Sample records for clear-sky surface shortwave

  1. Assessment of the effect of air pollution controls on trends in shortwave radiation over the United States from 1995 through 2010 from multiple observation networks

    EPA Science Inventory

    Long-term data sets of all-sky and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction, and aerosol optical depth (AOD) were analyzed together with surface concentrations from several networks (e.g., Surface Radiation Budget Network (SURFRAD), Clean Air Status an...

  2. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  3. Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments

    NASA Astrophysics Data System (ADS)

    Sicart, J. E.; Pomeroy, J. W.; Essery, R. L. H.; Bewley, D.

    2006-11-01

    At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emissions from the complex topography. This study examines longwave irradiance at the snow surface in the Wolf Creek Research Basin, Yukon Territory, Canada (60° 36N, 134° 57W) during the springs of 2002 and 2004. Incoming longwave radiation was estimated from standard meteorological measurements by segregating radiation sources into clear sky, clouds and surrounding terrain. A sensitivity study was conducted to detect the atmospheric and topographic conditions under which emission from adjacent terrain significantly increases the longwave irradiance. The total incoming longwave radiation is more sensitive to sky view factor than to the temperature of the emitting terrain surfaces. Brutsaert's equation correctly simulates the clear-sky irradiance for hourly time steps using temperature and humidity. Longwave emissions from clouds, which raised longwave radiation above that from clear skies by 16% on average, were best estimated using daily atmospheric shortwave transmissivity and hourly relative humidity. An independent test of the estimation procedure for a prairie site near Saskatoon, Saskatchewan, Canada, indicated that the calculations are robust in late winter and spring conditions. Copyright

  4. Assessment of the Effect of Air Pollution Controls on Trends in Shortwave Radiation over the United States from 1995 through 2010 from Multiple Observation Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Chuen-Meei; Pleim, Jonathan; Mathur, Rohit

    2014-02-14

    Long term datasets of total (all-sky) and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction (cloudiness) and aerosol optical depth (AOD) are analyzed together with aerosol concentration from several networks (e.g. SURFRAD, CASTNET, IMPROVE and ARM) in the United States (US). Seven states with varying climatology are selected to better understand the effect of aerosols and clouds on SW radiation. This analysis aims to test the hypothesis that the reductions in anthropogenic aerosol burden resulting from substantial reductions in emissions of sulfur dioxide and nitrogen oxides over the past 15 years across the US has caused an increase in surfacemore » SW radiation. We show that the total and clear-sky downwelling SW radiation from seven sites have increasing trends except Penn State which shows no tendency in clear-sky SW radiation. After investigating several confounding factors, the causes can be due to the geography of the site, aerosol distribution, heavy air traffic and increasing cloudiness. Moreover, we assess the relationship between total column AOD with surface aerosol concentration to test our hypothesis. In our findings, the trends of clear-sky SW radiation, AOD, and aerosol concentration from the sites in eastern US agree well with our hypothesis. However, the sites in western US demonstrate increasing AOD associated with mostly increasing trends in surface aerosol concentration. At these sites, the changes in aerosol burden and/or direct aerosol effects alone cannot explain the observed changes in SW radiation, but other factors need to be considered such as cloudiness, aerosol vertical profiles and elevated plumes.« less

  5. Global shortwave energy budget at the earth's surface from ERBE observations

    NASA Technical Reports Server (NTRS)

    Breon, Francois-Marie; Frouin, Robert

    1994-01-01

    A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than Esbensen and Kushnir's by as much as 80 W/sq m in the tropical oceans. A cloud parameter, defined as the difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance, is also examined. This parameter, minimally affected by sun zenith angle, is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting that, on average, the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, yet sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts.

  6. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  7. Assessment of clear sky radiative fluxes in CMIP5 climate models using surface observations from BSRN

    NASA Astrophysics Data System (ADS)

    Wild, M.; Hakuba, M. Z.; Folini, D.; Ott, P.; Long, C. N.

    2017-12-01

    Clear sky fluxes in the latest generation of Global Climate Models (GCM) from CMIP5 still vary largely particularly at the Earth's surface, covering in their global means a range of 16 and 24 Wm-2 in the surface downward clear sky shortwave (SW) and longwave radiation, respectively. We assess these fluxes with monthly clear sky reference climatologies derived from more than 40 Baseline Surface Radiation Network (BSRN) sites based on Long and Ackermann (2000) and Hakuba et al. (2015). The comparison is complicated by the fact that the monthly SW clear sky BSRN reference climatologies are inferred from measurements under true cloud-free conditions, whereas the GCM clear sky fluxes are calculated continuously at every timestep solely by removing the clouds, yet otherwise keeping the prevailing atmospheric composition (e.g. water vapor, temperature, aerosols) during the cloudy conditions. This induces the risk of biases in the GCMs just due to the additional sampling of clear sky fluxes calculated under atmospheric conditions representative for cloudy situations. Thereby, a wet bias may be expected in the GCMs compared to the observational references, which may induce spurious low biases in the downward clear sky SW fluxes. To estimate the magnitude of these spurious biases in the available monthly mean fields from 40 CMIP5 models, we used their respective multi-century control runs, and searched therein for each month and each BSRN station the month with the lowest cloud cover. The deviations of the clear sky fluxes in this month from their long-term means have then be used as indicators of the magnitude of the abovementioned sampling biases and as correction factors for an appropriate comparison with the BSRN climatologies, individually applied for each model and BSRN site. The overall correction is on the order of 2 Wm-2. This revises our best estimate for the global mean surface downward SW clear sky radiation, previously at 249 Wm-2 infered from the GCM clear sky flux fields and their biases compared to the BSRN climatologies, now to 247 Wm-2 including this additional correction. 34 out of 40 CMIP5 GCMs exceed this reference value. With a global mean surface albedo of 13 % and net TOA SW clear sky flux of 287 Wm-2 from CERES-EBAF this results in a global mean clear sky surface and atmospheric SW absorption of 214 and 73 Wm-2, respectively.

  8. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    NASA Astrophysics Data System (ADS)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions reduces MBD and RMSD strongly compared to using the published values of the parameters, resulting in relative MBD and RMSD of less than 5% respectively 10% for the best parameterizations. The best results to estimate cloud transmissivity during nighttime were obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning. Model uncertainty can be caused by different errors such as code implementation, errors in input data and in estimated parameters, etc. The influence of the latter (errors in input data and model parameter uncertainty) on model outputs is determined using Monte Carlo. Model uncertainty is provided as the relative standard deviation σrel of the simulated frequency distributions of the model outputs. An optimistic estimate of the relative uncertainty σrel resulted in 10% for the clear-sky direct, 30% for diffuse, 3% for global SDR, and 3% for the fitted all-sky LDR.

  9. Cloud effects on the SW radiation at the surface at a mid-latitude site in southwestern Europe

    NASA Astrophysics Data System (ADS)

    Salgueiro, Vanda; João Costa, Maria; Silva, Ana Maria; Lanconelli, Christian; Bortoli, Daniele

    2017-04-01

    This work presents a study of cloud radiative effects on shortwave (CRESW) radiation at the surface in Évora region (southwestern Europe) during 2015 and a case study is analyzed. CRESW (in Wm-2) is defined as the difference between the net shortwave irradiance (downward minus upward shortwave irradiance) in cloudy and clear sky conditions. This measure is usually used to translate changes in the SW radiation that reaches the surface due to changes in clouds (type and/or cover). The CRESW is obtained using measured SW irradiance recorded with a Kipp&Zonen CM 6B pyranometer (broadband 305 - 2800 nm) during the period from January to December 2015, and is related with the cloud liquid water path (LWP) and with cloud ice water path (IWP) showing the importance of the different type of clouds in attenuating the SW radiation at the surface. The cloud modification factor, also a measure of the cloud radiative effects (CMF; ratio between the measured SW irradiance under cloudy conditions and the estimated SW irradiance in clear-sky conditions) is related with the cloud optical thickness (COT; obtained from satellite data). This relation between CMF and COT is shown for different cloud fractions revealing an exponential decreasing of CMF as COT increases. Reductions in the SW radiation of the order of 80% (CMF = 0.2) as well enhancements in the SW radiation larger than 30% (CMF = 1.3) were found for small COT values and for different cloud fractions. A case study to analyse the enhancement events in a cloudy day was considered and the cloud properties, COT and LWP (from satellite and surface measurements), were related with the CRESW.

  10. New gridded database of clear-sky solar radiation derived from ground-based observations over Europe

    NASA Astrophysics Data System (ADS)

    Bartok, Blanka; Wild, Martin; Sanchez-Lorenzo, Arturo; Hakuba, Maria Z.

    2017-04-01

    Since aerosols modify the entire energy balance of the climate system through different processes, assessments regarding aerosol multiannual variability are highly required by the climate modelling community. Because of the scarcity of long-term direct aerosol measurements, the retrieval of aerosol data/information from other type of observations or satellite measurements are very relevant. One approach frequently used in the literature is analyze of the clear-sky solar radiation which offer a better overview of changes in aerosol content. In the study first two empirical methods are elaborated in order to separate clear-sky situations from observed values of surface solar radiation available at the World Radiation Data Center (WRDC), St. Petersburg. The daily data has been checked for temporal homogeneity by applying the MASH method (Szentimrey, 2003). In the first approach, clear sky situations are detected based on clearness index, namely the ratio of the surface solar radiation to the extraterrestrial solar irradiation. In the second approach the observed values of surface solar radiation are compared to the climatology of clear-sky surface solar radiation calculated by the MAGIC radiation code (Muller et al. 2009). In both approaches the clear-sky radiation values highly depend on the applied thresholds. In order to eliminate this methodological error a verification of clear-sky detection is envisaged through a comparison with the values obtained by a high time resolution clear-sky detection and interpolation algorithm (Long and Ackermann, 2000) making use of the high quality data from the Baseline Surface Radiation Network (BSRN). As the consequences clear-sky data series are obtained for 118 European meteorological stations. Next a first attempt has been done in order to interpolate the point-wise clear-sky radiation data by applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis) method for the spatial interpolation of surface meteorological elements developed at the Hungarian Meteorological Service (Szentimrey 2007). In this way new gridded database of clear-sky solar radiation is created suitable for further investigations regarding the role of aerosols in the energy budget, and also for validations of climate model outputs. References 1. Long CN, Ackerman TP. 2000. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res., 105(D12), 15609-15626, doi:10.1029/2000JD900077. 2. Mueller R, Matsoukas C, Gratzki A, Behr H, Hollmann R. 2009. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - a LUT based eigenvector hybrid approach, Remote Sensing of Environment, 113 (5), 1012-1024, doi:10.1016/j.rse.2009. 01.012 3. Szentimrey T. 2014. Multiple Analysis of Series for Homogenization (MASHv3.03), Hungarian Meteorological Service, https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/ 4. Szentimrey T. Bihari Z. 2014: Meteorological Interpolation based on Surface Homogenized Data Basis (MISHv1.03) https://www.met.hu/en/omsz/rendezvenyek/homogenization_and_interpolation/software/

  11. Clear-sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wang, P.; Knap, W. H.; Kuipers Munneke, P.; Stammes, P.

    2009-04-01

    During the last two decades, several attempts have been made to achieve agreement between clear-sky shortwave broadband irradiance models and surface measurements of direct and diffuse irradiance. In general, models and measurements agreed well for the direct component but closing the gap for diffuse irradiances remained problematic. The number of studies reporting a satisfactory degree of closure for both direct and diffuse irradiance is still limited, which motivated us to perform the study presented here. In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, the Netherlands (51.97 °N, 4.93 °E). The analysis is based on an exceptional period of fine weather in the first half of May 2008 during the Intensive Measurement Period At the Cabauw Tower (IMPACT), an activity of the European Integrated project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI). Although IMPACT produced a wealth of data, it was decided to conduct the closure analysis using routine measurements only, provided by BSRN and the Aerosol Robotic Network (AERONET), completed with radiosonde obervations. The rationale for this pragmatic approach is the possibility of applying the method presented here to other periods and (BSRN) sites, where routine measurements are readily available, without having to deal with the investments and restrictions of an intensive observation period. The analysis is based on a selection of 72 comparisons on 6 days between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiance. The data span a wide range of aerosol properties, water vapour columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. On the basis of these data excellent closure was obtained: the mean differences between model and measurements are 2 W/m2 (+0.2%) for direct irradiance, 1 W/m2 (+0.8%) for diffuse irradiance, and 2 W/m2 (+0.3%) for global irradiance.

  12. Impact of cirrus on the surface radiative environment at the FIRE ETLA Palisades, NY site

    NASA Technical Reports Server (NTRS)

    Robinson, David A.; Kukla, George; Frei, Allan

    1990-01-01

    FIRE Extended Time Limited Area (ETLA) observations provide year round information critical to gaining a better understanding of cloud/climate interactions. The Lamont/Rutgers team has participated in the ETLS program through the collection and analysis of shortwave and longwave downwelling irradiances at Palisades, NY. These data are providing useful information on surface radiative fluxes with respect to sky condition, solar zenith angle and season. Their utility extends to the calibration and validation of cloud/radiative models and satellite cloud and radiative retrievals. The impact cirrus clouds have on the surface radiative environment is examined using Palisades ETLA information on atmospheric transmissivities and downwelling longwave fluxes for winter and summer cirrus and clear sky episodes in 1987.

  13. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    NASA Astrophysics Data System (ADS)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  14. Impact of Tropospheric Ozone on Summer Climate in China

    NASA Astrophysics Data System (ADS)

    Li, Shu; Wang, Tijian; Zanis, Prodromos; Melas, Dimitris; Zhuang, Bingliang

    2018-04-01

    The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m-2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day-1 over eastern China during summer. In addition, tropospheric ozone increased the land-sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.

  15. Carbon monoxide column retrieval for clear-sky and cloudy atmospheres: a full-mission data set from SCIAMACHY 2.3 µm reflectance measurements

    NASA Astrophysics Data System (ADS)

    Borsdorff, Tobias; aan de Brugh, Joost; Hu, Haili; Nédélec, Philippe; Aben, Ilse; Landgraf, Jochen

    2017-05-01

    We discuss the retrieval of carbon monoxide (CO) vertical column densities from clear-sky and cloud contaminated 2311-2338 nm reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from January 2003 until the end of the mission in April 2012. These data were processed with the Shortwave Infrared CO Retrieval algorithm (SICOR) that we developed for the operational data processing of the Tropospheric Monitoring Instrument (TROPOMI) that will be launched on ESA's Sentinel-5 Precursor (S5P) mission. This study complements previous work that was limited to clear-sky observations over land. Over the oceans, CO is estimated from cloudy-sky measurements only, which is an important addition to the SCIAMACHY clear-sky CO data set as shown by NDACC and TCCON measurements at coastal sites. For Ny-Ålesund, Lauder, Mauna Loa and Reunion, a validation of SCIAMACHY clear-sky retrievals is not meaningful because of the high retrieval noise and the few collocations at these sites. The situation improves significantly when considering cloudy-sky observations, where we find a low mean bias b = ±6. 0 ppb and a strong correlation between the validation and the SCIAMACHY results with a mean Pearson correlation coefficient r = 0. 7. Also for land observations, cloudy-sky CO retrievals present an interesting complement to the clear-sky data set. For example, at the cities Tehran and Beijing the agreement of SCIAMACHY clear-sky CO observations with MOZAIC/IAGOS airborne measurements is poor with a mean bias of b = 171. 2 ppb and 57.9 ppb because of local CO pollution, which cannot be captured by SCIAMACHY. For cloudy-sky retrievals, the validation improves significantly. Here the retrieved column is mainly sensitive to CO above the cloud and so not affected by the strong local surface emissions. Adjusting the MOZAIC/IAGOS measurements to the vertical sensitivity of the retrieval, the mean bias adds up to b = 52. 3 ppb and 5.0 ppb for Tehran and Beijing. At the less urbanised region around the airport Windhoek, local CO pollution is less prominent and so MOZAIC/IAGOS measurements agree well with SCIAMACHY clear-sky retrievals with a mean bias of b = 15. 5 ppb, but can be even further improved for cloudy SCIAMACHY observations with a mean bias of b = 0. 2 ppb. Overall the cloudy-sky CO retrievals from SCIAMACHY short-wave infrared measurements present a major extension of the clear-sky-only data set, which more than triples the amount of data and adds unique observations over the oceans. Moreover, the study represents the first application of the S5P algorithm for operational CO data processing on cloudy observations prior to the launch of the S5P mission.

  16. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  17. SW radiative effect of aerosol in GRAPES_GFS

    NASA Astrophysics Data System (ADS)

    Chen, Qiying

    2017-04-01

    The aerosol particles can scatter and absorb solar radiation, and so change the shortwave radiation absorbed by the atmosphere, reached the surface and that reflected back to outer space at TOA. Since this process doesn't interact with other processes, it is called direct radiation effect. The clear sky downward SW and net SW fluxes at the surface in GRAPES_GFS of China Meteorological Administration are overestimated in Northern multitudes and Tropics. The main source of these errors is the absence of aerosol SW effect in GRAPES_GFS. The climatic aerosol mass concentration data, which include 13 kinds of aerosol and their 14 SW bands optical properties are considered in GRAPES_GFS. The calculated total optical depth, single scatter albedo and asymmetry factor are used as the input to radiation scheme. Compared with the satellite observation from MISER, the calculated total optical depth is in good consistent. The seasonal experiments show that, the summer averaged clear sky radiation fluxes at the surface are improved after including the SW effect of aerosol. The biases in the clear sky downward SW and net SW fluxes at the surface in Northern multitudes and Tropic reduced obviously. Furthermore, the weather forecast experiments also show that the skill scores in Northern hemisphere and East Asia also become better.

  18. Defining the Magnitude: Patterns, Regularities and Direct TOA-Surface Flux Relationships in the 15-Year Long CERES Satellite Data — Observations, Model and Theory

    NASA Astrophysics Data System (ADS)

    Zagoni, M.

    2017-12-01

    Over the past fifteen years, the NASA Clouds and the Earth's Radiant Energy System (CERES) satellite mission has provided the scientific community with the most reliable Earth radiation budget data. This presentation offers quantitative assessment of the published CERES Energy Balanced and Filled (EBAF) Edition 2.8 and Edition 4.0 data products, and reveals several internal patterns, ratios and regularities within the annual global mean flux components of the all-sky and clear-sky surface and atmospheric energy budgets. The found patterns, among others, include: (i) direct relationships between the top-of-atmosphere (TOA) radiative and surface radiative and non-radiative fluxes (contradicting the expectation that TOA and surface fluxes are physically decoupled); (ii) integer ratios and relationships between the absorbed and emitted surface and atmospheric energy flow elements; and (iii) definite connections among the clear-sky and the all-sky shortwave, longwave and non-radiative (turbulent) flux elements and the corresponding greenhouse effect. Comparison between the EBAF Ed2.8 and Ed4.0 SFC and TOA data products and trend analyses of the normalized clear-sky and all-sky greenhouse factors are presented. Longwave cloud radiative effect (LW CRE) proved to be playing a principal role in organizing the found numerical patterns in the surface and atmospheric energy flow components. All of the revealed structures are quantitatively valid within the one-sigma range of uncertainty of the involved individual flux elements. This presentation offers a conceptual framework to interpret the found relationships and shows how the observed CERES fluxes can be deduced from this proposed physical model. An important conclusion drawn from our analysis is that the internal atmospheric and surface energy flow system forms a definite structure and seems to be more constrained to the incoming solar energy than previously thought.

  19. A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud

    NASA Astrophysics Data System (ADS)

    Zeng, Chao; Long, Di; Shen, Huanfeng; Wu, Penghai; Cui, Yaokui; Hong, Yang

    2018-07-01

    Land surface temperature (LST) is one of the most important parameters in land surface processes. Although satellite-derived LST can provide valuable information, the value is often limited by cloud contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed. First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy balance equation-based procedure is used to correct for the filled values. With shortwave irradiation data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation results indicate that the proposed method can recover LST in different surface types with mean average errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST images has a greater impact on the results than the size of the contaminated area.

  20. SAGE II V7

    Atmospheric Science Data Center

    2017-09-06

    ... The series of Stratospheric Aerosol and Gas Experiments (SAGE I, II, and III) are satellite-based solar occultation ... significantly more shortwave radiation than previously thought. Clouds in a Clear Sky Scientists have detected a nearly ...

  1. SAGE II V6.20

    Atmospheric Science Data Center

    2017-09-06

    ... The series of Stratospheric Aerosol and Gas Experiments (SAGE I, II, and III) are satellite-based solar occultation ... significantly more shortwave radiation than previously thought. Clouds in a Clear Sky Scientists have detected a nearly ...

  2. Calculating clear-sky radiative heating rates using the Fu-Liou RTM with inputs from observed and reanalyzed profiles

    NASA Astrophysics Data System (ADS)

    Dolinar, E. K.; Dong, X.; Xi, B.

    2015-12-01

    One-dimensional radiative transfer models (RTM) are a common tool used for calculating atmospheric heating rates and radiative fluxes. In the forward sense, RTMs use known (or observed) quantities of the atmospheric state and surface characteristics to determine the appropriate surface and top-of-atmosphere (TOA) radiative fluxes. The NASA CERES science team uses the modified Fu-Liou RTM to calculate atmospheric heating rates and surface and TOA fluxes using the CERES observed TOA shortwave (SW) and longwave (LW) fluxes as constraints to derive global surface and TOA radiation budgets using a reanalyzed atmospheric state (e.g. temperature and various greenhouse gases) from the newly developed MERRA-2. However, closure studies have shown that using the reanalyzed state as input to the RTM introduces some disparity between the RTM calculated fluxes and surface observed ones. The purpose of this study is to generate a database of observed atmospheric state profiles, from satellite and ground-based sources, at several permanent Atmospheric Radiation Measurement (ARM) Program sites, including the Southern Great Plains (SGP), Northern Slope of Alaska (NSA) and Tropical Western Pacific Nauru (TWP-C2), and Eastern North Atlantic (ENA) permanent facilities. Since clouds are a major modulator of radiative transfer within the Earth's atmosphere, we will focus on the clear-sky conditions in this study, which will set up the baseline for our cloudy studies in the future. Clear-sky flux profiles are calculated using the Edition 4 NASA LaRC modified Fu-Liou RTM. The aforementioned atmospheric profiles generated in-house are used as input into the RTM, as well as from reanalyses. The calculated surface and TOA fluxes are compared with ARM surface measured and CERES satellite observed SW and LW fluxes, respectively. Clear-sky cases are identified by the ARM radar-lidar observations, as well as satellite observations, at the select ARM sites.

  3. Evaluation of the SMAP model calculated snow albedo at the SIGMA-A site, northwest Greenland, during the 2012 record surface melt event

    NASA Astrophysics Data System (ADS)

    Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.

    2015-12-01

    The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and visible fractions of the downward shortwave radiant flux. This result suggests that it is necessary for snowpack models to consider changes in the visible and near-infrared fractions of the downward shortwave radiant flux caused by the presence of cloud cover to reproduce realistic temporal changes in the snow albedo and consequently the surface energy balance.

  4. Spatial and Temporal Variabilities of Solar and Longwave Radiation Fluxes below a Coniferous Forest in the French Alps

    NASA Astrophysics Data System (ADS)

    Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.

    2017-12-01

    At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.

  5. THE EFFECT OF CLOUD FRACTION ON THE RADIATIVE ENERGY BUDGET: The Satellite-Based GEWEX-SRB Data vs. the Ground-Based BSRN Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Nasa Gewex Srb

    2011-12-01

    The NASA GEWEX-SRB (Global Energy and Water cycle Experiment - Surface Radiation Budget) project produces and archives shortwave and longwave atmospheric radiation data at the top of the atmosphere (TOA) and the Earth's surface. The archive holds uninterrupted records of shortwave/longwave downward/upward radiative fluxes at 1 degree by 1 degree resolution for the entire globe. The latest version in the archive, Release 3.0, is available as 3-hourly, daily and monthly means, spanning 24.5 years from July 1983 to December 2007. Primary inputs to the models used to produce the data include: shortwave and longwave radiances from International Satellite Cloud Climatology Project (ISCCP) pixel-level (DX) data, cloud and surface properties derived therefrom, temperature and moisture profiles from GEOS-4 reanalysis product obtained from the NASA Global Modeling and Assimilation Office (GMAO), and column ozone amounts constituted from Total Ozone Mapping Spectrometer (TOMS), TIROS Operational Vertical Sounder (TOVS) archives, and Stratospheric Monitoring-group's Ozone Blended Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. The data in the archive have been validated systemically against ground-based measurements which include the Baseline Surface Radiation Network (BSRN) data, the World Radiation Data Centre (WRDC) data, and the Global Energy Balance Archive (GEBA) data, and generally good agreement has been achieved. In addition to all-sky radiative fluxes, the output data include clear-sky fluxes, cloud optical depth, cloud fraction and so on. The BSRN archive also includes observations that can be used to derive the cloud fraction, which provides a means for analyzing and explaining the SRB-BSRN flux differences. In this paper, we focus on the effect of cloud fraction on the surface shortwave flux and the level of agreement between the satellite-based SRB data and the ground-based BSRN data. The satellite and BSRN employ different measuring methodologies and thus result in data representing means on dramatically different spatial scales. Therefore, the satellite-based and ground-based measurements are not expected to agree all the time, especially under skies with clouds. The flux comparisons are made under different cloud fractions, and it is found that the SRB-BSRN radiative flux discrepancies can be explained to a certain extent by the SRB-BSRN cloud fraction discrepancies. Apparently, cloud fraction alone cannot completely define the role of clouds in radiation transfer. Further studies need to incorporate the classification of cloud types, altitudes, cloud optical depths and so on.

  6. Effects of clouds on the surface shortwave radiation at a rural inland mid-latitude site

    NASA Astrophysics Data System (ADS)

    Salgueiro, Vanda; Costa, Maria João; Silva, Ana Maria; Bortoli, Daniele

    2016-09-01

    Seven years (2003-2010) of measured shortwave (SW) irradiances were used to obtain estimates of the 10 min averaged effective cloud optical thickness (ECOT) and of the shortwave cloud radiative effect (CRESW) at the surface in a mid-latitude site (Évora - south of Portugal), and its seasonal variability is presented. The ECOT, obtained using transmittance measurements at 415 nm, was compared with the correspondent MODIS cloud optical thickness (MODIS COT) for non-precipitating water clouds and cloud fractions higher than 0.25. This comparison showed that the ECOT represents well the cloud optical thickness over the study area. The CRESW, determined for two SW broadband ranges (300-1100 nm; 285-2800 nm), was normalized (NCRESW) and related with the obtained ECOT. A logarithmic relation between NCRESW and ECOT was found for both SW ranges, presenting lower dispersion for overcast-sky situations than for partially cloudy-sky situations. The NCRESW efficiency (NCRESW per unit of ECOT) was also related with the ECOT for overcast-sky conditions. The relation found is parameterized by a power law function showing that NCRESW efficiency decreases as the ECOT increases, approaching one for ECOT values higher than about 50.

  7. Gridding Cloud and Irradiance to Quantify Variability at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Riihimaki, L.; Long, C. N.; Gaustad, K.

    2017-12-01

    Ground-based radiometers provide the most accurate measurements of surface irradiance. However, geometry differences between surface point measurements and large area climate model grid boxes or satellite-based footprints can cause systematic differences in surface irradiance comparisons. In this work, irradiance measurements from a network of ground stations around Kansas and Oklahoma at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains facility are examined. Upwelling and downwelling broadband shortwave and longwave radiometer measurements are available at each site as well as surface meteorological measurements. In addition to the measured irradiances, clear sky irradiance and cloud fraction estimates are analyzed using well established methods based on empirical fits to measured clear sky irradiances. Measurements are interpolated onto a 0.25 degree latitude and longitude grid using a Gaussian weight scheme in order to provide a more accurate statistical comparison between ground measurements and a larger area such as that used in climate models, plane parallel radiative transfer calculations, and other statistical and climatological research. Validation of the gridded product will be shown, as well as analysis that quantifies the impact of site location, cloud type, and other factors on the resulting surface irradiance estimates. The results of this work are being incorporated into the Surface Cloud Grid operational data product produced by ARM, and will be made publicly available for use by others.

  8. The effect of South American biomass burning aerosol emissions on the regional climate

    NASA Astrophysics Data System (ADS)

    Thornhill, Gillian D.; Ryder, Claire L.; Highwood, Eleanor J.; Shaffrey, Len C.; Johnson, Ben T.

    2018-04-01

    The impact of biomass burning aerosol (BBA) on the regional climate in South America is assessed using 30-year simulations with a global atmosphere-only configuration of the Met Office Unified Model. We compare two simulations of high and low emissions of biomass burning aerosol based on realistic interannual variability. The aerosol scheme in the model has hygroscopic growth and optical properties for BBA informed by recent observations, including those from the recent South American Biomass Burning Analysis (SAMBBA) intensive aircraft observations made during September 2012. We find that the difference in the September (peak biomass emissions month) BBA optical depth between a simulation with high emissions and a simulation with low emissions corresponds well to the difference in the BBA emissions between the two simulations, with a 71.6 % reduction from high to low emissions for both the BBA emissions and the BB AOD in the region with maximum emissions (defined by a box of extent 5-25° S, 40-70° W, used for calculating mean values given below). The cloud cover at all altitudes in the region of greatest BBA difference is reduced as a result of the semi-direct effect, by heating of the atmosphere by the BBA and changes in the atmospheric stability and surface fluxes. Within the BBA layer the cloud is reduced by burn-off, while the higher cloud changes appear to be responding to stability changes. The boundary layer is reduced in height and stabilized by increased BBA, resulting in reduced deep convection and reduced cloud cover at heights of 9-14 km, above the layer of BBA. Despite the decrease in cloud fraction, September downwelling clear-sky and all-sky shortwave radiation at the surface is reduced for higher emissions by 13.77 ± 0.39 W m-2 (clear-sky) and 7.37 ± 2.29 W m-2 (all-sky), whilst the upwelling shortwave radiation at the top of atmosphere is increased in clear sky by 3.32 ± 0.09 W m-2, but decreased by -1.36±1.67 W m-2 when cloud changes are included. Shortwave heating rates increase in the aerosol layer by 18 % in the high emissions case. The mean surface temperature is reduced by 0.14 ± 0.24 °C and mean precipitation is reduced by 14.5 % in the peak biomass region due to both changes in cloud cover and cloud microphysical properties. If the increase in BBA occurs in a particularly dry year, the resulting reduction in precipitation may exacerbate the drought. The position of the South Atlantic high pressure is slightly altered by the presence of increased BBA, and the strength of the southward low-level jet to the east of the Andes is increased. There is some evidence that some impacts of increased BBA persist through the transition into the monsoon, particularly in precipitation, but the differences are only statistically significant in some small regions in November. This study therefore provides an insight into how variability in deforestation, realized through variability in biomass burning emissions, may contribute to the South American climate, and consequently on the possible impacts of future changes in BBA emissions.

  9. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, p<<0.01). In the accumulation zone, the net CRE seasonal trend is controlled by longwave CRE associated with cloud fraction and liquid water content. It becomes stronger from May to July and stays constant in August. In the ablation zone, albedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, p<0.01). Although cloud properties intrinsically affect CRE, the large melt-season variability of these two non-cloud factors, albedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.

  10. Impact of aerosols and clouds on decadal trends in all-sky solar radiation over the Netherlands (1966-2015)

    NASA Astrophysics Data System (ADS)

    Boers, Reinout; Brandsma, Theo; Pier Siebesma, A.

    2017-07-01

    A 50-year hourly data set of global shortwave radiation, cloudiness and visibility over the Netherlands was used to quantify the contribution of aerosols and clouds to the trend in yearly-averaged all-sky radiation (1.81 ± 1.07 W m-2 decade-1). Yearly-averaged clear-sky and cloud-base radiation data show large year-to-year fluctuations caused by yearly changes in the occurrence of clear and cloudy periods and cannot be used for trend analysis. Therefore, proxy clear-sky and cloud-base radiations were computed. In a proxy analysis hourly radiation data falling within a fractional cloudiness value are fitted by monotonic increasing functions of solar zenith angle and summed over all zenith angles occurring in a single year to produce an average. Stable trends can then be computed from the proxy radiation data. A functional expression is derived whereby the trend in proxy all-sky radiation is a linear combination of trends in fractional cloudiness, proxy clear-sky radiation and proxy cloud-base radiation. Trends (per decade) in fractional cloudiness, proxy clear-sky and proxy cloud-base radiation were, respectively, 0.0097 ± 0.0062, 2.78 ± 0.50 and 3.43 ± 1.17 W m-2. To add up to the all-sky radiation the three trends have weight factors, namely the difference between the mean cloud-base and clear-sky radiation, the clear-sky fraction and the fractional cloudiness, respectively. Our analysis clearly demonstrates that all three components contribute significantly to the observed trend in all-sky radiation. Radiative transfer calculations using the aerosol optical thickness derived from visibility observations indicate that aerosol-radiation interaction (ARI) is a strong candidate to explain the upward trend in the clear-sky radiation. Aerosol-cloud interaction (ACI) may have some impact on cloud-base radiation, but it is suggested that decadal changes in cloud thickness and synoptic-scale changes in cloud amount also play an important role.

  11. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  12. Absorption of Solar Radiation by the Cloudy Atmosphere: Further Interpretations of Collocated Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, Minghua; Valero, Francisco P. J.; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Zender, Charles S.

    1998-01-01

    We have extended the interpretations made in two prior studies of the aircraft shortwave radiation measurements that were obtained as part of the Atmospheric Radiation Measurements (ARM) Enhanced Shortwave Experiments (ARESE). These extended interpretations use the 500 nm (10 nm bandwidth) measurements to minimize sampling errors in the broadband measurements. It is indicated that the clouds present during this experiment absorb more shortwave radiation than predicted by clear skies and thus by theoretical models, that at least some (less than or equal to 20%) of this enhanced cloud absorption occurs at wavelengths less than 680 nm, and that the observed cloud absorption does not appear to be an artifact of sampling errors nor of instrument calibration errors.

  13. A Method of Correcting for Tilt From Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Charles N.; Bucholtz, Anthony; Jonsson, Haf

    2010-04-14

    Significant errors occur in downwelling shortwave irradiance measurements made on moving platforms due to tilt from horizontal because, when the sun is not completely blocked by overhead cloud, the downwelling shortwave irradiance has a prominent directional component from the direct sun. A-priori knowledge of the partitioning between the direct and diffuse components of the total shortwave irradiance is needed to properly apply a correction for tilt. This partitioning information can be adequately provided using a newly available commercial radiometer that produces reasonable measurements of the total and diffuse shortwave irradiance, and by subtraction the direct shortwave irradiance, with no movingmore » parts and regardless of azimuthal orientation. We have developed methodologies for determining the constant pitch and roll offsets of the radiometers for aircraft applications, and for applying a tilt correction to the total shortwave irradiance data. Results suggest that the methodology is for tilt up to +/-10°, with 90% of the data corrected to within 10 Wm-2 at least for clear-sky data. Without a proper tilt correction, even data limited to 5° of tilt as is typical current practice still exhibits large errors, greater than 100 Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total and diffuse radiometer, opportunities previously excluded for moving platform measurements such as small Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase in measurement accuracy is important, given current concerns over long-term climate variability and change especially over the 70% of the Earth’s surface covered by ocean where long-term records of these measurements are sorely needed and must be made on ships and buoys.« less

  14. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    EPA Science Inventory

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  15. Comparison of radiation parametrizations within the HARMONIE-AROME NWP model

    NASA Astrophysics Data System (ADS)

    Rontu, Laura; Lindfors, Anders V.

    2018-05-01

    Downwelling shortwave radiation at the surface (SWDS, global solar radiation flux), given by three different parametrization schemes, was compared to observations in the HARMONIE-AROME numerical weather prediction (NWP) model experiments over Finland in spring 2017. Simulated fluxes agreed well with each other and with the observations in the clear-sky cases. In the cloudy-sky conditions, all schemes tended to underestimate SWDS at the daily level, as compared to the measurements. Large local and temporal differences between the model results and observations were seen, related to the variations and uncertainty of the predicted cloud properties. The results suggest a possibility to benefit from the use of different radiative transfer parametrizations in a NWP model to obtain perturbations for the fine-resolution ensemble prediction systems. In addition, we recommend usage of the global radiation observations for the standard validation of the NWP models.

  16. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    NASA Astrophysics Data System (ADS)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  17. Differences in Water Vapor Radiative Transfer among 1D Models Can Significantly Affect the Inner Edge of the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Leconte, Jérémy; Wolf, Eric T.; Goldblatt, Colin; Feldl, Nicole; Merlis, Timothy; Wang, Yuwei; Koll, Daniel D. B.; Ding, Feng; Forget, François; Abbot, Dorian S.

    2016-08-01

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4_Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find that divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μm) and in the region between 0.2 and 1.5 μm. Differences in outgoing longwave radiation increase with surface temperature and reach 10-20 W m-2 differences in shortwave reach up to 60 W m-2, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (I.e., ≈34 W m-2 in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.

  18. DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jun; Wang, Yuwei; Leconte, Jérémy

    An accurate estimate of the inner edge of the habitable zone is critical for determining which exoplanets are potentially habitable and for designing future telescopes to observe them. Here, we explore differences in estimating the inner edge among seven one-dimensional radiative transfer models: two line-by-line codes (SMART and LBLRTM) as well as five band codes (CAM3, CAM4-Wolf, LMDG, SBDART, and AM2) that are currently being used in global climate models. We compare radiative fluxes and spectra in clear-sky conditions around G and M stars, with fixed moist adiabatic profiles for surface temperatures from 250 to 360 K. We find thatmore » divergences among the models arise mainly from large uncertainties in water vapor absorption in the window region (10 μ m) and in the region between 0.2 and 1.5 μ m. Differences in outgoing longwave radiation increase with surface temperature and reach 10–20 W m{sup 2}; differences in shortwave reach up to 60 W m{sup 2}, especially at the surface and in the troposphere, and are larger for an M-dwarf spectrum than a solar spectrum. Differences between the two line-by-line models are significant, although smaller than among the band models. Our results imply that the uncertainty in estimating the insolation threshold of the inner edge (the runaway greenhouse limit) due only to clear-sky radiative transfer is ≈10% of modern Earth’s solar constant (i.e., ≈34 W m{sup 2} in global mean) among band models and ≈3% between the two line-by-line models. These comparisons show that future work is needed that focuses on improving water vapor absorption coefficients in both shortwave and longwave, as well as on increasing the resolution of stellar spectra in broadband models.« less

  19. Can a coupled meteorology–chemistry model reproduce the ...

    EPA Pesticide Factsheets

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere has been evaluated through a comparison of 21-year simulated results with observation-derived records from 1990 to 2010. Six satellite-retrieved AOD products including AVHRR, TOMS, SeaWiFS, MISR, MODIS-Terra and MODIS-Aqua as well as long-term historical records from 11 AERONET sites were used for the comparison of AOD trends. Clear-sky SWR products derived by CERES at both the top of atmosphere (TOA) and surface as well as surface SWR data derived from seven SURFRAD sites were used for the comparison of trends in SWR. The model successfully captured increasing AOD trends along with the corresponding increased TOA SWR (upwelling) and decreased surface SWR (downwelling) in both eastern China and the northern Pacific. The model also captured declining AOD trends along with the corresponding decreased TOA SWR (upwelling) and increased surface SWR (downwelling) in the eastern US, Europe and the northern Atlantic for the period of 2000–2010. However, the model underestimated the AOD over regions with substantial natural dust aerosol contributions, such as the Sahara Desert, Arabian Desert, central Atlantic and northern Indian Ocean. Estimates of the aerosol direct radiative effect (DRE) at TOA a

  20. A Comparison Between Modeled and Measured Clear-Sky Radiative Shortwave Fluxes in Arctic Environments, with Special Emphasis on Diffuse Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, James C.; Flynn, Donna M.

    2002-10-08

    The ability of the SBDART radiative transfer model to predict clear-sky diffuse and direct normal broadband shortwave irradiances is investigated. Model calculations of these quantities are compared with data from the Atmospheric Radiation Measurement (ARM) program’s Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites. The model tends to consistently underestimate the direct normal irradiances at both sites by about 1%. In regards to clear-sky diffuse irradiance, the model overestimates this quantity at the SGP site in a manner similar to what has been observed in other studies (Halthore and Schwartz, 2000). The difference between the diffuse SBDARTmore » calculations and Halthore and Schwartz’s MODTRAN calculations is very small, thus demonstrating that SBDART performs similarly to MODTRAN. SBDART is then applied to the NSA site, and here it is found that the discrepancy between the model calculations and corrected diffuse measurements (corrected for daytime offsets, Dutton et al., 2001) is 0.4 W/m2 when averaged over the 12 cases considered here. Two cases of diffuse measurements from a shaded “black and white” pyranometer are also compared with the calculations and the discrepancy is again minimal. Thus, it appears as if the “diffuse discrepancy” that exists at the SGP site does not exist at the NSA sites. We cannot yet explain why the model predicts diffuse radiation well at one site but not at the other.« less

  1. The Role of Clear Sky Identification in the Study of Cloud Radiative Effects: Combine Analysis from ISCCP and the Scanner of Radiation Budget (ScaRaB)

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Stubenrauch, C. J.; Briand, V.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Since the effect of clouds on the earth's radiation balance is often estimated as the difference of net radiative fluxes at the top of the atmosphere between all situations and monthly averaged clear sky situations of the same regions, a reliable identification of clear sky is important for the study of cloud radiative effects. The Scanner for Radiation Balance (ScaRaB) radiometer on board the Russian Meteor-3/7 satellite provided earth radiation budget observations from March 1994 to February 1995 with two ERBE-Re broad-band longwave and shortwave channels. Two narrow-band channels, in the infrared atmospheric window and in the visible band, have been added to the ScaRaB instrument to improve the cloud scene identification. The International Satellite Cloud Climatology Project (ISCCP) method for cloud detection and determination of cloud and surface properties uses the same narrow-band channels as ScaRaB, but is employed to a collection of measurements at a better spatial resolution of about 5 km. By applying the original ISCCP algorithms to the ScaRaB data, the clear sky frequency is about 5% lower than the one over quasi-simultaneous original ISCCP data, an indication that the ISCCP cloud detection is quite stable. However, one would expect an about 10 to 20% smaller clear sky occurrence over the larger ScaRaB pixels. Adapting the ISCCP algorithms to the reduced spatial resolution of 60 km and to the different time sampling of the ScaRaB data leads therefore to a reduction of a residual cloud contamination. A sensitivity study with time-space collocated ScaRaB and original ISCCP data at a spatial resolution of 1deg longitude x 1deg latitude shows that the effect of clear sky identification method plays a higher role on the clear sky frequency and therefore on the statistics than on the zonal mean values of the clear sky fluxes. Nevertheless, the zonal outgoing longwave fluxes corresponding to ERBE clear sky are in general about 2 to 10 W/sq m higher than those obtained from the ScaRaB adapted ISCCP clear sky identifications. The latter are close to (about 1 W/sq m higher) fluxes corresponding to clear sky regions from original ISCCP data, whereas ScaRaB clear sky LW fluxes obtained with the original ISCCP identification lie about 1 to 2 W/sq m below. Especially in the tropics where water vapor abundance is high, the ERBE clear sky LW fluxes seem to be systematically overestimated by about 4 W/sq m, and SW fluxes are lower by about 5 to 10 W/sq m. However, the uncertainty in the analysis of monthly mean zonal cloud radiative effects is also produced by the low frequency of clear sky occurrence, illustrated when averaging over pixels or even over regions of 4deg longitude x 5deg latitude, corresponding to the spatial resolution of General Circulation Models. The systematic bias in the clear sky fluxes is not reflected in the zonal cloud radiative effects, because the clear sky regions selected by the different algorithms can occur in different geographic regions with different cloud properties.

  2. Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Liu, Shoudong

    2013-09-01

    Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.

  3. The New Global Gapless GLASS Albedo Product from 1981 to 2014

    NASA Astrophysics Data System (ADS)

    Dou, B.; Liu, Q.; Qu, Y.; Wang, L.; Feng, Y.; Nie, A.; Li, X.; Zhang, J.; Niu, H.; Cai, E.; Zhao, L.

    2016-12-01

    Long-time series and various spatial resolution albedo products are needed for climate change and environmental studies at both global and regional scale. To meet these requirements, GLASS (Global LAnd Surface Satellites) gapless albedo product from 1981 to 2010 was firstly released in 2012 and widely used in long-term earth change researches. However, only shortwave albedo product in spatial resolution of 0.05 degree and 1 km were provided, which limits extensive applications for visible and near-infrared bands. Thus, new GLASS albedo product are produced and comprehensively enhanced in time series, algorithm and product content. Five major updates are conducted: 1) Time region is expanded from 1981-2010 to 1981-2014; 2) Physically ART (radiative transfer theory) and TCOWA (Three-Component Ocean Water Albedo) models rather than previous RTLSR (Rose-Thick Li-Sparse Reciprocal kernel combination) model are adopted for snow and inland water albedo estimation, respectively; 3) global shortwave, visible, and near-infrared albedos in spatial resolution of 0.05 degree and 1 km are released; 4) Clear-sky albedo is provided beyond the traditional black-sky albedo and white sky-albedo for amateurish user; 5) 250 m albedo product is provided in part of global for regional application. In this study, we firstly detail the updates of this inspiring product. Then the product is compared with the previous GLASS albedo product and preliminary assessed against field measurements under various land covers. Significant improvements are reported for snow and water albedo. The results demonstrate that the new GLASS albedo product is a gapless, long-term continuous, and self-consistent data-set. Comparing to previous GLASS albedo product, lower black-sky albedo and higher white-sky albedo are proved for permanent snow-cover region. Moreover, higher albedo of inland water and seasonal snow-cover mountain are captured. This product brings new chance and view to understanding long-term earth process and change.

  4. The solar dimming/brightening effect over the Mediterranean Basin in the period 1979-2012

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Kaskaoutis, D. G.; Kalliampakos, G. K.; Rashki, A.; Wild, M.

    2016-12-01

    Numerous studies have shown that the solar radiation reaching the Earth's surface is subjected to multi-decadal variations with significant spatial and temporal heterogeneities in both magnitude and sign. Although several studies have examined the solar radiation trends over Europe, North America and Asia, the Mediterranean Basin has not been studied extensively. This work investigates the evolution and trends in the surface net short-wave radiation (NSWR, surface solar radiation - reflected) over the Mediterranean Basin during the period 1979-2012 using monthly re-analysis datasets from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and aims to shed light on the specific role of clouds on the NSWR trends. The solar dimming/brightening phenomenon is temporally and spatially analyzed over the Mediterranean Basin. The spatially-averaged NSWR over the whole Mediterranean Basin was found to increase in MERRA by +0.36 Wm-2 per decade, with higher rates over the western Mediterranean (+0.82 Wm-2 per decade), and especially during spring (March-April-May; +1.3 Wm-2 per decade). However, statistically significant trends in NSWR either for all-sky or clean-sky conditions are observed only in May. The increasing trends in NSWR are mostly associated with decreasing ones in cloud optical depth (COD), especially for the low (<700 hPa) clouds. The decreasing COD trends (less opaque clouds and/or decrease in absolute cloudiness) are more pronounced during spring, thus controlling the increasing tendency in NSWR. The NSWR trends for cloudless (clear) skies are influenced by changes in the water-vapor content or even variations in surface albedo to a lesser degree, whereas aerosols are temporally constant in MERRA. The slight negative trend (not statistically significant) in NSWR under clear skies for nearly all months and seasons implies a slight increasing trend in water vapor under a warming and more humid climatic scenario over the Mediterranean.

  5. Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications

    NASA Astrophysics Data System (ADS)

    Nyeki, Stephan; Wacker, Stefan; Gröbner, Julian; Finsterle, Wolfgang; Wild, Martin

    2017-08-01

    A large number of radiometers are traceable to the World Standard Group (WSG) for shortwave radiation and the interim World Infrared Standard Group (WISG) for longwave radiation, hosted by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland). The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014), although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved and the implications on existing archives of radiation time series, such as the Baseline Surface Radiation Network (BSRN). Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR) time series over the 2006-2015 period were analysed at four stations (polar and mid-latitude locations). DLR was found to increase by up to 3.5 and 5.4 W m-2 for all-sky and clear-sky conditions, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.

  6. Cloud cover classification through simultaneous ground-based measurements of solar and infrared radiation

    NASA Astrophysics Data System (ADS)

    Orsini, Antonio; Tomasi, Claudio; Calzolari, Francescopiero; Nardino, Marianna; Cacciari, Alessandra; Georgiadis, Teodoro

    2002-04-01

    Simultaneous measurements of downwelling short-wave solar irradiance and incoming total radiation flux were performed at the Reeves Nevè glacier station (1200 m MSL) in Antarctica on 41 days from late November 1994 to early January 1995, employing the upward sensors of an albedometer and a pyrradiometer. The downwelling short-wave radiation measurements were analysed following the Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132] procedure for classifying clouds, using the 50-min running mean values of standard deviation and the ratio of scaled observed to scaled clear-sky irradiance. Comparing these measurements with the Duchon and O'Malley rectangular boundaries and the local human observations of clouds collected on 17 days of the campaign, we found that the Duchon and O'Malley classification method obtained a success rate of 93% for cirrus and only 25% for cumulus. New decision criteria were established for some polar cloud classes providing success rates of 94% for cirrus, 67% for cirrostratus and altostratus, and 33% for cumulus and altocumulus. The ratios of the downwelling short-wave irradiance measured for cloudy-sky conditions to that calculated for clear-sky conditions were analysed in terms of the Kasten and Czeplak [Sol. Energy 24 (1980) 177] formula together with simultaneous human observations of cloudiness, to determine the empirical relationship curves providing reliable estimates of cloudiness for each of the three above-mentioned cloud classes. Using these cloudiness estimates, the downwelling long-wave radiation measurements (obtained as differences between the downward fluxes of total and short-wave radiation) were examined to evaluate the downwelling long-wave radiation flux normalised to totally overcast sky conditions. Calculations of the long-wave radiation flux were performed with the MODTRAN 3.7 code [Kneizys, F.X., Abreu, L.W., Anderson, G.P., Chetwynd, J.H., Shettle, E.P., Berk, A., Bernstein, L.S., Robertson, D.C., Acharya, P., Rothman, L.S., Selby, J.E.A., Gallery, W.O., Clough, S.A., 1996. In: Abreu, L.W., Anderson, G.P. (Eds.), The MODTRAN 2/3 Report and LOWTRAN 7 MODEL. Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA, 261 pp.] for both clear-sky and cloudy-sky conditions, considering various cloud types characterised by different cloud base altitudes and vertical thicknesses. From these evaluations, best-fit curves of the downwelling long-wave radiation flux were defined as a function of the cloud base height for the three polar cloud classes. Using these relationship curves, average estimates of the cloud base height were obtained from the three corresponding sub-sets of long-wave radiation measurements. The relative frequency histograms of the cloud base height defined by examining these three sub-sets were found to present median values of 4.7, 1.7 and 3.6 km for cirrus, cirrostratus/altostratus and cumulus/altocumulus, respectively, while median values of 6.5, 1.8 and 2.9 km were correspondingly determined by analysing only the measurements taken together with simultaneous cloud observations.

  7. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean, but comparison with EMS all-sky reflected shortwave radiation during 1985-1997 suggests this decrease may be underestimated.

  8. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_TRMM-PFM-VIRS_Beta4)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  9. An All Sky Instantaneous Shortwave Solar Radiation Model for Mountainous Terrain

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, X.; She, J.

    2017-12-01

    In mountainous terrain, solar radiation shows high heterogeneity in space and time because of strong terrain shading effects and significant variability of cloud cover. While existing GIS-based solar radiation models simulate terrain shading effects with relatively high accuracy and models based on satellite datasets consider fine scale cloud attenuation processes, none of these models have considered the geometrical relationships between sun, cloud, and terrain, which are important over mountainous terrain. In this research we propose sky cloud maps to represent cloud distribution in a hemispherical sky using MODIS cloud products. By overlaying skyshed (visible area in the hemispherical sky derived from DEM), sky map, and sky cloud maps, we are able to consider both terrain shading effects and anisotropic cloud attenuation in modeling instantaneous direct and diffuse solar radiation in mountainous terrain. The model is evaluated with field observations from three automatic weather stations in the Tizinafu watershed in the Kunlun Mountains of northwestern China. Overall, under all sky conditions, the model overestimates instantaneous global solar radiation with a mean absolute relative difference (MARD) of 22%. The model is also evaluated under clear sky (clearness index of more than 0.75) and partly cloudy sky (clearness index between 0.35 and 0.75) conditions with MARDs of 5.98% and 23.65% respectively. The MARD for very cloudy sky (clearness index less than 0.35) is relatively high. But these days occur less than 1% of the time. The model is sensitive to DEM data error, algorithms used in delineating skyshed, and errors in MODIS atmosphere and cloud products. Our model provides a novel approach for solar radiation modeling in mountainous areas.

  10. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, K; Long, CN

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer casemore » and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.« less

  11. Greenland surface albedo changes in July 1981-2012 from satellite observations

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Yu, Yunyue; Wang, Dongdong; Gao, Feng; Liu, Qiang

    2013-12-01

    Significant melting events over Greenland have been observed over the past few decades. This study presents an analysis of surface albedo change over Greenland using a 32-year consistent satellite albedo product from the global land surface satellite (GLASS) project together with ground measurements. Results show a general decreasing trend of surface albedo from 1981 to 2012 (-0.009 ± 0.002 decade-1, p < 0.01). However, a large decrease has occurred since 2000 (-0.028 ± 0.008 decade-1, p < 0.01) with most significant decreases at elevations between 1000 and 1500 m (-0.055 decade-1, p < 0.01) which may be associated with surface temperature increases. The surface radiative forcing from albedo changes is 2.73 W m-2 decade-1 and 3.06 W m-2 decade-1 under full-sky and clear-sky conditions, respectively, which indicates that surface albedo changes are likely to have a larger impact on the surface shortwave radiation budget than that caused by changes in the atmosphere over Greenland. A comparison made between satellite albedo products and data output from the Coupled Model Inter-comparison Project 5 (CMIP5) general circulation models (GCMs) shows that most of the CMIP5 models do not detect the significantly decreasing trends of albedo in recent decades. This suggests that more efforts are needed to improve our understanding and simulation of climate change at high latitudes.

  12. Estimating Longwave Atmospheric Emissivity in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, S.; Marshall, S. J.

    2014-12-01

    Incoming longwave radiation is an important source of energy contributing to snow and glacier melt. However, estimating the incoming longwave radiation from the atmosphere is challenging due to the highly varying conditions of the atmosphere, especially cloudiness. We analyze the performance of some existing models included a physically-based clear-sky model by Brutsaert (1987) and two different empirical models for all-sky conditions (Lhomme and others, 2007; Herrero and Polo, 2012) at Haig Glacier in the Canadian Rocky Mountains. Models are based on relations between readily observed near-surface meteorological data, including temperature, vapor pressure, relative humidity, and estimates of shortwave radiation transmissivity (i.e., clear-sky or cloud-cover indices). This class of models generally requires solar radiation data in order to obtain a proxy for cloud conditions. This is not always available for distributed models of glacier melt, and can have high spatial variations in regions of complex topography, which likely do not reflect the more homogeneous atmospheric longwave emissions. We therefore test longwave radiation parameterizations as a function of near-surface humidity and temperature variables, based on automatic weather station data (half-hourly and mean daily values) from 2004 to 2012. Results from comparative analysis of different incoming longwave radiation parameterizations showed that the locally-calibrated model based on relative humidity and vapour pressure performs better than other published models. Performance is degraded but still better than standard cloud-index based models when we transfer the model to another site, roughly 900 km away, Kwadacha Glacier in the northern Canadian Rockies.

  13. Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements

    NASA Astrophysics Data System (ADS)

    Damiani, Alessandro; Irie, Hitoshi; Horio, Takashi; Takamura, Tamio; Khatri, Pradeep; Takenaka, Hideaki; Nagao, Takashi; Nakajima, Takashi Y.; Cordero, Raul R.

    2018-04-01

    Observations from the new Japanese geostationary satellite Himawari-8 permit quasi-real-time estimation of global shortwave radiation at an unprecedented temporal resolution. However, accurate comparisons with ground-truthing observations are essential to assess their uncertainty. In this study, we evaluated the Himawari-8 global radiation product AMATERASS using observations recorded at four SKYNET stations in Japan and, for certain analyses, from the surface network of the Japanese Meteorological Agency in 2016. We found that the spatiotemporal variability of the satellite estimates was smaller than that of the ground observations; variability decreased with increases in the time step and spatial domain. Cloud variability was the main source of uncertainty in the satellite radiation estimates, followed by direct effects caused by aerosols and bright albedo. Under all-sky conditions, good agreement was found between satellite and ground-based data, with a mean bias in the range of 20-30 W m-2 (i.e., AMATERASS overestimated ground observations) and a root mean square error (RMSE) of approximately 70-80 W m-2. However, results depended on the time step used in the validation exercise, on the spatial domain, and on the different climatological regions. In particular, the validation performed at 2.5 min showed largest deviations and RMSE values ranging from about 110 W m-2 for the mainland to a maximum of 150 W m-2 in the subtropical region. We also detected a limited overestimation in the number of clear-sky episodes, particularly at the pixel level. Overall, satellite-based estimates were higher under overcast conditions, whereas frequent episodes of cloud-induced enhanced surface radiation (i.e., measured radiation was greater than expected clear-sky radiation) tended to reduce this difference. Finally, the total mean bias was approximately 10-15 W m-2 under clear-sky conditions, mainly because of overall instantaneous direct aerosol forcing efficiency in the range of 120-150 W m-2 per unit of aerosol optical depth (AOD). A seasonal anticorrelation between AOD and global radiation differences was evident at all stations and was also observed within the diurnal cycle.

  14. Radiation closure under broken cloud conditions at the BSRN site Payerne: A case study

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2017-04-01

    Clouds have a substantial influence on the surface radiation budget and on the climate system. There are several studies showing the opposing effect of clouds on shortwave and longwave radiation and thus on the global energy budget. Wacker et al., 2013 show an agreement between radiation flux measurements and radiative transfer models (RTM) under clear sky conditions which is within the measurement uncertainty. Our current study combines radiation fluxes from surface-based observations with RTM under cloudy conditions. It is a case study with data from the BSRN (Baseline Surface Radiation Network) site Payerne (46.49˚ N, 6.56˚ E, 490 m asl). Observation data are retrieved from pyranometers and pyrgeometers and additional atmospheric parameters from radiosondes and a ceilometer. The cloud information is taken from visible all-sky cameras. In a first step observations and RTM are compared for cases with stratiform overcast cloud conditions. In a next step radiation fluxes are compared under broken cloud conditions. These analyses are performed for different cloud types. Wacker, S., J. Gröbner, and L. Vuilleumier (2014) A method to calculate cloud-free long-wave irradiance at the surface based on radiative transfer modeling and temperature lapse rate estimates, Theor. Appl. Climatol., 115, 551-561.

  15. Radiative forcing and rapid adjustment of absorbing aerosols in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yim, S. H. L.; Lau, G.

    2016-12-01

    Part of organic carbon defined as brown carbon (BrC) has been found to absorb solar radiation, especially in near-ultraviolet and blue bands, but their radiation impact is far less understood than black carbon (BC). Rapid adjustment thought to occur within a few weeks, induced by aerosol radiative effect and thereby alter cloud cover or other climate components. These effects are particularly pronounced for absorbing aerosols. The data gathered is from an online coupled model, WRF-Chem. A two-simulation test is conducted from July 8 to July 15. The baseline simulation doesn't account for aerosol-radiation interactions, whereas the sensitivity run includes it. The differences between these two simulations represent total effects of the aerosol instantaneous radiative forcing and subsequent rapid adjustment. In Figure 1, without cloud effect (clear sky), at the top of atmosphere (TOA), the SW radiation changes are negative in the PRD region, representing an overall cooling effect of aerosols. However, in the atmosphere (ATM), aerosols heat the atmosphere by absorbing incoming solar radiation with an average of 2.4 W/m2 (Table 1). After including rapid adjustment (all sky), the radiation change pattern becomes significantly different, especially at TOA and surface (SFC). This may be caused by cloud cover change due to rapid adjustment. The magnitude of SW radiation changes for all sky at all levels is smaller than that for clear sky. This result suggests the rapid adjustment counteracts the instantaneous radiative forcing of aerosols. At TOA, the cooling effect of the aerosol is 74% lower for all sky compared with clear sky, highlighting an overall warming effect of rapid adjustment in the PRD region. Aerosol-induced changes (W/m2) TOA ATM SFC Clear Sky -9.2 2.4 -11.6 All Sky -2.4 1.9 -4.3 Table 1. Aerosol-induced averaged changes in shortwave radiation due to aerosol-radiation interactions in the Pearl River Delta. The test shows the rapid adjustment of aerosols offsets part of the aerosol instantaneous negative radiation forcing, especially at TOA and SFC. The only absorbing aerosol species included in the test is BC. If absorption effects of dust and BrC are considered, the contribution of instantaneous radiative forcing and rapid adjustment may change.

  16. Surface radiation fluxes in transient climate simulations

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.

    1999-01-01

    Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.

  17. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    PubMed

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

  18. Cloud-Radiative Driving of the Madden-Julian Oscillation as Seen by the A-Train

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Chen, Yonghua

    2015-01-01

    Cloud and water vapor radiative heating anomalies associated with convection may be an effective source of moist static energy driving the Madden-Julian Oscillation (MJO). In this paper five years of radiative heating profiles derived from CloudSat radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data are analyzed to document radiative heating anomalies during the MJO. Atmospheric shortwave absorption and surface longwave radiation anomalies are of opposite sign and 10-20% as large as top-of-atmosphere outgoing longwave radiation (OLR) anomalies, confirming that OLR provides a useful estimate of the total column radiative heating anomaly. Positive anomalies generally peak about one week before the MJO peak and are smallest over the Indian Ocean. Anomalies over the Maritime Continent are strongest, and coincident with the MJO peak. Shortwave heating profile anomalies are about half as large as longwave anomalies in the active region of the MJO but generally of opposite sign; thus shortwave heating damps the longwave destabilization of the lower troposphere. The exception is the onset phase of the MJO, where shortwave and longwave heating anomalies due to thin cirrus are both positive in the upper troposphere and exert a stabilizing influence. Specific humidity anomalies in the middle troposphere reach 0.5 g kg(exp. -1), but the associated clear sky heating anomaly is very small. Radiative enhancement of column moist static energy becomes significant about 10 days before the MJO peak, when precipitation anomalies are still increasing, and then remains high after the MJO peak after precipitation has begun to decline.

  19. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Terra-FM2-MODIS_Edition2A)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  20. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Terra-FM2-MODIS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  1. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Terra-FM1-MODIS_Edition2B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  2. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Aqua-FM3-MODIS_Edition2A)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  3. The Validation of the GEWEX SRB Surface Shortwave Flux Data Products Using BSRN Measurements: A Systematic Quality Control, Production and Application Approach

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.

    2013-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.

  4. Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Weaver, Clark

    1999-01-01

    The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.

  5. A Sea-Surface Radiation Data Set for Climate Applications in the Tropical Western Pacific and South China Sea

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Yan, Michael M.-H.

    2000-01-01

    The sea-surface shortwave and longwave radiative fluxes have been retrieved from the radiances measured by Japan's Geostationary Meteorological Satellite 5. The surface radiation data set covers the domain 40S-40N and 90E-170W. The temporal resolution is 1 day, and the spatial resolution is 0.5 deg x 0.5 deg latitude-longitude. The retrieved surface radiation have been validated with the radiometric measurements at the Atmospheric Radiation Measuring (ARM) site on Manus island in the equatorial western Pacific for a period of 15 months. It has also been validated with the measurements at the radiation site on Dungsha island in the South China Sea during the South China Sea Monsoon Experiment (SCSMEX) Intensive Observing Period (May and June 1998). The data set is used to study the effect of El Nino and East Asian Summer monsoon on the heating of the ocean in the tropical western Pacific and the South China Sea. Interannual variations of clouds associated with El Nino and the East Asian Summer monsoon have a large impact on the radiative heating of the ocean. It has been found that the magnitude of the interannual variation of the seasonal mean surface radiative heating exceeds 40 W/sq m over large areas. Together with the Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes at top of the atmosphere and the radiative transfer calculations of clear-sky fluxes, this surface radiation data set is also used to study the impact of clouds on the solar heating of the atmosphere. It is found that clouds enhance the atmospheric solar heating by approx. 20 W/sq m in the tropical western Pacific and the South China Sea. This result is important for evaluating the accuracy of solar flux calculations in clear and cloudy atmospheres.

  6. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2.4, 2.2±1.1, -1.4±1.4, -0.15±0.13, while, surface ARF is -16.4±3.1, -7.6±1.7, -31.5±4.7, -17.1±8.4, respectively for the MAMJ, JAS, ON and DJF seasons. Post-monsoon and winter season shows negative values of TOA ARF, hence suggest 'cooling'. The associated heating rate profiles show higher values for 'WS-BC+Dust+WINS' case as compared to other cases, with relatively large values during the winter and post-monsoon seasons, while lower value was observed for 'BC-WINS+WS+Dust'. We examined the modulation of clear sky ARF by 'water-cloud' and 'ice-cloud' separately. The seasonal mean ARF for both water and ice clouds show nearly similar characteristics as observed for clear-sky case, with relatively large ARF at TOA and surface in water cloud case as compared to ice cloud during all the seasons. As a result, the associated heating rate is also relatively higher in water cloud case as compared to ice cloud. Such large modulation of ARF due to mixing state calls for a coordinated effort to create a mixing state database for this region to reduce the uncertainty in climate forcing.

  7. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    NASA Astrophysics Data System (ADS)

    Hardin, A. W.; Vanos, J. K.

    2018-01-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  8. Shortwave radiation parameterization scheme for subgrid topography

    NASA Astrophysics Data System (ADS)

    Helbig, N.; LöWe, H.

    2012-02-01

    Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.

  9. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    NASA Astrophysics Data System (ADS)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  10. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  11. Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.

    2004-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.

  12. Comparison of ScaRaB, GOES 8, Aircraft, and Surface Observations of the Absorption of Solar Radiation by Clouds

    NASA Technical Reports Server (NTRS)

    Pope, Shelly K.; Valero, Francisco P. J.; Collins, William D.; Minnis, Patrick

    2002-01-01

    Data obtained by the Scanner for Radiation Budget (ScaRaB) instrument on the Meteor 3 satellite have been analyzed and compared to satellite (GOES 8), aircraft (Radiation Measurement System, RAMS), and surface (Baseline Solar Radiation Network (BSRN), Solar and Infrared Observations System (SIROS), and RAMS) measurements of irradiance obtained during the Atmospheric Radiation Measurements Enhanced Shortwave Experiment (ARESE). It is found that the ScaRaB data covering the period from March 1994 to February 1995 (the instrument's operational lifetime) indicate excess absorption of solar radiation by the cloudy atmosphere in agreement with previous aircraft, surface, and GOES 8 results. The full ScaRaB data set combined with BSRN and SIROS surface observations gives an average all-sky absorptance of 0.28. The GOES 8 data set combined with RAMS surface observations gives an average all-sky absorptance of 0.26. The aircraft data set (RAMS) gives a mean all-sky absorptance of 0.24 (for the column between 0.5 and 13 km).

  13. A new method for assessing surface solar irradiance: Heliosat-4

    NASA Astrophysics Data System (ADS)

    Qu, Z.; Oumbe, A.; Blanc, P.; Lefèvre, M.; Wald, L.; Schroedter-Homscheidt, M.; Gesell, G.

    2012-04-01

    Downwelling shortwave irradiance at surface (SSI) is more and more often assessed by means of satellite-derived estimates of optical properties of the atmosphere. Performances are judged satisfactory for the time being but there is an increasing need for the assessment of the direct and diffuse components of the SSI. MINES ParisTech and the German Aerospace Center (DLR) are currently developing the Heliosat-4 method to assess the SSI and its components in a more accurate way than current practices. This method is composed by two parts: a clear sky module based on the radiative transfer model libRadtran, and a cloud-ground module using two-stream and delta-Eddington approximations for clouds and a database of ground albedo. Advanced products derived from geostationary satellites and recent Earth Observation missions are the inputs of the Heliosat-4 method. Such products are: cloud optical depth, cloud phase, cloud type and cloud coverage from APOLLO of DLR, aerosol optical depth, aerosol type, water vapor in clear-sky, ozone from MACC products (FP7), and ground albedo from MODIS of NASA. In this communication, we briefly present Heliosat-4 and focus on its performances. The results of Heliosat-4 for the period 2004-2010 will be compared to the measurements made in five stations within the Baseline Surface Radiation Network. Extensive statistic analysis as well as case studies are performed in order to better understand Heliosat-4 and have an in-depth view of the performance of Heliosat-4, to understand its advantages comparing to existing methods and to identify its defaults for future improvements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793 (MACC project) and no. 283576 (MACC-II project).

  14. Studies in the parameterization of cloudiness in climate models and the analysis of radiation fields in general circulation models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1990-01-01

    Broad-band parameterizations for atmospheric radiative transfer were developed for clear and cloudy skies. These were in the shortwave and longwave regions of the spectrum. These models were compared with other models in an international effort called ICRCCM (Intercomparison of Radiation Codes for Climate Models). The radiation package developed was used for simulations of a General Circulation Model (GCM). A synopsis is provided of the research accomplishments in the two areas separately. Details are available in the published literature.

  15. Spatio Temporal Variability of the Global Transmittance During the Arctic POLARSTERN Expedition 106/1 Ice Floe Station

    NASA Astrophysics Data System (ADS)

    Barrientos Velasco, C.; Macke, A.; Griesche, H.; Engelmann, R.; Deneke, H.; Seifert, P.

    2017-12-01

    The Arctic is warming at a higher rate than the rest of the planet. This has been leading to a dramatically decrease of snow coverage and sea ice thickness in recent years and several studies have suggested that a similar trend is expected in the upcoming years. Large uncertainties in predicting the Arctic climate arise from our lack of understanding the role clouds play in sea ice / atmosphere interaction. During summer the shortwave radiation dominates and clouds have a net cooling effect at the surface. The strength of this cooling critically depends on cloud phase, composition and height. Clouds interactions with aerosols, and its sensitivity to surface properties further complicates their role in the Arctic system. Scattering between the surface and cloud layers amplifies the cloud shortwave contribution, especially over a highly reflective surface such as snow or ice. Therefore, to comprehend how the Arctic's surface is significantly modulated by solar radiation is necessary to more clearly understand the cloud-induced spatio-temporal variability at process relevant scales. Irradiance variability may also have an effect on the biological productivity of various plankton species below the ice. The present study provides an overview of spatio-temporal variability at spatial scales ranging from several decameters to 1 kilometer of the global transmittance derived from 15 pyranometer stations installed at an ice floe station (June 4-16 2017) during the POLARSTERN expedition PS106/1. Specific irradiance statistics under clear sky, broken clouds and overcast conditions will be described considering the combination of a Cloud Radar Mira 35 and a Polly Raman polarization Lidar. Ultimately, radiative closure studies will be performed to quantify our abilities to reproduce realistic cloud solar radiative forcing under Arctic conditions. Acknowledgements. This research is funded by Deutsche Forschunsgemeinschaft (DFG) and involves the active participation of Leibniz Institut für Troposphärenforschung (TROPOS), Universität Leipzig Institut für Meteorologie (LIM), Universitäat Bremen, Universität zu Köln and Alfred-Wegener-Institut, Helmholtz Zentrum für Polar - und Meeresforschung (AWI).

  16. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.

    PubMed

    He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut

    2016-12-26

    There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

  17. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  18. The Potential for Collocated AGLP and ERBE data for Fire, Smoke, and Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Christropher, S. A.; Chou, J.

    1997-01-01

    One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burn- ing. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of fires for September 1985, and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed.

  19. The Potential for Collocated AGLP and ERBE Data for Fire, Smoke, and Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Christopher, S. A.; Chou, J.

    1997-01-01

    One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burning. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of tires for September 1985, and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed.

  20. The Potential for Collocated AGLP and ERBE Data for Fire, Smoke, and Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Christopher, S. A.; Chou, J.

    1997-01-01

    One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burning. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of fires for September 1985. and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed,

  1. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

    NASA Astrophysics Data System (ADS)

    Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.

    2016-02-01

    The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December-February) in the MARJ.

  2. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  3. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    USGS Publications Warehouse

    Guo, Song; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  4. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0.02W m(sup -2). The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.

  5. NOAA AVHRR Land Surface Albedo Algorithm Development

    NASA Technical Reports Server (NTRS)

    Toll, D. L.; Shirey, D.; Kimes, D. S.

    1997-01-01

    The primary objective of this research is to develop a surface albedo model for the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). The primary test site is the Konza prairie, Kansas (U.S.A.), used by the International Satellite Land Surface Climatology Project (ISLSCP) in the First ISLSCP Field Experiment (FIFE). In this research, high spectral resolution field spectrometer data was analyzed to simulate AVHRR wavebands and to derive surface albedos. Development of a surface albedo algorithm was completed by analysing a combination of satellite, field spectrometer, and ancillary data. Estimated albedos from the field spectrometer data were compared to reference albedos derived using pyranometer data. Variations from surface anisotropy of reflected solar radiation were found to be the most significant albedo-related error. Additional error or sensitivity came from estimation of a shortwave mid-IR reflectance (1.3-4.0 micro-m) using the AVHRR red and near-IR bands. Errors caused by the use of AVHRR spectral reflectance to estimate both a total visible (0.4-0.7 micro-m) and near-IR (0.7-1.3 micro-m) reflectance were small. The solar spectral integration, using the derived ultraviolet, visible, near-IR and SW mid-IR reflectivities, was not sensitive to many clear-sky changes in atmospheric properties and illumination conditions.

  6. Comparison of the observed and calculated clear sky greenhouse effect - Implications for climate studies

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1992-01-01

    The clear sky greenhouse effect is defined in terms of the outgoing longwave clear sky flux at the top of the atmosphere. Recently, interest in the magnitude of the clear sky greenhouse effect has increased due to the archiving of the clear sky flux quantity through the Earth Radiation Budget Experiment (ERBE). The present study investigates to what degree of accuracy this flux can be analyzed by using independent atmospheric and surface data in conjunction with a detailed longwave radiation model. The conclusion from this comparison is that for most regions over oceans the analyzed fluxes agree to within the accuracy of the ERBE-retrieved fluxes (+/- 5 W/sq m). However, in regions where deep convective activity occurs, the ERBE fluxes are significantly higher (10-15 W/sq m) than the calculated fluxes. This bias can arise from either cloud contamination problems or variability in water vapor amount. It is argued that the use of analyzed fluxes may provide a more consistent clear sky flux data set for general circulation modeling validation. Climate implications from the analyzed fluxes are explored. Finally, results for obtaining longwave surface fluxes over the oceans are presented.

  7. CERES EBAF Info

    Atmospheric Science Data Center

    2014-01-24

    ... fluxes, where TOA net flux is constrained to ocean heat storage. - Surface: Computed surface clear-sky and all-sky fluxes consistent with the EBAF-TOA fluxes. Data Products:  EBAF-TOA EBAF-Surface ...

  8. Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Lisok, J.; Xian, P.

    2017-12-01

    The impact of biomass burning (BB) on aerosol optical properties and radiative budget in the polar region following an intense boreal fire event in North America in July 2015 is explored in this paper. Presented data are obtained from the Navy Aerosol Analysis and Prediction System (NAAPS) reanalysis and the Fu-Liou radiative transfer model. NAAPS provides particle concentrations and aerosol optical depth (AOD) at 1° x 1° spatial and 6-hourly temporal resolution, its AOD and vertical profiles were validated with field measurements for this event. Direct aerosol radiative forcings (ARF) at the surface, the top of the atmosphere (TOA) and within the atmosphere are calculated for clear-sky and all-sky conditions, with the surface albedo and cloud properties constrained by satellite retrievals. The mean ARFs at the surface, the TOA, and within the atmosphere averaged for the north pole region (latitudes north of 75.5N) and the study period (July 5-15, 2015) are -13.1 ± 2.7, 0.3 ± 2.1, and 13.4 ± 2.7 W/m2 for clear-sky and -7.3 ± 1.8, 5.0 ± 2.6, and 12.3 ± 1.6 W/m2 for all-sky conditions respectively. Local ARFs can be a several times larger e.g. the clear-sky surface and TOA ARF reach over Alaska -85 and -30 W/m2 and over Svalbard -41 and -20 W/m2 respectively. The ARF is found negative at the surface (almost zero over high albedo region though) with the maximum forcing over the BB source region, and weaker forcing under all-sky conditions compared to the clear-sky conditions. Unlike the ARFs at the surface and within the atmosphere, which have consistent forcing signs all over the polar region, the ARF at the TOA changes signs from negative (cooling) over the source region (Alaska) to positive (heating) over bright surfaces (e.g., Greenland) because of strong surface albedo effect. NAAPS simulations also show that the transported BB particle over the Arctic are in the low-to-middle troposphere and above low-level clouds, resulting in little difference in ARFs at the TOA between clear- and all-sky conditions over the regions with high surface albedo. Over dark surfaces, the negative TOA forcing increases with AOD about 50% slower under all-sky conditions compared to clear-sky case. The boreal BB event resulted in large magnitude of ARFs and the high variabilities of the forcings over the polar region has a significant impact on the polar weather conditions and important implications for the polar climate.

  9. Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain

    NASA Astrophysics Data System (ADS)

    LöWe, H.; Helbig, N.

    2012-10-01

    We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.

  10. Clear-Sky Narrowband Albedo Datasets Derived from Modis Data

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.

    2013-12-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.

  11. Radiative flux and forcing parameterization error in aerosol-free clear skies

    DOE PAGES

    Pincus, Robert; Mlawer, Eli J.; Oreopoulos, Lazaros; ...

    2015-07-03

    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m 2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentiallymore » unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.« less

  12. Downward Atmospheric Longwave Radiation in the City of Sao Paulo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaro, Eduardo W.; Oliveira, Amauri P.; Soares, Jacyra

    2009-03-11

    This work evaluates objectively the consistency and quality of a 9 year dataset based on 5 minute average values of downward longwave atmospheric (LW) emission, shortwave radiation, temperature and relative humidity. All these parameters were observed simultaneously and continuously from 1997 to 2006 in the IAG micrometeorological platform, located at the top of the IAG-USP building. The pyrgeometer dome emission effect was removed using neural network technique reducing the downward long wave atmospheric emission error to 3.5%. The comparison, between the monthly average values of LW emission observed in Sao Paulo and satellite estimates from SRB-NASA project, indicated a verymore » good agreement. Furthermore, this work investigates the performance of 10 empirical expressions to estimate the LW emission at the surface. The comparison between the models indicates that Brunt's one presents the better results, with smallest ''MBE,''''RMSE'' and biggest ''d'' index of agreement, therefore Brunt is the most indicated model to estimate LW emission under clear sky conditions in the city of Sao Paulo.« less

  13. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both daytime and nighttime conditions showing improved surface and atmospheric soundings under partial cloud cover resulted from not using R(sub i) in the retrieval process for any longwave channels sensitive to cloud effects. This improvement is made possible because AIRS NEDT in the shortwave portion of the spectrum is extremely low.

  14. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    NASA Technical Reports Server (NTRS)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  15. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    PubMed

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  16. Cloud Radiative Effect in dependence on Cloud Type

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2015-04-01

    Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be used (Wacker et al. (2013)). References: Heinle, A., A. Macke and A. Srivastav (2010) Automatic cloud classification of whole sky images, Atmospheric Measurement Techniques. Wacker, S., J. Gröbner and L. Vuilleumier (2013) A method to calculate cloud-free long-wave irradiance at the surface based on radiative transfer modeling and temperature lapse rate estimates, Theoretical and Applied Climatology. Wacker, S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikis, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, Journal of Geophysical Research.

  17. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system is ongoing. In a HARMONIE-AROME 3-D forecast experiment we have shown that the frequency of the call for the radiation parametrization and choice of the parametrization scheme makes a difference to the surface radiation fluxes and changes the spatial distribution of the vertically integrated cloud cover and precipitation.

  18. Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Kumar, M.; Link, T. E.

    2017-12-01

    Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.

  19. Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanchong; Long, Charles N.; Rossow, William B.

    2010-01-01

    Based on monthly-3-hourly and 3-hourly mean surface radiative fluxes and their associated meteorological parameters for 2004 from the International Satellite Cloud Climatology Project-FD (ISCCP-FD) and the Radiative Flux Analysis method-Produced Surface Observations (RFA-PSO) for 15 high-quality-controlled surface stations, operated by the Baseline Surface Radiation Network (BSRN), the Atmospheric Radiation Measurement (ARM) and the National Oceanic and Atmospheric Administration's Surface Radiation budget network (SURFRAD), this work, goes beyond the previous validation for FD against surface observation by introducing the Meteorological Similarity Comparison Method (MSCM) to make a more precise, mutual evaluation of both FD and PSO products. The comparison results inmore » substantial uncertainty reduction and provides reasonable physical explanations for the flux differences. This approach compares fluxes for cases where the atmospheric and surface physical properties (specifically, the input parameters for radiative transfer model) are as close as possible to the values determined at the observational sites by matching the RFA-produced cloud fraction (CF) and/or optical thickness (Tau), etc., or alternatively, by directly changing the model input variables for FD to match PSO values, and using such-produced matched sub-datasets to make more accurate comparisons based on more similar meteorological environments between FD and PSO. The crucial part is the availability of flux-associated meteorological parameters from RFA-PSO, which was only recently made available that makes this work possible. For surface downwelling shortwave(SW) flux (SWdn) and its two components, diffuse (Dif) and direct (Dir), uncertainty for monthly mean is 15, 15 and 17 W/m 2, respectively, smaller than the separately estimated uncertainty values from both FD and PSO. When applying MSCM by reducing their CF difference, the differences can be reduced by a factor of 2. The strength of MSCM is particularly shown in the comparisons of diurnal variations. For clear sky, reducing the FD values of aerosol optical depth (AOD) by 50% to approximately match the PSO values brings all downward SW flux components into substantial agreement. For cloudy scenes, when both CF and Tau are matched to within 0.1 – 0.25 and ~10, respectively, the majority of the SW flux components have nearly-perfect agreement between FD and PSO. The best restriction differences are not zero indicates the influence of other parameters that are not accounted for yet. For longwave (LW) fluxes, general evaluation also confirms uncertainty values for FD and PSO less than separately estimated. When applying MSCM to CF and surface air temperature, the agreement is substantially improved. For downwelling LW diurnal variation comparison, FD shows good agreement with PSO for both RFA-defined or true clear sky but overestimates the amplitude for cloudy sky by 3-7 W/m 2, which may be caused by different sensitivities to cirrus clouds. For upwelling LW diurnal cycle, the situation is reversed; FD now underestimates the diurnal amplitude for all and clear sky but generally agrees for overcast (CF > 0.7). The combined effect of downwelling and upwelling LW fluxes results in FD's underestimates of the diurnal variation of the net-LW-loss for all the scenes by up to 10 W/m 2, although the daily mean net loss is more accurate. Therefore, in terms of amplitude and phase, both FD and PSO seem to have caught correct diurnal variations.« less

  20. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie; Frey, R.

    2008-01-01

    Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.

  1. The global mean energy balance under cloud-free conditions

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Hakuba, Maria; Folini, Dois; Ott, Patricia; Long, Charles

    2017-04-01

    A long standing problem of climate models is their overestimation of surface solar radiation not only under all-sky, but also under clear-sky conditions (Wild et al. 1995, Wild et al. 2006). This overestimation reduced over time in consecutive model generations due to the simulation of stronger atmospheric absorption. Here we analyze the clear sky fluxes of the latest climate model generation from the Coupled Model Intercomparison Project Phase 5 (CMIP5) against an expanded and updated set of direct observations from the Baseline Surface Radiation Network (BSRN). Clear sky climatologies from these sites have been composed based on the Long and Ackermann (2000) clear sky detection algorithm (Hakuba et al. 2017), and sampling issues when comparing with model simulated clear sky fluxes have been analyzed in Ott (2017). Overall, the overestimation of clear sky insolation in the CMIP5 models is now merely 1-2 Wm-2 in the multimodel mean, compared to 4 Wm-2 in CMIP3 and 6 Wm-2 in AMIPII (Wild et al. 2006). Still a considerable spread in the individual model biases is apparent, ranging from -2 Wm-2 to 10 Wm-2 when averaged over 53 globally distributed BSRN sites. This bias structure is used to infer best estimates for present day global mean clear sky insolation, following an approach developped in Wild et al. (2013, 2015, Clim. Dyn.) for all sky fluxes. Thereby the flux biases in the various models are linearly related to their respective global means. A best estimate can then be inferred from the linear regression at the intersect where the bias against the surface observations becomes zero. This way we obtain a best estimate of 247 Wm-2 for the global mean insolation at the Earth surface under cloud free conditions, and a global mean absorbed solar radiation of 214 Wm-2 in the cloud-free atmosphere, assuming a global mean surface albedo of 13.5%. Combined with a best estimate for the net influx of solar radiation at the Top of Atmosphere under cloud free conditions from CERES EBAF of 286 Wm-2, this leaves an amount of 72 Wm-2 absorbed solar radiation in the cloud free atmosphere. The 72 Wm-2 closely match our best estimate for the global mean cloud-free atmospheric absorption in Wild et al. JGR (2006) based on older models and their biases against much fewer direct observation. This indicates that the estimate of global mean solar absorption in the cloud free atmosphere slightly above 70 Wm-2 is fairly robust. In comparison, the global mean solar absorption under all sky conditions was estimated in Wild et al. (2015) at 80 Wm-2 based on the same approach. The difference between the all- and clear-sky absorption represents the cloud radiative effect on the atmospheric absorption, and is thus estimated here to be around 8 Wm-2. This is similar in magnitude to the 11 Wm-2 derived by Hakuba et al. (2017) when averaged over the atmospheric cloud effect determined at 36 BSRN station. We applied the same methodology also for the longwave fluxes. Thereby we obtained a best estimate for the global mean clear sky downward longwave flux at the Earth surface of 214 Wm-2. Together with a surface and TOA upward longwave flux of 398 Wm-2 and 266 Wm-2, respectively, this leaves an atmospheric longwave divergence under clear sky conditions of 182 Wm-2. Selected related references: Hakuba, M. Z., Folini, D., Wild, M., Long, C. N., Schaepman-Strub, G., and Stephens, G.L., 2017: Cloud Effects on Atmospheric Solar Absorption in Light of Most Recent Surface and Satellite Measurements. AIP Conf. Proc. (in press). Ott, P., 2017: Master Thesis at ETH Zurich (in prep.). Wild, M., Ohmura, A., Gilgen, H., and Roeckner, E., 1995: Validation of GCM simulated radiative fluxes using surface observations. J. Climate, 8, 1309-1324. Wild, M., Long, C.N., and Ohmura, A., 2006: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J. Geophys. Res., 111, D01104, doi:10.1029/2005JD006118. Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 3393-3429, 44, DOI 10.1007/s00382-014-2430-z.

  2. Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2009-01-01

    The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.

  3. Clear-sky narrowband albedos derived from VIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.

    2004-02-01

    The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.

  4. Convective signals from surface measurements at ARM Tropical Western Pacific site: Manus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Long, Charles N.; Mather, James H.

    2011-02-04

    Madden-Julian Oscillation (MJO) signals have been detected using highly sampled observations from the U.S. DOE ARM Climate Research Facility located at the Tropical Western Pacific Manus site. Using downwelling shortwave radiative fluxes and derived shortwave fractional sky cover, and the statistical tools of wavelet, cross wavelet, and Fourier spectrum power, we report finding major convective signals and their phase change from surface observations spanning from 1996 to 2006. Our findings are confirmed with the satellite-gauge combined values of precipitation from the NASA Global Precipitation Climatology Project and the NOAA interpolated outgoing longwave radiation for the same location. We find thatmore » the Manus MJO signal is weakest during the strongest 1997-1998 El Nin˜o Southern Oscillation (ENSO) year. A significant 3-5-month lead in boreal winter is identified further between Manus MJO and NOAA NINO3.4 sea surface temperature (former leads latter). A striking inverse relationship is found also between the instantaneous synoptic and intraseasonal phenomena over Manus. To further study the interaction between intraseasonal and diurnal scale variability, we composite the diurnal cycle of cloudiness for 21-MJO events that have passed over Manus. Our diurnal composite analysis of shortwave and longwave fractional sky covers indicates that during the MJO peak (strong convection), the diurnal amplitude of cloudiness is reduced substantially, while the diurnal mean cloudiness reaches the highest value and there are no significant phase changes. We argue that the increasing diurnal mean and decreasing diurnal amplitude are caused by the systematic convective cloud formation that is associated with the wet phase of the MJO, while the diurnal phase is still regulated by the well-defined solar forcing. This confirms our previous finding of the anti-phase relationship between the synoptic and intraseasonal phenomena. The detection of theMJOover the Manus site provides further opportunities in using other ground-based remote sensing instruments to investigate the vertical distributions of clouds and radiative heatings of the MJO that currently is impossible from satellite observations.« less

  5. Intercomparison of Air-Sea Fluxes in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Weller, R. A.; Farrar, J. T.; Tandon, A.

    2016-02-01

    Heat and momentum exchange between the air and sea in the Bay of Bengal is an important driver of atmospheric convection during the Asian Monsoon. Warm sea surface temperatures resulting from salinity stratified shallow mixed layers trigger widespread showers and thunderstorms. In this study, we compare atmospheric reanalysis flux products to air-sea flux values calculated from shipboard observations from four cruises and an air-sea flux mooring in the Bay of Bengal as part of the Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Comparisons with months of mooring data show that most long timescale reanalysis error arises from the overestimation of longwave and shortwave radiation. Ship observations and select data from the air-sea flux mooring reveals significant errors on shorter timescales (2-4 weeks) which are greatly influenced by errors in shortwave radiation and latent and sensible heat. During these shorter periods, the reanalyses fail to properly show sharp decreases in air temperature, humidity, and shortwave radiation associated with mesoscale convective systems. Simulations with the Price-Weller-Pinkel (PWP) model show upper ocean mixing and deepening mixed layers during these events that effect the long term upper ocean stratification. Mesoscale convective systems associated with cloudy skies and cold and dry air can reduce net heat into the ocean for minutes to a few days, significantly effecting air-sea heat transfer, upper ocean stratification, and ocean surface temperature and salinity.

  6. Validation and Improvement of CERES Surface Radiation Budget Algorithms: Extension of Dusty and Cloudy Scenes

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Inamdar, Anand K.

    2005-01-01

    Our main task was to validate and improve the generation of surface long wave fluxes from the CERES TOA window channel flux measurements. We completed this task successfully for the clear sky fluxes in the presence of aerosols including dust during the first year of the project. The algorithm we developed for CERES was remarkably successful for clear sky fluxes and we have no further tasks that need to be performed past the requested termination date of December 31, 2004. We found that the information contained in the TOA fluxes was not sufficient to improve upon the current CERES algorithm for cloudy sky fluxes. Given this development and given our success in clear sky fluxes, we do not see any reason to continue our validation work beyond what we have completed. Specific details are given.

  7. Hyperspectral radiometer for automated measurement of global and diffuse sky irradiance

    NASA Astrophysics Data System (ADS)

    Kuusk, Joel; Kuusk, Andres

    2018-01-01

    An automated hyperspectral radiometer for the measurement of global and diffuse sky irradiance, SkySpec, has been designed for providing the SMEAR-Estonia research station with spectrally-resolved solar radiation data. The spectroradiometer has been carefully studied in the optical radiometry laboratory of Tartu Observatory, Estonia. Recorded signals are corrected for spectral stray light as well as for changes in dark signal and spectroradiometer spectral responsivity due to temperature effects. Comparisons with measurements of shortwave radiation fluxes made at the Baseline Surface Radiation Network (BSRN) station at Tõravere, Estonia, and with fluxes simulated using the atmospheric radiative transfer model 6S and Aerosol Robotic Network (AERONET) data showed that the spectroradiometer is a reliable instrument that provides accurate estimates of integrated fluxes and of their spectral distribution. The recorded spectra can be used to estimate the amount of atmospheric constituents such as aerosol and column water vapor, which are needed for the atmospheric correction of spectral satellite images.

  8. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Xi, B.; Minnis, P.

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.

  9. Does shortwave absorption by methane influence its effectiveness?

    NASA Astrophysics Data System (ADS)

    Modak, Angshuman; Bala, Govindasamy; Caldeira, Ken; Cao, Long

    2018-01-01

    In this study, using idealized step-forcing simulations, we examine the effective radiative forcing of CH4 relative to that of CO2 and compare the effects of CH4 and CO2 forcing on the climate system. A tenfold increase in CH4 concentration in the NCAR CAM5 climate model produces similar long term global mean surface warming ( 1.7 K) as a one-third increase in CO2 concentration. However, the radiative forcing estimated for CO2 using the prescribed-SST method is 81% that of CH4, indicating that the efficacy of CH4 forcing is 0.81. This estimate is nearly unchanged when the CO2 physiological effect is included in our simulations. Further, for the same long-term global mean surface warming, we simulate a smaller precipitation increase in the CH4 case compared to the CO2 case. This is because of the fast adjustment processes—precipitation reduction in the CH4 case is larger than that of the CO2 case. This is associated with a relatively more stable atmosphere and larger atmospheric radiative forcing in the CH4 case which occurs because of near-infrared absorption by CH4 in the upper troposphere and lower stratosphere. Within a month after an increase in CH4, this shortwave heating results in a temperature increase of 0.8 K in the lower stratosphere and upper troposphere. In contrast, within a month after a CO2 increase, longwave cooling results in a temperature decrease of 3 K in the stratosphere and a small change in the upper troposphere. These fast adjustments in the lower stratospheric and upper tropospheric temperature, along with the adjustments in clouds in the troposphere, influence the effective radiative forcing and the fast precipitation response. These differences in fast climate adjustments also produce differences in the climate states from which the slow response begins to evolve and hence they are likely associated with differing feedbacks. We also find that the tropics and subtropics are relatively warmer in the CH4 case for the same global mean surface warming because of a larger longwave clear-sky and shortwave cloud forcing over these regions in the CH4 case. Further investigation using a multi-model intercomparison framework would permit an assessment of the robustness of our results.

  10. Observations of the Earth's Radiation Budget in relation to atmospheric hydrology. 4: Atmospheric column radiative cooling over the world's oceans

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Slingo, Anthony; Webb, Mark J.; Minnett, Peter J.; Daum, Peter H.; Kleinman, Lawrence; Wittmeyer, Ian; Randall, David A.

    1994-01-01

    This paper introduces a simple method for deriving climatological values of the longwave flux emitted from the clear sky atmosphere to the ice-free ocean surface. It is shown using both theory and data from simulations how the ratio of the surface to top-of-atmosphere (TOA) flux is a simple function of water vapor (W) and a validation of the simple relationship is presented based on a limited set of surface flux measurements. The rms difference between the retrieved surface fluxes and the simulated surface fluxes is approximately 6 W/sq m. The clear sky column cooling rate of the atmosphere is derived from the Earth Radiation Budget Experiment (ERBE) values of the clear sky TOA flux and the surface flux retrieved using Special Scanning Microwave Imager (SSM/I) measurements of w together with ERBE clear sky fluxes. The relationship between this column cooling rate, w, and the sea surface temperature (SST) is explored and it is shown how the cooling rate systematically increases as both w and SST increase. The uncertainty implied in these estmates of cooling are approximately +/- 0.2 K/d. The effects of clouds on this longwave cooling are also explored by placing bounds on the possible impact of clouds on the column cooling rate based on certain assumptions about the effect of clouds on the longwave flux to the surface. It is shown how the longwave effects of clouds in a moist atmosphere where the column water vapor exceeds approximately 30 kg/sq m may be estimated from presently available satellite data with an uncertainty estimated to be approximately 0.2 K/d. Based on an approach described in this paper, we show how clouds in these relatively moist regions decrease the column cooling by almost 50% of the clear sky values and the existence of significant longitudinal gradients in column radiative heating across the equatorial and subtropical Pacific Ocean.

  11. Clear-Sky Narrowband Albedo Variations Derived from VIRS and MODIS Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Chen, Yan; Arduini, Robert F.; Minnis, Patrick

    2004-01-01

    A critical parameter for detecting clouds and aerosols and for retrieving their microphysical properties is the clear-sky radiance. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the visible (VIS; 0.63 m) and near-infrared (NIR; 1.6 or 2.13 m) channels available on same satellites as the CERES scanners. Another channel often used for cloud and aerosol, and vegetation cover retrievals is the vegetation (VEG; 0.86- m) channel that has been available on the Advanced Very High Resolution Radiometer (AVHRR) for many years. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. Snow albedo is typically estimated without considering the underlying surface type. The albedo for a surface blanketed by snow, however, should vary with surface type because the vegetation often emerges from the snow to varying degrees depending on the vertical dimensions of the vegetation. For example, a snowcovered prairie will probably be brighter than a snowcovered forest because the snow typically falls off the trees exposing the darker surfaces while the snow on a grassland at the same temperatures will likely be continuous and, therefore, more reflective. Accounting for the vegetation-induced differences should improve the capabilities for distinguishing snow and clouds over different surface types and facilitate improvements in the accuracy of radiative transfer calculations between the snow-covered surface and the atmosphere, eventually leading to improvements in models of the energy budgets over land. This paper presents a more complete analysis of the CERES spectral clear-sky reflectances to determine the variations in clear-sky top-of-atmosphere (TOA) albedos for both snow-free and snow-covered surfaces for four spectral channels using data from Terra and Aqua.. The results should be valuable for improved cloud retrievals and for modeling radiation fields.

  12. Comparison between calculations of shortwave radiation with different aerosol datasets and measured data at the MSU MO (Russia)

    NASA Astrophysics Data System (ADS)

    Poliukhov, Aleksei; Chubarova, Natalia; Kinne, Stephan; Rivin, Gdaliy; Shatunova, Marina; Tarasova, Tatiana

    2017-02-01

    The radiation block of the COSMO non-hydrostatic mesoscale model of the atmosphere and soil active layer was tested against a relatively new effective CLIRAD(FC05)-SW radiation model and radiative measurements at the Moscow State University Meteorological Observatory (MSU MO, 55.7N, 37.5E) using different aerosol datasets in cloudless conditions. We used the data of shortwave radiation components from the Kipp&Zonen net radiometer CNR4. The model simulations were performed with the application of various aerosol climatologies including the new MACv2 climatology and the aerosol and water vapor dataset from CIMEL (AERONET) sun photometer measurements. The application of the new MACv2 climatology in the CLIRAD(FC05)-SW radiation model provides the annual average relative error of the total global radiation of -3% varying from 0.5% in May to -7.7% in December. The uncertainty of radiative calculations in the COSMO model according to preliminary estimates changes from 1.4% to 8.4%. against CLIRAD(FC05)-SW radiation model with the same parameters. We showed that in clear sky conditions the sensitivity of air temperature at 2 meters to shortwave net radiation changes is about 0.7-0.9°C per100 W/m2 due to the application of aerosol climatologies over Moscow.

  13. Entropy and climate. I - ERBE observations of the entropy production of the earth

    NASA Technical Reports Server (NTRS)

    Stephens, G. L.; O'Brien, D. M.

    1993-01-01

    An approximate method for estimating the global distributions of the entropy fluxes flowing through the upper boundary of the climate system is introduced, and an estimate of the entropy exchange between the earth and space and the entropy production of the planet is provided. Entropy fluxes calculated from the Earth Radiation Budget Experiment measurements show how the long-wave entropy flux densities dominate the total entropy fluxes at all latitudes compared with the entropy flux densities associated with reflected sunlight, although the short-wave flux densities are important in the context of clear sky-cloudy sky net entropy flux differences. It is suggested that the entropy production of the planet is both constant for the 36 months of data considered and very near its maximum possible value. The mean value of this production is 0.68 x 10 exp 15 W/K, and the amplitude of the annual cycle is approximately 1 to 2 percent of this value.

  14. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  15. An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge

    NASA Technical Reports Server (NTRS)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.; He, Tao

    2014-01-01

    Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth's radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-resolution sensors, many applications in heterogeneous environments can benefit from higher-resolution albedo products derived from Landsat. We previously developed a "MODIS-concurrent" approach for the 30-meter albedo estimation which relied on combining post-2000 Landsat data with MODIS Bidirectional Reflectance Distribution Function (BRDF) information. Here we present a "pre-MODIS era" approach to extend 30-m surface albedo generation in time back to the 1980s, through an a priori anisotropy Look-Up Table (LUT) built up from the high quality MCD43A BRDF estimates over representative homogenous regions. Each entry in the LUT reflects a unique combination of land cover, seasonality, terrain information, disturbance age and type, and Landsat optical spectral bands. An initial conceptual LUT was created for the Pacific Northwest (PNW) of the United States and provides BRDF shapes estimated from MODIS observations for undisturbed and disturbed surface types (including recovery trajectories of burned areas and non-fire disturbances). By accepting the assumption of a generally invariant BRDF shape for similar land surface structures as a priori information, spectral white-sky and black-sky albedos are derived through albedo-to-nadir reflectance ratios as a bridge between the Landsat and MODIS scale. A further narrow-to-broadband conversion based on radiative transfer simulations is adopted to produce broadband albedos at visible, near infrared, and shortwave regimes.We evaluate the accuracy of resultant Landsat albedo using available field measurements at forested AmeriFlux stations in the PNW region, and examine the consistency of the surface albedo generated by this approach respectively with that from the "concurrent" approach and the coincident MODIS operational surface albedo products. Using the tower measurements as reference, the derived Landsat 30-m snow-free shortwave broadband albedo yields an absolute accuracy of 0.02 with a root mean square error less than 0.016 and a bias of no more than 0.007. A further cross-comparison over individual scenes shows that the retrieved white sky shortwave albedo from the "pre-MODIS era" LUT approach is highly consistent (R(exp 2) = 0.988, the scene-averaged low RMSE = 0.009 and bias = -0.005) with that generated by the earlier "concurrent" approach. The Landsat albedo also exhibits more detailed landscape texture and a wider dynamic range of albedo values than the coincident 500-m MODIS operational products (MCD43A3), especially in the heterogeneous regions. Collectively, the "pre-MODIS" LUT and "concurrent" approaches provide a practical way to retrieve long-term Landsat albedo from the historic Landsat archives as far back as the 1980s, as well as the current Landsat-8 mission, and thus support investigations into the evolution of the albedo of terrestrial biomes at fine resolution.

  16. The Potential of Clear Sky Carbon Dioxide Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Nelson, R.; O'Dell, C.

    2013-12-01

    It has been shown that neglecting scattering and absorption by aerosols and thin clouds can lead to significant errors in retrievals of the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from space-based measurements of near-infrared reflected sunlight. These clear sky retrievals, which assume no aerosol effects, are desirable because of their high computational efficiency relative to common full physics retrievals. Further, clear sky retrievals may be able to make higher quality measurements relative to the full physics approach because they may introduce fewer potential biases under certain circumstances. These biases can appear when we try to retrieve clouds and aerosols in the full physics methods when there are none actually present. Recent work has shown that intelligent pre-screening can remove soundings with large light-path modifications over ocean surfaces. In this work, we test the hypothesis that intelligent pre-screening of soundings may be successfully used over land surfaces as well as oceans, which would allow clear sky retrievals to be applicable over all surfaces. We also test the hypothesis that major light path modification effects associated with aerosols can be identified based on spectral tests at 0.76, 1.6, and 2 microns. This presentation summarizes our study of both simulated data and satellite observations from the GOSAT instrument in order to assess the effectiveness of using a clear sky retrieval algorithm coupled with intelligent pre-screening to accurately measure carbon dioxide from space-borne instruments.

  17. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 4; Determination of surface and atmosphere fluxes and temporally and spatially averaged products (subsystems 5-12); Determination of surface and atmosphere fluxes and temporally and spatially averaged products

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Charlock, Thomas P.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis; Coakley, J. A.; Randall, David R.

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 4 details the advanced CERES techniques for computing surface and atmospheric radiative fluxes (using the coincident CERES cloud property and top-of-the-atmosphere (TOA) flux products) and for averaging the cloud properties and TOA, atmospheric, and surface radiative fluxes over various temporal and spatial scales. CERES attempts to match the observed TOA fluxes with radiative transfer calculations that use as input the CERES cloud products and NOAA National Meteorological Center analyses of temperature and humidity. Slight adjustments in the cloud products are made to obtain agreement of the calculated and observed TOA fluxes. The computed products include shortwave and longwave fluxes from the surface to the TOA. The CERES instantaneous products are averaged on a 1.25-deg latitude-longitude grid, then interpolated to produce global, synoptic maps to TOA fluxes and cloud properties by using 3-hourly, normalized radiances from geostationary meteorological satellites. Surface and atmospheric fluxes are computed by using these interpolated quantities. Clear-sky and total fluxes and cloud properties are then averaged over various scales.

  18. A Climate-Data Record (CDR) of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nocolo E.; Shuman, Christopher A.

    2011-01-01

    We have developed a climate-data record (CDR) of "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet using Moderate-Resolution Imaging Spectroradiometer (MODIS) data. The CDR provides daily and monthly-mean IST from March 2000 through December 2010 on a polar stereographic projection at a resolution of 6.25 km. The CDR is amenable to extension into the future using Visible/Infrared Imager Radiometer Suite (VIIRS) data. Regional "clear-sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57 +/- 0.02 to 0.72 +/- 0.1 c per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near O C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. The IST CDR will provide a convenient data set for modelers and for climatologists to track changes of the surface temperature of the ice sheet as a whole and of the individual drainage basins on the ice sheet. The daily and monthly maps will provide information on surface melt as well as "clear-sky" temperature. The CDR will be further validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products.

  19. Potential Long-Term Records of Surface Albedo at Fine Spatiotemporal Resolution from Landsat/Sentinle-2A Surface Reflectance and MODIS/VIIRS BRDF

    NASA Astrophysics Data System (ADS)

    Li, Z.; Schaaf, C.; Shuai, Y.; Liu, Y.; Sun, Q.; Erb, A.; Wang, Z.

    2016-12-01

    The land surface albedo products at fine spatial resolutions are generated by coupling surface reflectance (SR) from Landsat (30 m) or Sentinel-2A (20 m) with concurrent surface anisotropy information (the Bidirectional Reflectance Distribution Function - BRDF) at coarser spatial resolutions from sequential multi-angular observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) or its successor, the Visible Infrared Imaging Radiometer Suite (VIIRS). We assess the comparability of four types of fine-resolution albedo products (black-sky and white-sky albedos over the shortwave broad band) generated by coupling, (1) Landsat-8 Optical Land Imager (OLI) SR with MODIS BRDF; (2) OLI SR with VIIRS BRDF; (3) Sentinel-2A MultiSpectral Instrument (MSI) SR with MODIS BRDF; and (4) MSI SR with VIIRS BRDF. We evaluate the accuracy of these four types of fine-resolution albedo products using ground tower measurements of surface albedo over six SURFace RADiation Network (SURFRAD) sites in the United States. For comparison with the ground measurements, we estimate the actual (blue-sky) albedo values at the six sites by using the satellite-based retrievals of black-sky and white-sky albedos and taking into account the proportion of direct and diffuse solar radiation from the ground measurements at the sites. The coupling of the OLI and MSI SR with MODIS BRDF has already been shown to provide accurate fine-resolution albedo values. With demonstration of a high agreement in BRDF products from MODIS and VIIRS, we expect to see consistency between all four types of fine-resolution albedo products. This assurance of consistency between the couplings of both OLI and MSI with both MODIS and VIIRS guarantees the production of long-term records of surface albedo at fine spatial resolutions and an increased temporal resolution. Such products will be critical in studying land surface changes and associated surface energy balance over the dynamic and heterogeneous landscapes most susceptible to climate change (such as arctic, coastal, and high-elevation zones).

  20. Effects of Cloudiness on the Daily and Annual Radiation Balance: Elaboration on the Shartwave and Longwave Radiation

    NASA Astrophysics Data System (ADS)

    Malek, E.

    2007-12-01

    Clouds are visible masses of condensed droplets and frozen crystals of water in the atmosphere above the Earth. They make changes in the energy balance at local, regional, and planetary scales. They affect the climate by positive and negative feedback. To study these effects at local scale, we set up a radiation station which uses two CM21 Kipp & Zonen pyranometers (one inverted), and two CG1 Kipp & Zonen pyrgeometers (one inverted) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using four CV2 Kipp & Zonen ventilation systems. Ventilation of pyranometers and pyrgeometers prevents dew and frost and snow accumulation which otherwise would disturb the measurement. All sensors were installed at about 3 m above the ground, which is covered with natural vegetation during the growing season (May - September). The incoming (Rsi) and outgoing (Rso) solar or shortwave radiation, the incoming (Rli, atmospheric) and outgoing (Rlo, terrestrial) longwave radiation, along with the 2-m air temperature, humidity, and pressure have been continuously measured since 1995. We also measured the 3-m wind speed and direction, the surface temperature (using an IR thermometer) and precipitation (using a heated rain gauge). These parameters have been measured every 2 seconds and averaged into 20 minutes. For this study we chose three days: 6 April (a partially cloudy day), 29 July (a cloudless day), and 29 November (an overcast day), 2005, along with continuous study throughout the year 2005. We developed an algorithm for evaluation of cloudless-sky incoming (atmospheric) longwave radiation. Equations for cloudless-sky incoming shortwave and atmospheric longwave radiation were applied to compare the cloud-free measurements with the actual ones. Cloudless - measured incoming shortwave (solar) radiation is an indication of how much less radiation was received due to cloudiness (if any). Measured - cloudless incoming longwave (atmospheric) radiation shows the cloud (if any) contribution to the radiation budget. The results indicate that for the partial cloudy day of 6 April, 2005, cloudiness caused less shortwave radiation 23.29 - 13.76 = 9.53 MJ m-2 d-1 received at the surface. On the same day cloud contributed an additional radiation of 25.44 - 23.44 = 2.00 MJ m-2 d-1. On 29 November, 2005, these values were 9.37 - 1.98 = 7.39 and 28.82 - 23.86 = 4.96 MJ m-2 d-1, respectively. On the annual basis, the 2005 cloudiness caused a reduction of 7279 - 5800 = 1479 MJ m-2 y-1 for the shortwave radiation, while the additional longwave radiation due to cloudiness amounted to 9976 - 9573 = 403 MJ m-2 y-1. The cloudiness in 2005 caused a negative feedback on the climate in this valley.

  1. The Solar Ultraviolet Environment at the Ocean.

    PubMed

    Mobley, Curtis D; Diffey, Brian L

    2018-05-01

    Atmospheric and oceanic radiative transfer models were used to compute spectral radiances between 285 and 400 nm onto horizontal and vertical plane surfaces over water. The calculations kept track of the contributions by the sun's direct beam, by diffuse-sky radiance, by radiance reflected from the sea surface and by water-leaving radiance. Clear, hazy and cloudy sky conditions were simulated for a range of solar zenith angles, wind speeds and atmospheric ozone concentrations. The radiances were used to estimate erythemal exposures due to the sun and sky, as well as from radiation reflected by the sea surface and backscattered from the water column. Diffuse-sky irradiance is usually greater than direct-sun irradiance at wavelengths below 330 nm, and reflected and water-leaving irradiance accounts for <20% of the UV exposure on a vertical surface. Total exposure depends strongly on solar zenith angle and azimuth angle relative to the sun. Sea surface roughness affects the UV exposures by only a few percent. For very clear waters and the sun high in the sky, the UV index within the water can be >10 at depths down to two meters and >6 down to 5 m. © 2018 The American Society of Photobiology.

  2. Validation of GEOLAND-2 Spot/vgt Albedo Products by Using Ceos Olive Methodology

    NASA Astrophysics Data System (ADS)

    Camacho de Coca, F.; Sanchez, J.; Schaaf, C.; Baret, F.; Weiss, M.; Cescatti, A.; Lacaze, R. N.

    2012-12-01

    This study evaluates the scientific merit of the global surface albedo products developed in the framework of the Geoland-2 project based on SPOT/VEGETATION observations. The methodology follows the OLIVE (On-Line Validation Exercise) approach supported by the CEOS Land Product Validation subgroup (calvalportal.ceos.org/cvp/web/olive). First, the spatial and temporal consistency of SPOT/VGT albedo products was assessed by intercomparison with reference global products (MODIS/Terra+Aqua and POLDER-3/PARASOL) for the period 2006-2007. A bulk statistical analysis over a global network of 420 homogeneous sites (BELMANIP-2) was performed and analyzed per biome types. Additional sites were included to study albedo under snow conditions. Second, the accuracy and realism of temporal variations were evaluated using a number of ground measurements from FLUXNET sites suitable for use in direct comparison to the co-located satellite data. Our results show that SPOT/VGT albedo products present reliable spatial and temporal distribution of retrievals. The SPOT/VGT albedo performs admirably with MODIS, with a mean bias and RMSE for the shortwave black-sky albedo over BELMANIP-2 sites lower than 0.006 and 0.03 (13% in relative terms) respectively, and even better for snow free pixels. Similar results were found for the white-sky albedo quantities. Discrepancies are larger when comparing with POLDER-3 products: for the shortwave black-sky albedo a mean bias of -0.014 and RMSE of 0.04 (20%) was found. This overall performance figures are however land-cover dependent and larger uncertainties were found over some biomes (or regions) or specific periods (e.g. winter in the north hemisphere). The comparison of SPOT/VGT blue-sky albedo estimates with ground measurements (mainly over Needle-leaf forest sites) show a RMSE of 0.04 and a bias of 0.003 when only snow-free pixels are considered. Moreover, this work shows that the OLIVE tool is also suitable for validation of global albedo products.

  3. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    NASA Astrophysics Data System (ADS)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  4. Radiation Transfer in the Atmosphere: Scattering

    NASA Technical Reports Server (NTRS)

    Mishchenko, M.; Travis, L.; Lacis, Andrew A.

    2014-01-01

    Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.

  5. Estimation of UV index in the clear-sky using OMI PROFOZ and AERONET data

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2016-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface-level ultraviolet (UV) radiation is important nowadays. UV index (UVI) is a simple parameter to show the strength of surface UV radiation, therefore UVI has been widely utilized for the purpose of UV monitoring. In this work, we also try to develop our own retrieval algorithm for better estimation of UVI. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UVI estimation. In this study, we estimate UV Index (UVI) at Seoul first in a clear-sky atmosphere, and then validate this estimated UVI comparing to UVI from Brewer spectrophotometer measurements located at Yonsei University in Seoul. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UVI calculation. To consider the ozone and aerosol influence in a real situation, we input ozone and temperature profiles from the Ozone Monitoring Instrument (OMI) Aura vertical profile ozone (PROFOZ) data, and aerosol properties from the AErosol RObotic NETwork (AERONET) measurements at Seoul into the model. Inter-comparison of UVI is performed for the year 2011, 2012 and 2014, and resulted in a high correlation coefficient (R=0.95) under clear-sky condition. But a slight overestimation of Brewer UVI occurred under high AOD conditions in clear-sky. Because our UVI algorithm does not account for surface absorbing aerosols, it is lead to systematic overestimation of surface UV irradiances. Therefore, we also investigate the effect of absorbing aerosol on the amount of UV irradiance in the clear-sky over East Asia.

  6. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  7. Quantifying the clear-sky bias of satellite-derived infrared LST

    NASA Astrophysics Data System (ADS)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.

    2017-12-01

    Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.

  8. Analysis of Cumulus Solar Irradiance Reflectance (CSIR) Events

    NASA Technical Reports Server (NTRS)

    Laird, John L.; Harshvardham

    1996-01-01

    Clouds are extremely important with regard to the transfer of solar radiation at the earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using Yankee Environmental Systems UVA-1 and UVB-1 pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Wm(exp -2) and 0.069 Wm(exp -2) were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed.

  9. How clear-sky polarization varies with wavelength in the visible-NIR

    NASA Astrophysics Data System (ADS)

    Pust, Nathan J.; Shaw, Joseph A.

    2013-10-01

    Because of the increasing variety of applications for polarization imaging and sensing, there is a growing need for information about polarization phenomenology in the natural environment, including the spectral distribution of polarization in the atmosphere. A computer model that has been validated in comparisons with measurements from our all-sky polarization imager has been used here to simulate the spectrum of clear-sky polarization at a many locations around the world, with a wide variety of underlying surface-reflectance and aerosol conditions. This study of the skylight polarization spectral variability shows that there is no simple spectrum that can be assumed or predicted without knowledge of the atmospheric aerosol properties and underlying surface reflectance.

  10. Downward solar global irradiance at the surface in São Paulo city—The climatological effects of aerosol and clouds

    NASA Astrophysics Data System (ADS)

    Yamasoe, M. A.; do Rosário, N. M. E.; Barros, K. M.

    2017-01-01

    We analyzed the variability of downward solar irradiance reaching the surface at São Paulo city, Brazil, and estimated the climatological aerosol and cloud radiative effects. Eleven years of irradiance were analyzed, from 2005 to 2015. To distinguish the aerosol from the cloud effect, the radiative transfer code LibRadtran was used to calculate downward solar irradiance. Two runs were performed, one considering only ozone and water vapor daily variability, with AOD set to zero and the second allowing the three variables to change, according to mean climatological values. The difference of the 24 h mean irradiance calculated with and without aerosol resulted in the shortwave aerosol direct radiative effect, while the difference between the measured and calculated, including the aerosol, represented the cloud effect. Results showed that, climatologically, clouds can be 4 times more effective than aerosols. The cloud shortwave radiative effect presented a maximum reduction of about -170 W m-2 in January and a minimum in July, of -37 W m-2. The aerosol direct radiative effect was maximum in spring, when the transport of smoke from the Amazon and central parts of South America is frequent toward São Paulo. Around mid-September, the 24 h radiative effect due to aerosol only was estimated to be -50 W m-2. Throughout the rest of the year, the mean aerosol effect was around -20 W m-2 and was attributed to local urban sources. The effect of the cloud fraction on the cloud modification factor, defined as the ratio of all-sky irradiation to cloudless sky irradiation, showed dependence on the cloud height. Low clouds presented the highest impact while the presence of high clouds only almost did not affect solar transmittance, even in overcast conditions.

  11. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    NASA Technical Reports Server (NTRS)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  12. The Surface Energy Balance at Local and Regional Scales-A Comparison of General Circulation Model Results with Observations.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Krummel, P. B.; Kowalczyk, E. A.

    1993-06-01

    Aspects of the mean monthly energy balance at continental surfaces are examined by appeal to the results of general circulation model (GCM) simulations, climatological maps of surface fluxes, and direct observations. Emphasis is placed on net radiation and evaporation for (i) five continental regions (each approximately 20°×150°) within Africa, Australia, Eurasia, South America, and the United States; (ii) a number of continental sites in both hemispheres. Both the mean monthly values of the local and regional fluxes and the mean monthly diurnal cycles of the local fluxes are described. Mostly, GCMs tend to overestimate the mean monthly levels of net radiation by about 15% -20% on an annual basis, for observed annual values in the range 50 to 100 Wm2. This is probably the result of several deficiencies, including (i) continental surface albedos being undervalued in a number of the models, resulting in overestimates of the net shortwave flux at the surface (though this deficiency is steadily being addressed by modelers); (ii) incoming shortwave fluxes being overestimated due to uncertainties in cloud schemes and clear-sky absorption; (iii) land-surface temperatures being under-estimated resulting in an underestimate of the outgoing longwave flux. In contrast, and even allowing for the poor observational base for evaporation, there is no obvious overall bias in mean monthly levels of evaporation determined in GCMS, with one or two exceptions. Rather, and far more so than with net radiation, there is a wide range in values of evaporation for all regions investigated. For continental regions and at times of the year of low to moderate rainfall, there is a tendency for the simulated evaporation to be closely related to the precipitation-this is not surprising. In contrast, for regions where there is sufficient or excessive rainfall, the evaporation tends to follow the behavior of the net radiation. Again, this is not surprising given the close relation between potential evaporation and net radiation, as discussed by Priestley and Taylor. Finally, the introduction into GCMs of an `improved' surface scheme (incorporating more realistic representations of soil and canopy processes and revised albedos) does tend to improve the calculations of both regional net radiation and evaporation.

  13. Tropospheric haze and colors of the clear twilight sky.

    PubMed

    Lee, Raymond L; Mollner, Duncan C

    2017-07-01

    At the earth's surface, clear-sky colors during civil twilights depend on the combined spectral effects of molecular scattering, extinction by tropospheric aerosols, and absorption by ozone. Molecular scattering alone cannot produce the most vivid twilight colors near the solar horizon, for which aerosol scattering and absorption are also required. However, less well known are haze aerosols' effects on twilight sky colors at larger scattering angles, including near the antisolar horizon. To analyze this range of colors, we compare 3D Monte Carlo simulations of skylight spectra with hyperspectral measurements of clear twilight skies over a wide range of aerosol optical depths. Our combined measurements and simulations indicate that (a) the purest antisolar twilight colors would occur in a purely molecular, multiple-scattering atmosphere, whereas (b) the most vivid solar-sky colors require at least some turbidity. Taken together, these results suggest that multiple scattering plays an important role in determining the redness of the antitwilight arch.

  14. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.

    2016-12-01

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear andmore » cloudy spectra, where the coefficients, slope and intercept, character-ize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative cor-relation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measure-ments from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band de-crease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results sup-port the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less

  15. Observation of the Spectrally Invariant Properties of Clouds in Cloudy-to-Clear Transition Zones During the MAGIC Field Campaign

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; McBride, Patrick; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.

    2016-01-01

    We use the spectrally invariant method to study the variability of cloud optical thickness tau and droplet effective radius r(sub eff) in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness t while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r(sub eff)even without the exact knowledge of tau; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.

  16. Aerosol radiative effects and their trends under clear-sky situations over Europe

    NASA Astrophysics Data System (ADS)

    Bartok, Blanka

    2017-04-01

    In the literature great uncertainties ca be found regarding radiative effects of aerosols on the energy budget of the atmosphere (IPCC, 2013). In the study the aerosols radiative effects on clear-sky solar radiation are quantified over Europe using empirical and physical modelling approaches. The values of aerosol radiation effect are determined by the MAGIC radiation code. In the first run clear-sky radiation is calculated integrating KINEE/MPI/Aerocom aerosol climatology and ERA-INTERIM water vapour multiannual monthly means. In the next run the clear-sky radiation are also calculated ignoring aerosol data (adjusted to 0) from the algorithm. Both runs were carried out for each months of the year, taking into account the varying astrological factors. The difference between the aerosol-included and aerosol-free clear-sky radiation is equal to the absolute aerosol radiative effect in W/m2. The annual mean of the surface aerosol radiative effects in clear-sky situations over Europe is -7.1 ± 2.9 W/m2, high values are representing the central part of the continent and the Mediterranean Basin. Furthermore the trends of the aerosol radiative effects are also determined for the period of 2001-2012. First a linear fitting is elaborated between the aerosol optical depth (AOT) built in the MAGIC code and its aerosol radiative effect calculated by the code. Next, based on these linear functions a radiative effect values are assigned to each monthly AOT500 value available from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra Level-3 experiment. In this way a new dataset of aerosol radiative effect for the period of 2001-2012 has been created. Beside of this approach the changes in aerosol radiative effects are also calculated based on ground-based clear-sky radiation trends. This approach is used as a validation of the method applied in earlier stage, mainly for the linear fitting. The starting point of this approach is to elaborate the trends of clear-sky radiation controlled by the effects of aerosols and water vapour. If we subtract the water vapour effects also calculated by MAGIC radiation code from this trend, the magnitude of the trends in aerosol radiative effects can be estimated. In this case it is assumed that the two effects do not amplify and do not cancel each other, and their arithmetic sum gives the change in clear-sky radiation trend. The two approaches give good fit, based on the direct (modelled) approach the annual trend of the aerosol radiative effects on clear-sky solar surface radiation is -4.41 W/m2 per decade for the period of 2001-2013, while in the case of the indirect approach (based on clear-sky trends) this trend is found to be -4.46 W/m2 per decade.

  17. Observed Spectral Invariant Behavior of Zenith Radiance in the Transition Zone Between Cloud-Free and Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, C.; Wiscombe, W.

    2010-01-01

    The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets.

  18. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  19. CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon

    2018-03-01

    All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.

  20. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  1. The TROPOMI surface UV algorithm

    NASA Astrophysics Data System (ADS)

    Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna

    2018-02-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.

  2. Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGES

    Gan, C.-M.; Pleim, J.; Mathur, R.; ...

    2015-11-03

    Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends inmore » solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology, and aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.« less

  3. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGES

    Gan, C.-M.; Pleim, J.; Mathur, R.; ...

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Ganmore » et al. (2014) utilizing observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.« less

  4. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, C.-M.; Pleim, J.; Mathur, R.

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Ganmore » et al. (2014) utilizing observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.« less

  5. Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, C.-M.; Pleim, J.; Mathur, R.

    Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO 2 and NO x over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO 2 and NO x associated with control measures under the Clean Air Act (CAA) especially on trends inmore » solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology, and aerosol semi-direct and/or indirect effects which cannot be readily isolated from the observed data.« less

  6. Improvements to Shortwave Absorption in the GFDL General Circulation Model Radiation Code

    NASA Astrophysics Data System (ADS)

    Freidenreich, S.

    2015-12-01

    The multiple-band shortwave radiation parameterization used in the GFDL general circulation models is being revised to better simulate the disposition of the solar flux in comparison with line-by-line+doubling-adding reference calculations based on the HITRAN 2012 catalog. For clear skies, a notable deficiency in the older formulation is an underestimate of atmospheric absorption. The two main reasons for this is the neglecting of both H2O absorption for wavenumbers < 2500 cm-1 and the O2 continuum. Further contributions to this underestimate are due to neglecting the effects of CH4, N2O and stratospheric H2O absorption. These issues are addressed in the revised formulation and result in globally average shortwave absorption increasing from 74 to 78 Wm-2. The number of spectral bands considered remains the same (18), but the number of pseudomonochromatic intervals (based mainly on the exponential-sum-fit technique) for the determination of H2O absorption is increased from 38 to 74, allowing for more accuracy in its simulation. Also, CO2 absorption is now determined by the exponential-sum-fit technique, replacing an algebraic absorptivity expression in the older parameterization; this improves the simulation of the heating in the stratosphere. Improvements to the treatment of multiple scattering are currently being tested. This involves replacing the current algorithm, which consists of the two stream delta-Eddington, with a four stream algorithm. Initial results show that in most, but not all cases these produce better agreement with the reference doubling-adding results.

  7. Climatology of cloud (radiative) parameters at two stations in Switzerland using hemispherical sky-cameras

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2017-04-01

    Our study analyses climatologies of cloud fraction, cloud type and cloud radiative effect depending on different parameters at two stations in Switzerland. The calculations have been performed for shortwave (0.3 - 3 μm) and longwave (3 - 100 μm) radiation separately. Information about fractional cloud coverage and cloud type is automatically retrieved from images taken by visible all-sky cameras at the two stations Payerne (490 m asl) and Davos (1594 m asl) using a cloud detection algorithm developed by PMOD/WRC (Wacker et al., 2015). Radiation data are retrieved from pyranometers and pyrgeometers, the cloud base height from a ceilometer and IWV data from GPS measurements. Interestingly, Davos and Payerne show different trends in terms of cloud coverage and cloud fraction regarding seasonal variations. The absolute longwave cloud radiative effect (LCE) for low-level clouds and a cloud coverage of 8 octas has a median value between 61 and 72 Wm-2. It is shown that the fractional cloud coverage, the cloud base height (CBH) and integrated water vapour (IWV) all have an influence on the magnitude of the LCE and will be illustrated with key examples. The relative values of the shortwave cloud radiative effect (SCE) for low-level clouds and a cloud coverage of 8 octas are between -88 to -62 %. The SCE is also influenced by the latter parameters, but also if the sun is covered or not by clouds. At both stations situations of shortwave radiation cloud enhancements have been observed and will be discussed. Wacker S., J. Gröbner, C. Zysset, L. Diener, P. Tzoumanikas, A. Kazantzidis, L. Vuilleumier, R. Stöckli, S. Nyeki, and N. Kämpfer (2015) Cloud observations in Switzerland using hemispherical sky cameras, J. Geophys. Res. Atmos, 120, 695-707.

  8. The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.

  9. Filter Enhances Fluorescent-Penetrant-Inspecting Borescope

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.

  10. Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part 2; TOA Radiation Budget and CREs

    NASA Technical Reports Server (NTRS)

    Stanfield, Ryan E.; Dong, Xiquan; Xi, Baike; Del Genio, Anthony D.; Minnis, Patrick; Doelling, David; Loeb, Norman

    2014-01-01

    In Part I of this study, the NASA GISS Coupled Model Intercomparison Project (CMIP5) and post-CMIP5 (herein called C5 and P5, respectively) simulated cloud properties were assessed utilizing multiple satellite observations, with a particular focus on the southern midlatitudes (SMLs). This study applies the knowledge gained from Part I of this series to evaluate the modeled TOA radiation budgets and cloud radiative effects (CREs) globally using CERES EBAF (CE) satellite observations and the impact of regional cloud properties and water vapor on the TOA radiation budgets. Comparisons revealed that the P5- and C5-simulated global means of clear-sky and all-sky outgoing longwave radiation (OLR) match well with CE observations, while biases are observed regionally. Negative biases are found in both P5- and C5-simulated clear-sky OLR. P5-simulated all-sky albedo slightly increased over the SMLs due to the increase in low-level cloud fraction from the new planetary boundary layer (PBL) scheme. Shortwave, longwave, and net CRE are quantitatively analyzed as well. Regions of strong large-scale atmospheric upwelling/downwelling motion are also defined to compare regional differences across multiple cloud and radiative variables. In general, the P5 and C5 simulations agree with the observations better over the downwelling regime than over the upwelling regime. Comparing the results herein with the cloud property comparisons presented in Part I, the modeled TOA radiation budgets and CREs agree well with the CE observations. These results, combined with results in Part I, have quantitatively estimated how much improvement is found in the P5-simulated cloud and radiative properties, particularly over the SMLs and tropics, due to the implementation of the new PBL and convection schemes.

  11. FIRE extended time/limited area observations at Palisades, New York

    NASA Technical Reports Server (NTRS)

    Robinson, David A.; Kukla, George; Frei, Alan

    1990-01-01

    Downwelling shortwave and longwave irradiation are being continuously monitored at Palisades, New York as part of the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Extended Time/Limited Area Initiative. In addition, fisheye (180 degree) sky photographs are taken at the times of NOAA 9 and LANDSAT satellite overpasses on select days, particularly when cirrus clouds are present. Measurements of incoming shortwave (0.28 to 2.80 microns) hemispheric and diffuse, hemispheric near infrared (0.7 to 2.80 microns), and downwelling hemispheric infrared (4.0 to 50.0 microns) irradiation have been made from a rooftop location on the grounds of the Lamont-Doherty Geological Observatory since December 1986. The three Eppley Precision Spectral Pyranometers and the Eppley Pyrgeometer used to measure these variables were calibrated with Colorado State University instruments at Madison, Wisconsin as part of the FIRE Intensive Laboratory. Pyrgeometer output contains an adjustment for body temperature but not for dome temperature. Data are transmitted to a Campbell CR-21 Digital Recorder, where one minute averages of ten second samples are stored and subsequently dumped to a cassette recorder. Using a Campbell C-20 Cassette Interface, these data are transferred to an Apple Macintosh computer for analysis and for archiving on floppy disks. In addition to the raw irradiances collected, variables derived from these data are generated and stored. These include: the ratio of near infrared irradiation to visible irradiation and the fraction of the full shortwave irradiation which is diffuse; and will soon include: shortwave transmissivity and optical depth in the shortwave. Sky photographs are taken with an Olympus OM2-N 35 mm camera and are timed to be coincident with overpassing NOAA and LANDSAT satellites. Palisades is within the field of view of the NOAA 9 daily in the middle to late afternoon. The satellite viewing angle is within 45 degrees of nadir over Palisades on approximately half of the passes.

  12. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    DOE PAGES

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; ...

    2016-08-11

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius r eff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clearmore » and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r eff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. Furthermore, these results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less

  13. Detection of carbon monoxide pollution from cities and wildfires on regional and urban scales: the benefit of CO column retrievals from SCIAMACHY 2.3 µm measurements under cloudy conditions

    NASA Astrophysics Data System (ADS)

    Borsdorff, Tobias; Andrasec, Josip; aan de Brugh, Joost; Hu, Haili; Aben, Ilse; Landgraf, Jochen

    2018-05-01

    In the perspective of the upcoming TROPOMI Sentinel-5 Precursor carbon monoxide data product, we discuss the benefit of using CO total column retrievals from cloud-contaminated SCIAMACHY 2.3 µm shortwave infrared spectra to detect atmospheric CO enhancements on regional and urban scales due to emissions from cities and wildfires. The study uses the operational Sentinel-5 Precursor algorithm SICOR, which infers the vertically integrated CO column together with effective cloud parameters. We investigate its capability to detect localized CO enhancements distinguishing between clear-sky observations and observations with low (< 1.5 km) and medium-high clouds (1.5-5 km). As an example, we analyse CO enhancements over the cities Paris, Los Angeles and Tehran as well as the wildfire events in Mexico-Guatemala 2005 and Alaska-Canada 2004. The CO average of the SCIAMACHY full-mission data set of clear-sky observations can detect weak CO enhancements of less than 10 ppb due to air pollution in these cities. For low-cloud conditions, the CO data product performs similarly well. For medium-high clouds, the observations show a reduced CO signal both over Tehran and Los Angeles, while for Paris no significant CO enhancement can be detected. This indicates that information about the vertical distribution of CO can be obtained from the SCIAMACHY measurements. Moreover, for the Mexico-Guatemala fires, the low-cloud CO data captures a strong outflow of CO over the Gulf of Mexico and the Pacific Ocean and so provides complementary information to clear-sky retrievals, which can only be obtained over land. For both burning events, enhanced CO values are even detectable with medium-high-cloud retrievals, confirming a distinct vertical extension of the pollution. The larger number of additional measurements, and hence the better spatial coverage, significantly improve the detection of wildfire pollution using both the clear-sky and cloudy CO retrievals. Due to the improved instrument performance of the TROPOMI instrument with respect to its precursor SCIAMACHY, the upcoming Sentinel-5 Precursor CO data product will allow improved detection of CO emissions and their vertical extension over cities and fires, making new research applications possible.

  14. All sky imaging observations in visible and infrared waveband for validation of satellite cloud and aerosol products

    NASA Astrophysics Data System (ADS)

    Lu, Daren; Huo, Juan; Zhang, W.; Liu, J.

    A series of satellite sensors in visible and infrared wavelengths have been successfully operated on board a number of research satellites, e.g. NOAA/AVHRR, the MODIS onboard Terra and Aqua, etc. A number of cloud and aerosol products are produced and released in recent years. However, the validation of the product quality and accuracy are still a challenge to the atmospheric remote sensing community. In this paper, we suggest a ground based validation scheme for satellite-derived cloud and aerosol products by using combined visible and thermal infrared all sky imaging observations as well as surface meteorological observations. In the scheme, a visible digital camera with a fish-eye lens is used to continuously monitor the all sky with the view angle greater than 180 deg. The digital camera system is calibrated for both its geometry and radiance (broad blue, green, and red band) so as to a retrieval method can be used to detect the clear and cloudy sky spatial distribution and their temporal variations. A calibrated scanning thermal infrared thermometer is used to monitor the all sky brightness temperature distribution. An algorithm is developed to detect the clear and cloudy sky as well as cloud base height by using sky brightness distribution and surface temperature and humidity as input. Based on these composite retrieval of clear and cloudy sky distribution, it can be used to validate the satellite retrievals in the sense of real-simultaneous comparison and statistics, respectively. What will be presented in this talk include the results of the field observations and comparisons completed in Beijing (40 deg N, 116.5 deg E) in year 2003 and 2004. This work is supported by NSFC grant No. 4002700, and MOST grant No 2001CCA02200

  15. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and variability. This new system could be a long term economical solution for solar energy applications.xample of SW Flux Analysis global hemispheric (light blue) and direct (yellow) clear-sky shortwave (SW) along with corresponding actual global hemispheric (blue) and direct (red) SW, and the corresponding fractional sky cover (black, right Y-axis). Note in afternoon about 40-50% of the global SW is available, yet most times there is no direct SW.

  16. Optical Polarization of Light from a Sorghum Canopy Measured Under Both a Clear and an Overcast Sky

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Biehl, Larry; Dahlgren, Robert

    2014-01-01

    Introduction: We tested the hypothesis that the optical polarization of the light reflected by a sorghum canopy is due to a Fresnel-type redirection, by sorghum leaf surfaces, of light from an unpolarized light source, the sun or overcast sky, toward the measuring sensor. If it can be shown that the source of the polarization of the light scattered by the sorghum canopy is a first surface, Fresnel-type reflection, then removing this surface reflected light from measurements of canopy reflectance presumably would allow better insight into the biochemical processes such as photosynthesis and metabolism that occur in the interiors of sorghum canopy leaves. Methods: We constructed a tower 5.9m tall in the center of a homogenous sorghum field. We equipped two Barnes MMR radiometers with polarization analyzers on the number 1, 3 and 7 Landsat TM wavelength bands. Positioning the radiometers atop the tower, we collected radiance data in 44 view directions on two days, one day with an overcast sky and the other, clear and sunlit. From the radiance data we calculated the linear polarization of the reflected light for each radiometer wavelength channel and view direction. Results and Discussion: Our experimental results support our hypothesis, showing that the amplitude of the linearly polarized portion of the light reflected by the sorghum canopy varied dramatically with view azimuth direction under a point source, the sun, but the amplitude varied little with view azimuth direction under the hemispherical source, the overcast sky. Under the clear sky, the angle of polarization depended upon the angle of incidence of the sunlight on the leaf, while under the overcast sky the angle of polarization depended upon the zenith view angle. These results support a polarized radiation transport model of the canopy that is based upon a first surface, Fresnel reflection from leaves in the sorghum canopy.

  17. Comparison of several databases of downward solar daily irradiation data at ocean surface with PIRATA measurements

    NASA Astrophysics Data System (ADS)

    Trolliet, Mélodie; Wald, Lucien

    2017-04-01

    The solar radiation impinging at sea surface is an essential variable in climate system. There are several means to assess the daily irradiation at surface, such as pyranometers aboard ship or on buoys, meteorological re-analyses and satellite-derived databases. Among the latter, assessments made from the series of geostationary Meteosat satellites offer synoptic views of the tropical and equatorial Atlantic Ocean every 15 min with a spatial resolution of approximately 5 km. Such Meteosat-derived databases are fairly recent and the quality of the estimates of the daily irradiation must be established. Efforts have been made for the land masses and must be repeated for the Atlantic Ocean. The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) network of moorings in the Tropical Atlantic Ocean is considered as a reference for oceanographic data. It consists in 17 long-term Autonomous Temperature Line Acquisition System (ATLAS) buoys equipped with sensors to measure near-surface meteorological and subsurface oceanic parameters, including downward solar irradiation. Corrected downward solar daily irradiation from PIRATA were downloaded from the NOAA web site and were compared to several databases: CAMS RAD, HelioClim-1, HelioClim-3 v4 and HelioClim-3 v5. CAMS-RAD, the CAMS radiation service, combines products of the Copernicus Atmosphere Monitoring Service (CAMS) on gaseous content and aerosols in the atmosphere together with cloud optical properties deduced every 15 min from Meteosat imagery to supply estimates of the solar irradiation. Part of this service is the McClear clear sky model that provides estimates of the solar irradiation that should be observed in cloud-free conditions. The second and third databases are HelioClim-1 and HelioClim-3 v4 that are derived from Meteosat images using the Heliosat-2 method and the ESRA clear sky model, based on the Linke turbidity factor. HelioClim-3 v5 is the fourth database and differs from v4 by the partial use of McClear and CAMS products. HelioClim-1 covers the period 1985-2005, while the others start in 2004 and are updated daily. Deviations between PIRATA measurements and estimates were computed and summarized by usual statistics. Biases and root mean square errors differ from one database to the other. As a whole, the correlation coefficients are large, meaning that each database reproduces the day-to-day changes in irradiation well. These good results will support the development of a satellite-derived database of daily irradiation created by MINES ParisTech within the HelioClim project. The size of the cells will be 0.25°. HelioClim-1 and HelioClim-3v5 will be combined yielding a period coverage of 32 years, from 1985 to 2016, thus allowing analyses of long term variability of downward shortwave solar radiation over the Atlantic Ocean.

  18. Contribution to the development of DOE ARM Climate Modeling Best Estimate Data (CMBE) products: Satellite data over the ARM permanent and AMF sites: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, B; Dong, X; Xie, S

    2012-05-18

    To support the LLNL ARM infrastructure team Climate Modeling Best Estimate (CMBE) data development, the University of North Dakota (UND)'s group will provide the LLNL team the NASA CERES and ISCCP satellite retrieved cloud and radiative properties for the periods when they are available over the ARM permanent research sites. The current available datasets, to date, are as follows: the CERES/TERRA during 200003-200812; the CERES/AQUA during 200207-200712; and the ISCCP during 199601-200806. The detailed parameters list below: (1) CERES Shortwave radiative fluxes (net and downwelling); (2) CERES Longwave radiative fluxes (upwelling) - (items 1 & 2 include both all-sky andmore » clear-sky fluxes); (3) CERES Layered clouds (total, high, middle, and low); (4) CERES Cloud thickness; (5) CERES Effective cloud height; (6) CERES cloud microphysical/optical properties; (7) ISCCP optical depth cloud top pressure matrix; (8) ISCCP derived cloud types (r.g., cirrus, stratus, etc.); and (9) ISCCP infrared derived cloud top pressures. (10) The UND group shall apply necessary quality checks to the original CERES and ISCCP data to remove suspicious data points. The temporal resolution for CERES data should be all available satellite overpasses over the ARM sites; for ISCCP data, it should be 3-hourly. The spatial resolution is the closest satellite field of view observations to the ARM surface sites. All the provided satellite data should be in a format that is consistent with the current ARM CMBE dataset so that the satellite data can be easily merged into the CMBE dataset.« less

  19. How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation.

    PubMed

    Pomozi, I; Horváth, G; Wehner, R

    2001-09-01

    One of the biologically most important parameters of the cloudy sky is the proportion P of the celestial polarization pattern available for use in animal navigation. We evaluated this parameter by measuring the polarization patterns of clear and cloudy skies using 180 degrees (full-sky) imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) ranges of the spectrum under clear and partly cloudy conditions. The resulting data were compared with the corresponding celestial polarization patterns calculated using the single-scattering Rayleigh model. We show convincingly that the pattern of the angle of polarization (e-vectors) in a clear sky continues underneath clouds if regions of the clouds and parts of the airspace between the clouds and the earth surface (being shady at the position of the observer) are directly lit by the sun. The scattering and polarization of direct sunlight on the cloud particles and in the air columns underneath the clouds result in the same e-vector pattern as that present in clear sky. This phenomenon can be exploited for animal navigation if the degree of polarization is higher than the perceptual threshold of the visual system, because the angle rather than the degree of polarization is the most important optical cue used in the polarization compass. Hence, the clouds reduce the extent of sky polarization pattern that is useful for animal orientation much less than has hitherto been assumed. We further demonstrate quantitatively that the shorter the wavelength, the greater the proportion of celestial polarization that can be used by animals under cloudy-sky conditions. As has already been suggested by others, this phenomenon may solve the ultraviolet paradox of polarization vision in insects such as hymenopterans and dipterans. The present study extends previous findings by using the technique of 180 degrees imaging polarimetry to measure and analyse celestial polarization patterns.

  20. Improved Surface Parameter Retrievals using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John

    2008-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave C02 channel observations in the spectral region 700 cm(exp -1) to 750 cm(exp -1) are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm(exp -1) 2395 cm(exp -1) are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O3 burden.

  1. Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2

    NASA Astrophysics Data System (ADS)

    Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-05-01

    The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.

  2. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    PubMed

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    PubMed Central

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  4. Relationship between high daily erythemal UV doses, total ozone, surface albedo and cloudiness: An analysis of 30 years of data from Switzerland and Austria

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Staehelin, J.; Weihs, P.; Vuilleumier, L.; Maeder, J. A.; Holawe, F.; Blumthaler, M.; Lindfors, A.; Peter, T.; Simic, S.; Spichtinger, P.; Wagner, J. E.; Walker, D.; Ribatet, M.

    2010-10-01

    This work investigates the occurrence frequency of days with high erythemal UV doses at three stations in Switzerland and Austria (Davos, Hoher Sonnblick and Vienna) for the time period 1974-2003. While several earlier studies have reported on increases in erythemal UV dose up to 10% during the last decades, this study focuses on days with high erythemal UV dose, which is defined as a daily dose at least 15% higher than for 1950s clear-sky conditions (which represent preindustrial conditions with respect to anthropogenic chlorine). Furthermore, the influence of low column ozone, clear-sky/partly cloudy conditions and surface albedo on UV irradiance has been analyzed on annual and seasonal basis. The results of this study show that in the Central Alpine Region the number of days with high UV dose increased strongly in the early 1990s. A large fraction of all days with high UV dose occurring in the period 1974-2003 was found especially during the years 1994-2003, namely 40% at Davos, 54% at Hoher Sonnblick and 65% at Vienna. The importance of total ozone, clear-sky/partly cloudy conditions and surface albedo (e.g. in dependence of snow cover) varies strongly among the seasons. However, overall the interplay of low total ozone and clear-sky/partly cloudy conditions led to the largest fraction of days showing high erythemal UV dose. Furthermore, an analysis of the synoptic weather situation showed that days with high erythemal UV dose, low total ozone and high relative sunshine duration occur at all three stations more frequently during situations with low pressure gradients or southerly advection.

  5. Relationship between clouds and sea surface temperatures in the western tropical Pacific

    NASA Technical Reports Server (NTRS)

    Arking, Albert; Ziskin, Daniel

    1994-01-01

    Analysis of four years of earth radiation budget, cloud, and sea surface temperature data confirms that cloud parameters change dramatically when and where sea surface temperatures increase above approximately 300K. These results are based upon monthly mean values within 2.5 deg x 2.5 deg grid points over the 'warm pool' region of the western tropical Pacific. The question of whether sea surface temperatures are influenced, in turn, by the radiative effects of these clouds (Ramanathan and Collins) is less clear. Such a feedback, if it exists, is weak. The reason why clouds might have so little influence, despite large changes in their longwave and shortwave radiative effects, might be that the sea surface responds to both the longwave heating and the shortwave cooling effects of clouds, and the two effects nearly cancel. There are strong correlations between the rate of change of sea surface temperature and any of the radiation budget parameters that are highly correlated with the incident solar flux-implying that season and latitude are the critical factors determining sea surface temperatures. With the seasonal or both seasonal and latitudinal variations removed, the rate of change of sea surface temperature shows no correlation with cloud-related parameters in the western tropical Pacific.

  6. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Manajit; Gotseff, Peter

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear skymore » model performance.« less

  7. Optimizing UV Index determination from broadband irradiances

    NASA Astrophysics Data System (ADS)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0.2-0.3 with a root-mean-square relative error in the scatter of ˜ 6.6 % for clear-sky conditions. Similar results are reproduced under cloudy conditions with light to moderate clouds, with a relative error comparable to the clear-sky counterpart; under strong attenuation due to clouds, a substantial increase in the root-mean-square relative error of up to 35 % is observed due to differing cloud radiative transfer models.

  8. Surface reflectance retrieval from satellite and aircraft sensors - Results of sensors and algorithm comparisons during FIFE

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Halthore, R. N.; Goetz, S. J.

    1992-01-01

    Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 Thematic Mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 Thematic Mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5 percent. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 microns) and about 0.30 in the near infrared (0.7-1.2 microns) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 microns) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.

  9. A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

    Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contributemore » 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.« less

  10. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacialmore » PV panels.« less

  11. Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1994-01-01

    Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.

  12. Development of the ClearSky smoke dispersion forecast system for agricultural field burning in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian

    The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in open areas to 70° or more for sites in very complex terrain. The analysis also showed some days with good forecast meteorology with absolute mean error in wind direction less than 30° when ClearSky correctly predicted PM 2.5 surface concentrations at receptors affected by field burns. On several other days with similar levels of wind direction error the model did not predict apparent plume impacts. In most of these cases, there were no reported burns in the vicinity of the monitor and, thus, it appeared that other, non-reported burns were responsible for the apparent plume impact at the monitoring site. These cases do not provide information on the performance of the model, but rather indicate that further work is needed to identify all burns and to improve burn reports in an accurate and timely manner. There were also a number of days with wind direction errors exceeding 70° when the forecast system did not correctly predict plume behavior.

  13. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  14. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaas, Johannes; Ming, Yi; Menon, Surabi

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found thatmore » the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.« less

  15. [Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].

    PubMed

    Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie

    2016-02-01

    Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1 at C-band and X-band. 89 GHz was greatly influenced by water vapor and its atmospheric transmittance was not more than 0.7. Atmospheric transmittances in Hailaer Region had a relatively stable value in summer, but had about 0.1 fluctuations with the local water vapor changes.

  16. A Supplementary Clear-Sky Snow and Ice Recognition Technique for CERES Level 2 Products

    NASA Technical Reports Server (NTRS)

    Radkevich, Alexander; Khlopenkov, Konstantin; Rutan, David; Kato, Seiji

    2013-01-01

    Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm's goal is to enhance the identification of snow and ice within the Clouds and the Earth's Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.

  17. Cloud characterization and clear-sky correction from Landsat-7

    USGS Publications Warehouse

    Cahalan, Robert F.; Oreopoulos, L.; Wen, G.; Marshak, S.; Tsay, S. -C.; DeFelice, Tom

    2001-01-01

    Landsat, with its wide swath and high resolution, fills an important mesoscale gap between atmospheric variations seen on a few kilometer scale by local surface instrumentation and the global view of coarser resolution satellites such as MODIS. In this important scale range, Landsat reveals radiative effects on the few hundred-meter scale of common photon mean-free-paths, typical of scattering in clouds at conservative (visible) wavelengths, and even shorter mean-free-paths of absorptive (near-infrared) wavelengths. Landsat also reveals shadowing effects caused by both cloud and vegetation that impact both cloudy and clear-sky radiances. As a result, Landsat has been useful in development of new cloud retrieval methods and new aerosol and surface retrievals that account for photon diffusion and shadowing effects. This paper discusses two new cloud retrieval methods: the nonlocal independent pixel approximation (NIPA) and the normalized difference nadir radiance method (NDNR). We illustrate the improvements in cloud property retrieval enabled by the new low gain settings of Landsat-7 and difficulties found at high gains. Then, we review the recently developed “path radiance” method of aerosol retrieval and clear-sky correction using data from the Department of Energy Atmospheric Radiation Measurement (ARM) site in Oklahoma. Nearby clouds change the solar radiation incident on the surface and atmosphere due to indirect illumination from cloud sides. As a result, if clouds are nearby, this extra side-illumination causes clear pixels to appear brighter, which can be mistaken for extra aerosol or higher surface albedo. Thus, cloud properties must be known in order to derive accurate aerosol and surface properties. A three-dimensional (3D) Monte Carlo (MC) radiative transfer simulation illustrates this point and suggests a method to subtract the cloud effect from aerosol and surface retrievals. The main conclusion is that cloud, aerosol, and surface retrievals are linked and must be treated as a combined system. Landsat provides the range of scales necessary to observe the 3D cloud radiative effects that influence joint surface-atmospheric retrievals.

  18. Evaluation of Operational Albedo Algorithms For AVHRR, MODIS and VIIRS: Case Studies in Southern Africa

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Schaaf, C. B.; Saleous, N.; Liang, S.

    2004-12-01

    Shortwave broadband albedo is the fundamental surface variable that partitions solar irradiance into energy available to the land biophysical system and energy reflected back into the atmosphere. Albedo varies with land cover, vegetation phenological stage, surface wetness, solar angle, and atmospheric condition, among other variables. For these reasons, a consistent and normalized albedo time series is needed to accurately model weather, climate and ecological trends. Although an empirically-derived coarse-scale albedo from the 20-year NOAA AVHRR record (Sellers et al., 1996) is available, an operational moderate resolution global product first became available from NASA's MODIS sensor. The validated MODIS product now provides the benchmark upon which to compare albedo generated through 1) reprocessing of the historic AVHRR record and 2) operational processing of data from the future National Polar-Orbiting Environmental Satellite System's (NPOESS) Visible/Infrared Imager Radiometer Suite (VIIRS). Unfortunately, different instrument characteristics (e.g., spectral bands, spatial resolution), processing approaches (e.g., latency requirements, ancillary data availability) and even product definitions (black sky albedo, white sky albedo, actual or blue sky albedo) complicate the development of the desired multi-mission (AVHRR to MODIS to VIIRS) albedo time series -- a so-called Climate Data Record. This presentation will describe the different albedo algorithms used with AVHRR, MODIS and VIIRS, and compare their results against field measurements collected over two semi-arid sites in southern Africa. We also describe the MODIS-derived VIIRS proxy data we developed to predict NPOESS albedo characteristics. We conclude with a strategy to develop a seamless Climate Data Record from 1982- to 2020.

  19. An Iterative, Geometric, Tilt Correction Method for Radiation and Albedo Observed by Automatic Weather Stations on Snow-Covered Surfaces: Application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.

    2015-12-01

    Surface melt and mass loss of Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for the surface energy budget studies, and for validating satellite observations and model simulations. However, station tilt, due to surface melt and compaction, results in considerable biases in the radiation and thus albedo measurements by AWS. In this study, we identify the tilt-induced biases in the climatology of surface radiative flux and albedo, and then correct them based on geometrical principles. Over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), only ~15% of clear days have the correct solar noon time, with the largest bias to be 3 hours. Absolute hourly biases in the magnitude of surface insolation can reach up to 200 W/m2, with daily average exceeding 100 W/m2. The biases are larger in the accumulation zone due to the systematic tilt at each station, although variabilities of tilt angles are larger in the ablation zone. Averaged over the whole Greenland Ice Sheet in the melting season, the absolute bias in insolation is ~23 W/m2, enough to melt 0.51 m snow water equivalent. We estimate the tilt angles and their directions by comparing the simulated insolation at a horizontal surface with the observed insolation by these tilted AWS under clear-sky conditions. Our correction reduces the RMSE against satellite measurements and reanalysis by ~30 W/m2 relative to the uncorrected data, with correlation coefficients over 0.95 for both references. The corrected diurnal changes of albedo are more smooth, with consistent semi-smiling patterns (see Fig. 1). The seasonal cycles and annual variabilities of albedo are in a better agreement with previous studies (see Fig. 2 and 3). The consistent tilt-corrected shortwave radiation dataset derived here will provide better observations and validations for surface energy budget studies on Greenland Ice Sheet, including albedo variation, surface melt simulations and cloud radiative forcing estimates.

  20. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001-2016

    NASA Astrophysics Data System (ADS)

    Mortimer, Colleen A.; Sharp, Martin

    2018-02-01

    Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI) are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA) decreased at a rate of 0.029±0.025 decade-1 over that period. Larger reductions in BSA occurred in July (-0.050±0.031 decade-1). No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001-2016, the mean summer land surface temperature (LST) over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr-1, and the BSA record was negatively correlated (r: -0.86) with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  1. Modelling hazardous surface hoar layers in the mountain snowpack over space and time

    NASA Astrophysics Data System (ADS)

    Horton, Simon Earl

    Surface hoar layers are a common failure layer in hazardous snow slab avalanches. Surface hoar crystals (frost) initially form on the surface of the snow, and once buried can remain a persistent weak layer for weeks or months. Avalanche forecasters have difficulty tracking the spatial distribution and mechanical properties of these layers in mountainous terrain. This thesis presents numerical models and remote sensing methods to track the distribution and properties of surface hoar layers over space and time. The formation of surface hoar was modelled with meteorological data by calculating the downward flux of water vapour from the atmospheric boundary layer. The timing of surface hoar formation and the modelled crystal size was verified at snow study sites throughout western Canada. The major surface hoar layers over several winters were predicted with fair success. Surface hoar formation was modelled over various spatial scales using meteorological data from weather forecast models. The largest surface hoar crystals formed in regions and elevation bands with clear skies, warm and humid air, cold snow surfaces, and light winds. Field surveys measured similar regional-scale patterns in surface hoar distribution. Surface hoar formation patterns on different slope aspects were observed, but were not modelled reliably. Mechanical field tests on buried surface hoar layers found layers increased in shear strength over time, but had persistent high propensity for fracture propagation. Layers with large crystals and layers overlying hard melt-freeze crusts showed greater signs of instability. Buried surface hoar layers were simulated with the snow cover model SNOWPACK and verified with avalanche observations, finding most hazardous surface hoar layers were identified with a structural stability index. Finally, the optical properties of surface hoar crystals were measured in the field with spectral instruments. Large plate-shaped crystals were less reflective at shortwave infrared wavelengths than other common surface snow grains. The methods presented in this thesis were developed into operational products that model hazardous surface hoar layers in western Canada. Further research and refinements could improve avalanche forecasts in regions prone to hazardous surface hoar layers.

  2. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Lingner, David W.; Gautier, Catherine; Baker, Karen S.; Smith, Ray C.

    1989-01-01

    A simple but accurate analytical formula was developed for computing the total and the photosynthetically available solar irradiances at the ocean surface under clear skies, which takes into account the processes of scattering by molecules and aerosols within the atmosphere and of absorption by the water vapor, ozone, and aerosols. These processes are parameterized as a function of solar zenith angle, aerosol type, atmospheric visibility, and vertically integrated water-vapor and ozone amounts. Comparisons of the calculated and measured total and photosynthetically available solar irradiances for several experiments in tropical and mid-latitude ocean regions show 39 and 14 Wm/sq m rms errors (6.5 and 4.7 percent of the average measured values) on an hourly time scale, respectively. The proposed forumula is unique in its ability to predict surface solar irradiance in the photosynthetically active spectral interval.

  3. Regional studies using sea surface temperature fields derived from satellite infrared measurements

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1972-01-01

    Three examples of sea surface temperature distributions over the western Atlantic are presented. These were detected by means of data from the scanning radiometer on the Improved Tiros Operational Satellite 1 (ITOS 1) under relatively clear sky conditions.

  4. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.

    2006-01-01

    Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.

  5. The prediction of the optical contrast of air-borne targets against the night-sky background for Photopic and NVG sensors

    NASA Astrophysics Data System (ADS)

    Havemann, Stephan; Wong, Gerald

    2016-10-01

    The Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) represents transmittances, radiances and fluxes by principal components that cover the spectra at very high resolution, allowing fast highly-resolved pseudo line-by-line, hyperspectral and broadband simulations across the electromagnetic spectrum form the microwave to the ultraviolet for satellite-based, airborne and ground-based sensors. HT-FRTC models clear atmospheres and those containing clouds and aerosols, as well as any surface (land/sea/man-made). The HT-FRTC has been used operationally in the NEON Tactical Decision Aid (TDA) since 2008. The TDA combines the HT-FRTC with a thermal contrast model and an NWP model forecast data feed to predict the apparent thermal contrast between different surfaces and ground-based targets in the thermal and short-wave IR. The new objective here is to predict the optical contrast of air-borne targets under realistic night-time scenarios in the Photopic and NVG parts of the spectrum. This requires the inclusion of all the relevant radiation sources, which include twilight, moonlight, starlight, airglow and cultural light. A completely new exact scattering code has been developed which allows the straight-forward addition of any number of direct and diffuse sources anywhere in the atmosphere. The new code solves the radiative transfer equation iteratively and is faster than the previous solution. Simulations of scenarios with different light levels, from situations during a full moon to a moonless night with very low light levels and a situation with cultural light from a town are presented. The impact of surface reflectance and target reflectance is investigated.

  6. A cloudiness transition in a marine boundary layer

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Boers, Reinout

    1990-01-01

    Boundary layer cloudiness plays several important roles in the energy budget of the earth. Low level stratocumulus are highly reflective clouds which reduce the net incoming shortwave radiation at the earth's surface. Climatically, the transition to a small area fraction of scattered cumulus clouds occurs as the air flows over warmer water. Although these clouds reflect less sunlight, they still play an important role in the boundary layer equilibrium by transporting water vapor upwards, and enhancing the surface evaporation. The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) included a marine stratocumulus experiment off the southern California coast from June 29 to July 19, 1987. The objectives of this experiment were to study the controls on fractional cloudiness, and to assess the role of cloud-top entrainment instability (CTEI) and mesoscale structure in determining cloud type. The focus is one research day, July 7, 1987, when coordinated aircraft missions were flown by four research aircraft, centered on a LANDSAT scene at 1830 UTC. The remarkable feature of this LANDSAT scene is the transition from a clear sky in the west through broken cumulus to solid stratocumulus in the east. The dynamic and thermodynamic structure of this transition in cloudiness is analyzed using data from the NCAR Electra. By averaging the aircraft data, the internal structure of the different cloud regimes is documented, and it is shown that the transition between broken cumulus and stratocumulus is associated with a change in structure with respect to the CTEI condition. However, this results not from sea surface temperature changes, but mostly from a transition in the air above the inversion, and the breakup appears to be at a structure on the unstable side of the wet virtual adiabat.

  7. Surface Shortwave and Longe Wave Solar Radiation Atmospheric Aerosols Radiative Forcing Using Sunphotometer , Modis Satellite and Cnr -1 Measurements Over Western Indian Tropical Site or Udaipur ( 24.57N, 73. 69E, 588M Asl)

    NASA Astrophysics Data System (ADS)

    Vyas, B. M.

    2017-12-01

    The analysis of investigation describes the experimental results of monthly surafcae short wave radiative(SWR) and longwave radaitive(LWR) atmospheric aerosols radaitive forcing derived from daily mesaured values of AOD at 550 nm from MODIS Terra and Acqau satellite as well as hourly measurement of AOD at 500nm from MICROTOPS _II sunsphotometer ( M/S Solar Light Co. USA) with round the clock of 24 hourly measurement of CNR-1 ( M/s KIP & ZONN, Netherland) during the clear sky days over Udaipur. For the present investigation, such above simulatneous daily data sets of period from Oct.,2011 to June 2017 were used to study the monthly and sesaonal ground level SWR and LWR over a semi- urban and semi-arid western Indian tropical site for pre- monsoon, post-monsoon and winter months. In this study, a well known method of computing surface SWR and LWR has been employed as Method -1 as suggested by Shrivastava et al., 2011. A stong and distinct different sesaonal surface SWR and LWR due to atmospheric aerosols has observed that the well defined seasonal neagtive SWR is observed maximum in pre- monsoon and minimum in winter and post-monsoon months. But in contary to the above, higher positive monthly LWR values are noticed in pre-monsoon as compared to in winter months. The The inter- annual sesaonal trend of the SWR and LWR are also noticed in the present work. The reslts of present study will be compared with other availlable simillar study using SBDART at other other Indian stations.

  8. Temporal upscaling of instantaneous evapotranspiration on clear-sky days using the constant reference evaporative fraction method with fixed or variable surface resistances at two cropland sites

    NASA Astrophysics Data System (ADS)

    Tang, Ronglin; Li, Zhao-Liang; Sun, Xiaomin; Bi, Yuyun

    2017-01-01

    Surface evapotranspiration (ET) is an important component of water and energy in land and atmospheric systems. This paper investigated whether using variable surface resistances in the reference ET estimates from the full-form Penman-Monteith (PM) equation could improve the upscaled daily ET estimates in the constant reference evaporative fraction (EFr, the ratio of actual to reference grass/alfalfa ET) method on clear-sky days using ground-based measurements. Half-hourly near-surface meteorological variables and eddy covariance (EC) system-measured latent heat flux data on clear-sky days were collected at two sites with different climatic conditions, namely, the subhumid Yucheng station in northern China and the arid Yingke site in northwestern China and were used as the model input and ground-truth, respectively. The results showed that using the Food and Agriculture Organization (FAO)-PM equation, the American Society of Civil Engineers-PM equation, and the full-form PM equation to estimate the reference ET in the constant EFr method produced progressively smaller upscaled daily ET at a given time from midmorning to midafternoon. Using all three PM equations produced the best results at noon at both sites regardless of whether the energy imbalance of the EC measurements was closed. When the EC measurements were not corrected for energy imbalance, using variable surface resistance in the full-form PM equation could improve the ET upscaling in the midafternoon, but worse results may occur in the midmorning to noon. Site-to-site and time-to-time variations were found in the performances of a given PM equation (with fixed or variable surface resistances) before and after the energy imbalance was closed.

  9. A Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Comiso, J. C.; Digirolamo, N. E.; Stock, L. V.; Riggs, G. A.; Shuman, C. A.

    2009-01-01

    We are developing a climate-data record (CDR of daily "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. The CDR will be continued in the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite era. Two algorithms remain under consideration. One algorithm under consideration is based on the split-window technique used in the Polar Pathfinder dataset (Fowler et al., 2000 & 21007). Another algorithm under consideration, developed by Comiso (2006), uses a single channel of AVHRR data (channel 4) in conjunction with meteorological-station data to account for atmospheric effects and drift between AVHRR instruments. Known issues being addressed in the production of the CDR are: tune-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds (Stroeve & Steffen, 1998; Wang and Key, 2005; Hall et al., 2008 and Koenig and Hall, submitted), time-series of satellite 1S'1" do not necessarily correspond to actual surface temperatures. The CDR will be validated by comparing results with automatic-,",eather station (AWS) data and with satellite-derived surface-temperature products. Regional "clear-sky" surface temperature increases in the Arctic, measured from AVHRR infrared data, range from 0.57+/-0.02 deg C (Wang and Key, 2005) to 0.72+/-0.10 deg C (Comiso, 2006) per decade since the early 1980s. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. References

  10. Large-scale effects on the regulation of tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Michelsen, Marc L.

    1993-01-01

    The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.

  11. Validation of Local-Cloud Model Outputs With the GOES Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Malek, E.

    2005-05-01

    Clouds (visible aggregations of minute droplets of water or tiny crystals of ice suspended in the air) affect the radiation budget of our planet by reflecting, absorbing and scattering solar radiation, and the re-emission of terrestrial radiation. They affect the weather and climate by positive or negative feedbacks. Many researchers have worked on the parameterization of clouds and their effects on the radiation budget. There is little information about ground-based approaches for continuous evaluation of cloud, such as cloud base height, cloud base temperature, and cloud coverage, at local and regional scales. This present article deals with the development of an algorithm for continuous (day and night) evaluation of cloud base temperature, cloud base height and percent of skies covered by cloud at local scale throughout the year. The Vaisala model CT-12K laser beam ceilometer is used at the Automated Surface Observing Systems (ASOS) to measure the cloud base height and report the sky conditions on an hourly basis or at shorter intervals. This laser ceilometer is a fixed-type whose transmitter and receiver point straight up at the cloud (if any) base. It is unable to measure clouds that are not above the sensor. To report cloudiness at the local scale, many of these type of ceilometers are needed. This is not a perfect method for cloud measurement. A single cloud hanging overhead the sensor will cause overcast readings, whereas, a hole in the clouds could cause a clear reading to be reported. To overcome this problem, we have set up a ventilated radiation station at Logan-Cache airport, Utah, U.S.A., since 1995, which is equipped with one of the above-mentioned ceilometers. This radiation station (composed of pyranometers, pyrgeometers and net radiometer) provides continuous measurements of incoming and outgoing shortwave and longwave radiation and the net radiation throughout the year. We have also measured the surface temperature and pressure, the 2-m air temperature and humidity, precipitation, and the 3-m wind and direction at this station. Having the air temperature, moisture, and the measured cloudless incoming longwave (atmospheric) radiation during 1999 through 2004, based upon the ASOS and the algorithm data, we found the appropriate formula (among four reported approaches) for computation of the cloudless-skies atmospheric emissivity. Considering the additional longwave radiation captured by the facing-up pyrgeometer during the cloudy skies, coming from the cloud in the wave band which the gaseous emission lacks (from 8-13 ìm), we developed an algorithm which provides the continuous 20-min cloud information (cloud base height, cloud base temperature, and percent of skies covered by cloud) over the Cache Valley during day and night throughout the year. The comparisons between the ASOS and the algorithm data during the period of 8-12 June, 2004 are reported in this article. The proposed algorithm is a promising approach for evaluation of the cloud base temperature, cloud base height, and percent of skies covered by cloud at the local scale throughout the year. It also reports the comparison between model outputs and GOES 10 satellite images.

  12. Use of A-Train Aerosol Observations to Constrain Direct Aerosol Radiative Effects (DARE) Comparisons with Aerocom Models and Uncertainty Assessments

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rozenhaimer, M.; LeBlanc, S.; Vaughan, M.; Stier, P.; Schutgens, N.

    2017-01-01

    We describe a technique for combining multiple A-Train aerosol data sets, namely MODIS spectral AOD (aerosol optical depth), OMI AAOD (absorption aerosol optical depth) and CALIOP aerosol backscatter retrievals (hereafter referred to as MOC retrievals) to estimate full spectral sets of aerosol radiative properties, and ultimately to calculate the 3-D distribution of direct aerosol radiative effects (DARE). We present MOC results using almost two years of data collected in 2007 and 2008, and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the MODIS Collection 6 AOD data derived with the dark target and deep blue algorithms has extended the coverage of the MOC retrievals towards higher latitudes. The MOC aerosol retrievals agree better with AERONET in terms of the single scattering albedo (ssa) at 441 nm than ssa calculated from OMI and MODIS data alone, indicating that CALIOP aerosol backscatter data contains information on aerosol absorption. We compare the spatio-temporal distribution of the MOC retrievals and MOC-based calculations of seasonal clear-sky DARE to values derived from four models that participated in the Phase II AeroCom model intercomparison initiative. Overall, the MOC-based calculations of clear-sky DARE at TOA over land are smaller (less negative) than previous model or observational estimates due to the inclusion of more absorbing aerosol retrievals over brighter surfaces, not previously available for observationally-based estimates of DARE. MOC-based DARE estimates at the surface over land and total (land and ocean) DARE estimates at TOA are in between previous model and observational results. Comparisons of seasonal aerosol property to AeroCom Phase II results show generally good agreement best agreement with forcing results at TOA is found with GMI-MerraV3. We discuss sampling issues that affect the comparisons and the major challenges in extending our clear-sky DARE results to all-sky conditions. We present estimates of clear-sky and all-sky DARE and show uncertainties that stem from the assumptions in the spatial extrapolation and accuracy of aerosol and cloud properties, in the diurnal evolution of these properties, and in the radiative transfer calculations.

  13. Clear-Sky Surface Solar Radiation During South China Sea Monsoon Experiment

    NASA Technical Reports Server (NTRS)

    Lin, Po-Hsiung; Chou, Ming-Dah; Ji, Qiang; Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Downward solar fluxes measured at Dungsha coral island (20 deg. 42 min. N, 116 deg. 43 min. E) during the South China Sea Monsoon Experiment (May-June 1998) have been calibrated and compared with radiative transfer calculations for three clear-sky days. Model calculations use water vapor and temperature profiles from radiosound measurements and the aerosol optical thickness derived from sunphotometric radiance measurements at the surface. Results show that the difference between observed and model-calculated downward fluxes is less than 3% of the daily mean. Averaged over the three clear days, the difference reduces to 1%. The downward surface solar flux averaged over the three days is 314 W per square meters from observations and 317 W per square meters from model calculations, This result is consistent with a previous study using TOGA CAORE measurements, which found good agreements between observations and model calculations. This study provides an extra piece of useful information on the modeling of radiative transfer, which fills in the puzzle of the absorption of solar radiation in the atmosphere.

  14. An Examination of Intertidal Temperatures Through Remotely Sensed Satellite Observations

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.

    2010-12-01

    MODIS Aqua and Terra satellites produce both land surface temperatures and sea surface temperatures using calibrated algorithms. In this study, the land surface temperatures were retrieved during clear-sky (non-cloudy) conditions at a 1 km2 resolution (overpass time at 10:30 am) whereas the sea surface temperatures are also retrieved during clear-sky conditions at approximately 4 km resolution (overpass time at 1:30 pm). The purpose of this research was to examine remotely sensed sea surface (SST), intertidal (IST), and land surface temperatures (LST), in conjunction with observed in situ mussel body temperatures, as well as associated weather and tidal data. In Strawberry Hill, Oregon, it was determined that intertidal surface temperatures are similar to but distinctly different from land surface temperatures although influenced by sea surface temperatures. The air temperature and differential heating throughout the day, as well as location in relation to the shore, can greatly influence the remotely sensed surface temperatures. Therefore, remotely sensed satellite data is a very useful tool in examining intertidal temperatures for regional climatic changes over long time periods and may eventually help researchers forecast expected climate changes and help determine associated biological implications.

  15. Development of Multi-Sensor Global Cloud and Radiance Composites for DSCOVR EPIC Imager with Subpixel Definition

    NASA Astrophysics Data System (ADS)

    Khlopenkov, K. V.; Duda, D. P.; Thieman, M. M.; Sun-Mack, S.; Su, W.; Minnis, P.; Bedka, K. M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) is designed to study the daytime Earth radiation budget by means of onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). EPIC imager observes in several shortwave bands (317-780 nm), while NISTAR measures the top-of-atmosphere (TOA) whole-disk radiance in shortwave and total broadband windows. Calculation of albedo and outgoing longwave flux requires a high-resolution scene identification such as the radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers. These properties have to be co-located with EPIC imager pixels to provide scene identification and to select anisotropic directional models, which are then used to adjust the NISTAR-measured radiance and subsequently obtain the global daytime shortwave and longwave fluxes. This work presents an algorithm for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. The highest quality observation is selected by means of an aggregated rating which incorporates several factors such as the nearest time relative to EPIC observation, lowest viewing zenith angle, and others. This process provides a smoother transition and avoids abrupt changes in the merged composite data. Higher spatial accuracy in the composite product is achieved by using the inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into the EPIC-view domain by convolving composite pixels with the EPIC point spread function (PSF) defined with a half-pixel accuracy. Within every EPIC footprint, the PSF-weighted average radiances and cloud properties are computed for each cloud phase and then stored within five data subsets (clear-sky, water cloud, ice cloud, total cloud, and no retrieval). Overall, the composite product has been generated for every EPIC observation from June 2015 to December 2016, typically 300-500 composites per month, which makes it useful for many climate applications.

  16. Cloud Induced Enhancement of Ground Level Solar Radiation

    NASA Astrophysics Data System (ADS)

    Inman, R.; Chu, Y.; Coimbra, C.

    2013-12-01

    Atmospheric aerosol and cloud cover are typically associated with long and short-term variability of all three solar radiation components at the ground level. Although aerosol attenuation can be a substantial factor for Direct Normal Irradiance (DNI) in some microclimates, the strongest factor for ground level irradiance attenuation is cloud cover which acts on time-scales associated with strong solar power generation fluctuations. Furthermore, the driving effects of clouds on radiative energy budgets include shortwave cooling, as a result of absorption of incoming solar radiation, and longwave heating, due to reduced emission of thermal radiation by relatively cool cloud tops. Under special circumstances, the presence of clouds in the circumsolar region may lead to the reverse; a local increase in the diffuse downwelling solar radiation due to directional scattering from clouds. This solar beam effect exceed the losses resulting from the backscattering of radiation into space. Such conditions result in radiation levels that temporarily exceed the localized clear sky values. These phenomena are referred to as Cloud Enhancement Events (CEEs). There are currently two fundamental CEE mechanisms discussed in the literature. The first involves well-defined, and optically thick cloud edges close to, but not obscuring, the solar disk. The effect here is of producing little or no change in the normal beam radiation. In this case, cloud edges in the vicinity of the sun create a non-isotropic increase in the local diffuse radiation field with respect to the isotropic scattering of a clear-sky atmosphere. The second type of CEE allows for partial or full obstruction of the solar disk by an optically thin diffuser such as fine clouds, haze or fog; which results in an enhanced but still nearly isotropic diffuse radiation field. In this study, an entire year of solar radiation data and total sky images taken at 30 second resolution at the University of California, Merced (UCM) is used in conjunction with optimized clear sky models, statistical analysis, and wavelet transform methods to investigate the solar radiation Ramp Rates (RRs) associated with both of the fundamental CEE mechanisms. Results indicate that CEEs account for nearly 5% of the total daytime hours in this dataset and produce nearly 4% of the total energy over the year. In addition, wavelet transform techniques suggest that CEEs at UCM location operate on timescales ranging from 2 to 4 minutes. Our results allow estimation of the probability and magnitude of these RRs as well the percentage of annual excess energy production resulting from CEEs which could be used to offset ancillary services required to operate PV power systems.

  17. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  18. Marrying Excitons and Plasmons in Monolayer Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Van Tuan, Dinh; Scharf, Benedikt; Žutić, Igor; Dery, Hanan

    2017-10-01

    Just as photons are the quanta of light, plasmons are the quanta of orchestrated charge-density oscillations in conducting media. Plasmon phenomena in normal metals, superconductors, and doped semiconductors are often driven by long-wavelength Coulomb interactions. However, in crystals whose Fermi surface is comprised of disconnected pockets in the Brillouin zone, collective electron excitations can also attain a shortwave component when electrons transition between these pockets. In this work, we show that the band structure of monolayer transition-metal dichalcogenides gives rise to an intriguing mechanism through which shortwave plasmons are paired up with excitons. The coupling elucidates the origin for the optical sideband that is observed repeatedly in monolayers of WSe2 and WS2 but not understood. The theory makes it clear why exciton-plasmon coupling has the right conditions to manifest itself distinctly only in the optical spectra of electron-doped tungsten-based monolayers.

  19. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases

    NASA Astrophysics Data System (ADS)

    Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping

    2016-09-01

    An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.

  20. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data

    USDA-ARS?s Scientific Manuscript database

    Land surface temperature (LST) is a critical parameter in environmental studies and resource management. The MODIS LST data product has been widely used in various studies, such as drought monitoring, evapotranspiration mapping, soil moisture estimation and forest fire detection. However, cloud cont...

  1. Observations of enhanced aerosol longwave radiative forcing over an urban environment

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.

    2008-02-01

    Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.

  2. The July 2016 Study of the water VApour in the polar AtmosPhere (SVAAP) campaign at Thule, Greenland: surface radiation budget and role of clouds

    NASA Astrophysics Data System (ADS)

    Meloni, Daniela; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Pace, Giandomenico; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco; Gröbner, Julian

    2017-04-01

    The Study of the water VApour in the polar AtmosPhere (SVAAP) project, funded by the Italian Programme for Antarctic Research, is aimed at investigating the surface radiation budget (SRB), the variability of atmospheric water vapour, and the long-term variations in stratospheric composition and structure at Thule, Greenland, in the framework of the international Network for Detection of Atmospheric Composition Change (NDACC). Thule High Arctic Atmospheric Observatory (THAAO, 76.5° N, 68.8° W) is devoted to study climate change and has been operational since 1990, with the contribution of different international institutions: DMI, NCAR, ENEA, INGV, Universities of Roma and Firenze (http://www.thuleatmos-it.it). As part of SVAAP an intensive field campaign was held at Thule from 5 to 28 July 2016. The campaign was also aimed at supporting the installation of VESPA-22, a new microwave radiometer for water vapour profiling in the upper atmosphere and integrated water vapour (IWV), and offered the possibility to study the cloud physical and optical properties and their impact on the SRB. Measurements of downward shortwave (SW) and longwave (LW) irradiance were already available since 2009. Additional observations were added to obtain the SRB and to characterize the atmospheric state: upward SW and LW irradiance, upwelling and downwelling photosynthetically active radiation (PAR), downward irradiance in the 8-14 µm infrared window, temperature and relative humidity tropospheric profiles, IWV, liquid water path (LWP), lidar tropospheric backscattering profiles, sky brightness temperature (BT) in the 9.6-11.5 µm spectral range, visible and infrared sky images, surface meteorological parameters. Moreover, 23 radiosonde were launched during the campaign. Data from the period 14-28 July are presented in this study. The first part of the campaign was characterized by stable cloud-free conditions, while alternation of cloudy and cloud-free sky occurred after 18 July. The time evolution of SW and LW SRB, surface albedo, and derived cloud parameters, such as cloud optical thickness and effective radius, are presented and discussed. Thickest clouds reached visible optical depths of about 200, and values of LWP of about 0.4 kg/m2. While the SW SRB is always positive during the measurement campaign, the LW SRB is negative under cloud-free conditions (own to -100 W/m2 at noon), becoming positive (up to +50 W/m2) during cloudy periods. The total (SW+LW) SRB is positive and its variability is dominated by the SW irradiance. Clouds induce a reduction of the SRB compared to the cloud-free periods, thanks to the dominant SW effect. The LW component offsets about 20% of the SW at noon in clear sky, and contributes up to 50% of the total SRB in thick cloud conditions. The availability of the cloud physical and optical properties and the atmospheric vertical profiles allow to study in details the SW and LW cloud radiative effect by means of radiative transfer simulations performed with MODTRAN6.0 model.

  3. Assessment of simulation of radiation in NCEP Climate Forecasting System (CFS V2)

    NASA Astrophysics Data System (ADS)

    Goswami, Tanmoy; Rao, Suryachandra A.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Dhakate, Ashish; Salunke, Kiran; Mahapatra, Somnath

    2017-09-01

    The objective of this study is to identify and document the radiation biases in the latest National Centers for Environment Prediction (NCEP), Climate Forecasting System (CFSv2) and to investigate the probable reasons for these biases. This analysis is made over global and Indian domain under all-sky and clear-sky conditions. The impact of increasing the horizontal resolution of the atmospheric model on these biases is also investigated by comparing results of two different horizontal resolution versions of CFSv2 namely T126 and T382. The difference between the top of the atmosphere and surface energy imbalance in T126 (T382) is 3.49 (2.78) W/m2. This reduction of bias in the high resolution model is achieved due to lesser low cloud cover, resulting more surface insolation, and due to more latent heat fluxes at the surface. Compared to clear sky simulations, all sky simulations exhibit larger biases suggesting that the cloud covers are not simulated well in the model. The annual mean high level cloud cover is over estimated over the global as well as the Indian domain. This overestimation over the Indian domain is also present during JJAS. There is also evidence that both of the models have insufficient water vapour in their atmosphere. This study suggests that in order to improve the model's mean radiation climatology, simulation of clouds in the model also needs to be improved, and future model development activities should focus on this aspect.

  4. Attenuation by clouds of UV radiation for low stratospheric ozone conditions

    NASA Astrophysics Data System (ADS)

    Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Quiroga, Jonathan; Quel, Eduardo; Mizuno, Akira

    2017-02-01

    Stratospheric poor ozone air masses related to the polar ozone hole overpass subpolar regions in the Southern Hemisphere during spring and summer seasons, resulting in increases of surface Ultraviolet Index (UVI). The impact of these abnormal increases in the ultraviolet radiation could be overestimated if clouds are not taking into account. The aim of this work is to determine the percentage of cases in which cloudiness attenuates the high UV radiation that would reach the surface in low total ozone column situations and in clear sky hypothetical condition for Río Gallegos, Argentina. For this purpose, we analysed UVI data obtained from a multiband filter radiometer GUV-541 (Biospherical Inc.) installed in the Observatorio Atmosférico de la Patagonia Austral (OAPA-UNIDEF (MINDEF - CONICET)) (51 ° 33' S, 69 ° 19' W), Río Gallegos, since 2005. The database used covers the period 2005-2012 for spring seasons. Measured UVI values are compared with UVI calculated using a parametric UV model proposed by Madronich (2007), which is an approximation for the UVI for clear sky, unpolluted atmosphere and low surface albedo condition, using the total ozone column amount, obtained from the OMI database for our case, and the solar zenith angle. It is observed that ˜76% of the total low ozone amount cases, which would result in high and very high UVI categories for a hypothetical (modeled) clear sky condition, are attenuated by clouds, while 91% of hypothetical extremely high UVI category are also attenuated.

  5. Comparisons of Radiative Flux Distributions from Satellite Observations and Global Models

    NASA Astrophysics Data System (ADS)

    Raschke, Ehrhard; Kinne, Stefan; Wild, Martin; Stackhouse, Paul; Rossow, Bill

    2014-05-01

    Radiative flux distributions at the top of the atmosphere (TOA) and at the surface are compared between typical data from satellite observations and from global modeling. Averages of CERES, ISCCP and SRB data-products (for the same 4-year period) represent satellite observations. Central values of IPCC-4AR output (over a 12-year period) represent global modeling. At TOA, differences are dominated by differences for cloud-effects, which are extracted from the differences between all-sky and clear-sky radiative flux products. As satellite data are considered as TOA reference, these differences document the poor representation of clouds in global modeling, especially for low altitude clouds over oceans. At the surface the differences, caused by the different cloud treatment are overlaid by a general offset. Satellite products suggest a ca 15Wm-2 stronger surface net-imbalance (and with it stronger precipitation). Since surface products of satellite and modeling are based on simulations and many assumptions, this difference has remained an open issue. BSRN surface monitoring is too short and too sparsely distributed for clear answers to provide a reliable basis for validation.

  6. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    PubMed

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  7. Assessment of long-term WRF–CMAQ simulations for ...

    EPA Pesticide Factsheets

    Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aer

  8. Identification of periods of clear sky irradiance in time series of GHI measurements

    DOE PAGES

    Reno, Matthew J.; Hansen, Clifford W.

    2016-01-18

    In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less

  9. Identification of periods of clear sky irradiance in time series of GHI measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reno, Matthew J.; Hansen, Clifford W.

    In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less

  10. SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters

    NASA Astrophysics Data System (ADS)

    Bessell, Michael; Bloxham, Gabe; Schmidt, Brian; Keller, Stefan; Tisserand, Patrick; Francis, Paul

    2011-07-01

    The SkyMapper Southern Sky Survey will be conducted from Siding Spring Observatory with u, v, g, r, i, and z filters that comprise glued glass combination filters with dimensions of 309 × 309 × 15 mm. In this article we discuss the rationale for our bandpasses and physical characteristics of the filter set. The u, v, g, and z filters are entirely glass filters, which provide highly uniform bandpasses across the complete filter aperture. The i filter uses glass with a short-wave pass coating, and the r filter is a complete dielectric filter. We describe the process by which the filters were constructed, including the processes used to obtain uniform dielectric coatings and optimized narrowband antireflection coatings, as well as the technique of gluing the large glass pieces together after coating using UV transparent epoxy cement. The measured passbands, including extinction and CCD QE, are presented.

  11. Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory.

    PubMed

    Dahlberg, Andrew R; Pust, Nathan J; Shaw, Joseph A

    2011-08-15

    An all-sky imaging polarimeter was deployed in summer 2008 to the Mauna Loa Observatory in Hawaii to study clear-sky atmospheric skylight polarization. The imager operates in five wavebands in the visible and near infrared spectrum and has a fisheye lens for all-sky viewing. This paper describes the deployment and presents comparisons of the degree of skylight polarization observed to similar data observed by Coulson with a principal-plane scanning polarimeter in the late 1970s. In general, the results compared favorably to those of Coulson. In addition, we present quantitative results correlating a variation of the maximum degree of polarization over a range of 70-85% to fluctuation in underlying surface reflectance and upwelling radiance data from the GOES satellite. © 2011 Optical Society of America

  12. Global horizontal irradiance clear sky models : implementation and analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 differentmore » sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.« less

  13. Testing the Two-Layer Model for Correcting Near Cloud Reflectance Enhancement Using LES SHDOM Simulated Radiances

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert

    2016-01-01

    A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.

  14. Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario

    DOE PAGES

    Kashimura, Hiroki; Abe, Manabu; Watanabe, Shingo; ...

    2017-03-08

    This paper evaluates the forcing, rapid adjustment, and feedback of net shortwave radiation at the surface in the G4 experiment of the Geoengineering Model Intercomparison Project by analysing outputs from six participating models. G4 involves injection of 5 Tg yr -1 of SO 2, a sulfate aerosol precursor, into the lower stratosphere from year 2020 to 2069 against a background scenario of RCP4.5. A single-layer atmospheric model for shortwave radiative transfer is used to estimate the direct forcing of solar radiation management (SRM), and rapid adjustment and feedbacks from changes in the water vapour amount, cloud amount, and surface albedo (compared with RCP4.5). The analysismore » shows that the globally and temporally averaged SRM forcing ranges from -3.6 to -1.6 W m -2, depending on the model. The sum of the rapid adjustments and feedback effects due to changes in the water vapour and cloud amounts increase the downwelling shortwave radiation at the surface by approximately 0.4 to 1.5 W m -2 and hence weaken the effect of SRM by around 50 %. The surface albedo changes decrease the net shortwave radiation at the surface; it is locally strong (~-4 W m -2) in snow and sea ice melting regions, but minor for the global average. The analyses show that the results of the G4 experiment, which simulates sulfate geoengineering, include large inter-model variability both in the direct SRM forcing and the shortwave rapid adjustment from change in the cloud amount, and imply a high uncertainty in modelled processes of sulfate aerosols and clouds.« less

  15. Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet.

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Steffen, Konrad

    1998-01-01

    The Advanced Very High Resolution Radiometer is used to derive surface temperatures for one satellite pass under clear skies over the Greenland ice sheet from 1989 through 1993. The results of these temperatures are presented as monthly means, and their spatial and temporal variability are discussed. Accuracy of the dry snow surface temperatures is estimated to be better than 1 K during summer. This error is expected to increase during polar night due to problems in cloud identification. Results indicate the surface temperature of the Greenland ice sheet is strongly dominated by topography, with minimum surface temperatures associated with the high elevation regions. In the summer, maximum surface temperatures occur during July along the western coast and southern tip of the ice sheet. Minimum temperatures are found at the summit during summer and move farther north during polar night. Large interannual variability in surface temperatures occurs during winter associated with katabatic storm events. Summer temperatures show little variation, although 1992 stands out as being colder than the other years. The reason for the lower temperatures during 1992 is believed to be a result of the 1991 eruption of Mount Pinatubo.

  16. The Surface Radiation Budget over Oceans and Continents.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Prata, A. J.; Rotstayn, L. D.; McAvaney, B. J.; Cusack, S.

    1998-08-01

    An updated evaluation of the surface radiation budget in climate models (1994-96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m2), excess net radiation (RN) and downwelling shortwave flux density (So) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%-20% (12 W m2) in RN and about 12% (20 W m2) in So]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m2; for So, it is 25 (60) W m2 over land (warm pool) in an annual mean of 176 (197) W m2.The effects of aerosols are included in three of the authors' datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So by 15-20 W m2 over land and 5-10 W m2 over the oceans. Model differences in cloud cover contribute to differences in So between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.

  17. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

    USGS Publications Warehouse

    Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.

    2011-01-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.328C relative to 1881-1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.568 and 0.528C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol-cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.668C but did not include aerosol-cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud-aerosol interactions to limit greenhouse gas warming. ?? 2011 American Meteorological Society.

  18. Sensitivity of Downward Longwave Surface Radiation to Moisture and Cloud Changes in a High-elevation Region

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Chen, Yonghua; Rangwala, Imtiaz; Miller, James R.

    2013-01-01

    Several studies have suggested enhanced rates of warming in high-elevation regions since the latter half of the twentieth century. One of the potential reasons why enhanced rates of warming might occur at high elevations is the nonlinear relationship between downward longwave radiation (DLR) and specific humidity (q). Using ground-based observations at a high-elevation site in southwestern Colorado and coincident satellite-borne cloud retrievals, the sensitivity of DLR to changes in q and cloud properties is examined and quantified using a neural network method. It is also used to explore how the sensitivity of DLR to q (dDLR/dq) is affected by cloud properties. When binned by season, dDLR/dq is maximum in winter and minimum in summer for both clear and cloudy skies. However, the cloudy-sky sensitivities are smaller, primarily because (1) for both clear and cloudy skies dDLR/dq is proportional to 1/q, for q>0.5 g/kg, and (2) the seasonal values of q are on average larger in the cloudy-sky cases than in clear-sky cases. For a given value of q, dDLR/dq is slightly reduced in the presence of clouds and this reduction increases as q increases. In addition, DLR is found to be more sensitive to changes in cloud fraction when cloud fraction is large. In the limit of overcast skies, DLR sensitivity to optical thickness decreases as clouds become more opaque. These results are based on only one high-elevation site, so the conclusions here need to be tested at other high-elevation locations.

  19. Detection of a poorly resolved airplane using SWIR polarization imaging

    NASA Astrophysics Data System (ADS)

    Dahl, Laura M.; Shaw, Joseph A.; Chenault, David B.

    2016-05-01

    Polarization can be used to detect manmade objects on the ground and in the air, as it provides additional information beyond intensity and color. Skylight can be strongly polarized, so the detection of airplanes in flight requires careful consideration of the skylight degree and angle of polarization (DoLP, AoP). In this study, we detect poorly resolved airplanes (>= 4 pixels on target) in flight during daytime partly cloudy and smoky conditions in Bozeman, Montana. We used a Polaris Sensor Technologies SWIR-MWIR rotating imaging polarimeter to measure the polarization signatures of airplanes and the surrounding skylight from 1.5 to 1.8 μm in the short-wave infrared (SWIR). An airplane flying in a clear region of partly cloudy sky was found to be 69% polarized at an elevation angle of 13° with respect to the horizon and the surrounding skylight was 4-8% polarized (maximum skylight DoLP was found to be 7-14% at an elevation angle of 50°). As the airplane increased in altitude, the DoLP for both airplane and surrounding sky pixels increased as the airplane neared the band of maximum sky polarization. We also observed that an airplane can be less polarized than its surrounding skylight when there is heavy smoke present. In such a case, the airplane was 30-38% polarized at an elevation angle of 17°, while the surrounding skylight was approximately 40% polarized (maximum skylight DoLP was 40-55% at an elevation angle of 34°). In both situations the airplane was most consistently observed in DoLP images rather than S0 or AoP images. In this paper, we describe the results in detail and discuss how this phenomenology could detect barely resolved aircrafts.

  20. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) data and the instantaneous scanner ERBE data from the NOAA-9 and NOAA-10 satellites.

  1. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  2. Modeling shortwave radiative fluxes from satellites

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Pinker, R. T.

    2012-12-01

    During the last two decades, significant progress has been made in assessing the Earth Radiation Balance from satellite observations. Yet, satellite based estimates differ from each other and from those provided by numerical models. Major issues are related to quality of satellite observations, such as the frequent changes in satellite observing systems, degradation of sensors, restricted spectral intervals and viewing geometry of sensors, and changes in the quality of atmospheric inputs that drive the inference schemes. To reduce differences among the satellite based estimates requires, among others, updates to inference schemes so that most recent auxiliary information can be fully utilized. This paper reports on improvements introduced to a methodology developed at the University of Maryland to estimate shortwave (SW) radiative fluxes within the atmosphere system from satellite observations, the implementation of the approach with newly available auxiliary information, evaluation of the downwelling SW flux against ground observations, and comparison with independent satellite methods and numerical models. Specifically, introduced are: new Narrow to Broadband (N/B) transformations and new Angular Distribution Models (ADM) for clear and cloudy sky that incorporate most recent land use classifications; improved aerosol treatment; separation of clouds by phase; improved sun-earth geometry; and implementation at 0.5° spatial resolution at 3-hourly intervals integrated to daily and monthly time scales. When compared to an earlier version of the model as implemented at 2.5° at global scale and against observations from the globally distributed Baseline Surface Radiation Network (BSRN) stations for a period of six years (at monthly time scale), the bias was reduced from 8.6 (4.6%) to -0.5 (0.3%) W/m2, the standard deviation from 16.6 (8.9%) to 14.5 (7.8%) W/m2while the correlation remained high at 0.98 in both cases. Evaluation was also done over oceanic sites as available from the Pilot Research Moored Array in the Tropical Atlantic (PIRATA) moorings and from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) moorings in the tropical Pacific Ocean. Overall, results over oceans were not as good as over land for all the satellite retrievals compared in this study.

  3. Testing the Two-Layer Model for Correcting Clear Sky Reflectance near Clouds

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Evans, Frank; Varnai, Tamas; Levy, Rob

    2015-01-01

    A two-layer model (2LM) was developed in our earlier studies to estimate the clear sky reflectance enhancement due to cloud-molecular radiative interaction at MODIS at 0.47 micrometers. Recently, we extended the model to include cloud-surface and cloud-aerosol radiative interactions. We use the LES/SHDOM simulated 3D true radiation fields to test the 2LM for reflectance enhancement at 0.47 micrometers. We find: The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; the cloud-molecular interaction alone accounts for 70 percent of the enhancement; the cloud-surface interaction accounts for 16 percent of the enhancement; the cloud-aerosol interaction accounts for an additional 13 percent of the enhancement. We conclude that the 2LM is simple to apply and unbiased.

  4. Alternative Fuels Data Center: Blue Skies Initiative Clears the Air in

    Science.gov Websites

    North Carolina for More Than a Decade Blue Skies Initiative Clears the Air in North Carolina for More Than a Decade to someone by E-mail Share Alternative Fuels Data Center: Blue Skies Initiative Center: Blue Skies Initiative Clears the Air in North Carolina for More Than a Decade on Twitter Bookmark

  5. The SMART Ground-based Remote Sensing for Terra/MODIS Validation

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Q. Jack; Barenbrug, M.; Lau, William K.-M. (Technical Monitor)

    2001-01-01

    A ground-based remote sensing system - SMART (Surface Measurements for Atmospheric Radiative Transfer) - was deployed during both the SAFARI-2000 and the ARREX-1999 dry season campaigns. The measurement site is the Skukuza airport. The operation period for 1999 is from August 16 to September 10. The main instruments include shortwave (approximately 0.28-2.8 micrometers) and longwave (approximately 4-50 micrometers) broadband radiometers, a shadow-band radiometer, a micro-pulse lidar, and a microwave radiometer. We also did some measurements of solar spectral flux by using an ASD spectrometer. The operation period for 2000 is from August 15 to September 22. This time we added a few new features to the SMART system: a solar tracker for direct and diffuse components of solar fluxes; the scanning capability to the microwave radiometer; a whole sky camera for documenting the sky conditions every minute; and a mini-weather station for atmospheric pressure, temperature, humidity, wind speed/direction. A surface SSFR (Solar Spectral Flux Radiometer) from NASA Ames also joined us for the measurements. This is a unique data set with reasonably long observational period and high accuracy. The data show good correlation with the local weather patterns. We also see diurnal change and some special events, such as fierce fires nearby. To quantify the surface radiative forcing of biomass burning aerosols, many pyranometers, pyrgeometers, and pyrheliometers measure the global, direct, and diffuse irradiance at the surface. These fluxes combining with the collocated optical thickness retrievals from sun photometer (or shadow-band radiometer), the solar radiative forcing, proportional to delta F/delta tau, can be investigated. Integrated with measurements of other instruments at the site, these data sets will serve as "ground truth" for the satellite measurements and modeling.

  6. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.

  7. Radiation budget changes with dry forest clearing in temperate Argentina.

    PubMed

    Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G

    2013-04-01

    Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.

  8. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  9. Spectral Reflectance and Albedo of Snow-Covered Heterogeneous Landscapes in New Hampshire, USA: Comparison of Ground-based, Airborne Hyperspectral, and MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Ollinger, S. V.; Martin, M.; Lepine, L. C.; Hollinger, D. Y.; Dibb, J. E.

    2013-12-01

    This study evaluates the accuracy of hyperspectral imagery (HSI) and MODIS daily 500-m snow albedo over forested, deforested, and mixed land use types under snow-covered conditions in New Hampshire, USA. HSI spectral reflectance generally agrees well with tower-based measurements above a mixed forest canopy. Over cleared pasture, HSI spectral reflectance is lower than ground-based measurements collected using a spectrometer, and greatly underestimates reflectance at wavelengths less than 430 nm. Based on tower-based albedo measurements, HSI shortwave broadband albedo meets the absolute accuracy requirement of ×0.05 recommended for climate modeling. When HSI 5-m fine-resolution imagery is aggregated to MODIS 500-m resolution and integrated to shortwave broadband albedo, MOD10A1 daily snow-covered surface albedo exhibits a negative bias of -0.0033 and root mean square error (RMSE) of 0.067 compared to HSI shortwave broadband albedo, just outside the range of the absolute accuracy requirement of ×0.05 recommended for climate modeling. Spectral albedo collected over a deciduous broadleaf canopy under snow-covered and snow-free conditions will expand the existing spectral library and contribute to future validation efforts of multi-spectral remote sensing products (e.g., HyspIRI).

  10. The Indian ocean experiment: aerosol forcing obtained from satellite data

    NASA Astrophysics Data System (ADS)

    Rajeev, K.; Ramanathan, V.

    The tropical Indian Ocean provides an ideal and unique natural laboratory to observe and understand the role of anthropogenic aerosols in climate forcing. Since 1996, an international team of American, European and Indian scientists have been collecting aerosol, chemical and radiation data from ships and surface stations, which culminated in a multi-platform field experiment conducted during January to March of 1999. A persistent haze layer that spread over most of the northern Indian Ocean during wintertime was discovered. The layer, a complex mix of organics, black carbon, sulfates, nitrates and other species, subjects the lower atmosphere to a strong radiative heating and a larger reduction in the solar heating of the ocean. We present here the regional distribution of aerosols and the resulting clear sky aerosol radiative forcing at top-of-atmosphere (TOA) observed over the Indian Ocean during the winter months of 1997, 1998 and 1999 based on the aerosol optical depth (AOD) estimated using NOAA14-AVHRR and the TOA radiation budget data from CERES on board TRMM. Using the ratio of surface to TOA clear sky aerosol radiative forcing observed during the same period over the Indian Ocean island of Kaashidhoo (Satheesh and Ramanathan, 2000), the clear sky aerosol radiative forcing at the surface and the atmosphere are discussed. The regional maps of AVHRR derived AOD show abnormally large aerosol concentration during the winter of 1999 which is about 1.5 to 2 times larger than the AOD during the corresponding period of 1997 and 1998. A large latitudinal gradient in AOD is observed during all the three years of observation, with maximum AOD in the northern hemisphere. The diurnal mean clear sky aerosol forcing at TOA in the northern hemisphere Indian Ocean is in the range of -4 to -16 Wm -2 and had large spatio-temporal variations while in the southern hemisphere Indian Ocean it is in the range of 0 to -6Wm -2. The importance of integrating in-situ data with satellite data to get reliable picture of the regional scale aerosol forcing is demonstrated.

  11. Assessing the Monthly Averaged Variability of TOA Fluxes from CERES using EBAF, ERBE-like and FLASHFlux Data From 2001 to Present

    NASA Astrophysics Data System (ADS)

    Stackhouse, Paul; Wong, Takmeng; Kratz, David; Gupta, Shashi; Wiber, Anne; Edwards, Anne

    2010-05-01

    The FLASHFlux (Fast Longwave and Shortwave radiative Fluxes from CERES and MODIS) project derives daily averaged gridded top-of-atmosphere (TOA) and surface radiative fluxes within one week of observation. Production of CERES based TOA and surface fluxes is achieved by using the latest CERES calibration that is assumed constant in time and by making simplifying assumptions in the computation of time and space averaged quantities. Together these assumptions result in approximately a 1% increase in the uncertainty for FLASHFlux products over CERES. Analysis has clearly demonstrated that the global-annual mean outgoing longwave radiation shows a decrease of ~0.75 Wm-2, from 2007 to 2008, while the global-annual mean reflected shortwave radiation shows a decrease of 0.14 Wm-2 over that same period. Thus, the combined longwave and shortwave changes have resulted in an increase of ~0.89 Wm-2 in net radiation into the Earth climate system in 2008. A time series of TOA fluxes was constructed from CERES EBAF, CERES ERBE-like and FLASHFLUX. Relative to this multi-dataset average from 2001 to 2008, the 2008 global-annual mean anomalies are -0.54/-0.26/+0.80 Wm-2, respectively, for the longwave/shortwave/net radiation. These flux values, which were published in the NOAA 2008 State of the Climate Report, are within their corresponding 2-sigma interannual variabilities for this period. This paper extends these results through 2009, where the net flux is observed to recover. The TOA LW variability is also compared to AIRS OLR showing excellent agreement in the anomalies. The variability appears very well correlated to the to the 2007-2009 La Nina/El Nino cycles, which altered the global distribution of clouds, total column water vapor and temperature. Reassessments of these results are expected when newer Clouds and the Earth's Radiant Energy System (CERES) data are released.

  12. Reducing Heat Gains and Cooling Loads Through Roof Structure Configurations of A House in Medan

    NASA Astrophysics Data System (ADS)

    Handayani Lubis, Irma; Donny Koerniawan, Mochamad

    2018-05-01

    Heat gains and heat losses through building surfaces are the main factors that determine the building’s cooling and heating loads. Roof as a building surface that has the most exposed area to the sun, contribute most of heat gains in the building. Therefore, the amount of solar heat gains on the roofs need to be minimized by roof structure configurations. This research aims to discover the optimization of roof structure configurations (coating material, structure material, inclination, overhang, and insulation) as one of passive design strategies that reduce heat gains and cooling loads of a house in Medan. The result showed that case four, white-painted metal roof combined with 45° roof pitched, 1.5m overhang, and addition of insulation, indicates the minimum heat gains production and the less cooling loads during clear sky day but not in the overcast sky condition. In conclusion, heat gains and cooling loads of a house in Medan could be diminished during clear sky day by the addition of roof coating with high reflectance low solar absorbtance, the slope roof, the extension of wider veranda, and the addition of insulation in the roof structure.

  13. A Method for Assessing the Quality of Model-Based Estimates of Ground Temperature and Atmospheric Moisture Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for (delta)T(sub g) to approx. 20% for the lower tropospheric moisture between 500 hPa and surface. The regression relationships developed from the synthetic flux data, together with CLR and RadWn observed with the Clouds and Earth Radiant Energy System instrument, ire used to assess the quality of the GEOS2 T(sub g) and pw. Results showed that the GEOS2 T(sub g) is too cold over land, and pw in upper layers is too high over the tropical oceans and too low in the lower atmosphere.

  14. Next-Generation Angular Distribution Models for Top-of-Atmosphere Radiative Flux Calculation from CERES Instruments: Validation

    NASA Technical Reports Server (NTRS)

    Su, W.; Corbett, J.; Eitzen, Z.; Liang, L.

    2015-01-01

    Radiative fluxes at the top of the atmosphere (TOA) from the Clouds and the Earth's Radiant Energy System (CERES) instrument are fundamental variables for understanding the Earth's energy balance and how it changes with time. TOA radiative fluxes are derived from the CERES radiance measurements using empirical angular distribution models (ADMs). This paper evaluates the accuracy of CERES TOA fluxes using direct integration and flux consistency tests. Direct integration tests show that the overall bias in regional monthly mean TOA shortwave (SW) flux is less than 0.2Wm(exp -2) and the RMSE is less than 1.1Wm(exp -2). The bias and RMSE are very similar between Terra and Aqua. The bias in regional monthly mean TOA LW fluxes is less than 0.5Wm(exp -2) and the RMSE is less than 0.8Wm(exp -)2 for both Terra and Aqua. The accuracy of the TOA instantaneous flux is assessed by performing tests using fluxes inverted from nadir- and oblique-viewing angles using CERES along-track observations and temporally and spatially matched MODIS observations, and using fluxes inverted from multi-angle MISR observations. The averaged TOA instantaneous SW flux uncertainties from these two tests are about 2.3% (1.9Wm(exp -2) over clear ocean, 1.6% (4.5Wm(exp -2) over clear land, and 2.0% (6.0Wm(exp -) over clear snow/ice; and are about 3.3% (9.0Wm(exp -2), 2.7% (8.4Wm(exp -2), and 3.7% (9.9Wm(exp -2) over ocean, land, and snow/ice under all-sky conditions. The TOA SW flux uncertainties are generally larger for thin broken clouds than for moderate and thick overcast clouds. The TOA instantaneous daytime LW flux uncertainties derived from the CERESMODIS test are 0.5% (1.5Wm(exp -2), 0.8% (2.4Wm(exp -2), and 0.7% (1.3Wm(exp -2) over clear ocean, land, and snow/ice; and are about 1.5% (3.5Wm(exp -2), 1.0% (2.9Wm(exp -2), and 1.1% (2.1Wm(exp -2) over ocean, land, and snow/ice under all-sky conditions. The TOA instantaneous nighttime LW flux uncertainties are about 0.5-1% (<2.0Wm(exp -2) for all surface types. Flux uncertainties caused by errors in scene identification are also assessed by using the collocated CALIPSO, CloudSat, CERES and MODIS data product. Errors in scene identification tend to underestimate TOA SW flux by about 0.6Wm(exp -2) and overestimate TOA daytime (nighttime) LW flux by 0.4 (0.2)Wm(exp -2) when all CERES viewing angles are considered.

  15. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    NASA Astrophysics Data System (ADS)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed if hyperspectral ground-based data are available to validate the current modelling approaches. The results presented here extend the work of previous studies by recording the HDRF of Arctic snow covered tundra at high solar zenith angles over several sites. Demonstrating the strong forward scattering nature of snow reflectance at high solar zenith angles, but also showing clear wavelength dependence in the shape of the HDRF, and an increasing anisotropy with wavelength.

  16. Clear-sky irradiance simulation using GMAO products and its comparison to ground and CERES satellite observation

    NASA Astrophysics Data System (ADS)

    Ham, S. H.; Loeb, N. G.; Kato, S.; Rose, F. G.; Bosilovich, M. G.; Rutan, D. A.; Huang, X.; Collow, A.

    2017-12-01

    Global Modeling Assimilation Office (GMAO) GEOS assimilated datasets are used to describe temperature and humidity profiles in the Clouds and the Earth's Radiant Energy System (CERES) data processing. Given that advance versions of the assimilated data sets known as of Forward Processing (FP), FP Parallel (FPP), and Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) datasets are available, we examine clear-sky irradiance calculation to see if accuracy is improved with these newer versions of GMAO datasets when their temperature and humidity profiles are used in computing irradiances. Two older versions, GEOS-5.2.0 and GEOS-5.4.1 are used for producing, respectively, Ed3 and Ed4 CERES data products. For the evaluation, CERES-derived TOA irradiances and observed ground-based surface irradiances are compared with the computed irradiances for clear skies identified by Moderate Resolution Imaging Spectroradiometer (MODIS). Surface type dependent spectral emissivity is taken from an observationally-based monthly gridded emissivity dataset. TOA longwave (LW) irradiances computed with GOES-5.2.0 temperature and humidity profiles are biased low, up to -5 Wm-2, compared to CERES-derived TOA longwave irradiance over tropical oceans. In contrast, computed longwave irradiances agree well with CERES observations with the biases less than 2 W m-2 when GOES-5.4.1, FP v5.13, or MERRA-2 temperature and humidity are used. The negative biases of the TOA LW irradiance computed with GOES-5.2.0 appear to be related to a wet bias at 500-850 hPa layer. This indicates that if the input of CERES algorithm switches from GOES-5.2.0 to FP v5.13 or MERRA-2, the bias in clear-sky longwave TOA fluxes over tropical oceans is expected to be smaller. At surface, downward LW irradiances computed with FP v5.13 and MERRA-2 are biased low, up to -10 Wm-2, compared to ground observations over tropical oceans. The magnitude of the bias in the longwave surface irradiances cannot be explained by uncertainties related to aerosol, which is estimated to be less than 2.5 W m-2. Therefore, the negative biases are likely caused by cold or dry biases in FP v5.13 and MERRA-2 datasets. We plan to continue the investigation with more ground sites.

  17. Assessing the urban solar energy resource potential of Davao City, Philippines, using LiDAR Digital Surface Model (DSM) and GRASS GIS

    NASA Astrophysics Data System (ADS)

    Teves, Justine; Sola, Eula Fae; Pintor, Ben Hur; Ang, Ma. Rosario Concepcion

    2016-10-01

    Solar energy is emerging as one of the top options for renewable energy sources in the Philippines, with largescale solar photovoltaic (PV) farms being built all over the country. Solar energy resource in the urban environment has great potential in making a city self-sustaining, but has not been fully explored for the country. In order to represent its potential, reliable resource assessment should be done. This study aims to assess the available solar energy resource in Davao City, a trade and commerce hub in southern Philippines. The functions of GRASS GIS, specifically the r.sun module, in modelling incoming solar radiation is discussed, along with the use of a one-meter LiDAR Digital Surface Model (DSM) and Linke Turbidity coefficients as inputs. The average Julian day of each month was used to compute the Global Horizontal Irradiation (GHI) values under clear-sky or cloudless conditions. To account for the effects of the clouds in the study area, the clear-sky indices (Kc) were computed using data from solar recording stations of the Bureau of Soils and Water Management (BSWM) found within and around the region. These were multiplied to the modelled clear-sky GHI rasters to get the real-sky GHI. The results show that the city's average GHI potential ranges from 2693.79 Wh/m2 and 4453.13 Wh/m2. Average values are particularly higher around the months of March and April, while lower values are seen in the months of November and January. Areas with higher potential are seen in the southern portion of the city, consistent in built-up areas.

  18. Tropospheric haze and colors of the clear daytime sky.

    PubMed

    Lee, Raymond L

    2015-02-01

    To casual observers, haze's visible effects on clear daytime skies may seem mundane: significant scattering by tropospheric aerosols visibly (1) reduces the luminance contrast of distant objects and (2) desaturates sky blueness. However, few published measurements of hazy-sky spectra and chromaticities exist to compare with these naked-eye observations. Hyperspectral imaging along sky meridians of clear and hazy skies at one inland and two coastal sites shows that they have characteristic colorimetric signatures of scattering and absorption by haze aerosols. In addition, a simple spectral transfer function and a second-order scattering model of skylight reveal the net spectral and colorimetric effects of haze.

  19. Improvement of the internal light environment on the objects of transport infrastructure with aid of sun-protective devices

    NASA Astrophysics Data System (ADS)

    Stetsky, Sergey

    2017-10-01

    The article analyzes the problems of outdoor stationary sun-protective devices (S.P.D.) and their influence on the natural daylighting levels in the premises of civil objects of transport infrastructure under the hot and sunny climatic conditions of the environment. It is noted, that with clear sky, typical for the said climate, non-uniform luminance of the sky differs seriously from the luminance of standard overcast sky with diffused light, recommended by C.I.E. (Commission International D’Eclairage).A conclusion is made, that with clear sky conditions, a sun-protective devices in the form of stationary canopies (awninas) help to improve the lighting environment in the premises considered. This becomes possible due to reflected sun flow from the surfaces of SPD employed, as well as due to rise of a daylight factor values in farmost from windows zones of interiors, because of the increase of luminance factor values of the sky areas, observed from these zones. Thus, the SPD considered, in the hot and sunny climatic conditions are able not only to carry out their main function of passive method of solar radiation and thermal control in the interiors, but also to act as an efficient measure to improve lightning environment of the premises in question.

  20. Surface Energy Budget Disruption in the Northeast Pacific in Response to a Marine Heat Wave

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Siedlecki, S. A.; Ackerman, T. P.; Bond, N. A.

    2016-12-01

    The surface energy budget of the ocean varies greatly over space and time as a result of ocean-atmosphere interactions. Changes in the budget due to variability in incident shortwave radiation can alter the thermal structure of the upper ocean, influence photosynthetic processes, and ultimately affect marine biogeochemistry. Thus, accurate representation of the surface energy budget over the oceans is essential for successfully modeling ocean processes and ocean-atmosphere interactions. Siedlecki et al. [Scientific Reports 6 (2016): 27203] show that NOAA's Climate Forecast System (CFS) shortwave radiation fields are biased high relative to CFS reanalysis data by about 50 W/m2 in the study area off the coast of Washington and Oregon. This bias varies in space and time and is known to exist in large scale climate models. The bias results in reduced skill in ocean forecasts at the surface, with specific impacts on sea surface temperature and biogeochemistry. In order to better understand the surface radiation balance over the ocean and the biases present in large scale climate models, we use several data sets to analyze an anomalous sea surface temperature event (marine heat wave, MHW) in the Northeast Pacific during 2014-2015. This `blob' of warm water disrupted ocean-atmosphere feedbacks in the region and altered the surface energy balance; thus, it provides a case study to better understand physical mechanisms at play in the surface radiation balance. CERES SYN1deg satellite data are compared to model output from CFS (1°x1° resolution) and WRF (12km resolution). We use all three fields to assess the impact of model resolution on the surface energy budget, as well as identify feedbacks in ocean-atmosphere processes that may differ between the observations and the models. Observational time series from 2009-15 of shortwave radiation, longwave radiation, and cloud parameters across 3 latitudinal lines (44.5N, 47N, 50N) in the Northeast Pacific (150W to 125W) clearly show disruption in cloud fraction, water content, and radiative fluxes during the MHW. The timing and spatial extent of the disruption differ in the models. The surface radiation budget for the Northeast Pacific over this time period from the observations and models is compared and discussed.

  1. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    NASA Astrophysics Data System (ADS)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  2. Quantifying and Modelling the Effect of Cloud Shadows on the Surface Irradiance at Tropical and Midlatitude Forests

    NASA Astrophysics Data System (ADS)

    Kivalov, Sergey N.; Fitzjarrald, David R.

    2018-02-01

    Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: 42.53{°}N, 72.17{°}W) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: 2.86{°}S, 54.96{°}W). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers' qualitative reports of `scattered' and `broken' clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal "radiative forcing" linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.

  3. Validation of a Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR.

  4. An evaluation of atmospheric corrections to advanced very high resolution radiometer data

    USGS Publications Warehouse

    Meyer, David; Hood, Joy J.

    1993-01-01

    A data set compiled to analyze vegetation indices is used to evaluate the effect of atmospheric correction to AVHRR measurement in the solar spectrum. Such corrections include cloud screening and "clear sky" corrections. We used the "clouds from AVHRR" (CLAVR) method for cloud detection and evaluated its performance over vegetated targets. Clear sky corrections, designed to reduce the effects of molecular scattering and absorption due to ozone, water vapor, carbon dioxide, and molecular oxygen, were applied to data values determine to be cloud free. Generally, it was found that the screening and correction of the AVHRR data did not affect the maximum NDVI compositing process adversely, while at the same time improving estimates of the land-surface radiances over a compositing period.

  5. Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential

    NASA Astrophysics Data System (ADS)

    Aoyagi, Toshinori; Takahashi, Shunji

    2012-02-01

    To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.

  6. Evaluation of sea-surface photosynthetically available radiation algorithms under various sky conditions and solar elevations.

    PubMed

    Somayajula, Srikanth Ayyala; Devred, Emmanuel; Bélanger, Simon; Antoine, David; Vellucci, V; Babin, Marcel

    2018-04-20

    In this study, we report on the performance of satellite-based photosynthetically available radiation (PAR) algorithms used in published oceanic primary production models. The performance of these algorithms was evaluated using buoy observations under clear and cloudy skies, and for the particular case of low sun angles typically encountered at high latitudes or at moderate latitudes in winter. The PAR models consisted of (i) the standard one from the NASA-Ocean Biology Processing Group (OBPG), (ii) the Gregg and Carder (GC) semi-analytical clear-sky model, and (iii) look-up-tables based on the Santa Barbara DISORT atmospheric radiative transfer (SBDART) model. Various combinations of atmospheric inputs, empirical cloud corrections, and semi-analytical irradiance models yielded a total of 13 (11 + 2 developed in this study) different PAR products, which were compared with in situ measurements collected at high frequency (15 min) at a buoy site in the Mediterranean Sea (the "BOUée pour l'acquiSition d'une Série Optique à Long termE," or, "BOUSSOLE" site). An objective ranking method applied to the algorithm results indicated that seven PAR products out of 13 were well in agreement with the in situ measurements. Specifically, the OBPG method showed the best overall performance with a root mean square difference (RMSD) (bias) of 19.7% (6.6%) and 10% (6.3%) followed by the look-up-table method with a RMSD (bias) of 25.5% (6.8%) and 9.6% (2.6%) at daily and monthly scales, respectively. Among the four methods based on clear-sky PAR empirically corrected for cloud cover, the Dobson and Smith method consistently underestimated daily PAR while the Budyko formulation overestimated daily PAR. Empirically cloud-corrected methods using cloud fraction (CF) performed better under quasi-clear skies (CF<0.3) with an RMSD (bias) of 9.7%-14.8% (3.6%-11.3%) than under partially clear to cloudy skies (0.30.7), however, all methods showed larger RMSD differences (biases) ranging between 32% and 80.6% (-54.5%-8.7%). Finally, three methods tested for low sun elevations revealed systematic overestimation, and one method showed a systematic underestimation of daily PAR, with relative RMSDs as large as 50% under all sky conditions. Under partially clear to overcast conditions all the methods underestimated PAR. Model uncertainties predominantly depend on which cloud products were used.

  7. Seasonal Clear-Sky Flux and Cloud Radiative Effect Anomalies in the Arctic Atmospheric Column Associated with the Arctic Oscillation and Arctic Dipole

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    The impact of the Arctic Oscillation (AO) and Arctic Dipole (AD) on the radiative flux into the Arctic mean atmospheric column is quantified. 3-month-averaged AO and AD indices are regressed with corresponding surface and top-of-atmosphere (TOA) fluxes from the CERES-SFC and CERES-TOA EBAF datasets over the period 2000-2014. An increase in clear-sky fluxes into the Arctic mean atmospheric column during fall is the largest net flux anomaly associated with AO, primarily driven by a positive net longwave flux anomaly (i.e. increase of net flux into the atmospheric column) at the surface. A decrease in the Arctic mean atmospheric column cloud radiative effect during winter and spring is the largest flux anomaly associated with AD, primarily driven by a change in the longwave cloud radiative effect at the surface. These prominent responses to AO and AD are widely distributed across the ice-covered Arctic, suggesting that the physical process or processes that bring about the flux change associated with AO and AD are distributed throughout the Arctic.

  8. A numerical forecast model for road meteorology

    NASA Astrophysics Data System (ADS)

    Meng, Chunlei

    2017-05-01

    A fine-scale numerical model for road surface parameters prediction (BJ-ROME) is developed based on the Common Land Model. The model is validated using in situ observation data measured by the ROSA road weather stations of Vaisala Company, Finland. BJ-ROME not only takes into account road surface factors, such as imperviousness, relatively low albedo, high heat capacity, and high heat conductivity, but also considers the influence of urban anthropogenic heat, impervious surface evaporation, and urban land-use/land-cover changes. The forecast time span and the update interval of BJ-ROME in vocational operation are 24 and 3 h, respectively. The validation results indicate that BJ-ROME can successfully simulate the diurnal variation of road surface temperature both under clear-sky and rainfall conditions. BJ-ROME can simulate road water and snow depth well if the artificial removing was considered. Road surface energy balance in rainy days is quite different from that in clear-sky conditions. Road evaporation could not be neglected in road surface water cycle research. The results of sensitivity analysis show solar radiation correction coefficient, asphalt depth, and asphalt heat conductivity are important parameters in road interface temperatures simulation. The prediction results could be used as a reference of maintenance decision support system to mitigate the traffic jam and urban water logging especially in large cities.

  9. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  10. Multivariate Analysis of Solar Spectral Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  11. A Dynamic Enhancement With Background Reduction Algorithm: Overview and Application to Satellite-Based Dust Storm Detection

    NASA Astrophysics Data System (ADS)

    Miller, Steven D.; Bankert, Richard L.; Solbrig, Jeremy E.; Forsythe, John M.; Noh, Yoo-Jeong; Grasso, Lewis D.

    2017-12-01

    This paper describes a Dynamic Enhancement Background Reduction Algorithm (DEBRA) applicable to multispectral satellite imaging radiometers. DEBRA uses ancillary information about the clear-sky background to reduce false detections of atmospheric parameters in complex scenes. Applied here to the detection of lofted dust, DEBRA enlists a surface emissivity database coupled with a climatological database of surface temperature to approximate the clear-sky equivalent signal for selected infrared-based multispectral dust detection tests. This background allows for suppression of false alarms caused by land surface features while retaining some ability to detect dust above those problematic surfaces. The algorithm is applicable to both day and nighttime observations and enables weighted combinations of dust detection tests. The results are provided quantitatively, as a detection confidence factor [0, 1], but are also readily visualized as enhanced imagery. Utilizing the DEBRA confidence factor as a scaling factor in false color red/green/blue imagery enables depiction of the targeted parameter in the context of the local meteorology and topography. In this way, the method holds utility to both automated clients and human analysts alike. Examples of DEBRA performance from notable dust storms and comparisons against other detection methods and independent observations are presented.

  12. Variability of the contrail radiative forcing due to crystal shape

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be determined. Two cases are discussed here: a 1% homogeneous contrail cover and the contrail cover provided by Rädel and Shine (2008). In the second distribution case, a more realistic contrail cover is taken into account. This model combines the AERO2K flight inventory with meteorological data and normalizes it with respect to the contrail cover derived from satellite observations. Simulations performed by the Fu-Liou model show significant variability of the shortwave, longwave, and net radiative forcing with crystal shape. The nonspherical crystals have smaller net forcing in contrary to spherical particles. The differences in net radiative forcing between optical models reach up to 50%. The hexagonal column and hexagonal plate particles show the smallest net radiative forcing while the largest forcing is obtained for the spheres. The global and annual mean shortwave, longwave, and net contrail radiative forcing, average over all crystal models and assuming an optical depth of 0.3 at visible wavelengths, is -5.7, 16.8, and 11.1 mW/m2, respectively. A ratio of the radiative forcings' standard deviation to the mean value, derived using 10 different ice particle models, is about 0.2 for the shortwave, 0.14 for the longwave, and 0.23 for the net radiation.

  13. Imaging spectropolarimetry of cloudy skies

    NASA Astrophysics Data System (ADS)

    Pust, Nathan; Shaw, Joseph A.

    2006-05-01

    The polarization state of atmospheric radiance varies with cloudiness and cloud type. We have developed a dual-field-of-view imaging spectro-polarimeter for measuring atmospheric polarization in five spectral bands from 450 to 700 nm. This instrument improves the acquisition time of past full-sky digital camera designs to 400 ms using liquid crystal variable retarders (LCVRs). The system can be used to measure polarization with either fisheye or telephoto optics, allowing studies of all-sky and target polarization. We present and describe measurements of sky polarization with clear and variably cloudy sky conditions. In clear skies, we observe a slight upward trend of the degree of polarization with wavelength, in agreement with previous observations. Presence of clouds generally reduces both cloudy sky and surrounding clear sky degree of polarization. The polarization measured from a cloud often reflects only the Rayleigh scattering between the instrument and the cloud, but some of our recent data shows partially polarized cloud scattering.

  14. Spatial variability of shortwave radiative fluxes in the context of snowmelt

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica

    2014-05-01

    Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.

  15. Measuring the influence of aerosols and albedo on sky polarization.

    PubMed

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  16. Impact of coastal fog on the energy and water balance of a California agricultural system

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Oliphant, A. J.; Loik, M. E.

    2016-12-01

    In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. The objective of our study was to develop relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration (ET) rates, which has potential to reduce groundwater use based on local cloud meteorology. Our study site was a coastal strawberry farm located in fog-belt of the Salinas Valley, California. We installed an eddy covariance tower to quantify surface energy budgets and actual ET at the field scale from July-September 2016. We also measured leaf and canopy-scale strawberry physiology on foggy and clear-sky days. Flow meters and soil moisture probes were installed in drip lines to quantify irrigation amount, timing, and soil wetting depth. We found that downward longwave radiation was higher on foggy compared to clear-sky days, indicating that emission of longwave radiation from the surface was absorbed by water droplets and vapor in the fog. Midday latent heat flux decreased by 125 W m-2 from a clear to foggy day, suggesting that water loss from the surface to the atmosphere decreases substantially during fog events. Likewise, we found a decrease in leaf and canopy-level transpiration on foggy compared to clear-sky days. While drawdown of CO2 at the field-scale decreased from -1.2 to -0.6 gC m-2 s-1 during fog events, canopy-level carbon and water vapor flux measurements show that water use efficiency (carbon gain per water loss) increased significantly on foggy days. Our results show that strawberry crops do not demand as much water during fog events, yet still maintain relatively high levels of carbon uptake. Therefore, the amount of irrigation could potentially be reduced during foggy periods without sacrificing yield.

  17. A Method for Deriving All-Sky Evapotranspiration From the Synergistic Use of Remotely Sensed Images and Meteorological Data

    NASA Astrophysics Data System (ADS)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Tang, Ronglin; Gao, Mao-Fang

    2017-12-01

    Evapotranspiration (ET) is an important component of the water and energy cycle. The present study develops a practical approach for generating all-sky ET with the synergistic use of satellite images and meteorological data. In this approach, the ET over clear-sky pixels is estimated from a two-stage land surface temperature (LST)/fractional vegetation cover feature space method where the dry/wet edges are determined from theoretical calculations. For cloudy pixels, the Penman-Monteith equation is used to calculate the ET where no valid remotely sensed LST is available. An evaluation of the method with ET collected at ground-based large aperture scintillometer measurements at the Yucheng Comprehensive Experimental Station (YCES) in China is performed over a growth period from April to October 2010. The results show that the root-mean-square error (RMSE) and bias over clear-sky pixels are 57.3 W/m2 and 18.2 W/m2, respectively, whereas an RMSE of 69.3 W/m2 with a bias of 12.3 W/m2 can be found over cloudy pixels. Moreover, a reasonable overall RMSE of 65.3 W/m2 with a bias of 14.4 W/m2 at the YCES can be obtained under all-sky conditions, indicating a promising prospect for the derivation of all-sky ET using currently available satellite and meteorological data at a regional or global scale in future developments.

  18. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  19. Absorption of Solar Radiation by Clouds: Interpretations of Satellite, Surface, and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Zhou, Y.; Jing, X.; Dvortsov, V.

    1996-01-01

    To investigate the absorption of shortwave radiation by clouds, we have collocated satellite and surface measurements of shortwave radiation at several locations. Considerable effort has been directed toward understanding and minimizing sampling errors caused by the satellite measurements being instantaneous and over a grid that is much larger than the field of view of an upward facing surface pyranometer. The collocated data indicate that clouds absorb considerably more shortwave radiation than is predicted by theoretical models. This is consistent with the finding from both satellite and aircraft measurements that observed clouds are darker than model clouds. In the limit of thick clouds, observed top-of-the-atmosphere albedos do not exceed a value of 0.7, whereas in models the maximum albedo can be 0.8.

  20. Radiative transfer model validations during the First ISLSCP Field Experiment

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Breon, Francois-Marie; Gautier, Catherine

    1990-01-01

    Two simple radiative transfer models, the 5S model based on Tanre et al. (1985, 1986) and the wide-band model of Morcrette (1984) are validated by comparing their outputs with results obtained during the First ISLSCP Field Experiment on concomitant radiosonde, aerosol turbidity, and radiation measurements and sky photographs. Results showed that the 5S model overestimates the short-wave irradiance by 13.2 W/sq m, whereas the Morcrette model underestimated the long-wave irradiance by 7.4 W/sq m.

  1. SatCam: A mobile application for coordinated ground/satellite observation of clouds and validation of satellite-derived cloud mask products.

    NASA Astrophysics Data System (ADS)

    Gumley, L.; Parker, D.; Flynn, B.; Holz, R.; Marais, W.

    2011-12-01

    SatCam is an application for iOS devices that allows users to collect observations of local cloud and surface conditions in coordination with an overpass of the Terra, Aqua, or NPP satellites. SatCam allows users to acquire images of sky conditions and ground conditions at their location anywhere in the world using the built-in iPhone or iPod Touch camera at the same time that the satellite is passing overhead and viewing their location. Immediately after the sky and ground observations are acquired, the application asks the user to rate the level of cloudiness in the sky (Completely Clear, Mostly Clear, Partly Cloudy, Overcast). For the ground observation, the user selects their assessment of the surface conditions (Urban, Green Vegetation, Brown Vegetation, Desert, Snow, Water). The sky condition and surface condition selections are stored along with the date, time, and geographic location for the images, and the images are uploaded to a central server. When the MODIS (Terra and Aqua) or VIIRS (NPP) imagery acquired over the user location becomes available, a MODIS or VIIRS true color image centered at the user's location is delivered back to the SatCam application on the user's iOS device. SSEC also proposes to develop a community driven SatCam website where users can share their observations and assessments of satellite cloud products in a collaborative environment. SSEC is developing a server side data analysis system to ingest the SatCam user observations, apply quality control, analyze the sky images for cloud cover, and collocate the observations with MODIS and VIIRS satellite products (e.g., cloud mask). For each observation that is collocated with a satellite observation, the server will determine whether the user scored a "hit", meaning their sky observation and sky assessment matched the automated cloud mask obtained from the satellite observation. The hit rate will be an objective assessment of the accuracy of the user's sky observations. Users with high hit rates will be identified automatically and their observations will be used globally to evaluate the performance of the MODIS cloud mask algorithm for Terra and Aqua and the VIIRS cloud mask algorithm for NPP. The user's assessment of the ground conditions will also be used to evaluate the cloud mask accuracy in selecting the correct surface type at the user's location, which is an important element in the decision path used internally by the cloud mask algorithm. This presentation will describe the SatCam application, how it is used, and show examples of SatCam observations.

  2. Competing Atmospheric and Surface-Driven Impacts of Absorbing Aerosols on the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Persad, G.; Paynter, D.; Ming, Y.; Ramaswamy, V.

    2015-12-01

    Absorbing aerosols, by attenuating shortwave radiation within the atmosphere and reemitting it as longwave radiation, redistribute energy both vertically within the surface-atmosphere column and horizontally between polluted and unpolluted regions. East Asia has the largest concentrations of anthropogenic absorbing aerosols globally, and these, along with the region's scattering aerosols, have both reduced the amount of solar radiation reaching the Earth's surface regionally ("solar dimming") and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian Summer Monsoon (EASM). We here analyze how atmospheric absorption and surface solar dimming compete in driving the response of EASM circulation to anthropogenic absorbing aerosols, which dominates, and why—issues of particular importance for predicting how the EASM will respond to projected changes in absorbing and scattering aerosol emissions in the future. We probe these questions in a state-of-the-art general circulation model (GCM) using a combination of realistic and idealized aerosol perturbations that allow us to analyze the relative influence of absorbing aerosols' atmospheric and surface-driven impacts on EASM circulation. In combination, our results make clear that, although absorption-driven dimming has a less detrimental effect on EASM circulation than purely scattering-driven dimming, aerosol absorption is still a net impairment to EASM strength when both its atmospheric and surface effects are considered. Because atmospheric heating is not efficiently conveyed to the surface, the surface dimming and associated cooling from even a pure absorber is sufficient to counteract its atmospheric heating, resulting in a net reduction in EASM strength. These findings elevate the current understanding of the impacts of aerosol absorption on the EASM, improving our ability to diagnose EASM responses to current and future regional changes in aerosol emissions.

  3. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series

    NASA Astrophysics Data System (ADS)

    Good, Elizabeth J.; Ghent, Darren J.; Bulgin, Claire E.; Remedios, John J.

    2017-09-01

    The relationship between satellite land surface temperature (LST) and ground-based observations of 2 m air temperature (T2m) is characterized in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer series, which has been produced within the European Space Agency GlobTemperature project (http://www.globtemperature.info/). Global LST-T2m differences are analyzed with respect to location, land cover, vegetation fraction, and elevation, all of which are found to be important influencing factors. LSTnight ( 10 P.M. local solar time, clear-sky only) is found to be closely coupled with minimum T2m (Tmin, all-sky) and the two temperatures generally consistent to within ±5°C (global median LSTnight-Tmin = 1.8°C, interquartile range = 3.8°C). The LSTday ( 10 A.M. local solar time, clear-sky only)-maximum T2m (Tmax, all-sky) variability is higher (global median LSTday-Tmax = -0.1°C, interquartile range = 8.1°C) because LST is strongly influenced by insolation and surface regime. Correlations for both temperature pairs are typically >0.9 outside of the tropics. The monthly global and regional anomaly time series of LST and T2m—which are completely independent data sets—compare remarkably well. The correlation between the data sets is 0.9 for the globe with 90% of the CDR anomalies falling within the T2m 95% confidence limits. The results presented in this study present a justification for increasing use of satellite LST data in climate and weather science, both as an independent variable, and to augment T2m data acquired at meteorological stations.

  4. Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.

    2010-01-01

    Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.

  5. The enhancement of clear sky greenhouse effect in HIRS

    NASA Astrophysics Data System (ADS)

    Gastineau, Guillaume; Soden, Brian; Jackson, Darren; O'Dell, Chris; Stephens, Graeme

    2010-05-01

    The High-resolution Infrared Radiation Sounder (HIRS) observations are used to understand the atmospheric response at the top of the atmosphere, induced by the anthropogenic emission of greenhouse gases. The HIRS brightness temperature channels are used to regress the Outgoing Longwave Radiation (OLR), and the greenhouse effect, in clear sky conditions, over the period 1981-2004. Here, we find that since 1981, the OLR remains relatively stable, compared to the greenhouse effect that has significant increased, because of the surface temperature changes. With a multi-model ensemble of coupled model simulations, we show that the greenhouse gases emissions, and the water vapor feedback, account for this observed enhancement of the greenhouse effect. This study further reinforce our confidence that anthropogenic greenhouse gases emission are causing a large part of the recent climate changes.

  6. User Observed Estimates of Cloud Fraction for Modifying a Cloud-free UV Index for Use in an Educational Smart-phone Application on Erythema

    NASA Astrophysics Data System (ADS)

    Lantz, K. O.; Long, C. S.; Buller, D.; Berwick, M.; Buller, M.; Kane, I.; Shane, J.

    2012-12-01

    The UV Index (UVI) is a measure of the skin-damaging UV radiation levels at the Earth's surface. Clouds, haze, air pollution, total ozone, surface elevation, and ground reflectivity affect the levels of UV radiation reaching the ground. The global UV Index was developed as a simple tool to educate the public for taking precautions when exposed to UV radiation to avoid sun-burning, which has been linked to the development of skin cancer. The purpose of this study was to validate an algorithm to modify a cloud-free UV Index forecast for cloud conditions as observed by adults in real-time. The cloud attenuation algorithm is used in a smart-phone application to modify a clear-sky UV Index forecast. In the United States, the Climate Prediction Center of the National Oceanic and Atmospheric Administration's (NOAA) issues a daily UV Index Forecast. The NOAA UV Index is an hourly forecast for a 0.5 x 0.5 degree area and thus has a degree of uncertainty. Cloud cover varies temporally and spatially over short times and distances as weather conditions change and can have a large impact on the UV radiation. The smart-phone application uses the cloud-based UV Index forecast as the default but allows the user to modify a cloud-free UV Index forecast when the predicted sky conditions do not match observed conditions. Eighty four (n=84) adults were recruited to participate in the study through advertisements posted online and in a university e-newsletter. Adults were screened for eligibility (i.e., 18 or older, capable to traveling to test site, had a smart phone with a data plan to access online observation form). A sky observation measure was created to assess cloud fraction. The adult volunteers selected from among four photographs the image that best matched the cloud conditions they observed. Images depicted no clouds (clear sky), thin high clouds, partly cloudy sky, and thick clouds (sky completely overcast). When thin high clouds or partly cloudy images were selected, adults estimated the percentage of the sky covered by clouds. Cloud fraction was calculated by assigning 0% if the clear-sky image was selected, 100% if the overcast thick cloud image was selected, and 10% to 90% as indicated by adults, if high thin clouds or partly cloudy images were selected. The observed cloud fraction from the adult volunteers was compared to the cloud fraction determined by a Total Sky Imager. A cloud modification factor based on the observed cloud fraction was applied to the cloud-free UV Index forecast. This result was compared to the NOAA cloudy sky UV Index forecast and to the concurrent UV Index measurements from three broadband UV radiometers and a Brewer spectrophotometer calibrated using NIST traceable standards.

  7. WCRP surface radiation budget shortwave data product description, version 1.1

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Dipasquale, R. C.; Ritchey, N. A.

    1993-01-01

    Shortwave radiative fluxes which reach the Earth's surface are key elements that influence both atmospheric and oceanic circulation. The World Climate Research Program has established the Surface Radiation Budget climatology project with the ultimate goal of determining the various components of the surface radiation budget from satellite data on a global scale. This report describes the first global product that is being produced and archived as part of that effort. The interested user can obtain the monthly global data sets free of charge using e-mail procedures.

  8. RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Pinty, B.; Clerici, M.; Dai, Y.; de Kauwe, M.; De Ridder, K.; Kallel, A.; Kobayashi, H.; Lavergne, T.; Ni-Meister, W.; Olchev, A.; Quaife, T.; Wang, S.; Yang, W.; Yang, Y.; Yuan, H.

    2011-06-01

    Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.

  9. Shortwave direct radiative effects of above cloud aerosols over global oceans derived from eight years of CALIOP and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Meyer, K.; Yu, H.; Platnick, S.; Colarco, P.; Liu, Z.; Oreopoulos, L.

    2015-09-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.

  10. Measuring the influence of aerosols and albedo on sky polarization

    PubMed Central

    Kreuter, A.; Emde, C.; Blumthaler, M.

    2010-01-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05–0.5 and 0.1–0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error. PMID:24068851

  11. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  12. Estimation of clear-sky insolation using satellite and ground meteorological data

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Darnell, W. L.; Gupta, S. K.

    1983-01-01

    Ground based pyranometer measurements were combined with meteorological data from the Tiros N satellite in order to estimate clear-sky insolations at five U.S. sites for five weeks during the spring of 1979. The estimates were used to develop a semi-empirical model of clear-sky insolation for the interpretation of input data from the Tiros Operational Vertical Sounder (TOVS). Using only satellite data, the estimated standard errors in the model were about 2 percent. The introduction of ground based data reduced errors to around 1 percent. It is shown that although the errors in the model were reduced by only 1 percent, TOVS data products are still adequate for estimating clear-sky insolation.

  13. Completion of spectral rotating shadowband radiometers and analysis of ARM spectral short-wave data. Technical progress report, November 1, 1994--October 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalsky, J.; Harrison, L.

    1995-04-26

    The authors goal in the ARM program is the improvement of radiation models used in GCMs, especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. They are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that they combined with surface and upper air data from the Albany airport as a test data set for ARM modelers. They have also developed algorithmsmore » to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifolter rotating shadowband radiometer (MFRSR). However, the major objective of the program has been the development of two spectral versions of the rotating shadowband radiometer. The MFRSR, has become a workhose at the CART site in Oklahoma and Kansas, and it is widely deployed in other climate programs. They have spent most of their effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, they have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral irradiance. Using the surface albedo and the global irradiance, they have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, they have calculated effective liquid cloud particle radii. In each case the authors have attempted to validate the approach using independent measurements or retrievals of the parameters under investigation. With the exception of the ozone intercomparison, the corroborative measurements have been made at the SGP CART site. This report highlights these results.« less

  14. Influence of Sea Surface Temperature, Tropospheric Humidity and Lapse Rate on the Annual Cycle of the Clear-Sky Greenhouse Effect

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    2000-01-01

    The implication of this work will provide modeling study a surrogate of annual cycle of the greenhouse effect. For example, the model should be able to simulate the annual cycle before it can be used for global change study.

  15. Enhanced clear sky reflectance near clouds: What can be learned from it about aerosol properties?

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Varnai, T.; Wen, G.; Chiu, J.

    2009-12-01

    Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations, we examine the effect of three-dimensional radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. The cloud adjacency effect is well observed in MODIS clear-sky data in the vicinity of clouds. Comparing with CALIPSO clear-sky backscatterer measurements, we show that this effect may be responsible for a large portion of the enhanced clear-sky reflectance observed by MODIS. Finally, we describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent “bluing” of aerosols in remote sensing retrievals.

  16. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  17. CERES Fast Longwave And SHortwave Radiative Flux (FLASHFlux) Version4A.

    NASA Astrophysics Data System (ADS)

    Sawaengphokhai, P.; Stackhouse, P. W., Jr.; Kratz, D. P.; Gupta, S. K.

    2017-12-01

    The agricultural, renewable energy management, and science communities need global surface and top-of-atmosphere (TOA) radiative fluxes on a low latency basis. The Clouds and Earth's Radiant Energy System (CERES) FLASHFlux (Fast Longwave and SHortwave radiative Flux) data products address this need by enhancing the speed of CERES processing using simplified calibration and parameterized model of surface fluxes to provide a daily global radiative fluxes data set within one week of satellite observations. The CERES FLASHFlux provides two data products: 1) an overpass swath Level 2 Single Scanner Footprint (SSF) data products separately for both Aqua and Terra observations, and 2) a daily Level 3 Time Interpolated and Spatially Averaged (TISA) 1o x 1o gridded data that combines Aqua and Terra observations. The CERES FLASHFlux data product is being promoted to Version4A. Updates to FLASHFlux Version4A include a new cloud retrieval algorithm and an improved shortwave surface flux parameterization. We inter-compared FLASHFlux Version4A, FLASHFlux Version3C, CERES Edition 4 Syn1Deg and at the monthly scale CERES Edition4 EBAF (Energy Balanced and Filled) Top-of-Atmosphere and Edition 4 Surface EBAF fluxes to evaluate these improvements. We also analyze the impact of the new inputs and cloud algorithm to the surface shortwave and longwave radiative fluxes using ground sites measurement provided by CAVE (CERES/ARM Validation Experiment).

  18. Cloud Radiative Effect to Downward Longwave Radiation in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hayasaka, T.

    2014-12-01

    Downward longwave radiation is important factor to affect climate change. In polar regions, estimation of the radiative effect of cloud on the downward longwave radiation has large uncertainty. Relatively large cloud effect to the radiation occurs there due to low temperature, small amount of water vapor, and strong inversion layer. The cloud effect is, however, not evaluated sufficiently because the long term polar night and high surface albedo make satellite retrieval difficult. The intent of the present study is to quantify cloud radiative effect for downward longwave radiation in the polar regions by in-situ observation and radiative transfer calculation. The observation sites in this study are Ny-Ålesund (NYA), Syowa (SYO), and South Pole (SPO). These stations belong to the Baseline Surface Radiation Network. The period of data analysis is from 2003 to 2012. The effect of cloud on the downward longwave radiation is evaluated by subtraction of calculated downward longwave radiation under clear-sky condition from observed value under all-sky condition. Radiative transfer model was used for the evaluation of clear sky radiation with vertical temperature and humidity profile obtained by radiosonde observations. Calculated result shows good correlation with observation under clear-sky condition. The RMSE is +0.83±5.0. The cloud effect varied from -10 - +110 W/m2 (-10 - +40 %). Cloud effect increased with increasing of cloud fraction and decreasing of cloud base height and precipitable water. In SYO negative effects were sometimes obtained. The negative cloud effect emerged under dry and temperature inversion condition lower than 2 km. One of reasons of negative effect is considered to be existence of cloud at temperature inversion altitude. When the cloud effect is smaller than -5 W/m2 (standard deviation between calculation and observation), 50 % of them have a condition with cloud base height estimated by micro pulse lidar lower than 2 km.

  19. Dust layer effects on the atmospheric radiative budget and heating rate profiles

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Rita; Tafuro, A. M.; Kinne, S.

    2012-11-01

    The effect of mineral aerosol optical properties and vertical distribution on clear-sky, instantaneous and daily-average aerosol direct radiative effects (DREs) and heating rates (HRs) is analyzed in the solar (S, 0.3-4 μm) and terrestrial (T, 4-80 μm) spectral domain, respectively. The used radiative transfer model is based on lidar, sun-sky photometer, and radiosonde measurements. The study focuses on the Sahara dust outbreak of July 16, 2009 which advected dust particles from north-western Africa over south-eastern Italy. Clear-sky, instantaneous aerosol DREs and HRs undergo large changes within few hours, for the variability of the dust aerosol properties and vertical distribution. The daily-average, clear-sky aerosol S-DRE is near -5 Wm-2 and -12 Wm-2 at the top of the atmosphere (ToA) and surface (sfc), respectively. The daily-average aerosol T-DRE offsets the S-DRE by about one third at the ToA and by about one half at the surface. The daily average aerosol HR integrated over the whole aerosol column is 0.5 and -0.3 K day-1 in the S and T domain, respectively. Thus, the all-wave integrated HR is 0.2 K day-1. These results highlight the importance of accounting for the interaction of dust particles with T and S radiation. Sensitivity tests indicate that the uncertainties of the aerosol refractive index, size distribution, and vertical distribution have on average a large impact on aerosol HRs in the S and T domain, respectively. Refractive index and aerosol size distribution uncertainties also have a large impact on S- and T-DREs. The aerosol vertical distribution that has a negligible impact on aerosol S-DREs, is important for aerosol T-DREs. It is also shown that aerosol HRs and DREs in the terrestrial domain are affected by the water vapour vertical distribution.

  20. Long-Term Validation and Variability of the Shortwave and Longwave Radiation Data of the GEWEX Surface Radiation Budget (SRB) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephan J.; Mikovitz, Colleen; Hinkelman, Laura M.

    2006-01-01

    In this investigation, we make systematic Surface Radiation Budget-Baseline Surface Radiation Network (SRB-BSRN), Surface Radiation Data Centre (SRB-WRDC) and Surface Radiation Budget-Global Energy Balance Archive (SRB-GEBA) comparisons for both shortwave and longwave daily and monthly mean radiation fluxes at the Earth's surface. We first have an overview of all the comparable pairs of data in scatter or scatter density plots. Then we show the time series of the SRB data at grids in which there are ground sites where longterm records of data are available for comparison. An overall very good agreement between the SRB data and ground observations is found. To see the variability of the SRB data during the 21.5 years, we computed the global mean and its linear trend. No appreciable trend is detected at the 5% level. The empirical orthogonal functions (EOF) of the SRB deseasonalized shortwave downward flux are computed over the Pacific region, and the first EOF coefficient is found to be correlated with the ENSO Index at a high value of coefficient of 0.7083.

  1. The Rossby Centre Regional Atmospheric Climate Model part II: application to the Arctic climate.

    PubMed

    Jones, Colin G; Wyser, Klaus; Ullerstig, Anders; Willén, Ulrika

    2004-06-01

    The Rossby Centre regional climate model (RCA2) has been integrated over the Arctic Ocean as part of the international ARCMIP project. Results have been compared to observations derived from the SHEBA data set. The standard RCA2 model overpredicts cloud cover and downwelling longwave radiation, during the Arctic winter. This error was improved by introducing a new cloud parameterization, which significantly improves the annual cycle of cloud cover. Compensating biases between clear sky downwelling longwave radiation and longwave radiation emitted from cloud base were identified. Modifications have been introduced to the model radiation scheme that more accurately treat solar radiation interaction with ice crystals. This leads to a more realistic representation of cloud-solar radiation interaction. The clear sky portion of the model radiation code transmits too much solar radiation through the atmosphere, producing a positive bias at the top of the frequent boundary layer clouds. A realistic treatment of the temporally evolving albedo, of both sea-ice and snow, appears crucial for an accurate simulation of the net surface energy budget. Likewise, inclusion of a prognostic snow-surface temperature seems necessary, to accurately simulate near-surface thermodynamic processes in the Arctic.

  2. Temperature Calculations in the Coastal Modeling System

    DTIC Science & Technology

    2017-04-01

    tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature...during a clear (i.e., cloudless) sky (Wm-2); CLDC is the cloud cover fraction (0-1.0); SWR is the surface reflection coefficient; and SHDf is the

  3. Effects of skylight polarization, cloudiness, and view angle on the detection of oil on water.

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1971-01-01

    Three passive radiometric techniques, which use the contrast of sunlight reflected and backscattered from oil and water in specific wavelength regions, have potential application for remote sensing of oil spills. These techniques consist of measuring (1) total radiance, (2) the polarization components (normal and parallel) of radiance, and (3) the difference between the normal and parallel components. In this paper, the best view directions for these techniques are evaluated, conclusions are drawn as to the most promising technique, and explanations are developed to describe why previous total-radiance measurements yielded highest contrast between oil and water under overcast skies. The technique based on measurement of only the normal polorization component appears to be the most promising. The differential technique should be further investigated because of its potential to reduce the component of backscattered light from below the surface of the water. Measurements should be made about 45 deg nadir view angle in the direction opposite the sun. Overcast sky conditions provide a higher intensity of skylight relative to clear sky conditions and a lower intensity of backscatter within the water relative to surface reflectance. These factors result in higher contrast between oil and water under overcast skies.

  4. Glacier albedo change and its relationship to surface temperature change from MODIS data: Queen Elizabeth Islands, Arctic Canada, 2001-2015

    NASA Astrophysics Data System (ADS)

    Mortimer, C.; Sharp, M. J.

    2016-12-01

    Glacier and ice cap surface albedo change over the Canadian High Arctic is assessed using measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors for the period 2001-2015. Mean summer black-sky broadband surface albedo (MCD43A3 v05) over all glaciated surfaces in the Queen Elizabeth Islands south of 80°N decreased at a rate of 0.0038 ± 0.0037 yr-1 over that period. The bulk of this albedo decrease occurred from 2008 to 2012 when mean summer albedo was anomalously low. Albedo declines were greatest in the west of the QEI and at lower elevations on the ice caps. The period 2005-2012 included some of the warmest summers in the region since at least the 1950s. Between 2001 and 2015, mean summer glacier surface temperatures for the QEI (south of 80°N), derived from MODIS data (MOD11A2 v05), increased at a rate of 0.034 ± 0.037 °C yr-1. Net shortwave energy is modulated by changes in the surface albedo and is the largest source of summer melt energy in the QEI. During 2001-2015, the summer albedo record was negatively correlated with the mean summer glacier surface temperature record across 91% of the region; clusters of positive correlations between surface temperature and albedo were observed at high elevations in eastern Ellesmere Island.

  5. Statistical functions and relevant correlation coefficients of clearness index

    NASA Astrophysics Data System (ADS)

    Pavanello, Diego; Zaaiman, Willem; Colli, Alessandra; Heiser, John; Smith, Scott

    2015-08-01

    This article presents a statistical analysis of the sky conditions, during years from 2010 to 2012, for three different locations: the Joint Research Centre site in Ispra (Italy, European Solar Test Installation - ESTI laboratories), the site of National Renewable Energy Laboratory in Golden (Colorado, USA) and the site of Brookhaven National Laboratories in Upton (New York, USA). The key parameter is the clearness index kT, a dimensionless expression of the global irradiance impinging upon a horizontal surface at a given instant of time. In the first part, the sky conditions are characterized using daily averages, giving a general overview of the three sites. In the second part the analysis is performed using data sets with a short-term resolution of 1 sample per minute, demonstrating remarkable properties of the statistical distributions of the clearness index, reinforced by a proof using fuzzy logic methods. Successively some time-dependent correlations between different meteorological variables are presented in terms of Pearson and Spearman correlation coefficients, and introducing a new one.

  6. Validation of a spectral correction procedure for sun and sky reflections in above-water reflectance measurements.

    PubMed

    Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M

    2017-08-07

    A three-component reflectance model (3C) is applied to above-water radiometric measurements to derive remote-sensing reflectance Rrs (λ). 3C provides a spectrally resolved offset Δ(λ) to correct for residual sun and sky radiance (Rayleigh- and aerosol-scattered) reflections on the water surface that were not represented by sky radiance measurements. 3C is validated with a data set of matching above- and below-water radiometric measurements collected in the Baltic Sea, and compared against a scalar offset correction Δ. Correction with Δ(λ) instead of Δ consistently reduced the (mean normalized root-mean-square) deviation between Rrs (λ) and reference reflectances to comparable levels for clear (Δ: 14.3 ± 2.5 %, Δ(λ): 8.2 ± 1.7 %), partly clouded (Δ: 15.4 ± 2.1 %, Δ(λ): 6.5 ± 1.4 %), and completely overcast (Δ: 10.8 ± 1.7 %, Δ(λ): 6.3 ± 1.8 %) sky conditions. The improvement was most pronounced under inhomogeneous sky conditions when measurements of sky radiance tend to be less representative of surface-reflected radiance. Accounting for both sun glint and sky reflections also relaxes constraints on measurement geometry, which was demonstrated based on a semi-continuous daytime data set recorded in a eutrophic freshwater lake in the Netherlands. Rrs (λ) that were derived throughout the day varied spectrally by less than 2 % relative standard deviation. Implications on measurement protocols are discussed. An open source software library for processing reflectance measurements was developed and is made publicly available.

  7. The earth's radiation budget and its relation to atmospheric hydrology. III - Comparison of observations over the oceans with a GCM

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Randall, David A.; Wittmeyer, Ian L.; Dazlich, Donald A.; Tjemkes, Stephen

    1993-01-01

    The ability of the Colorado State University general circulation model (GCM) to simulate interactions between the hydrological cycle and the radiative processes on earth was examined by comparing various sensitivity relationships established by the model with those observed on earth, and the observed and calculated seasonal cycles of the greenhouse effect and cloud radiative forcing. Results showed that, although the GCM model used was able to simulate well some aspects of the observed sensitivities, there were many serious quantitative differences, including problems in the simulation of the column vapor in the tropics and an excessively strong clear-sky greenhouse effect in the mid-latitudes. These differences led to an underestimation by the model of the sensitivity of the clear-sky greenhouse to changes in sea surface temperature.

  8. Latest results from the GreenHouse gas Observations of the Stratosphere and Troposphere (GHOST) airborne shortwave infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Vick, Andy

    2017-04-01

    GHOST is a novel, compact shortwave infrared grating spectrometer, designed for remote sensing of tropospheric columns of greenhouse gases (GHGs) from an airborne platform. GHOST observes solar radiation at medium to high spectral resolution which has been reflected by the surface, using similar methods to those used by polar orbiting satellites such as the JAXA GOSAT mission, the NASA OCO-2 mission and the forthcoming Copernicus Sentinel 5-Precursor. By using an original design comprising optical fibre inputs along with a single diffraction grating and detector array, GHOST is able to observe CO2 absorption bands centred around 1.61 μm and 2.06 μm (the same wavelength regions used by OCO-2 and GOSAT) whilst simultaneously measuring CH4 absorption at 1.65 μm (also observed by GOSAT), and both CH4 and CO at 2.30 μm (to be observed by Sentinel 5-P once launched later in 2017). The overlapping spectral ranges and comparable spectral resolutions mean that GHOST has unique potential for providing validation opportunities for these platforms, particularly over the ocean where ground-based validation measurements are not available. Here we present the latest results from the spectral analysis, using an optimal estimation based retrieval method, of CO2 and CH4 from GHOST flight spectra for the 1.6 μm band which utilise recently updated laboratory calibration measurements. GHOST took part in two science flights on board the NASA Global Hawk unmanned aerial vehicle based at the Armstrong Flight Research Centre in Edwards, California, in March 2015. These flights involved long approximately north-south transects over the eastern Pacific Ocean. In addition to observing spatial trends in GHG column concentrations over a regional scale, the second of these flights (on 10th March) allows inter-comparisons of GHOST retrievals with observations from OCO-2 and GOSAT, which both passed directly over the Global Hawk during clear sky conditions. We will show results from these flights together with an analysis of measurements from the laboratory to assess the instrument performance, and demonstrate the suitability of GHOST for model evaluation and for the validation of column-averaged GHG concentrations measured from space.

  9. Retrievals of Surface Air Temperature Using Multiple Satellite Data Combinations over Complex Terrain in the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Jang, K.; Won, M.; Yoon, S.; Lim, J.

    2016-12-01

    Surface air temperature (Tair) is a fundamental factor for terrestrial environments and plays a major role in the fields of applied meteorology, climatology, and ecology. The satellite remotely sensed data offers the opportunity to estimate Tair on the earth's surface with high spatial and temporal resolutions. The Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective Tair retrievals although restricted to clear sky condition. MODIS Tair over complex terrain can result in significant retrieval errors due to the retrieval height mismatch to the elevation of local weather stations. In this study, we propose the methodology to estimate Tair over complex terrain for all sky conditions using multiple satellite data fusion based on the pixel-wise regression method. The combination of synergistic information from MODIS Tair and the brightness temperature (Tb) retrievals at 37 GHz frequency from the satellite microwave sensor were used for analysis. The air temperature lapse rate was applied to estimate the near-surface Tair considering the complex terrain such as mountainous regions. The retrieval results produced from this study showed a good agreement (RMSE < 2.5 K) with weather measurements from the Korea Forest Service (KFS) for mountain regions and the Korea Meteorology Administration (KMA). The gaps in the MODIS Tair data due to cloud contamination were successfully filled using the proposed method which yielded similar accuracy as retrievals of clear sky. The results of this study indicate that the satellite data fusion can continuously produce Tair retrievals with reasonable accuracy and that the application of the temperature lapse rate can lead to improvement of the reliability over complex terrains such as the Korean Peninsula.

  10. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    PubMed

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan

    2012-07-01

    Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7 W m-2 (out of 345 W m-2) and 4 W m-2 (out of 192 W m-2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3 W m-2 (out of 398 W m-2) and 3 W m-2 (out of 23 W m-2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12 W m-2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106 W m-2 and 130 W m-2.

  12. Digital all-sky polarization imaging of partly cloudy skies.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  13. Surface albedo from bidirectional reflectance

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Irons, J. R.; Daughtry, C. S. T.

    1991-01-01

    The validity of integrating over discrete wavelength bands is examined to estimate total shortwave bidirectional reflectance of vegetated and bare soil surfaces. Methods for estimating albedo from multiple angle, discrete wavelength band radiometer measurements are studied. These methods include a numerical integration technique and the integration of an empirically derived equation for bidirectional reflectance. It is concluded that shortwave albedos estimated through both techniques agree favorably with the independent pyranometer measurements. Absolute rms errors are found to be 0.5 percent or less for both grass sod and bare soil surfaces.

  14. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II; Cloud Fraction and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility are analyzed for determining the variability of cloud fraction and radiative forcing at several temporal scales between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layer low (0-3 km), middle (3-6 km), and high clouds (greater than 6 km) using ARM SGP ground-based paired lidar-radar measurements. Shortwave (SW), longwave (LW), and net cloud radiative forcings (CRF) are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements. The annual averages of total, and single-layer, nonoverlapped low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Total and low cloud amounts were greatest from December through March and least during July and August. The monthly variation of high cloud amount is relatively small with a broad maximum from May to August. During winter, total cloud cover varies diurnally with a small amplitude, mid-morning maximum and early evening minimum, and during summer it changes by more than 0.14 over the daily cycle with a pronounced early evening minimum. The diurnal variations of mean single-layer cloud cover change with season and cloud height. Annual averages of all-sky, total, and single-layer high, middle, and low LW CRFs are 21.4, 40.2, 16.7, 27.2, and 55.0 Wm(sup -2), respectively; and their SW CRFs are -41.5, -77.2, -37.0, -47.0, and -90.5 Wm(sup -2). Their net CRFs range from -20 to -37 Wm(sup -2). For all-sky, total, and low clouds, the maximum negative net CRFs of -40.1, -70, and -69.5 Wm(sup -2), occur during April; while the respective minimum values of -3.9, -5.7, and -4.6 Wm(sup -2), are found during December. July is the month having maximum negative net CRF of -46.2 Wm(sup -2) for middle clouds, and May has the maximum value of -45.9 Wm(sup -2) for high clouds. An uncertainty analysis demonstrates that the calculated CRFs are not significantly affected by the difference between clear-sky and cloudy conditions. A more comprehensive cloud fraction study from both surface and satellite observations will follow.

  15. Towards the intrahour forecasting of direct normal irradiance using sky-imaging data.

    PubMed

    Nou, Julien; Chauvin, Rémi; Eynard, Julien; Thil, Stéphane; Grieu, Stéphane

    2018-04-01

    Increasing power plant efficiency through improved operation is key in the development of Concentrating Solar Power (CSP) technologies. To this end, one of the most challenging topics remains accurately forecasting the solar resource at a short-term horizon. Indeed, in CSP plants, production is directly impacted by both the availability and variability of the solar resource and, more specifically, by Direct Normal Irradiance (DNI). The present paper deals with a new approach to the intrahour forecasting (the forecast horizon [Formula: see text] is up to [Formula: see text] ahead) of DNI, taking advantage of the fact that this quantity can be split into two terms, i.e. clear-sky DNI and the clear sky index. Clear-sky DNI is forecasted from DNI measurements, using an empirical model (Ineichen and Perez, 2002) combined with a persistence of atmospheric turbidity. Moreover, in the framework of the CSPIMP (Concentrating Solar Power plant efficiency IMProvement) research project, PROMES-CNRS has developed a sky imager able to provide High Dynamic Range (HDR) images. So, regarding the clear-sky index, it is forecasted from sky-imaging data, using an Adaptive Network-based Fuzzy Inference System (ANFIS). A hybrid algorithm that takes inspiration from the classification algorithm proposed by Ghonima et al. (2012) when clear-sky anisotropy is known and from the hybrid thresholding algorithm proposed by Li et al. (2011) in the opposite case has been developed to the detection of clouds. Performance is evaluated via a comparative study in which persistence models - either a persistence of DNI or a persistence of the clear-sky index - are included. Preliminary results highlight that the proposed approach has the potential to outperform these models (both persistence models achieve similar performance) in terms of forecasting accuracy: over the test data used, RMSE (the Root Mean Square Error) is reduced of about [Formula: see text], with [Formula: see text], and [Formula: see text], with [Formula: see text].

  16. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2007-01-01

    Zhou and Cess [2001] developed an algorithm for retrieving surface downwelling longwave radiation (SDLW) based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for scenes that were covered with ice clouds. An improved version of the algorithm prevents the large errors in the SDLW at low water vapor amounts by taking into account that under such conditions the SDLW and water vapor amount are nearly linear in their relationship. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths available from the Cloud and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) product to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing and will be incorporated as one of the CERES empirical surface radiation algorithms.

  17. Comparison between the land surface response of the ECMWF model and the FIFE-1987 data

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Ball, John H.; Beljaars, Anton C. M.

    1993-01-01

    An averaged time series for the surface data for the 15 x 15 km FIFE site was prepared for the summer of 1987. Comparisons with 48-hr forecasts from the ECMWF model for extended periods in July, August, and October 1987 identified model errors in the incoming SW radiation in clear skies, the ground heat flux, the formulation of surface evaporation, the soil-moisture model, and the entrainment at boundary-layer top. The model clear-sky SW flux is too high at the surface by 5-10 percent. The ground heat flux is too large by a factor of 2 to 3 because of the large thermal capacity of the first soil layer (which is 7 cm thick), and a time truncation error. The surface evaporation was near zero in October 1987, rather than of order 70 W/sq m at noon. The surface evaporation falls too rapidly after rainfall, with a time-scale of a few days rather than the 7-10 d (or more) of the observations. On time-scales of more than a few days the specified 'climate layer' soil moisture, rather than the storage of precipitation, has a large control on the evapotranspiration. The boundary-layer-top entrainment is too low. This results in a moist bias in the boundary-layer mixing ratio of order 2 g/Kg in forecasts from an experimental analysis with nearly realistic surface fluxes; this because there is insufficient downward mixing of dry air.

  18. Cloud Tolerance of Remote-Sensing Technologies to Measure Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas R. H.; Hain, Christopher R.; Anderson, Martha C.; Crow, Wade T.

    2016-01-01

    Conventional methods to estimate land surface temperature (LST) from space rely on the thermal infrared(TIR) spectral window and is limited to cloud-free scenes. To also provide LST estimates during periods with clouds, a new method was developed to estimate LST based on passive microwave(MW) observations. The MW-LST product is informed by six polar-orbiting satellites to create a global record with up to eight observations per day for each 0.25resolution grid box. For days with sufficient observations, a continuous diurnal temperature cycle (DTC) was fitted. The main characteristics of the DTC were scaled to match those of a geostationary TIR-LST product. This paper tests the cloud tolerance of the MW-LST product. In particular, we demonstrate its stable performance with respect to flux tower observation sites (four in Europe and nine in the United States), over a range of cloudiness conditions up to heavily overcast skies. The results show that TIR based LST has slightly better performance than MW-LST for clear-sky observations but suffers an increasing negative bias as cloud cover increases. This negative bias is caused by incomplete masking of cloud-covered areas within the TIR scene that affects many applications of TIR-LST. In contrast, for MW-LST we find no direct impact of clouds on its accuracy and bias. MW-LST can therefore be used to improve TIR cloud screening. Moreover, the ability to provide LST estimates for cloud-covered surfaces can help expand current clear-sky-only satellite retrieval products to all-weather applications.

  19. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    PubMed

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  20. The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubin D.; Vogelmann A.

    2011-10-13

    The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved frommore » irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.« less

  1. Comparison of OMI NO2 Observations and Their Seasonal and Weekly Cycles with Ground-Based Measurements in Helsinki

    NASA Technical Reports Server (NTRS)

    Ialongo, Iolanda; Herman, Jay; Krotkov, Nick; Lamsal, Lok; Boersma, Folkert; Hovila, Jari; Tamminen, Johanna

    2016-01-01

    We present the comparison of satellite-based OMI (Ozone Monitoring Instrument) NO2 products with ground-based observations in Helsinki. OMI NO2 total columns, available from standard product (SP) and DOMINO algorithm, are compared with the measurements performed by the Pandora spectrometer in Helsinki in 2012. The relative difference between Pandora 21 and OMI SP retrievals is 4 and 6 for clear sky and all sky conditions, respectively. DOMINO NO2 retrievals showed slightly lower total columns with median differences about 5 and 14 for clear sky and all sky conditions, respectively. Large differences often correspond to cloudy autumn-winter days with solar zenith angles above 65. Nevertheless, the differences remain within the retrieval uncertainties. Furthermore, the weekly and seasonal cycles from OMI, Pandora and NO2 surface concentrations are compared. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as result of reduced emissions from traffic and industrial activities. Also the seasonal cycle shows a similar behavior, even though the results are affected by the fact that most of the data are available during spring-summer because of cloud cover in other seasons. This is one of few works in which OMI NO2 retrievals are evaluated in an urban site at high latitudes (60N). Despite the city of Helsinki having relatively small pollution sources, OMI retrievals have proved to be able to describe air quality features and variability similar to surface observations. This adds confidence in using satellite observations for air quality monitoring also at high latitudes.

  2. Climatological Data For Clouds Over the Globe From Surface Observations, 1982-1991: The Total Cloud Edition (1994) (NDP-026a)

    DOE Data Explorer

    Hahn, Carole J. [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Warren, Stephen G. [Department of Atmospheric Sciences, University of Colorado, Boulder, CO; London, Julius [Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado, Boulder, CO

    1994-01-01

    Routine, synoptic surface weather reports from ships and land stations over the entire globe, for the10-year period December 1981 through November 1991, were processed for total cloud cover and the frequencies of occurrence of clear sky, sky-obscured due to precipitation, and sky-obscured due to fog. Archived data, consisting of various annual, seasonal and monthly averages, are provided in grid boxes that are typically 2.5° × 2.5° for land and 5° × 5° for ocean. Day and nighttime averages are also given separately for each season. Several derived quantities, such as interannual variations and annual and diurnal harmonics, are provided as well. This data set incorporates an improved representation of nighttime cloudiness by utilizing only those nighttime observations for which the illuminance due to moonlight exceeds a specified threshold. This reduction in the night-detection bias increases the computed global average total cloud cover by about 2%. The impact on computed diurnal cycles is even greater, particularly over the oceans where it is found (in contrast to previous surface-based climatologies), that cloudiness is often greater at night than during the day.

  3. The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux

    NASA Astrophysics Data System (ADS)

    Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.

    2018-01-01

    Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the sea surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.

  4. Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain.

    PubMed

    Hernández-Andrés, J; Romero, J; Lee, R L

    2001-02-01

    As part of our ongoing research into the clear daytime sky's visible structure, we analyze over 1,500 skylight spectra measured during a seven-month period in Granada, Spain. We use spectral radiances measured within 3 degrees fields of view (FOV's) to define colorimetric characteristics along four sky meridians: the solar meridian and three meridians at azimuths of 45 degrees, 90 degrees, and 315 degrees relative to it. The resulting clear-sky chromaticities in 44 different view directions (1) are close to but do not coincide with the CIE daylight locus, (2) form V-shaped meridional chromaticity curves along it (as expected from theory), and (3) have correlated color temperatures (CCT's) ranging from 3,800 K to infinity K. We also routinely observe that sky color and luminance are asymmetric about the solar meridian, usually perceptibly so. A principal-components analysis shows that three vectors are required for accurate clear-sky colorimetry, whereas six are needed for spectral analyses.

  5. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-02-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.

  6. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  7. Analysis of near-surface biases in ERA-Interim over the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan K.; Beljaars, Anton C. M.

    2017-09-01

    We quantify the biases in the diurnal cycle of temperature in ERA-Interim for both warm and cold season using hourly climate station data for four stations in Saskatchewan from 1979 to 2006. The warm season biases increase as opaque cloud cover decreases, and change substantially from April to October. The bias in mean temperature increases almost monotonically from small negative values in April to small positive values in the fall. Under clear skies, the bias in maximum temperature is of the order of -1°C in June and July, and -2°C in spring and fall; while the bias in minimum temperature increases almost monotonically from +1°C in spring to +2.5°C in October. The bias in the diurnal temperature range falls under clear skies from -2.5°C in spring to -5°C in fall. The cold season biases with surface snow have a different structure. The biases in maximum, mean and minimum temperature with a stable BL reach +1°C, +2.6°C and +3°C respectively in January under clear skies. The cold season bias in diurnal range increases from about -1.8°C in the fall to positive values in March. These diurnal biases in 2 m temperature and their seasonal trends are consistent with a high bias in both the diurnal and seasonal amplitude of the model ground heat flux, and a warm season daytime bias resulting from the model fixed leaf area index. Our results can be used as bias corrections in agricultural modeling that use these reanalysis data, and also as a framework for understanding model biases.

  8. First global WCRP shortwave surface radiation budget dataset

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; Dipasquale, R. C.; Moats, C. D.

    1995-01-01

    Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.

  9. First global WCRP shortwave surface radiation budget dataset

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; DiPasquale, R. C.; Moats, C. D.

    1995-01-01

    Shortwave radiative fluxes that reach the Earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and rms values are around 25 W/sq m. There are specific regions with much larger uncertainties however.

  10. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    An empirical study was performed (1) to evaluate the validity of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces and (2) to determine the variation of solar cell sensitivity to solar radiation over a wide range of atmospheric condition. Evaluation of the insolation data indicates that the isotropic sky model of Liu and Jordan underestimates the amount of solar radiation falling on tilted surfaces by as much as 10%. An anisotropic-clear-sky model proposed by Temps and Coulson was also evaluated and found to be deficient under cloudy conditions. A new model, formulated herein, reduced the deviations between measured and predicted insolation to less than 3%. Evaluation of solar cell sensitivity data indicates small change (2-3%) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells as done by Treble is discussed.

  11. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  12. Influence of Thunderstorms on the Structure of the Ionosphere using Composite Analysis

    NASA Astrophysics Data System (ADS)

    Nava, O.; Sutherland, E.

    2017-12-01

    It is well known in the amateur (ham) radio community that thunderstorms have a significant influence on local and long-distance high-frequency (HF) communications. This study aims to characterize the structure of the ionosphere in response to strong convective activity and cloud electrification. Superposed Epoch Analysis is applied to surface weather observations and ionosonde data at Eglin Air Force Base, Florida from August 2014 to July 2017. Preliminary results indicate that thunderstorms significantly modify the structure of the ionosphere, generating statistically different measurements of several key parameters (e.g., foEs, hmF2, ITEC) compared to clear-sky observations. Seasonal and diurnal influences between the thunderstorm and clear sky cases are also explored. Accurate characterization of the ionosphere in response to thunderstorms has important implications for the effective use of HF communications in civilian and military operations, to include emergency services, aviation, amateur radio, and over-the-horizon radar.

  13. The NASA POWER SSE: Deriving the Direct Normal Counterpart from the CERES SYN1deg Hourly Global Horizontal Irradiance during Early 2000 to Near Present

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.

    2017-12-01

    The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.

  14. Sensitivity of Boreal-Summer Circulation and Precipitation to Atmospheric Aerosols in Selected Regions. Part 2; The Americas

    NASA Technical Reports Server (NTRS)

    Wilcox, E. M.; Sud, Y. C.; Walker, G.

    2009-01-01

    Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4) general circulation model (GCM) to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively). Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982 1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern America, an increase in precipitation over Central America and the Caribbean, and an enhancement of convergence in the North American monsoon region.

  15. Constraining the long-term climate reponse to stratospheric sulfate aerosols injection by the short-term volcanic climate response

    NASA Astrophysics Data System (ADS)

    Plazzotta, M.; Seferian, R.; Douville, H.; Kravitz, B.; Tilmes, S.; Tjiputra, J.

    2016-12-01

    Rising greenhouse gas emissions are leading to global warming and climate change, which will have multiple impacts on human society. Geoengineering methods like solar radiation management by stratospheric sulfate aerosols injection (SSA-SRM) aim at treating the symptoms of climate change by reducing the global temperature. Since a real-world testing cannot be implemented, Earth System Models (ESMs) are useful tools to assess the climate impacts of such geoengineering methods. However, coordinated simulations performed with the Geoengineering Model Intercomparison Project (GeoMIP) have shown that climate cooling in response to a continuous injection of 5Tg of SO2 per year under RCP45 future projection (the so-called G4 experiment) differs substantially between ESMs. Here, we employ a volcano analog approach to constrain the climate response in SSA-SRM geoengineering simulations across an ensemble of 10 ESMs. We identify an emergent relationship between the long-term cooling in responses to the mitigation of the clear-sky surface downwelling shortwave radiation (RSDSCS), and the short-term cooling related to the change in RSDSCS during the major tropical volcanic eruptions observed over the historical period (1850-2005). This relationship explains almost 80% of the multi-model spread. Combined with contemporary observations of the latest volcanic eruptions (satellite observations and model reanalyzes), this relationship provides a tight constraint on the climate impacts of SSA-SRM. We estimate that a continuous injection of SO2 aerosols into the stratosphere will reduce the global average temperature of continental land surface by 0.47 K per W m-2, impacting both hydrological and carbon cycles. Compared with the unconstrained ESMs ensemble (range from 0.32 to 0.92 K per W m-2 ), our estimate represents much higher confidence ways to assess the impacts of SSA-SRM on the climate while ruling the most extreme projections of the unconstrained ensemble extremely unlikely.

  16. Role of absorbing aerosols on hot extremes in India in a GCM

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.

    2017-12-01

    Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is concurrently important to mitigate emissions of warming black carbon particles, to manage future climate change-induced hot extremes.

  17. Underwater refraction-polarization patterns of skylight perceived by aquatic animals through Snell's window of the flat water surface.

    PubMed

    Horváth, G; Varjú, D

    1995-06-01

    The grass shrimp (Palaemonetes vulgaris) orients itself by means of the polarization pattern of the sky visible through Snell's window of the water surface. The celestial polarization pattern viewed from water is distorted and modified because of refraction and repolarization of skylight at the air-water interface. This work provides a quantitative account of the repolarization of skylight transmitted through a flat water surface. The degree and direction of linear polarization, the transmissivity and the shape of the refraction-polarization oval are calculated at the air-water interface as functions of the polarization characteristics and the incident angle of partially linearly polarized incoming light. Two-dimensional patterns of linear polarization ellipses and of the degree and direction of polarization of skylight are presented for different zenith distances of the sun. The corresponding underwater refraction-polarization patterns are computed. Transmissivity patterns of a flat water surface are calculated for unpolarized light of an overcast sky and for partially polarized light of clear skies as a function of the zenith distance of the sun. The role of these refraction-polarization patterns in orientation and polarization vision of the grass shrimp (P. vulgaris) and rainbow trout (Oncorhyncus mykiss) is reviewed. The effects of cloud cover, surface waves and water turbidity on the refraction-polarization patterns are briefly discussed.

  18. Comparison of Pyranometers and Reference Cells on Fixed and One-axis Tracking Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, Michael R; Sengupta, Manajit; Vignola, Frank

    Photovoltaic (PV) system perfomance is monitored by a wide variety of sensors. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile-based pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface, a fixed-tilt surface, and a one-axis tracking surface. This analysis focusesmore » on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles-of-incidence even though both instruments are based on measuring the short circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded- base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer that has a response nearly independent of the wavelength of light used by PV modules.« less

  19. Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model

    DOE PAGES

    Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.

    2017-05-08

    A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less

  20. Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.

    A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S–N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO 2. The Intertropical Convergence Zone width and tropical cloud covermore » are not strongly affected by SST warming or CO 2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO 2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.« less

  1. Estimation of aerosol direct radiative forcing in Lecce during the 2013 ADRIMED campaign

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria-Rita; Comeron, Adolfo

    2015-10-01

    In the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the typical "Mediterranean aerosol" and its direct radiative forcing (column closure and regional scale). This work is focused on the multi-intrusion Saharan dust transport period of moderate intensity that occurred over the western and central Mediterranean Basin during the period 14 - 27 June. The dust plumes were detected by the EARLINET/ACTRIS (European Aerosol Research Lidar Network / Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations of Barcelona (16 and 17 June) and Lecce (22 June). First, two well-known and robust radiative transfer models, parametrized by lidar profiles for the aerosol vertical distribution, are validated both in the shortwave and longwave spectral range 1) at the surface with down- and up-ward flux measurements from radiometers and 2) at the top of the atmosphere with upward flux measurements from the CERES (Clouds and the Earth's Radiant Energy System) radiometers on board the AQUA and TERRA satellites. The differences between models and their limitations are discussed. The instantaneous and clear-sky direct radiative forcing of mineral dust is then estimated using lidar data for parametrizing the particle vertical distribution at Lecce. The difference between the obtained forcings is discussed in regard to the mineralogy and vertical structure of the dust plume.

  2. Tropical Convective Outflow and Near Surface Equivalent Potential Temperatures

    NASA Technical Reports Server (NTRS)

    Folkins, Ian; Oltmans, Samuel J.; Thompson, Anne M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.

  3. Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. I - Analysis method. II - November 1978 cloud distributions. III - November 1978 radiative parameters

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Harrison, E. F.

    1984-01-01

    Cloud cover is one of the most important variables affecting the earth radiation budget (ERB) and, ultimately, the global climate. The present investigation is concerned with several aspects of the effects of extended cloudiness, taking into account hourly visible and infrared data from the Geostationary Operational Environmental Satelite (GOES). A methodology called the hybrid bispectral threshold method is developed to extract regional cloud amounts at three levels in the atmosphere, effective cloud-top temperatures, clear-sky temperature and cloud and clear-sky visible reflectance characteristics from GOES data. The diurnal variations are examined in low, middle, high, and total cloudiness determined with this methodology for November 1978. The bulk, broadband radiative properties of the resultant cloud and clear-sky data are estimated to determine the possible effect of the diurnal variability of regional cloudiness on the interpretation of ERB measurements.

  4. Decadal Variations in Surface Solar Radiation

    NASA Astrophysics Data System (ADS)

    Wild, M.

    2007-05-01

    Satellite estimates provide some information on the amount of solar radiation absorbed by the planet back to the 1980s. The amount of solar radiation reaching the Earth surface can be traced further back in time, untill the 1960s at widespread locations and into the first half of the 20th Century at selected sites. These surface sites suggest significant decadal variations in solar radiation incident at the surface, with indication for a widespread dimming from the 1960s up to the mid 1980s, and a recovery thereafter. Indications for changes in surface solar radiation may also be seen in observatinal records of diurnal temperature range, which provide a better global coverage than the radiation measurrements. Trends in diurnal temperature ranges over global land surfaces show, after decades of decline, a distinct tendency to level off since the mid 1980s. This provides further support for a significant shift in surface solar radiation during the 1980s. There is evidence that the changes in surface solar radiation are linked to associated changes in atmospheric aerosol. Variations in scattering sulfur and absorbing black carbon aerosols are in line with the variations in surface solar radiation. This suggests that at least a part of the variations in surface solar radiation should also be seen in the clear sky planetary albedo. Model simulations with a GCM which includes a sophisticated interactive treatment of aerosols and their emission histories (ECHAM5 HAM), can be used to address this issue. The model is shown to be capable of reproducing the reversal from dimming to brightening under cloud-free conditions in many parts of the world, in line with observational evidence. Associated changes can also be seen in the clear sky planetary albedo, albeit of smaller magnitude.

  5. The Global Character of the Flux of Downward Longwave Radiation

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Wild, Martin; Stackhouse, Paul W., Jr.; L'Ecuyer, Tristan; Kato, Seiji; Henderson, David S.

    2012-01-01

    Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

  6. Significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Ricchiazzi, Paul; Payton, Allison; Gautier, Catherine

    2002-10-01

    At a coastal high-latitude site, multiple reflection of photons between the high albedo surface and an overlying cloud can enhance the downwelling shortwave flux out over the adjacent open water to a distance of several kilometers. This coastal albedo effect has been predicted by theoretical radiative transfer studies and has also been measured under ideal conditions. In this study, three multispectral solar ultraviolet radiometers were deployed in the vicinity of Palmer Station, Antarctica (64° 46'S, 64° 04'W) to determine the prevalence of the coastal albedo effect under the region's natural variability in cloud cover. One radiometer was deployed near the base of a glacier, and the other two radiometers were deployed on Janus Island and Outcast Island, islets ˜2.8 km (1.5 nautical miles) and 5.6 km (3 nautical miles) distant from Palmer Station, respectively. The radiometers were operated simultaneously for 16 days during late December 1999 and January 2000. Under all cloudy sky conditions sampled by this experiment the coastal albedo effect is seen in the data 60% of the time, in the form of a decreasing gradient in surface flux from Palmer Station through Janus and Outcast Islands. During the other 40% of the cloudy sky measurements, local cloud inhomogeneity obscured the coastal albedo effect. The effect is more apparent under overcast layers that appear spatially uniform and occurs 86% of the time under the low overcast decks sampled. The presence of stratus fractus of bad weather, under higher overcast layers, obscures the coastal albedo effect such that it occurs only 43% of the time. A wavelength dependence is noted in the data under optically thin cloud cover: the ratio of a flux measured at an islet to that measured at the station increases with wavelength. This wavelength dependence can be explained by plane-parallel radiative transfer theory.

  7. Studies of the net surface radiative flux from satellite radiances during FIFE

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    Studies of the net surface radiative flux from satellite radiances during First ISLSCP Field Experiment (FIFE) are presented. Topics covered include: radiative transfer model validation; calibration of VISSR and AVHRR solar channels; development and refinement of algorithms to estimate downward solar and terrestrial irradiances at the surface, including photosynthetically available radiation (PAR) and surface albedo; verification of these algorithms using in situ measurements; production of maps of shortwave irradiance, surface albedo, and related products; analysis of the temporal variability of shortwave irradiance over the FIFE site; development of a spectroscopy technique to estimate atmospheric total water vapor amount; and study of optimum linear combinations of visible and near-infrared reflectances for estimating the fraction of PAR absorbed by plants.

  8. Simulation of Optical Properties and Direct and Indirect Radiative Effects of Smoke Aerosols Over Marine Stratocumulus Clouds During Summer 2008 in California With the Regional Climate Model RegCM

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.

    2017-10-01

    The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.

  9. How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study.

    PubMed

    Suhai, Bence; Horváth, Gábor

    2004-09-01

    We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.

  10. Impacts of Advection Fog on the Surface Radiation Budget in coastal California

    NASA Astrophysics Data System (ADS)

    Oliphant, A. J.; Baguskas, S. A.

    2016-12-01

    Clouds and other aerosols alter the nature of the surface radiation budget (SRB) by reducing the quantity and changing the quality of solar radiation incident upon the surface as well as enhancing down-welling thermal infrared radiation (TIR) and suppressing upwelling TIR during daytime. Our study aimed to characterize the impact of advection fog on SRB components in coastal California, and develop methods to identify and characterize fog events using surface-mounted radiometers. First, we generated a climatology of summertime SRB components based on observations from south-western San Francisco, CA (2005-2008). From this we drew clear distinctions in characteristic surface radiation regimes between foggy and clear-sky days using atmospheric transmission indices during the day and down-welling TIR at any time of day. Secondly, we applied these empirical models to a dataset gathered in 2016 on a coastal strawberry farm located in the fog-belt in the Salinas Valley, California. From this we investigated methods to improve the models to distinguish fog events that cause surface deposition from those when the stratocumulus deck is slightly elevated, i.e., overcast conditions. On average, coastal fog was found to decrease incident solar radiation by about 50% and increase the diffuse fraction by 81%. There was a mean difference of about 70 W m-2 in down-welling TIR between clear-sky and foggy conditions throughout the diurnal cycle, with a standard deviation of less than 10 W m-2, which allows robust 24-hr estimates of fog presence using simple thresholds. As the cloud base lowers in elevation during fog events, the differences in temperature between the cloud base and surface is reduced; therefore, the ratio of opposing TIR fluxes is related to cloud base heights and should help disentangle `fog' events to better inform environmental drivers of coastal ecosystems.

  11. Shortwave flux at the surface of the Atlantic Ocean: in-situ measurements, satellite data and parametrization.

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is one of the key air-sea flux components playing an important role in on the ocean heat balance. The most accurate method to obtaining estimates of shortwave fluxes are the field measurements at various locations at the globe. However, these data are very sparse. Different satellite missions and re-analyses provide alternative source of short-wave radiation data, however they need are source for uncertainties and need to be validated. An alternative way to produce long-term time series of shortwave radiation is to apply bulk parameterizations of shortwave radiation to the observations of Voluntary Observing Ship (VOS) cloud data or to the cloud measurements from CM-SAF. In our work, we compare three sources of shortwave flux estimates. In-situ measurements were obtained during 12 cruises (320 day of measurements) of research cruises in different regions of the Atlantic Ocean from 2004 to 2014. Shortwave radiation was measured by the Kipp&Zonen net radiometer CNR-1. Also during the cruise, standard meteorological observations were carried out. Satellite data were the hourly and daily time series of the incoming shortwave radiation with spatial resolution 0.05x0.05 degree (METEOSAT MSG coverage Europe, Africa, Atlantic Ocean), and were obtained by the MVIRI/SEVIRI instrument from METEOSAT. SEVIRI cloud properties were taken from CLAAS-2 data record from CM-SAF. Parameterizations of shortwave fluxes used consisted of three different schemes based upon consideration of only total as well as total and low cloud cover. The incoming shortwave radiation retrieved by satellite had a positive bias of 3 Wm-2 and RMS of 69 Wm-2 compared to in-situ measurements. For different Octa categories the bias was from 1 to 5 Wm-2 and RMS from 41 to 71 Wm-2. The incoming shortwave radiation computed by bulk parameterization indicated a bias of -10 Wm-2 to 60 Wm-2 depending on the scheme and the region of the Atlantic Ocean. The results of the comparison suggest that satellite data is an excellent ground for testing bulk parameterizations of incoming shortwave radiation. Among the bulk paramterizations, the IORAS/SAIL scheme is the least biased algorithm for computing shortwave radiation from cloud observations.

  12. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  13. Moon night sky brightness simulation for the Xinglong station

    NASA Astrophysics Data System (ADS)

    Yao, Song; Zhang, Hao-Tong; Yuan, Hai-Long; Zhao, Yong-Heng; Dong, Yi-Qiao; Bai, Zhong-Rui; Deng, Li-Cai; Lei, Ya-Juan

    2013-10-01

    Using a sky brightness monitor at the Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences, we collected data from 22 dark clear nights and 90 moon nights. We first measured the sky brightness variation with time for dark nights and found a clear correlation between sky brightness and human activity. Then with a modified sky brightness model of moon nights and data from these nights, we derived the typical value for several important parameters in the model. With these results, we calculated the sky brightness distribution under a given moon condition for the Xinglong station. Furthermore, we simulated the sky brightness distribution of a moon night for a telescope with a 5° field of view (such as LAMOST). These simulations will be helpful for determining the limiting magnitude and exposure time, as well as planning the survey for LAMOST during moon nights.

  14. Assessment of NASA GISS CMIP5 ModelE simulated clouds and TOA radiation budgets using satellite observations over the southern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Stanfield, Ryan Evan

    Past, current, and future climates have been simulated by the National Aeronautics and Space Administration (NASA) Goddard Institute for Space Studies (GISS) ModelE Global Circulation Model (GCM) and summarized by the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, AR4). New simulations from the updated CMIP5 version of the NASA GISS ModelE GCM were recently released to the public community during the summer of 2011 and will be included in the upcoming IPCC AR5 ensemble of simulations. Due to the recent nature of these simulations, they have not yet been extensively validated against observations. To assess the NASA GISS-E2-R GCM, model simulated clouds and cloud properties are compared to observational cloud properties derived from the Clouds and Earth's Radiant Energy System (CERES) project using MODerate Resolution Imaging Spectroradiometer (MODIS) data for the period of March 2000 through December 2005. Over the 6-year period, the global average modeled cloud fractions are within 1% of observations. However, further study however shows large regional biases between the GCM simulations and CERES-MODIS observations. The southern mid-latitudes (SML) were chosen as a focus region due to model errors across multiple GCMs within the recent phase 5 of the Coupled Model Intercomparison Project (CMIP5). Over the SML, the GISS GCM undersimulates total cloud fraction over 20%, but oversimulates total water path by 2 g m-2. Simulated vertical cloud distributions over the SML when compared to both CERES-MODIS and CloudSat/CALIPSO observations show a drastic undersimulation of low level clouds by the GISS GCM, but higher fractions of thicker clouds. To assess the impact of GISS simulated clouds on the TOA radiation budgets, the modeled TOA radiation budgets are compared to CERES EBAF observations. Because modeled low-level cloud fraction is much lower than observed over the SML, modeled reflected shortwave (SW) flux at the TOA is 13 W m -2 lower and outgoing longwave radiation (OLR) is 3 W m-2 higher than observations. Finally, cloud radiative effects (CRE) are calculated and compared with observations to fully assess the impact of clouds on the TOA radiation budgets. The difference in clear-sky reflected SW flux between model and observation is only +4 W m-2 while the SW CRE difference is up to 17 W m-2, indicating that most of the bias in SW CRE results from the all-sky bias between the model and observation. A sizeable negative bias of 10 W m-2 in simulated clear-sky OLR has been found due to a dry bias in calculating observed clear-sky OLR and lack of upper-level water vapor at the 100-mb level in the model. The dry bias impacts CRE LW, with the model undersimulating by 13 W m-2. The CRE NET difference is only 5 W m-2 due to the cancellation of SW and LW CRE biases.

  15. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S.

    PubMed

    Zhou, Qingtao; Flores, Alejandro; Glenn, Nancy F; Walters, Reggie; Han, Bangshuai

    2017-01-01

    Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3-0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial ecosystem modeling.

  16. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S.

    PubMed Central

    Flores, Alejandro; Glenn, Nancy F.; Walters, Reggie; Han, Bangshuai

    2017-01-01

    Shortwave solar radiation is an important component of the surface energy balance and provides the principal source of energy for terrestrial ecosystems. This paper presents a machine learning approach in the form of a random forest (RF) model for estimating daily downward solar radiation flux at the land surface over complex terrain using MODIS (MODerate Resolution Imaging Spectroradiometer) remote sensing data. The model-building technique makes use of a unique network of 16 solar flux measurements in the semi-arid Reynolds Creek Experimental Watershed and Critical Zone Observatory, in southwest Idaho, USA. Based on a composite RF model built on daily observations from all 16 sites in the watershed, the model simulation of downward solar radiation matches well with the observation data (r2 = 0.96). To evaluate model performance, RF models were built from 12 of 16 sites selected at random and validated against the observations at the remaining four sites. Overall root mean square errors (RMSE), bias, and mean absolute error (MAE) are small (range: 37.17 W/m2-81.27 W/m2, -48.31 W/m2-15.67 W/m2, and 26.56 W/m2-63.77 W/m2, respectively). When extrapolated to the entire watershed, spatiotemporal patterns of solar flux are largely consistent with expected trends in this watershed. We also explored significant predictors of downward solar flux in order to reveal important properties and processes controlling downward solar radiation. Based on the composite RF model built on all 16 sites, the three most important predictors to estimate downward solar radiation include the black sky albedo (BSA) near infrared band (0.858 μm), BSA visible band (0.3–0.7 μm), and clear day coverage. This study has important implications for improving the ability to derive downward solar radiation through a fusion of multiple remote sensing datasets and can potentially capture spatiotemporally varying trends in solar radiation that is useful for land surface hydrologic and terrestrial ecosystem modeling. PMID:28777811

  17. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    PubMed Central

    Xia, Xiangao

    2015-01-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310

  18. Simutaneous Variational Retrievals of Temperature, Humidity, Surface and Cloud Properties from Satellite and Airborne Hyperspectral Infrared Sounder Data using the Havemann-Taylor Fast Radiative Transfer Code (HT-FRTC) as the Forward Model Operator

    NASA Astrophysics Data System (ADS)

    Havemann, S.; Thelen, J. C.; Harlow, R. C.

    2016-12-01

    Full scattering radiative transfer simulations for hyperspectral infrared and shortwave sounders are essential in order to be able to extract the maximal information content from these instruments for cloudy scenes and those with significant aerosol loading, but have been rarely done because of the high computational demands. The Havemann-Taylor Fast Radiative Transfer Code works in Principal Component space, reducing the computational demand by orders of magnitude thereby making fast simultaneous retrievals of vertical profiles of temperature and humidity, surface temperature and emissivity as well as cloud and aerosol properties feasible. Results of successful retrievals using IASI sounder data as well as data taken during flights of the Airborne Research Interferometer Evaluation System (ARIES) on board the FAAM Bae 146 aircraft will be presented. These will demonstrate that the use of all the instrument channels in PC space can provide valuable information both on temperature and humidity profiles relevant for NWP and on the cirrus cloud properties at the same time. There is very significant information on the humidity profile below semi-transparent cirrus to be gained from IR sounder data. The retrieved ice water content is in good agreement with airborne in-situ measurements during Lagrangian spiral descents. In addition to the full scattering calculations, the HT-FRTC has also been trained with a fast approximation to the scattering problem which reduces it to a clear-sky calculation but with a modified extinction (Chou scaling). Chou scaling is a reasonable approximation in the infrared but is very poor where the solar contribution becomes significant. The comparison of the retrieval performance with the full scattering solution and the Chou scaling solution in the forward model operator for infrared sounders shows that temperature and humidity profiles are only marginally degraded by the use of the Chou scaling approximation. Retrievals of the specific cloud parameters (ice water content, cirrus cloud thickness and cirrus cloud horizontal fraction) are however strongly negatively affected under the Chou scaling approximation. The aim is also to use HT-FRTC to run clear and cloudy simulations for the atmospheric state test set which has been prepared by the NASA/JPL/AIRS project.

  19. Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet

    NASA Astrophysics Data System (ADS)

    Sedlar, J.

    2017-12-01

    Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.

  20. 77 FR 65671 - Aluminum Extrusions From the People's Republic of China: Notice of Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Nanhai Hongjia Aluminum Alloy Co., Ltd. (Hongjia) and Tianjin Ganglv Nonferrous Metal Materials Co., Ltd..., ``Electrolux'') withdrew its request for review of Alnan Aluminium Co., Ltd. (Alnan), Clear Sky Inc. (Clear Sky...

  1. Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oreopoulos, Lazaros

    2016-03-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within the atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. All our DRE computations are publicly available1. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.

  2. Shortwave Direct Radiative Effects of Above-Cloud Aerosols Over Global Oceans Derived From 8 Years of CALIOP and MODIS Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oraiopoulos, Lazaros

    2016-01-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asia. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m(exp. -2) [range of -0.03 to 0.06 W m (exp. -2)] at TOA. The DREs at surface and within the atmosphere are -0.015 W m(exp. -2) [range of -0.09 to -0.21 W m(exp. -2)], and 0.17 W m(exp. -2) [range of 0.11 to 0.24 W m(exp. -2)], respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m(exp. -2) [range of 0.2 to 1.2 W m(exp. -2)] at TOA. All our DRE computations are publicly available. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the uncertainty.

  3. Celestial polarization patterns sufficient for Viking navigation with the naked eye: detectability of Haidinger's brushes on the sky versus meteorological conditions

    NASA Astrophysics Data System (ADS)

    Horváth, Gábor; Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András

    2017-02-01

    If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤ θ < 0°) during twilight, P = 76.17 ± 4.18% for dmin∗=23 % under clear sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.

  4. The Role of the Persian Gulf in Shaping Southwest Asian Surface Climate

    NASA Astrophysics Data System (ADS)

    Pal, J. S.; Eltahir, E. A. B.

    2015-12-01

    Summer surface climate of the Persian Gulf region is characterized by hot and humid conditions. Despite such conditions - which in other regions tends to trigger moist convection - typically this region experiences clear sky conditions and very little rainfall in the summer. In this study, we customize the MIT Regional Climate Model specifically for the Southwest Asia region and apply it at a 25-km grid spacing using reanalysis boundary conditions for present-day climate (1975-2005). Specific customizations include accurate representations of surface albedo and emissivity as well as mineral dust processes, all of which improve model bias. To assess the role of the Persian Gulf in shaping the region's climate, a 30-year experiment is performed without the Persian Gulf characterized. Results suggest that observed conditions over the Persian Gulf are due to a combination of physical processes involving adiabatic and diabatic descent. First, virtually clear sky conditions, due to subsidence during summer associated with the rising air motion over the monsoon region to the east, suppress upward motion and deep convection and increase incoming solar radiation. Second, the low surface albedo of the Persian Gulf results in enhanced absorption of solar radiation and total heat flux. Third, high evaporation rates increase water vapor, and therefore trap heat at the surface via the greenhouse effect for water vapor. Fourth, the relatively shallow boundary layer over the Persian Gulf concentrates water vapor and heat close to the surface. These combined factors maximize the total flux of heat in the boundary layer and hence moist static energy over the Persian Gulf.

  5. Toward all weather, long record, and real-time land surface temperature retrievals from microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Jimenez, Carlos; Prigent, Catherine; Aires, Filipe; Ermida, Sofia

    2017-04-01

    The land surface temperature can be estimated from satellite passive microwave observations, with limited contamination from the clouds as compared to the infrared satellite retrievals. With ˜60% cloud cover in average over the globe, there is a need for "all weather," long record, and real-time estimates of land surface temperature (Ts) from microwaves. A simple yet accurate methodology is developed to derive the land surface temperature from microwave conical scanner observations, with the help of pre-calculated land surface microwave emissivities. The method is applied to the Special Sensor Microwave/Imagers (SSM/I) and the Earth observation satellite (EOS) Advanced Microwave Scanning Radiometer (AMSR-E) observations?, regardless of the cloud cover. The SSM/I results are compared to infrared estimates from International Satellite Cloud Climatology Project (ISCCP) and from Advanced Along Track Scanning Radiometer (AATSR), under clear-sky conditions. Limited biases are observed (˜0.5 K for both comparisons) with a root-mean-square difference (RMSD) of ˜5 K, to be compared to the RMSE of ˜3.5 K between ISCCP et AATSR. AMSR-E results are compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky estimates. As both instruments are on board the same satellite, this reduces the uncertainty associated to the observations match-up, resulting in a lower RMSD of ˜ 4K. The microwave Ts is compared to in situ Ts time series from a collection of ground stations over a large range of environments. For 22 stations available in the 2003-2004 period, SSM/I Ts agrees very well for stations in vegetated environments (down to RMSD of ˜2.5 K for several stations), but the retrieval methodology encounters difficulties under cold conditions due to the large variability of snow and ice surface emissivities. For 10 stations in the year 2010, AMSR-E presents an all-station mean RMSD of ˜4.0 K with respect tom the ground Ts. Over the same stations, MODIS agrees better (RMSD of 2.4 K), ?but AMSR-E provides a larger number of Ts estimates by being able to measure under cloudy conditions, with an approximated ratio of 3 to 1 over the analysed stations. At many stations the RMSD of the AMSR-E clear and cloudy-sky are comparable, highlighting the ability of the microwave inversions to provide Ts under most atmospheric and surface conditions.

  6. Bidirectional Reflectance Functions for Application to Earth Radiation Budget Studies

    NASA Technical Reports Server (NTRS)

    Manalo-Smith, N.; Tiwari, S. N.; Smith, G. L.

    1997-01-01

    Reflected solar radiative fluxes emerging for the Earth's top of the atmosphere are inferred from satellite broadband radiance measurements by applying bidirectional reflectance functions (BDRFs) to account for the anisotropy of the radiation field. BDRF's are dependent upon the viewing geometry (i.e. solar zenith angle, view zenith angle, and relative azimuth angle), the amount and type of cloud cover, the condition of the intervening atmosphere, and the reflectance characteristics of the underlying surface. A set of operational Earth Radiation Budget Experiment (ERBE) BDRFs is available which was developed from the Nimbus 7 ERB (Earth Radiation Budget) scanner data for a three-angle grid system, An improved set of bidirectional reflectance is required for mission planning and data analysis of future earth radiation budget instruments, such as the Clouds and Earth's Radiant Energy System (CERES), and for the enhancement of existing radiation budget data products. This study presents an analytic expression for BDRFs formulated by applying a fit to the ERBE operational model tabulations. A set of model coefficients applicable to any viewing condition is computed for an overcast and a clear sky scene over four geographical surface types: ocean, land, snow, and desert, and partly cloudy scenes over ocean and land. The models are smooth in terms of the directional angles and adhere to the principle of reciprocity, i.e., they are invariant with respect to the interchange of the incoming and outgoing directional angles. The analytic BDRFs and the radiance standard deviations are compared with the operational ERBE models and validated with ERBE data. The clear ocean model is validated with Dlhopolsky's clear ocean model. Dlhopolsky developed a BDRF of higher angular resolution for clear sky ocean from ERBE radiances. Additionally, the effectiveness of the models accounting for anisotropy for various viewing directions is tested with the ERBE along tract data. An area viewed from nadir and from the side give two different radiance measurements but should yield the same flux when converted by the BDRF. The analytic BDRFs are in very good qualitative agreement with the ERBE models. The overcast scenes exhibit constant retrieved albedo over viewing zenith angles for solar zenith angles less than 60 degrees. The clear ocean model does not produce constant retrieved albedo over viewing zenith angles but gives an improvement over the ERBE operational clear sky ocean BDRF.

  7. Twilight and Daytime Colors of the Clear Sky

    DTIC Science & Technology

    1994-07-20

    greatly, with some surprising consequences for their calorimetric gamuts . Key words: Atmospheric optics, clear-sky chromaticities, blue sky, twilight...First we calculate a chromaticity curve’s unnormal- ized clorimetric gamut g by finding the curve’s average chromaticity [here, its mean CIE (Commis...calorimetric gamut , g. Taking the spectrum locus as an upper limit on color gamut , we use its gamut to normalize any other chromaticity 20 July 1994 / Vol

  8. The impact of the 2015-2016 El Niño-Southern Oscillation (ENSO) event on greenhouse gas exchange and surface energy budget in an Indonesian oil palm plantation

    NASA Astrophysics Data System (ADS)

    Stiegler, Christian; Meijide, Ana; June, Tania; Knohl, Alexander

    2017-04-01

    The 2015-2016 El Niño-Southern Oscillation (ENSO) event was one of the strongest observed in the last 20 years. Oil palm plantations cover a large fraction of tropical lowlands in Southeast Asia but despite their growing areal extent, measurements and observations of greenhouse gas exchange and surface energy balance are still scarce. In addition, the effects of extreme events such as ENSO on carbon sequestration and the partitioning of surface energy balance components are widely unknown. In this study, we use micrometeorological measurements located in commercial oil palm plantations in the Jambi province (Sumatra, Indonesia) to assess the impact of the 2015-2016 ENSO event and severe forest fires on greenhouse gas exchange and surface energy budget. Continuous measurements are in operation since July 2013 and we assess turbulent fluxes of carbon dioxide (CO2), water vapour and sensible heat using the eddy covariance technique before, during and after the 2015-2016 ENSO event. In the beginning of the ENSO event, the area experienced a strong drought with decreasing soil moisture, increasing air and surface temperatures, and strong atmospheric vapour pressure deficit. During the peak of the drought from August to October 2015, hundreds of forest fires in the area resulted in strong smoke production, decreasing incoming solar radiation by 35% compared to pre-ENSO values and diffuse radiation became almost the sole shortwave radiation flux. During the beginning of the drought, carbon uptake of the oil palm plantation was around 2.1 gC m-2 d-1 and initially increased by 50% due to clear-sky conditions and high incoming photosynthetically active radiation (PAR) but increasing density of smoke turned the oil palm plantation into a source of carbon. The turbulent heat fluxes experienced an increase in sensible heat fluxes due to drought conditions at the cost of latent heat fluxes resulting in an increase in the midday Bowen-ratio from 0.17 to 0.40. Strong smoke generally decreased the magnitude of the turbulent heat fluxes by 45% compared to pre-ENSO values. Overall, the ENSO event forest fires resulted in a major anomaly of exchange processes between the oil palm plantation and the atmosphere.

  9. Applicability of ASHRAE clear-sky model based on solar-radiation measurements in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abouhashish, Mohamed

    2017-06-01

    The constants of the ASHRAE clear sky model predict high values of the hourly beam radiation and very low values of the hourly diffuse radiation when used for locations in Saudi Arabia. Eight measurement stations in different locations are used to obtain new clearness factors for the model. The procedure depends on the comparison of monthly direct normal radiation (DNI) and diffuse horizontal radiation (DHI) between the measurement and the calculated values. Two factors are obtained CNb, CNd for every month to adjust the calculated clear sky radiation in order to consider the effects of local weather conditions. A simple and practical simulation model for solar geometry is designed using Microsoft Visual Basic platform, the model simulates the solar angles and radiation components according to ASHRAE model. The comparison of the calculated data with the first year of measurements indicate that the attenuation of site clearness is variable across the locations and from month to month, showing the clearest skies in the north and northwestern parts of the Kingdom especially during summer months.

  10. Upscaling instantaneous to daily evapotranspiration using modelled daily shortwave radiation for remote sensing applications: An artificial neural network approach

    DOE PAGES

    Wandera, Loise; Mallick, Kaniska; Kiely, Gerard; ...

    2017-01-11

    Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ET i) to daily evapotranspiration (ET d) is a key challenge in mapping regional ET using polar orbiting sensors. Various studies have unanimously cited the shortwave incoming radiation ( R S) to be the most robust reference variable explaining the ratio between ET d and ET i. This study aims to contribute in ET i upscaling for global studies using the ratio between daily and instantaneous incoming shortwave radiation ( R Sd/ R Si) as a factor for converting ET i to ET d. This paper proposes an artificial neural network (ANN)more » machine-learning algorithm first to predict R Sd from R Si followed by using the R Sd/ R Si ratio to convert ET i to ET d across different terrestrial ecosystems. Using R Si and R Sd observations from multiple sub-networks of the FLUXNET database spread across different climates and biomes (to represent inputs that would typically be obtainable from remote sensors during the overpass time) in conjunction with some astronomical variables (e.g. solar zenith angle, day length, exoatmospheric shortwave radiation), we developed the ANN model for reproducing R Sd and further used it to upscale ET i to ET d. The efficiency of the ANN is evaluated for different morning and afternoon times of day, under varying sky conditions, and also at different geographic locations. R S-based upscaled ET d produced a significant linear relation ( R 2 = 0.65 to 0.69), low bias (-0.31 to -0.56 MJ m -2 d -1; approx. 4 %), and good agreement (RMSE 1.55 to 1.86 MJ m -2 d -1; approx. 10 %) with the observed ET d, although a systematic overestimation of ET d was also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall information in ANN training reduced the systematic overestimation tendency in predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust performance of the ANN-driven R S-based ET i upscaling method and was found to produce lowest RMSE under cloudy conditions. Sensitivity analysis revealed variable sensitivity of the method to biome selection and high ET d prediction errors in forest ecosystems are primarily associated with greater rainfall and cloudiness. As a result, the overall methodology appears to be promising and has substantial potential for upscaling ET i to ET d for field and regional-scale evapotranspiration mapping studies using polar orbiting satellites.« less

  11. Upscaling instantaneous to daily evapotranspiration using modelled daily shortwave radiation for remote sensing applications: An artificial neural network approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wandera, Loise; Mallick, Kaniska; Kiely, Gerard

    Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ET i) to daily evapotranspiration (ET d) is a key challenge in mapping regional ET using polar orbiting sensors. Various studies have unanimously cited the shortwave incoming radiation ( R S) to be the most robust reference variable explaining the ratio between ET d and ET i. This study aims to contribute in ET i upscaling for global studies using the ratio between daily and instantaneous incoming shortwave radiation ( R Sd/ R Si) as a factor for converting ET i to ET d. This paper proposes an artificial neural network (ANN)more » machine-learning algorithm first to predict R Sd from R Si followed by using the R Sd/ R Si ratio to convert ET i to ET d across different terrestrial ecosystems. Using R Si and R Sd observations from multiple sub-networks of the FLUXNET database spread across different climates and biomes (to represent inputs that would typically be obtainable from remote sensors during the overpass time) in conjunction with some astronomical variables (e.g. solar zenith angle, day length, exoatmospheric shortwave radiation), we developed the ANN model for reproducing R Sd and further used it to upscale ET i to ET d. The efficiency of the ANN is evaluated for different morning and afternoon times of day, under varying sky conditions, and also at different geographic locations. R S-based upscaled ET d produced a significant linear relation ( R 2 = 0.65 to 0.69), low bias (-0.31 to -0.56 MJ m -2 d -1; approx. 4 %), and good agreement (RMSE 1.55 to 1.86 MJ m -2 d -1; approx. 10 %) with the observed ET d, although a systematic overestimation of ET d was also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall information in ANN training reduced the systematic overestimation tendency in predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust performance of the ANN-driven R S-based ET i upscaling method and was found to produce lowest RMSE under cloudy conditions. Sensitivity analysis revealed variable sensitivity of the method to biome selection and high ET d prediction errors in forest ecosystems are primarily associated with greater rainfall and cloudiness. As a result, the overall methodology appears to be promising and has substantial potential for upscaling ET i to ET d for field and regional-scale evapotranspiration mapping studies using polar orbiting satellites.« less

  12. Evaluation of different models to estimate the global solar radiation on inclined surface

    NASA Astrophysics Data System (ADS)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  13. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.

    2017-12-01

    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  14. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  15. Advances in a study of sky quality for astronomical observations in Colombia

    NASA Astrophysics Data System (ADS)

    González-Díaz, D.; Pinzón, G.

    2015-10-01

    The aim of this study is to determine the sky quality in Colombia for astronomical observations in the optic. About 10,000 images in infrared (6.7 mu m and 10.7 mu m) were analyzed from the GOES meteorological satellites in three night times taken during a period of five years (2008 to 2014). A novel methodology was followed to determine how clear or covered was the sky in a given image. Meteorological data also were used from the weather stations network of the national meteorological institute, IDEAM. A correlation between threshold temperature and altitude was found for a historical data series of about 30 years. The results of the average percentage of nights with clear skies per year or clear sky fraction (CSF) were validated with the reports on the number of hours of astronomical observation from the logbooks of Llano del Hato Observatory in Merida-Venezuela, obtaining a cumulative percentage difference during the five years less than 10%. Annual cloud covering was computed over the whole country and it was classified the nights as clear or usable based on the definition of a quality factor.

  16. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  17. Remote Sensing of Evapotranspiration and Carbon Uptake at Harvard Forest

    NASA Technical Reports Server (NTRS)

    Min, Qilong; Lin, Bing

    2005-01-01

    A land surface vegetation index, defined as the difference of microwave land surface emissivity at 19 and 37 GHz, was calculated for a heavily forested area in north central Massachusetts. The microwave emissivity difference vegetation index (EDVI) was estimated from satellite SSM/I measurements at the defined wavelengths and used to estimate land surface turbulent fluxes. Narrowband visible and infrared measurements and broadband solar radiation observations were used in the EDVI retrievals and turbulent flux estimations. The EDVI values represent physical properties of crown vegetation such as vegetation water content of crown canopies. The collocated land surface turbulent and radiative fluxes were empirically linked together by the EDVI values. The EDVI values are statistically sensitive to evapotranspiration fractions (EF) with a correlation coefficient (R) greater than 0.79 under all-sky conditions. For clear skies, EDVI estimates exhibit a stronger relationship with EF than normalized difference vegetation index (NDVI). Furthermore, the products of EDVI and input energy (solar and photosynthetically-active radiation) are statistically significantly correlated to evapotranspiration (R=0.95) and CO2 uptake flux (R=0.74), respectively.

  18. Empirical corroboration of an earlier theoretical resolution to the UV paradox of insect polarized skylight orientation.

    PubMed

    Wang, Xin; Gao, Jun; Fan, Zhiguo

    2014-02-01

    It is surprising that many insect species use only the ultraviolet (UV) component of the polarized skylight for orientation and navigation purposes, while both the intensity and the degree of polarization of light from the clear sky are lower in the UV than at longer (blue, green, red) wavelengths. Why have these insects chosen the UV part of the polarized skylight? This strange phenomenon is called the "UV-sky-pol paradox". Although earlier several speculations tried to resolve this paradox, they did this without any quantitative data. A theoretical and computational model has convincingly explained why it is advantageous for certain animals to detect celestial polarization in the UV. We performed a sky-polarimetric approach and built a polarized skylight sensor that models the processing of polarization signals by insect photoreceptors. Using this model sensor, we carried out measurements under clear and cloudy sky conditions. Our results showed that light from the cloudy sky has maximal degree of polarization in the UV. Furthermore, under both clear and cloudy skies the angle of polarization of skylight can be detected with a higher accuracy. By this, we corroborated empirically the soundness of the earlier computational resolution of the UV-sky-pol paradox.

  19. Empirical corroboration of an earlier theoretical resolution to the UV paradox of insect polarized skylight orientation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Gao, Jun; Fan, Zhiguo

    2014-02-01

    It is surprising that many insect species use only the ultraviolet (UV) component of the polarized skylight for orientation and navigation purposes, while both the intensity and the degree of polarization of light from the clear sky are lower in the UV than at longer (blue, green, red) wavelengths. Why have these insects chosen the UV part of the polarized skylight? This strange phenomenon is called the "UV-sky-pol paradox". Although earlier several speculations tried to resolve this paradox, they did this without any quantitative data. A theoretical and computational model has convincingly explained why it is advantageous for certain animals to detect celestial polarization in the UV. We performed a sky-polarimetric approach and built a polarized skylight sensor that models the processing of polarization signals by insect photoreceptors. Using this model sensor, we carried out measurements under clear and cloudy sky conditions. Our results showed that light from the cloudy sky has maximal degree of polarization in the UV. Furthermore, under both clear and cloudy skies the angle of polarization of skylight can be detected with a higher accuracy. By this, we corroborated empirically the soundness of the earlier computational resolution of the UV-sky-pol paradox.

  20. Local short-term variability in solar irradiance

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerald M.; Monahan, Adam H.; Heinemann, Detlev

    2016-05-01

    Characterizing spatiotemporal irradiance variability is important for the successful grid integration of increasing numbers of photovoltaic (PV) power systems. Using 1 Hz data recorded by as many as 99 pyranometers during the HD(CP)2 Observational Prototype Experiment (HOPE), we analyze field variability of clear-sky index k* (i.e., irradiance normalized to clear-sky conditions) and sub-minute k* increments (i.e., changes over specified intervals of time) for distances between tens of meters and about 10 km. By means of a simple classification scheme based on k* statistics, we identify overcast, clear, and mixed sky conditions, and demonstrate that the last of these is the most potentially problematic in terms of short-term PV power fluctuations. Under mixed conditions, the probability of relatively strong k* increments of ±0.5 is approximately twice as high compared to increment statistics computed without conditioning by sky type. Additionally, spatial autocorrelation structures of k* increment fields differ considerably between sky types. While the profiles for overcast and clear skies mostly resemble the predictions of a simple model published by , this is not the case for mixed conditions. As a proxy for the smoothing effects of distributed PV, we finally show that spatial averaging mitigates variability in k* less effectively than variability in k* increments, for a spatial sensor density of 2 km-2.

  1. Comparison of Pyranometers and Reference Cells on Fixed and One-Axis Tracking Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, Michael R; Sengupta, Manajit; Vignola, Frank

    A wide variety of sensors are used to monitor the irradiance incident on solar modules to evaluate the performance of photovoltaic (PV) systems. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules, a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface,more » a fixed-tilt surface, and a one-axis tracking surface. This analysis focuses on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles of incidence, even though both instruments are based on measuring the short-circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded-base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer, which has a response nearly independent of the wavelength of light used by PV modules.« less

  2. A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nikolo E.; Shuman, Christopher A.; Key, Jeffrey R.; Koenig, Lora S.

    2012-01-01

    We have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) ice-surface temperature (1ST) algorithm. A climate-data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. We present daily and monthly MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 at 6.25-km spatial resolution on a polar stereographic grid. This record will be elevated in status to a CDR when at least nine more years of data become available either from MODIS Terra or Aqua, or from the Visible Infrared Imager Radiometer Suite (VIIRS) to be launched in October 2011. Our ultimate goal is to develop a CDR that starts in 1981 with the Advanced Very High Resolution (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present, and into the VIIRS era. Differences in the APP and MODIS cloud masks have so far precluded the current 1ST records from spanning both the APP and MODIS time series in a seamless manner though this will be revisited when the APP dataset has been reprocessed. The complete MODIS 1ST daily and monthly data record is available online.

  3. Surface Downward Longwave Radiation Retrieval Algorithm for GEO-KOMPSAT-2A/AMI

    NASA Astrophysics Data System (ADS)

    Ahn, Seo-Hee; Lee, Kyu-Tae; Rim, Se-Hun; Zo, Il-Sung; Kim, Bu-Yo

    2018-05-01

    This study contributes to the development of an algorithm to retrieve the Earth's surface downward longwave radiation (DLR) for 2nd Geostationary Earth Orbit KOrea Multi-Purpose SATellite (GEO-KOMPSAT-2A; GK-2A)/Advanced Meteorological Imager (AMI). Regarding simulation data for algorithm development, we referred to Clouds and the Earth's Radiant Energy System (CERES), and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim reanalysis data. The clear sky DLR calculations were in good agreement with the Gangneung-Wonju National University (GWNU) Line-By-Line (LBL) model. Compared with CERES data, the Root Mean Square Error (RMSE) was 10.14Wm-2. In the case of cloudy sky DLR, we estimated the cloud base temperature empirically by utilizing cloud liquid water content (LWC) according to the cloud type. As a result, the correlation coefficients with CERES all sky DLRs were greater than 0.99. However, the RMSE between calculated DLR and CERES data was about 16.67Wm-2, due to ice clouds and problems of mismatched spatial and temporal resolutions for input data. This error may be reduced when GK-2A is launched and its products can be used as input data. Accordingly, further study is needed to improve the accuracy of DLR calculation by using high-resolution input data. In addition, when compared with BSRN surface-based observational data and retrieved DLR for all sky, the correlation coefficient was 0.86 and the RMSE was 31.55 Wm-2, which indicates relatively high accuracy. It is expected that increasing the number of experimental Cases will reduce the error.

  4. Short wind waves on the ocean: Wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Plant, William J.

    2015-03-01

    Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.

  5. Analysis of photosynthetically active radiation under various sky conditions in Wuhan, Central China.

    PubMed

    Wang, Lunche; Gong, Wei; Lin, Aiwen; Hu, Bo

    2014-10-01

    Observations of photosynthetically active radiation (PAR) and global solar radiation (G) at Wuhan, Central China during 2005-2012 were first reported to investigate PAR variability at different time scales and its PAR fraction (F(p)) under different sky conditions. Both G irradiances (I(g)) and PAR irradiances (I(p)) showed similar seasonal features that peaked in values at noon during summer and reached their lower values in winter. F(p) reached higher values during either sunrise or sunset; lower values of F p appeared at local noon because of the absorption effects of water vapor and clouds on long-wave radiation. There was an inverse relationship between clearness index (K(t)) and F(p); the maximum I(p) decreased by 22.3 % (39.7 %) when sky conditions changed from overcast to cloudless in summer (winter); solar radiation was more affected by cloudiness than the seasonal variation in cloudy skies when compared with that in clear skies. The maximum daily PAR irradiation (R(p)) was 11.89 MJ m⁻² day⁻¹ with an annual average of 4.85 MJ m⁻² day⁻¹. F p was in the range of 29-61.5 % with annual daily average value being about 42 %. Meanwhile, hourly, daily, and monthly relationships between R p and G irradiation (R g) under different sky conditions were investigated. It was discovered that cloudy skies were the dominated sky condition in this region. Finally, a clear-sky PAR model was developed by analyzing the dependence of PAR irradiances on optical air mass under various sky conditions for the whole study period in Central China, which will lay foundations for ecological process study in the near future.

  6. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo

    2011-01-01

    Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.

  7. Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in some 20 or so atmospheric general circulation models (GCMS) are summarized. In only a small fraction of these have significant sensitivity studies been carried out and published. Predominantly, the sensitivity studies focus upon the parameterization of land-surface processes and specification of land-surface properties-the most important of these include albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. For example, results from numerous studies give an average decrease in continental precipitation of 1 mm day1 in response to an average albedo increase of 0.13. Few conclusive studies have been carried out on the impact of a gross roughness-length change-the primary study included an important statistical assessment of the impact upon the mean July climate around the globe of a decreased continental roughness (by three orders of magnitude). For example, such a decrease reduced the precipitation over Amazonia by 1 to 2 mm day1.The inclusion of a canopy scheme in a GCM ensures the combined impacts of roughness (canopies tend to be rougher than bare soil), albedo (canopies tend to be less reflective than bare soil), and soil-moisture availability (canopies prevent the near-surface soil region from drying out and can access the deep soil moisture) upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. The results of four such studies show that replacing tropical forest with a degraded pasture results in decreased evaporation ( 1 mm day1) and precipitation (1-2 mm day1), and increased near-surface air temperatures (2 K).Sensitivity studies as a whole suggest the need for a realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but even allowing for the importance of surface processes, the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Aniazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits.There are three major tasks that confront the researcher so far as the development and validation of atmospheric boundary-layer (ABL) and surface schemes in GCMs are concerned:(i) There is a need to as' critically the impact of `improved' parameterization schemes on WM simulations, taking into account the problem of natural variability and hence the statistical significance of the induced changes.(ii) There is a need to compare GCM simulations of surface and ABL behavior (particularly regarding the diurnal cycle of surface fluxes, air temperature, and ABL depth) with observations over a range of surface types (vegetation, desert, ocean). In this context, area-average values of surface fluxes will be required to calibrate directly the ABL/land-surface scheme in the GCM.(iii) There is a need for intercomparisons of ABL and land-surface schemes used in GCMS, both for one- dimensional stand-alone models and for GCMs that incorporate the respective schemes.

  8. Celestial polarization patterns sufficient for Viking navigation with the naked eye: detectability of Haidinger's brushes on the sky versus meteorological conditions

    PubMed Central

    Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András

    2017-01-01

    If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d* for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d > d* is satisfied. Using full-sky imaging polarimetry, we measured the d-pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ. From the measured d-patterns of a given sky we determined the proportion P of the sky for which d > d*. We obtained that P is the largest at low solar elevations θ ≈ 0° and under totally or nearly clear skies with cloud coverage ρ = 0%, when the sun's position is already easily determined. If the sun is below the horizon (−5° ≤ θ < 0°) during twilight, P = 76.17 ± 4.18% for dmin∗=23% under clear sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes. PMID:28386426

  9. Celestial polarization patterns sufficient for Viking navigation with the naked eye: detectability of Haidinger's brushes on the sky versus meteorological conditions.

    PubMed

    Horváth, Gábor; Takács, Péter; Kretzer, Balázs; Szilasi, Szilvia; Száz, Dénes; Farkas, Alexandra; Barta, András

    2017-02-01

    If a human looks at the clear blue sky from which light with high enough degree of polarization d originates, an 8-shaped bowtie-like figure, the yellow Haidinger's brush can be perceived, the long axis of which points towards the sun. A band of high d arcs across the sky at 90° from the sun. A person can pick two points on that band, observe the yellow brushes and triangulate the position of the sun based on the orientation of the two observed brushes. This method has been suggested to have been used on the open sea by Viking navigators to determine the position of the invisible sun occluded by cloud or fog. Furthermore, Haidinger's brushes can also be used to locate the sun when it is below the horizon or occluded by objects on the horizon. To determine the position of the sun using the celestial polarization pattern, the d of the portion of the sky used must be greater than the viewer's degree of polarization threshold d * for perception of Haidinger's brushes. We studied under which sky conditions the prerequisite d  >  d * is satisfied. Using full-sky imaging polarimetry, we measured the d -pattern of skylight in the blue (450 nm) spectral range for 1296 different meteorological conditions with different solar elevation angles θ and per cent cloud cover ρ . From the measured d -patterns of a given sky we determined the proportion P of the sky for which d  >  d *. We obtained that P is the largest at low solar elevations θ  ≈ 0° and under totally or nearly clear skies with cloud coverage ρ  = 0%, when the sun's position is already easily determined. If the sun is below the horizon (-5° ≤  θ  < 0°) during twilight, P  = 76.17 ± 4.18% for [Formula: see text] under clear sky conditions. Consequently, the sky-polarimetric Viking navigation based on Haidinger's brushes is most useful after sunset and prior to sunrise, when the sun is not visible and large sky regions are bright, clear and polarized enough for perception of Haidinger's brushes.

  10. Willingness to Pay for a Clear Night Sky: Use of the Contingent Valuation Method

    NASA Astrophysics Data System (ADS)

    Simpson, Stephanie; Winebrake, J.; Noel-Storr, J.

    2006-12-01

    A clear night sky is a public good, and as a public good government intervention to regulate it is feasible and necessary. Light pollution decreases the ability to view the unobstructed night sky, and can have biological, human health, energy related, and scientific consequences. In order for governments to intervene more effectively with light pollution controls (costs), the benefits of light pollution reduction also need to be determined. This project uses the contingent valuation method to place an economic value on one of the benefits of light pollution reduction aesthetics. Using a willingness to pay approach, this study monetizes the value of a clear night sky for students at RIT. Images representing various levels of light pollution were presented to this population as part of a survey. The results of this study may aid local, state, and federal policy makers in making informed decisions regarding light pollution.

  11. Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling

    NASA Technical Reports Server (NTRS)

    Raschke, Ehrhard; Kinne, Stefan; Rossow, William B.; Stackhouse, Paul W. Jr.; Wild, Martin

    2016-01-01

    This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10Wm(exp -2) each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30Wmexp -2) over trade wind cumulus regions, yet smaller CRE by about -30Wm(exp -2) over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15Wm(exp -2) smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

  12. Characterizing energy budget variability at a Sahelian site: a test of NWP model behaviour

    NASA Astrophysics Data System (ADS)

    Mackie, Anna; Palmer, Paul I.; Brindley, Helen

    2017-12-01

    We use observations of surface and top-of-the-atmosphere (TOA) broadband radiation fluxes determined from the Atmospheric Radiation Measurement programme mobile facility, the Geostationary Earth Radiation Budget (GERB) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) instruments and a range of meteorological variables at a site in the Sahel to test the ability of the ECMWF Integrated Forecasting System cycle 43r1 to describe energy budget variability. The model has daily average biases of -12 and 18 W m-2 for outgoing longwave and reflected shortwave TOA radiation fluxes, respectively. At the surface, the daily average bias is 12(13) W m-2 for the longwave downwelling (upwelling) radiation flux and -21(-13) W m-2 for the shortwave downwelling (upwelling) radiation flux. Using multivariate linear models of observation-model differences, we attribute radiation flux discrepancies to physical processes, and link surface and TOA fluxes. We find that model biases in surface radiation fluxes are mainly due to a low bias in ice water path (IWP), poor description of surface albedo and model-observation differences in surface temperature. We also attribute observed discrepancies in the radiation fluxes, particularly during the dry season, to the misrepresentation of aerosol fields in the model from use of a climatology instead of a dynamic approach. At the TOA, the low IWP impacts the amount of reflected shortwave radiation while biases in outgoing longwave radiation are additionally coupled to discrepancies in the surface upwelling longwave flux and atmospheric humidity.

  13. Radiative impact of Etna volcanic aerosols over south eastern Italy on 3 December 2015

    NASA Astrophysics Data System (ADS)

    Romano, S.; Burlizzi, P.; Kinne, S.; De Tomasi, F.; Hamann, U.; Perrone, M. R.

    2018-06-01

    Irradiance and LiDAR measurements at the surface combined with satellite products from SEVIRI (Spinning Enhanced Visible and InfraRed Imager) and MODIS (MODerate resolution Imaging Spectroradiometer) were used to detect and characterize the Etna volcano (Italy) plume that crossed southeastern Italy on 3 December 2015, from about 10:00 up to 11:30 UTC, and estimate its radiative impact. The volcanic plume was delivered by a violent and short paroxysmal eruption that occurred from 02:30 to 03:10 UTC of 3 December 2015, about 400 km away from the monitoring site. Measurements from the LiDAR combined with model results showed that the aerosol optical depth of the volcanic plume, located from about 11 to 13 km above sea level (asl), was equal to 0.80 ± 0.07 at 532 nm. A low tropospheric aerosol load, located up to about 7 km asl, with optical depth equal to 0.19 ± 0.01 at 532 nm was also revealed by the LiDAR measurements. Short-Wave (SW) downward and upward irradiance measurements revealed that the instantaneous SW direct radiative forcing at the surface (DRFsurf) decreased to -146 ± 16 W m-2 at 10:50 UTC because of the volcanic plume passage. A Two-Stream radiative transfer model integrated with experimental measurements, which took into account the volcanic plume and the low tropospheric aerosol properties, was used to reproduce the SW radiative flux measurements at the surface and estimate the aerosol DRF both at the top of the atmosphere (TOA) and at the surface, in addition to the aerosol heating rate vertical profile. We found that the clear-sky, instantaneous, SW DRF at the TOA and the atmospheric forcing were equal to -112 and 33 W m-2, respectively, at 10:50 UTC that represented the time at which the volcanic plume radiative impact was the highest. The SW aerosol heating rate reached the peak value of 1.24 K day-1 at 12 km asl and decreased to -0.06 K day-1 at 11 km asl, at 10:50 UTC. The role of the aerosol load located up to about 7 km asl and the corresponding radiative impact has also been evaluated.

  14. The Relationship Between Surface Temperature Anomaly Time Series and those of OLR, Water Vapor, and Cloud Cover as Observed Using Nine Years of AIRS Version-5 Level-3 Products

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2011-01-01

    Outline: (1) Comparison of AIRS and CERES anomaly time series of outgoing longwave radiation (OLR) and OLR(sub CLR), i.e. Clear Sky OLR (2) Explanation of recent decreases in global and tropical mean values of OLR (3) AIRS "Short-term" Longwave Cloud Radiative Feedback -- A new product

  15. Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas

    2014-01-01

    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.

  16. Climate Quality Broadband and Narrowband Solar Reflected Radiance Calibration Between Sensors in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Doelling, David R.; Young, David F.; Loeb, Norman G.; Garber, Donald P.; MacDonnell, David G.

    2008-01-01

    vAs the potential impacts of global climate change become more clear [1], the need to determine the accuracy of climate prediction over decade-to-century time scales has become an urgent and critical challenge. The most critical tests of climate model predictions will occur using observations of decadal changes in climate forcing, response, and feedback variables. Many of these key climate variables are observed by remotely sensing the global distribution of reflected solar spectral and broadband radiance. These "reflected solar" variables include aerosols, clouds, radiative fluxes, snow, ice, vegetation, ocean color, and land cover. Achieving sufficient satellite instrument accuracy, stability, and overlap to rigorously observe decadal change signals has proven very difficult in most cases and has not yet been achieved in others [2]. One of the earliest efforts to make climate quality observations was for Earth Radiation Budget: Nimbus 6/7 in the late 1970s, ERBE in the 1980s/90s, and CERES in 2000s are examples of the most complete global records. The recent CERES data products have carried out the most extensive intercomparisons because if the need to merge data from up to 11 instruments (CERES, MODIS, geostationary imagers) on 7 spacecraft (Terra, Aqua, and 5 geostationary) for any given month. In order to achieve climate calibration for cloud feedbacks, the radiative effect of clear-sky, all-sky, and cloud radiative effect must all be made with very high stability and accuracy. For shortwave solar reflected flux, even the 1% CERES broadband absolute accuracy (1-sigma confidence bound) is not sufficient to allow gaps in the radiation record for decadal climate change. Typical absolute accuracy for the best narrowband sensors like SeaWiFS, MISR, and MODIS range from 2 to 4% (1-sigma). IPCC greenhouse gas radiative forcing is approx. 0.6 W/sq m per decade or 0.6% of the global mean shortwave reflected flux, so that a 50% cloud feedback would change the global reflected flux by approx. 0.3 W/sq m or 0.3% per decade in broadband SW calibration change. Recent results comparing CERES reflected flux changes with MODIS, MISR, and SeaWiFS narrowband changes concluded that only SeaWiFS and CERES were approaching sufficient stability in calibration for decadal climate change [3]. Results using deep convective clouds in the optically thick limit as a stability target may prove very effective for improving past data sets like ISCCP. Results for intercalibration of geostationary imagers to CERES using an entire month of regional nearly coincident data demonstrates new approaches to constraining the calibration of current geostationary imagers. The new Decadal Survey Mission CLARREO is examining future approaches to a "NIST-in-Orbit" approach of very high absolute accuracy reference radiometers that cover the full solar and infrared spectrum at high spectral resolution but at low spatial resolution. Sampling studies have shown that a precessing CLARREO mission could calibrate other geo and leo reflected solar radiation and thermal infrared sensors.

  17. The impact of the diurnal cycle on the propagation of Madden-Julian Oscillation convection across the Maritime Continent

    DOE PAGES

    Hagos, Samson M.; Zhang, Chidong; Feng, Zhe; ...

    2016-09-19

    Influences of the diurnal cycle of convection on the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value,more » the MJO signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that in the presence of the diurnal cycle, surface downwelling shortwave radiation in CONTROL simulations is larger because clouds preferentially form in the afternoon. Furthermore, the diurnal co-variability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in CONTROL compared to NODC simulations. Here, an analysis of observations indicates that the modulation of the downwelling shortwave radiation at the surface by the diurnal cycle of cloudiness negatively projects on the MJO intraseasonal cycle and therefore disrupts the propagation of the MJO across the MC.« less

  18. Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen

    NASA Astrophysics Data System (ADS)

    Weller, Rolf; Legrand, Michel; Preunkert, Susanne

    2018-02-01

    We measured aerosol size distributions and conducted bulk and size-segregated aerosol sampling during two summer campaigns in January 2015 and January 2016 at the continental Antarctic station Kohnen (Dronning Maud Land). Physical and chemical aerosol properties differ conspicuously during the episodic impact of a distinctive low-pressure system in 2015 (LPS15) compared to the prevailing clear sky conditions. The approximately 3-day LPS15 located in the eastern Weddell Sea was associated with the following: marine boundary layer air mass intrusion; enhanced condensation particle concentrations (1400 ± 700 cm-3 compared to 250 ± 120 cm-3 under clear sky conditions; mean ± SD); the occurrence of a new particle formation event exhibiting a continuous growth of particle diameters (Dp) from 12 to 43 nm over 44 h (growth rate 0.6 nm h-1); peaking methane sulfonate (MS-), non-sea-salt sulfate (nss-SO42-), and Na+ concentrations (190 ng m-3 MS-, 137 ng m-3 nss-SO42-, and 53 ng m-3 Na+ compared to 24 ± 15, 107 ± 20, and 4.1 ± 2.2 ng m-3, respectively, during clear sky conditions); and finally an increased MS- / nss-SO42- mass ratio βMS of 0.4 up to 2.3 (0.21 ± 0.1 under clear sky conditions) comparable to typical values found at coastal Antarctic sites. Throughout the observation period a larger part of MS- could be found in super-micron aerosol compared to nss-SO42-, i.e., (10 ± 2) % by mass compared to (3.2 ± 2) %, respectively. On the whole, under clear sky conditions aged aerosol characterized by usually mono-modal size distributions around Dp = 60 nm was observed. Although our observations indicate that the sporadic impacts of coastal cyclones were associated with enhanced marine aerosol entry, aerosol deposition on-site during austral summer should be largely dominated by typical steady clear sky conditions.

  19. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  20. Operational Derivation of Surface Albedo and Down-Welling Short-Wave Radiation in the Satellite Application Facility for Land Surface Analysis

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Carrer, D.; Meurey, C.; Roujean, J.-L.

    2006-08-01

    The Satellite Application Facility for Land Surface Anal- ysis hosted by the Portuguese Meteorological Institute in Lisbon generates and distributes value added satellite products for numerical weather prediction and environ- mental applications in near-real time. Within the project consortium M´et´eo-France is responsible for the land sur- face albedo and down-welling short-wave radiation flux products. Since the beginning of the year 2005 Meteosat Second Generation data are routinely processed by the Land-SAF operational system. In general the validation studies carried out so far show a good consistency with in-situ observations or equivalent products derived from other satellites. After one year of operations a summary of the product characteristics and performances is given. Key words: Surface Albedo; Down-welling Radiation; Land-SAF.

  1. MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome

    2014-01-01

    Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.

  2. Infrared Sky Imager (IRSI) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Victor R.

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing amore » real-time display of sky conditions.« less

  3. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2006-01-01

    Retrieving surface longwave radiation from space has been a difficult task since the surface downwelling longwave radiation (SDLW) are integrations from radiation emitted by the entire atmosphere, while those emitted from the upper atmosphere are absorbed before reaching the surface. It is particularly problematic when thick clouds are present since thick clouds will virtually block all the longwave radiation from above, while satellites observe atmosphere emissions mostly from above the clouds. Zhou and Cess developed an algorithm for retrieving SDLW based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for areas that were covered with ice clouds. An improved version of the algorithm was developed that prevents the large errors in the SDLW at low water vapor amounts. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths measured from the Cloud and the Earth's Radiant Energy System (CERES) satellites to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for the Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing. It will be incorporated in the CERES project as one of the empirical surface radiation algorithms.

  4. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  5. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data

    NASA Astrophysics Data System (ADS)

    Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.

    2009-05-01

    Decadal changes in shortwave irradiance at the Earth's surface are estimated for the period from approximately 1960 through to 2000 from pyranometer records stored in the Global Energy Balance Archive. For this observational period, estimates could be calculated for a total of 140 cells of the International Satellite Cloud Climatology Project grid (an equal area 2.5° × 2.5° grid at the equator) using regression models allowing for station effects. In large regions worldwide, shortwave irradiance decreases in the first half of the observational period, recovers from the decrease in the 1980s, and thereafter increases, in line with previous reports. Years of trend reversals are determined for the grid cells which are best described with a second-order polynomial model. This reversal of the trend is observed in the majority of the grid cells in the interior of Europe and in Japan. In China, shortwave irradiance recovers during the 1990s in the majority of the grid cells in the southeast and northeast from the decrease observed in the period from 1960 through to 1990. A reversal of the trend in the 1980s or early 1990s is also observed for two grid cells in North America, and for the grid cells containing the Kuala Lumpur (Malaysia), Singapore, Casablanca (Morocco), Valparaiso (Chile) sites, and, noticeably, the remote South Pole and American Samoa sites. Negative trends persist, i.e., shortwave radiation decreases, for the observational period 1960 through to 2000 at the European coasts, in central and northwest China, and for three grid cells in India and two in Africa.

  6. Observations of Surfzone Albedo

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  7. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  8. Cloudy-sky Longwave Downward Radiation Estimation by Combining MODIS and AIRS/AMSU Measurements

    NASA Astrophysics Data System (ADS)

    Wang, T.; Shi, J.

    2017-12-01

    Longwave downward radiation (LWDR) is another main energy source received by the earth's surface except solar radiation. Its importance in regulating air temperature and balancing surface energy is enlarged especially under cloudy-sky. Unfortunately, to date, a large number of efforts have been made to derive LWDR from space under only clear-sky conditions leading to difficulty in utilizing space-based LWDR in most models due to its spatio-temporal discontinuity. Currently, only few studies focused on LWDR estimation under cloudy-sky conditions, while their global application is still questionable. In this paper, an alternative strategy is proposed aiming to derive high resolution(1km) cloudy-sky LWDR by fusing collocated satellite multi-sensor measurements. The results show that the newly developed method can work well and can derive LWDR at better accuracy with RMSE<27 W/m2 and bias < 10 W/m2 even under cloudy skies and at 1km scales. By comparing to CALIPSO-CloudSat-CERES-MODIS (CCCM) and SSF products of CERES, MERRA, ERA-interim and NCEP-CSFR products, the new approach demonstrates its superiority in terms of accuracy, temporal variation and spatial distribution pattern of LWDR. The comprehensive comparison analyses also reveal that, except for the proposed product, other four products (CERES, MERRA, ERA-interim and NCEP-CSFR) also show a big difference from each other in the LWDR spatio-temporal distribution pattern and magnitude. The difference between these products can still up to 60W/m2 even at the monthly scale, implying large uncertainties in current LWDR estimations. Besides the higher accuracy of the proposed method, more importantly, it provides unprecedented possibilities for jointly generating high resolution global LWDR datasets by connecting the NASA's Earth Observing System-(EOS) mission (MODIS-AIRS/AMSU) and the Suomi National Polar-orbiting Partnership-(NPP) mission (VIIRS-CrIS/ATMS). Meanwhile, the scheme proposed in this study also gives some clues for multiple data fusing in the remote sensing community.

  9. Effects of temporal averaging on short-term irradiance variability under mixed sky conditions

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerald M.; Monahan, Adam H.

    2018-05-01

    Characterizations of short-term variability in solar radiation are required to successfully integrate large numbers of photovoltaic power systems into the electrical grid. Previous studies have used ground-based irradiance observations with a range of different temporal resolutions and a systematic analysis of the effects of temporal averaging on the representation of variability is lacking. Using high-resolution surface irradiance data with original temporal resolutions between 0.01 and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. In this analysis, we condition all data to states of mixed skies, which are the most potentially problematic in terms of local PV power volatility. Statistics of clear-sky index k* and its increments Δk*τ (i.e., normalized surface irradiance and changes therein over specified intervals of time) are considered separately. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability. Higher-resolution data increase the complexity of data management and quality control without appreciably improving the representation of variability. The results do not show any substantial discrepancies between locations or seasons.

  10. Slope effects on shortwave radiation components and net radiation

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Hays, Cynthia J.; Mesarch, Mark A.

    1992-01-01

    The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions.' The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1978-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Analysis since our last report has focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989.

  11. The use of screening effects in modelling route-based daytime road surface temperature

    NASA Astrophysics Data System (ADS)

    Hu, Yumei; Almkvist, Esben; Lindberg, Fredrik; Bogren, Jörgen; Gustavsson, Torbjörn

    2016-07-01

    Winter road maintenance is essential for road safety. Accurate predictions of the road surface temperature (RST) and conditions can enhance the efficiency of winter road maintenance. Screening effects, which encompass shading effects and the influence of the sky-view factor ( ψ s ), influence RST distributions because they affect road surface radiation fluxes. In this work, light detection and ranging (Lidar) data are used to derive shadow patterns and ψ s values, and the resulting shadow patterns are used to model route-based RST distributions along two stretches of road in Sweden. The shading patterns and road surface radiation fluxes calculated from the Lidar data generally agreed well with measured RST values. Variation in land use types and the angle between the road direction and solar azimuth may introduce uncertainties, and accounting for these factors may improve the results obtained in certain cases. A simple shading model that only accounts for the direct radiation at the instant of measurement is often sufficient to provide reasonably accurate RST estimates. However, in certain cases, such as those involving measurements close to sunset, it is important to consider the radiation accumulated over several hours. The inclusion of ψ s improves the model performance even more in such cases. Overall, RST models based on the accumulated direct shortwave radiation offered an optimal balance of simplicity and accuracy. General radiation models were built for country road and highway environments, explaining up to 70 and 65 %, respectively, of the observed variation in RST along the corresponding stretches of road.

  12. Observational estimation of radiative feedback to surface air temperature over Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Hwang, Jiwon; Choi, Yong-Sang; Kim, WonMoo; Su, Hui; Jiang, Jonathan H.

    2018-01-01

    The high-latitude climate system contains complicated, but largely veiled physical feedback processes. Climate predictions remain uncertain, especially for the Northern High Latitudes (NHL; north of 60°N), and observational constraint on climate modeling is vital. This study estimates local radiative feedbacks for NHL based on the CERES/Terra satellite observations during March 2000-November 2014. The local shortwave (SW) and longwave (LW) radiative feedback parameters are calculated from linear regression of radiative fluxes at the top of the atmosphere on surface air temperatures. These parameters are estimated by the de-seasonalization and 12-month moving average of the radiative fluxes over NHL. The estimated magnitudes of the SW and the LW radiative feedbacks in NHL are 1.88 ± 0.73 and 2.38 ± 0.59 W m-2 K-1, respectively. The parameters are further decomposed into individual feedback components associated with surface albedo, water vapor, lapse rate, and clouds, as a product of the change in climate variables from ERA-Interim reanalysis estimates and their pre-calculated radiative kernels. The results reveal the significant role of clouds in reducing the surface albedo feedback (1.13 ± 0.44 W m-2 K-1 in the cloud-free condition, and 0.49 ± 0.30 W m-2 K-1 in the all-sky condition), while the lapse rate feedback is predominant in LW radiation (1.33 ± 0.18 W m-2 K-1). However, a large portion of the local SW and LW radiative feedbacks were not simply explained by the sum of these individual feedbacks.

  13. Colorimetric and Spectroradiometric Characteristics of Narrow-Field-of-View Clear Skylight in Granada, Spain

    DTIC Science & Technology

    2001-02-01

    yield chromaticities typical of the blues observed in clear daytime skies. Thus none of our measurements re- flect the far wider chromaticity gamut ...y 5 20.24770 1 2.72203x 2 2.77935x2. (1) The chromaticity gamut of our experimental clear-sky measurements is broader than earlier ones,15–28 despite...chromaticity curves in Figs. 4–7 are typical of those measured on many other days. Not surprisingly, as h0 decreases, the chromaticity gamut measured

  14. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    NASA Astrophysics Data System (ADS)

    Schwinger, Jörg; Tjiputra, Jerry; Goris, Nadine; Six, Katharina D.; Kirkevåg, Alf; Seland, Øyvind; Heinze, Christoph; Ilyina, Tatiana

    2017-08-01

    We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong) sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr-1 or 31 % (11.5 Tg S yr-1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by -0. 041 K per 1 Tg S yr-1 change in sea-air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

  15. What Colour Is a Shadow?

    ERIC Educational Resources Information Center

    Hughes, S. W.

    2009-01-01

    What colour is a shadow? Black, grey, or some other colour? This article describes how to use a digital camera to test the hypothesis that a shadow under a clear blue sky has a blue tint. A white sheet of A4 paper was photographed in full sunlight and in shadow under a clear blue sky. The images were analysed using a shareware program called…

  16. Cloud Detection with the Earth Polychromatic Imaging Camera (EPIC)

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Marshak, Alexander; Lyapustin, Alexei; Torres, Omar; Wang, Yugie

    2011-01-01

    The Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) would provide a unique opportunity for Earth and atmospheric research due not only to its Lagrange point sun-synchronous orbit, but also to the potential for synergistic use of spectral channels in both the UV and visible spectrum. As a prerequisite for most applications, the ability to detect the presence of clouds in a given field of view, known as cloud masking, is of utmost importance. It serves to determine both the potential for cloud contamination in clear-sky applications (e.g., land surface products and aerosol retrievals) and clear-sky contamination in cloud applications (e.g., cloud height and property retrievals). To this end, a preliminary cloud mask algorithm has been developed for EPIC that applies thresholds to reflected UV and visible radiances, as well as to reflected radiance ratios. This algorithm has been tested with simulated EPIC radiances over both land and ocean scenes, with satisfactory results. These test results, as well as algorithm sensitivity to potential instrument uncertainties, will be presented.

  17. A Sensitivity Analysis of the Nocturnal Boundary-Layer Properties to Atmospheric Emissivity Formulations

    NASA Astrophysics Data System (ADS)

    Siqueira, Mario B.; Katul, Gabriel G.

    2010-02-01

    A one-dimensional model for the mean potential temperature within the nocturnal boundary layer (NBL) was used to assess the sensitivity of three NBL properties (height, thermal stratification strength, and near-surface cooling) to three widely used atmospheric emissivity formulations. The calculations revealed that the NBL height is robust to the choice of the emissivity function, though this is not the case for NBL Richardson number and near-surface cooling rate. Rather than endorse one formulation, our analysis highlights the importance of atmospheric emissivity in modelling the radiative properties of the NBL especially for clear-sky conditions.

  18. Increase in surface albedo caused by agricultural plastic film

    NASA Astrophysics Data System (ADS)

    Fan, X.; Chen, H.; Xia, X.

    2016-12-01

    The area of agricultural greenhouses and cropland covered by plastic film has increased inChina over the past three decades. Construction of large-area plastic greenhouse potentiallychanges the physical and radiative properties of the surface and its albedo, thereby potentiallyaffecting the surface energy budget and climate change. This study aims to investigate theeffect of the plastic-film cover on surface albedo based on computationswith a simplified modeland several field observation experiments. The results showed that surface albedo increasedby ˜23.5 and ˜33.9% on clear and overcast days, respectively, if grassland was covered byplastic film. Surface albedo of bare soil covered by plastic film increased by ˜16.6% underclear sky conditions. A larger increase in surface albedo was derived for surface types withsmaller surface albedo. Model calculations were in good agreement with field observations.

  19. Assimilating All-Sky GPM Microwave Imager(GMI) Radiance Data in NASA GEOS-5 System for Global Cloud and Precipitation Analyses

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.

    2014-12-01

    The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of assimilating all-sky GMI data on GEOS-5 forecasts are discussed.

  20. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.

    2012-09-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  1. Evaluation of the Main Ceos Pseudo Calibration Sites Using Modis Brdf/albedo Products

    NASA Astrophysics Data System (ADS)

    Kharbouche, Said; Muller, Jan-Peter

    2016-06-01

    This work describes our findings about an evaluation of the stability and the consistency of twenty primary PICSs (Pseudo-Invariant Calibration Sites). We present an analysis of 13 years of 8-daily MODIS products of BRDF parameters and white-sky-albedos (WSA) over the shortwave band. This time series of WSA and BRDFs shows the variation of the "stability" varies significantly from site to site. Using a 10x10 km window size over all the sites, the change in of WSA stability is around 4% but the isotropicity, which is an important element in inter-satellite calibration, can vary from 75% to 98%. Moreover, some PICS, especially, Libya-4 which is one of the PICS which is most employed, has significant and relatively fast changes in wintertime. PICS observations of BRDF/albedo shows that the Libya-4 PICS has the best performance but it is not too far from some sites such as Libya-1 and Mali. This study also reveals that Niger-3 PICS has the longest continuous period of high stability per year, and Sudan has the most isotropic surface. These observations have important implications for the use of these sites.

  2. What is SRB?

    Atmospheric Science Data Center

    2015-10-28

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces and archives global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of-atmospheric (TOA) longwave and shortwave radiative parameters on a 1°x1° grid....

  3. NASA/GEWEX shortwave surface radiation budget: Integrated data product with reprocessed radiance, cloud, and meteorology inputs, and new surface albedo treatment

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Stackhouse, Paul W.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2017-02-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current Release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), and temperature and moisture profiles from nnHIRS.

  4. Validation of a Climate-Data Record of the "Clear-Kky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Box, Jason E.; Koenig, Lora S.; DiGirolamo, Nicolo E.; Comiso, Josefino C.; Shuman, Christopher A.

    2011-01-01

    Surface temperatures on the Greenland Ice Sheet have been studied on the ground, using automatic weather station (AWS) data from the Greenland-Climate Network (GC-Net), and from analysis of satellite sensor data. Using Advanced Very High Frequency Radiometer (AVHRR) weekly surface temperature maps, warming of the surface of the Greenland Ice Sheet has been documented since 1981. We extended and refined this record using higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) data from March 2000 to the present. We developed a daily and monthly climate-data record (CDR) of the "clear-sky" surface temperature of the Greenland Ice Sheet using an ice-surface temperature (1ST) algorithm developed for use with MODIS data. Validation of this CDR is ongoing. MODIS Terra swath data are projected onto a polar stereographic grid at 6.25-km resolution to develop binary, gridded daily and mean-monthly 1ST maps. Each monthly map also has a color-coded image map that is available to download. Also included with the monthly maps is an accompanying map showing number of days in the month that were used to calculate the mean-monthly 1ST. This is important because no 1ST decision is made by the algorithm for cells that are considered cloudy by the internal cloud mask, so a sufficient number of days must be available to produce a mean 1ST for each grid cell. Validation of the CDR consists of several facets: 1) comparisons between ISTs and in-situ measurements; 2) comparisons between ISTs and AWS data; and 3) comparisons of ISTs with surface temperatures derived from other satellite instruments such as the Thermal Emission and Reflection Radiometer (ASTER) and Enhanced Thematic Mapper Plus (ETM+). Previous work shows that Terra MODIS ISTs are about 3 C lower than in-situ temperatures measured at Summit Camp, during the winter of 2008-09 under clear skies. In this work we begin to compare surface temperatures derived from AWS data with ISTs from the MODIS CDR. The Greenland Ice Sheet 1ST CDR will be useful for monitoring surface-temperature trends and can be used as input or for validation of climate models. The CDR can be extended into the future using MODIS Terra, Aqua and NPOESS Preparatory Project Visible Infrared Imager Radiometer Suite (VII RS) data.

  5. Spectral and Spatial UV Sky Radiance Measurements at a Seaside Resort Under Clear Sky and Slightly Overcast Conditions.

    PubMed

    Sandmann, Henner; Stick, Carsten

    2014-01-01

    Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes. © 2013 The American Society of Photobiology.

  6. Contrails and their impact on shortwave radiation and photovoltaic power production - a regional model study

    NASA Astrophysics Data System (ADS)

    Gruber, Simon; Unterstrasser, Simon; Bechtold, Jan; Vogel, Heike; Jung, Martin; Pak, Henry; Vogel, Bernhard

    2018-05-01

    A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.

  7. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE PAGES

    Ma, H. -Y.; Klein, S. A.; Xie, S.; ...

    2018-02-27

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  8. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    NASA Astrophysics Data System (ADS)

    Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.

    2018-03-01

    Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.

  9. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less

  10. Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit; Dooraghi, Mike

    Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less

  11. Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools

    DOE PAGES

    Xie, Yu; Sengupta, Manajit; Dooraghi, Mike

    2018-03-20

    Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less

  12. Assessment of BSRN radiation records for the computation of monthly means

    NASA Astrophysics Data System (ADS)

    Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E. G.; Long, C. N.; Zhang, T.

    2011-02-01

    The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m-2 in most cases. The authors suggest using a standardized method for the computation of monthly means which addresses diurnal variations in the missing data in order to avoid a mismatch of future published monthly mean radiation fluxes from BSRN. The application of robust statistics would probably lead to less biased results for data records with frequent gaps and/or flagged data and outliers. The currently applied empirical methods should, therefore, be completed by the development of robust methods.

  13. Testing avian compass calibration: comparative experiments with diurnal and nocturnal passerine migrants in South Sweden

    PubMed Central

    Åkesson, Susanne; Odin, Catharina; Hegedüs, Ramón; Ilieva, Mihaela; Sjöholm, Christoffer; Farkas, Alexandra; Horváth, Gábor

    2015-01-01

    ABSTRACT Cue-conflict experiments were performed to study the compass calibration of one predominantly diurnal migrant, the dunnock (Prunella modularis), and two species of nocturnal passerine migrants, the sedge warbler (Acrocephalus schoenobaenus), and the European robin (Erithacus rubecula) during autumn migration in South Sweden. The birds' orientation was recorded in circular cages under natural clear and simulated overcast skies in the local geomagnetic field, and thereafter the birds were exposed to a cue-conflict situation where the horizontal component of the magnetic field (mN) was shifted +90° or −90° at two occasions, one session starting shortly after sunrise and the other ca. 90 min before sunset and lasting for 60 min. The patterns of the degree and angle of skylight polarization were measured by full-sky imaging polarimetry during the cue-conflict exposures and orientation tests. All species showed orientation both under clear and overcast skies that correlated with the expected migratory orientation towards southwest to south. For the European robin the orientation under clear skies was significantly different from that recorded under overcast skies, showing a tendency that the orientation under clear skies was influenced by the position of the Sun at sunset resulting in more westerly orientation. This sun attraction was not observed for the sedge warbler and the dunnock, both orientating south. All species showed similar orientation after the cue-conflict as compared to the preferred orientation recorded before the cue-conflict, with the clearest results in the European robin and thus, the results did not support recalibration of the celestial nor the magnetic compasses as a result of the cue-conflict exposure. PMID:25505150

  14. Summary of along-track data from the earth radiation budget satellite for several representative ocean regions

    NASA Technical Reports Server (NTRS)

    Brooks, David R.; Fenn, Marta A.

    1988-01-01

    For several days in January and August 1985, the Earth Radiation Budget Satellite, a component of the Earth Radiation Budget Experiment (ERBE), was operated in an along-track scanning mode. A survey of radiance measurements taken in this mode is given for five ocean regions: the north and south Atlantic, the Arabian Sea, the western Pacific north of the Equator, and part of the Intertropical Convergence Zone. Each overflight contains information about the clear scene and three cloud categories: partly cloudy, mostly cloudy, and overcast. The data presented include the variation of longwave and shortwave radiance in each scene classification as a function of viewing zenity angle during each overflight of one of the five target regions. Several features of interest in the development of anisotropic models are evident, including the azimuthal dependence of shortwave radiance that is an essential feature of shortwave bidirectional models. The data also demonstrate that the scene classification algorithm employed by the ERBE results in scene classifications that are a function of viewing geometry.

  15. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    PubMed

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  16. Moderation of Cloud Reduction of UV in the Antarctic Due to High Surface Albedo.

    NASA Astrophysics Data System (ADS)

    Nichol, S. E.; Pfister, G.; Bodeker, G. E.; McKenzie, R. L.; Wood, S. W.; Bernhard, G.

    2003-08-01

    To gauge the impact of clouds on erythemal (sunburn causing) UV irradiances under different surface albedo conditions, UV measurements from two Antarctic sites (McMurdo and South Pole Stations) and a midlatitude site (Lauder, New Zealand) are examined. The surface albedo at South Pole remains high throughout the year, at McMurdo it has a strong annual cycle, and at Lauder it is low throughout the year. The measurements at each site are divided into clear and cloudy subsets and are compared with modeled clear-sky irradiances to assess the attenuation of UV by clouds. A radiative transfer model is also used to interpret the observations. Results show increasing attenuation of UV with increasing cloud optical depth, but a high surface albedo can moderate this attenuation as a result of multiple scattering between the surface and cloud base. This effect is of particular importance at high latitudes where snow may be present during the summer months. There is also a tendency toward greater cloud attenuation with increasing solar zenith angle.

  17. Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic Plain.

    PubMed

    Shamjad, P M; Tripathi, S N; Pathak, Ravi; Hallquist, M; Arola, Antti; Bergin, M H

    2015-09-01

    The Indo-Gangetic Plain is a region of known high aerosol loading with substantial amounts of carbonaceous aerosols from a variety of sources, often dominated by biomass burning. Although black carbon has been shown to play an important role in the absorption of solar energy and hence direct radiative forcing (DRF), little is known regarding the influence of light absorbing brown carbon (BrC) on the radiative balance in the region. With this in mind, a study was conducted for a one month period during the winter-spring season of 2013 in Kanpur, India that measured aerosol chemical and physical properties that were used to estimate the sources of carbonaceous aerosols, as well as parameters necessary to estimate direct forcing by aerosols and the contribution of BrC absorption to the atmospheric energy balance. Positive matrix factorization analyses, based on aerosol mass spectrometer measurements, resolved organic carbon into four factors including low-volatile oxygenated organic aerosols, semivolatile oxygenated organic aerosols, biomass burning, and hydrocarbon like organic aerosols. Three-wavelength absorption and scattering coefficient measurements from a Photo Acoustic Soot Spectrometer were used to estimate aerosol optical properties and estimate the relative contribution of BrC to atmospheric absorption. Mean ± standard deviation values of short-wave cloud free clear sky DRF exerted by total aerosols at the top of atmosphere, surface and within the atmospheric column are -6.1 ± 3.2, -31.6 ± 11, and 25.5 ± 10.2 W/m(2), respectively. During days dominated by biomass burning the absorption of solar energy by aerosols within the atmosphere increased by ∼35%, accompanied by a 25% increase in negative surface DRF. DRF at the top of atmosphere during biomass burning days decreased in negative magnitude by several W/m(2) due to enhanced atmospheric absorption by biomass aerosols, including BrC. The contribution of BrC to atmospheric absorption is estimated to range from on average 2.6 W/m(2) for typical ambient conditions to 3.6 W/m(2) during biomass burning days. This suggests that BrC accounts for 10-15% of the total aerosol absorption in the atmosphere, indicating that BrC likely plays an important role in surface and boundary temperature as well as climate.

  18. Theoretical and Observational Determination of Global and Regional Radiation Budget, Forcing and Feedbacks at the Top-of-Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.

    2004-01-01

    Report consists of: 1. List of accomplishments 2. List of publications 3. Abstracts of published or submitted papers and 4. Subject invention disclosure. The accomplishments of the grant listed are: 1. Improved the third-order turbulence closure in cloud resolving models to remove the liquid water oscillation. 2. Used the University of California-Los Angeles (UCLA) large-eddy simulation (LES) model to provide data for radiation transfer testing. 3. Revised shortwave k-distribution models based on HITRAN 2000. 4. Developed a gamma-weighted two-stream radiative transfer model for radiation budget estimate applications. 5. Estimated the effect of spherical geometry to the earth radiation budget. 6. Estimated top-of-atmosphere irradiance over snow and sea ice surfaces. 7. Estimated the aerosol direct radiative effect at the top of the atmosphere. 8. Estimated the top-of-atmosphere reflectance of the clear-sky molecular atmosphere over ocean. 9. Developed and validated new set of Angular Distribution Models for the CERES TRMM satellite instrument (tropical) 10. Developed and validated new set of Angular Distribution Models for the CERES Terra satellite instrument (global) 11. Quantified the top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations 12 Clarified the definition of TOA flux reference level for radiation budget studies 13. Developed new algorithm for unfaltering CERES measured radiances 14. Used multiangle POLDER measurements to produce narrowband angular distribution models and examine the effect of scene identification errors on TOA albedo estimates 15. Developed and validated a novel algorithm called the Multidirectional Reflectance Matching (MRM) model for inferring TOA albedos from ice clouds using multi-angle satellite measurements. 16. Developed and validated a novel algorithm called the Multidirectional Polarized Reflectance Matching (MPRM) model for inferring particle shapes from ice clouds using multi-angle polarized satellite measurements. 17. Developed 4 advanced light scattering models including the three-dimensional (3D) uniaxial perfectly matched layer (UPML) finite-difference time-domain (FDTD) model. 18. Develop sunglint in situ measurement and study reflectance distribution in the sunglint area. 19. Lead a balloon-borne radiometer TOA albedo validation effort. 20. Developed a CERES surface UVB, UVA, and UV index product.

  19. Multispectral information for gas and aerosol retrieval from TANSO-FTS instrument

    NASA Astrophysics Data System (ADS)

    Herbin, H.; Labonnote, L. C.; Dubuisson, P.

    2012-11-01

    The Greenhouse gases Observing SATellite (GOSAT) mission and in particular TANSO-FTS instrument has the advantage to measure simultaneously the same field of view in different spectral ranges with a high spectral resolution. These features are promising to improve, not only, gaseous retrieval in clear sky or scattering atmosphere, but also to retrieve aerosol parameters. Therefore, this paper is dedicated to an Information Content (IC) analysis of potential synergy between thermal infrared, shortwave infrared and visible, in order to obtain a more accurate retrieval of gas and aerosol. The latter is based on Shannon theory and used a sophisticated radiative transfer algorithm developed at "Laboratoire d'Optique Atmosphérique", dealing with multiple scattering. This forward model can be relied to an optimal estimation method, which allows simultaneously retrieving gases profiles and aerosol granulometry and concentration. The analysis of the information provided by the spectral synergy is based on climatology of dust, volcanic ash and biomass burning aerosols. This work was conducted in order to develop a powerful tool that allows retrieving simultaneously not only the gas concentrations but also the aerosol characteristics by selecting the so called "best channels", i.e. the channels that bring most of the information concerning gas and aerosol. The methodology developed in this paper could also be used to define the specifications of future high spectral resolution mission to reach a given accuracy on retrieved parameters.

  20. Global aerosol typing from a combination of A-Train satellite observations in clear-sky and above clouds

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Russell, P. B.; Vaughan, M.; Redemann, J.; Shinozuka, Y.; Livingston, J. M.; Zhang, Q.

    2014-12-01

    According to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), the model estimates of Radiative Forcing due to aerosol-radiation interactions (RFari) for individual aerosol types are less certain than the total RFari [Boucher et al., 2013]. For example, the RFari specific to Black Carbon (BC) is uncertain due to an underestimation of its mass concentration near source regions [Koch et al., 2009]. Several recent studies have evaluated chemical transport model (CTM) predictions using observations of aerosol optical properties such as Aerosol Optical Depth (AOD) or Single Scattering Albedo (SSA) from satellite or ground-based instruments (e.g., Huneeus et al., [2010]). However, most passive remote sensing instruments fail to provide a comprehensive assessment of the particle type without further analysis and combination of measurements. To improve the predictions of aerosol composition in CTMs, we have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground based passive remote sensing instruments [Russell et al., 2014]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. First, we apply the SCMC method to five years of clear-sky space-borne POLDER observations over Greece. We then use the aerosol extinction and SSA spectra retrieved from a combination of MODIS, OMI and CALIOP clear-sky observations to infer the aerosol type over the globe in 2007. Finally, we will extend the spaceborne aerosol classification from clear-sky to above low opaque water clouds using a combination of CALIOP AOD and backscatter observations and OMI absorption AOD values from near-by clear-sky pixels.

  1. An Iberian climatology of solar radiation obtained from WRF regional climate simulations for 1950-2010 period

    NASA Astrophysics Data System (ADS)

    Perdigão, João; Salgado, Rui; Magarreiro, Clarisse; Soares, Pedro M. M.; Costa, Maria João; Dasari, Hari Prasad

    2017-12-01

    The mesoscale Weather Research and Forecasting (WRF) Model is used over the Iberian Peninsula to generate 60 years (1950-2010) of climate data, at 5 km resolution, in order to evaluate and characterize the incident shortwave downward radiation at the surface (SW ↓), in present climate. The simulated values of SW ↓ in the period 2000-2009 were compared with data measured in Spanish and Portuguese meteorological stations before and a statistical BIAS correction was applied using data from Clouds and the Earth's Radiant Energy System (CERES), on board four different satellites. The spatial and temporal comparison between WRF results and observations show a good agreement for the analyzed period, although the model overestimates observations. This overestimation has a mean normalized bias of about 7% after BIAS correction (or 17% for original WRF output). Additionally, the present simulation was confronted against another previously validated WRF simulation performed with different resolution and set of parametrizations, showing comparable results. WRF adequately reproduces the observational features of SW ↓ with correlation coefficients above 0.8 in annual and seasonal basis. 60 years of simulated SW ↓ over the Iberian Peninsula were produced, which showed annual mean values that range from 130 W/m2, in the northern regions, to a maximum of around 230 W/m2 in the southeast of the Iberian Peninsula (IP). SW ↓ over IP shows a positive gradient from north to south and from west to east, with local effects influenced by topography and distance to the coast. The analysis of the simulated cloud fraction indicates that clear sky days are found in > 30% of the period at the southern area of IP, particularly in the Algarve (Portugal) and Andalusia (Spain), and this value increases significantly in the summer season for values above 80%.

  2. Comprehensive assessment of parameterization methods for estimating clear-sky surface downward longwave radiation

    NASA Astrophysics Data System (ADS)

    Guo, Yamin; Cheng, Jie; Liang, Shunlin

    2018-02-01

    Surface downward longwave radiation (SDLR) is a key variable for calculating the earth's surface radiation budget. In this study, we evaluated seven widely used clear-sky parameterization methods using ground measurements collected from 71 globally distributed fluxnet sites. The Bayesian model averaging (BMA) method was also introduced to obtain a multi-model ensemble estimate. As a whole, the parameterization method of Carmona et al. (2014) performs the best, with an average BIAS, RMSE, and R 2 of - 0.11 W/m2, 20.35 W/m2, and 0.92, respectively, followed by the parameterization methods of Idso (1981), Prata (Q J R Meteorol Soc 122:1127-1151, 1996), Brunt and Sc (Q J R Meteorol Soc 58:389-420, 1932), and Brutsaert (Water Resour Res 11:742-744, 1975). The accuracy of the BMA is close to that of the parameterization method of Carmona et al. (2014) and comparable to that of the parameterization method of Idso (1981). The advantage of the BMA is that it achieves balanced results compared to the integrated single parameterization methods. To fully assess the performance of the parameterization methods, the effects of climate type, land cover, and surface elevation were also investigated. The five parameterization methods and BMA all failed over land with the tropical climate type, with high water vapor, and had poor results over forest, wetland, and ice. These methods achieved better results over desert, bare land, cropland, and grass and had acceptable accuracies for sites at different elevations, except for the parameterization method of Carmona et al. (2014) over high elevation sites. Thus, a method that can be successfully applied everywhere does not exist.

  3. A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, Josefino C.; DiGirolamo, Nicolo E.; Shuman, Christopher A.; Key, Jeffrey R.; Koenig, Lora S.

    2011-01-01

    We have developed a climate-quality data record of the clear-sky surface temperature of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra ice-surface temperature (1ST) algorithm. A climate-data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change. We present daily and monthly Terra MODIS ISTs of the Greenland Ice Sheet beginning on 1 March 2000 and continuing through 31 December 2010 at 6.25-km spatial resolution on a polar stereographic grid within +/-3 hours of 17:00Z or 2:00 PM Local Solar Time. Preliminary validation of the ISTs at Summit Camp, Greenland, during the 2008-09 winter, shows that there is a cold bias using the MODIS IST which underestimates the measured surface temperature by approximately 3 C when temperatures range from approximately -50 C to approximately -35 C. The ultimate goal is to develop a CDR that starts in 1981 with the Advanced Very High Resolution (AVHRR) Polar Pathfinder (APP) dataset and continues with MODIS data from 2000 to the present. Differences in the APP and MODIS cloud masks have so far precluded the current IST records from spanning both the APP and MODIS IST time series in a seamless manner though this will be revisited when the APP dataset has been reprocessed. The Greenland IST climate-quality data record is suitable for continuation using future Visible Infrared Imager Radiometer Suite (VIIRS) data and will be elevated in status to a CDR when at least 9 more years of climate-quality data become available either from MODIS Terra or Aqua, or from the VIIRS. The complete MODIS IST data record will be available online in the summer of 2011.

  4. A Climate-Data Record (CDR) of the "Clear Sky" Surface Temperature of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.

    2011-01-01

    To quantify the ice-surface temperature (IST) we are developing a climate-data record (CDR) of monthly IST of the Greenland ice sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data at 5-km resolution. "Clear-sky" surface temperature increases have been measured from the early 1980s to the early 2000s in the Arctic using AVHRR data, showing increases ranging from 0.57-0.02 (Wang and Key, 2005) to 0.72 0.10 deg C per decade (Comiso, 2006). Arctic warming has implications for ice-sheet mass balance because much of the periphery of the ice sheet is near 0 deg C in the melt season and is thus vulnerable to more extensive melting (Hanna et al., 2008). The algorithm used for this work has a long history of measuring IST in the Arctic with AVHRR (Key and Haefliger, 1992). The data are currently available from 1981 to 2004 in the AVHRR Polar Pathfinder (APP) dataset (Fowler et al., 2000). J. Key1NOAA modified the AVHRR algorithm for use with MODIS (Hall et al., 2004). The MODIS algorithm is now being processed over Greenland. Issues being addressed in the production of the CDR are: time-series bias caused by cloud cover, and cross-calibration between AVHRR and MODIS instruments. Because of uncertainties, time series of satellite ISTs do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with in-situ (see Koenig and Hall, in press) and automatic-weather station data (e.g., Shuman et al., 2001).

  5. A Consistent Treatment of Microwave Emissivity and Radar Backscatter for Retrieval of Precipitation over Water Surfaces

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph; Meneghini, Robert; Grecu, Mircea; Olson, William S.

    2016-01-01

    The Global Precipitation Measurement satellite's Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) are designed to provide the most accurate instantaneous precipitation estimates currently available from space. The GPM Combined Algorithm (CORRA) plays a key role in this process by retrieving precipitation profiles that are consistent with GMI and DPR measurements; therefore, it is desirable that the forward models in CORRA use the same geophysical input parameters. This study explores the feasibility of using internally consistent emissivity and surface backscatter cross-sectional (sigma(sub 0)) models for water surfaces in CORRA. An empirical model for DPR Ku and Ka sigma(sub 0) as a function of 10m wind speed and incidence angle is derived from GMI-only wind retrievals under clear-sky conditions. This allows for the sigma(sub 0) measurements, which are also influenced by path-integrated attenuation (PIA) from precipitation, to be used as input to CORRA and for wind speed to be retrieved as output. Comparisons to buoy data give a wind rmse of 3.7 m/s for Ku+GMI and 3.2 m/s for Ku+Ka+GMI retrievals under precipitation (compared to 1.3 m/s for clear-sky GMI-only), and there is a reduction in bias from GANAL background data (-10%) to the Ku+GMI (-3%) and Ku+Ka+GMI (-5%) retrievals. Ku+GMI retrievals of precipitation increase slightly in light (less than 1 mm/h) and decrease in moderate to heavy precipitation (greater than 1 mm/h). The Ku+Ka+GMI retrievals, being additionally constrained by the Ka reflectivity, increase only slightly in moderate and heavy precipitation at low wind speeds (less than 5 m/s) relative to retrievals using the surface reference estimate of PIA as input.

  6. Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islandsbased on the Beijing urban meteorological network

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Wang, K.; Wang, J.; Zhou, C.; Wang, X.; Lee, X.

    2017-12-01

    This study compared the diurnal and seasonal cycles of atmospheric and surface urban heat islands (UHIs) based on hourly air temperatures (Ta) collected at 65 out of 262 stations in Beijing and land surface temperature (Ts) derived from Moderate Resolution Imaging Spectroradiometer in the years 2013-2014. We found that the nighttime atmospheric and surface UHIs referenced to rural cropland stations exhibited significant seasonal cycles, with the highest in winter. However, the seasonal variations in the nighttime UHIs referenced to mountainous forest stations were negligible, because mountainous forests have a higher nighttime Ts in winter and a lower nighttime T a in summer than rural croplands. Daytime surface UHIs showed strong seasonal cycles, with the highest in summer. The daytime atmospheric UHIs exhibited a similar but less seasonal cycle under clear-sky conditions, which was not apparent under cloudy-sky conditions. Atmospheric UHIs in urban parks were higher in daytime. Nighttime atmospheric UHIs are influenced by energy stored in urban materials during daytime and released during nighttime. The stronger anthropogenic heat release in winter causes atmospheric UHIs to increase with time during winter nights, but decrease with time during summer nights. The percentage of impervious surfaces is responsible for 49%-54% of the nighttime atmospheric UHI variability and 31%-38% of the daytime surface UHI variability. However, the nighttime surface UHI was nearly uncorrelated with the percentage of impervious surfaces around the urban stations.

  7. Simulation of laser beam reflection at the sea surface

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2011-05-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.

  8. Solar Radiation on Mars: Tracking Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  9. Global Aerosol Direct Radiative Effect From CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  10. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, Bruce K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  11. Global Aerosol Direct Radiative Effect from CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  12. Classification of daily solar irradiation by fractional analysis of 10-min-means of solar irradiance

    NASA Astrophysics Data System (ADS)

    Harrouni, S.; Guessoum, A.; Maafi, A.

    2005-02-01

    This paper deals with fractal analysis of daily solar irradiances measured with a time step of 10 minutes at Golden and Boulder located in Colorado. The aim is to estimate the fractal dimensions in order to perform classification of daily solar irradiances. The estimated fractal dimension hat{D} and the clearness index KT are used as classification criteria. The results show that these criteria lead to three classes: clear sky, partially covered sky and overcast sky. The results also show that the evaluation of the fractal dimension of the irradiance signal based on a data set with 10 minutes time step is possible.

  13. MISR Science Data Validation Plan Summary Charts

    NASA Technical Reports Server (NTRS)

    Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.

    2000-01-01

    The purpose of the MISR experiment is to acquire systematic multi-angle imagery for global monitoring over a multi-year period of top-of-atmosphere and surface albedos and to measure the shortwave radiative properties of aerosols, clouds, and surface scenes.

  14. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    NASA Astrophysics Data System (ADS)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free-running simulations in which land and atmosphere are coupled and, as such, it provides a flexible intermediate step in the assessment of surface processes in GCMs.

  15. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.

    2011-10-01

    One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of 345.4 W m-2 is estimated by combining the modeled instantaneous surface longwave irradiance computed with CALIOP and CPR cloud profiles with the global annual mean longwave irradiance from the CERES product (AVG), which includes the diurnal variation of the irradiance. The estimated bias error is -1.5 W m-2 and the uncertainty is 6.9 W m-2. The uncertainty is predominately caused by the near-surface temperature and column water vapor amount uncertainties.

  16. Anthropogenic disruption of the night sky darkness in urban and rural areas.

    PubMed

    Bará, Salvador

    2016-10-01

    The growing emissions of artificial light to the atmosphere are producing, among other effects, a significant increase of the night sky brightness (NSB) above its expected natural values. A permanent sensor network has been deployed in Galicia (northwest of Iberian peninsula) to monitor the anthropogenic disruption of the night sky darkness in a countrywide area. The network is composed of 14 detectors integrated in automated weather stations of MeteoGalicia, the Galician public meteorological agency. Zenithal NSB readings are taken every minute and the results are openly available in real time for researchers, interested stakeholders and the public at large through a dedicated website. The measurements allow one to assess the extent of the loss of the natural night in urban, periurban, transition and dark rural sites, as well as its daily and monthly time courses. Two metrics are introduced here to characterize the disruption of the night darkness across the year: the significant magnitude ( m 1/3 ) and the moonlight modulation factor ( γ ). The significant magnitude shows that in clear and moonless nights the zenithal night sky in the analysed urban settings is typically 14-23 times brighter than expected from a nominal natural dark sky. This factor lies in the range 7-8 in periurban sites, 1.6-2.5 in transition regions and 0.8-1.6 in rural and mountain dark sky places. The presence of clouds in urban areas strongly enhances the amount of scattered light, easily reaching amplification factors in excess of 25, in comparison with the light scattered in the same places under clear sky conditions. The periodic NSB modulation due to the Moon, still clearly visible in transition and rural places, is barely notable at periurban locations and is practically lost at urban sites.

  17. Anthropogenic disruption of the night sky darkness in urban and rural areas

    PubMed Central

    2016-01-01

    The growing emissions of artificial light to the atmosphere are producing, among other effects, a significant increase of the night sky brightness (NSB) above its expected natural values. A permanent sensor network has been deployed in Galicia (northwest of Iberian peninsula) to monitor the anthropogenic disruption of the night sky darkness in a countrywide area. The network is composed of 14 detectors integrated in automated weather stations of MeteoGalicia, the Galician public meteorological agency. Zenithal NSB readings are taken every minute and the results are openly available in real time for researchers, interested stakeholders and the public at large through a dedicated website. The measurements allow one to assess the extent of the loss of the natural night in urban, periurban, transition and dark rural sites, as well as its daily and monthly time courses. Two metrics are introduced here to characterize the disruption of the night darkness across the year: the significant magnitude (m1/3) and the moonlight modulation factor (γ). The significant magnitude shows that in clear and moonless nights the zenithal night sky in the analysed urban settings is typically 14–23 times brighter than expected from a nominal natural dark sky. This factor lies in the range 7–8 in periurban sites, 1.6–2.5 in transition regions and 0.8–1.6 in rural and mountain dark sky places. The presence of clouds in urban areas strongly enhances the amount of scattered light, easily reaching amplification factors in excess of 25, in comparison with the light scattered in the same places under clear sky conditions. The periodic NSB modulation due to the Moon, still clearly visible in transition and rural places, is barely notable at periurban locations and is practically lost at urban sites. PMID:27853572

  18. Meteorological, atmospheric and climatic perturbations during major dust storms over Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvan; Kumar, Sanjay; Kaskaoutis, D. G.; Singh, Ramesh P.; Singh, Rajeev K.; Mishra, Amit K.; Srivastava, Manoj K.; Singh, Abhay K.

    2015-06-01

    During the pre-monsoon season (April-June), the Indo-Gangetic Basin (IGB) suffers from frequent and intense dust storms originated from the arid and desert regions of southwest Asia (Iran, Afghanistan), Arabia and Thar desert blanketing IGB and Himalayan foothills. The present study examines the columnar and vertical aerosol characteristics and estimates the shortwave (0.25-4.0 μm) aerosol radiative forcing (ARF) and atmospheric heating rates over Kanpur, central IGB, during three intense dust-storm events in the pre-monsoon season of 2010. MODIS images, meteorological and AERONET observations clearly show that all the dust storms either originated from the Thar desert or transported over, under favorable meteorological conditions (low pressure and strong surface winds) affecting nearly the whole IGB and modifying the aerosol loading and characteristics (Ångström exponent, single scattering albedo, size distribution and refractive index). CALIPSO observations reveal the presence of high-altitude (up to 3-5 km) dust plumes that strongly modify the vertical aerosol profile and are transported over Himalayan foothills with serious climate implications (atmospheric warming, enhanced melting of glaciers). Shortwave ARF calculations over Kanpur using SBDART model show large negative forcing values at the surface (-93.27, -101.60 and -66.71 W m-2) during the intense dusty days, associated with planetary (top of atmosphere) cooling (-18.16, -40.95, -29.58 W m-2) and significant atmospheric heating (75.11, 60.65, 37.13 W m-2), which is translated to average heating rates of 1.57, 1.41 and 0.78 K day-1, respectively in the lower atmosphere (below ∼3.5 km). The ARF estimates are in satisfactory agreement with the AERONET ARF retrievals over Kanpur.

  19. New optical package and algorithms for accurate estimation and interactive recording of the cloud cover information over land and sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey; Gulev, Sergey

    2014-05-01

    Cloud fraction is a critical parameter for the accurate estimation of short-wave and long-wave radiation - one of the most important surface fluxes over sea and land. Massive estimates of the total cloud cover as well as cloud amount for different layers of clouds are available from visual observations, satellite measurements and reanalyses. However, these data are subject of different uncertainties and need continuous validation against highly accurate in-situ measurements. Sky imaging with high resolution fish eye camera provides an excellent opportunity for collecting cloud cover data supplemented with additional characteristics hardly available from routine visual observations (e.g. structure of cloud cover under broken cloud conditions, parameters of distribution of cloud dimensions). We present operational automatic observational package which is based on fish eye camera taking sky images with high resolution (up to 1Hz) in time and a spatial resolution of 968x648px. This spatial resolution has been justified as an optimal by several sensitivity experiments. For the use of the package at research vessel when the horizontal positioning becomes critical, a special extension of the hardware and software to the package has been developed. These modules provide the explicit detection of the optimal moment for shooting. For the post processing of sky images we developed a software realizing the algorithm of the filtering of sunburn effect in case of small and moderate could cover and broken cloud conditions. The same algorithm accurately quantifies the cloud fraction by analyzing color mixture for each point and introducing the so-called "grayness rate index" for every pixel. The accuracy of the algorithm has been tested using the data collected during several campaigns in 2005-2011 in the North Atlantic Ocean. The collection of images included more than 3000 images for different cloud conditions supplied with observations of standard parameters. The system is fully autonomous and has a block for digital data collection at the hard disk. The system has been tested for a wide range of open ocean cloud conditions and we will demonstrate some pilot results of data processing and physical interpretation of fractional cloud cover estimation.

  20. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  1. Extreme ultraviolet index due to broken clouds at a midlatitude site, Granada (southeastern Spain)

    NASA Astrophysics Data System (ADS)

    Antón, M.; Piedehierro, A. A.; Alados-Arboledas, L.; Wolfran, E.; Olmo, F. J.

    2012-11-01

    Cloud cover usually attenuates the ultraviolet (UV) solar radiation but, under certain sky conditions, the clouds may produce an enhancement effect increasing the UV levels at surface. The main objective of this paper is to analyze an extreme UV enhancement episode recorded on 16 June 2009 at Granada (southeastern Spain). This phenomenon was characterized by a quick and intense increase in surface UV radiation under broken cloud fields (5-7 oktas) in which the Sun was surrounded by cumulus clouds (confirmed with sky images). Thus, the UV index (UVI) showed an enhancement of a factor 4 in the course of only 30 min around midday, varying from 2.6 to 10.4 (higher than the corresponding clear-sky UVI value). Additionally, the UVI presented values higher than 10 (extreme erythemal risk) for about 20 min running, with a maximum value around 11.5. The use of an empirical model and the total ozone column (TOC) derived from the Global Ozone Monitoring Experiment (GOME) for the period 1995-2011 showed that the value of UVI ~ 11.5 is substantially larger than the highest index that could origin the natural TOC variations over Granada. Finally, the UV erythemal dose accumulated during the period of 20 min with the extreme UVI values under broken cloud fields was 350 J/m2 which surpass the energy required to produce sunburn of the most human skin types.

  2. Average latitudinal variation in ultraviolet radiation at the earth's surface. [biological sensitivity and dosage

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Mo, T.; Green, A. E. S.

    1976-01-01

    Tabulated values are presented for ultraviolet radiation at the earth's surface as a function of wavelength, latitude, and season, for clear sky and seasonally and latitudinally averaged ozone amounts. These tabulations can be combined with any biological sensitivity function in order to obtain the seasonal and latitudinal variation of the corresponding effective doses. The integrated dosages, based on the erythemal sensitivity curve and on the Robertson-Berger sunburn-meter sensitivity curve, have also been calculated, and these are found to vary with latitude and season in very nearly the same way as 307 and 314 nm radiation, respectively.

  3. Sunshine duration and global radiation trends in Italy (1959-2013): To what extent do they agree?

    NASA Astrophysics Data System (ADS)

    Manara, V.; Brunetti, M.; Maugeri, M.; Sanchez-Lorenzo, A.; Wild, M.

    2017-04-01

    Two Italian homogenized data sets of sunshine duration (SD) and global radiation (Eg↓) relative anomalies are used to investigate to what extent these two variables agree with respect to their temporal evolution. They are compared for northern and southern Italy over the period 1959-2013. Both under all-sky and clear-sky conditions, the SD records tend to show a shorter and less intense decrease until the 1980s ("global dimming") with respect to the Eg↓ ones, while there is a better agreement in the subsequent period when both variables increase ("brightening period"). To investigate whether such behavior can be explained by a different sensitivity of SD and Eg↓ to atmospheric turbidity variations, the observed clear-sky trends are compared to those estimated by a model based both on Lambert-Beer's law and on a simple estimation of diffuse radiation. Results show that most of the differences observed in the trends of the clear-sky SD and Eg↓ records can be explained considering a realistic pattern of atmospheric turbidity in the 1959-2013 period. The only exception concerns winter and autumn in northern Italy where clear-sky SD does not decrease in the dimming period as much as it would be expected on the basis of the corresponding increase in atmospheric turbidity. One reason for this discrepancy could be the influence of other variables like relative humidity. This case study highlights that changes in atmospheric turbidity have to be kept in mind when SD is used to investigate the multidecadal evolution of Eg↓.

  4. Energy and mass balance observations on La Mare Glacier (Ortles-Cevedale, European Alps)

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Cazorzi, F.; Dalla Fontana, G.

    2009-04-01

    An experimental site was setup in 2005 on the ablation area of La Mare Glacier, at 2990 m a.s.l., to study the energy and mass balance exchanges between the glacier surface and the atmosphere and to investigate the climatic sensitivity of this particular glacier. An Automatic Weather Station was operated, in the framework of a monitoring network which has been implemented in the Upper Val de La Mare experimental watershed (Trentino, Italy). This basin was selected for a study of climate change effects on cryosphere and hydrology at high-altitude catchments. The 36.2 km2 wide basin has an average altitude of 2906 m a.s.l. and at present the 25% of its surface is glacierized; the annual runoff regime is dominated by snow and ice melt. Direct mass balance measurements have been performed since 1967 on Careser glacier (2.83 km2) and since 2003 on La Mare glacier (3.97 km2). The AWS is mounted on a tripod which stands freely on the glacier surface and is solar-powered. The variables measured are: air temperature and relative humidity, wind speed and direction, shortwave and longwave incoming and outgoing radiation, precipitation and surface height. All the data are sampled at five-minute intervals as average values, with the exception of surface height which is sampled at hourly intervals, as instantaneous values. The collected data were used to calculate the point energy and mass balance and to compare the results with similar investigations carried out on glaciers and available in literature. In particular, our attention has been focussed on some processes which regulate the response to climate changes. The relative importance of the energy balance components was examined and a clear predominance of shortwave radiation inputs was found to exist during melt conditions. Given the relevance of the shortwave net balance, the ice albedo temporal variability (values ranging from 0.1 to 0.5) has been investigated and correlated with meteorological variables. Furthermore, a distinct diurnal cycle of cloud cover was found to control the actual radiation received by the surface, with a minimum coverage at morning and a maximum at late afternoon, due to thermal convection. In addition, the energy available for melt is affected by the glacier cooling effect, which produces a persistent katabatic wind and lead to a reduced climatic sensitivity with respect to the "free atmosphere". The magnitude of the cooling effect has proved to be comparable with the findings of similar studies conducted in other European glaciers. Finally, the data of the first winter highlighted a very low accumulation on the AWS site, due to strong wind erosion of freshly fallen dry and cold snow. Accumulation became significant only in spring, with the deposition of snow in higher temperature conditions and absence of post-event strong northerly winds.

  5. Atmospheric Visibility Monitoring for planetary optical communications

    NASA Technical Reports Server (NTRS)

    Cowles, Kelly

    1991-01-01

    The Atmospheric Visibility Monitoring project endeavors to improve current atmospheric models and generate visibility statistics relevant to prospective earth-satellite optical communications systems. Three autonomous observatories are being used to measure atmospheric conditions on the basis of observed starlight; these data will yield clear-sky and transmission statistics for three sites with high clear-sky probabilities. Ground-based data will be compared with satellite imagery to determine the correlation between satellite data and ground-based observations.

  6. Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2002-01-01

    In this talk, five specific major GCE improvements: (1) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.

  7. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  8. Do Southern Ocean Cloud Feedbacks Matter for 21st Century Warming?

    NASA Astrophysics Data System (ADS)

    Frey, W. R.; Maroon, E. A.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Cloud phase improvements in a state-of-the-art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean-state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.

  9. Diagnosing causes of cloud parameterization deficiencies using ARM measurements over SGP site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.; Liu, Y.; Betts, A. K.

    2010-03-15

    Decade-long continuous surface-based measurements at Great Southern Plains (SGP) collected by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility are first used to evaluate the three major reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I and NCEP/DOE Reanalysis II) to identify model biases in simulating surface shortwave cloud forcing and total cloud fraction. The results show large systematic lower biases in the modeled surface shortwave cloud forcing and cloud fraction from all the three reanalysis datasets. Then we focus on diagnosing the causes of these model biases using the Active Remote Sensing of Clouds (ARSCL) products (e.g., verticalmore » distribution of cloud fraction, cloud-base and cloud-top heights, and cloud optical depth) and meteorological measurements (temperature, humidity and stability). Efforts are made to couple cloud properties with boundary processes in the diagnosis.« less

  10. Clear-Sky Probability for the August 21, 2017, Total Solar Eclipse Using the NREL National Solar Radiation Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Roberts, Billy J; Kutchenreiter, Mark C

    The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of themore » path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.« less

  11. Flight solar calibrations using the Mirror Attenuator Mosaic (MAM): Low scattering mirror

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    Measurements of solar radiances reflected from the mirror attenuator mosaic (MAM) were used to calibrate the shortwave portions of the Earth Radiation Budget Experiment (ERBE) thermistor bolometer scanning radiometers. The MAM is basically a low scattering mirror which has been used to attenuate and reflect solar radiation into the fields of view for the broadband shortwave (0.2 to 5 micrometers) and total (0.2 to 50.0+ micrometers) ERBE scanning radiometers. The MAM assembly consists of a tightly packed array of aluminum, 0.3175-cm diameter concave spherical mirrors and field of view limiting baffles. The spherical mirrors are masked by a copper plate, electro-plated with black chrome. Perforations (0.14 centimeter in diameter) in the copper plate serve as apertures for the mirrors. Black anodized aluminum baffles limit the MAM clear field of view to 7.1 degrees. The MAM assemblies are located on the Earth Radiation Budget Satellite (ERBS) and on the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft. The 1984-1985 ERBS and 1985-1986 NOAA-9 solar calibration datasets are presented. Analyses of the calibrations indicate that the MAM exhibited no detectable degradation in its reflectance properties and that the gains of the shortwave scanners did not change. The stability of the shortwave radiometers indicates that the transmission of the Suprasil W1 filters did not degrade detectably when exposed to Earth/atmosphere-reflected solar radiation.

  12. Underwater sky image as remote sensing instrument of sea roughness parameters and its variability

    NASA Astrophysics Data System (ADS)

    Molkov, Alexander A.; Dolin, Lev S.; Kapustin, Ivan A.; Sergievskaya, Irina A.; Shomina, Olga V.

    2016-10-01

    At present a sufficient amount of methods is offered for determining the characteristics of sea roughness in accordance with optical images of wavy water surface obtained from different near-shore constructions, sea platforms, vessels, aircraft and satellites. The most informative elements in this case are solar path and peripheral areas of the image free from sun glitters. However, underwater images of the surface obtained with the help of optical receiver located at a certain depth contain apart from the mentioned elements one more informative element- Snell's window. It is an underwater sky image which distortions of border contain information on roughness characteristics and serve as the indicator of its variability. The research offers the method for determining energy spectra of wind waves in accordance with the second statistical moment of Snell's window image. The results of testing of the offered method are provided based on natural images registered in the course of trip to the Black Sea under conditions of different wind and wave environment for clear surface and surface covered by surfactant films. For both cases frequency spectra of surface slopes are recovered and their good coincidence to the spectra received by processing of signals from a string wave recorder is established. Efficiency of application of the offered method for tasks of remote monitoring and environmental control of natural reservoirs is shown.

  13. Lyman-α Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data

    NASA Astrophysics Data System (ADS)

    Pryor, Wayne R.; Holsclaw, Gregory M.; McClintock, William E.; Snow, Martin; Vervack, Ronald J.; Gladstone, G. Randall; Stern, S. Alan; Retherford, Kurt D.; Miles, Paul F.

    From models of the interplanetary Lyman-α glow derived from observations by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) interplanetary Lyman-α data obtained in 2009-2011 on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft mission, daily all-sky Lyman-α maps were generated for use by the Lunar Reconnaissance Orbiter (LRO) LAMP Lyman-Alpha Mapping Project (LAMP) experiment. These models were then compared with Solar and Heliospheric Observatory (SOHO) Solar Wind ANistropy (SWAN) Lyman-α maps when available. Although the empirical agreement across the sky between the scaled model and the SWAN maps is adequate for LAMP mapping purposes, the model brightness values best agree with the SWAN values in 2008 and 2009. SWAN's observations show a systematic decline in 2010 and 2011 relative to the model. It is not clear if the decline represents a failure of the model or a decline in sensitivity in SWAN in 2010 and 2011. MESSENGER MASCS and SOHO SWAN Lyman-α calibrations systematically differ in comparison with the model, with MASCS reporting Lyman-α values some 30 % lower than SWAN.

  14. The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.

    2001-01-01

    An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).

  15. Comparison of Shortwave Cloud Radiative Forcing Derived from ARM SGP Surface and GOES-8 Satellite Measurements During ARESE I and ARESE II

    NASA Technical Reports Server (NTRS)

    Rapp, A. D.; Doelling, D. R.; Khaiyer, M. M.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.; Haeffelin, M. P.; Valero, F. P. J.; Asano, S.

    2001-01-01

    One of the objectives of the ARM Enhanced Shortwave Experiment (ARESE) is to investigate the absorption of solar radiation by clouds over the ARM Southern Great Plains central facility. A variety of techniques employing various combinations Of Surface, aircraft, and satellite data have been used to estimate the absorption empirically. During ARESE-I conducted during fall 1995, conflicting results were produced from different analyses of the combined datasets leading to the need for a more controlled experiment. ARESE-II was conducted during spring 2000. Improved calibrations, different sampling strategies, and broadband satellite data were all available to minimize some of the sources of uncertainty in the data. In this paper, cloud absorption or its parametric surrogates (e.g., Cess et al. 1995) are derived from collocated and coincident surface and satellite radiometer data from both ARESE-I and ARESE-II using the latest satellite and surface instrument calibrations.

  16. On the importance of radiative heat exchange during nocturnal flight in birds.

    PubMed

    Léger, Jérôme; Larochelle, Jacques

    2006-01-01

    Many migratory flights take place during cloudless nights, thus under conditions where the sky temperature can commonly be 20 degrees C below local air temperature. The sky then acts as a radiative sink, leading objects exposed to it to have a lower surface temperature than unexposed ones because less infrared energy is received from the sky than from the surfaces that are isothermic to air. To investigate the significance of this effect for heat dissipation during nocturnal flight in birds, we built a wind tunnel with the facility to control wall temperature (TASK) and air temperature (TAIR) independently at air speeds (UWIN) comparable to flying speeds. We used it to measure the influence of TASK, TAIR and UWIN on plumage and skin temperatures in pigeons having to dissipate a thermal load while constrained at rest in a flight posture. Our results show that the temperature of the flight and insulation plumages exposed to a radiative sink can be accurately described by multiple regression models (r2>0.96) based only on TAIR, TASK and UWIN. Predictions based on these models indicate that while convection dominates heat loss for a plumage exposed to air moving at flight speed in a thermally uniform environment, radiation may dominate in the presence of a radiative sink comparable to a clear sky. Our data also indicate that reducing TASK to a temperature 20 degrees C below TAIR can increase the temperature difference across the exposed plumage by at least 13% and thus facilitate heat flow through the main thermal resistance to the loss of internally produced heat in birds. While extrapolation from our experimentally constrained conditions to free flight in the atmosphere is difficult, our results suggest that the sky temperature has been a neglected factor in determining the range of TAIR over which prolonged flight is possible.

  17. First comparison of formaldehyde integral contents in ABL retrieved during clear-sky and overcast conditions by ZDOAS technique

    NASA Astrophysics Data System (ADS)

    Ivanov, Victor; Borovski, Alexander; Postylyakov, Oleg

    2017-10-01

    Formaldehyde (HCHO) is involved in a lot of chemical reactions in the atmosphere. Taking into account that HCHO basically undergo by photolysis and reaction with hydroxyl radical within a few hours, short-lived VOCs and direct HCHO emissions can cause local HCHO enhancement over certain areas, and, hence, exceeding background level of HCHO can be examined as a local pollution of the atmosphere by VOCs or existence of a local HCHO source. Several retrieval algorithms applicable for DOAS measurements in cloudless were previously developed. In previous works we proposed a new algorithm applicable for the overcast conditions. The algorithm has the typical F-coefficient error of about 10% for winter season, about 5% for summer season, and varying from 15 to 45% for transition season if the atmospheric boundary layer is below the cloud base. In this paper we briefly present our results of the HCHO vertical column retrieval measured at Zvenigorod Scientific Station (ZSS) for overcast. ZSS (55°41'49''N, 36°46'29''E) is located in Moscow region in 38 km west from Moscow. Because Western winds prevail in this region, ZSS is a background station the most part of time. But in cases of Eastern wind, the air quality at ZSS is affected by Moscow megapolis, and polluted air masses formed above Moscow can reach station in a few hours. Due to the absence of alternative overcast data of HCHO, we compare our overcast data with the HCHO vertical content, which we obtained for clear sky. We investigate similarities and differences in their statistical behavior in different air mass. The average overcast HCHO data have similar to clear-sky HCHO positive temperature trends for all wind direction. We found that the average retrieved overcast HCHO contents are systematically greater than the clear-sky retrieval data. But the difference between data retrieved for the overcast and clear-sky conditions are different for Eastern and Western winds. This difference is about 0.5×1016 mol cm-2 for Western winds and about 1.2×1016 mol cm-2 for Eastern winds. We suppose that observed difference between the overcast and clear-sky formaldehyde data can be caused by dependence of chemical reactions leading to the HCHO destruction and the HCHO formation from Moscow anthropogenic predecessors on the cloudy conditions.

  18. Spectral Invariance Principles Observed in Spectral Radiation Measurements of the Transition Zone

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2011-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  19. Incorporation of UK Met Office's radiation scheme into CPTEC's global model

    NASA Astrophysics Data System (ADS)

    Chagas, Júlio C. S.; Barbosa, Henrique M. J.

    2009-03-01

    Current parameterization of radiation in the CPTEC's (Center for Weather Forecast and Climate Studies, Cachoeira Paulista, SP, Brazil) operational AGCM has its origins in the work of Harshvardhan et al. (1987) and uses the formulation of Ramaswamy and Freidenreich (1992) for the short-wave absorption by water vapor. The UK Met Office's radiation code (Edwards and Slingo, 1996) was incorporated into CPTEC's global model, initially for short-wave only, and some impacts of that were shown by Chagas and Barbosa (2006). Current paper presents some impacts of the complete incorporation (both short-wave and long-wave) of UK Met Office's scheme. Selected results from off-line comparisons with line-by-line benchmark calculations are shown. Impacts on the AGCM's climate are assessed by comparing output of climate runs of current and modified AGCM with products from GEWEX/SRB (Surface Radiation Budget) project.

  20. The National Solar Radiation Database (NSRDB): A Brief Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Sengupta, Manajit; Lopez, Anthony

    This poster presents a high-level overview of the National Solar Radiation Database (NSRDB). The NSRDB uses the physics-based model (PSM), which was developed using: adapted PATMOS-X model for cloud identification and properties, REST-2 model for clear-sky conditions, and NREL's Fast All-sky Radiation Model for Solar Applications (FARMS) for cloudy-sky Global Horizontal Irradiance (GHI) solar irradiance calculations.

  1. Worldwide variations in artificial skyglow

    PubMed Central

    Kyba, Christopher C. M.; Tong, Kai Pong; Bennie, Jonathan; Birriel, Ignacio; Birriel, Jennifer J.; Cool, Andrew; Danielsen, Arne; Davies, Thomas W.; Outer, Peter N. den; Edwards, William; Ehlert, Rainer; Falchi, Fabio; Fischer, Jürgen; Giacomelli, Andrea; Giubbilini, Francesco; Haaima, Marty; Hesse, Claudia; Heygster, Georg; Hölker, Franz; Inger, Richard; Jensen, Linsey J.; Kuechly, Helga U.; Kuehn, John; Langill, Phil; Lolkema, Dorien E.; Nagy, Matthew; Nievas, Miguel; Ochi, Nobuaki; Popow, Emil; Posch, Thomas; Puschnig, Johannes; Ruhtz, Thomas; Schmidt, Wim; Schwarz, Robert; Schwope, Axel; Spoelstra, Henk; Tekatch, Anthony; Trueblood, Mark; Walker, Constance E.; Weber, Michael; Welch, Douglas L.; Zamorano, Jaime; Gaston, Kevin J.

    2015-01-01

    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program. PMID:25673335

  2. Cloud Radiative Forcing at the ARM Climate Research Facility. Part 1; Technique, Validation, and Comparison to Satellite-derived Diagnostic Quantities

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Benson, Sally; Sonntag, Karen L.; Kato, Seiji; Min, Qilong; Minnis, Patrick; Twohy, Cynthia H.; Poellot, Michael; Dong, Xiquan; Long, Charles; hide

    2006-01-01

    It has been hypothesized that continuous ground-based remote sensing measurements from active and passive remote sensors combined with regular soundings of the atmospheric thermodynamic structure can be combined to describe the effects of clouds on the clear sky radiation fluxes. We critically test that hypothesis in this paper and a companion paper (Part II). Using data collected at the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site sponsored by the U.S. Department of Energy, we explore an analysis methodology that results in the characterization of the physical state of the atmospheric profile at time resolutions of five minutes and vertical resolutions of 90 m. The description includes thermodynamics and water vapor profile information derived by merging radiosonde soundings with ground-based data, and continues through specification of the cloud layer occurrence and microphysical and radiative properties derived from retrieval algorithms and parameterizations. The description of the atmospheric physical state includes a calculation of the infrared and clear and cloudy sky solar flux profiles. Validation of the methodology is provided by comparing the calculated fluxes with top of atmosphere (TOA) and surface flux measurements and by comparing the total column optical depths to independently derived estimates. We find over a 1-year period of comparison in overcast uniform skies, that the calculations are strongly correlated to measurements with biases in the flux quantities at the surface and TOA of less than 10% and median fractional errors ranging from 20% to as low as 2%. In the optical depth comparison for uniform overcast skies during the year 2000 where the optical depth varies over 3 orders of magnitude we find a mean positive bias of 46% with a median bias of less than 10% and a 0.89 correlation coefficient. The slope of the linear regression line for the optical depth comparison is 0.86 with a normal deviation of 20% about this line. In addition to a case study where we examine the cloud radiative effects at the TOA, surface and atmosphere by a middle latitude synoptic-scale cyclone, we examine the cloud top pressure and optical depth retrievals of ISCCP and LBTM over a period of 1 year. Using overcast period from the year 2000, we find that the satellite algorithms tend to bias cloud tops into the middle troposphere and underestimate optical depth in high optical depth events (greater than 100) by as much as a factor of 2.

  3. Validation of the Archived CERES Surface and Atmosphere Radiation Budget (SARB) at SGP

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Rose, Fred G.; Rutan, David A.

    2003-01-01

    The CERES Surface and Atmosphere Radiation Budget (SARB) product (Charlock et al, 2002) includes the vertical profile of broadband SW, broadband LW, and 8-12 micron window (WN) fluxes; upwelling and downwelling at TOA, 70 hPa, 200 hPa, 500 hPa, and the surface; and for all-sky and clear-sky conditions. We test the archived CERES TRMM record of SARB for January-August 1998 and focus on discrepancies with ground-based measurements at SGP. The CERES SARB is generated by a highly modified Fu-Liou radiative transfer code (Fu and Liou, 1993). The most critical inputs for this application are cloud optical properties (fractional area, optical depth, particle size and phase, height of top, and estimate of geometrical thickness Minnis et al., 2002) from the narrowband VIRS imager. Numerous VIRS pixels (approx. 2km resolution at nadir) are matched to each of the large (approx. 20km) CERES broadband footprints (Wielicki et al, 1996). Other inputs include temperature and humidity from ECMWF (Rabier et al, 1998) , NCEP ozone profiles from SBUV and TOVS (Yang et al, 2001), aerosol optical thickness (AOT) from the Model for Atmospheric Transport and Chemistry (MATCH) aerosol assimilation (Collins et al., 2001) or alternately from the VIRS imager (Ignatov and Stowe, 2000). VIRS AOT is available for clear and partly cloudy ocean footprints during daylight; and only when viewing geometry renders a contribution from sunglint as unlikely. For other footprints, AOT is taken from MATCH. AOT is apportioned into fractions of dust (Tegan and Lacis, 1996), sea salt, sulfate, dust, soluble organic, insoluble organic, and soot (Hess et al., 1996) using the 6-hourly MATCH output. Tuned fluxes are retrieved by adjusting inputs to nudge computed TOA fluxes toward CERES observations (Rose et al, 1997). In clear conditions, the fields of humidity, surface skin temperature, surface albedo and AOT are adjusted to produce a closer match of computed and observed fluxes at TOA. When CERES footprints have clouds, the cloud optical thickness, fractional area within the footprint, and temperature of cloud top are adjusted by the tuning algorithm. Both tuned and untuned fluxes are archived, as are the respective adjustments to any parameters at the surface or within the atmosphere.

  4. Satellite-based solar radiation mapping over complex terrain: Validation in the Alps and possible improvements

    NASA Astrophysics Data System (ADS)

    Castelli, Mariapina; Stoeckli, Reto; Tetzlaff, Anke; Ernst Wagner, Jochen; Zardi, Dino; Petitta, Marcello

    2013-04-01

    Solar radiation is an essential variable for applications such as the climate monitoring or the planning of systems exploiting solar energy. This study presents a validation of surface irradiance derived from MSG (Meteosat second generation) satellite data with an extended version of the Heliosat algorithm [3] in the Alps. The algorithm implemented by MeteoSwiss is based on the clear-sky LUT (look up table) approach proposed by Müller et al., 2009 [2], and a probabilistic cloud mask adapted to MSG from the scheme of Khlopenkov and Trishchenko, 2007 [1]. The validation study focuses on the accuracy of the diffuse/direct components of irradiance and suggests possible improvements. We performed a detailed analysis at three locations, i.e. two Alpine sites - Bolzano (IT), at low altitude, and Davos (CH), at high altitude - and Payerne (CH), in the Swiss Plateau, comparing the hourly, daily, monthly and seasonal bias of the satellite estimation against ground measurements. Results indicate, in terms of MBD (mean bias deviation) and MAD (mean absolute deviation), that the algorithm reproduces precisely the yearly cycle, especially for global irradiance (MBD between -1 and 6 W/m2, MAD between 3 and 13 W/m2). On a daily time scale the all-sky MAD is below 15 W/m2 for all the components of radiation, while it is above 40 W/m2 at the hourly scale. In the mean daily cycle diffuse irradiance is overestimated (10-20 W/m2) for the two stations based on a valley floor, while it is underestimated in the other one. We noticed that cloud free conditions are affected by the biggest absolute error, especially in summer. We therefore investigated the role of aerosols in the clear-sky uncertainty. By including in the radiative transfer model adopted for the simulations either ground or satellite daily atmospheric input on aerosol and water vapor, the estimation of the hourly averages of diffuse radiation improves significantly (MAD < 10 W/m2) compared to the satellite estimate. Consequently it is recommended to include in the clear-sky model more accurate input than the currently used monthly climatologies of aerosol and the operational 1 day forecast of column water vapor amount from the ECMWF model ouptut. References [1] K. V. Khlopenkov And A. P. Trishchenko, "SPARC: New Cloud, Snow, and Cloud Shadow Detection Scheme for Historical 1-km AVHHR Data over Canada", Journal of Atmospheric and Oceanic Technology, 24, pp. 322-343, 2007. [2] R.W. Müller, C. Matsoukas, A. Gratzki, H.D. Behr, R. Hollmann. "The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - A LUT based eigenvector hybrid approach", Remote Sensing of Environment, 113, pp.1012-1024, 2009. [3] R. Stöckli (in prep.). "Supplementing Heliosat for physically-based surface radiation retrieval in complex terrain."

  5. Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study

    NASA Astrophysics Data System (ADS)

    Martinet, Pauline; Cimini, Domenico; De Angelis, Francesco; Canut, Guylaine; Unger, Vinciane; Guillot, Remi; Tzanos, Diane; Paci, Alexandre

    2017-09-01

    A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims to investigate how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWRs continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field campaign to optimally combine an MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 h during two intensive observation periods (IOPs). An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errors were observed for most transparent channels (i.e., 51-52 GHz) affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54-58 GHz). Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square error (RMSE) of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5°) in the MWR scanning and the bias correction were found to improve the retrievals below 1000 m. MWR retrievals were found to catch deep near-surface temperature inversions very well. Larger errors were observed in cloudy conditions due to the difficulty of ground-based MWRs to resolve high level inversions that are still challenging. Finally, 1DVAR retrievals were optimized for the analysis of the IOPs by using radiosondes as backgrounds in the 1DVAR algorithm instead of the AROME forecasts. A significant improvement of the retrievals in cloudy conditions and below 1000 m in clear-sky conditions was observed. From this study, we can conclude that MWRs are expected to bring valuable information into numerical weather prediction models up to 3 km in altitude both in clear-sky and cloudy-sky conditions with the maximum improvement found around 500 m. With an accuracy between 0.5 and 1 K in RMSE, our study has also proven that MWRs are capable of resolving deep near-surface temperature inversions observed in complex terrain during highly stable boundary layer conditions.

  6. Break and trend analysis of EUMETSAT Climate Data Records

    NASA Astrophysics Data System (ADS)

    Doutriaux-Boucher, Marie; Zeder, Joel; Lattanzio, Alessio; Khlystova, Iryna; Graw, Kathrin

    2016-04-01

    EUMETSAT reprocessed imagery acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat 8-9. The data covers the period from 2004 to 2012. Climate Data Records (CDRs) of atmospheric parameters such as Atmospheric Motion Vectors (AMV) as well as Clear and All Sky Radiances (CSR and ASR) have been generated. Such CDRs are mainly ingested by ECMWF to produce a reanalysis data. In addition, EUMETSAT produced a long CDR (1982-2004) of land surface albedo exploiting imagery acquired by the Meteosat Visible and Infrared Imager (MVIRI) on board Meteosat 2-7. Such CDR is key information in climate analysis and climate models. Extensive validation has been performed for the surface albedo record and a first validation of the winds and clear sky radiances have been done. All validation results demonstrated that the time series of all parameter appear homogeneous at first sight. Statistical science offers a variety of analyses methods that have been applied to further analyse the homogeneity of the CDRs. Many breakpoint analysis techniques depend on the comparison of two time series which incorporates the issue that both may have breakpoints. This paper will present a quantitative and statistical analysis of eventual breakpoints found in the MVIRI and SEVIRI CDRs that includes attribution of breakpoints to changes of instruments and other events in the data series compared. The value of different methods applied will be discussed with suggestions how to further develop this type of analysis for quality evaluation of CDRs.

  7. New device for monitoring the colors of the night

    NASA Astrophysics Data System (ADS)

    Spoelstra, Henk

    2014-05-01

    The introduction of LED lighting in the outdoor environment may increase the amount of blue light in the night sky color spectrum. This can cause more light pollution due to Rayleigh scattering of the shorter wavelengths. Blue light may also have an impact on circadian rhythm of humans due to the suppression of melatonin. At present no long-term data sets of the color spectrum of the night sky are available. In order to facilitate the monitoring of levels and variations in the night sky spectrum, a low cost multi-filter instrument has been developed. Design considerations are described as well as the choice of suitable filters, which are critical - especially in the green wavelength band from 500 to 600 nm. Filters from the optical industry were chosen for this band because available astronomical filters exclude some or all of the low and high-pressure sodium lines from lamps, which are important in light pollution research. Correction factors are calculated to correct for the detector response and filter transmissions. Results at a suburban monitoring station showed that the light levels between 500 and 600 nm are dominant during clear and cloudy skies. The relative contribution of blue light increases with a clear moonless night sky. The change in color spectrum of the night sky under moonlit skies is more complex and is still under study.

  8. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  9. Cloudy Earth

    NASA Image and Video Library

    2015-05-08

    Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free. Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds).

  10. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmissionmore » and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.« less

  11. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  12. CERES Clouds and Radiative Swath (CRS) data in HDF (CER_CRS_TRMM-PFM-VIRS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  13. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2A

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  14. A Fast Infrared Radiative Transfer Model for Overlapping Clouds

    NASA Technical Reports Server (NTRS)

    Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.

    2006-01-01

    A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.

  15. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    NASA Astrophysics Data System (ADS)

    Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.

    2018-01-01

    Surface ultraviolet radiation (SUR) is not an increasing concern after the implementation of the Montreal Protocol and the recovery of the ozone layer (Morgenstern et al., 2008). However, large uncertainties remain in the prediction of future changes of SUR (Bais et al., 2015). Several studies pointed out that UV-B impacts the biosphere (Erickson et al., 2015), especially the aquatic system, which plays a central part in the biogeochemical cycle (Hader et al., 2007). It can affect phytoplankton productivity (Smith and Cullen, 1995). This influence can result in either positive or negative feedback on climate (Zepp et al., 2007). Global circulation model simulations predict an acceleration of the Brewer-Dobson circulation over the next century (Butchart, 2014), which would lead to a decrease in ozone levels in the tropics and an enhancement at higher latitudes (Hegglin and Shepherd, 2009). Reunion Island is located in the tropics (21° S, 55° E), in a part of the world where the amount of ozone in the ozone column is naturally low. In addition, this island is mountainous and the marine atmosphere is often clean with low aerosol concentrations. Thus, measurements show much higher SUR than at other sites at the same latitude or at midlatitudes. Ground-based measurements of SUR have been taken on Reunion Island by a Bentham DTMc300 spectroradiometer since 2009. This instrument is affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). In order to quantify the future evolution of SUR in the tropics, it is necessary to validate a model against present observations. This study is designed to be a preliminary parametric and sensitivity study of SUR modelling in the tropics. We developed a local parameterisation using the Tropospheric Ultraviolet and Visible Model (TUV; Madronich, 1993) and compared the output of TUV to multiple years of Bentham spectral measurements. This comparison started in early 2009 and continued until 2016. Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  16. Chapter 28: Theory SkyNode

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Norman, M. L.

    Here we present a working example of a Basic SkyNode serving theoretical data. The data is taken from the Simulated Cluster Archive (SCA), a set of simulated X-ray clusters, where each cluster was computed using four different physics models. The LCA Theory SkyNode (LCATheory) tables contain columns of the integrated physical properties of the clusters at various redshifts. The ease of setting up a Theory SkyNode is an important result, because it represents a clear way to present theory data to the Virtual Observatory. Also, our Theory SkyNode provides a prototype for additional simulated object catalogs, which will be created from other simulations by our group, and hopefully others.

  17. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.

    2013-03-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  18. First Global Estimates of Anthropogenic Shortwave Forcing by Methane

    NASA Astrophysics Data System (ADS)

    Collins, William; Feldman, Daniel; Kuo, Chaincy

    2017-04-01

    Although the primary well-mixed greenhouse gases (WMGHGs) absorb both shortwave and longwave radiation, to date assessments of the effects from human-induced increases in atmospheric concentrations of WMGHGs have focused almost exclusively on quantifying the longwave radiative forcing of these gases. However, earlier studies have shown that the shortwave effects of WMGHGs are comparable to many less important longwave forcing agents routinely in these assessments, for example the effects of aircraft contrails, stratospheric anthropogenic methane, and stratospheric water vapor from the oxidation of this methane. These earlier studies include the Radiative Transfer Model Intercomparison Project (RTMIP; Collins et al. 2006) conducted using line-by-line radiative transfer codes as well as the radiative parameterizations from most of the global climate models (GCMs) assembled for the Coupled Model Intercomparison Project (CMIP-3). In this talk, we discuss the first global estimates of the shortwave radiative forcing by methane due to the anthropogenic increase in CH4 between pre-industrial and present-day conditions. This forcing is a balance between reduced heating due to absorption of downwelling sunlight in the stratosphere and increased heating due to absorption of upwelling sunlight reflected from the surface as well clouds and aerosols in the troposphere. These estimates are produced using the Observing System Simulation Experiment (OSSE) framework we have developed for NASA's upcoming Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. The OSSE is designed to compute the monthly mean shortwave radiative forcing based upon global gridded atmospheric and surface conditions extracted from either the meteorological reanalyses collected for the Analysis for MIPs (Ana4MIPs) or the CMIP-5 multi-GCM archive analyzed in the Fifth Assessment Report (AR-5) of the Intergovernmental Panel on Climate Change (IPCC). The OSSE combines these atmospheric conditions with an observationally derived prescription for the Earth's spectral surface albedo as inputs to the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN is designed to model atmospheric propagation of electromagnetic radiation for the 100-50,000 1/cm (0.2 to 100 micrometers) spectral range. This covers the spectrum from middle ultraviolet to visible light to far infrared. The most recently released version of the code, MODTRAN6, provides a spectral resolution of 0.2 1/cm using its 0.1 1/cm band model algorithm.

  19. Global radiative adjustment after a collapse of the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Drijfhout, Sybren S.

    2015-10-01

    The transient climate response to a collapse of the Atlantic meridional overturning circulation (AMOC) is analysed from the difference between two ensembles of climate model simulations with ECHAM5/MPI-OM, one with hosing and the other without hosing. The primary effect of the collapse is to redistribute heat over the two hemispheres. However, Northern Hemisphere sea ice increase in response to the AMOC collapse induces a hemisphere-wide cooling, amplified by atmospheric feedbacks, in particular water vapour. The Southern Hemisphere warming is governed by slower processes. After 25 years the global cooling peaks. Thereafter, the response is characterised by a gradual readjustment of global mean temperature. During the AMOC collapse a downward radiation anomaly arises at the top of the atmosphere (TOA), heating the earth's surface. The net downward radiation anomaly at TOA arises from reduced longwave emission by the atmosphere, overcompensating the increased net upward anomalies in shortwave and longwave radiation at the surface. This radiation anomaly is associated with net ocean heat uptake: cooling of the overlying atmosphere results from reduced ocean heat release through the increase of sea-ice cover in the North Atlantic. The change in energy flow arises from the reduction in latent and sensible heat flux, which dominate the surface radiation budget. Similar experiments with a climate model of intermediate complexity reveal a stronger shortwave response that acts to reduce the net downward radiation anomaly at TOA. The net shortwave and longwave radiation anomalies at TOA always decrease during the first 100 years after the AMOC collapse, but in the intermediate complexity model this is associated with a sign change after 90 years when the net radiation anomaly at TOA becomes upward, accompanied by net ocean heat loss. After several hundred years the longwave and shortwave anomalies increase again, while the net residual at TOA remains small. This radiative adjustment is associated with the transition to a colder climate.

  20. Horizon Brightness Revisited: Measurements and a Model of Clear-Sky Radiances

    DTIC Science & Technology

    1994-07-20

    Clear daytime skies persistently display a subtle local maximum of radiance near the astronomical horizon. Spectroradiometry and digital image analysis confirm this maximum’s reality, and they show that its angular width and elevation vary with solar elevation, azimuth relative to the Sun, and aerosol optical depth. Many existing models of atmospheric scattering do not generate this near-horizon radiance maximum, but a simple second-order scattering model does, and it reproduces many of the maximum’s details.

  1. Analysis of S. 485, the Clear Skies Act of 2003, and S. 843, the Clean Air Planning Act of 2003

    EIA Publications

    2003-01-01

    On July 30, 2003, Senator James M. Inhofe requested the Energy Information Administration to undertake analyses of S.843, The Clean Air Planning Act of 2003, introduced by Senator Thomas Carper, and S.485, Clear Skies Act of 2003. Senator Inhofe also asked the Energy Information Administration (EIA) to analyze S. 485 without the mercury provisions and S. 843 without the mercury and carbon dioxide provisions. This service report responds to both requests.

  2. Shortwave Radiation

    NASA Technical Reports Server (NTRS)

    Klassen, Steve; Bugbee, Bruce

    2005-01-01

    Accurate shortwave radiation data is critical to evapotranspiration (ET) models used for developing irrigation schedules to optimize crop production while saving water, minimizing fertilizer, herbicide, and pesticide applications, reducing soil erosion, and protecting surface and ground water quality. Low cost silicon cell pyranometers have proven to be sufficiently accurate and robust for widespread use in agricultural applications under unobstructed daylight conditions. More expensive thermopile pyranometers are required for use as calibration standards and measurements under light with unique spectral properties (electric lights, under vegetation, in greenhouses and growth chambers). Routine cleaning, leveling, and annual calibration checks will help to ensure the integrity of long-term data.

  3. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  4. Daytime Water Detection Based on Color Variation

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies (such as ponds). At far range, reflections of the sky provide a strong cue for water. But at close range, the color coming out of a water body dominates sky reflections and the water cue from sky reflections is of marginal use. We model this behavior by using water body intensity data from multiple frames of RGB imagery to estimate the total reflection coefficient contribution from surface reflections and the combination of all other factors. Then we describe an algorithm that uses one of the color cameras in a forward- looking, UGV-mounted stereo-vision perception system to detect water bodies in wide open areas. This detector exploits the knowledge that the change in saturation-to-brightness ratio across a water body from the leading to trailing edge is uniform and distinct from other terrain types. In test sequences approaching a pond under clear, overcast, and cloudy sky conditions, the true positive and false negative water detection rates were (95.76%, 96.71%, 98.77%) and (0.45%, 0.60%, 0.62%), respectively. This software has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA.

  5. 2006 National Caring Awards. Reverend Billy Graham.

    PubMed

    2006-11-01

    Reverand Billy Graham has a clear view of God's blue sky from the mountaintop cabin where he lives with his wife Ruth and two dogs. Now 87, the world's most famous evangelist finds himself turning to the sky and thinking more about heaven.

  6. Determination of the Thermal Offset of the Eppley Precision Spectral Pyranometer

    NASA Technical Reports Server (NTRS)

    Haeffelin, Martial; Kato, Seiji; Smith, Amie M.; Rutledge, C. Ken; Charlock, Thomas P.; Mahan, J. Robert

    2001-01-01

    Eppley's precision spectral pyranometer (PSP) is used in networks around the world to measure downwelling diffuse and global solar irradiance at the surface of the Earth. In recent years several studies have shown significant discrepancy between irradiances measured by pyranometers and those computed by atmospheric radiative transfer models. Pyranometer measurements have been questioned because observed diffuse irradiances sometimes are below theoretical minimum values for a pure molecular atmosphere, and at night the instruments often produce nonzero signals ranging between + 5 and - 10 W/sq m. We install thermistor sondes in the body of a PSP as well as on its inner dome to monitor the temperature gradients within the instrument, and we operate a pyrgeometer (PIR) instrument side by side with the PSP. We derive a relationship between the PSP output and thermal radiative exchange by the dome and the detector and a relationship between the PSP output and the PIR thermopile output (net-IR). We determine the true PSP offset by quickly capping the instrument at set time intervals. For a ventilated and shaded PSP, the thermal offset can reach - 15 W/sq m under clear skies, whereas it remains close to zero for low overcast clouds. We estimate the PSP thermal offset by two methods: (1) using the PSP temperatures and (2) using the PIR net-IR signal. The offset computed from the PSP temperatures yields a reliable estimate of the true offset (+/- 1 W/sq m). The offset computed from net-IR is consistent with the true offset at night and under overcast skies but predicts only part of the true range under clear skies.

  7. Determination of the thermal offset of the Eppley precision spectral pyranometer.

    PubMed

    Haeffelin, M; Kato, S; Smith, A M; Rutledge, C K; Charlock, T P; Mahan, J R

    2001-02-01

    Eppley's precision spectral pyranometer (PSP) is used in networks around the world to measure downwelling diffuse and global solar irradiance at the surface of the Earth. In recent years several studies have shown significant discrepancy between irradiances measured by pyranometers and those computed by atmospheric radiative transfer models. Pyranometer measurements have been questioned because observed diffuse irradiances sometimes are below theoretical minimum values for a pure molecular atmosphere, and at night the instruments often produce nonzero signals ranging between +5 and -10 W m(-2). We install thermistor sondes in the body of a PSP as well as on its inner dome to monitor the temperature gradients within the instrument, and we operate a pyrgeometer (PIR) instrument side by side with the PSP. We derive a relationship between the PSP output and thermal radiative exchange by the dome and the detector and a relationship between the PSP output and the PIR thermopile output (net-IR). We determine the true PSP offset by quickly capping the instrument at set time intervals. For a ventilated and shaded PSP, the thermal offset can reach -15 W m(-2) under clear skies, whereas it remains close to zero for low overcast clouds. We estimate the PSP thermal offset by two methods: (1) using the PSP temperatures and (2) using the PIR net-IR signal. The offset computed from the PSP temperatures yields a reliable estimate of the true offset (+/-1 W m(-2)). The offset computed from net-IR is consistent with the true offset at night and under overcast skies but predicts only part of the true range under clear skies.

  8. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.

  9. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    NASA Astrophysics Data System (ADS)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  10. Direct radiative effects induced by intense desert dust outbreaks over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Gkikas, Antonis; Obiso, Vincenzo; Vendrell, Lluis; Basart, Sara; Jorba, Oriol; Pérez Garcia-Pando, Carlos; Hatzianastassiou, Nikos; Gassó, Santiago; Baldasano, Jose Maria

    2016-04-01

    Throughout the year, under favorable conditions, massive loads of mineral particles originating in the northern African and Middle East deserts are transported over the Mediterranean basin. Due to their composition and size, dust aerosols perturb the Earth-Atmosphere system's energy budget interacting directly with the shortwave (SW) and longwave (LW) radiation. The present study aims to compute the Mediterranean dust outbreaks' direct radiative effects (DREs) as well as to assess the effect of including dust DREs in numerical simulations of a regional model. To this aim, 20 intense dust outbreaks have been selected based on their spatial coverage and intensity. Their identification, over the period 2000-2013, has been achieved through an objective and dynamic algorithm which utilizes as inputs daily satellite retrievals derived by the MODIS-Terra, EP-TOMS and OMI-Aura sensors. For each outbreak, two simulations of the NMMB/BSC-Dust model were made for a forecast period of 84 hours, with the model initialized at 00 UTC of the day when the dust outbreak was ignited, activating (RADON) and deactivating (RADOFF) dust-radiation interactions. The simulation domain covers the northern Africa, the Middle East and Europe at 0.25° x 0.25° horizontal resolution, for 40 hybrid sigma pressure levels up to 50 hPa. The instantaneous and regional DREs have been calculated at the top of the atmosphere (TOA), into the atmosphere (ATMAB), and at surface, for the downwelling (SURF) and the absorbed (NETSURF) radiation, for the SW, LW and NET (SW+LW) radiation. The interaction between dust aerosols and NET radiation, locally leads to an atmospheric warming (DREATMAB) by up to 150 Wm-2, a surface cooling (DRENETSURF) by up to 250 Wm-2 and a reduction of the downwelling radiation at the surface (DRESURF) by up to 300 Wm-2. At TOA, DREs are mainly negative (down to -150 Wm-2) indicating a cooling of the Earth-Atmosphere system, although positive values (up to 50 Wm-2) are encountered over desert areas. The mean regional NET DREs, under clear-sky conditions, vary between -10 to 2, -3 to 25, -35 to 3 and -22 to 3 Wm-2 for TOA, ATMAB, SURF and NETSURF, respectively. According to our results, dust outbreaks can cause a decrease of temperature at 2 meters by 4 °C during daytime while an increase of a similar magnitude is found at night. Moreover, negative feedbacks on dust emissions and aerosol optical depth are observed when dust-radiation interactions are activated. Our analysis clearly shows that taking into account the dust radiative effects in numerical simulations (RADON) the model's ability to reproduce the temperature fields as well as the downwelling radiation fluxes at the surface is improved. The former is confirmed by the evaluation of the model's outputs against ERA-Interim reanalyses datasets and weather stations observations (Integrated Surface Database, ISD) while the latter is justified through the comparison of model's downwelling SW/LW radiation fluxes at the surface with ground measurements from 6 Baseline Surface Radiation Network (BSRN) stations. A similar analysis is also attempted for the dust aerosol optical depth at 550 nm using the AERONET ground retrievals as reference measurements.

  11. A database on downward shortwave radiation for Africa and Europe

    NASA Astrophysics Data System (ADS)

    Lefevre, M.; Cros, S.; Albuisson, M.; Wald, L.

    2003-04-01

    Shortwave (SW) radiation is an element of the radiation budget, an essential component in climate studies. The network of stations measuring radiation is very scarce in the ocean and coastal areas.[1] and [2] demonstrate that a proper processing of satellite data provides better results than interpolation techniques. Several methods are available for the conversion of spaceborne observations made in the visible range by geostationnary satellites into SW radiation available at ocean level. Our concern is the series of Meteosat satellites that observe Africa, Europe and the Eastern Atlantic Ocean for several years. When operated on a routine basis, many of these methods exhibit several drawbacks, one of them being the poor accuracy in irradiance [3]. We designed a new method that is capable of processing long time-series of images acquired by the series of sensors aboard the Meteosat satellites. The method is using the same principle than several methods of proven quality: [4] [5] [6] [7] [8] [9] [10] [11]. With respect to these methods, the new one, called Heliosat-II, offers several improvements in operation and accuracy. These improvements are due to several causes: (i) the Meteosat data are calibrated and converted into radiances [12]; (ii) we use a new database of monthly values of the atmospheric optical turbidity for clear skies available on cells of 5’ of arc angle in size (SoDa Web site: http://www.soda-is.com); (iii) we use terrain elevation TerrainBase database using the same cell size (useful for land / ocean separation); (iv) a better modelling of the irradiation under clear-skies and overcast skies was performed [13]; (v) more physical description of the optical processes was made possible by the calibration step; known proven models are implemented in the method; (vi) observations of [14] were used to model the spatial distribution of radiances of the very thick clouds; (vii) changes in ocean albedo due to sun glitter are taken into account. We made comparisons between satellite-derived assessments and measurements performed in the world radiation network in Europe and Africa. The results depend upon the number of pixels whose values are averaged for the comparison with the irradiation measurements. The satellite data are in B2 format. This format results from a sub-sampling of the high-resolution data. Briefly written, one pixel out of six original pixels is kept. Estimates at the geographical locations of the stations are therefore produced by spatial interpolation [15]. These estimates were compared to observations made by 60 stations in Europe and 30 stations in Africa for one year, July 1994 to June 1995. The bias and root mean square error (RMSE) for the assessment of the irradiance for a month are better than respectively 3 and 17 W m-2 on cells of 5' of arc angle in size (approx. 10 km at mid-latitude). The RMSE decreases down to 9 W m-2 if assessments are averaged over cells of 0.5° of arc angle. Data in B2 format were collected from Eumetsat. They were quality-controlled and calibrated. The method Heliosat-II is being operated to produce a database of SW downward radiation for the Eastern Atlantic Ocean, Europe and Africa from 1985 onwards and for each day. This database is accessible through the SoDa service on a free basis [16] (http://www.soda-is.com). Further, tools are available through this service to estimate longwave downward irradiance and net irradiance from the SW downward irradiance. The Heliosat-II method can be operated in real-time. When applied to Meteosat data (MOP and MSG), it produces maps of downward SW irradiance within the hour following the acquisition. 1 Perez R., Seals R., Zelenka A., 1997, Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data, Solar Energy, 60, 89-96. 2 Zelenka A., Perez R., Seals R., and Renné D., 1999, Effective accuracy of satellite-derived hourly irradiances, Theoretical and Applied Climatology, 62, 199-207. 3 Rigollier C., Wald L., 1999, The HelioClim Project: from satellite images to solar radiation maps. In Proceedings of the ISES Solar World Congress 1999, Jerusalem, Israel, July 4-9, 1999, volume I, pp 427-431. 4 Pastre C., 1981, Développement d’une méthode de détermination du rayonnement solaire global à partir des données Meteosat, La Météorologie, VIe série N°24, mars 1981. 5 Möser W., Raschke E., 1983, Mapping of global radiation and of cloudiness from Meteosat image data: theory and ground truth comparisons, Meteorologische Rundschau, 36, 33-41. 6 Möser W., Raschke E., 1984, Incident solar radiation over Europe estimated from Meteosat data, Journal of Applied Meteorology, 23, 166-170. 7 Cano D., Monget J.M., Albuisson M., Guillard H., Regas N., Wald L., 1986, A method for the determination of the global solar radiation from meteorological satellite data, Solar Energy, 37, 31-39. 8 Diabaté L., Demarcq H., Michaud-Regas N., Wald L., 1988, Estimating incident solar radiation at the surface from images of the Earth transmitted by geostationary satellites: the Heliosat Project, International Journal of Solar Energy, 5, 261-278. 9 Beyer H.G., Costanzo C., Heinemann D., 1996, Modifications of the Heliosat procedure for irradiance estimates from satellite images, Solar Energy, 56, 3, 207-212. 10 Stuhlmann R., Rieland M., Raschke E., 1990, An improvement of the IGMK model to derive total and diffuse solar radiation at the surface from satellite data, Journal of Applied Meteorology, 29, 596-603. 11 Delorme C., Gallo A., Olivieri J., 1992, Quick use of Wefax images from Meteosat to determine daily solar radiation in France, Solar Energy, 49 (3), 191-197. 12 Rigollier C., Lefèvre M., Blanc Ph., Wald L., 2002. The operational calibration of images taken in the visible channel of the Meteosat-series of satellites. To be published by Journal of Atmospheric and Oceanic Technology. 13 Rigollier C., Bauer O., Wald L., 1999, On the clear sky model of the 4th European Solar Radiation Atlas with respect to the Heliosat method, Solar Energy, 68(1), 33-48. 14 Taylor V.R., Stowe L.L., 1984, Reflectance characteristics of uniform Earth and cloud surfaces derived from Nimbus 7 ERB, Journal of Geophysical Research, 89(D4), 4987-4996. 15 Lefèvre M., Remund J., Albuisson M., Wald L., 2002, Study of effective distances for interpolation schemes in meteorology. European Geophysical Society, 27th General Assembly, Geophysical Research Abstracts, vol. 4, April 2002, EGS02-A-03429. 16 Wald L., 2000. SoDa: a project for the integration and exploitation of networked solar radiation databases. In Proceedings of the European Geophysical Society Meeting, XXV General Assembly (CD-ROM).

  12. Satellite Estimates of Surface Short-wave Fluxes: Issues of Implementation

    NASA Technical Reports Server (NTRS)

    Wang, H.; Pinker, Rachel; Minnis, Patrick

    2006-01-01

    Surface solar radiation reaching the Earth's surface is the primary forcing function of the land surface energy and water cycle. Therefore, there is a need for information on this parameter, preferably, at global scale. Satellite based estimates are now available at accuracies that meet the demands of many scientific objectives. Selection of an approach to estimate such fluxes requires consideration of trade-offs between the use of multi-spectral observations of cloud optical properties that are more difficult to implement at large scales, and methods that are simplified but easier to implement. In this study, an evaluation of such trade-offs will be performed. The University of Maryland Surface Radiation Model (UMD/SRB) has been used to reprocess five years of GOES-8 satellite observations over the United States to ensure updated calibration and improved cloud detection over snow. The UMD/SRB model was subsequently modified to allow input of information on aerosol and cloud optical depth with information from independent satellite sources. Specifically, the cloud properties from the Atmospheric Radiation Measurement (ARM) Satellite Data Analysis Program (Minnis et al., 1995) are used to drive the modified version of the model to estimate surface short-wave fluxes over the Southern Great Plain ARM sites for a twelve month period. The auxiliary data needed as model inputs such as aerosol optical depth, spectral surface albedo, water vapor and total column ozone amount were kept the same for both versions of the model. The estimated shortwave fluxes are evaluated against ground observations at the ARM Central Facility and four satellite ARM sites. During summer, the estimated fluxes based on cloud properties derived from the multi-spectral approach were in better agreement with ground measurements than those derived from the UMD/SRB model. However, in winter, the fluxes derived with the UMD/SRB model were in better agreement with ground observations than those estimated from cloud properties provided by the ARM Satellite Data Analysis Program. During the transition periods, the results were comparable.

  13. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    PubMed Central

    Ferreira, Pedro M.; Gomes, João M.; Martins, Igor A. C.; Ruano, António E.

    2012-01-01

    Accurate measurements of global solar radiation and atmospheric temperature, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight and portable sensor was developed, using artificial neural network models as the time-series predictor mechanisms. These have been identified with the aid of a procedure based on the multi-objective genetic algorithm. As cloudiness is the most significant factor affecting the solar radiation reaching a particular location on the Earth surface, it has great impact on the performance of predictive solar radiation models for that location. This work also represents one step towards the improvement of such models by using ground-to-sky hemispherical colour digital images as a means to estimate cloudiness by the fraction of visible sky corresponding to clouds and to clear sky. The implementation of predictive models in the prototype has been validated and the system is able to function reliably, providing measurements and four-hour forecasts of cloudiness, solar radiation and air temperature. PMID:23202230

  14. Correlations among the properties of galaxies found in a blind HI survey, which also have SDSS optical data

    NASA Astrophysics Data System (ADS)

    Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.

    2009-03-01

    We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.

  15. An evaluation of skylight polarization patterns for navigation.

    PubMed

    Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen

    2015-03-10

    Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation.

  16. An Evaluation of Skylight Polarization Patterns for Navigation

    PubMed Central

    Ma, Tao; Hu, Xiaoping; Zhang, Lilian; Lian, Junxiang; He, Xiaofeng; Wang, Yujie; Xian, Zhiwen

    2015-01-01

    Skylight polarization provides a significant navigation cue for certain polarization-sensitive animals. However, the precision of the angle of polarization (AOP) of skylight for vehicle orientation is not clear. An evaluation of AOP must be performed before it is utilized. This paper reports an evaluation of AOP of skylight by measuring the skylight polarization patterns of clear and cloudy skies using a full-sky imaging polarimetry system. AOP measurements of skylight are compared with the pattern calculated by the single-scattering Rayleigh model and these differences are quantified. The relationship between the degree of polarization (DOP) and the deviation of AOP of skylight is thoroughly studied. Based on these, a solar meridian extracted method is presented. The results of experiments reveal that the DOP is a key parameter to indicate the accuracy of AOP measurements, and all the output solar meridian orientations extracted by our method in both clear and cloudy skies can achieve a high accuracy for vehicle orientation. PMID:25763652

  17. Spectral and diurnal variations in clear sky planetary albedo

    NASA Technical Reports Server (NTRS)

    Briegleb, B.; Ramanathan, V.

    1982-01-01

    Spectral and diurnal variations in the clear sky planetary albedo of the earth are calculated using a radiative transfer model to obtain January and July values for a 5 deg x 5 deg global grid. The model employs observed climatological values of temperatures, humidities, snow and sea-ice cover. The diurnal cycle of clear sky albedo is calculated in the following intervals: 0.2-0.5, 0.5-0.7, and 0.7-4 microns. Observed ozone distribution is specified as a function of latitude and season. The 0.2-0.5 micron spectral albedo is 10-20% higher than the total albedo for all latitudes because of Rayleigh scattering; the 0.5-0.7 micron albedo differs from the total albedo by 1-2% for most latitudes, while the 0.7-4 micron albedo is 5-10% lower than the total because of strong atmospheric absorption. Planetary albedo decreases from morning to local noon, with diurnal variations being particularly strong over water.

  18. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    NASA Astrophysics Data System (ADS)

    Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev

    2016-03-01

    Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  19. Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Roman, Miguel O.

    2016-01-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (less than 100 m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high-burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500 m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems.

  20. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data

    PubMed Central

    Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Román, Miguel O.

    2018-01-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (< 100m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high- burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus play an important role in characterizing the carbon cycle and ecosystem processes of high latitude systems. PMID:29769751

Top