based on a review of recent literature, we describe central elements of this model and its clinical implications. In the model, the brain is seen as an active predictive processing or inferential device rather than one that is passively waiting for sensory input. A central aspect of the model is the attempt of the brain to minimize prediction errors that result from constant comparisons of predictions and sensory input. Two possibilities exist: adaptation of the generative model underlying the predictions or alteration of the sensory input via autonomic nervous activation (in the case of interoception). Following this model, persistent physical symptoms can be described as "failures of inference" and clinically well-known factors such as expectation are assigned a role, not only in the later amplification of bodily signals but also in the very basis of symptom perception. We discuss therapeutic implications of such a model including new interpretations for established treatments as well as new options such as virtual reality techniques combining exteroceptive and interoceptive information.
Laboratory Needs for Interstellar Ice Studies
NASA Astrophysics Data System (ADS)
Boogert, Abraham C. A.
2012-05-01
A large fraction of the molecules in dense interstellar and circumstellar environments is stored in icy grain mantles. The mantles are formed by a complex interplay between chemical and physical processes. Key questions on the accretion and desorption processes and the chemistry on the grain surfaces and within the icy mantles can only be answered by laboratory experiments. Recent infrared (2-30 micron) spectroscopic surveys of large samples of Young Stellar Objects (YSOs) and background stars tracing quiescent cloud material have shown that the ice band profiles and depths vary considerably as a function of environment. Using laboratory spectra in the identification process, it is clear that a rather complex mixture of simple species (CH3OH, CO2, H2O, CO) exists even in the quiescent cloud phase. Variations of the local physical conditions (CO freeze out) and time scales (CH3OH formation) appear to be key factors in the observed variations. Sublimation and thermal processing dominate as YSOs heat their environments. The identification of several ice absorption features is still disputed. I will outline laboratory work (e.g., on salts, PAHs, and aliphatic hydrocarbons) needed to further constrain the ice band identification as well as the thermal and chemical history of the carriers. Such experiments will also be essential to interpret future high spectral resolution SOFIA and JWST observations.
Schoelch, Simon; Vapaavuori, Jaana; Rollet, Frédéric-Guillaume; Barrett, Christopher J
2017-01-01
Humidity detection, and the quest for low-cost facile humidity-sensitive indicator materials is of great interest for many fields, including semi-conductor processing, food transport and storage, and pharmaceuticals. Ideal humidity-detection materials for a these applications might be based on simple clear optical readout with no power supply, i.e.: a clear color change observed by the naked eye of any untrained observer, since it doesn't require any extra instrumentation or interpretation. Here, the introduction of a synthesis-free one-step procedure, based on physical mixing of easily available commercial materials, for producing a humidity memory material which can be easily painted onto a wide variety of surfaces and undergoes a remarkable color change (approximately 100 nm blue-shift of λ MAX ) upon exposure to various thresholds of levels of ambient humidity is reported. This strong color change, easily visible to as a red-to-orange color switch, is locked in until inspection, but can then be restored reversibly if desired, after moderate heating. By taking advantage of spontaneously-forming reversible 'soft' supramolecular bonds between a red-colored azo dye and a host polymer matrix, a reversible dye 'migration' aggregation appearing orange, and dis-aggregation back to red can be achieved, to function as the sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Battle Creek Public Schools, MI.
In early June 1969, 55 special education and physical education teachers and experts in outdoor education met for a week at the Battle Creek Public Schools' outdoor education center, Clear Lake Camp (Michigan). The participants shared in the camping activities of children from Battle Creek classes for the physically and mentally handicapped, deaf,…
Intrinsic non-commutativity of closed string theory
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
2017-09-14
We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less
Preferential superior surface motion in wear simulations of the Charité total disc replacement.
Goreham-Voss, Curtis M; Vicars, Rachel; Hall, Richard M; Brown, Thomas D
2012-06-01
Laboratory wear simulations of the dual-bearing surface Charité total disc replacement (TDR) are complicated by the non-specificity of the device's center of rotation (CoR). Previous studies have suggested that articulation of the Charité preferentially occurs at the superior-bearing surface, although it is not clear how sensitive this phenomenon is to lubrication conditions or CoR location. In this study, a computational wear model is used to study the articulation kinematics and wear of the Charité TDR. Implant wear was found to be insensitive to the CoR location, although seemingly non-physiologic endplate motion can result. Articulation and wear were biased significantly to the superior-bearing surface, even in the presence of significant perturbations of loading and friction. The computational wear model provides novel insight into the mechanics and wear of the Charité TDR, allowing for better interpretation of in vivo results, and giving useful insight for designing future laboratory physical tests.
Blood-Pressure Measuring System Gives Accurate Graphic Output
NASA Technical Reports Server (NTRS)
1965-01-01
The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.
Two-lattice models of trace element behavior: A response
NASA Astrophysics Data System (ADS)
Ellison, Adam J. G.; Hess, Paul C.
1990-08-01
Two-lattice melt components of Bottinga and Weill (1972), Nielsen and Drake (1979), and Nielsen (1985) are applied to major and trace element partitioning between coexisting immiscible liquids studied by RYERSON and Hess (1978) and Watson (1976). The results show that (1) the set of components most successful in one system is not necessarily portable to another system; (2) solution non-ideality within a sublattice severely limits applicability of two-lattice models; (3) rigorous application of two-lattice melt components may yield effective partition coefficients for major element components with no physical interpretation; and (4) the distinction between network-forming and network-modifying components in the sense of the two-lattice models is not clear cut. The algebraic description of two-lattice models is such that they will most successfully limit the compositional dependence of major and trace element solution behavior when the effective partition coefficient of the component of interest is essentially the same as the bulk partition coefficient of all other components within its sublattice.
Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigolin, Gustavo
2005-03-01
We explicitly show a protocol in which an arbitrary two qubit state vertical bar {phi}>=a vertical bar 00>+b vertical bar 01>+c vertical bar 10>+d vertical bar 11> is faithfully and deterministically teleported from Alice to Bob. We construct the 16 orthogonal generalized Bell states that can be used to teleport the two qubits. The local operations Bob must perform on his qubits in order to recover the teleported state are also constructed. They are restricted only to single-qubit gates. This means that a controlled-NOT gate is not necessary to complete the protocol. A generalization where N qubits are teleported ismore » also shown. We define a generalized magic basis, which possesses interesting properties. These properties help us to suggest a generalized concurrence from which we construct a measure of entanglement that has a clear physical interpretation: A multipartite state has maximum entanglement if it is a genuine quantum teleportation channel.« less
Friction and Wear on the Atomic Scale
NASA Astrophysics Data System (ADS)
Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst
Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.
Temperature Effects of Dielectric Properties of ER Fluids
NASA Astrophysics Data System (ADS)
Qiu, Z. Y.; Hu, L.; Liu, M. W.; Bao, H. X.; Jiang, Y. G.; Zhou, L. W.; Tang, Y.; Gao, Z.; Sun, M.; Korobko, E. V.
Under the consideration of the role that energy transfer and dissipation play in ER effect, an improved theory frame for ER effects, polarization-dissipation-structure-rheology, is suggested. The theory frame is substantiated by the basic physical laws and certain critical experimental facts. The dielectric response of a diatomite ER fluid to temperature is measured in the temperature range of 140 K to 400 K. By comparison of the DC conductivity with the AC effective conductivity of the sample, we found that the AC dielectric loss consists of two parts. One part comes from the DC conductivity, the other from the response of the bound charges in scope of particle to AC field. It is suggested that the response of bound charges is very important to ER effects. Besides, the effect of temperature on shear stress is measured, and interpreted based on the dielectric measurements. The source of two loss peaks in the curve of the dielectric loss versus temperature is not clear.
Intrinsic non-commutativity of closed string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less
The prevalence of mind-body dualism in early China.
Slingerland, Edward; Chudek, Maciej
2011-07-01
We present the first large-scale, quantitative examination of mind and body concepts in a set of historical sources by measuring the predictions of folk mind-body dualism against the surviving textual corpus of pre-Qin (pre-221 BCE) China. Our textual analysis found clear patterns in the historically evolving reference of the word xin (heart/heart-mind): It alone of the organs was regularly contrasted with the physical body, and during the Warring States period it became less associated with emotions and increasingly portrayed as the unique locus of "higher" cognitive abilities. We interpret this as a semantic shift toward a shared cognitive bias in response to a vast and rapid expansion of literacy. Our study helps test the proposed universality of folk dualism, adds a new quantitative approach to the methods used in the humanities, and opens up a new and valuable data source for cognitive scientists: the record of dead minds. Copyright © 2011 Cognitive Science Society, Inc.
INTERPRETING PHYSICAL AND BEHAVIORAL HEALTH SCORES FROM NEW WORK DISABILITY INSTRUMENTS
Marfeo, Elizabeth E.; Ni, Pengsheng; Chan, Leighton; Rasch, Elizabeth K.; McDonough, Christine M.; Brandt, Diane E.; Bogusz, Kara; Jette, Alan M.
2015-01-01
Objective To develop a system to guide interpretation of scores generated from 2 new instruments measuring work-related physical and behavioral health functioning (Work Disability – Physical Function (WD-PF) and WD – Behavioral Function (WD-BH)). Design Cross-sectional, secondary data from 3 independent samples to develop and validate the functional levels for physical and behavioral health functioning. Subjects Physical group: 999 general adult subjects, 1,017 disability applicants and 497 work-disabled subjects. Behavioral health group: 1,000 general adult subjects, 1,015 disability applicants and 476 work-disabled subjects. Methods Three-phase analytic approach including item mapping, a modified-Delphi technique, and known-groups validation analysis were used to develop and validate cut-points for functional levels within each of the WD-PF and WD-BH instrument’s scales. Results Four and 5 functional levels were developed for each of the scales in the WD-PF and WD-BH instruments. Distribution of the comparative samples was in the expected direction: the general adult samples consistently demonstrated scores at higher functional levels compared with the claimant and work-disabled samples. Conclusion Using an item-response theory-based methodology paired with a qualitative process appears to be a feasible and valid approach for translating the WD-BH and WD-PF scores into meaningful levels useful for interpreting a person’s work-related physical and behavioral health functioning. PMID:25729901
Carling, Christopher
2013-08-01
Academic and practitioner interest in the physical performance of male professional soccer players in the competition setting determined via time-motion analyses has grown substantially over the last four decades leading to a substantial body of published research and aiding development of a more systematic evidence-based framework for physical conditioning. Findings have forcibly shaped contemporary opinions in the sport with researchers and practitioners frequently emphasising the important role that physical performance plays in match outcomes. Time-motion analyses have also influenced practice as player conditioning programmes can be tailored according to the different physical demands identified across individual playing positions. Yet despite a more systematic approach to physical conditioning, data indicate that even at the very highest standards of competition, the contemporary player is still susceptible to transient and end-game fatigue. Over the course of this article, the author suggests that a more pragmatic approach to interpreting the current body of time-motion analysis data and its application in the practical setting is nevertheless required. Examples of this are addressed using findings in the literature to examine (a) the association between competitive physical performance and 'success' in professional soccer, (b) current approaches to interpreting differences in time-motion analysis data across playing positions, and (c) whether data can realistically be used to demonstrate the occurrence of fatigue in match-play. Gaps in the current literature and directions for future research are also identified.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
... descriptive text interpreting all graphics, photos, graphs, and/or multimedia associated with publication. All... reviewed by a team. Among the criteria used to evaluate the applications are indication of a clear...
On the minimal risk threshold in research with children.
Binik, Ariella
2014-01-01
To protect children in research, procedures that are not administered in the medical interests of a child must be restricted. The risk threshold for these procedures is generally measured according to the concept of minimal risk. Minimal risk is often defined according to the risks of "daily life." But it is not clear whose daily life should serve as the baseline; that is, it is not clear to whom minimal risk should refer. Commentators in research ethics often argue that "minimal risk" should refer to healthy children or the subjects of the research. I argue that neither of these interpretations is successful. I propose a new interpretation in which minimal risk refers to children who are not unduly burdened by their daily lives. I argue that children are not unduly burdened when they fare well, and I defend a substantive goods account of children's welfare.
Digital image classification approach for estimating forest clearing and regrowth rates and trends
NASA Technical Reports Server (NTRS)
Sader, Steven A.
1987-01-01
A technique is presented to monitor vegetation changes for a selected study area in Costa Rica. A normalized difference vegetation index was computed for three dates of Landsat satellite data and a modified parallelipiped classifier was employed to generate a multitemporal greenness image representing all three dates. A second-generation image was created by partitioning the intensity levels at each date into high, medium, and low and thereby reducing the number of classes to 21. A sampling technique was applied to describe forest and other land cover change occurring between time periods based on interpretation of aerial photography that closely matched the dates of satellite acquisition. Comparison of the Landsat-derived classes with the photo-interpreted sample areas can provide a basis for evaluating the satellite monitoring technique and the accuracy of estimating forest clearing and regrowth rates and trends.
Effects of optimism on gambling in the rat slot machine task.
Rafa, Dominik; Kregiel, Jakub; Popik, Piotr; Rygula, Rafal
2016-03-01
Although gambling disorder is a serious social problem in modern societies, information about the behavioral traits that could determine vulnerability to this psychopathology is still scarce. In this study, we used a recently developed ambiguous-cue interpretation (ACI) paradigm to investigate whether 'optimism' and 'pessimism' as behavioral traits may determine the gambling-like behavior of rodents. In a series of ACI tests (cognitive bias screening), we identified rats that displayed 'pessimistic' and 'optimistic' traits. Subsequently, using the rat slot machine task (rSMT), we investigated if the 'optimistic'/'pessimistic' traits could determine the crucial feature of gambling-like behavior that has been investigated in rats and humans: the interpretation of 'near-miss' outcomes as a positive (i.e., win) situation. We found that 'optimists' did not interpret 'near-miss', 'near loss', or 'clear win' as win trials more often than their 'pessimistic' conspecifics; however, the 'optimists' were statistically more likely to reach for a reward in the hopeless 'clear loss' situation. This agrees with human studies and provides a platform for modeling interactions between behavioral traits and gambling in animals. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
von Aufschnaiter, Claudia; Alonzo, Alicia C.
2018-01-01
Establishing nuanced interpretations of student thinking is central to formative assessment but difficult, especially for preservice teachers. Learning progressions (LPs) have been proposed as a framework for promoting interpretations of students' thinking; however, research is needed to investigate whether and how an LP can be used to support…
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Scoccione, Andrea; Cacciani, Marco; Summa, Donato; De Rosa, Benedetto; Schween, Jan H.
2018-04-01
This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE), revealing the presence of a clear-air dark band phenomenon (i.e. a minimum in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable in the lidar backscatter echoes at 532 and 1064 nm, as well as in the particle depolarisation data. This phenomenon is attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the measuring site. The paper provides evidence of the phenomenon and illustrates possible interpretations for its occurrence.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... Organizations; ICE Clear Credit LLC; Notice of Filing of Proposed Rule Change To Add Rules Related to the..., 2011, ICE Clear Credit LLC (``ICC'') filed with the Securities and Exchange Commission (``Commission... Contracts by ICE Trust), 26D- 315 (Terms of the Cleared SES Contract), 26D-316 (Relevant Physical Settlement...
NASA Technical Reports Server (NTRS)
Brockmann, C. E. (Principal Investigator); Ayllon, R. B.
1973-01-01
The author has identified the following significant results. Using ERTS-1 imagery, it is possible to delimit great lithological units, folds, lineaments, faults, and in lesser degree unconformities. In the morphological aspect, the images show clearly the relief necessary for geological interpretation. The ERTS-1 images are important for the preparation of the geological and tectonic map of Bolivia, on a 1:1 million scale, if conventional methods of work are used as a base.
ERIC Educational Resources Information Center
MacQuarrie, Colleen; Murnaghan, Donna; MacLellan, Debbie
2008-01-01
The intervention potential of physical activity programs for intermediate schools (grades 7-9), could be enhanced by an understanding of how students engage with and disengage from physical activity. This study provides an interpretation of how adolescents, parents, teachers, and principals perceive students' involvement in physical activity…
Porcino, Antony; MacDougall, Colleen
2009-01-01
Background: Since the late 1980s, several taxonomies have been developed to help map and describe the interrelationships of complementary and alternative medicine (CAM) modalities. In these taxonomies, several issues are often incompletely addressed: A simple categorization process that clearly isolates a modality to a single conceptual categoryClear delineation of verticality—that is, a differentiation of scale being observed from individually applied techniques, through modalities (therapies), to whole medical systemsRecognition of CAM as part of the general field of health care Methods: Development of the Integrated Taxonomy of Health Care (ITHC) involved three stages: Development of a precise, uniform health glossaryAnalysis of the extant taxonomiesUse of an iterative process of classifying modalities and medical systems into categories until a failure to singularly classify a modality occurred, requiring a return to the glossary and adjustment of the classifying protocol Results: A full vertical taxonomy was developed that includes and clearly differentiates between techniques, modalities, domains (clusters of similar modalities), systems of health care (coordinated care system involving multiple modalities), and integrative health care. Domains are the classical primary focus of taxonomies. The ITHC has eleven domains: chemical/substance-based work, device-based work, soft tissue–focused manipulation, skeletal manipulation, fitness/movement instruction, mind–body integration/classical somatics work, mental/emotional–based work, bio-energy work based on physical manipulation, bio-energy modulation, spiritual-based work, unique assessments. Modalities are assigned to the domains based on the primary mode of interaction with the client, according the literature of the practitioners. Conclusions: The ITHC has several strengths: little interpretation is used while successfully assigning modalities to single domains; the issue of taxonomic verticality is fully resolved; and the design fully integrates the complementary health care fields of biomedicine and CAM. PMID:21589735
Physical Interpretation of Laboratory Friction Laws in the Context of Damage Physics
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Tiampo, K. F.; Martins, J. S.; Klein, W.
2002-12-01
Frictional on sliding surfaces is ultimately related to processes of surface damage, and can be understood in the context of the physics of dynamical threshold systems. Threshold systems are known to be some of the most important nonlinear, self-organizing systems in nature, including networks of earthquake faults, neural networks, superconductors and semiconductors, and the World Wide Web, as well as political, social, and ecological systems. All of these systems have dynamics that are strongly correlated in space and time, and all typically display a multiplicity of spatial and temporal scales. Here we discuss the physics of self-organization and damage in earthquake threshold systems at the "microscopic" laboratory scale, in which consideration of results from simulations leads to dynamical equations that can be used to derive results obtained from sliding friction experiments, specifically, the empirical "rate-and-state" friction equations of Ruina. Paradoxically, in all of these dissipative systems, long-range interactions induce the existence of locally ergodic dynamics, even though the dissipation of energy is involved. The existence of dissipative effects leads to the appearance of a "leaky threshold" dynamics, equivalent to a new scaling field that controls the size of nucleation events relative to the size of the background fluctuations. The corresponding appearance of a mean field spinodal leads to a general coarse-grained equation, which expresses the balance between rate of stress supplied, and rate of stress dissipated in the processes leading to surface damage. We can use ideas from thermodynamics and kinetics of phase transitions to develop the exact form of the rate-and-state equations, giving clear physical meaning to all terms and variables. Ultimately, the self-organizing dynamics arise from the appearance of an energy landscape in these systems, which in turn arises from the strong correlations and mean field nature of the physics.
NASA Technical Reports Server (NTRS)
Christodoulou, Dimitris M.; Kazanas, Demosthenes
2017-01-01
We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand's theorem, which has been known since 1873.
NASA Astrophysics Data System (ADS)
Christodoulou, Dimitris M.; Kazanas, Demosthenes
2017-12-01
We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand’s theorem, which has been known since 1873.
Against Many-Worlds Interpretations
NASA Astrophysics Data System (ADS)
Kent, Adrian
This is a critical review of the literature on many-worlds interpretations, MWI, with arguments drawn partly from earlier critiques by Bell and Stein. The essential postulates involved in various MWI are extracted, and their consistency with the evident physical world is examined. Arguments are presented against MWI proposed by Everett, Graham and DeWitt. The relevance of frequency operators to MWI is examined; it is argued that frequency operator theorems of Hartle and Farhi-Goldstone-Gutmann do not in themselves provide a probability interpretation for quantum mechanics, and thus neither support existing MWI nor would be useful in constructing new MWI. Comments are made on papers by Geroch and Deutsch that advocate MWI. It is concluded that no plausible set of axioms exists for an MWI that describes known physics.
Aerial Refueling Clearance Process Guide
2014-08-21
using multinational/bi-lateral agreements such as the ATARES Agreement, cross servicing agreements, replacement in kind agreements, Foreign Military...Lighting 8.7.8 External Paint Scheme 8.8 External Weapons/Drop Tanks 9.0 Physical /Aerodynamic Influences 9.1 Boom Clear Path To Receptacle dhkARSAG DOC...Cold Nose Sw. 8.5 External Fuel Tanks 9.0 Physical /Aerodynamic Influence R. 9.1 Probe Clear Path ie: Obstructions, Instruments etc. 9.2 Drogue Hookup
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... Organizations; The Options Clearing Corporation; Order Approving Proposed Rule Change To Accommodate Certain Physically- Settled Options on U.S. Treasury Securities January 23, 2013. I. Introduction On November 30, 2012, The Options Clearing Corporation (``OCC'') filed with the Securities and Exchange Commission...
NASA Astrophysics Data System (ADS)
Ronde, Christian De
In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, in fact, cannot be interpreted in terms of `ignorance about an actual state of affairs'. In the present paper we discuss how the metaphysics of actuality has played an essential role in limiting the possibilities of understating things differently. We propose instead a metaphysical scheme in terms of immanent powers with definite potentia which allows us to consider quantum probability in a new light, namely, as providing objective knowledge about a potential state of affairs.
Strath, Scott J; Kaminsky, Leonard A; Ainsworth, Barbara E; Ekelund, Ulf; Freedson, Patty S; Gary, Rebecca A; Richardson, Caroline R; Smith, Derek T; Swartz, Ann M
2013-11-12
The deleterious health consequences of physical inactivity are vast, and they are of paramount clinical and research importance. Risk identification, benchmarks, efficacy, and evaluation of physical activity behavior change initiatives for clinicians and researchers all require a clear understanding of how to assess physical activity. In the present report, we have provided a clear rationale for the importance of assessing physical activity levels, and we have documented key concepts in understanding the different dimensions, domains, and terminology associated with physical activity measurement. The assessment methods presented allow for a greater understanding of the vast number of options available to clinicians and researchers when trying to assess physical activity levels in their patients or participants. The primary outcome desired is the main determining factor in the choice of physical activity assessment method. In combination with issues of feasibility/practicality, the availability of resources, and administration considerations, the desired outcome guides the choice of an appropriate assessment tool. The decision matrix, along with the accompanying tables, provides a mechanism for this selection that takes all of these factors into account. Clearly, the assessment method adopted and implemented will vary depending on circumstances, because there is no single best instrument appropriate for every situation. In summary, physical activity assessment should be considered a vital health measure that is tracked regularly over time. All other major modifiable cardiovascular risk factors (diabetes mellitus, hypertension, hypercholesterolemia, obesity, and smoking) are assessed routinely. Physical activity status should also be assessed regularly. Multiple physical activity assessment methods provide reasonably accurate outcome measures, with choices dependent on setting-specific resources and constraints. The present scientific statement provides a guide to allow professionals to make a goal-specific selection of a meaningful physical activity assessment method.
Organizational Socialization: A Social Learning Interpretation
1982-02-01
approaches to socialization, they lack a clear theoretical basis for understanding and application. This paper proposes a social learning theoretical ... framework . Particular attention is given to the relevancy that modeling and self-control can have for organizational socialization. Specific examples of
Student Reasoning about Graphs in Different Contexts
ERIC Educational Resources Information Center
Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka
2016-01-01
This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the…
Assessing Learning in Small Sized Physics Courses
ERIC Educational Resources Information Center
Ene, Emanuela; Ackerson, Bruce J.
2018-01-01
We describe the construction, validation, and testing of a concept inventory for an "Introduction to Physics of Semiconductors" course offered by the department of physics to undergraduate engineering students. By design, this inventory addresses both content knowledge and the ability to interpret content via different cognitive…
On the homocentric spheres of Eudoxus.
NASA Astrophysics Data System (ADS)
Yavetz, I.
1998-03-01
In 1877, Schiaparelli published a classic essay on the homocentric spheres of Eudoxus, which became the standard, definitive historical reconstruction of Eudoxian planetary theory. The purpose of the present paper is to show that the two texts on which Schiaparelli based his reconstruction do not lead in an unequivocal way to this interpretation, and that they actually accomodate alternative and equally plausible interpretations that possess a clear astronomical superiority compared to Schiaparelli's. One alternative interpretation is elaborated here in detail. Thereby, it is shown that the exclusivity traditionally awarded to Schiaparelli's reconstruction can no longer be maintained, and that the little historical evidence we do possess does not enable us to make a choice between the availble alternatives.
Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations
1996-01-01
Covers the complex issue of how to evaluate contaminants in wildlife. This comprehensive resource deals with the question: 'How much of a chemical in the tissues of an animal is harmful?' Features: Authoritative and sound advice is provided on many environmental contaminants, including what the contaminants are and how to interpret the data on them. Each chapter includes a review of the literature on a specific chemical, followed by a clear technical summary that provides research guidance. Direction is given on how to interpret data that are sometimes conflicting or insufficient. Data are presented in easy to use tables. Primary attention is given to toxic concentrations of contaminants such as organochlorine pesticides, PCBs, dioxins, PAHs, metals, and fluorides.
NASA Astrophysics Data System (ADS)
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2017-06-01
In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students' mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n =14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i) the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii) more research should be focused not only on the correctness of students' mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.
Halliday, Sue; Thrall, James H
2005-05-01
This chapter discusses how to market to and educate the referral community and third party payers about the benefits of the emerging PET/CT technology. Clearly, the fusion of PET and CT into one piece of equipment will present challenges for years to come. It is important for providers to be involved with all of the administrators, managers, referring and interpreting physicians, and the payer communities in their market to clearly understand individual payer business practices and to identify opportunities to educate and influence changes in payment and coverage policies.
2013-01-01
Background Shoulder complaints are the third most common musculoskeletal problem in the general population. There are an abundance of physical examination maneuvers for diagnosing shoulder pathology. The validity of these maneuvers has not been adequately addressed. We propose a large Phase III study to investigate the accuracy of these tests in an orthopaedic setting. Methods We will recruit consecutive new shoulder patients who are referred to two tertiary orthopaedic clinics. We will select which physical examination tests to include using a modified Delphi process. The physician will take a thorough history from the patient and indicate their certainty about each possible diagnosis (certain the diagnosis is absent, present or requires further testing). The clinician will only perform the physical examination maneuvers for diagnoses where uncertainty remains. We will consider arthroscopy the reference standard for patients who undergo surgery within 8 months of physical examination and magnetic resonance imaging with arthrogram for patients who do not. We will calculate the sensitivity, specificity and positive and negative likelihood ratios and investigate whether combinations of the top tests provide stronger predictions of the presence or absence of disease. Discussion There are several considerations when performing a diagnostic study to ensure that the results are applicable in a clinical setting. These include, 1) including a representative sample, 2) selecting an appropriate reference standard, 3) avoiding verification bias, 4) blinding the interpreters of the physical examination tests to the interpretation of the gold standard and, 5) blinding the interpreters of the gold standard to the interpretation of the physical examination tests. The results of this study will inform clinicians of which tests, or combination of tests, successfully reduce diagnostic uncertainty, which tests are misleading and how physical examination may affect the magnitude of the confidence the clinician feels about their diagnosis. The results of this study may reduce the number of costly and invasive imaging studies (MRI, CT or arthrography) that are requisitioned when uncertainty about diagnosis remains following history and physical exam. We also hope to reduce the variability between specialists in which maneuvers are used during physical examination and how they are used, all of which will assist in improving consistency of care between centres. PMID:23394210
Uncertainty loops in travel-time tomography from nonlinear wave physics.
Galetti, Erica; Curtis, Andrew; Meles, Giovanni Angelo; Baptie, Brian
2015-04-10
Estimating image uncertainty is fundamental to guiding the interpretation of geoscientific tomographic maps. We reveal novel uncertainty topologies (loops) which indicate that while the speeds of both low- and high-velocity anomalies may be well constrained, their locations tend to remain uncertain. The effect is widespread: loops dominate around a third of United Kingdom Love wave tomographic uncertainties, changing the nature of interpretation of the observed anomalies. Loops exist due to 2nd and higher order aspects of wave physics; hence, although such structures must exist in many tomographic studies in the physical sciences and medicine, they are unobservable using standard linearized methods. Higher order methods might fruitfully be adopted.
On the physical interpretation of the nuclear molecular orbital energy.
Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés
2017-06-07
Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.
Ponce, Rafael; Abad, Leslie; Amaravadi, Lakshmi; Gelzleichter, Thomas; Gore, Elizabeth; Green, James; Gupta, Shalini; Herzyk, Danuta; Hurst, Christopher; Ivens, Inge A; Kawabata, Thomas; Maier, Curtis; Mounho, Barbara; Rup, Bonita; Shankar, Gopi; Smith, Holly; Thomas, Peter; Wierda, Dan
2009-07-01
An evaluation of potential antibody formation to biologic therapeutics during the course of nonclinical safety studies and its impact on the toxicity profile is expected under current regulatory guidance and is accepted standard practice. However, approaches for incorporating this information in the interpretation of nonclinical safety studies are not clearly established. Described here are the immunological basis of anti-drug antibody formation to biopharmaceuticals (immunogenicity) in laboratory animals, and approaches for generating and interpreting immunogenicity data from nonclinical safety studies of biotechnology-derived therapeutics to support their progression to clinical evaluation. We subscribe that immunogenicity testing strategies should be adapted to the specific needs of each therapeutic development program, and data generated from such analyses should be integrated with available clinical and anatomic pathology, pharmacokinetic, and pharmacodynamic data to properly interpret nonclinical studies.
The effects of ginseng, ephedrine, and caffeine on cognitive performance, mood and energy.
Lieberman, H R
2001-04-01
A variety of claims regarding the purported energy-enhancing properties of nutritional supplements and food constituents have recently been made. It appears that the supplements most frequently associated with such assertions are ginseng, ephedrine, and caffeine. Claims of increased energy are difficult to evaluate objectively because their meaning is not usually defined or specified. Often it is not clear whether the claims refer to physical or mental energy or both. Furthermore, an agreed upon scientific definition of either physical or mental energy enhancement does not exist. In spite of obvious differences in what the term physical energy, as opposed to mental energy implies, there is no clear scientific consensus on whether there is a difference between the two types of energy. Because the substances in question have been anecdotally associated with improvements in both physical and mental performance, their effects on both functions will be discussed, but with an emphasis placed on cognitive function and mood. Of the three substances discussed, caffeine's effects on cognitive and physical function, mood, and energy are best understood. It is clear that this food/drug enhances these functions when administered in moderate doses. Ephedrine may also enhance certain physical and mental functions related to "energy," but the evidence that ginseng has such properties is exceedingly weak.
Physical Education Curriculum Analysis Tool (PECAT)
ERIC Educational Resources Information Center
Lee, Sarah M.; Wechsler, Howell
2006-01-01
The Physical Education Curriculum Analysis Tool (PECAT) will help school districts conduct a clear, complete, and consistent analysis of written physical education curricula, based upon national physical education standards. The PECAT is customizable to include local standards. The results from the analysis can help school districts enhance…
Meeting the Challenge of Students' Understanding of Formulae in High-School Physics: A Learning Tool
ERIC Educational Resources Information Center
Bagno, Esther; Berger, Hana; Eylon, Bat-Sheva
2008-01-01
In this paper we describe a diagnostic study to investigate students' understanding of two basic formulae in physics. Based on the findings of the study, we have developed a classroom activity focused on the interpretation of formulae. The activity was developed cooperatively by physics education researchers and high-school physics teachers and…
The "Physically Educated" Person: Physical Education in the Philosophy of Reid, Peters and Aristotle
ERIC Educational Resources Information Center
MacAllister, James
2013-01-01
This article will derive a definition and account of the physically educated person, through an examination of the philosophy of Andrew Reid, Richard Peters and Aristotle. Initially, Reid's interpretation of Peters' views about the educational significance of practical knowledge (and physical education) will be considered. While it will…
ERIC Educational Resources Information Center
Dudley, Dean; Cairney, John; Wainwright, Nalda; Kriellaars, Dean; Mitchell, Drew
2017-01-01
The International Charter for Physical Education, Physical Activity, and Sport clearly states that vested agencies must participate in creating a strategic vision and identify policy options and priorities that enable the fundamental right for all people to participate in meaningful physical activity across their life course. Physical literacy is…
Physics and Biology Collaborate to Color the World
ERIC Educational Resources Information Center
Liu, Dennis W. C.
2013-01-01
To understand how life works, it is essential to understand physics and chemistry. Most biologists have a clear notion of where chemistry fits into their life sciences research and teaching. Although we are physical beings, physics does not always find a place in the biology curriculum. Physics informs and enlightens biology in myriad dimensions,…
Physical Education and Physical Activity: A Historical Perspective
ERIC Educational Resources Information Center
Guedes, Claudia
2007-01-01
Although many recent studies have shown that the lack of physical activity is one of the major causes of obesity, diabetes, and cardiovascular disease among children and adolescents, few studies have shown the connection between the lack of physical education and the prevalence of a sedentary lifestyle. However, it is clear that physical education…
Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng
2016-01-01
Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586
ERIC Educational Resources Information Center
Baily, Charles Raymond
2011-01-01
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…
Constituting objectivity: Transcendental perspectives on modern physics
NASA Astrophysics Data System (ADS)
Everett, Jonathan
2012-05-01
There is increasing interest in exploring Kantian approaches in the study of the history and philosophy of physics. The most well-known examples of this trend-Friedman's (2001), Ryckman's (2005) and DiSalle's (2006)-focus on Kantianism in the context of the development of the general theory of relativity. The edited collection Constituting Objectivity seeks to develop key Kantian insights-in the most part-in the context of later developments in physics: as well as discussing relativity the volume also provides Kantian interpretations of Bohr's development of quantum theory and continues to provide Kantian insight from later interpretations of quantum mechanics all the way through to considering noncommutative geometry and loop quantum gravity. The volume contains papers on a wide variety of subjects and offers an essential introduction to the breadth of Kantian trends in modern physics.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... Organizations; The Options Clearing Corporation; Notice of Filing of Proposed Rule Change To Accommodate Certain Physically-Settled Options on U.S. Treasury Securities December 11, 2012. Pursuant to Section 19(b)(1) of the... November 30, 2012, The Options Clearing Corporation (``OCC'') filed with the Securities and Exchange...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-29
... to security futures), and in either case cleared through the Options Clearing Corporation (``OCC... contract market or derivatives transaction execution facility for transactions for future delivery in any... of the Options and Security Futures on Gold and Silver Products. In enacting Section 4(c), Congress...
Iverson, R.M.; Major, J.J.
1987-01-01
We present data on rainfall, ground-water flow, and repetitive seasonal motion that occurred from 1982 to 1985 at Minor Creek landslide in northwestern Californa, and we interpret these data in the context of physically based theories. We find that landslide motion is closely regulated by the direction and magnitude of near-surface hydraulic gradients and by waves of pore pressure caused by intermittent rainfall. Hummocky topography that results from slope instability may cause ground-water flow that perpetuates instability. -from Authors
Making the Transition from Classical to Quantum Physics
ERIC Educational Resources Information Center
Dutt, Amit
2011-01-01
This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…
Curricular Issues in Urban High School Physical Education
ERIC Educational Resources Information Center
Schmidlein, Robert; Vickers, Brad; Chepyator-Thomson, Rose
2014-01-01
Urban physical education curriculum articles are sparsely published in major educational journals (Chepyator-Thomson et al., 2008; Culp, 2005). This leaves urban physical educators the daunting task to modify and prepare curriculum based on formal class training and educational workshops and to interpret journal articles to be applied to the urban…
Iowa Guidelines for Educationally Related Physical Therapy Services.
ERIC Educational Resources Information Center
David, Kathy
This guide provides background information to help interpret Iowa state and federal rules as they apply to physical therapy (PT) for students with disabilities (birth to age 21) in educational settings. The first section defines professional personnel requirements and statements of licensure for the positions of physical therapist and physical…
Teachers' Knowledge about and Views of the National Standards for Physical Education
ERIC Educational Resources Information Center
Chen, Weiyun
2006-01-01
This study investigated the current levels of teachers' knowledge about and views of the National Standards for Physical Education (NASPE, 1995) and factors that influenced the teachers' understandings and interpretations of the standards. Twenty-five elementary and secondary physical education teachers voluntarily participated in this study. Data…
What Does "Fast" Mean? Understanding the Physical World through Computational Representations
ERIC Educational Resources Information Center
Parnafes, Orit
2007-01-01
This article concerns the development of conceptual understanding of a physical phenomenon through the use of computational representations. It examines how students make sense of and interpret computational representations, and how their understanding of the represented physical phenomenon develops in this process. Eight studies were conducted,…
A critical literature review of focused electron beam induced deposition
NASA Astrophysics Data System (ADS)
van Dorp, W. F.; Hagen, C. W.
2008-10-01
An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally, there is a limited understanding of the mechanism of electron induced precursor dissociation. In many cases, the deposit composition is not directly dependent on the stoichiometric composition of the precursor and the electron induced decomposition paths can be very different from those expected from calculations or thermal decomposition. The dissociation mechanism is one of the key factors determining the purity of the deposits and a better understanding of this process will help develop electron beam induced deposition into a viable nanofabrication technique.
Physical Education & Outdoor Education: Complementary but Discrete Disciplines
ERIC Educational Resources Information Center
Martin, Peter; McCullagh, John
2011-01-01
The Australian Council for Health, Physical Education and Recreation (ACHPER) includes Outdoor Education (OE) as a component of Physical Education (PE). Yet Outdoor Education is clearly thought of by many as a discrete discipline separate from Physical Education. Outdoor Education has a body of knowledge that differs from that of Physical…
Bully Prevention in the Physical Education Classroom
ERIC Educational Resources Information Center
Fuller, Brett; Gulbrandson, Kim; Herman-Ukasick, Beth
2013-01-01
Bullying takes on many forms and occurs in all classrooms, and the activities found in physical education often provide fertile ground for these behaviors. For example, dodgeball is often played in physical education settings, even though the American Alliance for Health, Physical Education, Recreation and Dance has clearly stated that dodgeball…
Tilson, Julie K; Marshall, Katie; Tam, Jodi J; Fetters, Linda
2016-04-22
A primary barrier to the implementation of evidence based practice (EBP) in physical therapy is therapists' limited ability to understand and interpret statistics. Physical therapists demonstrate limited skills and report low self-efficacy for interpreting results of statistical procedures. While standards for physical therapist education include statistics, little empirical evidence is available to inform what should constitute such curricula. The purpose of this study was to conduct a census of the statistical terms and study designs used in physical therapy literature and to use the results to make recommendations for curricular development in physical therapist education. We conducted a bibliometric analysis of 14 peer-reviewed journals associated with the American Physical Therapy Association over 12 months (Oct 2011-Sept 2012). Trained raters recorded every statistical term appearing in identified systematic reviews, primary research reports, and case series and case reports. Investigator-reported study design was also recorded. Terms representing the same statistical test or concept were combined into a single, representative term. Cumulative percentage was used to identify the most common representative statistical terms. Common representative terms were organized into eight categories to inform curricular design. Of 485 articles reviewed, 391 met the inclusion criteria. These 391 articles used 532 different terms which were combined into 321 representative terms; 13.1 (sd = 8.0) terms per article. Eighty-one representative terms constituted 90% of all representative term occurrences. Of the remaining 240 representative terms, 105 (44%) were used in only one article. The most common study design was prospective cohort (32.5%). Physical therapy literature contains a large number of statistical terms and concepts for readers to navigate. However, in the year sampled, 81 representative terms accounted for 90% of all occurrences. These "common representative terms" can be used to inform curricula to promote physical therapists' skills, competency, and confidence in interpreting statistics in their professional literature. We make specific recommendations for curriculum development informed by our findings.
REVIEW OF QUANTITATIVE STANDARDS AND GUIDELINES FOR FUNGI IN INDOOR AIR
Exposure to fungal aerosols clearly causes human disease. However, methods for assessing exposure remain poorly understood, and guidelines for interpreting data are often contradictory. The purposes of this paper are to review and compare existing guidelines for indoor airborne...
Popular cinema and lesbian interpretive strategies.
Dobinson, C; Young, K
2000-01-01
In its examination of the relationship between popular film and lesbian viewing practices, this study attempts to more fully elucidate current ideas around audience engagement and forms of cultural reception. Drawing on 15 in-depth interviews conducted in Western Canada in 1996, the results clearly demonstrate the existence of active lesbian viewers, whose interpretations of popular film are intimately informed by lesbian-specific life experiences and cultural competencies. Although the social conditions which create the need for resistant viewing are themselves oppressive, subversion of mainstream film holds out some possibility of empowerment for lesbian viewers.
Bayesian Exploratory Factor Analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. PMID:25431517
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez Almeida, J.; Morales-Luis, A. B.; Muñoz-Tuñón, C.
2014-03-01
We measure the oxygen metallicity of the ionized gas along the major axis of seven dwarf star-forming galaxies. Two of them, SDSSJ1647+21 and SDSSJ2238+14, show ≅0.5 dex metallicity decrements in inner regions with enhanced star formation activity. This behavior is similar to the metallicity drop observed in a number of local tadpole galaxies by Sánchez Almeida et al., and was interpreted as showing early stages of assembling in disk galaxies, with the star formation sustained by external metal-poor gas accretion. The agreement with tadpoles has several implications. (1) It proves that galaxies other than the local tadpoles present the samemore » unusual metallicity pattern. (2) Our metallicity inhomogeneities were inferred using the direct method, thus discarding systematic errors usually attributed to other methods. (3) Taken together with the tadpole data, our findings suggest a threshold around one-tenth the solar value for the metallicity drops to show up. Although galaxies with clear metallicity drops are rare, the physical mechanism responsible for them may sustain a significant part of the star formation activity in the local universe. We argue that the star formation dependence of the mass-metallicity relationship, as well as other general properties followed by most local disk galaxies, is naturally interpreted as side effects of pristine gas infall. Alternatives to the metal-poor gas accretion are examined as well.« less
Are Quantum Models for Order Effects Quantum?
NASA Astrophysics Data System (ADS)
Moreira, Catarina; Wichert, Andreas
2017-12-01
The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.
On the representability problem and the physical meaning of coarse-grained models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Jacob W.; Dama, James F.; Durumeric, Aleksander E. P.
2016-07-28
In coarse-grained (CG) models where certain fine-grained (FG, i.e., atomistic resolution) observables are not directly represented, one can nonetheless identify indirect the CG observables that capture the FG observable’s dependence on CG coordinates. Often, in these cases it appears that a CG observable can be defined by analogy to an all-atom or FG observable, but the similarity is misleading and significantly undermines the interpretation of both bottom-up and top-down CG models. Such problems emerge especially clearly in the framework of the systematic bottom-up CG modeling, where a direct and transparent correspondence between FG and CG variables establishes precise conditions formore » consistency between CG observables and underlying FG models. Here we present and investigate these representability challenges and illustrate them via the bottom-up conceptual framework for several simple analytically tractable polymer models. The examples provide special focus on the observables of configurational internal energy, entropy, and pressure, which have been at the root of controversy in the CG literature, as well as discuss observables that would seem to be entirely missing in the CG representation but can nonetheless be correlated with CG behavior. Though we investigate these problems in the framework of systematic coarse-graining, the lessons apply to top-down CG modeling also, with crucial implications for simulation at constant pressure and surface tension and for the interpretations of structural and thermodynamic correlations for comparison to experiment.« less
STIP Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
The study of travelling interplanetary phenomena has continued over a period of years. The STIP (Study of Travelling Interplanetary Phenomena) Symposium on Physical Interpretation of Solar/Interplanetary and Cometary Intervals was held in Huntsville, Alabama, on May 12-15, 1987, the first of these meetings to be held in the United States. The Symposium's objective was to coordinate and disseminate new science gained from the recent solar-terrestrial and cometary intervals which can be used to better understand the linkage of physical events to the Sun's vagaries (flares, coronal holes, eruptive prominences) from their initial detection to their consequence. Fifty-one presentations were made during the four-day period. Abstracts of these reports are included as Appendix A.
Quasar evolution - Not a deficit at 'low' redshifts
NASA Technical Reports Server (NTRS)
Avni, Y.; Schiller, N.
1983-01-01
Hawkins and Stewart (1981) have argued that the conventional interpretation of complete quasar samples in terms of a cosmological evolution of quasars is not unique. It has been suggested that these data can also be interpreted as due to a deficit in the density of quasars. Hawkins and Stewart have argued that such a deficit could be either apparent, due to an observational selection which biases against the inclusion of low-z quasars, or real, due to a lower density of quasars at low redshifts. The present investigation is concerned with this new interpretation. In order to test the interpretation of Hawkins and Stewart (1981) as directly as possible, the investigation is restricted to the same type of quasar samples considered by Hawkins and Stewart. It is found that the obtained results contradict clearly Hawkins and Stewart's assertion. Quasar evolution is not just a deficit of quasars at low redshifts, neither apparent nor real.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.
1998-01-01
We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.
Langston, Marvin; Cardick, Lauren C.; Johnson, Nancy; Clayton, Paula; Brownson, Ross C.
2014-01-01
Background Regular physical activity can help prevent chronic diseases, yet only half of US adults meet national physical activity guidelines. One barrier to physical activity is a lack of safe places to be active, such as bike paths and sidewalks. Complete Streets, streets designed to enable safe access for all users, can help provide safe places for activity. Community Context This community case study presents results from interviews with residents and policymakers of Topeka, Kansas, who played an integral role in the passage of a Complete Streets resolution in 2009. It describes community engagement processes used to include stakeholders, assess existing roads and sidewalks, and communicate with the public and decision-makers. Methods Key informant interviews were conducted with city council members and members of Heartland Healthy Neighborhoods in Topeka to learn how they introduced a Complete Streets resolution and the steps they took to ensure its successful passage in the City Council. Interviews were recorded, transcribed, and analyzed by using focused-coding qualitative analysis. Outcome Results included lessons learned from the process of passing the Complete Streets resolution and advice from participants for other communities interested in creating Complete Streets in their communities. Interpretation Lessons learned can apply to other communities pursuing Complete Streets. Examples include clearly defining Complete Streets; educating the public, advocates, and decision-makers about Complete Streets and how this program enhances a community; building a strong and diverse network of supporters; and using stories and examples from other communities with Complete Streets to build a convincing case. PMID:24556251
Expanding the basic science debate: the role of physics knowledge in interpreting clinical findings.
Goldszmidt, Mark; Minda, John Paul; Devantier, Sarah L; Skye, Aimee L; Woods, Nicole N
2012-10-01
Current research suggests a role for biomedical knowledge in learning and retaining concepts related to medical diagnosis. However, learning may be influenced by other, non-biomedical knowledge. We explored this idea using an experimental design and examined the effects of causal knowledge on the learning, retention, and interpretation of medical information. Participants studied a handout about several respiratory disorders and how to interpret respiratory exam findings. The control group received the information in standard "textbook" format and the experimental group was presented with the same information as well as a causal explanation about how sound travels through lungs in both the normal and disease states. Comprehension and memory of the information was evaluated with a multiple-choice exam. Several questions that were not related to the causal knowledge served as control items. Questions related to the interpretation of physical exam findings served as the critical test items. The experimental group outperformed the control group on the critical test items, and our study shows that a causal explanation can improve a student's memory for interpreting clinical details. We suggest an expansion of which basic sciences are considered fundamental to medical education.
Brown, Jessica A; Hux, Karen; Knollman-Porter, Kelly; Wallace, Sarah E
2016-01-01
Concomitant visual and cognitive impairments following traumatic brain injuries (TBIs) may be problematic when the visual modality serves as a primary source for receiving information. Further difficulties comprehending visual information may occur when interpretation requires processing inferential rather than explicit content. The purpose of this study was to compare the accuracy with which people with and without severe TBI interpreted information in contextually rich drawings. Fifteen adults with and 15 adults without severe TBI. Repeated-measures between-groups design. Participants were asked to match images to sentences that either conveyed explicit (ie, main action or background) or inferential (ie, physical or mental inference) information. The researchers compared accuracy between participant groups and among stimulus conditions. Participants with TBI demonstrated significantly poorer accuracy than participants without TBI extracting information from images. In addition, participants with TBI demonstrated significantly higher response accuracy when interpreting explicit rather than inferential information; however, no significant difference emerged between sentences referencing main action versus background information or sentences providing physical versus mental inference information for this participant group. Difficulties gaining information from visual environmental cues may arise for people with TBI given their difficulties interpreting inferential content presented through the visual modality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-07-01
This second edition is based on data available on March 15, 1961. Sections on constants necessary for the interpretation of experimental data and on digital computer programs for reactor design and reactor physics have been added. 1344 references. (D.C.W.)
Wiitavaara, Birgitta; Heiden, Marina
2017-06-02
The purpose was to investigate how physical function is assessed in people with musculoskeletal disorders (MSD) in the neck. Specifically, we aimed to determine: (1) Which questionnaires are used to assess physical function in people with MSD in the neck? (2) What do those questionnaires measure? (3) What are the measurement properties of the questionnaires? A systematic review was performed to identify questionnaires and psychometric evaluations. The content of the questionnaires was categorized according to the International Classification of Function, Disability and Health, and the psychometric properties were quality-rated using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. Ten questionnaires and 32 articles evaluating measurement properties were analyzed. Most questionnaires covered only the components body functions and activity and participation, more often activity participation than body function. Internal consistency was adequate in most questionnaires, whereas responsiveness was generally low. Neck Disability Index was most evaluated, but the evaluations of all questionnaires tended to cover most properties in the checklist. The questionnaires differed substantially in items and extent to which their psychometric properties had been evaluated. Focus of measurement was on activities in daily life rather than physical function as such. Implications for Rehabilitation To provide early diagnostics and effective treatment for patients with neck disorders, valid and reliable instruments that measure relevant aspects of the disorders are needed. This paper presents an overview of content and quality of questionnaires used to assess physical function in neck disorders, which may facilitate informed decisions about which measurement instruments to use when evaluating the course of neck disorders. Most of the questionnaires need more testing to judge the quality, however the NDI was the most frequently tested questionnaire. The COnsensus-based Standards for the selection of health Measurement INstruments checklist is a useful tool in relation to psychometric testing of questionnaires, but clear definitions of interpretation of the quality criteria in each study would enhance comparability of results.
Physics issues of gamma ray burst emissions
NASA Technical Reports Server (NTRS)
Liang, Edison
1987-01-01
The critical physics issues in the interpretation of gamma-ray-burst spectra are reviewed. An attempt is made to define the emission-region parameter space satisfying the maximum number of observational and theoretical constraints. Also discussed are the physical mechanisms responsible for the bursts that are most consistent with the above parameter space.
Comparison of Student Understanding of Line Graph Slope in Physics and Mathematics
ERIC Educational Resources Information Center
Planinic, Maja; Milin-Sipus, Zeljka; Katic, Helena; Susac, Ana; Ivanjek, Lana
2012-01-01
This study gives an insight into the differences between student understanding of line graph slope in the context of physics (kinematics) and mathematics. Two pairs of parallel physics and mathematics questions that involved estimation and interpretation of line graph slope were constructed and administered to 114 Croatian second year high school…
Analysis of Learning in the Case of a Teaching on Heat and Temperature.
ERIC Educational Resources Information Center
Tiberghien, Andree
In the domain of research on physics education, results on students' conceptions show difficulties in physics learning. This paper aims to propose theoretical elements to interpret such learning difficulties related to physics teaching in the case of heat and temperature. Sections in this paper include: (1) Introduction; (2) Epistemological…
Assessment and Interpretation of Body Composition in Physical Education
ERIC Educational Resources Information Center
Vehrs, Pat; Hager, Ron
2006-01-01
The physical educator's role is evolving into that of a teacher who is well educated in the areas of teaching, skill acquisition and development, motor learning, exercise physiology, physical conditioning, weight management, health, and lifestyle management. In an era when childhood obesity is at an all-time high, body composition can be one…
Physical Education in Scandinavia with a Focus on Sweden: A Comparative Perspective
ERIC Educational Resources Information Center
Annerstedt, Claes
2008-01-01
Purpose: The purpose of this paper is to investigate meanings attached to physical education in the Scandinavian countries through (1) the different national syllabi; and (2) interpretations and conclusions researchers make in their studies of Scandinavian physical education and how these findings look like compared with other researchers'…
NASA Astrophysics Data System (ADS)
Ruetsche, Laura
The objects of the empirical science known as particle physics are not like objects ordinarily conceived. Physicists' particles can enter states strangely entangled with those of other particles; they can obey statistics which suggest that they lack genidentity; their properties (some think) are created in measurement, or (others think) can only be limned from the symmetries of the theory describing them. 'The implications of contemporary physical theories for the debate on the nature of objects' provides 'the central theme' (p. 4) of Interpreting Bodies, editor Elena Castellani's new collection of essays. Contributions to the volume vary dramatically in vintage (Born's and Reichenbach's are well into middle age; others appear here for the first time); in approach (the collection includes Giuliano Toraldo diFrancia's nine-page history of the object concept from Democritus to d'Espagnat, Peter Mittelstaedt's discussion of the Kantian constitution of quantum objects, and Giulo Peruzzi's explication of the scattering cross section and its role in experimental particle physics); and in intended audience. Lacking the space to treat each contribution in turn, I will focus on those dealing with the problem of the One and the Many.
Geoheritage, geotourism and cultural landscapes in Scotland
NASA Astrophysics Data System (ADS)
Gordon, John E.
2015-04-01
Geoheritage is closely linked with many aspects of cultural heritage and the development of tourism in Scotland. Historically, aesthetic appreciation of the physical landscape and links with literature and art formed the foundation for tourism during the 18th and 19th centuries. Today, exploration of the cultural links between geodiversity and landscape is providing new opportunities for raising awareness of geoheritage through literature, poetry, art and the built heritage. Interpreting the cultural dimension of geodiversity can enable people to connect with geodiversity through different experiences and a renewed sense of wonder about the physical landscape and the creative inspiration provided by geodiversity. It can also link geodiversity to cultural roots and sense of place, allowing exploration of different connections between people and the natural world. Such experiential engagement is promoted through the development of Geoparks. It requires thinking about how interpretation can add value to people's experiences and provide involvement that evokes a sense of wonder about the physical landscape. This means encouraging new and memorable experiential ways of interpreting the landscape and communicating its geological stories, not simply presenting information. Rediscovering a sense of wonder about the physical landscape through cultural links can enable wider public appreciation of geoheritage and help to develop greater support for geoconservation.
Highlights And Shadows Of High Redshift Starbursts: A HerschelFmos Joint Effort
NASA Astrophysics Data System (ADS)
Puglisi, Annagrazia
2017-06-01
Starburst galaxies represent a critical stage in galaxy evolution as they are the likely progenitors of passively evolving ellipticals. The properties of high-redshift starbursts are however still debated as it is not clear to which extent their vigorous star formation rate is caused by an enhanced gas fraction or an enhanced star formation efficiency, and what physical processes trigger such violent activity. Our study of the rest-frame optical spectra from the FMOS-COSMOS survey of twelve z 1.6 Herschel starbursts combined with a rich ancillary data-set from UV to ALMA, is shedding light on some of these questions. By measuring the nebular extinction from different indicators, we find that 90% of their extreme SFR arises from an heavily obscured component which is thick in the optical. We also measure their gas-phase metallicity, showing that starbursts are metal-rich outliers from the metallicity-SFR anticorrelation observed at fixed stellar mass for the main sequence population. Our findings are consistent with a major merger origin for the starburst event. I will present this study discussing its implications on our interpretation of the high-redshift starbursts physics. I will also briefly discuss possible extensions of this work with the future PFS survey and how we can take advantage of the IFU capabilities of JWST/NIRspec to unveil the complex structure of these elusive systems.
NASA Astrophysics Data System (ADS)
Souza, D. M.; Costa, I. A.; Nóbrega, R. A.
2017-10-01
This document presents a detailed study of the performance of a set of digital filters whose implementations are based on the best linear unbiased estimator theory interpreted as a constrained optimization problem that could be relaxed depending on the input signal characteristics. This approach has been employed by a number of recent particle physics experiments for measuring the energy of particle events interacting with their detectors. The considered filters have been designed to measure the peak amplitude of signals produced by their detectors based on the digitized version of such signals. This study provides a clear understanding of the characteristics of those filters in the context of particle physics and, additionally, it proposes a phase related constraint based on the second derivative of the Taylor expansion in order to make the estimator less sensitive to phase variation (phase between the analog signal shaping and its sampled version), which is stronger in asynchronous experiments. The asynchronous detector developed by the ν-Angra Collaboration is used as the basis for this work. Nevertheless, the proposed analysis goes beyond, considering a wide range of conditions related to signal parameters such as pedestal, phase, sampling rate, amplitude resolution, noise and pile-up; therefore crossing the bounds of the ν-Angra Experiment to make it interesting and useful for different asynchronous and even synchronous experiments.
Stead, Martine; Caswell, Stephen; Craigie, Angela M; Eadie, Douglas; Anderson, Annie S
2012-01-01
To explore prevention opportunities presented by colorectal adenoma diagnosis and inform engagement strategies for the BeWEL study (body weight and physical activity lifestyle intervention for colorectal cancer screening participants who have undergone adenoma removal). Qualitative study comprising 4 purposively sampled focus groups conducted in urban and rural areas in Tayside, Scotland, with different deprivation levels. Participants were men and women (n=17) aged 50-74 with BMI>25 kg/m(2) with removal of adenoma detected by colorectal cancer screening. Adenoma diagnosis presents both opportunities and challenges for prevention. Some patients perceived adenoma as minor and not sufficiently motivating to act as a 'teachable moment'. Patients had low awareness of the relationship between adenoma and lifestyle factors, and received little information on prevention during screening and treatment. Consequently they interpreted post-treatment 'all clear' messages as validation of existing lifestyles, and did not see the relevance of prevention advice. Receptiveness increased when the association between lifestyle, adenoma recurrence and other illness was explained. The study illustrates the value of exploratory research into patient understanding to improve communications and health services. Without unduly worrying patients, professionals should explain how to reduce risk of adenoma, cancer and other diseases, particularly through diet, physical activity and weight reduction. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Bennett, Clare; Harden, Jane; Anstey, Sally
2018-01-01
Men can play a significant role in teaching their children about sexuality but fathers' practices and perceptions in this domain remain under explored. This study presents an Interpretative Phenomenological Analysis of eight fathers' perceptions and practices in educating their ten-year-old children about physical maturation, reproduction and…
Patterns of Specific Infant Behavior Interpretation.
ERIC Educational Resources Information Center
Baird, Samera Major; And Others
1995-01-01
Mothers viewed videotapes of interaction with their 20 full-term healthy, 20 preterm healthy, and 20 preterm sick infants between 11 and 26 weeks of age. Relationships between infant gazing, laughing, and fussing and maternal interpretation of emotional state, attention preference, attention curiosity, and physical needs were analyzed. (Author/SW)
The solution of the sixth Hilbert problem: the ultimate Galilean revolution
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo Mauro
2018-04-01
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: `physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as `clock', `rigid rod', `force', `inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory. This article is part of the theme issue `Hilbert's sixth problem'.
Understanding measurement in light of its origins.
Humphry, Stephen
2013-01-01
During the course of history, the natural sciences have seen the development of increasingly convenient short-hand symbolic devices for denoting physical quantities. These devices ultimately took the form of physical algebra. However, the convenience of algebra arguably came at a cost - a loss of the clarity of direct insights by Euclid, Galileo, and Newton into natural quantitative relations. Physical algebra is frequently interpreted as ordinary algebra; i.e., it is interpreted as though symbols denote (a) numbers and operations on numbers, as opposed to (b) physical quantities and quantitative relations. The paper revisits the way in which Newton understood and expressed physical definitions and laws. Accordingly, it reviews a compact form of notation that has been used to denote both: (a) ratios of physical quantities; and (b) compound ratios, involving two or more kinds of quantity. The purpose is to show that it is consistent with historical developments to regard physical algebra as a device for denoting relations among ratios. Understood in the historical context, the objective of measurement is to establish that a physical quantity stands in a specific ratio to another quantity of the same kind. To clarify the meaning of measurement in terms of the historical origins of physics carries basic implications for the way in which measurement is understood and approached. Possible implications for the social sciences are considered.
The solution of the sixth Hilbert problem: the ultimate Galilean revolution.
D'Ariano, Giacomo Mauro
2018-04-28
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: 'physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as 'clock', 'rigid rod', 'force', 'inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
New method to analyze internal disruptions with tomographic reconstructions
NASA Astrophysics Data System (ADS)
Tanzi, C. P.; de Blank, H. J.
1997-03-01
Sawtooth crashes have been investigated on the Rijnhuizen Tokamak Project (RTP) [N. J. Lopes Cardozo et al., Proceedings of the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Würzburg, 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 1, p. 271]. Internal disruptions in tokamak plasmas often exhibit an m=1 poloidal mode structure prior to the collapse which can be clearly identified by means of multicamera soft x-ray diagnostics. In this paper tomographic reconstructions of such m=1 modes are analyzed with a new method, based on magnetohydrodynamic (MHD) invariants computed from the two-dimensional emissivity profiles, which quantifies the amount of profile flattening not only after the crash but also during the precursor oscillations. The results are interpreted by comparing them with two models which simulate the measurements of the m=1 redistribution of soft x-ray emissivity prior to the sawtooth crash. One model is based on the magnetic reconnection model of Kadomtsev. The other involves ideal MHD motion only. In cases where differences in magnetic topology between the two models cannot be seen in the tomograms, the analysis of profile flattening has an advantage. The analysis shows that in RTP the clearly observed m=1 displacement of some sawteeth requires the presence of convective ideal MHD motion, whereas other precursors are consistent with magnetic reconnection of up to 75% of the magnetic flux within the q=1 surface. The possibility of ideal interchange combined with enhanced cross-field transport is not excluded.
Naylor, Ron
2007-03-01
The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue.
Information thermodynamics of near-equilibrium computation
NASA Astrophysics Data System (ADS)
Prokopenko, Mikhail; Einav, Itai
2015-06-01
In studying fundamental physical limits and properties of computational processes, one is faced with the challenges of interpreting primitive information-processing functions through well-defined information-theoretic as well as thermodynamic quantities. In particular, transfer entropy, characterizing the function of computational transmission and its predictability, is known to peak near critical regimes. We focus on a thermodynamic interpretation of transfer entropy aiming to explain the underlying critical behavior by associating information flows intrinsic to computational transmission with particular physical fluxes. Specifically, in isothermal systems near thermodynamic equilibrium, the gradient of the average transfer entropy is shown to be dynamically related to Fisher information and the curvature of system's entropy. This relationship explicitly connects the predictability, sensitivity, and uncertainty of computational processes intrinsic to complex systems and allows us to consider thermodynamic interpretations of several important extreme cases and trade-offs.
NASA Astrophysics Data System (ADS)
Cobden, L. J.
2017-12-01
Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.
Function plot response: A scalable system for teaching kinematics graphs
NASA Astrophysics Data System (ADS)
Laverty, James; Kortemeyer, Gerd
2012-08-01
Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.
Larsson, Helena; Rämgård, Margareta; Bolmsjö, Ingrid
2017-07-10
In order to better understand people in demanding medical situations, an awareness of existential concerns is important. Studies performed over the last twenty years conclude that when dying and death come closer, as in the case with older people who are stricken by infirmity and diseases, existential concerns will come to the fore. However, studies concerning experiences of existential loneliness (EL) are sparse and, in addition, there is no clear definition of EL. EL is described as a complex phenomenon and referred to as a condition of life, an experience, and a process of inner growth. Listening to someone who knows the older person well, as significant others often do, may be one way of learning more about EL. This study is part of a larger research project on EL, the LONE study, where EL is explored through interviews with frail older people, their significant others and health care professionals. The aim of this study was to explore frail older (>75) persons' EL, as interpreted by their significant others. The study is qualitative and based on eighteen narrative interviews with nineteen significant others of older persons. The data was analysed using Hsieh and Shannon's conventional content analysis. According to the interpretation of significant others, the older persons experience EL (1) when they are increasingly limited in body and space, (2) when they are in a process of disconnecting, and (3) when they are disconnected from the outside world. The result can be understood as if the frail older person is in a process of letting go of life. This process involves the body, in that the older person is increasingly limited in his/her physical abilities. The older person's long-term relationships are gradually lost, and finally the process entails the older person's increasingly withdrawing into him- or herself and turning off the outside world. The result of this study is consistent with previous research that has shown that EL is a complex phenomenon, but the implications of this research include a deepened understanding of EL. In addition, the study highlights the interpretations of significant others.
Ultrasound physics in a nutshell.
Coltrera, Marc D
2010-12-01
This content presents to the neophyte ultrasonographer the essential nutshell of information needed to properly interpret ultrasound images. Basic concepts of physics related to ultrasound are supported with formulas and related to clinical use. Copyright © 2010 Elsevier Inc. All rights reserved.
Understanding molecular structure from molecular mechanics.
Allinger, Norman L
2011-04-01
Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.
On causal interpretation of race in regressions adjusting for confounding and mediating variables
VanderWeele, Tyler J.; Robinson, Whitney R.
2014-01-01
We consider several possible interpretations of the “effect of race” when regressions are run with race as an exposure variable, controlling also for various confounding and mediating variables. When adjustment is made for socioeconomic status early in a person’s life, we discuss under what contexts the regression coefficients for race can be interpreted as corresponding to the extent to which a racial inequality would remain if various socioeconomic distributions early in life across racial groups could be equalized. When adjustment is also made for adult socioeconomic status, we note how the overall racial inequality can be decomposed into the portion that would be eliminated by equalizing adult socioeconomic status across racial groups and the portion of the inequality that would remain even if adult socioeconomic status across racial groups were equalized. We also discuss a stronger interpretation of the “effect of race” (stronger in terms of assumptions) involving the joint effects of race-associated physical phenotype (e.g. skin color), parental physical phenotype, genetic background and cultural context when such variables are thought to be hypothetically manipulable and if adequate control for confounding were possible. We discuss some of the challenges with such an interpretation. Further discussion is given as to how the use of selected populations in examining racial disparities can additionally complicate the interpretation of the effects. PMID:24887159
NASA Technical Reports Server (NTRS)
Minnis, P.; Harrison, E. F.
1984-01-01
Cloud cover is one of the most important variables affecting the earth radiation budget (ERB) and, ultimately, the global climate. The present investigation is concerned with several aspects of the effects of extended cloudiness, taking into account hourly visible and infrared data from the Geostationary Operational Environmental Satelite (GOES). A methodology called the hybrid bispectral threshold method is developed to extract regional cloud amounts at three levels in the atmosphere, effective cloud-top temperatures, clear-sky temperature and cloud and clear-sky visible reflectance characteristics from GOES data. The diurnal variations are examined in low, middle, high, and total cloudiness determined with this methodology for November 1978. The bulk, broadband radiative properties of the resultant cloud and clear-sky data are estimated to determine the possible effect of the diurnal variability of regional cloudiness on the interpretation of ERB measurements.
ERIC Educational Resources Information Center
Update on Law-Related Education, 1988
1988-01-01
Presents an activity which uses hypothetical situations to explore the proper boundaries of freedom of expression and the role of the U.S. Supreme Court in interpreting its limits. Appropriate for grades 4-12, the lesson includes such topics as the "clear and present danger" clause, student expression, obscenity, and defamation. (GEA)
Follow-up actions from positive results of in vitro genetic toxicity testing
Appropriate follow-up actions and decisions are needed when evaluating and interpreting clear positive results obtained in the in vitro assays used in the initial genotoxicity screening battery (i.e., the battery of tests generally required by regulatory authorities) to assist in...
ERIC Educational Resources Information Center
DeRanieri, Joseph T.; Clements, Paul T.; Clark, Kathleen; Kuhn, Douglas Wolcik; Manno, Martin S.
2004-01-01
Many caregivers are encountering the issue of communicating with children and adolescents about current world events, specifically war and terrorism. As health care providers, it is important to raise awareness of how children may understand, interpret, and respond to related fears and concerns. Although honesty and reassurance are clearly the…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... any option or any futures contracts on ETFS Physical Swiss Gold Shares and ETFS Physical Silver Shares... jurisdictional status of options or security futures on ETFS Physical Swiss Gold Shares or ETFS Physical Silver... approving a proposed rule change clarifying that options and securities futures on SPDR Gold Shares are...
ERIC Educational Resources Information Center
Casey, M.; Mooney, A.; Smyth, J.; Payne, W.
2016-01-01
Drawing on interpretations of Foucault's techniques of power, we explored the discourses and power relations operative between groups of girls that appeared to influence their participation in Physical Education (PE) and outside of school in sport and physical activity (PA) in rural and regional communities. Interviews and focus groups were…
Special Relativity Theorem and Pythagoras's Magic
ERIC Educational Resources Information Center
Korkmaz, S. D.; Aybek, E. C.; Örücü, M.
2016-01-01
In the modern physics unit included in the course curriculum of grade 10 physics introduced in the 2007-2008 education year, the aim is that students at this grade level are aware of any developments which constitute modern physics and may be considered new, and interpret whether mass, length and time values of the motions at any velocities close…
ERIC Educational Resources Information Center
Kahan, David; Nicaise, Virginie; Reuben, Karen
2013-01-01
Purpose: More than one fifth of American preschool-aged children are classified as overweight/obese. Increasing physical activity is one means of slowing/reversing progression to overweight or obesity. Measurement of physical activity in this age group relies heavily on motion sensors such as accelerometers. Output is typically interpreted through…
Building Concepts through Writing-to-Learn in College Physics Classrooms
ERIC Educational Resources Information Center
Bullock, Shawn
2006-01-01
This paper draws on an action research inquiry into my teaching practice featuring careful analysis of the experiences of some of the students in my college-level introductory college physics course. Specifically, the research describes and interprets the role of Writing-to-Learn pedagogies in a physics classroom with a view to exploring how such…
ERIC Educational Resources Information Center
Dyson, Ben; Wright, Paul M.; Amis, John; Ferry, Hugh; Vardaman, James M.
2011-01-01
The purpose of this study was to explore the production, communication, interpretation and contestation of new physical education (PE) and physical activity (PA) policy initiatives introduced in Mississippi and Tennessee for the academic year 2006-2007. These states provide a relevant context to study such issues, since Mississippi has the highest…
ERIC Educational Resources Information Center
Hill, Grant M.; Hannon, James C.; Knowles, Curt
2012-01-01
Since Title IX was enacted in the United States in 1972, Physical Education (PE) classes have become coeducational. This may be because educational leaders interpret Title IX to require coeducational-only classes. Research, however, indicates that for some students, coeducation classes may not be the most appropriate learning environment. The…
ERIC Educational Resources Information Center
Brown, Trent D.; Penney, Dawn
2017-01-01
Background: New curriculum developments present opportunities for established thinking and practice in physical education to be reaffirmed or challenged in government, professional and institutional arenas. The introduction of a new official text for the Victorian Certificate of Education Physical Education [VCEPE] in 2011 provided a prompt for…
Evaluating physical habitat condition in the National Lakes Assessment (NLA)
The NLA and other lake survey and monitoring efforts increasingly rely upon biological assemblage data to define lake condition. Information concerning the multiple dimensions of physical and chemical habitat is necessary to interpret this biological information and meaningfully...
Educating through the Physical--Rationale
ERIC Educational Resources Information Center
Eldar, Eitan; Ayvazo, Shiri
2009-01-01
Social competence is essential for successful performance in school and life. Siedentop (1980) suggested that physical education settings and related activities may serve as useful vehicles for improving pro-social skills and values. Physical education literature draws a clear distinction between educating about, in, and through movement (Arnold,…
Ramsay, Pam; Salisbury, Lisa G; Merriweather, Judith L; Huby, Guro; Rattray, Janice E; Hull, Alastair M; Brett, Stephen J; Mackenzie, Simon J; Murray, Gordon D; Forbes, John F; Walsh, Timothy Simon
2014-01-29
Increasing numbers of patients are surviving critical illness, but survival may be associated with a constellation of physical and psychological sequelae that can cause ongoing disability and reduced health-related quality of life. Limited evidence currently exists to guide the optimum structure, timing, and content of rehabilitation programmes. There is a need to both develop and evaluate interventions to support and expedite recovery during the post-ICU discharge period. This paper describes the construct development for a complex rehabilitation intervention intended to promote physical recovery following critical illness. The intervention is currently being evaluated in a randomised trial (ISRCTN09412438; funder Chief Scientists Office, Scotland). The intervention was developed using the Medical Research Council (MRC) framework for developing complex healthcare interventions. We ensured representation from a wide variety of stakeholders including content experts from multiple specialties, methodologists, and patient representation. The intervention construct was initially based on literature review, local observational and audit work, qualitative studies with ICU survivors, and brainstorming activities. Iterative refinement was aided by the publication of a National Institute for Health and Care Excellence guideline (No. 83), publicly available patient stories (Healthtalkonline), a stakeholder event in collaboration with the James Lind Alliance, and local piloting. Modelling and further work involved a feasibility trial and development of a novel generic rehabilitation assistant (GRA) role. Several rounds of external peer review during successive funding applications also contributed to development. The final construct for the complex intervention involved a dedicated GRA trained to pre-defined competencies across multiple rehabilitation domains (physiotherapy, dietetics, occupational therapy, and speech/language therapy), with specific training in post-critical illness issues. The intervention was from ICU discharge to 3 months post-discharge, including inpatient and post-hospital discharge elements. Clear strategies to provide information to patients/families were included. A detailed taxonomy was developed to define and describe the processes undertaken, and capture them during the trial. The detailed process measure description, together with a range of patient, health service, and economic outcomes were successfully mapped on to the modified CONSORT recommendations for reporting non-pharmacologic trial interventions. The MRC complex intervention framework was an effective guide to developing a novel post-ICU rehabilitation intervention. Combining a clearly defined new healthcare role with a detailed taxonomy of process and activity enabled the intervention to be clearly described for the purpose of trial delivery and reporting. These data will be useful when interpreting the results of the randomised trial, will increase internal and external trial validity, and help others implement the intervention if the intervention proves clinically and cost effective.
2014-01-01
Background Increasing numbers of patients are surviving critical illness, but survival may be associated with a constellation of physical and psychological sequelae that can cause ongoing disability and reduced health-related quality of life. Limited evidence currently exists to guide the optimum structure, timing, and content of rehabilitation programmes. There is a need to both develop and evaluate interventions to support and expedite recovery during the post-ICU discharge period. This paper describes the construct development for a complex rehabilitation intervention intended to promote physical recovery following critical illness. The intervention is currently being evaluated in a randomised trial (ISRCTN09412438; funder Chief Scientists Office, Scotland). Methods The intervention was developed using the Medical Research Council (MRC) framework for developing complex healthcare interventions. We ensured representation from a wide variety of stakeholders including content experts from multiple specialties, methodologists, and patient representation. The intervention construct was initially based on literature review, local observational and audit work, qualitative studies with ICU survivors, and brainstorming activities. Iterative refinement was aided by the publication of a National Institute for Health and Care Excellence guideline (No. 83), publicly available patient stories (Healthtalkonline), a stakeholder event in collaboration with the James Lind Alliance, and local piloting. Modelling and further work involved a feasibility trial and development of a novel generic rehabilitation assistant (GRA) role. Several rounds of external peer review during successive funding applications also contributed to development. Results The final construct for the complex intervention involved a dedicated GRA trained to pre-defined competencies across multiple rehabilitation domains (physiotherapy, dietetics, occupational therapy, and speech/language therapy), with specific training in post-critical illness issues. The intervention was from ICU discharge to 3 months post-discharge, including inpatient and post-hospital discharge elements. Clear strategies to provide information to patients/families were included. A detailed taxonomy was developed to define and describe the processes undertaken, and capture them during the trial. The detailed process measure description, together with a range of patient, health service, and economic outcomes were successfully mapped on to the modified CONSORT recommendations for reporting non-pharmacologic trial interventions. Conclusions The MRC complex intervention framework was an effective guide to developing a novel post-ICU rehabilitation intervention. Combining a clearly defined new healthcare role with a detailed taxonomy of process and activity enabled the intervention to be clearly described for the purpose of trial delivery and reporting. These data will be useful when interpreting the results of the randomised trial, will increase internal and external trial validity, and help others implement the intervention if the intervention proves clinically and cost effective. PMID:24476530
Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind
NASA Technical Reports Server (NTRS)
Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.
2012-01-01
A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.
Toddlers Default to Canonical Surface-to-Meaning Mapping When Learning Verbs
Dautriche, Isabelle; Cristia, Alejandrina; Brusini, Perrine; Yuan, Sylvia; Fisher, Cynthia; Christophe, Anne
2013-01-01
Previous work has shown that toddlers readily encode each noun in the sentence as a distinct argument of the verb. However, languages allow multiple mappings between form and meaning which do not fit this canonical format. Two experiments examined French 28-month-olds’ interpretation of right-dislocated sentences (nouni-verb, nouni) where the presence of clear, language-specific cues should block such a canonical mapping. Toddlers (N = 96) interpreted novel verbs embedded in these sentences as transitive, disregarding prosodic cues to dislocation (Experiment 1) but correctly interpreted right-dislocated sentences containing well-known verbs (Experiment 2). These results suggest that toddlers can integrate multiple cues in ideal conditions, but default to canonical surface-to-meaning mapping when extracting structural information about novel verbs in semantically impoverished conditions. PMID:24117408
17 CFR 39.18 - System safeguards.
Code of Federal Regulations, 2012 CFR
2012-04-01
... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...
17 CFR 39.18 - System safeguards.
Code of Federal Regulations, 2014 CFR
2014-04-01
... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...
17 CFR 39.18 - System safeguards.
Code of Federal Regulations, 2013 CFR
2013-04-01
... physical infrastructure or personnel necessary for it to conduct activities necessary to the clearing and... transportation, telecommunications, power, water, or other critical infrastructure components in a relevant area... Division of Clearing and Risk promptly of: (1) Any hardware or software malfunction, cyber security...
NASA Astrophysics Data System (ADS)
Tavabi, E.; Koutchmy, S.; Ajabshirizadeh, A.
2012-06-01
In order to clear up the origin and possibly explain some solar limb and disc spicule quasi-periodic recurrences produced by overlapping effects, we present a simulation model assuming quasi- random positions of spicules. We also allow a set number of spicules with different physical properties (such as: height, lifetime and tilt angle as shown by an individual spicule) occurring randomly. Results of simulations made with three different spatial resolutions of the corresponding frames and also for different number density of spicules, are analyzed. The wavelet time/frequency method is used to obtain the exact period of spicule visibility. Results are compared with observations of the chromosphere from i/ the Transition Region and Coronal Explorer (TRACE) filtergrams taken at 1600 angstrom, ii/ the Solar Optical Telescope (SOT) of Hinode taken in the Ca II H-line and iii/ the Sac-Peak Dunn's VTT taken in H? line. Our results suggest the need to be cautious when interpreting apparent oscillations seen in spicule image sequences when overlapping is present, i.e.; when the spatial resolution is not enough to resolve individual components of spicules.
Latest results of the Tunka Radio Extension
NASA Astrophysics Data System (ADS)
Kostunin, D.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Marshalkina, T.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.
2017-06-01
The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15% and the depth of the shower maximum with a resolution of better than 40 g/cm2. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.
NASA Technical Reports Server (NTRS)
Treffeisen, R. E.; Thomason, L. W.; Strom, J.; Herber, A. B.; Burton, S. P.; Yamanouchi, T.
2006-01-01
In recent years, substantial effort has been expended toward understanding the impact of tropospheric aerosols on Arctic climate and chemistry. A significant part of this effort has been the collection and documentation of extensive aerosol physical and optical property data sets. However, the data sets present significant interpretive challenges because of the diverse nature of these measurements. Among the longest continuous records is that by the spaceborne Stratospheric Aerosol and Gas Experiment (SAGE) II. Although SAGE tropospheric measurements are restricted to the middle and upper troposphere, they may be able to provide significant insight into the nature and variability of tropospheric aerosol, particularly when combined with ground and airborne observations. This paper demonstrates the capacity of aerosol products from SAGE II and its follow-on experiment SAGE III to describe the temporal and vertical variations of Arctic aerosol characteristics. We find that the measurements from both instruments are consistent enough to be combined. Using this combined data set, we detect a clear annual cycle in the aerosol extinction for the middle and upper Arctic troposphere.
Travelling waves and their bifurcations in the Lorenz-96 model
NASA Astrophysics Data System (ADS)
van Kekem, Dirk L.; Sterk, Alef E.
2018-03-01
In this paper we study the dynamics of the monoscale Lorenz-96 model using both analytical and numerical means. The bifurcations for positive forcing parameter F are investigated. The main analytical result is the existence of Hopf or Hopf-Hopf bifurcations in any dimension n ≥ 4. Exploiting the circulant structure of the Jacobian matrix enables us to reduce the first Lyapunov coefficient to an explicit formula from which it can be determined when the Hopf bifurcation is sub- or supercritical. The first Hopf bifurcation for F > 0 is always supercritical and the periodic orbit born at this bifurcation has the physical interpretation of a travelling wave. Furthermore, by unfolding the codimension two Hopf-Hopf bifurcation it is shown to act as an organising centre, explaining dynamics such as quasi-periodic attractors and multistability, which are observed in the original Lorenz-96 model. Finally, the region of parameter values beyond the first Hopf bifurcation value is investigated numerically and routes to chaos are described using bifurcation diagrams and Lyapunov exponents. The observed routes to chaos are various but without clear pattern as n → ∞.
The generalized scattering coefficient method for plane wave scattering in layered structures
NASA Astrophysics Data System (ADS)
Liu, Yu; Li, Chao; Wang, Huai-Yu; Zhou, Yun-Song
2017-02-01
The generalized scattering coefficient (GSC) method is pedagogically derived and employed to study the scattering of plane waves in homogeneous and inhomogeneous layered structures. The numerical stabilities and accuracies of this method and other commonly used numerical methods are discussed and compared. For homogeneous layered structures, concise scattering formulas with clear physical interpretations and strong numerical stability are obtained by introducing the GSCs. For inhomogeneous layered structures, three numerical methods are employed: the staircase approximation method, the power series expansion method, and the differential equation based on the GSCs. We investigate the accuracies and convergence behaviors of these methods by comparing their predictions to the exact results. The conclusions are as follows. The staircase approximation method has a slow convergence in spite of its simple and intuitive implementation, and a fine stratification within the inhomogeneous layer is required for obtaining accurate results. The expansion method results are sensitive to the expansion order, and the treatment becomes very complicated for relatively complex configurations, which restricts its applicability. By contrast, the GSC-based differential equation possesses a simple implementation while providing fast and accurate results.
Craig, T; Hallett, F R; Nickel, B
1982-01-01
The Rayleigh-Gans-Debye approximation is used to predict the electric field autocorrelation functions of light scattered from circularly swimming bull spermatozoa. Using parameters determined from cinematography and modeling the cells as coated ellipsoids of semiaxes a = 0.5 micrometers, b = 2.3 micrometers, and c = 9.0 micrometers, we were able to obtain model spectra that mimic the data exactly. A coat is found to be a necessary attribute of the particle. It is also clear that these model functions at 15 degrees may be represented by the relatively simple function used before by Hallett et al. (1978) to fit data from circularly swimming cells, thus giving some physical meaning to these functional shapes. Because of this agreement the half-widths of experimental functions can now be interpreted in terms of an oscillatory frequency for the movement of the circularly swimming cell. The cinematographic results show a trend to chaotic behavior as the temperature of the sample is increased, with concomitant decrease in overall efficiency. This is manifested by a decrease in oscillatory frequency and translational speed. PMID:7074199
Craig, T; Hallett, F R; Nickel, B
1982-04-01
The Rayleigh-Gans-Debye approximation is used to predict the electric field autocorrelation functions of light scattered from circularly swimming bull spermatozoa. Using parameters determined from cinematography and modeling the cells as coated ellipsoids of semiaxes a = 0.5 micrometers, b = 2.3 micrometers, and c = 9.0 micrometers, we were able to obtain model spectra that mimic the data exactly. A coat is found to be a necessary attribute of the particle. It is also clear that these model functions at 15 degrees may be represented by the relatively simple function used before by Hallett et al. (1978) to fit data from circularly swimming cells, thus giving some physical meaning to these functional shapes. Because of this agreement the half-widths of experimental functions can now be interpreted in terms of an oscillatory frequency for the movement of the circularly swimming cell. The cinematographic results show a trend to chaotic behavior as the temperature of the sample is increased, with concomitant decrease in overall efficiency. This is manifested by a decrease in oscillatory frequency and translational speed.
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy
2009-01-01
Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652
Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer
ERIC Educational Resources Information Center
Ulloa, Marco J.
2007-01-01
A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…
ERIC Educational Resources Information Center
Deniz, Hasan; Dulger, Mehmet F.
2012-01-01
This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…
Trail Orienteering: An Effective Way To Practice Map Interpretation.
ERIC Educational Resources Information Center
Horizons, 1999
1999-01-01
Discusses a type of orienteering developed in Great Britain to allow people with physical disabilities to compete on equal terms. Sites are viewed from a wheelchair-accessible main route. The main skill is interpreting the maps at each site, not finding the sites. Describes differences from standard orienteering, how sites work, and essential…
Time to Go Beyond Triple-Gauge-Boson-Coupling Interpretation of W Pair Production.
Zhang, Zhengkang
2017-01-06
W boson pair production processes at e^{+}e^{-} and pp colliders have been conventionally interpreted as measurements of WWZ and WWγ triple gauge couplings (TGCs). Such an interpretation is based on the assumption that new physics effects other than anomalous TGCs are negligible. While this "TGC dominance assumption" was well motivated and useful at LEP2 thanks to precision electroweak constraints, it is already challenged by recent LHC data. In fact, contributions from anomalous Z boson couplings that are allowed by electroweak precision data but neglected in LHC analyses, which are enhanced at high energy, can even dominate over those from the anomalous TGCs considered. This limits the generality of the anomalous TGC constraints derived in current analyses and necessitates extension of the analysis framework and a change of physics interpretation. The issue will persist as we continue to explore the high-energy frontier. We clarify and analyze the situation in the effective field theory framework, which provides a useful organizing principle for understanding standard model deviations in the high-energy regime.
Lack of a benign interpretation bias in social anxiety disorder.
Amir, Nader; Prouvost, Caroline; Kuckertz, Jennie M
2012-01-01
Cognitive models of social anxiety posit that recurrent interpretation of ambiguous information as threatening maintains symptoms (e.g. Clark & Wells, 1995, pp. 69-93, Social phobia: Diagnosis, assessment, and treatment. New York: Guilford Press; Rapee & Heimberg, 1997, pp. 741-756, Behavior Research and Therapy, 35). However, biased interpretation may also be represented as a failure to make a benign interpretation of the ambiguous event. Furthermore, interpretation bias can be characterized by both an online (automatic) component and an offline (effortful) component (Hirsch & Clark, 2004, pp. 799-825, Clinical Psychology Review, 24). To measure both benign and threat biases, as well as examine the effect of social anxiety on offline versus online interpretations, Beard and Amir (2009, pp. 1135-1141, Behaviour Research and Therapy, 46) developed the Word Sentence Association Paradigm (WSAP). In the current study, we administered the WSAP to a group of participants diagnosed with social anxiety disorder (SAD) as well as to a group of non-anxious control (NAC) participants. We found that participants with SAD demonstrated a lack of benign online bias, but not an online threat bias when compared to NACs. However, when examining offline biases, SAD patients endorsed social threat interpretations and rejected benign social interpretations to a greater degree than non-anxious individuals. Our results, when taken together, clearly implicate the role of reduced bias toward benign information in SAD.
TPACK: An Emerging Research and Development Tool for Teacher Educators
ERIC Educational Resources Information Center
Baran, Evrim; Chuang, Hsueh-Hua; Thompson, Ann
2011-01-01
TPACK (technological pedagogical content knowledge) has emerged as a clear and useful construct for researchers working to understand technology integration in learning and teaching. Whereas first generation TPACK work focused upon explaining and interpreting the construct, TPACK has now entered a second generation where the focus is upon using…
Do Personality Scale Items Function Differently in People with High and Low IQ?
ERIC Educational Resources Information Center
Waiyavutti, Chakadee; Johnson, Wendy; Deary, Ian J.
2012-01-01
Intelligence differences might contribute to true differences in personality traits. It is also possible that intelligence might contribute to differences in understanding and interpreting personality items. Previous studies have not distinguished clearly between these possibilities. Before it can be accepted that scale score differences actually…
77 FR 65177 - Swap Data Repositories: Interpretative Statement Regarding the Confidentiality and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
... participation in standard-setting bodies to develop international standards relevant to the swap markets. Cloud Strategix, LLC (``Cloud Strategix''), representing the data hosting and cloud computing industry, in... Roundtable, June 6, 2012; (iii) Cloud Strategix, LLC, June 5, 2012; and (iv) the Depository Trust & Clearing...
Explicit-Implicit Distinction: A Review of Related Literature
ERIC Educational Resources Information Center
Jarrah, Marwan A.
2016-01-01
This paper sketches out the main views of the major pragmatic approaches (i.e., Grice's theory of conversation, Relevance Theory, and Neo-Gricean pragmatic theory) on explicit-implicit distinction. It makes clear how this distinction has been differently drawn for utterance interpretation. Additionally, it highlights several corresponding problems…
Programmable Applications: Interpreter Meets Interface
1991-10-01
ics program written for professional architects and designers, and including a huge library of files written in AutoLisp , a "design-enriched" Lisp... AutoLisp procedures). The choice of Lisp as a base language is a happy one for AutoCAD; the application has clearly benefitted from the contribution
Graphical Representation of University Image: A Correspondence Analysis.
ERIC Educational Resources Information Center
Yavas, Ugar; Shemwell, Donald J.
1996-01-01
Correspondence analysis, an easy-to-interpret interdependence technique, portrays data graphically to show associations of factors more clearly. A study used the technique with 58 students in one university to determine factors in college choice. Results identified the institution's closest competitors and its positioning in terms of college…
ERIC Educational Resources Information Center
HANDLIN, OSCAR
THE LACK OF CLEARLY DEFINED GOALS WITHIN THE CIVIL RIGHTS MOVEMENT IS IMPEDING ITS TACTICS AND MOMENTUM. THE STATED GOAL OF INTEGRATION ACTUALLY HAS TWO ALTERNATIVE INTERPRETATIONS--FULL LEGAL EQUALITY AND RACIAL BALANCE. THE NEWER STRESS ON RACIAL BALANCE RESTS ON THE FALLACIOUS ASSUMPTIONS THAT THE NEGRO'S SITUATION IS UNIQUE BECAUSE OF SLAVERY…
The Consistency of Lyric Artistic Thinking
ERIC Educational Resources Information Center
Abramzon, Tatiana E.; Rudakova, Svetlana V.; Zaitseva, Tatiana B.; Koz'ko, Natalia A.; Tulina, Ekaterina V.
2016-01-01
In contemporary literary studies one can clearly observe the process of different interpretation of former approaches to literary works and artistic legacy of some outstanding authors. The attention of scientists is focused on such categories that can contribute to the reconstruction of a complete picture of the writing career of an individual…
Ethics in School Psychologists Report Writing: Acknowledging Aporia
ERIC Educational Resources Information Center
Attard, Sunaina; Mercieca, Daniela; Mercieca, Duncan P.
2016-01-01
Research in school psychologist report writing has argued for reports that connect to the client's context; have clear links between the referral questions and the answers to these questions; have integrated interpretations; address client strengths and problem areas; have specific, concrete and feasible recommendations; and are adapted to the…
Development of Emotional Facial Recognition in Late Childhood and Adolescence
ERIC Educational Resources Information Center
Thomas, Laura A.; De Bellis, Michael D.; Graham, Reiko; Labar, Kevin S.
2007-01-01
The ability to interpret emotions in facial expressions is crucial for social functioning across the lifespan. Facial expression recognition develops rapidly during infancy and improves with age during the preschool years. However, the developmental trajectory from late childhood to adulthood is less clear. We tested older children, adolescents…
NASA Astrophysics Data System (ADS)
Iyer, Gokul; Edmonds, James
2018-05-01
Quantitative scenarios from energy-economic models inform decision-making about uncertain futures. Now, research shows the different ways these scenarios are subsequently used by users not involved in their initial development. In the absence of clear guidance from modellers, users may place too much or too little confidence in scenario assumptions and results.
Some diagnostic interpretations from railgun plasma profile experiments
NASA Astrophysics Data System (ADS)
Stainsby, D. F.; Bedford, A. J.
1984-03-01
Some aspects of a railgun experimental series to investigate plasma profiles are reviewed. Certain diagnostic records clearly show plasma leakage past the projectile, and correspondence between various in-bore events and muzzle voltage. A muzzle flash detector is shown to have a useful role as a plasma diagnostic tool.
Development of a Multi-Hazard Landscape for Exposure and Risk Interpretation
A complete accounting of potential hazard exposures is critical in the development of any model meant to depict the resilience of a system. This allows for a clear ledger to both assess current risk status along with potential ways to improve resilience. The US EPA is currently...
Relativity Based on Physical Processes Rather Than Space-Time
NASA Astrophysics Data System (ADS)
Giese, Albrecht
2013-09-01
Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.
ERIC Educational Resources Information Center
Ruskin, Hilleil
2002-01-01
Presents a position statement designed to inform governments, non-governmental organizations, and education institutions about the significance and benefits of physical activity for all and establish a clear relationship between physical activity and leisure education. The statement includes specific recommendations for leisure education and…
Gadgets in the Gymnasium: Physical Educators' Use of Digital Technologies
ERIC Educational Resources Information Center
Robinson, Daniel B.; Randall, Lynn
2017-01-01
This article highlights results from a recent study that investigated Atlantic Canadian physical educators' adoption and implementation of various digital technologies. Employing a mixed-methods research design (survey participants, n = 206; focus group participants, n = 12), the research intended to provide a clear overview of physical educators'…
On Ruch's Principle of Decreasing Mixing Distance in classical statistical physics
NASA Astrophysics Data System (ADS)
Busch, Paul; Quadt, Ralf
1990-10-01
Ruch's Principle of Decreasing Mixing Distance is reviewed as a statistical physical principle and its basic suport and geometric interpretation, the Ruch-Schranner-Seligman theorem, is generalized to be applicable to a large representative class of classical statistical systems.
NASA Astrophysics Data System (ADS)
Alleman, Laurent Y.; Lamaison, Laure; Perdrix, Esperanza; Robache, Antoine; Galloo, Jean-Claude
2010-06-01
The elemental composition data of ambient aerosols collected upon selected wind sectors in the highly industrialised harbour of Dunkirk (France) were interpreted using pollution roses, elemental ratios, Enrichment Factors (EF), Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) receptor model. The objective was to identify the possible sources of PM10 aerosols, their respective chemical tracers and to determine their relative contribution at the sampling site. PM10 particles samples were collected from June 2003 to March 2005 in order to analyse up to 35 elements (Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Eu, Fe, K, La, Mg, Mn, Mo, Na, Ni, Pb, Rb, S, Sb, Sc, Si, Sm, Sr, Th, Ti, U, V, Zn and Zr) using Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES) and ICP-Mass Spectrometry (MS). A significant effort has been made on estimating the total uncertainty of each result by regularly analysing blanks, quality controls and SRM NIST standards. Based on this procedure, a selected set of 24 "robust" elements was compared to the 35-element matrix in order to evaluate the sturdiness of our PMF statistical treatment. Eight source factors were resolved by PCA for all the wind sectors explaining 90% of the total data variance. The PMF results confirmed that eight physically interpretable factors contributed to the ambient particulate pollution at the sampling site: crustal dust (11%), marine aerosols (12%), petrochemistry activities (9.2%), metallurgical sintering plant (8.6%), metallurgical coke plant (12.6%), ferromanganese plant (6.6%), road transport (15%) and a less clearly interpretable profile probably associated to dust resuspension (13%). These weighted contributions against wind direction frequencies demonstrate that industrial sources are the most important contributors to this site (37%) followed by the natural sources (detrital and marine sources) (23%) and the road transport (15%).
The Potential of Clear Sky Carbon Dioxide Satellite Retrievals
NASA Astrophysics Data System (ADS)
Nelson, R.; O'Dell, C.
2013-12-01
It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.
Aristotelian Physics in the Context of Teaching Science: A Historical-Philosophical Approach
NASA Astrophysics Data System (ADS)
Lombardi, Olimpia
Nowadays in the community of researchers there is a practically unanimous consensus about the relevance of the history of science to the educational process. In this context, Aristotelian physics was rediscovered and reassessed for didactic purposes. But unfortunately, it is very often presented in a rather fragmentary and oversimplified way that distorts the true meaning of Aristotelian concepts. Facing this problem, the purpose of the present paper is to point out some blunders that originate in the partial reading of Aristotle's work. Particularly, it intends to contribute to the following points: (i) to warn against a hurried identification of pre-scientific notions and Aristotelian physical concepts; (ii) to promote an epistemologically not naïve and historiographically not anachronic interpretation of Aristotle's work on physics, both in the theoretical and in the methodological aspects; (iii) to warn against the interpretative confusion that arises from projecting the conceptual frame of contemporary science on Aristotelian physics, ignoring Aristotle's natural philosophy as a whole; (iv) to show the need of understanding the metaphysical foundations of the Aristotelian system; (v) to promote a return to the reading of the original texts.
NASA Astrophysics Data System (ADS)
Bistrow, Van
What aren't we teaching about physics in the traditional lecture course? Plenty! By offering the Advanced Laboratory Course, we hope to shed light on the following questions: How do we develop a systematic process of doing experiments? How do we record procedures and results? How should we interpret theoretical concepts in the real world? What experimental and computational techniques are available for producing and analyzing data? With what degree of confidence can we trust our measurements and interpretations? How well does a theory represent physical reality? How do we collaborate with experimental partners? How do we best communicate our findings to others?These questions are of fundamental importance to experimental physics, yet are not generally addressed by reading textbooks, attending lectures or doing homework problems. Thus, to provide a more complete understanding of physics, we offer laboratory exercises as a supplement to the other modes of learning. The speaker will describe some examples of experiments, and outline the history, structure and student impressions of the Advanced Lab course at the University of Chicago Department of Physics.
ERIC Educational Resources Information Center
Kilpatrick, Marcus; Hebert, Edward; Bartholomew, John
2005-01-01
Despite the many clear benefits of an active lifestyle, lack of physical activity is a significant health problem in the college population. A key issue in physical activity research is developing an understanding of motivation. Although physical activity takes many forms, most research designed to enhance motivation for and adherence to physical…
Simmonds, B A J; Hannam, K J; Fox, K R; Tobias, J H
2016-03-01
This qualitative study explored the acceptability of high-impact physical activity for increasing bone strength in later life. Thematic analysis established the barriers and facilitators to this physical activity. They prioritised joint over skeletal health, of which they had little concept. Interventions need to clearly communicate the rationale and benefits. The aim of this study was to explore the acceptability of doing high-impact physical activity in later life. This qualitative study was embedded within a large-scale observational study and was designed to address specific objectives and feed into a subsequent intervention. Five focus groups with physically active men and women (over 50 years) were used to develop an interview topic guide to explore the acceptability of high-impact physical activity in older men and women (over 65 years) in South West England. A total of 28 semi-structured interviews with 31 participants were then conducted and transcripts analysed thematically. Three main barriers emerged: conceptualising bone, damage to joints and falling/safety concerns. Two main facilitators were also identified: the need to understand clear tangible benefits and incorporation of activity into everyday habits. Older adults were interested how high-impact physical activity would help to maintain their mobility, independence or social relationships. Some participants wanted tangible feedback from accelerometers, health care professionals and/or bone scans in order to develop a more intimate knowledge of their bone health. Interventions incorporating high-impact physical activity for older adults need to communicate how this activity can impact more broadly on health and lives; that physical activity will be safe, beneficial and not damaging to their joints will need to be clearly conveyed. Ways in which high-impact physical activity can be habitualised into everyday activities, be fun and interactive may help facilitate longer term adoption.
Connecting the Dots between Math and Reality: A Study of Critical Thinking in High School Physics
ERIC Educational Resources Information Center
Loper, Timothy K.
2010-01-01
The purpose of this mixed method study was to discover whether training in understanding relationships between variables would help students read and interpret equations for the purposes of problem solving in physics. Twenty students from two physics classes at a private Catholic high school participated in a one group pretest-posttest unit with…
The Role of Sign in Students' Modeling of Scalar Equations
ERIC Educational Resources Information Center
Hayes, Kate; Wittmann, Michael C.
2010-01-01
Helping students set up equations is one of the major goals of teaching a course in physics that contains elements of problem solving. Students must take the stories we present, interpret them, and turn them into physics; from there, they must turn that physical, idealized story into mathematics. How they do so and what problems lie along the way…
ERIC Educational Resources Information Center
Akatugba, Ayo Harriet; Wallace, John
2009-01-01
This study examines students' use of proportional reasoning in high school physics problem-solving in a West African school setting. An in-depth, constructivist, and interpretive case study was carried out with six physics students from a co-educational senior secondary school in Nigeria over a period of five months. The study aimed to elicit…
Hasbún Avalos, Oswaldo; Pennington, Kaylin; Osterberg, Lars
2013-12-01
In our ever-increasingly multicultural, multilingual society, medical interpreters serve an important role in the provision of care. Though it is known that using untrained interpreters leads to decreased quality of care for limited English proficiency patients, because of a short supply of professionals and a lack of formalized, feasible education programs for volunteers, community health centers and internal medicine practices continue to rely on untrained interpreters. To develop and formally evaluate a novel medical interpreter education program that encompasses major tenets of interpretation, tailored to the needs of volunteer medical interpreters. One-armed, quasi-experimental retro-pre-post study using survey ratings and feedback correlated by assessment scores to determine educational intervention effects. Thirty-eight students; 24 Spanish, nine Mandarin, and five Vietnamese. The majority had prior interpreting experience but no formal medical interpreter training. Students completed retrospective pre-test and post-test surveys measuring confidence in and perceived knowledge of key skills of interpretation. Primary outcome measures were a 10-point Likert scale for survey questions of knowledge, skills, and confidence, written and oral assessments of interpreter skills, and qualitative evidence of newfound knowledge in written reflections. Analyses showed a statistically significant (P <0.001) change of about two points in mean self-ratings on knowledge, skills, and confidence, with large effect sizes (d > 0.8). The second half of the program was also quantitatively and qualitatively shown to be a vital learning experience, resulting in 18 % more students passing the oral assessments; a 19 % increase in mean scores for written assessments; and a newfound understanding of interpreter roles and ways to navigate them. This innovative program was successful in increasing volunteer interpreters' skills and knowledge of interpretation, as well as confidence in own abilities. Additionally, the program effectively taught how to navigate the roles of the interpreter to maintain clear communication.
Psychiatric side effects of antihypertensive drugs other than reserpine.
Paykel, E S; Fleminger, R; Watson, J P
1982-02-01
The psychiatric side effects of the major antihypertensive drugs other than reserpine are reviewed, including centrally acting drugs such as methyldopa and clonidine, peripheral adrenergic drugs such as guanethidine, beta-adrenoceptor blockers such as propranolol, and diuretics. Problems with differential diagnosis and with the interpretation of case reports make assessment of psychiatric side effects difficult. Sedation and sleep disturbances are the most common side effects, occurring with methyldopa, clonidine, and propranolol. Only methyldopa is clearly associated with depression. Other reported effects are toxic confusional states and psychotic reactions. These are rare, however, and no clear patterns of development have been recognized.
Strategies for Dealing with Missing Accelerometer Data.
Stephens, Samantha; Beyene, Joseph; Tremblay, Mark S; Faulkner, Guy; Pullnayegum, Eleanor; Feldman, Brian M
2018-05-01
Missing data is a universal research problem that can affect studies examining the relationship between physical activity measured with accelerometers and health outcomes. Statistical techniques are available to deal with missing data; however, available techniques have not been synthesized. A scoping review was conducted to summarize the advantages and disadvantages of identified methods of dealing with missing data from accelerometers. Missing data poses a threat to the validity and interpretation of trials using physical activity data from accelerometry. Imputation using multiple imputation techniques is recommended to deal with missing data and improve the validity and interpretation of studies using accelerometry. Copyright © 2018 Elsevier Inc. All rights reserved.
Physics and our View of the World
NASA Astrophysics Data System (ADS)
Hilgevoord, Jan
1994-11-01
Foreword; 1. Introduction JAN HILGEVOORD; 2. Questioning the answers GERARD T. HOOFT; 3. Theories of everything JOHN BARROW; 4. The scientific view of the world DENNIS DIEKS; 5. Enlarging the world ERNAN McMULLIN; 6. The world of empiricism BAS VAN FRAASSEN; 7. Has the scientific view of the world a special status compared with other views? PAUL FEYERABEND; 8. Quantum theory and our view of the world PAUL FEYERABEND; 9. Interpretation of science - science as interpretation BAS VAN FRAASSEN; 10. Problems in debates about physics and religion WILLEM DREES; 11. The mind of God PAUL DAVIES; 12. The sources of models for God: metaphysics or metaphor? MARY HESSE; 13. Discussion.
Ishiwata, Ryosuke R; Morioka, Masaki S; Ogishima, Soichi; Tanaka, Hiroshi
2009-02-15
BioCichlid is a 3D visualization system of time-course microarray data on molecular networks, aiming at interpretation of gene expression data by transcriptional relationships based on the central dogma with physical and genetic interactions. BioCichlid visualizes both physical (protein) and genetic (regulatory) network layers, and provides animation of time-course gene expression data on the genetic network layer. Transcriptional regulations are represented to bridge the physical network (transcription factors) and genetic network (regulated genes) layers, thus integrating promoter analysis into the pathway mapping. BioCichlid enhances the interpretation of microarray data and allows for revealing the underlying mechanisms causing differential gene expressions. BioCichlid is freely available and can be accessed at http://newton.tmd.ac.jp/. Source codes for both biocichlid server and client are also available.
Interpretation of geographic patterns in simulated orbital television imagery of earth resources
NASA Technical Reports Server (NTRS)
Latham, J. P.; Cross, C. I.; Kuyper, W. H.; Witmer, R. E.
1972-01-01
In order to better determine the effects of the television imagery characteristics upon the interpretation of geographic patterns obtainable from orbital television sensors, and in order to better evaluate the influences of alternative sensor system parameters such as changes in orbital altitudes or scan line rates, a team of three professional interpreters independently mapped thematically the selected geographic phenomena that they could detect in orbital television imagery produced on a fourteen inch monitor and recorded photographically for analysis. Three thematic maps were compiled by each interpreter. The maps were: (1) transportation patterns; (2) other land use; and (3) physical regions. The results from the three interpreters are compared, agreements noted, and differences analyzed for cause such as disagreement on identification of phenomenon, visual acuity, differences in interpretation techniques, and differing professional backgrounds.
Coping with stress: dream interpretation in the Mapuche family.
Degarrod, L N
1990-06-01
Dreams are shared and interpreted daily within the family unit among the Mapuche Indians of Chile. This anthropological study examines the communicative aspect of dream sharing and interpreting among Mapuche families undergoing emotional and physical stress. Specifically, it investigates the ways in which the Mapuche dream interpretation system provides the family members with another means of interaction and a way of solving their problems. It also examines how individuals influence their attitudes towards one another by communally participating in the dream interpretation process, and in its narrative performance. The data used in this research consists of dreams and of their interpretations, collected in the natural setting, from two families with members suffering of witchcraft, and fear of death. This information was collected over a period of 17 months from October 1985 to March 1987 with a Fulbright-Hayes Doctoral Dissertation Grant.
Report of the COSPAR mars special regions colloquium
Kminek, G.; Rummel, J.D.; Cockell, C.S.; Atlas, R.; Barlow, N.; Beaty, D.; Boynton, W.; Carr, M.; Clifford, S.; Conley, C.A.; Davila, A.F.; Debus, A.; Doran, P.; Hecht, M.; Heldmann, J.; Helbert, J.; Hipkin, V.; Horneck, G.; Kieft, Thomas L.; Klingelhoefer, G.; Meyer, M.; Newsom, H.; Ori, G.G.; Parnell, J.; Prieur, D.; Raulin, F.; Schulze-Makuch, D.; Spry, J.A.; Stabekis, P.E.; Stackebrandt, E.; Vago, J.; Viso, M.; Voytek, M.; Wells, L.; Westall, F.
2010-01-01
In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 ??C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conservative nature of planetary protection, the following features constitute Mars Special regions: Gullies and bright streaks associated with them, pasted-on terrain, deep subsurface, dark streaks only on a case-by-case basis, others to be determined. The parameter definition and the associated list of physical features should be re-evaluated on a regular basis. ?? 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
Ulitsky, Igor; Shamir, Ron
2007-01-01
The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins. PMID:17437029
Earhart, Elizabeth L; Weiss, Edward P; Rahman, Rabia; Kelly, Patrick V
2015-03-01
Guidelines recommend the consumption of sodium during exercise to replace losses in sweat; however, the effects of sodium on thermoregulation are less clear. To determine the effects of high-dose sodium supplementation on indices of thermoregulation and related outcomes, 11 endurance athletes participated in a double-blind, randomized-sequence, crossover study in which they underwent 2-hrs of endurance exercise at 60% heart rate reserve with 1800 mg of sodium supplementation (SS) during one trial and placebo (PL) during the other trial. A progressive intensity time-to-exhaustion test was performed after the 2-hr steady state exercise as an assessment of exercise performance. Sweat rate was calculated from changes in body weight, accounting for fluid intake and urinary losses. Ratings of perceived exertion (RPE) and heat stress were assessed using verbal numeric scales. Cardiovascular drift was determined from the rise in HR during the 2-hr steady state exercise test. Skin temperature was measured with an infrared thermometer. Dehydration occurred in both SS and PL trials, as evidenced by substantial weight loss (2.03 ± 0.43% and 2.27 ± 0.70%, respectively; p = 0.261 between trials). Sweat rate was 1015.53 ± 239.10 ml·hr(-1) during the SS trial and 1053.60±278.24 ml/hr during the PL trial, with no difference between trials (p = 0.459). Heat stress ratings indicated moderate heat stress ("warm/hot" ratings) but were not different between trials (p = 0.825). Time to exhaustion during the SS trial was 6.88 ± 3.88 minutes and during the PL trial averaged 6.96 ± 3.61 minutes, but did not differ between trials (p = 0.919). Cardiovascular drift, skin temperature, and RPE did not differ between trials (all p > 0.05). High-dose sodium supplementation does not appear to impact thermoregulation, cardiovascular drift, or physical performance in trained, endurance athletes. However, in light of the possibility that high sodium intakes might have other adverse effects, such as hypertension, it is our recommendation that athletes interpret professional recommendations for sodium needs during exercise with caution. Key pointsBased on current professional recommendations to replace sodium losses in sweat during exercise, some endurance athletes consume salt or other electrolyte supplements containing sodium during training and competition, however the effects of sodium on thermoregulation are less clear.High-dose sodium supplementation does not appear to impact thermoregulation, cardiovascular drift, or physical performance in trained, endurance athletes.The possibility remains that high sodium intakes might have other adverse effects. It is our recommendation that athletes interpret professional recommendations for sodium needs during exercise with caution.
Strain transients in the Gulf of Corinth (Greece)
NASA Astrophysics Data System (ADS)
Canitano, Alexandre; Bernard, Pascal; Linde, Alan; Sacks, Selwyn; Boudin, Frederick
2010-05-01
The Gulf of Corinth (Greece) is one of the most seismic regions in Europe, producing some earthquakes of magnitude greater than 5.8 in the last 35 years, 1 to 1.5 cm/yr of north-south extension, and frequent seismic swarms. This structure is a 110 km long, N110E oriented graben bounded by systems of very recent normal faults. This zone thus provides an ideal site for investigating in situ the physics of earthquake sources and for developing efficient seismic hazard reduction procedures. The Corinth Rift Laboratory (CRL) project is concentrated in the western part of the rift, around the city of Aigion, where instrumental seismicity and strain rate is highest. The CRL Network is made up about fifteen seismic stations as well as tiltmeters, strainmeters or GPS in order to study the local seismicity, and to observe and model the short and long term mechanics of the normal fault system. The instrumental seismicity in the Aigion zone clearly shows a strong concentration of small earthquakes between 5 and 10 km. In order to study slow transient deformation, two borehole strainmeters have been installed in the Gulf (Trizonia, Monasteraki). The strainmeter installed in the Trizonia island is continuously recording the horizontal strain at 150m depth with a resolution better than 10-9. The dominant signal is the earth and sea tidal effects (few 10-7 strain), this one is modulated by the mechanical effects of the free oscillations of the Gulf with periods between 8 and 40 min. The barometric pressure fluctuations acts in combination with the mean sea level variation at longer periods and both effects are not independant. The comparison between the strain data and the two forcing signals (sea-level, barometric pressure) shows clearly a non zero phase delay of the sea-level. The analysis of time correlations between the signals in differents frequency range exhibits that the sea level delay and the strainmeter/sea-level coupling coefficient are increasing with period (about 1/10 of a period for 10-40 hrs period range). This analysis allows us to estimate a transfert function for each forcing signal but the physical interpretation of the sea-level function is difficult. As the strainmeter is at 150m depth, below the shoreline, a sea water percolation on land would increase the effect of sea level fluctuation, and be more efficient at longer periods. This interpretation and the study of the mechanical effects on strainmeter allow us to accurate the sea level admittance and to remove the water effect from the strain data. This residual signals are studied in order to find slow transient signatures, especially during the reported seismic swarms.
Expanding the Basic Science Debate: The Role of Physics Knowledge in Interpreting Clinical Findings
ERIC Educational Resources Information Center
Goldszmidt, Mark; Minda, John Paul; Devantier, Sarah L.; Skye, Aimee L.; Woods, Nicole N.
2012-01-01
Current research suggests a role for biomedical knowledge in learning and retaining concepts related to medical diagnosis. However, learning may be influenced by other, non-biomedical knowledge. We explored this idea using an experimental design and examined the effects of causal knowledge on the learning, retention, and interpretation of medical…
Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Analysis and interpretation
NASA Technical Reports Server (NTRS)
Neubauer, Fritz M.; Glassmeier, Karl-Heinz; Coates, A. J.; Johnstone, A. D.
1993-01-01
The propagation and polarization characteristic of low-frequency electromagnetic wave fields near comet P/Grigg-Skjellerup (P/GS) are analyzed using magnetic field and plasma observations obtained by the Giotto magnetometer experiment and the Johnstone plasma analyzer during the encounter at the comet on July 10, 1992. The results have been physically interpreted.
ERIC Educational Resources Information Center
Kell, Clare; Sweet, John
2017-01-01
This paper shows how peer observation of learning and teaching (POLT) discussions can be augmented through the use of a dynamic visual notation that makes visible for interpretation, elements of teacher-learner and learner-earner nonverbal interactions. Making visible the nonverbal, physical, spatial and kinesics (eye-based) elements of…
X-Ray Variability and the Secondary Star
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Ishibashi, K.
2012-01-01
We discuss the history of X-ray observations of the 11 Car system, concentrating on the periodic variability discovered in the 1990s. We discuss the interpretation of these variations, concentrating on a model of the system as a "collidingwind" binary. This interpretation allows the physical and orbital parameters of eta Car and its companion star to be constrained.
CLEAR Instructional Reports Series, Numbers 1-7.
ERIC Educational Resources Information Center
Center for Applied Linguistics, Washington, DC. Center for Language Education and Research.
The complete Instructional Reports Series of the Center for Language Education and Research (CLEAR) is presented. Included are (1) "Using Video in the Foreign Language Classroom" (Ingrid Berdahl); (2) "Strategies for Integrating Language and Content Instruction: Art, Music, and Physical Education" (Carolyn Andrade, Carol Ann…
NASA Astrophysics Data System (ADS)
Astra, I. M.; Saputra, F.
2018-05-01
This study aims to develop a physics knowledge enrichment book which is provided with augmented reality focusing on the proper optical instruments as the subject to improve students’ learning outcomes. This physics knowledge enrichment book entitled “Alat Optikyang dilengkapi dengan Augmented Reality” discusses some optical instruments seeing from its history, physics concepts, and types. This study used method Research and Development which is developed as Model Pengembangan Instruksional. In the previous study has been done feasibility test to the material and media experts with the percentage by each experts are 88,50% and 88,90%. In this study, we did the trial run of product use was carried out to a physics teacher and 25 students of SMAN 33 Jakarta. This trial run got the average percentage of 88.10% from the physics teacher while the result of the students was 82.80% and the gain normalized test result of 0.71 which meant the students’ learning outcomes had increased in cognitive domain with high interpretation. Based on the result of this study, the physics knowledge enrichment book entitled “Alat Optik yang dilengkapi dengan Augmented Reality” is a proper book in order to improve students’ learning outcomes in cognitive domain with high interpretation.
Design and interpretation of anthropometric and fitness testing of basketball players.
Drinkwater, Eric J; Pyne, David B; McKenna, Michael J
2008-01-01
The volume of literature on fitness testing in court sports such as basketball is considerably less than for field sports or individual sports such as running and cycling. Team sport performance is dependent upon a diverse range of qualities including size, fitness, sport-specific skills, team tactics, and psychological attributes. The game of basketball has evolved to have a high priority on body size and physical fitness by coaches and players. A player's size has a large influence on the position in the team, while the high-intensity, intermittent nature of the physical demands requires players to have a high level of fitness. Basketball coaches and sport scientists often use a battery of sport-specific physical tests to evaluate body size and composition, and aerobic fitness and power. This testing may be used to track changes within athletes over time to evaluate the effectiveness of training programmes or screen players for selection. Sports science research is establishing typical (or 'reference') values for both within-athlete changes and between-athlete differences. Newer statistical approaches such as magnitude-based inferences have emerged that are providing more meaningful interpretation of fitness testing results in the field for coaches and athletes. Careful selection and implementation of tests, and more pertinent interpretation of data, will enhance the value of fitness testing in high-level basketball programmes. This article presents reference values of fitness and body size in basketball players, and identifies practical methods of interpreting changes within players and differences between players beyond the null-hypothesis.
Understandings of reproductive tract infections in a peri-urban pueblo joven in Lima, Peru
Hernández, Lisa Scipioni; Winch, Peter J; Parker, Kea; Gilman, Robert H
2006-01-01
Background Control programs for Reproductive Tract Infections (RTIs) typically focus on increasing awareness of risks associated with different forms of sexual contact, and pay little attention to how or why people may link RTIs to other features of their physical or social environments. This paper describes how women in a peri-urban pueblo joven located in the coastal desert surrounding Lima, Peru conceptualize the links between RTIs, sexual behaviour, personal hygiene, and the adverse environment in which they live. Methods We combined qualitative interviews and a participatory voting exercise to examine social and physical environmental influences on RTIs and gynaecologic symptom interpretation. Results Knowledge of RTIs in general was limited, although knowledge of AIDS was higher. Perceived causes of RTIs fell into three categories: sexual contact with infected persons, personal hygiene and exposure to the contaminated physical environment, with AIDS clearly related to sexual contact. The adverse environment is thought to be a major contributor to vaginal discharge, "inflamed ovaries" and urinary tract infection. The more remote parts of this periurban squatter settlement, characterized by blowing sand and dust and limited access to clean water, are thought to exhibit higher rates of RTIs as a direct result of the adverse environment found there. Stigma associated with RTIs often keeps women from seeking care or obtaining information about gynaecologic symptoms, and favours explanations that avoid mention of sexual practices. Conclusion The discrepancy between demonstrated disease risk factors and personal explanations influenced by local environmental conditions and RTI-related stigma poses a challenge for prevention programs. Effective interventions need to take local understandings of RTIs into account as they engage in dialogue with communities about prevention and treatment of RTIs. PMID:16670025
Seabirds as indicators of marine ecosystems: Introduction: A modern role for seabirds as indicators
Piatt, John F.; Sydeman, William J.; Wiese, Francis
2007-01-01
A key requirement for implementing ecosystem-based management is to obtain timely information on significant fluctuations in the ecosystem (Botsford et al. 1997). However, obtaining all necessary information about physical and biological changes at appropriate temporal and spatial scales is a daunting task. Intuitively, one might assume that physical data are more important for the interpretation of ecosystem changes than biological data, but analyses of time series data suggest otherwise: physical data are more erratic and often confusing over the short term compared to biological data, which tend to fluctuate less on annual time scales (Hare & Mantua 2000). Even so, biological time-series may also be confusing when coexisting marine species respond differently to ecosystem variability. For example, while warming temperatures in the Gulf of Alaska following the 1976 to 1977 regime shift favored an increase in gadoids and flatfish, a variety of forage fish and pandalid shrimp species virtually disappeared (Anderson & Piatt 1999). Zooplankton communities in the Gulf of Alaska also demonstrated similar patterns of response (Francis et al. 1998). At the basin scale, favorable conditions for salmon in Alaska following the regime shift were matched inversely by poor conditions in the California Current (Francis et al. 1998). In marine birds, subtropical species increased, while subarctic ones decreased during a warming phase in the southern California Bight. Clearly, no single index can tell the whole story accurately. Multi-species, multi-region, and multi-trophic level approaches are needed to quantify fluctuations in marine ecosystem processes and in the distribution and abundance of its inhabitants, to determine critical parameter thresholds and to use this information in management and marine conservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, M.
The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less
Josefsson, Kim; Elovainio, Marko; Stenholm, Sari; Kawachi, Ichiro; Kauppi, Maarit; Aalto, Ville; Kivimäki, Mika; Vahtera, Jussi
2018-03-19
Extensive scientific evidence shows an association between involvement in social relationships and healthy lifestyle. Prospective studies with many participants and long follow-ups are needed to study the dynamics and change in social factors within individuals over time. Our aim was to determine whether a change in relationship status (single, married, divorced, widow, cohabiting) is followed by a change in health behavior (smoking, alcohol consumption, physical activity, and body mass index). We used data from 81,925 healthy adults participating in the prospective longitudinal Finnish Public Sector Study in the period 2000-2013. We analyzed 327,700 person-observations from four data collection phases. Missing data were multiply imputed. A within-individual methodology was used to minimize the possibility of selection effects affecting the interpretation. All four health behaviors showed associations with relationship status. The effects were very similar and in the same direction in women and men, although there were gender differences in the magnitudes of the effects. The end of a relationship was followed by a decrease in body mass index, increased odds of being a smoker, increase in physical activity, and increase in alcohol consumption (widowed men). The effects were reverse when forming a new relationship. A change in relationship status is associated with a change in health behavior. The association is not explained by socioeconomic status, subjective health status, or anxiety level. People leaving or losing a relationship are at increased risk of unhealthy behavior (smoking and alcohol consumption), but at the same time they have a lower BMI and show higher physical activity compared to the time they were in a relationship. It is not clear if the cumulative health effect of these health behavior changes is positive or negative. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rowell, Alexandra L. K.; Thomas, David S. G.; Bailey, Richard M.; Holmes, Peter J.
2018-06-01
Sand ramps occur on a continuum of topographically-controlled landforms, ranging from purely aeolian features (climbing/falling dunes) to talus cones and alluvial fans. Sand ramps have been identified as potentially important palaeoenvironmental archives in dryland regions that possess relatively few Quaternary proxy records. Their utility however requires not only good age control of depositional phases but clear identification of process regimes, determined through morphological and sedimentological analyses, with several recent studies indicating the complexities of palaeoenvironmental interpretations and the controls of ramp development (Bateman et al., 2012; Rowell et al., 2018). Klipkraal Sands is a sand ramp on the north-eastern margin of the semi-arid Karoo that has been important for inferences of the extent of southern African Late Quaternary aeolian activity (Thomas et al., 2002). We reanalyse this feature, in the light of both its significance and other recent studies that have inferred extensive southern African LGM aeolian activity (Telfer et al., 2012, 2014). New sedimentological data and twelve OSL dates indicate the Klipkraal Sands formed episodically between 100-0.14 ka, rather than accumulating rapidly, while sedimentological data question the aeolian affinities of the bulk of the feature. Therefore, Klipkraal is reinterpreted as showing no particular affinity to the LGM, with sediments locally sourced with a significant colluvial component. Only the upper historical sediments can be clearly interpreted as aeolian deposits. A complex interplay of processes is suggested, for which a meaningful palaeoenvironmental interpretation cannot be easily defined. This implies that the local geomorphic processes and controls operating on sand ramps need to be established before they can be fully utilised as palaeoenvironmental archives, with implications for their interpretation worldwide.
Miller, Jason
2015-03-01
The Thematic Apperception Test (TAT) was a projective psychological test created by Harvard psychologist Henry A. Murray and his lover Christina Morgan in the 1930s. The test entered the nascent intelligence service of the United States (the OSS) during the Second World War due to its celebrated reputation for revealing the deepest aspects of an individual's unconscious. It subsequently spread as a scientifically objective research tool capable not only of dredging the unconscious depths, but also of determining the best candidate for a management position, the psychological complexes of human nature, and the unique characteristics of a culture. Two suppositions underlie the utility of the test. One is the power of narrative. The test entails a calculated abuse of the subjects tested, based on their inability to interpret their own narrative. The form of the test requires that a subject fail to decipher the coded, unconscious meaning their narrative reveals. Murray believed the interpretation of a subject's narrative and the projection contained therein depended exclusively on the psychologist. This view of interpretation stems from the seemingly more reasonable belief of nineteenth-century Romantic thinkers that a literary text serves as a proxy for an author's deepest self. The TAT also supposes that there is something beyond consciousness closely resembling a psychoanalytic unconscious, which also has clear precedents in nineteenth-century German thought. Murray's views on literary interpretation, his view of psychology as well as the continuing prevalence of the TAT, signals a nineteenth-century concept of self that insists "on relations of depth and surface, inner and outer life" (Galison 2007, 277). It is clear the hermeneutic practice of Freud's psychoanalysis, amplified in Jung, drew on literary conceptions of the unconscious wider than those of nineteenth-century psychology.
Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R
2018-02-01
This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimal modeling of 1D azimuth correlations in the context of Bayesian inference
NASA Astrophysics Data System (ADS)
De Kock, Michiel B.; Eggers, Hans C.; Trainor, Thomas A.
2015-09-01
Analysis and interpretation of spectrum and correlation data from high-energy nuclear collisions is currently controversial because two opposing physics narratives derive contradictory implications from the same data, one narrative claiming collision dynamics is dominated by dijet production and projectile-nucleon fragmentation, the other claiming collision dynamics is dominated by a dense, flowing QCD medium. Opposing interpretations seem to be supported by alternative data models, and current model-comparison schemes are unable to distinguish between them. There is clearly need for a convincing new methodology to break the deadlock. In this study we introduce Bayesian inference (BI) methods applied to angular correlation data as a basis to evaluate competing data models. For simplicity the data considered are projections of two-dimensional (2D) angular correlations onto a 1D azimuth from three centrality classes of 200-GeV Au-Au collisions. We consider several data models typical of current model choices, including Fourier series (FS) and a Gaussian plus various combinations of individual cosine components. We evaluate model performance with BI methods and with power-spectrum analysis. We find that FS-only models are rejected in all cases by Bayesian analysis, which always prefers a Gaussian. A cylindrical quadrupole cos(2 ϕ ) is required in some cases but rejected for 0%-5%-central Au-Au collisions. Given a Gaussian centered at the azimuth origin, "higher harmonics" cos(m ϕ ) for m >2 are rejected. A model consisting of Gaussian +dipole cos(ϕ )+quadrupole cos(2 ϕ ) provides good 1D data descriptions in all cases.
NASA Technical Reports Server (NTRS)
Zheng, W.; Shen, R. F.; Sakamoto, T.; Beardmore, A. P.; De Pasquale, M.; Wu, X. F.; Gorosabel, J.; Urata, Y.; Sugita, S.; Zhang, B.;
2011-01-01
We present a comprehensive analysis of a bright, long duration (T(sub 90) approx. 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray band. Thanks to its long duration, nearly 200 s of observations were obtained simultaneously from optical, X-ray to gamma-ray (1 eV - 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution across 6 orders of magnitude in energy during the prompt emission phase. In particular, by fitting the time resolved prompt spectra, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard GRB synchrotron emission model in the fast cooling regime. Although the prompt optical emission is brighter than the extrapolation of the best fit X/ -ray spectra, it traces the -ray light curve shape, suggesting a relation to the prompt high energy emission. The synchrotron + synchrotron self-Compton (SSC) scenario is disfavored by the data, but the models invoking a pair of internal shocks or having two emission regions can interpret the data well. Shortly after prompt emission (approx. 1100 s), a bright (R = 14.0) optical emission hump with very steep rise ( alpha approx. 5.5) was observed which we interpret as the emission from the reverse shock. It is the first time that the rising phase of a reverse shock component has been closely observed.
Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars
Johnson, J. R.; Kirk, R.; Soderblom, L.A.; Gaddis, L.; Reid, R.J.; Britt, D.T.; Smith, P.; Lemmon, M.; Thomas, N.; Bell, J.F.; Bridges, N.T.; Anderson, R.; Herkenhoff, K. E.; Maki, J.; Murchie, S.; Dummel, A.; Jaumann, R.; Trauthan, F.; Arnold, G.
1999-01-01
Reflectance measurements of selected rocks and soils over a wide range of illumination geometries obtained by the Imager for Mars Pathfinder (IMP) camera provide constraints on interpretations of the physical and mineralogical nature of geologic materials at the landing site. The data sets consist of (1) three small "photometric spot" subframed scenes, covering phase angles from 20?? to 150??; (2) two image strips composed of three subframed images each, located along the antisunrise and antisunset lines (photometric equator), covering phase angles from ???0?? to 155??; and (3) full-image scenes of the rock "Yogi," covering phase angles from 48?? to 100??. Phase functions extracted from calibrated data exhibit a dominantly backscattering photometric function, consistent with the results from the Viking lander cameras. However, forward scattering behavior does appear at phase angles >140??, particularly for the darker gray rock surfaces. Preliminary efforts using a Hapke scattering model are useful in comparing surface properties of different rock and soil types but are not well constrained, possibly due to the incomplete phase angle availability, uncertainties related to the photometric function of the calibration targets, and/or the competing effects of diffuse and direct lighting. Preliminary interpretations of the derived Hapke parameters suggest that (1) red rocks can be modeled as a mixture of gray rocks with a coating of bright and dark soil or dust, and (2) gray rocks have macroscopically smoother surfaces composed of microscopically homogeneous, clear materials with little internal scattering, which may imply a glass-like or varnished surface. Copyright 1999 by the American Geophysical Union.
Pubertal Development: Correspondence between Hormonal and Physical Development
ERIC Educational Resources Information Center
Shirtcliff, Elizabeth A.; Dahl, Ronald E.; Pollak, Seth D.
2009-01-01
Puberty is advanced by sex hormones, yet it is not clear how it is best measured. The interrelation of multiple indices of puberty was examined, including the Pubertal Development Scale (PDS), a picture-based interview about puberty (PBIP), and a physical exam. These physical pubertal measures were then associated with basal hormones responsible…
Dimensional Analysis in Physics and the Buckingham Theorem
ERIC Educational Resources Information Center
Misic, Tatjana; Najdanovic-Lukic, Marina; Nesic, Ljubisa
2010-01-01
Dimensional analysis is a simple, clear and intuitive method for determining the functional dependence of physical quantities that are of importance to a certain process. However, in physics textbooks, very little space is usually given to this approach and it is often presented only as a diagnostic tool used to determine the validity of…
MAUVE: A New Strategy for Solving and Grading Physics Problems
ERIC Educational Resources Information Center
Hill, Nicole Breanne
2016-01-01
MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping.…
Quality assessment of malaria laboratory diagnosis in South Africa.
Dini, Leigh; Frean, John
2003-01-01
To assess the quality of malaria diagnosis in 115 South African laboratories participating in the National Health Laboratory Service Parasitology External Quality Assessment Programme we reviewed the results from 7 surveys from January 2000 to August 2002. The mean percentage incorrect result rate was 13.8% (95% CI 11.3-16.9%), which is alarmingly high, with about 1 in 7 blood films being incorrectly interpreted. Most participants with incorrect blood film interpretations had acceptable Giemsa staining quality, indicating that there is less of a problem with staining technique than with blood film interpretation. Laboratories in provinces in which malaria is endemic did not necessarily perform better than those in non-endemic areas. The results clearly suggest that malaria laboratory diagnosis throughout South Africa needs strengthening by improving laboratory standardization and auditing, training, quality assurance and referral resources.
ERIC Educational Resources Information Center
Barthelemy, Ramón S.; McCormick, Melinda; Henderson, Charles
2016-01-01
Sexism occurs when men are believed to be superior to women, and is thought to be one of the reasons for women's underrepresentation in physics and astronomy. The issue of sexism in physics and astronomy has not been thoroughly explored in the physics education literature and there is currently no clear language for discussing sexism in the field.…
Mapping the Discourse of Physical Education: Articulating a Female Tradition.
ERIC Educational Resources Information Center
Wright, Janice
1996-01-01
Argues that a male perspective, valuing individual achievement through aggressive competition, has dominated physical education. This agenda has marginalized other pedagogies and sports such as gymnastics and dance. Supports this interpretation with an analysis of policy documents, archival material, interviews, and journal articles. (MJP)
Interpreting the Effects of Pulse Remagnetization on Animal Behavior
NASA Astrophysics Data System (ADS)
Kirschvink, J. L.; Wang, C. X.; Golash, H. N.; Hilburn, I. A.; Wu, D. A.; Crucilla, S. J.; Badal, Y. D.; Shimojo, S.
2017-12-01
Observations of geomagnetic sensitivity by migratory and homing animals have puzzled biophysicists for over 70 years. Widely dismissed as biophysically implausible due to the lack of physiological ferromagnetic materials [e.g., D.R. Griffin, 1944, 1952], clear and reproducible responses to earth-strength magnetic fields is now firmly established in organisms ranging from Bacteria, Protists, and Animals from numerous phyla, including mollusks, arthropods, and the chordates. Behavior demands sensory transduction, as external stimuli only `get into the nervous system' through sensory cells specialized to transduce the physical stimulus into a modulated stream of action potentials in neurons. Three basic biophysical mechanisms could plausibly explain the biophysical transduction of geomagnetic cues, including electrical induction, hyperfine magnetic field effects on photo-activated free radicals (the `Quantum Compass'), or receptor cells containing biologically-precipitated crystals of a ferromagnetic mineral like magnetite (Fe3O4). The definitive test of a ferromagnetic receptor is the pulse-remagnetization experiment, in which you apply a brief, unidirectional magnetic pulse of about 1 mS in duration, configured to exceed the coercive force of the SD particles and reverse the orientation of the magnetic moment wrt to the crystal axis (typically, a pulse few tens of mT is adequate). A pulse configured in this fashion can be well below the dB/dt level needed to fire a sensory nerve through the induced electric fields. The pulse produces a permanent flip in magnetization direction, the same way information is coded on magnetic tape. Magnetotactic bacteria, exposed to such a pulse, reverse their magnetic swimming directions passively. There are now over 16 peer-reviewed papers in which this experiment has been applied to animals, including birds, all of which show clear and long-lasting effects of the pulse. Such a pulse would have no lasting effect on a quantum compass. Initial experiments with a magnetic pulse of 70 mT on a large primate show a clear effect, although the results are … complex!
Finite-Amplitude Standing Waves in a Cavity with Boundary Perturbations.
1982-04-01
report is authorized. This report was prepared by: A.B. PEN .------ 7 V. -SANDERS Pro of Physics .. Professor of Physics Approved by: / J . Rilliam H...Toi " Department of Physics Dean of Research +ECUNITY CLASS IICATION OP TNI PAGE fUm e. be, _ _ REPOR DOCUMNTTO PAGE 1. NUPORT RuIMIKN ILOV-ACCESION...capacities,and t an operator describing the physical processes for absorption and dispersion. The term on the right can be interpreted as a
Staitieh, Bashar S; Saghafi, Ramin; Kempker, Jordan A; Schulman, David A
2016-04-01
Hypothesis-driven physical examination emphasizes the role of bedside examination in the refinement of differential diagnoses and improves diagnostic acumen. This approach has not yet been investigated as a tool to improve the ability of higher-level trainees to teach medical students. To assess the effect of teaching hypothesis-driven physical diagnosis to pulmonary fellows on their ability to improve the pulmonary examination skills of first-year medical students. Fellows and students were assessed on teaching and diagnostic skills by self-rating on a Likert scale. One group of fellows received the hypothesis-driven teaching curriculum (the "intervention" group) and another received instruction on head-to-toe examination. Both groups subsequently taught physical diagnosis to a group of first-year medical students. An oral examination was administered to all students after completion of the course. Fellows were comfortable teaching physical diagnosis to students. Students in both groups reported a lack of comfort with the pulmonary examination at the beginning of the course and improvement in their comfort by the end. Students trained by intervention group fellows outperformed students trained by control group fellows in the interpretation of physical findings (P < 0.05). Teaching hypothesis-driven physical examination to higher-level trainees who teach medical students improves the ability of students to interpret physical findings. This benefit should be confirmed using validated testing tools.
More Hurdles to Clear: Women and Girls in Competitive Athletics.
ERIC Educational Resources Information Center
Commission on Civil Rights, Washington, DC.
This publication reviews the history of women and girls in athletics, assesses the current status of female participation in high school and college competitive athletics, and summarizes recent policy interpretations by the Department of Health, Education, and Welfare (DHEW) of Title IX of the Education Amendments of 1972. The historical review…
Test Review: A Review of the Five Factor Personality Inventory-Children
ERIC Educational Resources Information Center
Klingbeil, David A.
2009-01-01
This article presents a review of the Five Factor Personality Inventory-Children (FFPI-C), a quick and easily administered personality assessment for children and adolescents with clear and straightforward scoring and interpretation procedures. The FFPI-C is based on a theoretical model of personality developed through the work of Allport (Allport…
Modeling early forest succession following clear-cutting in western Oregon.
Zhiqiang Yang; Warren B. Cohen; Mark E. Harmon
2005-01-01
In the Pacific Northwest, the process of conifer development after stand-replacing disturbance has important implications for many forest processes (e.g., carbon storage, nutrient cycling, and biodiversity). This paper examines conifer development in the Coast Range Province and Western Cascades Province of Oregon using repeat interpretation of historic aerial...
ERIC Educational Resources Information Center
Li, Ming; Harring, Jeffrey R.
2017-01-01
Researchers continue to be interested in efficient, accurate methods of estimating coefficients of covariates in mixture modeling. Including covariates related to the latent class analysis not only may improve the ability of the mixture model to clearly differentiate between subjects but also makes interpretation of latent group membership more…
Supporting Clear and Concise Mathematics Language: Say This, Not That
ERIC Educational Resources Information Center
Hughes, Elizabeth M.; Powell, Sarah R.; Stevens, Elizabeth A.
2016-01-01
One influence contributing to this trend may be the imprecise use of mathematics language. Educators may not interpret mathematics as a second (or third) language for children, when, in fact, all children are mathematical-language learners (Barrow, 2014). The numerals, symbols, and terms that explain mathematics concepts and procedures are…
Accessibility benchmarks: interpretive programs and services in north central California
Laura J. McLachlin; Emilyn A. Sheffield; Donald A. Penland; Charles W. Nelson
1995-01-01
The Heritage Corridors Project was a unique partnership between the California Department of Parks and Recreation, the California State University, and the Across California Conservancy. The purpose of the project was to develop a map of selected northern California outdoor recreation and heritage sites. Data about facility accessibility improvements (restrooms, clear...
FDDS: A Cross Validation Study.
ERIC Educational Resources Information Center
Sawyer, Judy Parsons
The Family Drawing Depression Scale (FDDS) was created by Wright and McIntyre to provide a clear and reliable scoring method for the Kinetic Family Drawing as a procedure for detecting depression. A study was conducted to confirm the value of the FDDS as a systematic tool for interpreting family drawings with populations of depressed individuals.…
Code of Federal Regulations, 2010 CFR
2010-04-01
... is not an adjudicatory organization and therefore does not issue final opinions and orders made in... manuals and instructions to staff that affect any member of the public. (a) Deletion to protect privacy. To the extent required to prevent a clearly unwarranted invasion of personal privacy, NED may delete...
Statistics and Data Interpretation for Social Work
ERIC Educational Resources Information Center
Rosenthal, James A.
2011-01-01
Written by a social worker for social work students, this is a nuts and bolts guide to statistics that presents complex calculations and concepts in clear, easy-to-understand language. It includes numerous examples, data sets, and issues that students will encounter in social work practice. The first section introduces basic concepts and terms to…
The Inter-Temporal Aspect of Well-Being and Societal Progress
ERIC Educational Resources Information Center
Sicherl, Pavle
2007-01-01
The perceptions on well-being and societal progress are influenced also by the quantitative indicators and measures used in the measurement, presentation and semantics of discussing these issues. The article presents a novel generic statistical measure S-time-distance, with clear interpretability that delivers a broader concept to look at data, to…
The Hyperbolic Sine Cardinal and the Catenary
ERIC Educational Resources Information Center
Sanchez-Reyes, Javier
2012-01-01
The hyperbolic function sinh(x)/x receives scant attention in the literature. We show that it admits a clear geometric interpretation as the ratio between length and chord of a symmetric catenary segment. The inverse, together with the use of dimensionless parameters, furnishes a compact, explicit construction of a general catenary segment of…
American Government. A High School Bilingual Supplement for Cambodian Students.
ERIC Educational Resources Information Center
Johnson, Carol
A bilingual Cambodian-English supplement designed for high school courses in American government is intended to interpret the story of government's operation in a clear and interesting way and provide a vocabulary of frequently-used words and phrases. The lessons, in both English and Cambodian, cover the following topics : American government; the…
ERIC Educational Resources Information Center
Hamilton, Kyra; White, Katherine M.; Cuddihy, Tom
2012-01-01
The accurate measurement of health-related physical activity (PA), often interpreted as either 150 min/week of at least moderate-intensity PA (U.S. Department of Health and Human Services, 2008) or at least 30 min of at least moderate-intensity PA on 5 or more days per week (Australian Government Department of Health and Ageing [AGDHA], 2005;…
A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry
ERIC Educational Resources Information Center
Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.
2017-01-01
In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…
Brown, B M; Peiffer, J J; Martins, R N
2013-08-01
Western countries are experiencing aging populations and increased longevity; thus, the incidence of dementia and Alzheimer's disease (AD) in these countries is projected to soar. In the absence of a therapeutic drug, non-pharmacological preventative approaches are being investigated. One of these approaches is regular participation in physical activity or exercise. This paper reviews studies that have explored the relationship between physical activity and cognitive function, cognitive decline, AD/dementia risk and AD-associated biomarkers and processes. There is now strong evidence that links regular physical activity or exercise to higher cognitive function, decreased cognitive decline and reduced risk of AD or dementia. Nevertheless, these associations require further investigation, more specifically with interventional studies that include long follow-up periods. In particular, relatively little is known about the underlying mechanism(s) of the associations between physical activity and AD neuropathology; clearly this is an area in need of further research, particularly in human populations. Although benefits of physical activity or exercise are clearly recognised, there is a need to clarify how much physical activity provides the greatest benefit and also whether people of different genotypes require tailored exercise regimes.
Seventy Years of the EPR Paradox
NASA Astrophysics Data System (ADS)
Kupczynski, Marian
2006-11-01
In spite of the fact that statistical predictions of quantum theory (QT) can only be tested if large amount of data is available a claim has been made that QT provides the most complete description of an individual physical system. Einstein's opposition to this claim and the paradox he presented in the article written together with Podolsky and Rosen in 1935 inspired generations of physicists in their quest for better understanding of QT. Seventy years after EPR article it is clear that without deep understanding of the character and limitations of QT one may not hope to find a meaningful unified theory of all physical interactions, manipulate qubits or construct a quantum computer.. In this paper we present shortly the EPR paper, the discussion, which followed it and Bell inequalities (BI). To avoid various paradoxes we advocate purely statistical contextual interpretation (PSC) of QT. According to PSC a state vector is not an attribute of a single electron, photon, trapped ion or quantum dot. A value of an observable assigned to a physical system has only a meaning in a context of a particular physical experiment PSC does not provide any mental space-time picture of sub phenomena. The EPR paradox is avoided because the reduction of the state vector in the measurement process is a passage from a description of the whole ensemble of the experimental results to a particular sub-ensemble of these results. We show that the violation of BI is neither a proof of the completeness of QT nor of its non-locality. Therefore we rephrase the EPR question and ask whether QT is "predictably "complete or in other words does it provide the complete description of experimental data. To test the "predictable completeness" it is not necessary to perform additional experiments it is sufficient to analyze more in detail the existing experimental data by using various non-parametric purity tests and other specific statistical tools invented to study the fine structure the time-series.
Ward, Adam S.; Payn, Robert A.; Gooseff, Michael N.; McGlynn, Brian L.; Bencala, Kenneth E.; Kelleher, Christa A.; Wondzell, Steven M.; Wagener, Thorsten
2013-01-01
The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We conducted transient storage and mass recovery analyses of artificial tracer studies completed for 28 contiguous 100 m reaches along a stream valley, repeated under four base-flow conditions. We calculated net and gross gains and losses, temporal moments of tracer breakthrough curves, and best fit transient storage model parameters (with uncertainty estimates) for 106 individual tracer injections. Results supported predictions that gross loss of channel water would decrease with increased discharge. However, results showed no clear relationship between discharge and transient storage, and further analysis of solute tracer methods demonstrated that the lack of this relation may be explained by uncertainty and equifinality in the transient storage model framework. Furthermore, comparison of water balance and transient storage approaches reveals complications in clear interpretation of either method due to changes in advective transport time, which sets a the temporal boundary separating transient storage and channel water balance. We have little ability to parse this limitation of solute tracer methods from the physical processes we seek to study. We suggest the combined analysis of both transient storage and channel water balance more completely characterizes transport of solutes in stream networks than can be inferred from either method alone.
NASA Astrophysics Data System (ADS)
Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel
2017-08-01
We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.
ERIC Educational Resources Information Center
Dodd, Helen F.; Porter, Melanie A.
2011-01-01
Williams syndrome (WS) is associated with an unusual profile of anxiety, characterised by increased rates of non-social anxiety but not social anxiety (Dodd and Porter, J Ment Health Res Intellect Disabil 2(2):89-109, "2009"). The present research examines whether this profile of anxiety is associated with an interpretation bias for ambiguous…
NASA Astrophysics Data System (ADS)
Shields, William
2004-05-01
Karl Popper, though not trained as a physicist and embarrassed early in his career by a physics error pointed out by Einstein and Bohr, ultimately made substantial contributions to the interpretation of quantum mechanics. As was often the case, Popper initially formulated his position by criticizing the views of others - in this case Niels Bohr and Werner Heisenberg. Underlying Popper's criticism was his belief that, first, the "standard interpretation" of quantum mechanics, sometimes called the Copenhagen interpretation, abandoned scientific realism and second, the assertion that quantum theory was "complete" (an assertion rejected by Einstein among others) amounted to an unfalsifiable claim. Popper insisted that the most basic predictions of quantum mechanics should continue to be tested, with an eye towards falsification rather than mere adding of decimal places to confirmatory experiments. His persistent attacks on the Copenhagen interpretation were aimed not at the uncertainty principle itself and the formalism from which it was derived, but at the acceptance by physicists of an unclear epistemology and ontology that left critical questions unanswered. In 1999, physicists at the University of Maryland conducted a version of Popper's Experiment, re-igniting the debate over quantum predictions and the role of locality in physics.
NASA Astrophysics Data System (ADS)
Iwakoshi, Takehisa; Hirota, Osamu
2014-10-01
This study will test an interpretation in quantum key distribution (QKD) that trace distance between the distributed quantum state and the ideal mixed state is a maximum failure probability of the protocol. Around 2004, this interpretation was proposed and standardized to satisfy both of the key uniformity in the context of universal composability and operational meaning of the failure probability of the key extraction. However, this proposal has not been verified concretely yet for many years while H. P. Yuen and O. Hirota have thrown doubt on this interpretation since 2009. To ascertain this interpretation, a physical random number generator was employed to evaluate key uniformity in QKD. In this way, we calculated statistical distance which correspond to trace distance in quantum theory after a quantum measurement is done, then we compared it with the failure probability whether universal composability was obtained. As a result, the degree of statistical distance of the probability distribution of the physical random numbers and the ideal uniformity was very large. It is also explained why trace distance is not suitable to guarantee the security in QKD from the view point of quantum binary decision theory.
Demonstrating Proof by Contrapositive and Contradiction through Physical Analogs.
ERIC Educational Resources Information Center
Kaiser, Mark J.
1993-01-01
Presents examples where mathematical and physical reasoning complement each other in interpreting and analyzing some basic science concepts using proof by contradiction and contrapositive. Examples involve the rotation of the moon, the stability of electrons and protons, the electron's orbit about the nucleus, and the earth's liquid core. (MDH)
Students' Perspectives of Urban Middle School Physical Education Programs
ERIC Educational Resources Information Center
Dyson, Ben; Coviello, Nicole; DiCesare, Emma; Dyson, Lisa
2009-01-01
The purpose of this study was to explore and interpret students' perspectives of their experiences in four urban middle school physical education programs. Focus group interviews with 76 students were supported by field notes and researchers' reflective journals. Researchers used constant comparison methods (Lincoln & Guba, 1985) to identify seven…
Analysis and interpretation of accelerometry data in older adults: The LIFE Study
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Accelerometry has become the gold standard for evaluating physical activity in the health sciences. An important feature of using this technology is the cutpoint for determining moderate to vigorous physical activity (MVPA) because this is a key component of exercise prescription. This a...
Student Difficulties Regarding Symbolic and Graphical Representations of Vector Fields
ERIC Educational Resources Information Center
Bollen, Laurens; van Kampen, Paul; Baily, Charles; Kelly, Mossy; De Cock, Mieke
2017-01-01
The ability to switch between various representations is an invaluable problem-solving skill in physics. In addition, research has shown that using multiple representations can greatly enhance a person's understanding of mathematical and physical concepts. This paper describes a study of student difficulties regarding interpreting, constructing,…
"Periscope": Looking into Learning in Best-Practices Physics Classrooms
ERIC Educational Resources Information Center
Scherr, Rachel E.; Goertzen, Renee Michelle
2018-01-01
"Periscope" is a set of lessons to support learning assistants, teaching assistants, and faculty in learning to notice and interpret classroom events the way an accomplished teacher does. "Periscope" lessons are centered on video episodes from a variety of best-practices university physics classrooms. By observing, discussing,…
ERIC Educational Resources Information Center
Till, Jude; Ferkins, Lesley; Handcock, Phil
2011-01-01
Objective: This study sought to investigate teachers' perceptions of a physical activity-related professional development intervention. Design: Interview-based qualitative approach founded on the interpretive paradigm. Setting: Purposive selection of one high-rated independent, and one low-rated public primary school from Auckland, New Zealand.…
ERIC Educational Resources Information Center
Bonner, David
2012-01-01
Conducting labs isn't a new way to teach physics, but labs have become increasingly prevalent with the rise of inquiry. Physics students collect mostly quantitative data, often represented by graphs or tables. Interpreting this data can be a challenge for students, especially when it comes to experimental error. To address this issue, this article…
A Document Analysis of Teacher Evaluation Systems Specific to Physical Education
ERIC Educational Resources Information Center
Norris, Jason M.; van der Mars, Hans; Kulinna, Pamela; Kwon, Jayoun; Amrein-Beardsley, Audrey
2017-01-01
Purpose: The purpose of this document analysis study was to examine current teacher evaluation systems, understand current practices, and determine whether the instrumentation is a valid measure of teaching quality as reflected in teacher behavior and effectiveness specific to physical education (PE). Method: An interpretive document analysis…
Spatial Visualization in Physics Problem Solving
ERIC Educational Resources Information Center
Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary
2007-01-01
Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…
NASA Astrophysics Data System (ADS)
Margolin, A. R.; Hansell, D. A.
2016-02-01
Over the past two decades, significant advances have been made in understanding dissolved organic carbon (DOC) distributions in the Atlantic and throughout the global ocean. Surprisingly, however, little is known about DOC distributions in the Atlantic's neighboring Gulf of Mexico (GoM) and Caribbean due to few observations, especially in their deep layers. To address the dearth of DOC data in the GoM and Caribbean, samples were collected during multiple cruises spanning the region, allowing comparisons between the deep layers of the basins. Additionally, complementary biogeochemical (oxygen, nutrients) and physical (temperature, salinity) measurements were made to aid in DOC interpretation, which show clear distinctions between the deep waters of the GoM, basins of the Caribbean and Atlantic. The unique characteristics of these deep layers result from exchanges being restricted to narrow passages that separate the basins, limiting the deep water renewal to periodic overflows of relatively dense water, capable of penetrating below the 2000 m sill depths. Furthermore, hydrocarbon seeps (in GoM) and hydrothermal activity (in Caribbean), along with the offshore oil industry have the potential to alter deep DOC concentrations regionally, which are considered here. Samples collected below 250 m show that concentrations decrease with depth, ranging from 40-50 µmol kg-1. Compared to the Atlantic, the GoM and Venezuelan Basin concentrations are lower, while they are similar to the Atlantic in the Yucatan Basin; responsible processes are inferred.
NASA Astrophysics Data System (ADS)
Padgett, Mary Lou; Johnson, John L.; Vemuri, V. Rao
1997-04-01
This paper focuses on use of a new image filtering technique, Pulsed Coupled Neural Network factoring to enhance both the analysis and visual interpretation of noisy sinusoidal time signals, such as those produced by LLNL's Microwave Impulse Radar motion sensor. Separation of a slower, carrier wave from faster, finer detailed signals and from scattered noise is illustrated. The resulting images clearly illustrate the changes over time of simulated heart motion patterns. Such images can potentially assist a field medic in interpretation of the extent of combat injuries. These images can also be transmitted or stored and retrieved for later analysis.
NASA Astrophysics Data System (ADS)
Corni, Federico; Michelini, Marisa
2018-01-01
Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.
NASA Technical Reports Server (NTRS)
Won, C. C.
1993-01-01
This work describes a modeling and design method whereby a piezoelectric system is formulated by two sets of second-order equations, one for the mechanical system, and the other for the electrical system, coupled through the piezoelectric effect. The solution to this electromechanical coupled system gives a physical interpretation of the piezoelectric effect as a piezoelectric transformer that is a part of the piezoelectric system, which transfers the applied mechanical force into a force-controlled current source, and short circuit mechanical compliance into capacitance. It also transfers the voltage source into a voltage-controlled relative velocity input, and free motional capacitance into mechanical compliance. The formulation and interpretation simplify the modeling of smart structures and lead to physical insight that aids the designer. Due to its physical realization, the smart structural system can be unconditional stable and effectively control responses. This new concept has been demonstrated in three numerical examples for a simple piezoelectric system.
Viscosity of Common Seed and Vegetable Oils
NASA Astrophysics Data System (ADS)
Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.
1997-02-01
Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.
The Milky Way's Mass Inferered by Satellite Kinematics from the Illustris Simulation
NASA Astrophysics Data System (ADS)
Lazar, Alexander; Boylan-Kolchin, Michael
2017-06-01
A precise interpretion of the Milky Way’s dark matter halo mass has limited our ability to depict the Milky Way in cosmological context. One of the noteworthy issues is that only a handful of tracers — satellite galaxies — probe the gravitational potential at large radii, and converting observed velocities into a constraint on the mass profile requires significant assumptions. High resolution cosmological simulations provide a powerful tool for interpreting data, but most results to date rely on dark-matter-only simulations that neglect the effects of galaxy formation physics. We compare the orbital kinematics of satellite galaxies in the Illustris simulation with its dark-matter-only counterpart, which allows us to compare, on an object-by-object basis, the differences influenced in orbits from baryonic physics. We quantify the effects of galaxy formation physics on orbital distributions of satellites and describe how these differences affect inferences for the mass of the Milky Way.
The Physical Tourist Physics in Glasgow: A Heritage Tour
NASA Astrophysics Data System (ADS)
Johnston, Sean F.
2006-12-01
I trace the history of the physical and applied sciences, and particularly physics, in Glasgow. Among the notable individuals I discuss are Joseph Black (1728 1799), James Watt (1736 1819), William John Macquorn Rankine (1820 1872), William Thomson, Lord Kelvin (1824 1907), John Kerr (1824 1907), Frederick Soddy (1877 1956), John Logie Baird (1888 1946), and Ian Donald (1910 1987), as well as physics-related businesses.The locations, centering on the city center and University of Glasgow, include sites both recognizable today and transformed from past usage, as well as museums and archives related to the history and interpretation of physics.
Probability and Quantum Paradigms: the Interplay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kracklauer, A. F.
Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a fewmore » details, this variant is appealing in its reliance on well tested concepts and technology.« less
Probability and Quantum Paradigms: the Interplay
NASA Astrophysics Data System (ADS)
Kracklauer, A. F.
2007-12-01
Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.
2017-11-01
Public Release; Distribution Unlimited. PA# 88ABW-2017-5388 Date Cleared: 30 OCT 2017 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cyber- physical systems... physical processes that interact in intricate manners. This makes verification of the software complex and unwieldy. In this report, an approach towards...resulting implementations. 15. SUBJECT TERMS Cyber- physical systems, Formal guarantees, Code generation 16. SECURITY CLASSIFICATION OF: 17
ERIC Educational Resources Information Center
Parviainen, Jaana; Aromaa, Johanna
2017-01-01
Bodily knowledge has attracted significant attention within the humanities and other related fields over the last two decades. Although theoretical discussion on bodily knowledge in the context of physical education has been active over the past 10 years, these discussions lack clear conceptual analyses of bodily knowledge. Using a…
Learning Movement Culture: Mapping the Landscape between Physical Education and School Sport
ERIC Educational Resources Information Center
Ward, Gavin
2014-01-01
This article examines Movement Culture as an approach to support teachers in exploring the integration of Sport as a medium for learning within Physical Education. By avoiding the need to draw clearly defined lines between Physical Education and Sport, Movement Culture embraces both. It acknowledges the need for subject matter in Physical…
The impetus theory: Between history of physics and science education
NASA Astrophysics Data System (ADS)
Giannetto, Enrico
1993-09-01
Through a physical, historical and epistemological analysis it is shown how much is wrong with the idea that relates impetus theory to a “non-grown-up” physical and epistemological conception. Indeed, it yields that impetus theory of Buridan and Oresme can be formalised and can furnish us a “natural”, “non-violent” interpretation of (classical) mechanics as well as a more general, physical hermeneutics of the world. Then, the possible relevance of impetus theory for science education is strongly pointed out.
Brain Representations of Basic Physics Concepts
NASA Astrophysics Data System (ADS)
Just, Marcel Adam
2017-09-01
The findings concerning physics concepts build on the remarkable new ability to determine the neural signature (or activation pattern) corresponding to an individual concept using fMRI brain imaging. Moreover, the neural signatures can be decomposed into meaningful underlying dimensions, identifying the individual, interpretable components of the neural representation of a concept. The investigation of physics concepts representations reveals how relatively recent physics concepts (formalized only in the last few centuries) are stored in the millenia-old information system of the human brain.
NASA Astrophysics Data System (ADS)
Angelakis, E.
2012-01-01
The F-GAMMA program aims at understanding the physics at work in AGN via a multi-frequency monitoring approach. A number of roughly 65 Fermi-GST detectable blazars are being monitored monthly since January 2007 at radio wavelengths. The core program relies on the 100-m Effelsberg telescope operating at 8 frequencies between 2.6 and 43 GHz, the 30-m IRAM telescope observing at 86, 145 and 240 GHz and the APEX 12-m telescope at 345 GHz. For the targeted sources the LAT instrument onboard Fermi-GST provides gamma-ray light curves sampled daily. Here we discuss two recent findings: A). On the basis of their variability pattern, the observed quasi-simultaneous broad-band spectra can be classified to merely 5 classes. The variability for the first 4 is clearly dominated by spectral-evolution. Sources of the last class vary self-similarly with almost no apparent shift of the peak frequency. The former classes can be attributed to a two-component principal system made of a quiescent optically thin spectrum and a super-imposed flaring event. The later class must be interpreted in terms of a completely different mechanism. The apparent differences among the classes are explained in terms of a redshift modulus and an intrinsic-source/flare parameters modulus. Numerical simulations have shown that a shock-in-jet model can very well describe the observed behavior. It is concluded therefore that only two mechanisms seem to be producing variability. None of the almost 90 sources used for this study show a switch of class indicating that the variability mechanism is either (a) a finger-print of the source, or (b) remains stable on timescales far longer than the monitoring period of almost 4 years. B). Recently it has been disclosed that Narrow Line Seyfert 1 galaxies show gamma-ray emission. Within the F-GAMMA program radio jet emission has been detected from 3 such sources challenging the belief that jets are associated with elliptical galaxies. The recent findings in this area will be discussed.
The physical and compositional properties of dust: what do we really know?
NASA Astrophysics Data System (ADS)
Jones, A.
Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these “three pillars” of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the “three pillars” approach and to seek more physically-realistic interstellar dust analogues. The analysis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports the view that our current view of the interstellar dust composition(s) is indeed too naïve. The aim of this review is to point out where our current views are rather secure and, perhaps more importantly, where they are far from secure and we must re-think our ideas. To this aim ten aspects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the current observational, experimental, modelling and theoretical constraints. It is concluded from this analysis that we really do need to re-assess many of the fundamental assumptions relating to what we think we really do ‘know’ about interstellar dust. In particular, it is clear that unravelling the nature dust evolution in the interstellar medium is perhaps the key to significantly advancing our current understanding of interstellar dust. For example, the dust in the diffuse interstellar medium, molecular clouds, photo-dissociation regions and HII regions is not exactly the same but exhibits important evolution within and between these different regions. An understanding of these evolutionary and regional variations exhibited by dust is now critical.
MSSA de-noising of horizon time structure to improve the curvature attribute analysis
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Rekapalli, R.; Vedanti, N.
2017-12-01
Although the seismic attributes are useful for identifying sub-surface structural features like faults, fractures, lineaments and sharp stratigraphy etc., the different kinds of noises arising from unknown physical sources during the data acquisition and processing creates acute problems in physical interpretation of complex crustal structures. Hence, we propose to study effect of noise on curvature attribute analysis of seismic time structure data. We propose here Multichannel Singular Spectrum Analysis (MSSA) de-noising algorithm as a pre filtering scheme to reduce effect of noise. To demonstrate the procedure, first, we compute the most positive and negative curvature on a synthetic time structure with surface features resembling anticlines, synclines and faults and then adding the known percentage of noise. We noticed that the curvatures estimated from the noisy data reveal considerable deviations from the curvature of pure synthetic data. This suggests that there is a strong impact of noise on the curvature estimates. Further, we have employed 2D median filter and MSSA methods to filter the noisy time structure and then computed the curvatures. The comparisons of curvatures estimated from de-noised data suggest that the results obtained from MSSA de-noised data match well with the curvatures of pure synthetic data. Finally, we present an example of real data analysis from Utsira Top (UT) horizon of Southern Viking Graben, Norway to identify the time-lapse changes in UT horizon after CO2 injection. We applied the MSSA de-noising algorithm on UT horizon time structure and amplitude data of pre and post CO2 injection. Our analyses suggest modest but clearly visible, structural changes in the UT horizon after CO2 injection at a few locations, which seem to be associated with the locations of change in seismic amplitudes. Thus, the results from both the synthetic and real field data suggest that the MSSA based de-noising algorithm is robust for filtering the horizon time structures for accurate curvature attributes analysis and better interpretation of structural changes in geological features. Key Words: Curvature attributes, MSSA, Seismic Horizon, 2D-median filter, Utsira Horizon.
NASA Astrophysics Data System (ADS)
Rudd, James Andrew, II
Many students encounter difficulties engaging with laboratory-based instruction, and reviews of research have indicated that the value of such instruction is not clearly evident. Traditional forms of writing associated with laboratory activities are commonly in a style used by professional scientists to communicate developed explanations. Students probably lack the interpretative skills of a professional, and writing in this style may not support students in learning how to develop scientific explanations. The Science Writing Heuristic (SWH) is an inquiry-based approach to laboratory instruction designed in part to promote student ability in developing such explanations. However, there is not a convincing body of evidence for the superiority of inquiry-based laboratory instruction in chemistry. In a series of studies, the performance of students using the SWH student template in place of the standard laboratory report format was compared to the performance of students using the standard format. The standard reports had Title, Purpose, Procedure, Data & Observations, Calculations & Graphs, and Discussion sections. The SWH reports had Beginning Questions & Ideas, Tests & Procedures, Observations, Claims, Evidence, and Reflection sections. The pilot study produced evidence that using the SWH improved the quality of laboratory reports, improved student performance on a laboratory exam, and improved student approach to laboratory work. A main study found that SWH students statistically exhibited a better understanding of physical equilibrium when written explanations and equations were analyzed on a lecture exam and performed descriptively better on a physical equilibrium practical exam task. In another main study, the activities covering the general equilibrium concept were restructured as an additional change, and it was found that SWH students exhibited a better understanding of chemical equilibrium as shown by statistically greater success in overcoming the common confusion of interpreting equilibrium as equal concentrations and by statistically better performance when explaining aspects of chemical equilibrium. Both main studies found that students and instructors spent less time on the SWH reports and that students preferred the SWH approach because it increased their level of mental engagement. The studies supported the conclusion that inquiry-based laboratory instruction benefits student learning and attitudes.
NASA Astrophysics Data System (ADS)
Zhang, Meggie
2013-03-01
Our research discovered logical inconsistence in physics and mathematics. Through reviewing the entire history of physics and mathematics we gained new understanding about our earlier assumptions, which led to a new interpretation of the wave function and quantum physics. We found the existing experimental data supported a 4-dimensional fractal structure of matter and the universe, we found the formation of wave, matter and the universe through the same process started from a single particle, and the process itself is a fractal that contributed to the diversity of matter. We also found physical evidence supporting a not-continuous fractal space structure. The new understanding also led to a reinterpretation of nuclear collision theories, based on this we succeeded a room-temperature low-energy photon-photon collision (RT-LE-PPC), this method allowed us to observe a topological disconnected fractal structure and succeeded a simulation of the formation of matter and the universe which provided evidences for the nature of light and matter and led to a quantum structure interpretation, and we found the formation of the universe started from two particles. However this work cannot be understood with current physics theories due to the logical problems in the current physics theories.
Teaching Physics with Basketball
NASA Astrophysics Data System (ADS)
Chanpichai, N.; Wattanakasiwich, P.
2010-07-01
Recently, technologies and computer takes important roles in learning and teaching, including physics. Advance in technologies can help us better relating physics taught in the classroom to the real world. In this study, we developed a module on teaching a projectile motion through shooting a basketball. Students learned about physics of projectile motion, and then they took videos of their classmates shooting a basketball by using the high speed camera. Then they analyzed videos by using Tracker, a video analysis and modeling tool. While working with Tracker, students learned about the relationships between three kinematics graphs. Moreover, they learned about a real projectile motion (with an air resistance) through modeling tools. Students' abilities to interpret kinematics graphs were investigated before and after the instruction by using the Test of Understanding Graphs in Kinematics (TUG-K). The maximum normalized gain or
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
2015-10-01
We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.
Twenty-Five Centuries of Quantum Physics: From Pythagoras to Us, and from Subjectivism to Realism
NASA Astrophysics Data System (ADS)
Bunge, Mario
Three main theses are proposed. The first is that the idea of a quantum or minimal unit is not peculiar to quantum theory, since it already occurs in the classical theories of elasticity and electrolysis. Second, the peculiarities of the objects described by quantum theory are the following: their basic laws are probabilistic; some of their properties, such as position and energy, are blunt rather than sharp; two particles that were once together continue to be associated even after becoming spatially separated; and the vacuum has physical properties, so that it is a kind of matter. Third, the orthodox or Copenhagen interpretation of the theory is false, and may conveniently be replaced with a realist (though not classicist) interpretation. Heisenberg's inequality, Schrödinger's cat and Zeno's quantum paradox are discussed in the light of the two rival interpretations. It is also shown that the experiments that falsified Bell's inequality do not refute realism but the classicism inherent in hidden variables theories.
A Particle Model Explaining Mass and Relativity in a Physical Way
NASA Astrophysics Data System (ADS)
Giese, Albrecht
Physicists' understanding of relativity and the way it is handled is up to present days dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics alone to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity and the quantum mechanical concept of Louis de Broglie, which explains the origin of mass without the use of the Higgs mechanism. It is based on the finiteness of the speed of light and provides classical results for particle properties which are currently only accessible through quantum mechanics.
Expanding our understanding of students' use of graphs for learning physics
NASA Astrophysics Data System (ADS)
Laverty, James T.
It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the students. We will also look at the results of using graph problems in an online learning environment. We will show evidence that construction problems lead to a higher degree of difficulty and degree of discrimination than other graph problems and discuss the influence the course has on these variables.
Is there a best strategy for drug discovery?--SMR Meeting. 13 March 2003, London, UK.
Lunec, Anna
2003-05-01
This gathering of members from academia and industry allowed the sharing of ideas and techniques or the acceleration of drug discovery, and it was clear that there is a need for a more streamlined approach to discovery and development. Clearly, new technologies will aid in the discovery process, but the abilities of the human brain to analyze and interpret data should not be overlooked, as many discoveries have been made by chance or as the result of a hunch, and it would be a shame if the advent of artificial intelligence quashed that inquisitive aspect of drug discovery.
Pearls and pitfalls in neural CGRP immunohistochemistry.
Warfvinge, Karin; Edvinsson, Lars
2013-06-01
This review outlines the pearls and pitfalls of calcitonin-gene related protein (CGRP) immunohistochemistry of the brain. In 1985, CGRP was first described in cerebral arteries using immunohistochemistry. Since then, cerebral CGRP (and, using novel antibodies, its receptor components) has been widely scrutinized. Here, we describe the distribution of cerebral CGRP and pay special attention to the surprising reliability of results over time. Pitfalls might include a fixation procedure, antibody clone and dilution, and interpretation of results. Standardization of staining protocols and true quantitative methods are lacking. The use of computerized image analysis has led us to believe that our examination is objective. However, in the steps of performing such an analysis, we make subjective choices. By pointing out these pitfalls, we aim to further improve immunohistochemical quality. Having a clear picture of the tissue/cell morphology is a necessity. A primary morphological evaluation with, for example, hematoxylin-eosin, helps to ensure that small changes are not missed and that background and artifactual changes, which may include vacuoles, pigments, and dark neurons, are not over-interpreted as compound-related changes. The antigen-antibody reaction appears simple and clear in theory, but many steps might go wrong. Remember that methods including the antigen-antibody complex rely on handling/fixation of tissues or cells, antibody shipping/storing issues, antibody titration, temperature/duration of antibody incubation, visualization of the antibody and interpretation of the results. Optimize staining protocols to the material you are using.
Not all are desired: providers' views on interpreters' emotional support for patients.
Hsieh, Elaine; Hong, Soo Jung
2010-11-01
This study examines (a) providers' expectations and concerns for interpreters' emotional support, and (b) the complexity and dilemma for interpreters to offer emotional support in health care settings. We recruited 39 providers from 5 specialties to participate in in-depth interviews or focus groups. Grounded theory was used for data analysis to identify providers' expectations and concerns for interpreters' emotional support. From the providers' perspective, interpreters' emotional support: (a) is embodied through their physical presence, (b) is to be both a human being but also a professional, (c) represents the extension of the providers' care, and (d) imposes potential risks to quality of care. Emotional support in bilingual health care is accomplished through the alliance of providers and interpreters, complementing each other to support patients' emotional needs. Interpreters should be vigilant about how their emotional support may impact the provider-patient relationship and the providers' therapeutic objectives. Interpreters should be aware that providers also rely on them to provide emotional support, which highlights the importance of giving medical talk and rapport-building talk equal attention in medical encounters. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Yielding physically-interpretable emulators - A Sparse PCA approach
NASA Astrophysics Data System (ADS)
Galelli, S.; Alsahaf, A.; Giuliani, M.; Castelletti, A.
2015-12-01
Projection-based techniques, such as Principal Orthogonal Decomposition (POD), are a common approach to surrogate high-fidelity process-based models by lower order dynamic emulators. With POD, the dimensionality reduction is achieved by using observations, or 'snapshots' - generated with the high-fidelity model -, to project the entire set of input and state variables of this model onto a smaller set of basis functions that account for most of the variability in the data. While reduction efficiency and variance control of POD techniques are usually very high, the resulting emulators are structurally highly complex and can hardly be given a physically meaningful interpretation as each basis is a projection of the entire set of inputs and states. In this work, we propose a novel approach based on Sparse Principal Component Analysis (SPCA) that combines the several assets of POD methods with the potential for ex-post interpretation of the emulator structure. SPCA reduces the number of non-zero coefficients in the basis functions by identifying a sparse matrix of coefficients. While the resulting set of basis functions may retain less variance of the snapshots, the presence of a few non-zero coefficients assists in the interpretation of the underlying physical processes. The SPCA approach is tested on the reduction of a 1D hydro-ecological model (DYRESM-CAEDYM) used to describe the main ecological and hydrodynamic processes in Tono Dam, Japan. An experimental comparison against a standard POD approach shows that SPCA achieves the same accuracy in emulating a given output variable - for the same level of dimensionality reduction - while yielding better insights of the main process dynamics.
Physical interpretation of antigravity
NASA Astrophysics Data System (ADS)
Bars, Itzhak; James, Albin
2016-02-01
Geodesic incompleteness is a problem in both general relativity and string theory. The Weyl-invariant Standard Model coupled to general relativity (SM +GR ), and a similar treatment of string theory, are improved theories that are geodesically complete. A notable prediction of this approach is that there must be antigravity regions of spacetime connected to gravity regions through gravitational singularities such as those that occur in black holes and cosmological bang/crunch. Antigravity regions introduce apparent problems of ghosts that raise several questions of physical interpretation. It was shown that unitarity is not violated, but there may be an instability associated with negative kinetic energies in the antigravity regions. In this paper we show that the apparent problems can be resolved with the interpretation of the theory from the perspective of observers strictly in the gravity region. Such observers cannot experience the negative kinetic energy in antigravity directly, but can only detect in and out signals that interact with the antigravity region. This is no different from a spacetime black box for which the information about its interior is encoded in scattering amplitudes for in/out states at its exterior. Through examples we show that negative kinetic energy in antigravity presents no problems of principles but is an interesting topic for physical investigations of fundamental significance.
Relativity, entanglement and the physical reality of the photon
NASA Astrophysics Data System (ADS)
Tiwari, S. C.
2002-04-01
Recent experiments on the classic Einstein-Podolsky-Rosen (EPR) setting claim to test the compatibility between nonlocal quantum entanglement and the (special) theory of relativity. Confirmation of quantum theory has led to the interpretation that Einstein's image of physical reality for each photon in the EPR pair cannot be maintained. A detailed critique on two representative experiments is presented following the original EPR notion of local realism. It is argued that relativity does not enter into the picture, however for the Bell-Bohm version of local realism in terms of hidden variables such experiments are significant. Of the two alternatives, namely incompleteness of quantum theory for describing an individual quantum system, and the ensemble view, it is only the former that has been ruled out by the experiments. An alternative approach gives a statistical ensemble interpretation of the observed data, and the significant conclusion that these experiments do not deny physical reality of the photon is obtained. After discussing the need for a photon model, a vortex structure is proposed based on the space-time invariant property-spin, and pure gauge fields. To test the prime role of spin for photons and the angular-momentum interpretation of electromagnetic fields, experimental schemes feasible in modern laboratories are suggested.
Talker-specificity and adaptation in quantifier interpretation
Yildirim, Ilker; Degen, Judith; Tanenhaus, Michael K.; Jaeger, T. Florian
2015-01-01
Linguistic meaning has long been recognized to be highly context-dependent. Quantifiers like many and some provide a particularly clear example of context-dependence. For example, the interpretation of quantifiers requires listeners to determine the relevant domain and scale. We focus on another type of context-dependence that quantifiers share with other lexical items: talker variability. Different talkers might use quantifiers with different interpretations in mind. We used a web-based crowdsourcing paradigm to study participants’ expectations about the use of many and some based on recent exposure. We first established that the mapping of some and many onto quantities (candies in a bowl) is variable both within and between participants. We then examined whether and how listeners’ expectations about quantifier use adapts with exposure to talkers who use quantifiers in different ways. The results demonstrate that listeners can adapt to talker-specific biases in both how often and with what intended meaning many and some are used. PMID:26858511
A taste of individualized medicine: physicians’ reactions to automated genetic interpretations
Lærum, Hallvard; Bremer, Sara; Bergan, Stein; Grünfeld, Thomas
2014-01-01
The potential of pharmacogenomics is well documented, and functionality exploiting this knowledge is about to be introduced into electronic medical records. To explore physicians’ reactions to automatic interpretations of genetic tests, we built a prototype with a simple interpretive algorithm. The algorithm was adapted to the needs of physicians handling immunosuppressive treatment during organ transplantation. Nine physicians were observed expressing their thoughts while using the prototype for two patient scenarios. The computer screen and audio were recorded, and the qualitative results triangulated with responses to a survey instrument. The physicians’ reactions to the prototype were very positive; they clearly trusted the results and the theory behind them. The explanation of the algorithm was prominently placed in the user interface for transparency, although this design led to considerable confusion. Background information and references should be available, but considerably less prominent than the result and recommendation. PMID:24001515
ERIC Educational Resources Information Center
Pulaski County Schools, VA.
This guidebook aims to provide clear, non-technical descriptions of procedures for evaluating the effectiveness of local gifted education programs in Virginia. The procedures were developed with both external and internal evaluations in mind. The evaluation process is described in four phases: planning, collecting the data, interpreting the data…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
..., 2008), 73 FR 42646 (July 22, 2008) (SR-OCC-2007-20)); give itself time to prepare updated comparative...\\ Proposed Interpretation and Policy .01 to OCC Rule 1001. The new formula is designed to more directly take...\\ \\10\\ Note the comparative data described in this paragraph was obtained using confidence levels set at...
What are the mechanics of quantum cognition?
Navarro, Daniel Joseph; Fuss, Ian
2013-06-01
Pothos & Busemeyer (P&B) argue that quantum probability (QP) provides a descriptive model of behavior and can also provide a rational analysis of a task. We discuss QP models using Marr's levels of analysis, arguing that they make most sense as algorithmic level theories. We also highlight the importance of having clear interpretations for basic mechanisms such as interference.
Meteorological Measurement Guide
1992-01-01
measurements by inverting the equation for acoustic propa- gation through air . Uncertainties in this inversion, because of variability of atmospheric...shields can produce highly accurate relative air temperature measurements suitable for temperature gradient calculation. Well-designed radiation shields... measurement , clear- air profiling, and weather echo interpretations. The atmosphere is in a continuous state of change as patches of air with different
Outdoor Adventure Education in East Asia: Interpreting Data from Outward Bound Hong Kong
ERIC Educational Resources Information Center
Sibthorp, Jim; Funnell, Aaron; Riley, Mike; Chan, Bacon; Meerts-Brandsma, Lisa
2018-01-01
Outdoor adventure education (OAE) is philosophically rooted in Western values, yet it has been implemented in non-Western cultures, such as East Asia. This paper examines how OAE functions in East Asia, through data from Hong Kong. Although some cultural differences are clear, there is no compelling evidence that OAE cannot provide benefits in…
The Myth and Magic of "Star Wars": A Jungian Interpretation.
ERIC Educational Resources Information Center
Phipps, Maurice
The "Star Wars" trilogy is a fairy tale projected into the future which exemplifies in a clear-cut manner many of the archetypes of Jungian psychology. These films are modern retellings of ancient myths. Carl Jung has described myths as "fundamental expressions of human nature." In the films, fairy tale motifs such as typical…
Early Years Teachers and the Influence of Piaget: Evidence from Oral History
ERIC Educational Resources Information Center
Cunningham, Peter
2006-01-01
In studying the historical development of early years provision, a clear factor in raising its profile was the growth in scientific study of children, especially the reception and interpretation of Piaget's research. For an understanding of how the mediation of new thinking and new discoveries influenced students and teachers, textbooks provide an…
Interpreting Pitch Accents in Online Comprehension: H* vs. L+H*
ERIC Educational Resources Information Center
Watson, Duane G.; Tanenhaus, Michael K.; Gunlogson, Christine A.
2008-01-01
Although the presence or absence of a pitch accent clearly can play an important role in signaling the discourse and information structure of an utterance, whether the form of an accent determines the type of information it conveys is more controversial. We used an eye-tracking paradigm to investigate whether H*, which has been argued to signal…
Exemplary Practices: Going beyond Appropriate Practices
ERIC Educational Resources Information Center
Sims, Sandra; Lambdin, Dolly; VanVolkinburg, Pat; Santos, B. J.; Graham, George; Gorwitz, Crystal
2010-01-01
NASPE recently published the newly revised Appropriate Practices documents (elementary, middle and high school), intending to clearly distinguish between teaching practices that "should" and "should not" occur in physical education classes. Good physical education teachers incorporate appropriate practices into their teaching. However, there are…
ERIC Educational Resources Information Center
McCartin, Brian J.
2008-01-01
This note presents geometric and physical interpretations of the sufficient condition for a critical point to be a strict relative extremum: f[subscript xx]f[subscript yy] - f[superscript 2][subscript xy] greater than 0. The role of the double derivative f[subscript xy] in this inequality will be highlighted in these interpretations. (Contains 14…
ERIC Educational Resources Information Center
Samanian, Kouros; Nedaeifar, Hoda; Karimi, Ma'soumeh
2016-01-01
As previous studies suggest, titles of works of art have generally proven to be influential elements in reading and interpretation of the artworks. In the exhibition context, titles can be considered as a physical component of the museum or art gallery's space. According to the relatively new approaches, learning, being a subcategory of…
ERIC Educational Resources Information Center
Guzzardi, Luca
2014-01-01
This paper discusses Ernst Mach's interpretation of the principle of energy conservation (EC) in the context of the development of energy concepts and ideas about causality in nineteenth-century physics and theory of science. In doing this, it focuses on the close relationship between causality, energy conservation and space in Mach's…