Simulation results of a veto counter for the ClearPEM
NASA Astrophysics Data System (ADS)
Trummer, J.; Auffray, E.; Lecoq, P.
2009-04-01
The Crystal Clear Collaboration (CCC) has built a prototype of a novel positron emission tomograph dedicated to functional breast imaging, the ClearPEM. The ClearPEM uses the common radio pharmaceutical FDG for imaging cancer. As FDG is a rather non-specific radio tracer, it accumulates not only in cancer cells but in all cells with a high energy consumption, such as the heart and liver. This fact poses a problem especially in breast imaging, where the vicinity of the heart and other organs to the breast leads to a high background noise level in the scanner. In this work, a veto counter to reduce the background is described. Different configurations and their effectiveness were studied using the GATE simulation package.
Development of ClearPEM-Sonic, a multimodal mammography system for PET and Ultrasound
NASA Astrophysics Data System (ADS)
Cucciati, G.; Auffray, E.; Bugalho, R.; Cao, L.; Di Vara, N.; Farina, F.; Felix, N.; Frisch, B.; Ghezzi, A.; Juhan, V.; Jun, D.; Lasaygues, P.; Lecoq, P.; Mensah, S.; Mundler, O.; Neves, J.; Paganoni, M.; Peter, J.; Pizzichemi, M.; Siles, P.; Silva, J. C.; Silva, R.; Tavernier, S.; Tessonnier, L.; Varela, J.
2014-03-01
ClearPEM-Sonic is an innovative imaging device specifically developed for breast cancer. The possibility to work in PEM-Ultrasound multimodality allows to obtain metabolic and morphological information increasing the specificity of the exam. The ClearPEM detector is developed to maximize the sensitivity and the spatial resolution as compared to Whole-Body PET scanners. It is coupled with a 3D ultrasound system, the SuperSonic Imagine Aixplorer that improves the specificity of the exam by providing a tissue elasticity map. This work describes the ClearPEM-Sonic project focusing on the technological developments it has required, the technical merits (and limits) and the first multimodal images acquired on a dedicated phantom. It finally presents selected clinical case studies that confirm the value of PEM information.
Development of a small single-ring OpenPET prototype with a novel transformable architecture.
Tashima, Hideaki; Yoshida, Eiji; Inadama, Naoko; Nishikido, Fumihiko; Nakajima, Yasunori; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Nitta, Munetaka; Kinouchi, Shoko; Suga, Mikio; Haneishi, Hideaki; Inaniwa, Taku; Yamaya, Taiga
2016-02-21
The single-ring OpenPET (SROP), for which the detector arrangement has a cylinder shape cut by two parallel planes at a slant angle to form an open space, is our original proposal for in-beam PET. In this study, we developed a small prototype of an axial-shift type SROP (AS-SROP) with a novel transformable architecture for a proof-of-concept. In the AS-SROP, detectors originally forming a cylindrical PET are axially shifted little by little. We designed the small AS-SROP prototype for 4-layer depth-of-interaction detectors arranged in a ring diameter of 250 mm. The prototype had two modes: open and closed. The open mode formed the SROP with the open space of 139 mm and the closed mode formed a conventional cylindrical PET. The detectors were simultaneously moved by a rotation handle allowing them to be transformed between the two modes. We evaluated the basic performance of the developed prototype and carried out in-beam imaging tests in the HIMAC using (11)C radioactive beam irradiation. As a result, we found the open mode enabled in-beam PET imaging at a slight cost of imaging performance; the spatial resolution and sensitivity were 2.6 mm and 5.1% for the open mode and 2.1 mm and 7.3% for the closed mode. We concluded that the AS-SROP can minimize the decrease of resolution and sensitivity, for example, by transforming into the closed mode immediately after the irradiation while maintaining the open space only for the in-beam PET measurement.
Characterization of an In-Beam PET Prototype for Proton Therapy With Different Target Compositions
NASA Astrophysics Data System (ADS)
Attanasi, Francesca; Belcari, Nicola; Moehrs, Sascha; Rosso, Valeria; Vecchio, Sara; Cirrone, G. A. Pablo; Cuttone, Giacomo; Lojacono, Piero; Romano, Francesco; Lanconelli, Nico; Del Guerra, Alberto
2010-06-01
At the University of Pisa, the DoPET (Dosimetry with a Positron Emission Tomograph) project has focused on the development and characterization of an ad hoc, scalable, dual-head PET prototype for in-beam treatment planning verification of the proton therapy. In this paper we report the first results obtained with our current prototype, consisting of two opposing lutetium yttrium orthosilicate (LYSO) detectors, each one covering an area of 4.5 × 4.5 cm2. We measured the β+-activation induced by 62 MeV proton beams at Catana facility (LNS, Catania, Italy) in several plastic phantoms. Experiments were performed to evaluate the possibility to extract accurate phantom geometrical information from the reconstructed PET images. The PET prototype proved its capability of locating small air cavities in homogeneous PMMA phantoms with a submillimetric accuracy and of distinguishing materials with different 16O and 12C content by back mapping phantom geometry through the separation of the isotope contributions. This could be very useful in the clinical practice as a tool to highlight anatomical or physiological organ variations among different treatment sessions and to discriminate different tissue types, thus providing feedbacks for the accuracy of dose deposition.
Prototype design of singles processing unit for the small animal PET
NASA Astrophysics Data System (ADS)
Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.
2018-05-01
Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.
Hiligsmann, M; Ronda, G; van der Weijden, T; Boonen, A
2016-08-01
A personalized patient education tool for decision making (PET) for postmenopausal women with osteoporosis was developed by means of a systematic development approach. A prototype was constructed and refined by involving various professionals and patients. Professionals and patients expressed a positive attitude towards the use of the PET. The purpose was to systematically develop a paper-based personalized PET to assist postmenopausal women with osteoporosis in selecting a treatment in line with their personal values and preferences. The development of the PET was based on a systematic process including scope, design, development of a prototype, and alpha testing among professionals and patients by semi-structured interviews. The design and development resulted in a four-page PET prototype together with a one-page fact sheet of the different drug options. The prototype PET provided the personal risk factors, the estimated individualized risk for a future major osteoporotic fracture and potential reduction with drugs, and a summary of advantages and disadvantages whether or not to start drugs. The drug fact sheet presents five attributes of seven drugs in a tabular format. The alpha testing with professionals resulted in some adaptations, e.g., inclusion of the possibility to calculate fracture risk based on various individual risk scoring methods. Important results from the alpha testing with patients were differences in the fracture risk percentage which was seen as worthwhile to start drugs, the importance of an overview of side effects, and of the timing of the PET into the patient pathway. All women indicated that the PET could be helpful for their decision to select a treatment. Physicians and patients expressed a positive attitude towards the use of the proposed PET. Further research would be needed to test the effects of the PET on feasibility in clinical workflow and on patient outcomes.
Recent developments in PET detector technology
Lewellen, Tom K
2010-01-01
Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301
Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging
Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.
2017-01-01
Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time. PMID:29270539
Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.
Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D
2017-05-01
Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.
A prototype MR insertable brain PET using tileable GAPD arrays.
Hong, Key Jo; Choi, Yong; Jung, Jin Ho; Kang, Jihoon; Hu, Wei; Lim, Hyun Keong; Huh, Yoonsuk; Kim, Sangsu; Jung, Ji Woong; Kim, Kyu Bom; Song, Myung Sung; Park, Hyun-Wook
2013-04-01
The aim of this study was to develop a prototype magnetic resonance (MR)-compatible positron emission tomography (PET) that can be inserted into a MR imager and that allows simultaneous PET and MR imaging of the human brain. This paper reports the initial results of the authors' prototype brain PET system operating within a 3-T magnetic resonance imaging (MRI) system using newly developed Geiger-mode avalanche photodiode (GAPD)-based PET detectors, long flexible flat cables, position decoder circuit with high multiplexing ratio, and digital signal processing with field programmable gate array-based analog to digital converter boards. A brain PET with 72 detector modules arranged in a ring was constructed and mounted in a 3-T MRI. Each PET module was composed of cerium-doped lutetium yttrium orthosilicate (LYSO) crystals coupled to a tileable GAPD. The GAPD output charge signals were transferred to preamplifiers using 3 m long flat cables. The LYSO and GAPD were located inside the MR bore and all electronics were positioned outside the MR bore. The PET detector performance was investigated both outside and inside the MRI, and MR image quality was evaluated with and without the PET system. The performance of the PET detector when operated inside the MRI during MR image acquisition showed no significant change in energy resolution and count rates, except for a slight degradation in timing resolution with an increase from 4.2 to 4.6 ns. Simultaneous PET/MR images of a hot-rod and Hoffman brain phantom were acquired in a 3-T MRI. Rods down to a diameter of 3.5 mm were resolved in the hot-rod PET image. The activity distribution patterns between the white and gray matter in the Hoffman brain phantom were well imaged. The hot-rod and Hoffman brain phantoms on the simultaneously acquired MR images obtained with standard sequences were observed without any noticeable artifacts, although MR image quality requires some improvement. These results demonstrate that the simultaneous acquisition of PET and MR images is feasible using the MR insertable PET developed in this study.
System design of a small OpenPET prototype with 4-layer DOI detectors.
Yoshida, Eiji; Kinouchi, Shoko; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Yamaya, Taiga
2012-01-01
We have proposed an OpenPET geometry which consists of two axially separated detector rings. The open gap is suitable for in-beam PET. We have developed the small prototype of the OpenPET especially for a proof of concept of in-beam imaging. This paper presents an overview of the main features implemented in this prototype. We also evaluated the detector performance. This prototype was designed with 2 detector rings having 8 depth-of-interaction detectors. Each detector consisted of 784 Lu(2x)Gd(2(1-x))SiO₅:Ce (LGSO) which were arranged in a 4-layer design, coupled to a position-sensitive photomultiplier tube (PS-PMT). The size of the LGSO array was smaller than the sensitive area of the PS-PMT, so that we could obtain sufficient LGSO identification. Peripheral LGSOs near the open gap directly detect the gamma rays on the side face in the OpenPET geometry. Output signals of two detectors stacked axially were projected onto one 2-dimensional position histogram for reduction of the scale of a coincidence processor. Front-end circuits were separated from the detector head by 1.2-m coaxial cables for the protection of electronic circuits from radiation damage. The detectors had sufficient crystal identification capability. Cross talk between the combined two detectors could be ignored. The timing and energy resolutions were 3.0 ns and 14%, respectively. The coincidence window was set 20 ns, because the timing histogram showed that not only the main peak, but also two small shifted peaks were caused by the coaxial cable. However, the detector offers the promise of sufficient performance, because random coincidences are at a nearly undetectable level for in-beam PET experiments.
NASA Astrophysics Data System (ADS)
Paolozzi, L.; Bandi, Y.; Benoit, M.; Cardarelli, R.; Débieux, S.; Forshaw, D.; Hayakawa, D.; Iacobucci, G.; Kaynak, M.; Miucci, A.; Nessi, M.; Ratib, O.; Ripiccini, E.; Rücker, H.; Valerio, P.; Weber, M.
2018-04-01
The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e‑ RMS and a pulse rise time of less than 2 ns , in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps .
Stegger, Lars; Martirosian, Petros; Schwenzer, Nina; Bisdas, Sotirios; Kolb, Armin; Pfannenberg, Christina; Claussen, Claus D; Pichler, Bernd; Schick, Fritz; Boss, Andreas
2012-11-01
Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 × 128 and 192 × 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 ± 9 and 51 ± 7 mL/100 g/min for the 128 × 128 and 192 × 192 matrices (stand-alone MR, 57 ± 2 and 55 ± 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 × 192 matrix size (P < 0.01), the relative signal change (δS) was significantly lower for the 192 × 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.
NASA Astrophysics Data System (ADS)
Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.
2018-05-01
The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.
A PET Prototype for “In-Beam” Monitoring of Proton Therapy
NASA Astrophysics Data System (ADS)
Vecchio, Sara; Attanasi, Francesca; Belcari, Nicola; Camarda, Manuela; Cirrone, G. A. Pablo; Cuttone, Giacomo; Di Rosa, Francesco; Lanconelli, Nico; Moehrs, Sascha; Rosso, Valeria; Russo, Giorgio; Del Guerra, Alberto
2009-02-01
The in-beam PET is a novel PET application to image the beta+ activity induced in biological tissues by hadronic therapeutic beams. Thanks to the correlation existing between beam-delivered dose profiles and beam-induced activity profiles, in vivo information about the effective ion paths can be extracted from the in-beam pet image. in situ measurements, immediately after patient irradiation, are recommended in order to exploit the maximum statistics, by also detecting the contribution provided by the very short lived isotopes, e.g. 15O. A compact, dedicated tomograph should then be developed for such an application, so as to be used in the treatment room. We developed a small PET prototype in order to demonstrate the feasibility of such a technique for the monitoring of proton therapy of ocular tumors at the CATANA facility (Catania, Italy). The prototype consists of two planar heads with an active area of about 5 cm times 5 cm. Each head is made up of a square position sensitive photomultiplier (Hamamatsu H8500) coupled to a matrix of the same size of LYSO scintillating crystals (2 mm times 2 mm times 18 mm pixel dimensions). Dedicated, compact electronic boards are used for the signal multiplexing, amplification and digitization. The distance between the pair can be varied from 10 cm up to a maximum of about 20 cm. The validation of the prototype was performed on plastic phantoms using 62 MeV protons at the CATANA beam line. Different dose distributions were delivered and a good correlation between the distal fall-off of the activity profiles and of the dose profiles was found, i.e., better than 2 mm along the beam direction.
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.
2007-06-01
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.
In-beam PET data characterization with the large area DoPET prototype
NASA Astrophysics Data System (ADS)
Sportelli, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Molinelli, S.; Pullia, M.; Zaccaro, E.; Del Guerra, A.; Rosso, V.
2016-02-01
Range verification with in-beam PET techniques is a powerful tool for monitoring the correctness of dose delivery in particle therapy. Among the major limitations of in-beam PET systems are the limited detectors size due to the constrained space in which they can be placed to allow the irradiation, and the necessity of a high read-out modularization, due to high activity rates during the irradiation. In this work we present the data acquired at the CNAO (Centro Nazionale di Adroterapia Oncologica) treatment center in Pavia, Italy, with the new DoPET system, specifically designed to operate in in-beam conditions. The new prototype consists of two planar 15cm × 15cm LYSO-based detectors, read out by 9 PMT detector modules each. In particular, we test the capability of our system to determine particle range in various irradiation conditions. Several plastic phantoms were irradiated at the CNAO treatment centre with protons and carbon ions of various energies. The used dose in treatment plans is 2 Gy and the monitoring feedback is produced in a few minutes after the end of the treatment.
Triroc: A Multi-Channel SiPM Read-Out ASIC for PET/PET-ToF Application
NASA Astrophysics Data System (ADS)
Ahmad, Salleh; Fleury, Julien; de la Taille, Christophe; Seguin-Moreau, Nathalie; Dulucq, Frederic; Martin-Chassard, Gisele; Callier, Stephane; Thienpont, Damien; Raux, Ludovic
2015-06-01
Triroc is the latest addition to SiPM readout ASICs family developed at Weeroc, a start-up company from the Omega microelectronics group of IN2P3/CNRS. This chip is developed under the framework TRIMAGE European project which is aimed for building a cost effective tri-modal PET/MR/EEG brain scan. To ensure the flexibility and compatibility with any SiPM in the market, the ASIC is designed to be capable of accepting negative and positive polarity input signals. This 64-channel ASIC, is suitable for SiPM readout which requires high accuracy timing and charge measurements. Targeted applications would be PET prototyping with time-of-flight capability. Main features of Triroc includes high dynamic range ADC up to 2500 photoelectrons and TDC fine time binning of 40 ps. Triroc requires very minimal external components which means it is a good contender for compact multichannel PET prototyping. Triroc is designed by using AMS 0.35 μm SiGe technology and it was submitted in March 2014. The detail design of this chip will be presented.
J-PET: A New Technology for the Whole-body PET Imaging
NASA Astrophysics Data System (ADS)
Niedźwiecki, S.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kapłon, Ł.; Kisielewska-Kamińska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R. Y.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diameter of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.
Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga
2015-01-01
Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.
NASA Astrophysics Data System (ADS)
Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro
2018-01-01
Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single emission. Material cost of this system is, 0.2M for HGR La-GPS, 0.03M for WLSF, 0.03M for 600 units of 6 by 6 mm SiPM's, 0.12M for 12000 units of 1 by 1 mm SiPM's, and 0.09M for 1800 channel of signal readout circuits. Considering total cost, price of this PET will be set 1M or less. This idea was confirmed with numerical simulation and experimentation. In experimentation, position resolution in photoelectric absorption was 0.2 mm, and minimum distance that this detector could recognize plural emission in Compton scattering was 1 mm. In parallel, three kinds of model were made: a prototype detector, all the signals readout method, and resistance delay method. Simulation setting was 2 MBq/L in normal tissue and 10 MBq/L in cancer. As a result of simulation, a prototype detector identified 3 mm cancer, however the others made unclear image and was not able to identified cancer. That is to say, the prototype detector is able to reject Compton scattering events and inexpensive. Therefore, whole-body PET system with this detector must diagnose cancer with a diameter of 3 mm or more and be priced 1M or less
NASA Astrophysics Data System (ADS)
Rosso, V.; Battistoni, G.; Belcari, N.; Camarlinghi, N.; Ciocca, M.; Collini, F.; Ferretti, S.; Kraan, A. C.; Lucenò, S.; Molinelli, S.; Pullia, M.; Sportelli, G.; Zaccaro, E.; Del Guerra, A.
2016-07-01
One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly 15O and 11C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm2 and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.
Development of a small prototype for a proof-of-concept of OpenPET imaging
NASA Astrophysics Data System (ADS)
Yamaya, Taiga; Yoshida, Eiji; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Kawai, Hideyuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Haneishi, Hideaki; Suga, Mikio; Kinouchi, Shoko
2011-02-01
The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.
F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anna M.
2013-01-18
The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2.more » Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.« less
Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Daniel H., E-mail: daniel.paulus@imp.uni-erlangen.de; Thorwath, Daniela; Schmidt, Holger
2014-07-15
Purpose: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning. In this study, prototype RT positioning devices intended for PET/MR hybrid imaging are introduced and tested toward PET/MR compatibility and image quality. Methods: A prototype flat RT table overlay and two radiofrequency (RF) coil holders that each fix one flexible body matrixmore » RF coil for RT head/neck imaging have been evaluated within this study. MR image quality with the RT head setup was compared to the actual PET/MR setup with a dedicated head RF coil. PET photon attenuation and CT-based attenuation correction (AC) of the hardware components has been quantitatively evaluated by phantom scans. Clinical application of the new RT setup in PET/MR imaging was evaluated in anin vivo study. Results: The RT table overlay and RF coil holders are fully PET/MR compatible. MR phantom and volunteer imaging with the RT head setup revealed high image quality, comparable to images acquired with the dedicated PET/MR head RF coil, albeit with 25% reduced SNR. Repositioning accuracy of the RF coil holders was below 1 mm. PET photon attenuation of the RT table overlay was calculated to be 3.8% and 13.8% for the RF coil holders. With CT-based AC of the devices, the underestimation error was reduced to 0.6% and 0.8%, respectively. Comparable results were found within the patient study. Conclusions: The newly designed RT devices for hybrid PET/MR imaging are PET and MR compatible. The mechanically rigid design and the reproducible positioning allow for straightforward CT-based AC. The systematic evaluation within this study provides the technical basis for the clinical integration of PET/MR hybrid imaging into RT treatment planning.« less
A multi-threshold sampling method for TOF-PET signal processing
NASA Astrophysics Data System (ADS)
Kim, H.; Kao, C. M.; Xie, Q.; Chen, C. T.; Zhou, L.; Tang, F.; Frisch, H.; Moses, W. W.; Choong, W. S.
2009-04-01
As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multi-threshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to eight threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and falling edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25×6.25×25 mm3 LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an ˜18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an ˜9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain ˜300 ps coincidence timing resolution, ˜14% energy resolution at 511 keV, and ˜5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition.
J-PET detector system for studies of the electron-positron annihilations
NASA Astrophysics Data System (ADS)
Pawlik-Niedźwiecka, M.; Khreptak, O.; Gajos, A.; Wieczorek, A.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzmień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Raczyński, L.; Rudy, Z.; Silarski, M.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2016-11-01
Jagiellonian Positron Emission Tomograph (J-PET) has been recently constructed at the Jagiellonian University as a prototype of a cost-effective scanner for the metabolic imaging of the whole human body. J-PET detector is optimized for the measurement of momentum and polarization of photons from the electron-positron annihilations. It is built out of strips of plastic scintillators, forming three cylindrical layers. As detector of gamma quanta it will be used for studies of discrete symmetries and multiparticle entanglement of photons originating from the decays of ortho-positronium atoms.
Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J.; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A. Gregory
2013-01-01
A number of factors have to be considered for implementing an accurate attenuation correction (AC) in a combined MR-PET scanner. In this work, some of these challenges were investigated and an AC method based entirely on the MR data obtained with a single dedicated sequence was developed and used for neurological studies performed with the MR-PET human brain scanner prototype. Methods The focus was on the bone/air segmentation problem, the bone linear attenuation coefficient selection and the RF coil positioning. The impact of these factors on the PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultra-short echo time (DUTE) MR sequence was proposed for head imaging. Simultaneous MR-PET data were acquired and the PET images reconstructed using the proposed MR-DUTE-based AC method were compared with the PET images reconstructed using a CT-based AC. Results Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm−1 to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. Based on these results, the segmented CT AC method was established as the “silver standard” for the segmented MR-based AC method. Particular to an integrated MR-PET scanner, ignoring the RF coil attenuation can cause large underestimations (i.e. up to 50%) in the reconstructed images. Furthermore, the coil location in the PET field of view has to be accurately known. Good quality bone/air segmentation can be performed using the DUTE data. The PET images obtained using the MR-DUTE- and CT-based AC methods compare favorably in most of the brain structures. Conclusion An MR-DUTE-based AC method was implemented considering all these factors and our preliminary results suggest that this method could potentially be as accurate as the segmented CT method and it could be used for quantitative neurological MR-PET studies. PMID:20810759
Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A Gregory
2010-09-01
Several factors have to be considered for implementing an accurate attenuation-correction (AC) method in a combined MR-PET scanner. In this work, some of these challenges were investigated, and an AC method based entirely on the MRI data obtained with a single dedicated sequence was developed and used for neurologic studies performed with the MR-PET human brain scanner prototype. The focus was on the problem of bone-air segmentation, selection of the linear attenuation coefficient for bone, and positioning of the radiofrequency coil. The impact of these factors on PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultrashort echo time (DUTE) MRI sequence was proposed for head imaging. Simultaneous MR-PET data were acquired, and the PET images reconstructed using the proposed DUTE MRI-based AC method were compared with the PET images that had been reconstructed using a CT-based AC method. Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm(-1) to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. On the basis of these results, the segmented CT AC method was established as the silver standard for the segmented MRI-based AC method. For an integrated MR-PET scanner, in particular, ignoring the radiofrequency coil attenuation can cause large underestimations (i.e.,
Initial tests of a prototype MRI-compatible PET imager
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy
2006-12-01
Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .
PetIGA: A framework for high-performance isogeometric analysis
Dalcin, Lisandro; Collier, Nathaniel; Vignal, Philippe; ...
2016-05-25
We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility ofmore » PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. Lastly, we show strong scaling results on up to 4096 cores, which confirm the suitability of PetIGA for large scale simulations.« less
Queiroz, Marcelo A; Barbosa, Felipe de Galiza; Buchpiguel, Carlos Alberto; Cerri, Giovanni Guido
2018-01-01
The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.
Disselhorst, Jonathan A; Bezrukov, Ilja; Kolb, Armin; Parl, Christoph; Pichler, Bernd J
2014-06-01
Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Optical delay encoding for fast timing and detector signal multiplexing in PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford
2015-08-15
Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less
Preliminary results of an in-beam PET prototype for proton therapy
NASA Astrophysics Data System (ADS)
Attanasi, F.; Belcari, N.; Camarda, M.; Cirrone, G. A. P.; Cuttone, G.; Del Guerra, A.; Di Rosa, F.; Lanconelli, N.; Rosso, V.; Russo, G.; Vecchio, S.
2008-06-01
Proton therapy can overcome the limitations of conventional radiotherapy due to the more selective energy deposition in depth and to the increased biological effectiveness. Verification of the delivered dose is desirable, but the complete stopping of the protons in patient prevents the application of electronic portal imaging methods that are used in conventional radiotherapy During proton therapy β + emitters like 11C, 15O, 10C are generated in irradiated tissues by nuclear reactions. The measurement of the spatial distribution of this activity, immediately after patient irradiation, can lead to information on the effective delivered dose. First, results of a feasibility study of an in-beam PET for proton therapy are reported. The prototype is based on two planar heads with an active area of about 5×5 cm 2. Each head is made up of a position sensitive photomultiplier coupled to a square matrix of same size of LYSO scintillating crystals (2×2×18 mm 3 pixel dimensions). Four signals from each head are acquired through a dedicated electronic board that performs signal amplification and digitization. A 3D reconstruction of the activity distribution is calculated using an expectation maximization algorithm. To characterize the PET prototype, the detection efficiency and the spatial resolution were measured using a point-like radioactive source. The validation of the prototype was performed using 62 MeV protons at the CATANA beam line of INFN LNS and PMMA phantoms. Using the full energy proton beam and various range shifters, a good correlation between the position of the activity distal edge and the thickness of the beam range shifter was found along the axial direction.
Analytical model of coincidence resolving time in TOF-PET
NASA Astrophysics Data System (ADS)
Wieczorek, H.; Thon, A.; Dey, T.; Khanin, V.; Rodnyi, P.
2016-06-01
The coincidence resolving time (CRT) of scintillation detectors is the parameter determining noise reduction in time-of-flight PET. We derive an analytical CRT model based on the statistical distribution of photons for two different prototype scintillators. For the first one, characterized by single exponential decay, CRT is proportional to the decay time and inversely proportional to the number of photons, with a square root dependence on the trigger level. For the second scintillator prototype, characterized by exponential rise and decay, CRT is proportional to the square root of the product of rise time and decay time divided by the doubled number of photons, and it is nearly independent of the trigger level. This theory is verified by measurements of scintillation time constants, light yield and CRT on scintillator sticks. Trapping effects are taken into account by defining an effective decay time. We show that in terms of signal-to-noise ratio, CRT is as important as patient dose, imaging time or PET system sensitivity. The noise reduction effect of better timing resolution is verified and visualized by Monte Carlo simulation of a NEMA image quality phantom.
Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Wyrwicz, Alice M; Li, Limin; Kao, C-M
2015-06-01
We are developing a time-of-flight Positron Emission Tomography (PET) detector by using silicon photo-multipliers (SiPM) on a strip-line and high speed waveform sampling data acquisition. In this design, multiple SiPMs are connected on a single strip-line and signal waveforms on the strip-line are sampled at two ends of the strip to reduce readout channels while fully exploiting the fast time response of SiPMs. In addition to the deposited energy and time information, the position of the hit SiPM along the strip-line is determined by the arrival time difference of the waveform. Due to the insensitivity of the SiPMs to magnetic fields and the compact front-end electronics, the detector approach is highly attractive for developing a PET insert system for a magnetic resonance imaging (MRI) scanner to provide simultaneous PET/MR imaging. To investigate the feasibility, experimental tests using prototype detector modules have been conducted inside a 9.4 Tesla small animal MRI scanner (Bruker BioSpec 94/30 imaging spectrometer). On the prototype strip-line board, 16 SiPMs (5.2 mm pitch) are installed on two strip-lines and coupled to 2 × 8 LYSO scintillators (5.0 × 5.0 × 10.0 mm 3 with 5.2 mm pitch). The outputs of the strip-line boards are connected to a Domino-Ring-Sampler (DRS4) evaluation board for waveform sampling. Preliminary experimental results show that the effect of interference on the MRI image due to the PET detector is negligible and that PET detector performance is comparable with the results measured outside the MRI scanner.
Imaging performance of a LaBr3-based PET scanner
Daube-Witherspoon, M E; Surti, S; Perkins, A; Kyba, C C M; Wiener, R; Werner, M E; Kulp, R; Karp, J S
2010-01-01
A prototype time-of-flight (TOF) PET scanner based on cerium-doped lanthanum bromide [LaBr3 (5% Ce)] has been developed. LaBr3 has high light output, excellent energy resolution, and fast timing properties that have been predicted to lead to good image quality. Intrinsic performance measurements of spatial resolution, sensitivity, and scatter fraction demonstrate good conventional PET performance; the results agree with previous simulation studies. Phantom measurements show the excellent image quality achievable with the prototype system. Phantom measurements and corresponding simulations show a faster and more uniform convergence rate, as well as more uniform quantification, for TOF reconstruction of the data, which have 375-ps intrinsic timing resolution, compared to non-TOF images. Measurements and simulations of a hot and cold sphere phantom show that the 7% energy resolution helps to mitigate residual errors in the scatter estimate because a high energy threshold (>480 keV) can be used to restrict the amount of scatter accepted without a loss of true events. Preliminary results with incorporation of a model of detector blurring in the iterative reconstruction algorithm show improved contrast recovery but also point out the importance of an accurate resolution model of the tails of LaBr3’s point spread function. The LaBr3 TOF-PET scanner has demonstrated the impact of superior timing and energy resolutions on image quality. PMID:19949259
Qualification test of a MPPC-based PET module for future MRI-PET scanners
NASA Astrophysics Data System (ADS)
Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.
2014-11-01
We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.
Experimental evaluation of the resolution improvement provided by a silicon PET probe.
Brzeziński, K; Oliver, J F; Gillam, J; Rafecas, M; Studen, A; Grkovski, M; Kagan, H; Smith, S; Llosá, G; Lacasta, C; Clinthorne, N H
2016-09-01
A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 × 16 arrays of 1.4 mm × 1.4 mm pixels and the other in 40 × 26 arrays of 1.0 mm × 1.0 mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 × 6 arrays of 6 mm × 12 mm × 30 mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5 mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8 mm and 4.0 mm phantom features respectively, were observed, while previously unresolvable 3.2 mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe.
Simultaneous MRI and PET imaging of a rat brain
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.
2006-12-01
Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.
Evaluation of an MR-compatible blood sampler for PET
NASA Astrophysics Data System (ADS)
Breuer, J.; Grazioso, R.; Zhang, N.; Schmand, M.; Wienhard, K.
2010-10-01
The integration of magnetic resonance imaging (MRI) and positron emission tomography (PET) is an upcoming hybrid imaging technique. Prototype scanners for pre-clinical and clinical research have been built and tested. However, the potential of the PET part can be better exploited if the arterial input function (AIF) of the administered tracer is known. This work presents a dedicated MR-compatible blood sampling system for precise measurement of the AIF in an MR-PET study. The device basically consists of an LSO/APD-detector assembly which performs a coincidence measurement of the annihilation photons resulting from positron decays. During the measurement, arterial blood is drawn continuously from an artery and lead through the detector unit. Besides successful tests of the MR compatibility and the detector performance, measurements of the AIF of rats have been carried out. The results show that the developed blood sampling system is a practical and reliable tool for measuring the AIF in MR-PET studies.
NASA Astrophysics Data System (ADS)
Flower, M. A.; Ott, R. J.; Webb, S.; Leach, M. O.; Marsden, P. K.; Clack, R.; Khan, O.; Batty, V.; McCready, V. R.; Bateman, J. E.
1988-06-01
Two clinical trials of the prototype RAL multiwire proportional chamber (MWPC) positron camera were carried out prior to the development of a clinical system with large-area detectors. During the first clinical trial, the patient studies included skeletal imaging using 18F, imaging of brain glucose metabolism using 18F FDG, bone marrow imaging using 52Fe citrate and thyroid imaging with Na 124I. Longitudinal tomograms were produced from the limited-angle data acquisition from the static detectors. During the second clinical trial, transaxial, coronal and sagittal images were produced from the multiview data acquisition. A more detailed thyroid study was performed in which the volume of the functioning thyroid tissue was obtained from the 3D PET image and this volume was used in estimating the radiation dose achieved during radioiodine therapy of patients with thyrotoxicosis. Despite the small field of view of the prototype camera, and the use of smaller than usual amounts of activity administered, the PET images were in most cases comparable with, and in a few cases visually better than, the equivalent planar view using a state-of-the-art gamma camera with a large field of view and routine radiopharmaceuticals.
Geo-PET: A novel generic organ-pet for small animal organs and tissues
NASA Astrophysics Data System (ADS)
Sensoy, Levent
Reconstructed tomographic image resolution of small animal PET imaging systems is improving with advances in radiation detector development. However the trend towards higher resolution systems has come with an increase in price and system complexity. Recent developments in the area of solid-state photomultiplication devices like silicon photomultiplier arrays (SPMA) are creating opportunities for new high performance tools for PET scanner design. Imaging of excised small animal organs and tissues has been used as part of post-mortem studies in order to gain detailed, high-resolution anatomical information on sacrificed animals. However, this kind of ex-vivo specimen imaging has largely been limited to ultra-high resolution muCT. The inherent limitations to PET resolution have, to date, excluded PET imaging from these ex-vivo imaging studies. In this work, we leverage the diminishing physical size of current generation SPMA designs to create a very small, simple, and high-resolution prototype detector system targeting ex-vivo tomographic imaging of small animal organs and tissues. We investigate sensitivity, spatial resolution, and the reconstructed image quality of a prototype small animal PET scanner designed specifically for imaging of excised murine tissue and organs. We aim to demonstrate that a cost-effective silicon photomultiplier (SiPM) array based design with thin crystals (2 mm) to minimize depth of interaction errors might be able to achieve sub-millimeter resolution. We hypothesize that the substantial decrease in sensitivity associated with the thin crystals can be compensated for with increased solid angle detection, longer acquisitions, higher activity and wider acceptance energy windows (due to minimal scatter from excised organs). The constructed system has a functional field of view (FoV) of 40 mm diameter, which is adequate for most small animal specimen studies. We perform both analytical (3D-FBP) and iterative (ML-EM) methods in order to reconstruct tomographic images. Results demonstrate good agreement between the simulation and the prototype. Our detector system with pixelated crystals is able to separate small objects as close as 1.25 mm apart, whereas spatial resolution converges to the theoretical limit of 1.6 mm (half the size of the smallest detecting element), which is to comparable to the spatial resolution of the existing commercial small animal PET systems. Better system spatial resolution is achievable with new generation SiPM detector boards with 1 mm x 1 mm cell dimensions. We demonstrate through Monte Carlo simulations that it is possible to achieve sub-millimeter spatial image resolution (0.7 mm for our scanner) in complex objects using monolithic crystals and exploiting the light-sharing mechanism among the neighboring detector cells. Results also suggest that scanner (or object) rotation minimizes artifacts arising from poor angular sampling, which is even more significant in smaller PET designs as the gaps between the sensitive regions of the detector have a more exaggerated effect on the overall reconstructed image quality when the design is more compact. Sensitivity of the system, on the other hand, can be doubled by adding two additional detector heads resulting in a, fully closed, 4? geometry.
Jonkman-de Vries, J D; de Graaff-Teulen, M J; Henrar, R E; Kettenes-van den Bosch, J J; Bult, A; Beijnen, J H
1994-01-01
The aim of this study was to design a parenteral dosage form for the investigational cytotoxic drug carzelesin. A stable formulation in PET (Polyethylene glycol 400/absolute ethanol/Tween 80, 6:3:1, v/v/v) was developed. The prototype, containing 0.50 mg carzelesin in 2.0 ml PET formulation, was found to be the optimal formulation in terms of solubility, stability and dosage requirements in phase I clinical trials. Quality control of the formulation showed that the pharmaceutical preparation of carzelesin in PET is not negatively influenced by the manufacturing process. Shelf life studies demonstrated that the formulation is stable for at least 1 year, when stored at -30 degrees C in the dark. In addition, the stability of carzelesin in the PET formulation is discussed as a function of temperature, additives and after dilution in infusion fluids.
A versatile scalable PET processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman
2011-06-01
Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed tomore » accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.« less
NASA Astrophysics Data System (ADS)
Lee, Min Sun; Kim, Kyeong Yun; Ko, Guen Bae; Lee, Jae Sung
2017-05-01
In this study, we developed a proof-of-concept prototype PET system using a pair of depth-of-interaction (DOI) PET detectors based on the proposed DOI-encoding method and digital silicon photomultiplier (dSiPM). Our novel cost-effective DOI measurement method is based on a triangular-shaped reflector that requires only a single-layer pixelated crystal and single-ended signal readout. The DOI detector consisted of an 18 × 18 array of unpolished LYSO crystal (1.47 × 1.47 × 15 mm3) wrapped with triangular-shaped reflectors. The DOI information was encoded by depth-dependent light distribution tailored by the reflector geometry and DOI correction was performed using four-step depth calibration data and maximum-likelihood (ML) estimation. The detector pair and the object were placed on two motorized rotation stages to demonstrate 12-block ring PET geometry with 11.15 cm diameter. Spatial resolution was measured and phantom and animal imaging studies were performed to investigate imaging performance. All images were reconstructed with and without the DOI correction to examine the impact of our DOI measurement. The pair of dSiPM-based DOI PET detectors showed good physical performances respectively: 2.82 and 3.09 peak-to-valley ratios, 14.30% and 18.95% energy resolution, and 4.28 and 4.24 mm DOI resolution averaged over all crystals and all depths. A sub-millimeter spatial resolution was achieved at the center of the field of view (FOV). After applying ML-based DOI correction, maximum 36.92% improvement was achieved in the radial spatial resolution and a uniform resolution was observed within 5 cm of transverse PET FOV. We successfully acquired phantom and animal images with improved spatial resolution and contrast by using the DOI measurement. The proposed DOI-encoding method was successfully demonstrated in the system level and exhibited good performance, showing its feasibility for animal PET applications with high spatial resolution and sensitivity.
MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yiping
Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less
Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.
Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori
2018-05-01
The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Preliminary results of a prototype C-shaped PET designed for an in-beam PET system
NASA Astrophysics Data System (ADS)
Kim, Hyun-Il; Chung, Yong Hyun; Lee, Kisung; Kim, Kyeong Min; Kim, Yongkwon; Joung, Jinhun
2016-06-01
Positron emission tomography (PET) can be utilized in particle beam therapy to verify the dose distribution of the target volume as well as the accuracy of the treatment. We present an in-beam PET scanner that can be integrated into a particle beam therapy system. The proposed PET scanner consisted of 14 detector modules arranged in a C-shape to avoid blockage of the particle beam line by the detector modules. Each detector module was composed of a 9×9 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals optically coupled to four 29-mm-diameter PMTs using the photomultiplier-quadrant-sharing (PQS) technique. In this study, a Geant4 Application for Tomographic Emission (GATE) simulation study was conducted to design a C-shaped PET scanner and then experimental evaluation of the proposed design was performed. The spatial resolution and sensitivity were measured according to NEMA NU2-2007 standards and were 6.1 mm and 5.61 cps/kBq, respectively, which is in good agreement with our simulation, with an error rate of 12.0%. Taken together, our results demonstrate the feasibility of the proposed C-shaped in-beam PET system, which we expect will be useful for measuring dose distribution in particle therapy.
Nguyen, Nghi C; Vercher-Conejero, Jose L; Sattar, Abdus; Miller, Michael A; Maniawski, Piotr J; Jordan, David W; Muzic, Raymond F; Su, Kuan-Hao; O'Donnell, James K; Faulhaber, Peter F
2015-09-01
We report our initial clinical experience for image quality and diagnostic performance of a digital PET prototype scanner with time-of-flight (DigitalTF), compared with an analog PET scanner with time-of-flight (GeminiTF PET/CT). Twenty-one oncologic patients, mean age 58 y, first underwent clinical (18)F-FDG PET/CT on the GeminiTF. The scanner table was then withdrawn while the patient remained on the table, and the DigitalTF was inserted between the GeminiTF PET and CT scanner. The patients were scanned for a second time using the same PET field of view with CT from the GeminiTF for attenuation correction. Two interpreters reviewed the 2 sets of PET/CT images for overall image quality, lesion conspicuity, and sharpness. They counted the number of suggestive (18)F-FDG-avid lesions and provided the TNM staging for the 5 patients referred for initial staging. Standardized uptake values (SUVs) and SUV gradients as a measure of lesion sharpness were obtained. The DigitalTF showed better image quality than the GeminiTF. In a side-by-side comparison using a 5-point scale, lesion conspicuity (4.3 ± 0.6), lesion sharpness (4.3 ± 0.6), and diagnostic confidence (3.4 ± 0.7) were better with DigitalTF than with GeminiTF (P < 0.01). In 52 representative lesions, the lesion maximum SUV was 36% higher with DigitalTF than with GeminiTF, lesion-to-blood-pool SUV ratio was 59% higher, and SUV gradient was 51% higher, with good correlation between the 2 scanners. Lesions less than 1.5 cm showed a greater increase in SUV from GeminiTF to DigitalTF than those lesions 1.5 cm or greater. In 5 of 21 patients, DigitalTF showed an additional 8 suggestive lesions that were not seen using GeminiTF. In the 15 restaging patients, the true-negative rate was 100% and true-positive rate was 78% for both scanners. In the 5 patients for initial staging, DigitalTF led to upstaging in 2 patients and showed the same staging in the other 3 patients, compared with GeminiTF. DigitalTF provides better image quality, diagnostic confidence, and accuracy than GeminiTF. DigitalTF may be the most beneficial in detecting small tumor lesions and disease staging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A novel stereotactic frame for real PET-guided biopsies: A preclinical proof-of-concept.
Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I
2017-09-01
To design, build and test a stereotactic device that allows PET image-guided biopsies to be performed. An initial prototype consisting of four main pieces, one of which contains radioactive markers to make it visible in the PET images, was built using a 3D printer. Once the device is mounted, a spherical coordinate system is built with the entrance needle point in the skin as the origin of coordinates. Two in-house software programs, namely getCoord.ijm, which obtains the spherical coordinates of the tumour tissue to be biopsied, and getNeedle.ijm, which virtualizes the inner needle tip once the puncture has taken place, were written. This prototype was tested on an FDG-doped phantom to characterize both the accuracy of the system and the procedure time. Up to 11 complete biopsy procedures were conducted. The mean total procedure time was less than 20min, which is less than the procedure time of conventional standard CT-guided biopsies. The overall accuracy of the system was found to be 5.0±1.3mm, which outperforms the criterion used in routine clinical practice when targeting tumours with a diameter of 10mm. A stereotactic frame to conduct real PET image-guided biopsies has been designed and built. A proof-of-concept was performed to characterize the system. The procedure time and accuracy of the system were found to meet the current needs of physicians performing biopsies. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Development of a MPPC-based prototype gantry for future MRI-PET scanners
NASA Astrophysics Data System (ADS)
Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.
2014-12-01
We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.
TU-H-206-02: Novel Linearly-Filled Derenzo PET Phantom Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, S; Cox, B; Valdovinos, H
Purpose: To design a linearly-filled Derenzo positron emission tomography (PET) phantom, eliminating the extraneous radioisotope volumes in a conventional reservoir-type design. This activity reduction combined with the elimination of bubbles in smaller phantom channels would significantly reduce personnel dose, radioisotope cost, and would improve image quality by reducing out-of-slice activity scatter. Methods: A computer-aided design (CAD) was created of a modular Derenzo phantom consisting of three phantom layers with gaskets between the layers. The central piece contains the active pattern volume and channels connecting adjacent rods in a serpentine pattern. The two end-pieces contained an inlet and an outlet formore » filling purposes. Phantom prototypes were 3D printed on a Viper Si2 stereolithography machine. The two gaskets were fabricated from silicon sheets using a PLS 6.75 laser cutter. Phantoms were held together by pass-through glass-filled nylon bolts and nuts. Phantoms were filled with {sup 52}Mn, {sup 64}Cu, {sup 74}Br, and {sup 124}I for testing, and were imaged on a Siemens Inveon MicroPET scanner. Results: Four phantom prototypes were constructed using male Leur Lock fittings for inlet/outlet ports. 3D printed layers were sanded to ensure proper coupling to the silicon gaskets. The filling volume for each prototype was approximately 2.4 mL. The filling process was found to be rapid, leak-tight, and with minimal back-pressure. PET images were reconstructed by OSEM3D, and axial slices along the phantom pattern length were averaged to provide final images. Image distortion was isotope dependent with {sup 52}Mn and {sup 64}Cu having the least distortion and {sup 124}I having the most distortion. Conclusion: These results indicate that the linearlyfilled Derenzo design improves on conventional reservoir-type designs by eliminating potential bubbles in small channels and by reducing activity level, radioisotope volume, radioisotope cost, personnel dose, filling time, and out-of-slice activity scatter The method described in this abstract has been filed as a patent application to the US Patent and Trade Office by the Wisconsin Alumni Research Foundation (WARF).« less
Wang, Feng-Xia; Lin, Jian; Gu, Wei-Bing; Liu, Yong-Qiang; Wu, Hao-Di; Pan, Ge-Bo
2013-03-25
Nanowire networks of zinc octaethylporphyrin (ZnOEP) were printed using an aerosol-jet printer on a poly(ethylene terephthalate) (PET) flexible substrate. The prototype photodetector based on the as-printed network exhibited high photosensitivity, fast photoresponse, and excellent mechanical stability.
Efficient system modeling for a small animal PET scanner with tapered DOI detectors.
Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi
2016-01-21
A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.
A PET detector prototype based on digital SiPMs and GAGG scintillators.
Schneider, Florian R; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I
2015-02-21
Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm(2), comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm(-3), 520 nm peak emission, 46 000 photons MeV(-1), 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm(3) were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm(3)) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with (18)F was used for tomographic tests.
A novel semi-robotized device for high-precision 18F-FDG-guided breast cancer biopsy.
Hellingman, D; Teixeira, S C; Donswijk, M L; Rijkhorst, E J; Moliner, L; Alamo, J; Loo, C E; Valdés Olmos, R A; Stokkel, M P M
To assess the 3D geometric sampling accuracy of a new PET-guided system for breast cancer biopsy (BCB) from areas within the tumour with high 18 F-FDG uptake. In the context of the European Union project MammoCare, a prototype semi-robotic stereotactic prototype BCB-device was incorporated into a dedicated high resolution PET-detector for breast imaging. The system consists of 2 stacked rings, each containing 12 plane detectors, forming a dodecagon with a 186mm aperture for 3D reconstruction (1mm 3 voxel). A vacuum-assisted biopsy needle attached to a robot-controlled arm was used. To test the accuracy of needle placement, the needle tip was labelled with 18 F-FDG and positioned at 78 target coordinates distributed over a 35mm×24mm×28mm volume within the PET-detector field-of-view. At each position images were acquired from which the needle positioning accuracy was calculated. Additionally, phantom-based biopsy proofs, as well as MammoCare images of 5 breast cancer patients, were evaluated for the 3D automated locating of 18 F-FDG uptake areas within the tumour. Needle positioning tests revealed an average accuracy of 0.5mm (range 0-1mm), 0.6mm (range 0-2mm), and 0.4mm (range 0-2mm) for the x/y/z-axes, respectively. Furthermore, the MammoCare system was able to visualize and locate small (<10mm) regions with high 18 F-FDG uptake within the tumour suitable for PET-guided biopsy after being located by the 3D automated application. Accuracy testing demonstrated high-precision of this semi-automatic 3D PET-guided system for breast cancer core needle biopsy. Its clinical feasibility evaluation in breast cancer patients scheduled for neo-adjuvant chemotherapy will follow. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
A PET detector prototype based on digital SiPMs and GAGG scintillators
NASA Astrophysics Data System (ADS)
Schneider, Florian R.; Shimazoe, Kenji; Somlai-Schweiger, Ian; Ziegler, Sibylle I.
2015-02-01
Silicon Photomultipliers (SiPM) are interesting light sensors for Positron Emission Tomography (PET). The detector signal of analog SiPMs is the total charge of all fired cells. Energy and time information have to be determined with dedicated readout electronics. Philips Digital Photon Counting has developed a SiPM with added electronics on cell level delivering a digital value of the time stamp and number of fired cells. These so called Digital Photon Counters (DPC) are fully digital devices. In this study, the feasibility of using DPCs in combination with LYSO (Lutetium Yttrium Oxyorthosilicate) and GAGG (Gadolinium Aluminum Gallium Garnet) scintillators for PET is tested. Each DPC module has 64 channels with 3.2 × 3.8775 mm2, comprising 3200 cells each. GAGG is a recently developed scintillator (Zeff = 54, 6.63 g cm-3, 520 nm peak emission, 46 000 photons MeV-1, 88 ns (92%) and 230 ns (8%) decay times, non-hygroscopic, chemically and mechanically stable). Individual crystals of 2 × 2 × 6 mm3 were coupled onto each DPC pixel. LYSO coupled to the DPC results in a coincidence time resolution (CTR) of 171 ps FWHM and an energy resolution of 12.6% FWHM at 511 keV. Using GAGG, coincidence timing is 310 ps FWHM and energy resolution is 8.5% FWHM. A PET detector prototype with 2 DPCs equipped with a GAGG array matching the pixel size (3.2 × 3.8775 × 8 mm3) was assembled. To emulate a ring of 10 modules, objects are rotated in the field of view. CTR of the PET is 619 ps and energy resolution is 9.2% FWHM. The iterative MLEM reconstruction is based on system matrices calculated with an analytical detector response function model. A phantom with rods of different diameters filled with 18F was used for tomographic tests.
Development and testing of a double length pets for the CLIC experimental area
NASA Astrophysics Data System (ADS)
Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.
2014-05-01
CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.
Martinelli; Townsend; Meltzer; Villemagne
2000-07-01
Purpose: At the University Of Pittsburgh Medical Center, over 100 oncology studies have been performed using a combined PET/CT scanner. The scanner is a prototype, which combines clinical PET and clinical CT imaging in a single unit. The sensitivity achieved using three-dimensional PET imaging as well as the use of the CT for attenuation correction and image fusion make the device ideal for clinical oncology. Clinical indications imaged on the PET/CT scanner include, but are not limited to, tumor staging, solitary pulmonary nodule evaluation, and evaluation of tumor reoccurrence in melanoma, lymphoma, colorectal cancer, lung cancer, pancreatic cancer, head and neck cancer, and renal cancer.Methods: For all studies, seven millicuries of F(18)-fluorodeoxyglucose is injected and a forty-five minute uptake period is allowed prior to positioning the patient in the scanner. A helical CT scan is acquired over the region, or regions of interest followed by a multi-bed whole body PET scan for the same axial extent. The CT scan is used to correct the PET data for attenuation. The entire imaging session lasts 1-1.5 hours depending on the number of beds acquired, and is generally well tolerated by the patient.Results and Conclusion: Based on our experience in over 100 studies, combined PET/CT imaging offers significant advantages, including more accurate localization of focal uptake, distinction of pathology from normal physiological uptake, and improvements in evaluating therapy. These benefits will be illustrated with a number of representative, fully documented studies.
PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity
NASA Astrophysics Data System (ADS)
Lerche, Christoph W.; Kaltsas, Theodoris; Caldeira, Liliana; Scheins, Jürgen; Rota Kops, Elena; Tellmann, Lutz; Pietrzyk, Uwe; Herzog, Hans; Shah, N. Jon
2018-02-01
One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR + PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.
Design of an Image Fusion Phantom for a Small Animal microPET/CT Scanner Prototype
NASA Astrophysics Data System (ADS)
Nava-García, Dante; Alva-Sánchez, Héctor; Murrieta-Rodríguez, Tirso; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes
2010-12-01
Two separate microtomography systems recently developed at Instituto de Física, UNAM, produce anatomical (microCT) and physiological images (microPET) of small animals. In this work, the development and initial tests of an image fusion method based on fiducial markers for image registration between the two modalities are presented. A modular Helix/Line-Sources phantom was designed and constructed; this phantom contains fiducial markers that can be visualized in both imaging systems. The registration was carried out by solving the rigid body alignment problem of Procrustes to obtain rotation and translation matrices required to align the two sets of images. The microCT/microPET image fusion of the Helix/Line-Sources phantom shows excellent visual coincidence between different structures, showing a calculated target-registration-error of 0.32 mm.
Sensitivity recovery for the AX-PET prototype using inter-crystal scattering events
NASA Astrophysics Data System (ADS)
Gillam, John E.; Solevi, Paola; Oliver, Josep F.; Casella, Chiara; Heller, Matthieu; Joram, Christian; Rafecas, Magdalena
2014-08-01
The development of novel detection devices and systems such as the AX-positron emission tomography (PET) demonstrator often introduce or increase the measurement of atypical coincidence events such as inter-crystal scattering (ICS). In more standard systems, ICS events often go undetected and the small measured fraction may be ignored. As the measured quantity of such events in the data increases, so too does the importance of considering them during image reconstruction. Generally, treatment of ICS events will attempt to determine which of the possible candidate lines of response (LoRs) correctly determine the annihilation photon trajectory. However, methods of assessment often have low success rates or are computationally demanding. In this investigation alternative approaches are considered. Experimental data was taken using the AX-PET prototype and a NEMA phantom. Three methods of ICS treatment were assessed—each of which considered all possible candidate LoRs during image reconstruction. Maximum likelihood expectation maximization was used in conjunction with both standard (line-like) and novel (V-like in this investigation) detection responses modeled within the system matrix. The investigation assumed that no information other than interaction locations was available to distinguish between candidates, yet the methods assessed all provided means by which such information could be included. In all cases it was shown that the signal to noise ratio is increased using ICS events. However, only one method, which used full modeling of the ICS response in the system matrix—the V-like model—provided enhancement in all figures of merit assessed in this investigation. Finally, the optimal method of ICS incorporation was demonstrated using data from two small animals measured using the AX-PET demonstrator.
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S
2015-05-07
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
NASA Astrophysics Data System (ADS)
Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.
2015-05-01
The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boellaard, Ronald, E-mail: r.boellaard@vumc.nl; European Association of Nuclear Medicine Research Ltd., Vienna 1060; European Association of Nuclear Medicine Physics Committee, Vienna 1060
2015-10-15
Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5more » min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for attenuation correction.« less
Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Aarsvold, John N.; Raghunath, Nivedita; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.; Votaw, John R.
2012-01-01
Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [11C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET. PMID:23039679
Paulus, Daniel H; Oehmigen, Mark; Grüneisen, Johannes; Umutlu, Lale; Quick, Harald H
2016-05-07
Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of -11.8% in the top part of the phantom was observable, which was reduced to -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of -10.0% and -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.
A Submillimeter Resolution PET Prototype Evaluated With an 18F Inkjet Printed Phantom
NASA Astrophysics Data System (ADS)
Schneider, Florian R.; Hohberg, Melanie; Mann, Alexander B.; Paul, Stephan; Ziegler, Sibylle I.
2015-10-01
This work presents a submillimeter resolution PET (Positron Emission Tomography) scanner prototype based on SiPM/MPPC arrays (Silicon Photomultiplier/Multi Pixel Photon Counter). Onto each active area a 1 ×1 ×20 mm3 LYSO (Lutetium-Yttrium-Oxyorthosilicate) scintillator crystal is coupled one-to-one. Two detector modules facing each other in a distance of 10.0 cm have been set up with in total 64 channels that are digitized by SADCs (Sampling Analog to Digital Converters) with 80 MHz, 10 bit resolution and FPGA (Field Programmable Gate Array) based extraction of energy and time information. Since standard phantoms are not sufficient for testing submillimeter resolution at which positron range is an issue, a 18F inkjet printed phantom has been used to explore the limit in spatial resolution. The phantom could be successfully reconstructed with an iterative MLEM (Maximum Likelihood Expectation Maximization) and an analytically calculated system matrix based on the DRF (Detector Response Function) model. The system yields a coincidence time resolution of 4.8 ns FWHM, an energy resolution of 20%-30% FWHM and a spatial resolution of 0.8 mm.
The endo-rectal probe prototype for the TOPEM project
NASA Astrophysics Data System (ADS)
Musico, Paolo; TOPEM Collaboration
2016-07-01
The TOPEM project was funded by INFN with the aim of studying the design of a TOF-PET system dedicated to prostate imaging. During last year a big effort was put into building the prototype of the endo-rectal probe from all point of view: mechanical, thermal, electrical. A dedicated integrated circuit was adopted to have the minimum dimensions: the TOFPET ASIC. The system is composed by a LYSO pixellated crystal which is seen by a 128 SiPM matrix on both surfaces: this permits Depth Of Interaction (DOI) measurement. The 4 needed ASICs are handled by a FPGA board which transmits the acquired data over an UDP connection. The external container was made using 3-D printing technology: internal channels on the external surface permit the flowing of controlled temperature (≈35 °C) water. Electronic components power is dissipated using an internal air flow kept at lower temperature (≈20 °C). The probe is MR compatible: a dedicated small antenna can be accommodated in the container. This will permit simultaneous imaging in MRI and PET systems.
Basic Performance Test of a Prototype PET Scanner Using CdTe Semiconductor Detectors
NASA Astrophysics Data System (ADS)
Ueno, Y.; Morimoto, Y.; Tsuchiya, K.; Yanagita, N.; Kojima, S.; Ishitsu, T.; Kitaguchi, H.; Kubo, N.; Zhao, S.; Tamaki, N.; Amemiya, K.
2009-02-01
A prototype positron emission tomography (PET) scanner using CdTe semiconductor detectors was developed, and its initial evaluation was conducted. The scanner was configured to form a single detector ring with six separated detector units, each having 96 detectors arranged in three detector layers. The field of view (FOV) size was 82 mm in diameter. Basic physical performance indicators of the scanner were measured through phantom studies and confirmed by rat imaging. The system-averaged energy resolution and timing resolution were 5.4% and 6.0 ns (each in FWHM) respectively. Spatial resolution measured at FOV center was 2.6 mm FWHM. Scatter fraction was measured and calculated in a National Electrical Manufacturers Association (NEMA)-fashioned manner using a 3-mm diameter hot capillary in a water-filled 80-mm diameter acrylic cylinder. The calculated result was 3.6%. Effect of depth of interaction (DOI) measurement was demonstrated by comparing hot-rod phantom images reconstructed with and without DOI information. Finally, images of a rat myocardium and an implanted tumor were visually assessed, and the imaging performance was confirmed.
PET/CT scanners: a hardware approach to image fusion.
Townsend, David W; Beyer, Thomas; Blodgett, Todd M
2003-07-01
New technology that combines positron tomography with x-ray computed tomography (PET/CT) is available from all major vendors of PET imaging equipment: CTI, Siemens, GE, Philips. Although not all vendors have made the same design choices as those described in this review all have in common that their high performance design places a commercial CT scanner in tandem with a commercial PET scanner. The level of physical integration is actually less than that of the original prototype design where the CT and PET components were mounted on the same rotating support. There will undoubtedly be a demand for PET/CT technology with a greater level of integration, and at a reduced cost. This may be achieved through the design of a scanner specifically for combined anatomical and functional imaging, rather than a design combining separate CT and PET scanners, as in the current approaches. By avoiding the duplication of data acquisition and image reconstruction functions, for example, a more integrated design should also allow cost savings over current commercial PET/CT scanners. The goal is then to design and build a device specifically for imaging the function and anatomy of cancer in the most optimal and effective way, without conceptualizing it as combined PET and CT. The development of devices specifically for imaging a particular disease (eg, cancer) differs from the conventional approach of, for example, an all-purpose anatomical imaging device such as a CT scanner. This new concept targets more of a disease management approach rather than the usual division into the medical specialties of radiology (anatomical imaging) and nuclear medicine (functional imaging). Copyright 2003 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pani, R.; Gonzalez, A. J.; Bettiol, M.; Fabbri, A.; Cinti, M. N.; Preziosi, E.; Borrazzo, C.; Conde, P.; Pellegrini, R.; Di Castro, E.; Majewski, S.
2015-06-01
The proposal of Mindview European Project concerns with the development of a very high resolution and high efficiency brain dedicated PET scanner simultaneously working with a Magnetic Resonance scanner, that expects to visualize neurotransmitter pathways and their disruptions in the quest to better diagnose schizophrenia. On behalf of this project, we propose a low cost PET module for the first prototype, based on monolithic crystals, suitable to be integrated with a head Radio Frequency (RF) coil. The aim of the suggested module is to achieve high performances in terms of efficiency, planar spatial resolution (expected about 1 mm) and discrimination of gamma Depth Of Interaction (DOI) in order to reduce the parallax error. Our preliminary results are very promising: a DOI resolution of about 3 mm, a spatial resolution ranging from about 1 to 1.5 mm and a good position linearity.
Mechanical Stability of Flexible Graphene-Based Displays.
Anagnostopoulos, George; Pappas, Panagiotis-Nektarios; Li, Zheling; Kinloch, Ian A; Young, Robert J; Novoselov, Kostya S; Lu, Ching Yu; Pugno, Nicola; Parthenios, John; Galiotis, Costas; Papagelis, Konstantinos
2016-08-31
The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the "island-like" microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene "islands" but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of "finger" contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed.
Mechanical Stability of Flexible Graphene-Based Displays
2016-01-01
The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the “island-like” microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene “islands” but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of “finger” contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed. PMID:27494211
A Self-Organizing Interaction and Synchronization Method between a Wearable Device and Mobile Robot
Kim, Min Su; Lee, Jae Geun; Kang, Soon Ju
2016-01-01
In the near future, we can expect to see robots naturally following or going ahead of humans, similar to pet behavior. We call this type of robots “Pet-Bot”. To implement this function in a robot, in this paper we introduce a self-organizing interaction and synchronization method between wearable devices and Pet-Bots. First, the Pet-Bot opportunistically identifies its owner without any human intervention, which means that the robot self-identifies the owner’s approach on its own. Second, Pet-Bot’s activity is synchronized with the owner’s behavior. Lastly, the robot frequently encounters uncertain situations (e.g., when the robot goes ahead of the owner but meets a situation where it cannot make a decision, or the owner wants to stop the Pet-Bot synchronization mode to relax). In this case, we have adopted a gesture recognition function that uses a 3-D accelerometer in the wearable device. In order to achieve the interaction and synchronization in real-time, we use two wireless communication protocols: 125 kHz low-frequency (LF) and 2.4 GHz Bluetooth low energy (BLE). We conducted experiments using a prototype Pet-Bot and wearable devices to verify their motion recognition of and synchronization with humans in real-time. The results showed a guaranteed level of accuracy of at least 94%. A trajectory test was also performed to demonstrate the robot’s control performance when following or leading a human in real-time. PMID:27338384
A Self-Organizing Interaction and Synchronization Method between a Wearable Device and Mobile Robot.
Kim, Min Su; Lee, Jae Geun; Kang, Soon Ju
2016-06-08
In the near future, we can expect to see robots naturally following or going ahead of humans, similar to pet behavior. We call this type of robots "Pet-Bot". To implement this function in a robot, in this paper we introduce a self-organizing interaction and synchronization method between wearable devices and Pet-Bots. First, the Pet-Bot opportunistically identifies its owner without any human intervention, which means that the robot self-identifies the owner's approach on its own. Second, Pet-Bot's activity is synchronized with the owner's behavior. Lastly, the robot frequently encounters uncertain situations (e.g., when the robot goes ahead of the owner but meets a situation where it cannot make a decision, or the owner wants to stop the Pet-Bot synchronization mode to relax). In this case, we have adopted a gesture recognition function that uses a 3-D accelerometer in the wearable device. In order to achieve the interaction and synchronization in real-time, we use two wireless communication protocols: 125 kHz low-frequency (LF) and 2.4 GHz Bluetooth low energy (BLE). We conducted experiments using a prototype Pet-Bot and wearable devices to verify their motion recognition of and synchronization with humans in real-time. The results showed a guaranteed level of accuracy of at least 94%. A trajectory test was also performed to demonstrate the robot's control performance when following or leading a human in real-time.
The MiniPET: a didactic PET system
NASA Astrophysics Data System (ADS)
Pedro, R.; Silva, J.; Gurriana, L.; Silva, J. M.; Maio, A.; Soares Augusto, J.
2013-03-01
The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius phi=51 mm), up to a geometry with 70 detectors per ring (phi=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137Cs radioactive source and by photons resulting of the annihilation of positrons from a 22Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.
Development of a simultaneous optical/PET imaging system for awake mice
NASA Astrophysics Data System (ADS)
Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga
2016-09-01
Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.
Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project
NASA Astrophysics Data System (ADS)
Frisch, Benjamin
2013-12-01
The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).
A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging.
Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S; Farrell, Richard; Qi, Jinyi; Cherry, Simon R
2016-07-01
We developed a prototype small-animal PET scanner based on depth-encoding detectors using dual-ended readout of small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. The scanner consists of 16 tapered dual-ended-readout detectors arranged in a 61-mm-diameter ring. The axial field of view (FOV) is 7 mm, and the transaxial FOV is 30 mm. The scintillator arrays consist of 14 × 14 lutetium oxyorthosilicate elements, with a crystal size of 0.43 × 0.43 mm at the front end and 0.80 × 0.43 mm at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8 × 8 mm and 13 × 8 mm position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear-instrumentation-module electronics and a custom-designed multiplexer are used for signal processing. The detector performance was measured, and all but the crystals at the very edge could be clearly resolved. The average intrinsic spatial resolution in the axial direction was 0.61 mm. A depth-of-interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at the center of the FOV was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a FOV that can accommodate the entire mouse brain was approximately 0.6 mm using a 3-dimensional maximum-likelihood expectation maximization reconstruction. Images of a hot-rod microphantom showed that rods with a diameter of as low as 0.5 mm could be resolved. The first in vivo studies were performed using (18)F-fluoride and confirmed that a 0.6-mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with (18)F-FDG were also performed. We developed a prototype PET scanner that can achieve a spatial resolution approaching the physical limits of a small-bore PET scanner set by positron range and detector interaction. We plan to add more detector rings to extend the axial FOV of the scanner and increase sensitivity. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A high resolution prototype small-animal PET scanner dedicated to mouse brain imaging
Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S.; Farrell, Richard; Qi, Jinyi; Cherry, Simon R.
2017-01-01
A prototype small-animal PET scanner was developed based on depth-encoding detectors using dual-ended readout of very small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. Methods The scanner consists of 16 tapered dual-ended readout detectors arranged in a ring of diameter 61 mm. The axial field of view is 7 mm and the transaxial field of view is 30 mm. The scintillator arrays consist of 14×14 lutetium oxyorthosilicate (LSO) elements, with a crystal size of 0.43×0.43 mm2 at the front end and 0.80×0.43 mm2 at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8×8 mm2 and a 13×8 mm2 position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear instrumentation module (NIM) electronics and a custom designed multiplexer are used for signal processing. Results The detector performance was measured and all except the very edge crystals could be clearly resolved. The average detector intrinsic spatial resolution in the axial direction was 0.61 mm. A depth of interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at center of the field of view was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a field of view that can accommodate the entire mouse brain was ~0.6 mm using a 3D Maximum Likelihood-Expectation Maximization (ML-EM) reconstruction algorithm. Images of a micro hot-rod phantom showed that rods with diameter down to 0.5 mm could be resolved. First in vivo studies were obtained using 18F-fluoride and confirmed that 0.6 mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with 18F-fluorodeoxyglucose were also acquired. Conclusion A prototype PET scanner achieving a spatial resolution approaching the physical limits for a small-bore PET scanner set by positron range and acolinearity was developed. Future plans are to add more detector rings to extend the axial field of view of the scanner and increase sensitivity. PMID:27013696
The TT-PET project: a thin TOF-PET scanner based on fast novel silicon pixel detectors
NASA Astrophysics Data System (ADS)
Bandi, Y.; Benoit, M.; Cadoux, F. R.; Forshaw, D. C.; Hänni, R.; Hayakawa, D.; Iacobucci, G.; Michal, S.; Miucci, A.; Paolozzi, L.; Ratib, O.; Ripiccini, E.; Tognina, C.; Valerio, P.; Weber, M.
2018-01-01
The TT-PET project aims at developing a compact Time-of-flight PET scanner with 30ps time resolution, capable of withstanding high magnetic fields and allowing for integration in a traditional MRI scanner, providing complimentary real-time PET images. The very high timing resolution of the TT-PET scanner is achieved thanks to a new generation of Silicon-Germanium (Si-Ge) amplifiers, which are embedded in monolithic pixel sensors. The scanner is composed of 16 detection towers as well as cooling blocks, arranged in a ring structure. The towers are composed of multiple ultra-thin pixel modules stacked on top of each other. Making it possible to perform depth of interaction measurements and maximize the spatial resolution along the line of flight of the two photons emitted within a patient. This will result in improved image quality, contrast, and uniformity while drastically reducing backgrounds within the scanner. Allowing for a reduction in the amount of radioactivity delivered to the patient. Due to an expected data rate of about 250 MB/s a custom readout system for high data throughput has been developed, which includes noise filtering and reduced data pressure. The realisation of a first scanner prototype for small animals is foreseen by 2019. A general overview of the scanner will be given including, technical details concerning the detection elements, mechanics, DAQ readout, simulation and results.
Effect of MRI Acoustic Noise on Cerebral FDG Uptake in Simultaneous MR-PET Imaging
Abolmaali, Nasreddin; Arabasz, Grae; Guimaraes, Alexander R.; Catana, Ciprian
2013-01-01
Integrated scanners capable of simultaneous PET and MRI data acquisition are now available for human use. Although the scanners’ manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the two modalities, the potential physiological inference has not been evaluated. In this work, we have studied the influence of the acoustic noise produced by the MR gradients on brain FDG uptake in the Siemens MR-BrainPET prototype. While particular attention was paid to the primary auditory cortex (PAC), a brain-wide analysis was also performed. Methods The effects of the MR on the PET count rate and image quantification were first investigated in phantoms. Next, ten healthy volunteers underwent two simultaneous FDG-PET/MR scans in the supine position with the FDG injection occurring inside the MR-BrainPET, alternating between a “quiet” (control) environment in which no MR sequences were run during the FDG uptake phase (the first 40 minutes after radiotracer administration) and a “noisy” (test) case in which MR sequences were run for the entire time. Cortical and subcortical regions of interest (ROIs) were derived from the high-resolution morphological MR data using FreeSurfer. The changes in FDG uptake in the FreeSurfer-derived ROIs between the two conditions were analyzed from parametric and static PET images, and on a voxel-by-voxel basis using SPM8 and FreeSurfer. Results Only minimal to no electromagnetic interference was observed for most of the MR sequences tested, with a maximum drop in count rate of 1.5% and a maximum change in the measured activity of 1.1% in the corresponding images. The ROI-based analysis showed statistically significant increases in the right PAC in both the parametric (9.13±4.73%) and static (4.18±2.87%) images. SPM8 analysis showed no statistically significant clusters in any images when a p<0.05 (corrected) was used; however, a p<0.001 (uncorrected) resolved bilateral statistically significant clusters of increased FDG uptake in the area of the PAC for the parametric image (left: 8.37±1.55%, right: 8.20±1.17%), but only unilateral increase in the static image (left: 8.68±3.89%). Conclusion Although the operation of the BrainPET prototype is virtually unaffected by the MR scanner, the acoustic noise produced by the MR gradients causes a focal increase in FDG uptake in the PAC, which could affect the interpretation of pathological (or brain-activation related) changes in FDG uptake in this region, if the expected effects are of comparable amplitude. PMID:23462677
Effect of MRI acoustic noise on cerebral fludeoxyglucose uptake in simultaneous MR-PET imaging.
Chonde, Daniel B; Abolmaali, Nasreddin; Arabasz, Grae; Guimaraes, Alexander R; Catana, Ciprian
2013-05-01
Integrated scanners capable of simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) data acquisition are now available for human use. Although the scanners' manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the 2 modalities, the potential physiological inference has not been evaluated. In this study, we have studied the influence of the acoustic noise produced by the magnetic resonance (MR) gradients on brain fludeoxyglucose (FDG) uptake in the Siemens MR-BrainPET prototype. Although particular attention was paid to the primary auditory cortex (PAC), a brain-wide analysis was also performed. The effects of the MR on the PET count rate and image quantification were first investigated in phantoms. Next, 10 healthy volunteers underwent 2 simultaneous FDG-PET/MR scans in the supine position with the FDG injection occurring inside the MR-BrainPET, alternating between a "quiet" (control) environment in which no MR sequences were run during the FDG uptake phase (the first 40 minutes after radiotracer administration) and a "noisy" (test) environment in which MR sequences were run for the entire time. Cortical and subcortical regions of interest were derived from the high-resolution morphological MR data using FreeSurfer. The changes in the FDG uptake in the FreeSurfer-derived regions of interest between the 2 conditions were analyzed from parametric and static PET images, and on a voxel-by-voxel basis using SPM8 and FreeSurfer. Only minimal to no electromagnetic interference was observed for most of the MR sequences tested, with a maximum drop in count rate of 1.5% and a maximum change in the measured activity of 1.1% in the corresponding images. The region of interest-based analysis showed statistically significant increases in the right PAC in both the parametric (9.13% [4.73%]) and static (4.18% [2.87%]) images. The SPM8 analysis showed no statistically significant clusters in any images when a P < 0.05 (corrected) was used; however, a P < 0.001 (uncorrected) resolved bilateral statistically significant clusters of increased FDG uptake in the area of the PAC for the parametric image (left, 8.37% [1.55%]; right, 8.20% [1.17%]) but only unilateral increase in the static image (left, 8.68% [3.89%]). Although the operation of the BrainPET prototype is virtually unaffected by the MR scanner, the acoustic noise produced by the MR gradients causes a focal increase in the FDG uptake in the PAC, which could affect the interpretation of pathological (or brain-activation-related) changes in the FDG uptake in this region if the expected effects are of comparable amplitude.
De Beenhouwer, Jan; Staelens, Steven; Vandenberghe, Stefaan; Verhaeghe, Jeroen; Van Holen, Roel; Rault, Erwann; Lemahieu, Ignace
2009-04-01
The GEANT4 application for tomographic emission (GATE) is one of the most detailed Monte Carlo simulation tools for SPECT and PET. It allows for realistic phantoms, complex decay schemes, and a large variety of detector geometries. However, only a fraction of the information in each particle history is available for postprocessing. In order to extend the analysis capabilities of GATE, a flexible framework was developed. This framework allows all detected events to be subdivided according to their type: In PET, true coincidences from others, and in SPECT, geometrically collimated photons from others. The framework of the authors can be applied to any isotope, phantom, and detector geometry available in GATE. It is designed to enhance the usability of GATE for the study of contamination and for the investigation of the properties of current and future prototype detectors. The authors apply the framework to a case study of Bexxar, first assuming labeling with 124I, then with 131I. It is shown that with 124I PET, results with an optimized window improve upon those with the standard window but achieve less than half of the ideal improvement. Nevertheless, 124I PET shows improved resolution compared to 131I SPECT with triple-energy-window scatter correction.
A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer
NASA Astrophysics Data System (ADS)
Garibaldi, F.; Beging, S.; Canese, R.; Carpinelli, G.; Clinthorne, N.; Colilli, S.; Cosentino, L.; Finocchiaro, P.; Giuliani, F.; Gricia, M.; Lucentini, M.; Majewski, S.; Monno, E.; Musico, P.; Santavenere, F.; Tödter, J.; Wegener, H.; Ziemons, K.
2017-09-01
Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast which are inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role in merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multiparametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics, a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5mm FWHM and efficiency of a factor 2 with respect to what was obtained with the conventional PET scanner. In our experimental studies, we have obtained a timing resolution of ˜ 320 ps FWHM and at the same time a Depth of Interaction (DOI) resolution of under 1mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolution.
MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.
Concept and design philosophy of a person-accompanying robot
NASA Astrophysics Data System (ADS)
Mizoguchi, Hiroshi; Shigehara, Takaomi; Goto, Yoshiyasu; Hidai, Ken-ichi; Mishima, Taketoshi
1999-01-01
This paper proposes a person accompanying robot as a novel human collaborative robot. The person accompanying robot is such legged mobile robot that is possible to follow the person utilizing its vision. towards future aging society, human collaboration and human support are required as novel applications of robots. Such human collaborative robots share the same space with humans. But conventional robots are isolated from humans and lack the capability to observe humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. To collaborate and support humans properly human collaborative robot must have capability to observe and recognize humans. Study on human observing function of robot is crucial to realize novel robot such as service and pet robot. The authors are currently implementing a prototype of the proposed accompanying robot.As a base for the human observing function of the prototype robot, we have realized face tracking utilizing skin color extraction and correlation based tracking. We also develop a method for the robot to pick up human voice clearly and remotely by utilizing microphone arrays. Results of these preliminary study suggest feasibility of the proposed robot.
MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner
Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory
2011-01-01
Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415
NASA Astrophysics Data System (ADS)
Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.
2016-07-01
Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.
A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Xi, A.G, Weisenberger, H. Dong, Brian Kross, S. Lee, J. McKisson, Carl Zorn
We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applyingmore » a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate {approx}1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.« less
NASA Astrophysics Data System (ADS)
Townsend, D. W.
1988-06-01
In 1982 the first prototype high density avalanche chamber (HIDAC) positron camera became operational in the Division of Nuclear Medicine of Geneva University Hospital. The camera consisted of dual 20 cm × 20 cm HIDAC detectors mounted on a rotating gantry. In 1984, these detectors were replaced by 30 cm × 30 cm detectors with improved performance and reliability. Since then, the larger detectors have undergone clinical evaluation. This article discusses certain aspects of the evaluation program and the conclusions that can be drawn from the results. The potential of the HIDAC camera for quantitative positron emission tomography (PET) is critically examined, and its performance compared with a state-of-the-art, commercial ring camera. Guidelines for the design of a future HIDAC camera are suggested.
Prototyping Energy Storage Components for Hybrid Power Source
2009-12-11
from suitable nanoporous ceramic ( anodized aluminum oxide – AAO ) and polymer (polycarbonate - PC, polyethylene terephtalate - PET) membranes . Metal...of NUC technology: a) sketch of structure, b) SEM image of membrane . The alumina membranes can be easily and inexpensively fabricated via anodization ...of aluminum foil. The pores are formed by self-assembly via pitting and reprecipation of metal oxide . Motivation The work is motivated by the
A flexible, small positron emission tomography prototype for resource-limited laboratories
NASA Astrophysics Data System (ADS)
Miranda-Menchaca, A.; Martínez-Dávalos, A.; Murrieta-Rodríguez, T.; Alva-Sánchez, H.; Rodríguez-Villafuerte, M.
2015-05-01
Modern small-animal PET scanners typically consist of a large number of detectors along with complex electronics to provide tomographic images for research in the preclinical sciences that use animal models. These systems can be expensive, especially for resource-limited educational and academic institutions in developing countries. In this work we show that a small-animal PET scanner can be built with a relatively reduced budget while, at the same time, achieving relatively high performance. The prototype consists of four detector modules each composed of LYSO pixelated crystal arrays (individual crystal elements of dimensions 1 × 1 × 10 mm3) coupled to position-sensitive photomultiplier tubes. Tomographic images are obtained by rotating the subject to complete enough projections for image reconstruction. Image quality was evaluated for different reconstruction algorithms including filtered back-projection and iterative reconstruction with maximum likelihood-expectation maximization and maximum a posteriori methods. The system matrix was computed both with geometric considerations and by Monte Carlo simulations. Prior to image reconstruction, Fourier data rebinning was used to increase the number of lines of response used. The system was evaluated for energy resolution at 511 keV (best 18.2%), system sensitivity (0.24%), spatial resolution (best 0.87 mm), scatter fraction (4.8%) and noise equivalent count-rate. The system can be scaled-up to include up to 8 detector modules, increasing detection efficiency, and its price may be reduced as newer solid state detectors become available replacing the traditional photomultiplier tubes. Prototypes like this may prove to be very valuable for educational, training, preclinical and other biological research purposes.
Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging
NASA Astrophysics Data System (ADS)
Gao, W.; Liu, H.; Gan, B.; Hu, Y.
2014-05-01
In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.
NASA Astrophysics Data System (ADS)
Fang, X. C.; Hu-Guo, Ch.; Ollivier-Henry, N.; Brasse, D.; Hu, Y.
2010-06-01
This paper represents the design of a low-noise, wide band multi-channel readout integrated circuit (IC) used as front end readout electronics of avalanche photo diodes (APD) dedicated to a small animal positron emission tomography (PET) system. The first ten-channel prototype chip (APD-Chip) of the analog parts has been designed and fabricated in a 0.35 μm CMOS process. Every channel of the APD_Chip includes a charge-sensitive preamplifier (CSA), a CR-(RC)2 shaper, and an analog buffer. In a channel, the CSA reads charge signals (10 bits dynamic range) from an APD array having 10 pF of capacitance per pixel. A linearized degenerated differential pair which ensures high linearity in all dynamical range is used as the high feedback resistor for preventing pile up of signals. The designed CSA has the capability of compensating automatically up to 200 nA leakage current from the detector. The CR-(RC)2 shaper filters and shapes the output signal of the CSA. An equivalent input noise charge obtained from test is 275 e -+ 10 e-/pF. In this paper the prototype is presented for both its theoretical analysis and its test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.
Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, thesemore » small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. Conclusions: The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.« less
Initial studies using the RatCAP conscious animal PET tomograph
NASA Astrophysics Data System (ADS)
Woody, C.; Vaska, P.; Schlyer, D.; Pratte, J.-F.; Junnarkar, S.; Park, S.-J.; Stoll, S.; Purschke, M.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; Lee, D.; Schiffer, W.; Dewey, S.; Neill, J.; Kandasamy, A.; O'Connor, P.; Radeka, V.; Fontaine, R.; Lecomte, R.
2007-02-01
The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4×8 array of 2.2×2.2×5 mm 3 LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of ˜14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using 18F-FDG and 11C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP.
Technical Note: Characterization of custom 3D printed multimodality imaging phantoms.
Bieniosek, Matthew F; Lee, Brian J; Levin, Craig S
2015-10-01
Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial "Micro Deluxe" phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom with sub-mm features. CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.
A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.
Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George
2017-01-01
To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and acquisition strategies.
Development of a prototype Open-close positron emission tomography system
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Okumura, Satoshi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Toshito, Toshiyuki; Komori, Masataka; Ogata, Yoshimune; Kato, Katsuhiko; Hatazawa, Jun
2015-08-01
We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of 18F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.
First Human Brain Imaging by the jPET-D4 Prototype With a Pre-Computed System Matrix
NASA Astrophysics Data System (ADS)
Yamaya, Taiga; Yoshida, Eiji; Obi, Takashi; Ito, Hiroshi; Yoshikawa, Kyosan; Murayama, Hideo
2008-10-01
The jPET-D4 is a novel brain PET scanner which aims to achieve not only high spatial resolution but also high scanner sensitivity by using 4-layer depth-of-interaction (DOI) information. The dimensions of a system matrix for the jPET-D4 are 3.3 billion (lines-of-response) times 5 million (image elements) when a standard field-of-view (FOV) of 25 cm diameter is sampled with a (1.5 mm)3 voxel . The size of the system matrix is estimated as 117 petabytes (PB) with the accuracy of 8 bytes per element. An on-the-fly calculation is usually used to deal with such a huge system matrix. However we cannot avoid extension of the calculation time when we improve the accuracy of system modeling. In this work, we implemented an alternative approach based on pre-calculation of the system matrix. A histogram-based 3D OS-EM algorithm was implemented on a desktop workstation with 32 GB memory installed. The 117 PB system matrix was compressed under the limited amount of computer memory by (1) eliminating zero elements, (2) applying the DOI compression (DOIC) method and (3) applying rotational symmetry and an axial shift property of the crystal arrangement. Spanning, which degrades axial resolution, was not applied. The system modeling and the DOIC method, which had been validated in 2D image reconstruction, were expanded into 3D implementation. In particular, a new system model including the DOIC transformation was introduced to suppress resolution loss caused by the DOIC method. Experimental results showed that the jPET-D4 has almost uniform spatial resolution of better than 3 mm over the FOV. Finally the first human brain images were obtained with the jPET-D4.
Asymmetric Data Acquisition System for an Endoscopic PET-US Detector
NASA Astrophysics Data System (ADS)
Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João
2016-02-01
According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.
Performance evaluation of neuro-PET using silicon photomultipliers
NASA Astrophysics Data System (ADS)
Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun
2016-05-01
Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350-650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.
DoPET: an in-treatment monitoring system for proton therapy at 62 MeV
NASA Astrophysics Data System (ADS)
Rosso, V.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cirrone, G. A. P.; Collini, F.; Cuttone, G.; Del Guerra, A.; Milluzzo, G.; Morrocchi, M.; Raffaele, L.; Romano, F.; Sportelli, G.; Zaccaro, E.
2016-12-01
Proton beam radiotherapy is highly effective in treating cancer thanks to its conformal dose deposition. This superior capability in dose deposition has led to a massive growth of the treated patients around the world, raising the need of treatment monitoring systems. An in-treatment PET system, DoPET, was constructed and tested at CATANA beam-line, LNS-INFN in Catania, where 62 MeV protons are used to treat ocular melanoma. The PET technique profits from the beta+ emitters generated by the proton beam in the irradiated body, mainly 15-O and 11-C. The current DoPET prototype consists of two planar 15 cm × 15 cm LYSO-based detector heads. With respect to the previous versions, the system was enlarged and the DAQ up-graded during the years so now also anthropomorphic phantoms, can be fitted within the field of view of the system. To demonstrate the capability of DoPET to detect changes in the delivered treatment plan with respect to the planned one, various treatment plans were used delivering a standard 15 Gy fraction to an anthropomorphic phantom. Data were acquired during and after the treatment delivery up to 10 minutes. When the in-treatment phase was long enough (more than 1 minute), the corresponding activated volume was visible just after the treatment delivery, even if in presence of a noisy background. The after-treatment data, acquired for about 9 minutes, were segmented finding that few minutes are enough to be able to detect changes. These experiments will be presented together with the studies performed with PMMA phantoms where the DoPET response was characterized in terms of different dose rates and in presence of range shifters: the system response is linear up to 16.9 Gy/min and has the ability to see a 1 millimeter range shifter.
Concept of an upright wearable positron emission tomography imager in humans.
Bauer, Christopher E; Brefczynski-Lewis, Julie; Marano, Gary; Mandich, Mary-Beth; Stolin, Alexander; Martone, Peter; Lewis, James W; Jaliparthi, Gangadhar; Raylman, Raymond R; Majewski, Stan
2016-09-01
Positron Emission Tomography (PET) is traditionally used to image patients in restrictive positions, with few devices allowing for upright, brain-dedicated imaging. Our team has explored the concept of wearable PET imagers which could provide functional brain imaging of freely moving subjects. To test feasibility and determine future considerations for development, we built a rudimentary proof-of-concept prototype (Helmet_PET) and conducted tests in phantoms and four human volunteers. Twelve Silicon Photomultiplier-based detectors were assembled in a ring with exterior weight support and an interior mechanism that could be adjustably fitted to the head. We conducted brain phantom tests as well as scanned four patients scheduled for diagnostic F(18-) FDG PET/CT imaging. For human subjects the imager was angled such that field of view included basal ganglia and visual cortex to test for typical resting-state pattern. Imaging in two subjects was performed ~4 hr after PET/CT imaging to simulate lower injected F(18-) FDG dose by taking advantage of the natural radioactive decay of the tracer (F(18) half-life of 110 min), with an estimated imaging dosage of 25% of the standard. We found that imaging with a simple lightweight ring of detectors was feasible using a fraction of the standard radioligand dose. Activity levels in the human participants were quantitatively similar to standard PET in a set of anatomical ROIs. Typical resting-state brain pattern activation was demonstrated even in a 1 min scan of active head rotation. To our knowledge, this is the first demonstration of imaging a human subject with a novel wearable PET imager that moves with robust head movements. We discuss potential research and clinical applications that will drive the design of a fully functional device. Designs will need to consider trade-offs between a low weight device with high mobility and a heavier device with greater sensitivity and larger field of view.
Biopsy system guided by positron emission tomography in real-time
NASA Astrophysics Data System (ADS)
Moliner, L.; Álamo, J.; Hellingman, D.; Peris, J. L.; Gomez, J.; Tattersall, P.; Carrilero, V.; Orero, A.; Correcher, C.; Benlloch, J. M.
2016-03-01
In this work we present the MAMMOCARE prototype, a biopsy guided system based on PET. The system is composed by an examination table where the patient is situated in prone position, a PET detector and a biopsy device. The PET detector is composed by two rings. These rings can be separated mechanically in order to allow the needle insertion. The first acquisition is performed with the closed ring configuration in order to obtain a high quality image to locate the lesion. Then, the software calculates the optimum path for the biopsy and moves the biopsy and PET systems to the desired position. At this point, two compression pallets are used to hold the breast. Then, the PET system opens and the biopsy procedure starts. The images are obtained at several steps to ensure the correct location of the needle during the procedure. The performance of the system is evaluated measuring the spatial resolution and sensitivity according the NEMA standard. The uniformity of the reconstructed images is also estimated. The radial resolution is 1.62mm in the center of the FOV and 3.45mm at 50mm off the center in the radial direction using the closed configuration. In the open configuration the resolution reaches 1.85mm at center and 3.65mm at 50mm. The sensitivity using an energy window of 250keV-750keV is 3.6% for the closed configuration and 2.5% for the open configuration. The uniformity measured in the center of the FOV is 14% and 18% for the closed and open configurations respectively.
Real-Time Imaging System for the OpenPET
NASA Astrophysics Data System (ADS)
Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga
2012-02-01
The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.
NASA Astrophysics Data System (ADS)
Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.
1999-06-01
Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.
Wu, Haoyi; Chiang, Sum Wai; Lin, Wei; Yang, Cheng; Li, Zhuo; Liu, Jingping; Cui, Xiaoya; Kang, Feiyu; Wong, Ching Ping
2014-01-01
Direct printing nanoparticle-based conductive inks onto paper substrates has encountered difficulties e.g. the nanoparticles are prone to penetrate into the pores of the paper and become partially segmented, and the necessary low-temperature-sintering process is harmful to the dimension-stability of paper. Here we prototyped the paper-based circuit substrate in combination with printed thermoplastic electrically conductive adhesives (ECA), which takes the advantage of the capillarity of paper and thus both the conductivity and mechanical robustness of the printed circuitsweredrastically improved without sintering process. For instance, the electrical resistivity of the ECA specimen on a pulp paper (6 × 10−5Ω·cm, with 50 wt% loading of Ag) was only 14% of that on PET film than that on PET film. This improvement has been found directly related to the sizing degree of paper, in agreement with the effective medium approximation simulation results in this work. The thermoplastic nature also enables excellent mechanical strength of the printed ECA to resist repeated folding. Considering the generality of the process and the wide acceptance of ECA technique in the modern electronic packages, this method may find vast applications in e.g. circuit boards, capacitive touch pads, and radio frequency identification antennas, which have been prototyped in the manuscript. PMID:25182052
NASA Astrophysics Data System (ADS)
Gomez-Cadenas, J. J.; Benlloch-Rodríguez, J. M.; Ferrario, P.
2017-08-01
In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending on the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes.
Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping
2011-01-01
A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761
Performance studies towards a TOF-PET sensor using Compton scattering at plastic scintillators
NASA Astrophysics Data System (ADS)
Kuramoto, M.; Nakamori, T.; Gunji, S.; Kamada, K.; Shoji, Y.; Yoshikawa, A.; Aoki, T.
2018-01-01
We have developed a sensor head for a time-of-flight (TOF) PET scanner using plastic scintillators that have a very fast timing property. Given the very small cross section of photoelectric absorption in plastic scintillators at 511 keV, we use Compton scattering in order to compensate for detection efficiency. The detector will consist of two layers of scatterers and absorbers which are made of plastic and inorganic scintillators such as GAGG:Ce, respectively. Signals are read by monolithic Multi Pixel Photon Counters, and with energy deposits and interaction time stamps are being acquired. The scintillators are built to be capable of resolving interaction position in three dimensions, so that our system has also a function of depth-of-interaction (DOI) PET scanners. TOF resolution of ~ 200 ps (FWHM) is achieved in both cases of using the leading-edge discriminator and time-walk correction and using a configuration sensitive to DOI. Both the position resolution and spectroscopy are demonstrated using the prototype data acquisition system, with Compton scattering events subsequently being obtained. We also demonstrated that the background rejection technique using the Compton cone constraint could be valid with our system.
Technical Note: Characterization of custom 3D printed multimodality imaging phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, Matthew F.; Lee, Brian J.; Levin, Craig S., E-mail: cslevin@stanford.edu
Purpose: Imaging phantoms are important tools for researchers and technicians, but they can be costly and difficult to customize. Three dimensional (3D) printing is a widely available rapid prototyping technique that enables the fabrication of objects with 3D computer generated geometries. It is ideal for quickly producing customized, low cost, multimodal, reusable imaging phantoms. This work validates the use of 3D printed phantoms by comparing CT and PET scans of a 3D printed phantom and a commercial “Micro Deluxe” phantom. This report also presents results from a customized 3D printed PET/MRI phantom, and a customized high resolution imaging phantom withmore » sub-mm features. Methods: CT and PET scans of a 3D printed phantom and a commercial Micro Deluxe (Data Spectrum Corporation, USA) phantom with 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm diameter hot rods were acquired. The measured PET and CT rod sizes, activities, and attenuation coefficients were compared. A PET/MRI scan of a custom 3D printed phantom with hot and cold rods was performed, with photon attenuation and normalization measurements performed with a separate 3D printed normalization phantom. X-ray transmission scans of a customized two level high resolution 3D printed phantom with sub-mm features were also performed. Results: Results show very good agreement between commercial and 3D printed micro deluxe phantoms with less than 3% difference in CT measured rod diameter, less than 5% difference in PET measured rod diameter, and a maximum of 6.2% difference in average rod activity from a 10 min, 333 kBq/ml (9 μCi/ml) Siemens Inveon (Siemens Healthcare, Germany) PET scan. In all cases, these differences were within the measurement uncertainties of our setups. PET/MRI scans successfully identified 3D printed hot and cold rods on PET and MRI modalities. X-ray projection images of a 3D printed high resolution phantom identified features as small as 350 μm wide. Conclusions: This work shows that 3D printed phantoms can be functionally equivalent to commercially available phantoms. They are a viable option for quickly distributing and fabricating low cost, customized phantoms.« less
Vrigneaud, Jean-Marc; McGrath, John; Courteau, Alan; Pegg, Rosie; Sanchez-Pastor Gomis, Alberto; Camacho, Angela; Martin, Gary; Schramm, Nils; Brunotte, François
2018-05-15
We evaluated the performance characteristics of a prototype preclinical PET scanner available as an easy clippable assembly that can dock to an MRI system. The single ring version of the PET system consists of 8 detectors, each of which comprises a 12 × 12 silicon photomultipliers (SiPMs) array coupled with a dual layer of offset scintillation crystals to measure depth of interaction. The crystal arrays have 29 × 29 (30 × 30 for the outer layer) 4 mm long LYSO crystals (6 mm for the outer layer). The ring diameter is 119.2 mm and the axial field of view is 50.4 mm. The NEMA NU-4-2008 protocol was followed for studying the PET performance. Temperature stability of SiPMs was also investigated. The peak system absolute sensitivity was 4.70% with an energy window of 250-750 keV. The spatial resolution was 1.28/1.88/1.85 mm FWHM (radial/tangential/axial) at a distance of 5 mm from the center. Peak noise equivalent counting rate (NECR) and scatter fraction for mouse phantom were 61.9 kcps at 14.9 MBq and 21.0%, respectively. The uniformity was 6.3% and the spill-over ratios in the images of the water- and air-filled chambers were 0.07 and 0.17, respectively. Recovery coefficients ranged from 0.13 to 0.96. Change in sensitivity as a function of ambient temperature was 0.3%/°C. These first results indicate excellent spatial resolution performance for use with animal studies. Moreover, the clippable assembly can be upgraded to accept a second ring of SiPMs modules, leading to improved sensitivity and axial coverage. © 2018 Institute of Physics and Engineering in Medicine.
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
Full-beam performances of a PET detector with synchrotron therapeutic proton beams.
Piliero, M A; Pennazio, F; Bisogni, M G; Camarlinghi, N; Cerello, P G; Del Guerra, A; Ferrero, V; Fiorina, E; Giraudo, G; Morrocchi, M; Peroni, C; Pirrone, G; Sportelli, G; Wheadon, R
2016-12-07
Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by [Formula: see text]-decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.
Compartmental analysis of washout effect in rat brain: in-beam OpenPET measurement using a 11C beam
NASA Astrophysics Data System (ADS)
Hirano, Yoshiyuki; Kinouchi, Shoko; Ikoma, Yoko; Yoshida, Eiji; Wakizaka, Hidekazu; Ito, Hiroshi; Yamaya, Taiga
2013-12-01
In-beam positron emission tomography (PET) is expected to enable visualization of a dose verification using positron emitters (β+ decay). For accurate dose verification, correction of the washout of the positron emitters should be made. In addition, the quantitative washout rate has a potential usefulness as a diagnostic index, but modeling for this has not been studied yet. In this paper, therefore, we applied compartment analyses to in-beam PET data acquired by our small OpenPET prototype, which has a physically opened field-of-view (FOV) between two detector rings. A rat brain was located at the FOV and was irradiated by a 11C beam. Time activity curves of the irradiated field were measured immediately after the irradiations, and the washout rate was obtained based on two models: the two-washout model (medium decay, k2m; slow decay, k2s) developed in a study of rabbit irradiation; and the two-compartment model used in nuclear medicine, where efflux from tissue to blood (k2), influx (k3) and efflux (k4) from the first to second compartments in tissue were evaluated. The observed k2m and k2s were 0.34 and 0.005 min-1, respectively, which was consistent with the rabbit study. Also k2m was close to the washout rate in cerebral blood flow (CBF) measurements by dynamic PET with 15O-water, while, k2, k3, and k4 were 0.16, 0.15 and 0.007 min-1. Our present work suggested the dynamics of 11C might be relevant to CBF or permeability of a molecule containing 11C atoms might be regulated by a transporter because the k2 was relatively low compared with a simple diffusion tracer.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
WE-AB-204-10: Evaluation of a Novel Dedicated Breast PET System (Mammi-PET)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Z; Swanson, T; O’Connor, M
2015-06-15
Purpose: To evaluate the performance characteristics of a novel dedicated breast PET system (Mammi-PET, Oncovision). The system has 2 detector rings giving axial/transaxial field of view of 8/17 cm. Each ring consists of 12 monolithic LYSO modules coupled to PSPMTs. Methods: Uniformity, sensitivity, energy and spatial resolution were measured according to NEMA standards. Count rate performance was investigated using a source of F-18 (1384uCi) decayed over 5 half-lives. A prototype PET phantom was imaged for 20 min to evaluate image quality, recovery coefficients and partial volume effects. Under an IRB-approved protocol, 11 patients who just underwent whole body PET/CT examsmore » were imaged prone with the breast pendulant at 5–10 minutes/breast. Image quality was assessed with and without scatter/attenuation correction and using different reconstruction algorithms. Results: Integral/differential uniformity were 9.8%/6.0% respectively. System sensitivity was 2.3% on axis, 2.2% and 2.8% at 3.8 cm and 7.8 cm off-axis. Mean energy resolution of all modules was 23.3%. Spatial resolution (FWHM) was 1.82 mm and 2.90 mm on axis and 5.8 cm off axis. Three cylinders (14 mm diameter) in the PET phantom were filled with activity concentration ratios of 4:1, 3:1, and 2:1 relative to the background. Measured cylinder to background ratios were 2.6, 1.8 and 1.5 (without corrections) and 3.6, 2.3 and 1.5 (with attenuation/scatter correction). Five cylinders (14, 10, 6, 4 and 2 mm diameter) each with an activity ratio of 4:1 were measured and showed recovery coefficients of 1, 0.66, 0.45, 0.18 and 0.18 (without corrections), and 1, 0.53, 0.30, 0.13 and 0 (with attenuation/scatter correction). Optimal phantom image quality was obtained with 3D MLEM algorithm, >20 iterations and without attenuation/scatter correction. Conclusion: The MAMMI system demonstrated good performance characteristics. Further work is needed to determine the optimal reconstruction parameters for qualitative and quantitative applications.« less
Production of an 15O beam using a stable oxygen ion beam for in-beam PET imaging
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Yoshida, Eiji; Tashima, Hideaki; Nishikido, Fumihiko; Inaniwa, Taku; Kitagawa, Atsushi; Yamaya, Taiga
2017-03-01
In advanced ion therapy, the 15O ion beam is a promising candidate to treat hypoxic tumors and simultaneously monitor the delivered dose to a patient using PET imaging. This study aimed at production of an 15O beam by projectile fragmentation of a stable 16O beam in an optimal material, followed by in-beam PET imaging using a prototype OpenPET system, which was developed in the authors' group. The study was carried out in three steps: selection of the optimal target based on the highest production rate of 15O fragments; experimental production of the beam using the optimal target in the Heavy Ion Medical Accelerator Chiba (HIMAC) secondary beam course; and realization of in-beam PET imaging for the produced beam. The optimal target evaluations were done using the Monte Carlo simulation code PHITS. The fluence and mean energy of the secondary particles were simulated and the optimal target was selected based on the production rate of 15O fragments. The highest production rate of 15O was observed for a liquid hydrogen target, 3.27% for a 53 cm thick target from the 16O beam of 430 MeV/u. Since liquid hydrogen is not practically applicable in the HIMAC secondary beam course a hydrogen-rich polyethylene material, which was the second optimal target from the simulation results, was selected as the experimental target. Three polyethylene targets with thicknesses of 5, 11 or 14 cm were used to produce the 15O beam without any degrader in the beam course. The highest production rate was measured as around 0.87% for the 11 cm thick polyethylene target from the 16O beam of 430 MeV/u when the angular acceptance and momentum acceptance were set at ±13 mrad and ±2.5%, respectively. The purity of the produced beam for the three targets were around 75%, insufficient for clinical application, but it was increased to 97% by inserting a wedge shape aluminum degrader with a thickness of 1.76 cm into the beam course and that is sufficiently high. In-beam PET imaging was also performed for all produced beams using the OpenPET system. The purity improvement of the produced 15O beams was confirmed from the PET images.
Enhanced PET resolution by combining pinhole collimation and coincidence detection
NASA Astrophysics Data System (ADS)
DiFilippo, Frank P.
2015-10-01
Spatial resolution of clinical PET scanners is limited by detector design and photon non-colinearity. Although dedicated small animal PET scanners using specialized high-resolution detectors have been developed, enhancing the spatial resolution of clinical PET scanners is of interest as a more available alternative. Multi-pinhole 511 keV SPECT is capable of high spatial resolution but requires heavily shielded collimators to avoid significant background counts. A practical approach with clinical PET detectors is to combine multi-pinhole collimation with coincidence detection. In this new hybrid modality, there are three locations associated with each event, namely those of the two detected photons and the pinhole aperture. These three locations over-determine the line of response and provide redundant information that is superior to coincidence detection or pinhole collimation alone. Multi-pinhole collimation provides high resolution and avoids non-colinearity error but is subject to collimator penetration and artifacts from overlapping projections. However the coincidence information, though at lower resolution, is valuable for determining whether the photon passed near a pinhole within the cone acceptance angle and for identifying through which pinhole the photon passed. This information allows most photons penetrating through the collimator to be rejected and avoids overlapping projections. With much improved event rejection, a collimator with minimal shielding may be used, and a lightweight add-on collimator for high resolution imaging is feasible for use with a clinical PET scanner. Monte Carlo simulations were performed of a 18F hot rods phantom and a 54-pinhole unfocused whole-body mouse collimator with a clinical PET scanner. Based on coincidence information and pinhole geometry, events were accepted or rejected, and pinhole-specific crystal-map projections were generated. Tomographic images then were reconstructed using a conventional pinhole SPECT algorithm. Hot rods of 1.4 mm diameter were resolved easily in a simulated phantom. System sensitivity was 0.09% for a simulated 70-mm line source corresponding to the NEMA NU-4 mouse phantom. Higher resolution is expected with further optimization of pinhole design, and higher sensitivity is expected with a focused and denser pinhole configuration. The simulations demonstrate high spatial resolution and feasibility of small animal imaging with an add-on multi-pinhole collimator for a clinical PET scanner. Further work is needed to develop geometric calibration and quantitative data corrections and, eventually, to construct a prototype device and produce images with physical phantoms.
Development of an instrument for time activity curve measurements during PET imaging of rodents
NASA Astrophysics Data System (ADS)
Reymond, Jean-Marc; Guez, David; Kerhoas, Sophie; Mangeot, Philippe; Boisgard, Raphaël; Jan, Sébastien; Tavitian, Bertrand; Trebossen, Régine
2007-02-01
Molecular imaging using PET in small rodents requires commonly the knowledge of the input function of the tracer (quantitative and kinetic studies of the metabolism, development of new drugs or new tracers, etc.). In this paper, we report the status and the performances of the prototype of a counting system that is under development at DAPNIA a in collaboration with SHFJ b. The detection device is made of silicon diodes of 0.3 mm thickness proper to measure the positrons emitted by the radiotracer contained in arterial blood flowing in a thin-wall microtube. Such diodes are poorly efficient for the 511 keV gammas from the rodent and thus require a rather light lead shielding and allow operating very close by to the animal. The detectors, the front-end electronics (for signal preamplification, shaping, and discrimination) and the acquisition circuits are mounted on a single card. The device is connected directly to a portable computer via an USB port. Such a design provides a compact, rugged and portable device for working close to a small animal PET camera. Preliminary results show the performances of this counting system with 18F solution and a time-activity curve for FDG blood samples (with ∣˜30 μL/samples) from a rat.
Investigation of OPET Performance Using GATE, a Geant4-Based Simulation Software.
Rannou, Fernando R; Kohli, Vandana; Prout, David L; Chatziioannou, Arion F
2004-10-01
A combined optical positron emission tomography (OPET) system is capable of both optical and PET imaging in the same setting, and it can provide information/interpretation not possible in single-mode imaging. The scintillator array here serves the dual function of coupling the optical signal from bioluminescence/fluorescence to the photodetector and also of channeling optical scintillations from the gamma rays. We report simulation results of the PET part of OPET using GATE, a Geant4 simulation package. The purpose of this investigation is the definition of the geometric parameters of the OPET tomograph. OPET is composed of six detector blocks arranged in a hexagonal ring-shaped pattern with an inner radius of 15.6 mm. Each detector consists of a two-dimensional array of 8 × 8 scintillator crystals each measuring 2 × 2 × 10 mm(3). Monte Carlo simulations were performed using the GATE software to measure absolute sensitivity, depth of interaction, and spatial resolution for two ring configurations, with and without gantry rotations, two crystal materials, and several crystal lengths. Images were reconstructed with filtered backprojection after angular interleaving and transverse one-dimensional interpolation of the sinogram. We report absolute sensitivities nearly seven times that of the prototype microPET at the center of field of view and 2.0 mm tangential and 2.3 mm radial resolutions with gantry rotations up to an 8.0 mm radial offset. These performance parameters indicate that the imaging spatial resolution and sensitivity of the OPET system will be suitable for high-resolution and high-sensitivity small-animal PET imaging.
Bircher, Chad; Shao, Yiping
2012-01-01
Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators’ internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm2 cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems. PMID:22320787
Bircher, Chad; Shao, Yiping
2012-02-01
Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 × 1.5 and 2.0 × 2.0 mm(2) cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems.
Performance characteristics of the MAMMOCARE PET system based on NEMA standard
NASA Astrophysics Data System (ADS)
Moliner, L.; Correcher, C.; Hellingman, D.; Alamo, J.; Carrilero, V.; Orero, A.; González, A. J.; Benlloch, J. M.
2017-01-01
In this work, we present the performance characteristics of the MAMMOCARE PET prototype based on an adaptation of the NU 4-2008 NEMA standard. MAMMOCARE is a project under the European Commission's 7th Framework programme to develop a breast biopsy system guided by a dedicated breast PET (dbPET) images. The PET system is formed by two rings with twelve detector modules each. The transaxial FOV is 170 mm and the axial FOV is 94 mm. The system can separate the detectors up to 60 mm in transaxial plane to allow the biopsy needle entrance. The acquisitions are reconstructed using the LMOS algorithm with tube-of-response (TOR) backprojector, 1 iteration and 16 subsets. The voxel and pixel sizes are (1 × 1 × 1) mm3 and (1.6 × 1.6) mm2 respectively. The radial resolution measured is 1.62 mm in the center of the FOV and 3.45 mm at 50 mm off the center in the radial direction using the closed configuration. In the open configuration the resolution reaches 1.85 mm and 3.65 mm at center and at 50 mm off-center. The adapted recovery coefficients (ARC) are measured for six hot rods inside a cylindrical phantom with a warm background. The ratio between hot and background regions is 10. The ARC values for the closed configuration are 0.32, 0.77 and 0.96 for the inserts with a diameter of 4.5 mm, 8.3 mm and 25 mm, respectively. These values decrease to 0.16, 0.52 and 0.77 for the open configuration. The sensitivity measured using an energy window of 250 keV-750 keV is 3.6% and 2.5% for the closed and open configurations respectively. The NEC peak is 141 kcps@68 MBq and 147 kcps@78 MBq for closed and open configurations. The performance characteristics measured with the open ring configuration decreases with respect the closed configuration, however the values remain comparable to other dbPETs.
Impact of Time-of-Flight on PET Tumor Detection
Kadrmas, Dan J.; Casey, Michael E.; Conti, Maurizio; Jakoby, Bjoern W.; Lois, Cristina; Townsend, David W.
2009-01-01
Time-of-flight (TOF) PET uses very fast detectors to improve localization of events along coincidence lines-of-response. This information is then utilized to improve the tomographic reconstruction. This work evaluates the effect of TOF upon an observer's performance for detecting and localizing focal warm lesions in noisy PET images. Methods An advanced anthropomorphic lesion-detection phantom was scanned 12 times over 3 days on a prototype TOF PET/CT scanner (Siemens Medical Solutions). The phantom was devised to mimic whole-body oncologic 18F-FDG PET imaging, and a number of spheric lesions (diameters 6–16 mm) were distributed throughout the phantom. The data were reconstructed with the baseline line-of-response ordered-subsets expectation-maximization algorithm, with the baseline algorithm plus point spread function model (PSF), baseline plus TOF, and with both PSF+TOF. The lesion-detection performance of each reconstruction was compared and ranked using localization receiver operating characteristics (LROC) analysis with both human and numeric observers. The phantom results were then subjectively compared to 2 illustrative patient scans reconstructed with PSF and with PSF+TOF. Results Inclusion of TOF information provides a significant improvement in the area under the LROC curve compared to the baseline algorithm without TOF data (P = 0.002), providing a degree of improvement similar to that obtained with the PSF model. Use of both PSF+TOF together provided a cumulative benefit in lesion-detection performance, significantly outperforming either PSF or TOF alone (P < 0.002). Example patient images reflected the same image characteristics that gave rise to improved performance in the phantom data. Conclusion Time-of-flight PET provides a significant improvement in observer performance for detecting focal warm lesions in a noisy background. These improvements in image quality can be expected to improve performance for the clinical tasks of detecting lesions and staging disease. Further study in a large clinical population is warranted to assess the benefit of TOF for various patient sizes and count levels, and to demonstrate effective performance in the clinical environment. PMID:19617317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bircher, Chad; Shao Yiping
Purpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method couldmore » be used to acquire DOI function from scintillator-generated (i.e., internal) radiation. The authors also developed a method for calibrating the energy scale necessary to select the events within the desired energy window. Methods: The authors measured the DOI function of a PET detector with lutetium yttrium orthosilicate (LYSO) scintillators. Radiation events originating from the scintillators' internal Lu-176 beta decay were used to measure DOI functions which were then compared with those measured from both an external uniform flood source and an electronically collimated external point source. The authors conducted these studies with several scintillators of differing geometries (1.5 x 1.5 and 2.0 x 2.0 mm{sup 2} cross-section area and 20, 30, and 40 mm length) and various surface finishes (mirror-finishing, saw-cut rough, and other finishes in between), and in a prototype array. Results: All measured results using internal and external radiation sources showed excellent agreement in DOI function measurement. The mean difference among DOI values for all scintillators measured from internal and external radiation sources was less than 1.0 mm for different scintillator geometries and various surface finishes. Conclusions: The internal radioactivity of LYSO scintillators can be used to accurately measure DOI function in PET detectors, regardless of scintillator geometry or surface finish. Because an external radiation source is not needed, this method of DOI function measurement can be practically applied to individual PET detectors as well as assembled systems.« less
WE-C-217BCD-10: Development of High Performance PET for Animal Imaging and Therapy Applications.
Shao, Y; Sun, X; Lan, K; Bircher, C
2012-06-01
A prototype small animal PET is developed with several novel technologies to measure 3D gamma-interaction positions and to substantially improve imaging performance. Each new detector has an 8×8 array of 1.95×1.95×30 mm̂3 LYSO scintillators, with each end optically connected to a solid-state photo multiplier (SSPM) array through a light guide. This dual-ended-readout enables the depth-of-interaction (DOI) measurement. Each SSPM array has 16 SSPMs arranged in a 4×4 matrix. Each SSPM has active area about 3×3 mm̂2, with its output read by an ASIC electronics that directly converts analog signals to digital timing pulses which encode the interaction information for energy, timing, crystal of interaction, and DOI calculations. These digital pulses are transferred to and decoded by FPGA-based TDC for coincident event selection and data acquisition. This independent readout of each SSPM and parallel signal process significantly improve signal-to-noise ratio and permit applying flexible data processing algorithms. The current prototype system consists of two rotating detector panels on a portable gantry, with 4 detectors linearly packed together in each panel to provide ∼16 mm axial and variable trans- axial FOV with adjustable panel-to-panel distance. List-mode OSEM-based image reconstruction with resolution modeling was implemented. Both Na- 22 point source and phantom were used to evaluate the system performance. The measured energy, timing, spatial and DOI resolutions for each crystal were around 16%, 2.6 ns, 2.0 mm and 5.0 mm, respectively. The measured spatial resolutions with DOI were ∼1.7 mm across the entire FOV in all direction, while those without DOI were much worse and non-uniform across the FOV, in the range predominately around 3.0 to 4.0 mm. In addition, images from a F-18 hot-rod phantom with DOI show significantly improved quality compared to those without DOI. DOI- measurable PET shows substantially improved image performance for a compact system. National Institute of Health. University of Texas MD Anderson Cancer Center. © 2012 American Association of Physicists in Medicine.
Synchromodal optical in vivo imaging employing microlens array optics: a complete framework
NASA Astrophysics Data System (ADS)
Peter, Joerg
2013-03-01
A complete mathematical framework for preclinical optical imaging (OI) support comprising bioluminescence imaging (BLI), fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is presented in which optical data is acquired by means of a microlens array (MLA) based light detector (MLA-D). The MLA-D has been developed to enable unique OI, especially in synchromodal operation with secondary imaging modalities (SIM) such as positron emission tomography (PET) or magnetic resonance imaging (MRI). An MLA-D consists of a (large-area) photon sensor array, a matched MLA for field-of-view definition, and a septum mask of specific geometry made of anodized aluminum that is positioned between the sensor and the MLA to suppresses light cross-talk and to shield the sensor's radiofrequency interference signal (essential when used inside an MRI system). The software framework, while freely parameterizable for any MLA-D, is tailored towards an OI prototype system for preclinical SIM application comprising a multitude of cylindrically assembled, gantry-mounted, simultaneously operating MLA-D's. Besides the MLA-D specificity, the framework incorporates excitation and illumination light-source declarations of large-field and point geometry to facilitate multispectral FSI and FOT as well as three-dimensional object recognition. When used in synchromodal operation, reconstructed tomographic SIM volume data can be used for co-modal image fusion and also as a prior for estimating the imaged object's 3D surface by means of gradient vector flow. Superimposed planar (without object prior) or surface-aligned inverse mapping can be performed to estimate and to fuse the emission light map with the boundary of the imaged object. Triangulation and subsequent optical reconstruction (FOT) or constrained flow estimation (BLI), both including the possibility of SIM priors, can be performed to estimate the internal three-dimensional emission light distribution. The framework is susceptible to a number of variables controlling convergence and computational speed. Utilization and performance is illustrated on experimentally acquired data employing the OI prototype system in stand-alone operation, and when integrated into an unmodified preclinical PET system performing synchromodal BLI-PET in vivo imaging.
High efficiency microfluidic beta detector for pharmacokinetic studies in small animals
NASA Astrophysics Data System (ADS)
Convert, Laurence; Girard-Baril, Frédérique; Renaudin, Alan; Grondin, Étienne; Jaouad, Abdelatif; Aimez, Vincent; Charette, Paul; Lecomte, Roger
2011-10-01
New radiotracers are continuously being developed to improve diagnostic efficiency using Single Photon Emission Computed Tomography (SPECT) or Positron Emission Tomography (PET). The characterization of their pharmacokinetics requires blood radioactivity monitoring over time during the scan and is very challenging in small animals because of the low volume of blood available. In this work, a prototype microfluidic blood counter made of a microchannel atop a silicon substrate containing PIN photodiodes is proposed to improve beta detection efficiency in a small volume by eliminating unnecessary interfaces between fluid and detector. A flat rectangular-shaped epoxy channel, 36 μm×1.26 mm cross section and 31.5 mm in length, was microfabricated over a die containing an array of 2×2 mm 2 PIN photodiodes, leaving only a few micrometers of epoxy floor layer between the fluid and the photodiode sensitive surface. This geometry leads to a quasi 2D source, optimizing geometrical detection efficiency that was estimated at 41% using solid angle calculation. CV- IV measurements were made at each fabrication step to confirm that the microchannel components had no significant effects on the diodes' electrical characteristics. The chip was wire-bonded to a PCB and connected to charge sensitive preamplifier and amplifier modules for pulse shaping. Energy spectra recorded for different isotopes showed continuous beta distribution for PET isotopes and monoenergetic conversion electron peaks for 99mTc. Absolute sensitivity was determined for the most popular PET and SPECT radioisotopes and ranged from 26% to 33% for PET tracers ( 18F, 13N, 11C, 68Ga) and more than 2% for 99mTc. Input functions were successfully simulated with 18F, confirming the setup's suitability for pharmacokinetic modeling of PET and SPECT radiotracers in animal experiments. By using standard materials and procedures, the fabrication process is well suited to on-chip microfluidic functionality, allowing full characterization of new radiotracers.
NASA Astrophysics Data System (ADS)
Vrigneaud, J. M.; McGrath, J.; Courteau, A.; Pegg, R.; Sanchez-Pastor Gomis, A.; Camacho, A.; Martin, G.; Schramm, N.; Brunotte, F.
2018-06-01
We evaluated the performance characteristics of a prototype preclinical PET scanner available as an easy clippable assembly that can dock to an MRI system. The single ring version of the PET system consists of eight detectors, each of which comprises a 12 × 12 silicon photomultipliers (SiPMs) array coupled with a dual layer of offset scintillation crystals to measure depth of interaction. The crystal arrays have 29 × 29 (30 × 30 for the outer layer) 4 mm long LYSO crystals (6 mm for the outer layer). The ring diameter is 119.2 mm and the axial field of view is 50.4 mm. The NEMA NU 4-2008 protocol was followed for studying the PET performance. Temperature stability of SiPMs was also investigated. The peak system absolute sensitivity was 4.70% with an energy window of 250–750 keV. The spatial resolution was 1.28/1.88/1.85 mm FWHM (radial/tangential/axial) at a distance of 5 mm from the center. Peak noise equivalent counting rate and scatter fraction for mouse phantom were 61.9 kcps at 14.9 MBq and 21.0%, respectively. The uniformity was 6.3% and the spill-over ratios in the images of the water-and air-filled chambers were 0.07 and 0.17, respectively. Recovery coefficients ranged from 0.13 to 0.96. Change in sensitivity as a function of ambient temperature was 0.3%/°C. These first results indicate excellent spatial resolution performance for use with animal studies. Moreover, the clippable assembly can be upgraded to accept a second ring of SiPMs modules, leading to improved sensitivity and axial coverage.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-09-11
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzhin, A.; Los, S.; Martens, M.
2011-02-01
We report on work to develop a system with about 100 picoseconds (ps) time resolution for time of flight positron emission tomography [TOF-PET]. The chosen photo detectors for the study were Silicon Photomultipliers (SiPM's). This study was based on extensive experience in studying timing properties of SiPM's. The readout of these devices used the commercial high speed digitizer DRS4. We applied different algorithms to get the best time resolution of 155 ps Guassian (sigma) for a LYSO crystal coupled to a SiPM. We consider the work as a first step in building a prototype TOF-PET module. The field of positron-emission-tomographymore » (PET) has been rapidly developing. But there are significant limitations in how well current PET scanners can reconstruct images, related to how fast data can be acquired, how much volume they can image, and the spatial and temporal resolution of the generated photons. Typical modern scanners now include multiple rings of detectors, which can image a large volume of the patient. In this type of scanner, one can treat each ring as a separate detector and require coincidences only within the ring, or treat the entire region viewed by the scanner as a single 3 dimensional volume. This 3d technique has significantly better sensitivity since more photon pair trajectories are accepted. However, the scattering of photons within the volume of the patient, and the effect of random coincidences limits the technique. The advent of sub-nanosecond timing resolution detectors means that there is potentially much better rejection of scattered photon events and random coincidence events in the 3D technique. In addition, if the timing is good enough, then the origin of photons pairs can be determined better, resulting in improved spatial resolution - so called 'Time-of-Flight' PET, or TOF-PET. Currently a lot of activity has occurred in applications of SiPMs for TOF-PET. This is due to the devices very good time resolution, low profile, lack of high voltage needed, and their non-sensitivity to magnetic fields. While investigations into this technique have begun elsewhere, we feel that the extensive SiPM characterization and data acquisition expertise of Fermilab, and the historical in-depth research of PET imaging at University of Chicago will combine to make significant strides in this field. We also benefit by a working relationship with the SiPM producer STMicroelectronics (STM).« less
NASA Astrophysics Data System (ADS)
Mille, Matthew M.
Positron emission tomography (PET) with 2-[18F]fluoro-2-deoxy-D-glucose (FDG) is being increasingly recognized as an important tool for quantitative assessment of tumor response because of its ability to capture functional information about the tumor's metabolism. However, despite many advances in PET technology, measurements of tumor radiopharmaceutical uptake in PET are still challenged by issues of accuracy and consistency, thereby compromising the use of PET as a surrogate endpoint in clinical trials. One limiting component of the overall uncertainty in PET is the relatively poor spatial resolution of the images which directly affects the accuracy of the tumor radioactivity measurements. These spatial resolution effects, colloquially known as the partial volume effect (PVE), are a function of the characteristics of the scanner as well as the tumor being imaged. Previous efforts have shown that the PVE depends strongly on the tumor volume and the background-to-tumor activity concentration ratio. The PVE is also suspected to be a function of tumor shape, although to date no systematic study of this effect has been performed. This dissertation seeks to help fill the gap in the current knowledge about the shape-dependence of the PVE by attempting to quantify, through both theoretical calculation and experimental measurement, the magnitude of the shape effect for ellipsoidal tumors. An experimental investigation of the tumor shape effect necessarily requires tumor phantoms of multiple shapes. Hence, a prerequisite for this research was the design and fabrication of hollow tumor phantoms which could be filled uniformly with radioactivity and imaged on a PET scanner. The phantom fabrication was achieved with the aid of stereolithography and included prolate ellipsoids of various axis ratios. The primary experimental method involved filling the tumor phantoms with solutions of 18F whose activity concentrations were known and traceable to primary radioactivity standards held by the National Institute of Standards and Technology (NIST). The tumor phantoms were then placed inside a Jaszczak cylinder (representing the human body) and imaged on a PET scanner located at NIST. This experimental approach allowed for the testing of: (1) The relative difference between tumors phantoms of different shapes, but same volume; (2) The overall accuracy of the PET measurements in terms of a ground truth reference value. Theoretical calculations of the tumor shape effect were also performed by mathematically convolving the phantom shapes with a 3D Gaussian point-spread function, and the results of the calculations were compared with the experimental data. The data show that the shape effect in PET tumor imaging can be as large as 15% for ellipsoid phantoms with axis ratios of 2:1, volume of 1.15 cm 3, and tumor-to-background activity concentration ratio of 9:1. This is explained by a greater loss of counts along the minor axis direction in the ellipsoid tumors compared to that of spheres of the same volume. The results of this PhD research confirm the existence of a tumor shape effect PET imaging. However, except in the case of ellipsoids with major-to-minor axis ratio greater than 2:1, a correction for the effect using recovery coefficients is expected to be challenging because its magnitude is comparable to the repeatability of the PET measurements.
Multimodal system for the planning and guidance of bronchoscopy
NASA Astrophysics Data System (ADS)
Higgins, William E.; Cheirsilp, Ronnarit; Zang, Xiaonan; Byrnes, Patrick
2015-03-01
Many technical innovations in multimodal radiologic imaging and bronchoscopy have emerged recently in the effort against lung cancer. Modern X-ray computed-tomography (CT) scanners provide three-dimensional (3D) high-resolution chest images, positron emission tomography (PET) scanners give complementary molecular imaging data, and new integrated PET/CT scanners combine the strengths of both modalities. State-of-the-art bronchoscopes permit minimally invasive tissue sampling, with vivid endobronchial video enabling navigation deep into the airway-tree periphery, while complementary endobronchial ultrasound (EBUS) reveals local views of anatomical structures outside the airways. In addition, image-guided intervention (IGI) systems have proven their utility for CT-based planning and guidance of bronchoscopy. Unfortunately, no IGI system exists that integrates all sources effectively through the complete lung-cancer staging work flow. This paper presents a prototype of a computer-based multimodal IGI system that strives to fill this need. The system combines a wide range of automatic and semi-automatic image-processing tools for multimodal data fusion and procedure planning. It also provides a flexible graphical user interface for follow-on guidance of bronchoscopy/EBUS. Human-study results demonstrate the system's potential.
Rausch, Ivo; Rischka, Lucas; Ladefoged, Claes N; Furtner, Julia; Fenchel, Matthias; Hahn, Andreas; Lanzenberger, Rupert; Mayerhoefer, Marius E; Traub-Weidinger, Tatjana; Beyer, Thomas
2017-09-01
The aim of this study was to compare attenuation-correction (AC) approaches for PET/MRI in clinical neurooncology. Methods: Forty-nine PET/MRI brain scans were included: brain tumor studies using 18 F-fluoro-ethyl-tyrosine ( 18 F-FET) ( n = 31) and 68 Ga-DOTANOC ( n = 7) and studies of healthy subjects using 18 F-FDG ( n = 11). For each subject, MR-based AC maps (MR-AC) were acquired using the standard DIXON- and ultrashort echo time (UTE)-based approaches. A third MR-AC was calculated using a model-based, postprocessing approach to account for bone attenuation values (BD, noncommercial prototype software by Siemens Healthcare). As a reference, AC maps were derived from patient-specific CT images (CTref). PET data were reconstructed using standard settings after AC with all 4 AC methods. We report changes in diagnosis for all brain tumor patients and the following relative differences values (RDs [%]), with regards to AC-CTref: for 18 F-FET (A)-SUVs as well as volumes of interest (VOIs) defined by a 70% threshold of all segmented lesions and lesion-to-background ratios; for 68 Ga-DOTANOC (B)-SUVs as well as VOIs defined by a 50% threshold for all lesions and the pituitary gland; and for 18 F-FDG (C)-RD of SUVs of the whole brain and 10 anatomic regions segmented on MR images. Results: For brain tumor imaging (A and B), the standard PET-based diagnosis was not affected by any of the 3 MR-AC methods. For A, the average RDs of SUV mean were -10%, -4%, and -3% and of the VOIs 1%, 2%, and 7% for DIXON, UTE, and BD, respectively. Lesion-to-background ratios for all MR-AC methods were similar to that of CTref. For B, average RDs of SUV mean were -11%, -11%, and -3% and of the VOIs 1%, -4%, and -3%, respectively. In the case of 18 F-FDG PET/MRI (C), RDs for the whole brain were -11%, -8%, and -5% for DIXON, UTE, and BD, respectively. Conclusion: The diagnostic reading of PET/MR patients with brain tumors did not change with the chosen AC method. Quantitative accuracy of SUVs was clinically acceptable for UTE- and BD-AC for group A, whereas for group B BD was in accordance with CTref. Nevertheless, for the quantification of individual lesions large deviations to CTref can be observed independent of the MR-AC method used. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
First in situ TOF-PET study using digital photon counters for proton range verification.
Cambraia Lopes, P; Bauer, J; Salomon, A; Rinaldi, I; Tabacchini, V; Tessonnier, T; Crespo, P; Parodi, K; Schaart, D R
2016-08-21
Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong (15)O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2 × 50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6 × 10(8) protons s(-1), and 10(10) total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also suggest that available experimental cross sections underestimate the production of (10)C for in-beam acquisitions, which in PE results in an overestimation of the predicted activity range by 1.4 mm. The uncertainty in the activity range measured in PMMA using the DPC-based TOF-PET prototype setup equals 0.2 mm-0.3 mm.
First in situ TOF-PET study using digital photon counters for proton range verification
NASA Astrophysics Data System (ADS)
Cambraia Lopes, P.; Bauer, J.; Salomon, A.; Rinaldi, I.; Tabacchini, V.; Tessonnier, T.; Crespo, P.; Parodi, K.; Schaart, D. R.
2016-08-01
Positron emission tomography (PET) is the imaging modality most extensively tested for treatment monitoring in particle therapy. Optimal use of PET in proton therapy requires in situ acquisition of the relatively strong 15O signal due to its relatively short half-life (~2 min) and high oxygen content in biological tissues, enabling shorter scans that are less sensitive to biological washout. This paper presents the first performance tests of a scaled-down in situ time-of-flight (TOF) PET system based on digital photon counters (DPCs) coupled to Cerium-doped Lutetium Yttrium Silicate (LYSO:Ce) crystals, providing quantitative results representative of a dual-head tomograph that complies with spatial constraints typically encountered in clinical practice (2 × 50°, of 360°, transaxial angular acceptance). The proton-induced activity inside polymethylmethacrylate (PMMA) and polyethylene (PE) phantoms was acquired within beam pauses (in-beam) and immediately after irradiation by an actively-delivered synchrotron pencil-beam, with clinically relevant 125.67 MeV/u, 4.6 × 108 protons s-1, and 1010 total protons. 3D activity maps reconstructed with and without TOF information are compared to FLUKA simulations, demonstrating the benefit of TOF-PET to reduce limited-angle artefacts using a 382 ps full width at half maximum coincidence resolving time. The time-dependent contributions from different radionuclides to the total count-rate are investigated. We furthermore study the impact of the acquisition time window on the laterally integrated activity depth-profiles, with emphasis on 2 min acquisitions starting at different time points. The results depend on phantom composition and reflect the differences in relative contributions from the radionuclides originating from carbon and oxygen. We observe very good agreement between the shapes of the simulated and measured activity depth-profiles for post-beam protocols. However, our results also suggest that available experimental cross sections underestimate the production of 10C for in-beam acquisitions, which in PE results in an overestimation of the predicted activity range by 1.4 mm. The uncertainty in the activity range measured in PMMA using the DPC-based TOF-PET prototype setup equals 0.2 mm-0.3 mm.
NASA Astrophysics Data System (ADS)
Jensen, Mikael
2017-05-01
I here report the fundamental performance of a new generation of compact medical cyclotrons for hospital-based PET tracer manufacture, exemplified with the FDG production numbers achieved by the first prototype of the GE GenTrace cyclotron. The proton energy is 7.8 MeV. After 3 years of extensive testing in a "physics lab" setting, which is door-to-door with our normal GMP production suite, I can now conclude that this cyclotron in conjunction with a standard GE Fastlab chemistry box easily achieves significant, reliable and compliant FDG output surpassing 15 GBq per batch at EOS, after 2 hours bombardment time. The details are reported below.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-01-01
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka
We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types ofmore » gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of {sup 18}F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.« less
Zhou, Weixin; Chen, Jun; Li, Yi; Wang, Danbei; Chen, Jianyu; Feng, Xiaomiao; Huang, Zhendong; Liu, Ruiqing; Lin, Xiujing; Zhang, Hongmei; Mi, Baoxiu; Ma, Yanwen
2016-05-04
Metal mesh is a significant candidate of flexible transparent electrodes to substitute the current state-of-the-art material indium tin oxide (ITO) for future flexible electronics. However, there remains a challenge to fabricate metal mesh with order patterns by a bottom-up approach. In this work, high-quality Cu mesh transparent electrodes with ordered pore arrays are prepared by using breath-figure polymer films as template. The optimal Cu mesh films present a sheet resistance of 28.7 Ω·sq(-1) at a transparency of 83.5%. The work function of Cu mesh electrode is tuned from 4.6 to 5.1 eV by Ag deposition and the following short-time UV-ozone treatment, matching well with the PSS (5.2 eV) hole extraction layer. The modified Cu mesh electrodes show remarkable potential as a substitute of ITO/PET in the flexible OPV and OLED devices. The OPV cells constructed on our Cu mesh electrodes present a similar power conversion efficiency of 2.04% as those on ITO/PET electrodes. The flexible OLED prototype devices can achieve a brightness of 10 000 cd at an operation voltage of 8 V.
Flexible storage medium for write-once optical tape
NASA Technical Reports Server (NTRS)
Strandjord, Andrew J. G.; Webb, Steven P.; Perettie, Donald J.; Cipriano, Robert A.
1993-01-01
A write-once data storage media was developed which is suitable for optical tape applications. The media is manufactured using a continuous film process to deposit a ternary alloy of tin, bismuth, and copper. This laser sensitive layer is sputter deposited onto commercial plastic web as a single-layer thin film. A second layer is sequentially deposited on top of the alloy to enhance the media performance and act as an abrasion resistant hard overcoat. The media was observed to have laser write sensitivities of less than 2.0 njoules/bit, carrier-to-noise levels of greater than 50dB's, modulation depths of approximately 100 percent, read-margins of greater than 35, uniform grain sizes of less than 200 Angstroms, and a media lifetime that exceeds 10 years. Prototype tape media was produced for use in the CREO drive system. The active and overcoat materials are first sputter deposited onto three mil PET film in a single pass through the vacuum coating system, and then converted down into multiple reels of 35mm x 880m tape. One mil PET film was also coated in this manner and then slit and packaged into 3480 tape cartridges.
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei
2014-10-01
Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.
Study of a high-resolution PET system using a Silicon detector probe
NASA Astrophysics Data System (ADS)
Brzeziński, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.
2014-10-01
A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 × 52 array of 1 × 1 × 1 mm3 pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed visible improvement in resolution when including the probe in the simulations. The image quality study demonstrated that contrast and spill-over ratio in other areas of the FOV were not sacrificed for this enhancement. The CNR study performed on the breast phantom indicates increased lesion detectability provided by the probe.
Zhang, Xinjie; Zhu, Zhixian; Ni, Zhonghua; Xiang, Nan; Yi, Hong
2017-06-01
This work presents the fabrication of a microfluidic autoregulatory valve which is composed of several layers of thin polymer films (i.e., polyvinyl chloride (PVC), polyethylene terephthalate (PET) double-sided tape, and polydimethylsiloxane (PDMS)). Briefly, pulsed UV laser is employed to cut the microstructures of through grooves or holes in the thermoplastic polymer films, and then the polymer-film valves are precisely assembled through laminating the PDMS membranes to the thermoplastic polymer films through the roll-lamination method. The effective bonding between the PVC film and the PDMS membrane is realized using the planar seal method, and the valve is sandwiched and compressed by a home-made housing to achieve the good seal effect. Then, the flow performances of the prototype valve are examined, and constant flow autoregulation is realized under the static or dynamic test pressures. The long-term response of the valve is also studied and minimum flow-rate decrements are found over a long actuation time. The fabrication method proposed in this work is successful for the low-cost and fast prototyping of the polymer-film valve. We believe our method will also be broadly applicable for fabrication of other low-cost and disposable polymer-film microfluidic devices.
Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.
Synthesis of fluorine-18 labeled rhodamine B: A potential PET myocardial perfusion imaging agent
Heinrich, Tobias K.; Gottumukkala, Vijay; Snay, Erin; Dunning, Patricia; Fahey, Frederic H; Treves, S. Ted; Packard, Alan B.
2009-01-01
There is considerable interest in developing an 18F-labeled PET myocardial perfusion agent. Rhodamine dyes share several properties with 99mTc-MIBI, the most commonly used single-photon myocardial perfusion agent, suggesting that an 18F-labeled rhodamine dye might prove useful for this application. In addition to being lipophilic cations, like 99mTc-MIBI, rhodamine dyes are known to accumulate in the myocardium and are substrates for Pgp, the protein implicated in MDR1 multidrug resistance. As the first step in determining whether 18F-labeled rhodamines might be useful as myocardial perfusion agents for PET, our objective was to develop synthetic methods for preparing the 18F-labeled compounds so that they could be evaluated in vivo. Rhodamine B was chosen as the prototype compound for development of the synthesis because the ethyl substituents on the amine moieties of rhodamine B protect them from side reactions, thus eliminating the need to include (and subsequently remove) protecting groups. The 2′-[18F]fluoroethyl ester of rhodamine B was synthesized by heating rhodamine B lactone with [18F]fluoroethyltosylate in acetonitrile at 165°C for 30 min.using [18F]fluoroethyl tosylate, which was prepared by the reaction of ethyleneglycol ditosylate with Kryptofix 2.2.2, K2CO3, and [18F]NaF in acetonitrile for 10 min. at 90°C. The product was purified by semi-preparative HPLC to produce the 2′-[18F]-fluoroethylester in >97% radiochemical purity with a specific activity of 1.3 GBq/μmol, an isolated decay corrected yield of 35%, and a total synthesis time of 90 min. PMID:19783150
OpenPET: A Flexible Electronics System for Radiotracer Imaging
NASA Astrophysics Data System (ADS)
Moses, W. W.; Buckley, S.; Vu, C.; Peng, Q.; Pavlov, N.; Choong, W.-S.; Wu, J.; Jackson, C.
2010-10-01
We present the design for OpenPET, an electronics readout system designed for prototype radiotracer imaging instruments. The critical requirements are that it has sufficient performance, channel count, channel density, and power consumption to service a complete camera, and yet be simple, flexible, and customizable enough to be used with almost any detector or camera design. An important feature of this system is that each analog input is processed independently. Each input can be configured to accept signals of either polarity as well as either differential or ground referenced signals. Each signal is digitized by a continuously sampled ADC, which is processed by an FPGA to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a TDC implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. As all of this processing is controlled by firmware and software, it can be modified/customized easily. The system is open source, meaning that all technical data (specifications, schematics and board layout files, source code, and instructions) will be publicly available.
Performance Enhancement of the RatCAP Awake Rate Brain PET System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaska, P.; Vaska, P.; Woody, C.
The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required formore » neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.« less
Test of a single module of the J-PET scanner based on plastic scintillators
NASA Astrophysics Data System (ADS)
Moskal, P.; Niedźwiecki, Sz.; Bednarski, T.; Czerwiński, E.; Kapłon, Ł.; Kubicz, E.; Moskal, I.; Pawlik-Niedźwiecka, M.; Sharma, N. G.; Silarski, M.; Zieliński, M.; Zoń, N.; Białas, P.; Gajos, A.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Molenda, M.; Pałka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.
2014-11-01
A Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this paper we report on tests of a single detection module built out from the BC-420 plastic scintillator strip (with dimensions of 5×19×300 mm3) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50 ps intervals. The time resolution of the prototype module was established to be better than 80 ps (σ) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93 cm (σ) for the annihilation quanta. The fractional energy resolution for the energy E deposited by the annihilation quanta via the Compton scattering amounts to σ(E) / E ≈ 0.044 /√{ E(MeV) } and corresponds to the σ(E) / E of 7.5% at the Compton edge.
X-ray and gamma ray detector readout system
Tumer, Tumay O; Clajus, Martin; Visser, Gerard
2010-10-19
A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, X; Lou, K; Rice University, Houston, TX
Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
St James, S; Argento, D; DeWitt, D
Purpose: Fast neutron therapy is offered at the University of Washington Medical Center for treatment of selected cancers. The hardware and control systems of the UW Clinical Neutron Therapy System are undergoing upgrades to enable delivery of IMNT. To clinically implement IMNT, dose verification tools need to be developed. We propose a portal imaging system that relies on the creation of positron emitting isotopes ({sup 11}C and {sup 15}O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects the annihilationmore » photons. The pattern of activity produced in the plate provides information to reconstruct the neutron fluence map that can be compared to fluence maps from Monte Carlo (MCNP) simulations to verify treatment delivery. We have previously performed Monte Carlo simulations of the portal imaging system (GATE simulations) and the beam line (MCNP simulations). In this work, initial measurements using a prototype system are presented. Methods: Custom electronics were developed for BGO detectors read out with photomultiplier tubes (previous generation PET detectors from a CTI ECAT 953 scanner). Two detectors were placed in coincidence, with a detector separation of 2 cm. Custom software was developed to create the crystal look up tables and perform a limited angle planar reconstruction with a stochastic normalization. To test the initial capabilities of the system, PMMA squares were irradiated with neutrons at a depth of 1.5 cm and read out using the prototype system. Doses ranging from 10–200 cGy were delivered. Results: Using the prototype system, dose differences in the therapeutic range could be determined. Conclusion: The prototype portal imaging system is capable of detecting neutron doses as low as 10–50 cGy and shows great promise as a patient QA tool for IMNT.« less
Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal
2013-01-01
Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs—i.e., the lack of suitable coating materials and a process for large area, high volume applications—can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%. PMID:28788301
Evaluation of the effect of filter apodization for volume PET imaging using the 3-D RP algorithm
NASA Astrophysics Data System (ADS)
Baghaei, H.; Wong, Wai-Hoi; Li, Hongdi; Uribe, J.; Wang, Yu; Aykac, M.; Liu, Yaqiang; Xing, Tao
2003-02-01
We investigated the influence of filter apodization and cutoff frequency on the image quality of volume positron emission tomography (PET) imaging using the three-dimensional reprojection (3-D RP) algorithm. An important parameter in 3-D RP and other filtered backprojection algorithms is the choice of the filter window function. In this study, the Hann, Hamming, and Butterworth low-pass window functions were investigated. For each window, a range of cutoff frequencies was considered. Projection data were acquired by scanning a uniform cylindrical phantom, a cylindrical phantom containing four small lesion phantoms having diameters of 3, 4, 5, and 6 mm and the 3-D Hoffman brain phantom. All measurements were performed using the high-resolution PET camera developed at the M.D. Anderson Cancer Center (MDAPET), University of Texas, Houston, TX. This prototype camera, which is a multiring scanner with no septa, has an intrinsic transaxial resolution of 2.8 mm. The evaluation was performed by computing the noise level in the reconstructed images of the uniform phantom and the contrast recovery of the 6-mm hot lesion in a warm background and also by visually inspecting images, especially those of the Hoffman brain phantom. For this work, we mainly studied the central slices which are less affected by the incompleteness of the 3-D data. Overall, the Butterworth window offered a better contrast-noise performance over the Hann and Hamming windows. For our high statistics data, for the Hann and Hamming apodization functions a cutoff frequency of 0.6-0.8 of the Nyquist frequency resulted in a reasonable compromise between the contrast recovery and noise level and for the Butterworth window a cutoff frequency of 0.4-0.6 of the Nyquist frequency was a reasonable choice. For the low statistics data, use of lower cutoff frequencies was more appropriate.
Selected PET radiomic features remain the same.
Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko
2018-04-17
We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.
NASA Astrophysics Data System (ADS)
Aguilar Talens, D. Albert
Nuclear Medicine has undergone significant advances in recent years due to improvements in materials, electronics, software techniques, processing etc., which has allowed to considerably extend its application. One technique that has progressed in this area has been the Positron Emission Tomography (PET) based on a non-invasive method with its especial relevance in the evaluation of cancer diagnosis and assessment, among others. This system is based on the principle of data collection and processing from which images of the spatial and temporal distribution of the metabolic processes that are generated inside the body are obtained. The imaging system consists of a set of detectors, normally placed in a ring geometry, so that each one provides information about events that have occurred inside. One of the reasons that have significantly evolved in PET systems is the development of techniques to determine the Time-of-Flight (TOF) of the photons that are generated due to the annihilation of positrons with their antiparticle, the electron. Determining TOF allows one for a more precise location of the events that are generated inside the ring and, therefore, facilitates the task of image reconstruction that ultimately use the medical equipment for the diagnosis and/or treatment. This Thesis begins with the assumption of developing a system based on Field Programmable Gate Arrays (FPGAs) for the integration of a Time- to-Digital Converter (TDC) in order to precisely carry out time measurements. This would permit the estimation of the TOF of the gamma particles for subsequent application in PET systems. First of all, the environment for the application is introduced, justifying the need of the purposed system. Following, the basic principles of PET and the state-of-the-art of similar systems are introduced. Then, the principles of Time-of-Flight based on FPGAs are discussed, and the adopted scheme explained, going into detail in each of its parts. After the development, the initial time measurement results are presented, achieving time resolutions below 100 ps for multiple channels. Once characterized, the system is tested with a breast PET prototype, whose technology detectors are based on Position Sensitive PhotoMultiplier Tubes (PSPMTs), performing TOF measurements for different scenarios. After this point, tests based on two Silicon Photomultipliers (SiPMs) modules were carried out. SiPMs are immune to magnetic fields, among other advantages. This is an important feature since there is a significant interest in combining PET and Magnetic Resonances (MR). Each of the two detector modules used are composed of a single crystal pixel. The electronic conditioning circuits are designed, taking into account the most influential parameters in time resolution. After these results, an array of 144 SiPMs is tested, optimizing several parameters, which directly impact on the system performance. Having demonstrated the system capabilities, an optimization process is devised. On the one hand, TDC measurements are enhanced up to 40 ps of precision. On the other hand, a coincidence algorithm is developed, which is responsible of identifying detector pairs that have registered an event within certain time window. Finally, the Thesis conclusions and the future work are presented, followed by the references. A list of publications and attended congresses are also provided.
Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma
Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia
2015-01-01
PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538
Wiesmüller, Marco; Quick, Harald H; Navalpakkam, Bharath; Lell, Michael M; Uder, Michael; Ritt, Philipp; Schmidt, Daniela; Beck, Michael; Kuwert, Torsten; von Gall, Carl C
2013-01-01
PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake. A total of 46 patients underwent a whole-body PET/CT scan 1 h after injection and an average of 88 min later a second scan using a hybrid PET/MR system. The radioactive tracers used were (18)F-deoxyglucose (FDG), (18)F-ethylcholine (FEC) and (68)Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PET(CT)) and from PET/MR (PET(MR)) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUV(max) and SUV(avg), respectively) were calculated. Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PET(CT) were identified by PET(MR) (99.2 %). In 38 patients (88.4 %), the same number of foci were identified by PET(CT) and by PET(MR). In four patients, more lesions were identified by PET(MR) than by PET(CT), in one patient PET(CT) revealed an additional focus compared to PET(MR). The mean SUV(max) and SUV(avg) of all lesions determined by PET(MR) were by 21 % and 11 % lower, respectively, than the values determined by PET(CT) (p < 0.05), and a strong correlation between these variables was identified (Spearman rho 0.835; p < 0.01). PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PET(CT) and PET(MR) were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PET(MR) and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.
Pinilla, I; Gómez-León, N; Del Campo-Del Val, L; Hernandez-Maraver, D; Rodríguez-Vigil, B; Jover-Díaz, R; Coya, J
2011-10-01
The aim of this paper was to compare the accuracy of contrast-enhanced computed tomography (CT), positron emission tomography (PET), unenhanced low-dose PET/CT (LD-PET/CT) and full-dose enhanced PET/CT (FD-PET/CT) for the initial staging of lymphoma. One hundred and one lymphoma patients were examined by [18F]FDG-PET/CT including unenhanced low-dose CT and enhanced full-dose CT. Each modality of PET/CT was evaluated by a nuclear medicine physician and a radiologist unaware of the other modality, while the CT and PET images were interpreted separately by another independent radiologist and nuclear medicine physician respectively. The nodal and extranodal lesions detected by each technique were compared with a reference standard. For nodal assessment, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative LR (LR-) of LD-PET/CT were 97%, 96%, 98%, 95%, 26 and 0.02 respectively, and those of FD-PET/CT were 97%, 97%, 98%, 95%, 36 and 0.02. These results were significantly better than those of PET (sensitivity 82%, specificity 81%, PPV 88%, NPV 72%, LR+ 4.3, LR- 0.21). Likewise, both PET/CT displayed a higher sensitivity, NPV and LR- than CT (91%, 84%, 0.1 respectively). For organ evaluation, both modalities of PET/CT also had significantly better sensitivity and NPV than that of PET (LD-PET/CT: sensitivity 92%, NPV 90%; FD-PET/CT sensitivity 94%, NPV 92%; PET: sensitivity 70%, NPV 69%). The sensitivity, specificity, PPV and NPV for bone marrow involvement were 29%, 84%, 45% and 72% respectively for PET, and 29%, 90%, 56%, and 74% for both, LD-PET/CT, and FD-PET/CT. No significant differences were found between LD-PET/CT and FD-PET/CT, but FD-PET/CT detected important incidental findings in 5.9% of patients. PET/CT is an accurate technique for the initial staging of lymphomas without significant differences between LD-PET/CT and FD-PET/CT. FD-PET/CT detects relevant incidental findings that are missed on LD-PET/CT.
The Petit Rat (pet/pet), a New Semilethal Mutant Dwarf Rat with Thymic and Testicular Anomalies
Chiba, Junko; Suzuki, Katsushi; Suzuki, Hiroetsu
2008-01-01
The petit rat (pet/pet) is a recently discovered semilethal mutant dwarf. The neonatal pet/pet rats had a low body weight and small thymus and testis. During the first 3 d after birth, 50% of the male and 80% of the female pet/pet pups were lost or found dead. Surviving pet/pet rats showed marked retardation of postnatal growth, and their body weights were 41% (female rats) and 32% (male rats) of those of normal rats at the adult stage. The pet/pet rats exhibited proportional dwarfism, and their longitudinal bones were shorter than those of controls without skeletal malformations. Most organs of male pet/pet rats, especially the thymus, testis, adipose tissue surrounding the kidney, and accessory sex organs, weighed markedly less at 140 d of age than did those of their normal counterparts. The thymus of pet/pet rats was small with abnormal thymic follicles. Testes from pet/pet rats exhibited 2 patterns of abnormal histology. Spermatogenesis was present in testes that were only slightly anomalous, but the seminiferous tubules were reduced in diameter. In severely affected testes, most of the seminiferous tubules showed degeneration, and interstitial tissue was increased. Plasma growth hormone concentrations did not differ between pet/pet and normal male rats. The dwarf phenotype of pet/pet rats was inherited as an autosomal recessive trait. These results indicate that the pet/pet rat has a semilethal growth-hormone-independent dwarf phenotype that is accompanied by thymic and testicular anomalies and low birth weight. PMID:19149412
Downes, Martin J; Devitt, Catherine; Downes, Marie T; More, Simon J
2017-01-01
Pet cat and dog obesity contributes to increased risk of several diseases, including cancer and diabetes mellitus as well as a worsening of orthopaedic problems, and a reduction in survival rate. This study aims to develop a better understanding of cat and dog owners' self-reported beliefs and factors that influence owner behaviour around feeding and exercising their pet cat or dog, as there is a lack of in-depth understanding in this area. Seven focus group discussions, with 43 pet owners in total, were conducted. Pet owners often reported a perceived a low level of control over feeding; often undermined by other people feeding of their pet, their pets begging for food, and their pets attitude towards food. Treats were used in the absence of owner control over pet begging and emotional attachment, and to influence pet behaviour. The majority of participants had positive attitudes to pet exercise, which could be related to pet specific requirements, especially differences in cats and dogs. There were some negative experiences of stress associated with dog walking and fears over aggressive confrontations with other dogs. Feeding one's pet is influenced by beliefs about pet specific needs, pet food and pet health, pet owners' perceived control over feeding, and the implications for the pet owner. Pet exercise is influenced by beliefs about pet specific exercise needs, and the implications of exercising one's pet for the pet owner. Understanding owner behaviours on feeding and exercise allows for a more targeted approach to preventing and treating pet obesity.
Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests.
Demir, Mustafa; Toklu, Türkay; Abuqbeitah, Mohammad; Çetin, Hüseyin; Sezgin, H Sezer; Yeyin, Nami; Sönmezoğlu, Kerim
2018-02-01
The aim of the present study was to compare the performance of positron emission tomography (PET) component of PET/computed tomography (CT) with new emerging PET/magnetic resonance (MR) of the same vendor. According to National Electrical Manufacturers Association NU2-07, five separate experimental tests were performed to evaluate the performance of PET scanner of General Electric GE company; SIGNATM model PET/MR and GE Discovery 710 model PET/CT. The main investigated aspects were spatial resolution, sensitivity, scatter fraction, count rate performance, image quality, count loss and random events correction accuracy. The findings of this study demonstrated superior sensitivity (~ 4 folds) of PET scanner in PET/MR compared to PET/CT system. Image quality test exhibited higher contrast in PET/MR (~ 9%) compared with PET/CT. The scatter fraction of PET/MR was 43.4% at noise equivalent count rate (NECR) peak of 218 kcps and the corresponding activity concentration was 17.7 kBq/cc. Whereas the scatter fraction of PET/CT was found as 39.2% at NECR peak of 72 kcps and activity concentration of 24.3 kBq/cc. The percentage error of the random event correction accuracy was 3.4% and 3.1% in PET/MR and PET/CT, respectively. It was concluded that PET/MR system is about 4 times more sensitive than PET/CT, and the contrast of hot lesions in PET/MR was ~ 9% higher than PET/CT. These outcomes also emphasize the possibility to achieve excellent clinical PET images with low administered dose and/or a short acquisition time in PET/MR.
The petit rat (pet/pet), a new semilethal mutant dwarf rat with thymic and testicular anomalies.
Chiba, Junko; Suzuki, Katsushi; Suzuki, Hiroetsu
2008-12-01
The petit rat (pet/pet) is a recently discovered semilethal mutant dwarf. The neonatal pet/pet rats had a low body weight and small thymus and testis. During the first 3 d after birth, 50% of the male and 80% of the female pet/pet pups were lost or found dead. Surviving pet/pet rats showed marked retardation of postnatal growth, and their body weights were 41% (female rats) and 32% (male rats) of those of normal rats at the adult stage. The pet/pet rats exhibited proportional dwarfism, and their longitudinal bones were shorter than those of controls without skeletal malformations. Most organs of male pet/pet rats, especially the thymus, testis, adipose tissue surrounding the kidney, and accessory sex organs, weighed markedly less at 140 d of age than did those of their normal counterparts. The thymus of pet/pet rats was small with abnormal thymic follicles. Testes from pet/pet rats exhibited 2 patterns of abnormal histology. Spermatogenesis was present in testes that were only slightly anomalous, but the seminiferous tubules were reduced in diameter. In severely affected testes, most of the seminiferous tubules showed degeneration, and interstitial tissue was increased. Plasma growth hormone concentrations did not differ between pet/pet and normal male rats. The dwarf phenotype of pet/pet rats was inherited as an autosomal recessive trait. These results indicate that the pet/pet rat has a semilethal growth-hormone-independent dwarf phenotype that is accompanied by thymic and testicular anomalies and low birth weight.
Pet Problems at Home: Pet Problems in the Community.
ERIC Educational Resources Information Center
Soltow, Willow
1984-01-01
Discusses problems of pets in the community, examining the community's role related to disruptive pets and pet overpopulation. Also discusses pet problems at home, offering advice on selecting a pet, meeting a pet's needs, and disciplining pets. Includes a list of books, films/filmstrips, teaching materials, and various instructional strategies.…
Lee, Soo Jin; Paeng, Jin Chul; Goo, Jin Mo; Lee, Jeong Min; Cheon, Gi Jeong; Lee, Dong Soo; Chung, June-Key; Kang, Keon Wook
2017-04-01
The purpose of this study was to compare quantitative indexes for fluorine-18 fluorodeoxyglucose uptake and metabolic volume between PET/MRI and PET/CT. Sixty-six patients with solid tumors (32 with lung cancer and 34 with pancreatic cancer) who underwent sequential fluorine-18 fluorodeoxyglucose PET/MRI and PET/CT were retrospectively enrolled. On PET images, maximum and peak standardized uptake values (SUVmax and SUVpeak, respectively), and maximum tumor-to-liver ratio (TLRmax) were measured. Metabolic tumor volume (MTV) and total-lesion glycolysis (TLG) with margin thresholds of 50% SUVmax and SUV 2.5 (MTV50%, MTV2.5; TLG50%, TLG2.5, respectively) were compared between PET/MRI and PET/CT, with patients classified into two groups using imaging protocol (the PET/MRI-first and PET/CT-first groups). There were significant correlations of all tested indexes between PET/MRI and PET/CT (r=0.867-0.987, P<0.001). SUVmax and SUVpeak were lower on PET/MRI regardless of imaging protocol (P<0.001 in the PET/MRI-first group). In contrast, TLRmax exhibited reverse results between the PET/MRI-first and PET/CT-first groups. MTV50% and TLG values varied between PET/MRI and PET/CT, as well as between the PET/MRI-first and PET/CT-first groups. However, MTV2.5 was relatively robust against imaging protocol and modality. There are significant correlations of the quantitative indexes between PET/MRI and PET/CT. However, uptake indexes of SUVmax and SUVpeak are lower on PET/MRI than on PET/CT, and volumetric indexes of MTV50% and TLG values also exhibited significant differences. It may be suggested that TLRmax and MTV2.5 are relatively more appropriate indexes than others when PET/MRI and PET/CT are used interchangeably.
... PET - chest; PET - lung; PET - tumor imaging; PET/CT - lung; Solitary pulmonary nodule - PET ... minutes. PET scans are performed along with a CT scan. This is because the combined information from ...
Positron Emission Tomography (PET)
DOE R&D Accomplishments Database
Welch, M. J.
1990-01-01
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.
Novel remote sensor systems: design, prototyping, and characterization
NASA Astrophysics Data System (ADS)
Kayastha, V.; Gibbons, S.; Lamb, J. E.; Giedd, R. E.
2014-06-01
We have designed and tested a prototype TRL4 radio-frequency (RF) sensing platform containing a transceiver that interrogates a passive carbon nanotube (CNT)-based sensor platform. The transceiver can be interfaced to a server technology such as a Bluetooth® or Wi-Fi device for further connectivity. The novelty of a very-low-frequency (VLF) implementation in the transceiver design will ultimately enable deep penetration into the ground or metal structures to communicate with buried sensing platforms. The sensor platform generally consists of printed electronic devices made of CNTs on flexible poly(ethylene terephthalate) (PET) and Kapton® substrates. This novel remote sensing system can be integrated with both passive and active sensing platforms. It offers unique characteristics suitable for a variety of sensing applications. The proposed sensing platforms can take on different form factors and the RF output of the sensing platforms could be modulated by humidity, temperature, pressure, strain, or vibration signals. Resonant structures were designed and constructed to operate in the very-high-frequency (VHF) and VLF ranges. In this presentation, we will report results of our continued effort to develop a commercially viable transceiver capable of interrogating the conformally mounted sensing platforms made from CNTs or silver-based nanomaterials on polyimide substrates over a broad range of frequencies. The overall performance of the sensing system with different sensing elements and at different frequency ranges will be discussed.
ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis
Li, Guipeng; Chen, Yang; Snyder, Michael P.; Zhang, Michael Q.
2017-01-01
ChIA-PET2 is a versatile and flexible pipeline for analyzing different types of ChIA-PET data from raw sequencing reads to chromatin loops. ChIA-PET2 integrates all steps required for ChIA-PET data analysis, including linker trimming, read alignment, duplicate removal, peak calling and chromatin loop calling. It supports different kinds of ChIA-PET data generated from different ChIA-PET protocols and also provides quality controls for different steps of ChIA-PET analysis. In addition, ChIA-PET2 can use phased genotype data to call allele-specific chromatin interactions. We applied ChIA-PET2 to different ChIA-PET datasets, demonstrating its significantly improved performance as well as its ability to easily process ChIA-PET raw data. ChIA-PET2 is available at https://github.com/GuipengLi/ChIA-PET2. PMID:27625391
18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.
Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun
2011-08-01
To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, W.; Yin, J.; Li, C.
This paper presents a novel front-end electronics based on a front-end ASIC with post digital filtering and calibration dedicated to CZT detectors for PET imaging. A cascade amplifier based on split-leg topology is selected to realize the charge-sensitive amplifier (CSA) for the sake of low noise performances and the simple scheme of the power supplies. The output of the CSA is connected to a variable-gain amplifier to generate the compatible signals for the A/D conversion. A multi-channel single-slope ADC is designed to sample multiple points for the digital filtering and shaping. The digital signal processing algorithms are implemented by amore » FPGA. To verify the proposed scheme, a front-end readout prototype ASIC is designed and implemented in 0.35 μm CMOS process. In a single readout channel, a CSA, a VGA, a 10-bit ADC and registers are integrated. Two dummy channels, bias circuits, and time controller are also integrated. The die size is 2.0 mm x 2.1 mm. The input range of the ASIC is from 2000 e{sup -} to 100000 e{sup -}, which is suitable for the detection of the X-and gamma ray from 11.2 keV to 550 keV. The linearity of the output voltage is less than 1 %. The gain of the readout channel is 40.2 V/pC. The static power dissipation is about 10 mW/channel. The above tested results show that the electrical performances of the ASIC can well satisfy PET imaging applications. (authors)« less
Novel EDTA-ligands containing an integral perylene bisimide (PBI) core as an optical reporter unit.
Marcia, Mario; Singh, Prabhpreet; Hauke, Frank; Maggini, Michele; Hirsch, Andreas
2014-09-28
The synthesis, characterization and metal complexation of a new class of perylene bisimides (PBIs) as an integral part of ethylenediaminetetraacetic acid (EDTA) are reported. The simplest representative, namely derivative 1a, was synthesized both by a convergent as well as a direct approach while the elongated derivatives, 1b and 1c, were obtained only via a convergent synthetic pathway. All these new prototypes of water-soluble perylenes are bolaamphiphiles and were fully characterized by (1)H- and (13)C-NMR spectroscopy, matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and IR spectroscopy. In order to acquaint ourselves with the behaviour in solution of our PBIs bearing dendritic wedges, the simplest derivative, 1a, was chosen and tested by means of UV/Vis and fluorescence spectroscopy as well as by zeta-potential measurements. A photoexcitation induced intramolecular photo-electron transfer (PET) can be observed in these molecules. Therefore their potential applications as sensors can be imagined. Model compound 1a efficiently coordinates trivalent metal cations both in water and dimethyl sulfoxide (DMSO). Significantly, the effects of the complexation strongly depend on the aggregation state of the PBI molecules in solution. As a matter of fact, in water, the presence of M(3+) ions triggers the formation of light emitting supramolecular aggregates (excimers). On the other hand, in DMSO-rich solutions metal complexation leads to the suppression of the PET and leads to a strong fluorescence enhancement.
PET/MRI: Where Might It Replace PET/CT?
Ehman, Eric C.; Johnson, Geoffrey B.; Villanueva-Meyer, Javier E.; Cha, Soonmee; Leynes, Andrew Palmera; Larson, Peder Eric Zufall; Hope, Thomas A.
2017-01-01
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/ CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. PMID:28370695
Chiu, Kuo Ping; Wong, Chee-Hong; Chen, Qiongyu; Ariyaratne, Pramila; Ooi, Hong Sain; Wei, Chia-Lin; Sung, Wing-Kin Ken; Ruan, Yijun
2006-08-25
We recently developed the Paired End diTag (PET) strategy for efficient characterization of mammalian transcriptomes and genomes. The paired end nature of short PET sequences derived from long DNA fragments raised a new set of bioinformatics challenges, including how to extract PETs from raw sequence reads, and correctly yet efficiently map PETs to reference genome sequences. To accommodate and streamline data analysis of the large volume PET sequences generated from each PET experiment, an automated PET data process pipeline is desirable. We designed an integrated computation program package, PET-Tool, to automatically process PET sequences and map them to the genome sequences. The Tool was implemented as a web-based application composed of four modules: the Extractor module for PET extraction; the Examiner module for analytic evaluation of PET sequence quality; the Mapper module for locating PET sequences in the genome sequences; and the Project Manager module for data organization. The performance of PET-Tool was evaluated through the analyses of 2.7 million PET sequences. It was demonstrated that PET-Tool is accurate and efficient in extracting PET sequences and removing artifacts from large volume dataset. Using optimized mapping criteria, over 70% of quality PET sequences were mapped specifically to the genome sequences. With a 2.4 GHz LINUX machine, it takes approximately six hours to process one million PETs from extraction to mapping. The speed, accuracy, and comprehensiveness have proved that PET-Tool is an important and useful component in PET experiments, and can be extended to accommodate other related analyses of paired-end sequences. The Tool also provides user-friendly functions for data quality check and system for multi-layer data management.
Iagaru, Andrei; Mittra, Erik; Minamimoto, Ryogo; Jamali, Mehran; Levin, Craig; Quon, Andrew; Gold, Garry; Herfkens, Robert; Vasanawala, Shreyas; Gambhir, Sanjiv Sam; Zaharchuk, Greg
2015-01-01
The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.
Modified physiologically equivalent temperature—basics and applications for western European climate
NASA Astrophysics Data System (ADS)
Chen, Yung-Chang; Matzarakis, Andreas
2018-05-01
A new thermal index, the modified physiologically equivalent temperature (mPET) has been developed for universal application in different climate zones. The mPET has been improved against the weaknesses of the original physiologically equivalent temperature (PET) by enhancing evaluation of the humidity and clothing variability. The principles of mPET and differences between original PET and mPET are introduced and discussed in this study. Furthermore, this study has also evidenced the usability of mPET with climatic data in Freiburg, which is located in Western Europe. Comparisons of PET, mPET, and Universal Thermal Climate Index (UTCI) have shown that mPET gives a more realistic estimation of human thermal sensation than the other two thermal indices (PET, UTCI) for the thermal conditions in Freiburg. Additionally, a comparison of physiological parameters between mPET model and PET model (Munich Energy Balance Model for Individual, namely MEMI) is proposed. The core temperatures and skin temperatures of PET model vary more violently to a low temperature during cold stress than the mPET model. It can be regarded as that the mPET model gives a more realistic core temperature and mean skin temperature than the PET model. Statistical regression analysis of mPET based on the air temperature, mean radiant temperature, vapor pressure, and wind speed has been carried out. The R square (0.995) has shown a well co-relationship between human biometeorological factors and mPET. The regression coefficient of each factor represents the influence of the each factor on changing mPET (i.e., ±1 °C of T a = ± 0.54 °C of mPET). The first-order regression has been considered predicting a more realistic estimation of mPET at Freiburg during 2003 than the other higher order regression model, because the predicted mPET from the first-order regression has less difference from mPET calculated from measurement data. Statistic tests recognize that mPET can effectively evaluate the influences of all human biometeorological factors on thermal environments. Moreover, a first-order regression function can also predict the thermal evaluations of the mPET by using human biometeorological factors in Freiburg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, M.J.
Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy inmore » PET, and the futures of PET. 22 figs.« less
Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.
Hope, Thomas A; Pampaloni, Miguel Hernandez; Nakakura, Eric; VanBrocklin, Henry; Slater, James; Jivan, Salma; Aparici, Carina Mari; Yee, Judy; Bergsland, Emily
2015-08-01
To evaluate a simultaneous PET/MRI approach to imaging patients with neuroendocrine tumor using a combination of (68)Ga-DOTA-TOC as a PET contrast agent and gadoxetate disodium as a hepatobiliary MRI contrast agent. Ten patients with neuroendocrine tumor with known or suspected hepatic disease were imaged using a (68)Ga-DOTA-TOC PET/CT immediately followed by a 3.0T time-of-flight PET/MRI, using a combined whole body and liver specific imaging. The presence of lesions and DOTA-TOC avidity were assessed on CT, PET from PET/CT, diffusion weighted imaging, hepatobiliary phase imaging (HBP), and PET from PET/MRI. Maximum standardized uptake values (SUVmax) in hepatic lesions and nodal metastases were compared between PET/CT and PET/MRI, as were detection rates using each imaging approach. A total of 101 hepatic lesions were identified, 47 of which were DOTA-TOC avid and able to be individually measured on both PET/CT and PET/MRI. HBP imaging had a higher sensitivity for detection of hepatic lesions compared to CT or PET (99% vs. 46% and 64%, respectively; p values <0.001). There was a strong correlation between SUVmax of liver lesions obtained with PET/CT compared to PET/MR imaging (Pearson's correlation = 0.91). For nodal disease, CT had a higher sensitivity compared to whole body MRI (p = 0.015), although PET acquired from PET/MRI detected slightly more lesions compared to PET from PET/CT. A simultaneous PET/MRI using both (68)Ga-DOTA-TOC and gadoxetate disodium was successful in whole body staging of patients with neuroendocrine tumor. HBP imaging had an increased detection rate for hepatic metastases.
NASA Astrophysics Data System (ADS)
Canadas, Mario; Embid, Miguel; Lage, Eduardo; Desco, Manuel; Vaquero, Juan José; Perez, José Manuel
2011-02-01
In this work, we compare two commercial positron emission tomography (PET) scanners installed at CIEMAT (Madrid, Spain): the ClearPET and the rPET-1. These systems have significant geometrical differences, such as the axial field of view (110 mm on ClearPET versus 45.6 mm on rPET-1), the configuration of the detectors (whole ring on ClearPET versus one pair of planar blocks on rPET-1) and the use of an axial shift between ClearPET detector modules. We used an assessment procedure that fulfilled the recommendations of the National Electrical Manufacturers Association (NEMA) NU 4-2008 standard. The methodology includes studies of spatial resolution, sensitivity, scatter fraction, count losses and image quality. Our experiments showed a central spatial resolution of 1.5 mm (transaxial), 3.2 mm (axial) for the ClearPET and 1.5 mm (transaxial), 1.6 mm (axial) for the rPET-1, with a small variation across the transverse axis on both scanners ( 1 mm). The absolute sensitivity at the centre of the field of view was 4.7% for the ClearPET and 1.0% for the rPET-1. The peak noise equivalent counting rate for the mouse-sized phantom was 73.4 kcps reached at 0.51 MBq/mL on the ClearPET and 29.2 kcps at 1.35 MBq/mL on the rPET-1. The recovery coefficients measured using the image quality phantom ranged from 0.11 to 0.89 on the ClearPET and from 0.14 to 0.81 on the rPET-1. The overall performance shows that both the ClearPET and the rPET-1 systems are very suitable for preclinical research and imaging of small animals.
Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Li, Hong-Sheng; Ji, Yun-Hai; Lv, Liang
2015-06-01
It is widely accepted that conventional (18)F-FDG PET/CT (whole-body static (18)F-FDG PET/CT, WB (18)F-FDG PET/CT) has a low detection rate for hepatocellular carcinoma (HCC). We prospectively assessed the role of early dynamic (18)F-FDG PET/CT (ED (18)F-FDG PET/CT) and WB (18)F-FDG PET/CT in detecting HCC, and we quantified the added value of ED (18)F-FDG PET/CT to WB (18)F-FDG PET/CT. Twenty-two patients with 37 HCC tumors (HCCs) who underwent both a liver ED (18)F-FDG PET/CT (performed simultaneously with a 5.5 MBq/kg (18)F-FDG bolus injection and continued for 240 s) and a WB (18)F-FDG PET/CT were enrolled in the study. The WB (18)F-FDG PET/CT and ED (18)F-FDG PET/CT scans were positive in 56.7% (21/37) and 78.4% (29/37) HCCs, respectively (P<0.05). ED (18)F-FDG PET/CT in conjunction with WB (18)F-FDG PET/CT (one-stop (18)F-FDG PET/CT) improved the positive detection rates of WB and ED (18)F-FDG PET/CT alone from 56.7% and 78.4% to 91.9% (34/37) (P<0.001 and P>0.05, respectively). One-stop (18)F-FDG PET/CT appears to be useful to improve WB (18)F-FDG PET/CT for HCC detection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J
2014-03-01
The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.
Rhoades, Harmony; Winetrobe, Hailey; Rice, Eric
2014-01-01
As many as 25% of homeless persons have pets. To our knowledge, pet ownership has not been studied quantitatively with homeless youth. This study examined pet ownership among 398 homeless youth utilizing two Los Angeles drop-in centers. Twenty-three percent of homeless youth had a pet. The majority of pet owners reported that their pets kept them company and made them feel loved; nearly half reported that their pets made it more difficult to stay in a shelter. Pet owners reported fewer symptoms of depression and loneliness than their non-pet owning peers. Pet ownership was associated with decreased utilization of housing and job-finding services, and decreased likelihood of currently staying in a shelter. These findings elucidate many of the positive benefits of pet ownership for homeless youth, but importantly highlight that pet ownership may negatively impact housing options. Housing and other services must be sensitive to the needs of homeless youth with pets. PMID:24728815
Rhoades, Harmony; Winetrobe, Hailey; Rice, Eric
2015-04-01
As many as 25 % of homeless persons have pets. To our knowledge, pet ownership has not been studied quantitatively with homeless youth. This study examined pet ownership among 398 homeless youth utilizing two Los Angeles drop-in centers. Twenty-three percent of homeless youth had a pet. The majority of pet owners reported that their pets kept them company and made them feel loved; nearly half reported that their pets made it more difficult to stay in a shelter. Pet owners reported fewer symptoms of depression and loneliness than their non-pet owning peers. Pet ownership was associated with decreased utilization of housing and job-finding services, and decreased likelihood of currently staying in a shelter. These findings elucidate many of the positive benefits of pet ownership for homeless youth, but importantly highlight that pet ownership may negatively impact housing options. Housing and other services must be sensitive to the needs of homeless youth with pets.
Sensory analysis of pet foods.
Koppel, Kadri
2014-08-01
Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.
Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar
2014-01-01
This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P < 0.0001). On regionwise analysis, Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P < 0.003). Although Ga-DOTA-NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.
Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR.
Catalano, Onofrio A; Coutinho, Artur M; Sahani, Dushyant V; Vangel, Mark G; Gee, Michael S; Hahn, Peter F; Witzel, Thomas; Soricelli, Andrea; Salvatore, Marco; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce R; Gervais, Debra
2017-04-01
Correct staging is imperative for colorectal cancer (CRC) since it influences both prognosis and management. Several imaging methods are used for this purpose, with variable performance. Positron emission tomography-magnetic resonance (PET/MR) is an innovative imaging technique recently employed for clinical application. The present study was undertaken to compare the staging accuracy of whole-body positron emission tomography-computed tomography (PET/CT) with whole-body PET/MR in patients with both newly diagnosed and treated colorectal cancer. Twenty-six patients, who underwent same day whole-body (WB) PET/CT and WB-PET/MR, were evaluated. PET/CT and PET/MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Correct staging was compared between methods using McNemar's Chi square test. The two methods were in agreement and correct for 18/26 (69%) patients, and in agreement and incorrect for one patient (3.8%). PET/MR and PET/CT stages for the remaining 7/26 patients (27%) were discordant, with PET/MR staging being correct in all seven cases. PET/MR significantly outperformed PET/CT overall for accurate staging (P = 0.02). PET/MR outperformed PET/CT in CRC staging. PET/MR might allow accurate local and distant staging of CRC patients during both at the time of diagnosis and during follow-up.
NASA Astrophysics Data System (ADS)
Pierre, Cynthia; Torkelson, John
2009-03-01
A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).
Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.
Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark
2017-12-01
The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and the parametric PET-MR images were excellent. TOF and reconstruction settings had little impact on MBF values.
18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma
Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.
2016-01-01
Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0.83) and SUVmean (r = 0.81) but no significant correlation between ADCmin and SUVmax (18F-FDG PET/CT: r = 0.46, P = 0.65; 18F-FDG PET/MR: r = 0.64, P = 0.53) or between ADCmean and SUVmean (respectively, r = −0.14, P = 0.17 for the correlation with PET/CT and r = −0.14, P = 0.14 for the correlation with PET/MR). Conclusions 18F-FDG PET/MR and 18F-FDG PET/CT show a similar diagnostic performance in lymphoma patients. However, if DWI is included in the 18F-FDG PET/MR protocol, results surpass those of 18F-FDG PET/CT because of the higher sensitivity of DWI for mucosa-associated lymphoid tissue lymphomas. PMID:26784400
NASA Astrophysics Data System (ADS)
Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong
2016-05-01
Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.
Do allergic families avoid keeping furry pets?
Bertelsen, R J; Carlsen, K C L; Granum, B; Carlsen, K-H; Håland, G; Devulapalli, C S; Munthe-Kaas, M C; Mowinckel, P; Løvik, M
2010-06-01
Studies addressing the relationship between pet keeping and development of asthma and allergies may be influenced by pet avoidance in families with a history of allergic disease. Following a cohort of 1019 children in Oslo till 10 years of age, we studied the association of pet keeping with socio-economic factors and allergic disease in the family. A family history of asthma and rhinoconjunctivitis was not significantly associated with pet ownership at birth or with pet removal by 10 years. Acquiring cats and dogs was less likely if the child had allergic rhinoconjunctivitis, whereas no association was seen with asthma (in any family member). Single parenthood increased the likelihood of acquiring a cat, smoking parents more often had cats or dogs, and having older siblings was associated with keeping dogs and other furry pets. Among 319 families reporting pet avoidance, 70% never had pets, 8% had given up pets, and 22% avoided a particular type of pet only. Twenty-four per cent of the parents failed to retrospectively report pet keeping during the child's first year of life. Overall, allergic rhinitis, but not asthma was associated with actual pet avoidance, whereas the strongest predictors for keeping pets were found to be socio-economic factors. Allergic disease in a child most often does not lead to the removal of the family's furry pet. Pet avoidance is associated with allergic symptoms, but not asthma. Socio-economic factors like parental education, single parenthood and smoking affects the families' decisions on pet keeping, including the type of pets the families will avoid or acquire. The large recall error demonstrated points to the need for prospective data regarding pet keeping.
Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A
2014-03-01
Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging exhibited a high correlation (R = 0.74 and 0.86, respectively; P < 0.0001). Size measurements showed an excellent correlation between (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT (R = 0.99; P < 0.0001). The lower and upper limits of agreement between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging using Bland-Altman analysis were -2.34 to 3.89 for SUV(mean), -7.42 to 4.40 for SUV(max), and -0.59 to 0.83 for the tumor size, respectively. (18)F-FDG PET/MR imaging using a dedicated pulmonary MR imaging protocol, compared with (18)F-FDG PET/CT, does not provide advantages in thoracic staging in NSCLC patients.
Hawkins, Roxanne D.; Williams, Joanne M.
2017-01-01
Attachment to pets has an important role in children’s social, emotional, and cognitive development, mental health, well-being, and quality of life. This study examined associations between childhood attachment to pets and caring and friendship behaviour, compassion, and attitudes towards animals. This study also examined socio-demographic differences, particularly pet ownership and pet type. A self-report survey of over one thousand 7 to 12 year-olds in Scotland, UK, revealed that the majority of children are strongly attached to their pets, but attachment scores differ depending on pet type and child gender. Analysis revealed that attachment to pets is facilitated by compassion and caring and pet-directed friendship behaviours and that attachment to pets significantly predicts positive attitudes towards animals. The findings have implications for the promotion of prosocial and humane behaviour. Encouraging children to participate in pet care behaviour may promote attachment between children and their pet, which in turn may have a range of positive outcomes for both children (such as reduced aggression, better well-being, and quality of life) and pets (such as humane treatment). This study enhances our understanding of childhood pet attachment and has implications for humane education and promoting secure emotional attachments in childhood. PMID:28481256
Treglia, Giorgio; Muoio, Barbara; Giovanella, Luca; Salvatori, Massimo
2013-05-01
Positron emission tomography (PET) and PET/computed tomography (PET/CT) with different tracers have been increasingly used in patients with thyroid tumours. The aim of this article is to perform an overview based on literature data about the usefulness of PET imaging in this setting. The role of Fluorine-18-Fluorodeoxyglucose (FDG) PET and PET/CT in differentiated thyroid carcinoma (DTC) is well established, particularly in patients presenting with elevated serum thyroglobulin levels and negative radioiodine whole-body scan. Iodine-124 PET and PET/CT may serve a role in staging DTC and obtaining lesional dosimetry for a better and more rationale planning of treatment with Iodine-131. FDG-PET and PET/CT are useful in the post-thyroidectomy staging of high-risk patients with less differentiated histological subtypes. PET and PET/CT with different tracers seem to be useful methods in localizing the source of elevated calcitonin levels in patients with recurrent medullary thyroid carcinoma. Incorporation of FDG-PET or PET/CT into the initial workup of patients with indeterminate thyroid nodules at fine needle aspiration biopsy deserves further investigation. FDG-PET report should suggest further evaluation when focal thyroid incidentalomas are described because these findings are associated with a significant risk of cancer.
Hawkins, Roxanne D; Williams, Joanne M; Scottish Society For The Prevention Of Cruelty To Animals Scottish Spca
2017-05-06
Attachment to pets has an important role in children's social, emotional, and cognitive development, mental health, well-being, and quality of life. This study examined associations between childhood attachment to pets and caring and friendship behaviour, compassion, and attitudes towards animals. This study also examined socio-demographic differences, particularly pet ownership and pet type. A self-report survey of over one thousand 7 to 12 year-olds in Scotland, UK, revealed that the majority of children are strongly attached to their pets, but attachment scores differ depending on pet type and child gender. Analysis revealed that attachment to pets is facilitated by compassion and caring and pet-directed friendship behaviours and that attachment to pets significantly predicts positive attitudes towards animals. The findings have implications for the promotion of prosocial and humane behaviour. Encouraging children to participate in pet care behaviour may promote attachment between children and their pet, which in turn may have a range of positive outcomes for both children (such as reduced aggression, better well-being, and quality of life) and pets (such as humane treatment). This study enhances our understanding of childhood pet attachment and has implications for humane education and promoting secure emotional attachments in childhood.
Etchebehere, Elba C.; Hobbs, Brian P.; R.Milton, Denái; Malawi, Osama; Patel, Shreyaskumar; Benjamin, Robert S.; Macapinlac, Homer A.
2016-01-01
Purpose Twelve years ago a meta-analysis evaluated the diagnostic performance of 18F-FDG PET in assessing musculoskeletal soft tissue lesions (MsSTL). Currently, PET/CT has substituted PET imaging however there has not been any published meta-analysis on the use of PET/CT or a comparison of PET/CT with PET in the diagnosis of MsSTL. Therefore, we conducted a meta-analysis to identify the current diagnostic performance of 18F-FDG PET/CT and determine if there is added value when compared to PET. Patients and Methods A systematic review of English articles using MEDLINE PubMed, the Cochrane Library and EMBASE were searched from 1996 to March 2015. Studies exploring the diagnostic accuracy of 18F-FDG PET/CT (or dedicated PET) compared to histopathology in patients with MsSTL undergoing investigation for malignancy were included. Results Our meta-analysis included 14 articles composed of 755 patients with 757 soft tissue lesions. There were 451 (60%) malignant tumors and 306 benign lesions. The 18F-FDG PET/CT (and dedicated PET) mean sensitivity, specificity, accuracy, positive and negative predictive values for diagnosing MsSTL was 0.96 (0.90, 1.00), 0.77 (0.67, 0.86), 0.88 (0.85, 0.91), 0.86 (0.78, 0.94) and 0.91 (0.83, 0.99), respectively. The posterior mean (95% HPD interval) for the AUC was 0.92 (0.88, 0.96). PET/CT had higher specificity, accuracy and positive predictive value when compared to a dedicated PET (0.85, 0.89 and 0.91 vs 0.71, 0.85 and 0.82, respectively). Conclusions 18F-FDG PET/CT and dedicated PET are both highly accurate in the diagnosis of MsSTL. PET/CT is more accurate, specific and has a higher positive predictive value than PET. PMID:26631240
Burggraaff, Coreline N; Cornelisse, Alexander C; Hoekstra, Otto S; Lugtenburg, Pieternella J; de Keizer, Bart; Arens, Anne I J; Celik, Filiz; Huijbregts, Julia E; De Vet, Henrica C W; Zijlstra, Josee M
2018-05-04
We aimed to assess the interobserver agreement of Interim PET (I-PET) and End-of-Treatment PET (EoT-PET) using the Deauville 5-point scale (DS) in first-line DLBCL patients. Methods: I-PET and EoT-PET scans of DLBCL patients were performed in the HOVON84 study (2007-2012), an international multicenter randomized controlled trial. Patients received R-CHOP14 and were randomized to receive rituximab intensification in the first 4 cycles or not. I-PET was made after 4 cycles (for observational purposes), and EoT-PET scan after 6 or 8 cycles. Two independent central reviewers retrospectively scored all scans according to the DS-system, blinded to clinical outcomes. Results were dichotomised as 'negative' (DS: 1-3) or 'positive' (DS: 4-5). Besides percentage overall agreement we calculated agreement for positive and negative scores, expressed as positive agreement (PA) and negative agreement (NA), respectively. Results: 465 I-PET and 457 EoT-PET scans were centrally reviewed; baseline 18 F-FDG PET(/CT) was available in 75-77%, and CT in the remaining cases. Percentage overall agreement for I-PET and EoT-PET were 87.7% and 91.7% ( P =0.049), with NA of 92.0% and 95.0% ( P =0.091), and PA of 73.7% and 76.3% ( P =0.656), respectively. Conclusion: Interobserver agreement using DS in DLBCL patients in I-PET and EoT-PET yields high overall and negative agreement. The lower positive agreement suggests that EoT-PET/CT treatment evaluation in daily practice and I-PET adapted trials may benefit from dual reads and central review, respectively. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Georgi, Thomas Walter; Kluge, Regine; Kurch, Lars; Chavdarova, Lidia; Hasenclever, Dirk; Stoevesandt, Dietrich; Pelz, Tanja; Landman-Parker, Judith; Wallace, Hamish; Karlen, Jonas; Fernandez-Teijeiro, Ana; Cepelova, Michaela; Fossa, Alexander; Balwierz, Walentyna; Attarbaschi, Andishe; Ammann, Roland A; Pears, Jane; Hraskova, Andrea; Uyttebroeck, Anne; Beishuizen, Auke; Dieckmann, Karin; Leblanc, Thierry; Daw, Stephen; Baumann, Julia; Körholz, Dieter; Sabri, Osama; Mauz-Körholz, Christine
2018-04-13
Purpose: This study focused on skeletal involvement in FDG-PET (PET) in Hodgkin lymphoma (HL). We aimed at a systematic evaluation of the different types of skeletal involvement and their PET response after two cycles of chemotherapy (PET-2), to answer the question whether the current PET response criterion for skeletal involvement is suitable. A secondary objective was to observe the influence of initial uptake intensity and metabolic tumor volume (MTV) of skeletal lesions on the PET-2 response. Methods: Initial PET scans (PET-0) of 1068 pediatric HL patients from the EuroNet-PHL-C1 (C1) trial were evaluated by central review for skeletal involvement. Three types of skeletal lesions were distinguished: skeletal lesions detected only in PET (PETonly), bone marrow (BM) lesions confirmed by MRI or BM biopsy and bone lesions. Uptake intensity (measured as qPET value) and MTV were calculated for each skeletal lesion. All PET-2 scans were assessed for residual tumor activity. The rates of complete metabolic response in PET-2 of skeletal and nodal involvement were compared. Results: 139/1068 (13%) C1 patients showed skeletal involvement (44/139 PETonly patients, 32/139 BM patients and 63/139 bone patients). 101/139 (73%) patients became PET-2 negative in the skeleton while lymph node involvement was PET-2 negative in 94/139 (68%) patients. Highest skeletal PET-2 negative rate was seen in 42/44 (95%) PETonly patients, followed by 22/32 (69%) BM patients and 37/63 (59%) bone patients. Skeletal lesions who became PET-2 negative showed lower median values for initial qPET (2.74) and MTV (2ml) than lesions who remained PET-2 positive (3.84; 7ml). Conclusion: In this study with pediatric HL patients, the complete response rate in PET-2 of skeletal and nodal involvement was similar. Bone flare seemed to be irrelevant. Overall, the current skeletal PET response criterion - comparison with the local skeletal background - is well suited. Initial uptake intensity and MTV of skeletal lesions were predictive for the PET-2 result. Higher values for both parameters were associated with a worse PET-2 response. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Validation of a 4D-PET Maximum Intensity Projection for Delineation of an Internal Target Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, Jason, E-mail: jason.callahan@petermac.org; Kron, Tomas; Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne
2013-07-15
Purpose: The delineation of internal target volumes (ITVs) in radiation therapy of lung tumors is currently performed by use of either free-breathing (FB) {sup 18}F-fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT) or 4-dimensional (4D)-CT maximum intensity projection (MIP). In this report we validate the use of 4D-PET-MIP for the delineation of target volumes in both a phantom and in patients. Methods and Materials: A phantom with 3 hollow spheres was prepared surrounded by air then water. The spheres and water background were filled with a mixture of {sup 18}F and radiographic contrast medium. A 4D-PET/CT scan was performed of the phantom whilemore » moving in 4 different breathing patterns using a programmable motion device. Nine patients with an FDG-avid lung tumor who underwent FB and 4D-PET/CT and >5 mm of tumor motion were included for analysis. The 3 spheres and patient lesions were contoured by 2 contouring methods (40% of maximum and PET edge) on the FB-PET, FB-CT, 4D-PET, 4D-PET-MIP, and 4D-CT-MIP. The concordance between the different contoured volumes was calculated using a Dice coefficient (DC). The difference in lung tumor volumes between FB-PET and 4D-PET volumes was also measured. Results: The average DC in the phantom using 40% and PET edge, respectively, was lowest for FB-PET/CT (DCAir = 0.72/0.67, DCBackground 0.63/0.62) and highest for 4D-PET/CT-MIP (DCAir = 0.84/0.83, DCBackground = 0.78/0.73). The average DC in the 9 patients using 40% and PET edge, respectively, was also lowest for FB-PET/CT (DC = 0.45/0.44) and highest for 4D-PET/CT-MIP (DC = 0.72/0.73). In the 9 lesions, the target volumes of the FB-PET using 40% and PET edge, respectively, were on average 40% and 45% smaller than the 4D-PET-MIP. Conclusion: A 4D-PET-MIP produces volumes with the highest concordance with 4D-CT-MIP across multiple breathing patterns and lesion sizes in both a phantom and among patients. Freebreathing PET/CT consistently underestimates ITV when compared with 4D PET/CT for a lesion affected by respiration.« less
Al-Bayati, Mohammad; Grueneisen, Johannes; Lütje, Susanne; Sawicki, Lino M; Suntharalingam, Saravanabavaan; Tschirdewahn, Stephan; Forsting, Michael; Rübben, Herbert; Herrmann, Ken; Umutlu, Lale; Wetter, Axel
2018-01-01
To evaluate diagnostic accuracy of integrated 68Gallium labelled prostate-specific membrane antigen (68Ga-PSMA)-11 positron emission tomography (PET)/MRI in patients with primary prostate cancer (PCa) as compared to multi-parametric MRI. A total of 22 patients with recently diagnosed primary PCa underwent clinically indicated 68Ga-PSMA-11 PET/CT for initial staging followed by integrated 68Ga-PSMA-11 PET/MRI. Images of multi-parametric magnetic resonance imaging (mpMRI), PET and PET/MRI were evaluated separately by applying Prostate Imaging Reporting and Data System (PIRADSv2) for mpMRI and a 5-point Likert scale for PET and PET/MRI. Results were compared with pathology reports of biopsy or resection. Statistical analyses including receiver operating characteristics analysis were performed to compare the diagnostic performance of mpMRI, PET and PET/MRI. PET and integrated PET/MRI demonstrated a higher diagnostic accuracy than mpMRI (area under the curve: mpMRI: 0.679, PET and PET/MRI: 0.951). The proportion of equivocal results (PIRADS 3 and Likert 3) was considerably higher in mpMRI than in PET and PET/MRI. In a notable proportion of equivocal PIRADS results, PET led to a correct shift towards higher suspicion of malignancy and enabled correct lesion classification. Integrated 68Ga-PSMA-11 PET/MRI demonstrates higher diagnostic accuracy than mpMRI and is particularly valuable in tumours with equivocal results from PIRADS classification. © 2018 S. Karger AG, Basel.
Pet ownership and adolescent health: cross-sectional population study.
Mathers, Megan; Canterford, Louise; Olds, Tim; Waters, Elizabeth; Wake, Melissa
2010-12-01
To determine whether adolescent health and well-being are associated with having a pet in the household (any pet, or specifically dogs, cats or horses/ponies) or average daily time spent caring for/playing with pet(s). Design, setting and participants--Cross-sectional data from the third wave of the Health of Young Victorians Study (HOYVS), a school-based population study in Victoria, Australia. Predictors--Adolescent-reported pet ownership and average daily time spent caring for/playing with pet(s). Outcomes--Self-reported quality of life (KIDSCREEN); average 4-day daily physical activity level from a computerised diary; parent-proxy and self-reported physical and psychosocial health status (PedsQL); measured BMI status (not overweight, overweight, obese) and blood pressure. Statistical Analysis--Regression methods, adjusted for socio-demographic factors, and non-parametric methods. Household pet data were available for 928 adolescents (466 boys; mean age of 15.9 (SD 1.2) years). Most adolescents (88.7%) reported having a pet in their household. Of these, 75.1% reported no activity involving pets over the surveyed days. It appeared that neither owning a pet nor time spent caring for/playing with a pet was related, positively or negatively, to adolescent health or well-being. Despite high rates of pet ownership, adolescents had little interaction with pets. It appears that owning a pet and time spent caring for/playing with a pet was not clearly associated with adolescents' health or well-being. © 2010 The Authors. Journal of Paediatrics and Child Health © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Devitt, Catherine; Downes, Marie T.; More, Simon J.
2015-01-01
Background. Failure among pet owners to neuter their pets results in increased straying and overpopulation problems. Variations in neutering levels can be explained by cultural differences, differences in economic status in rural and urban locations, and owner perceptions about their pet. There are also differences between male and female pet owners. There is no research pertaining to Irish pet owner attitudes towards neutering their pets. This paper identified the perceptions of a sample of Irish cat and dog owners that influenced their decisions on pet neutering. Methods. This study was conducted using social science (qualitative) methods, including an interview-administered survey questionnaire and focus group discussions. Data was coded and managed using Nvivo 8 qualitative data analysis software. Results. Focus groups were conducted with 43 pet (cats and dogs) owners. Two major categories relating to the decision to neuter were identified: (1) enabling perceptions in the decision to neuter (subcategories were: controlling unwanted pet behaviour; positive perceptions regarding pet health and welfare outcomes; perceived owner responsibility; pet function; and the influence of veterinary advice), and (2) disabling perceptions in the decision to neuter (subcategories were: perceived financial cost of neutering; perceived adequacy of existing controls; and negative perceptions regarding pet health and welfare outcomes). Discussion. Pet owner sense of responsibility and control are two central issues to the decision to neuter their pets. Understanding how pet owners feel about topics such as pet neutering, can help improve initiatives aimed at emphasising the responsibility of population control of cats and dogs. PMID:26312187
9 CFR 2.6 - Annual license fees.
Code of Federal Regulations, 2014 CFR
2014-01-01
... research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets, directly or... animals to research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets..., dealers, exhibitors, retail pet stores, and persons for use as pets, during the preceding business year...
9 CFR 2.6 - Annual license fees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets, directly or... animals to research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets..., dealers, exhibitors, retail pet stores, and persons for use as pets, during the preceding business year...
9 CFR 2.6 - Annual license fees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets, directly or... animals to research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets..., dealers, exhibitors, retail pet stores, and persons for use as pets, during the preceding business year...
9 CFR 2.6 - Annual license fees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets, directly or... animals to research facilities, dealers, exhibitors, retail pet stores, and persons for use as pets..., dealers, exhibitors, retail pet stores, and persons for use as pets, during the preceding business year...
Melt rheological properties of nucleated PET/MWCNT nanocomposites
NASA Astrophysics Data System (ADS)
Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.
2018-05-01
This work investigates the effect of precipitated Polyethylene Terephthalate (p-PET) and loading of Multiwalled carbon nanotubes (MWCNT) on morphology and rheology of Polyethylene Terephthalate (PET)/MWCNT nanocomposites. As received PET and Self-Nucleated PET (Nuc-PET) nanocomposites with different loadings of multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing technique. Synthesized reorganized PET crystallizes rapidly from the melt and it is used in small quantities as a self-nucleating agent to make Nuc-PET. In the present study, Rheological properties of nanocomposites are obtained and results show with increase in MWCNT loading complex viscosity of nanocomposites increases. Nonterminal solid like rheological behavior of PET nanocomposites were observed at low frequencies, which indicates the formation of the network like structures of MWCNT in nanocomposites. Morphological and rheological properties of self-nucleated PET nanocomposites improved significantly may be due to self-nucleating agent p-PET. Morphological properties were studied by Scanning Electron Microscopy (SEM). SEM shows better dispersion of MWCNT in Nuc-PET nanocomposites.
Power Electronic Transformer based Three-Phase PWM AC Drives
NASA Astrophysics Data System (ADS)
Basu, Kaushik
A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common-mode voltage suppression at the load end, 3) High quality output voltage waveform (comparable to conventional space vector PWM modulated two level inverter) and 4) Minimization of output voltage loss, common-mode voltage switching and distortion of the load current waveform due to leakage inductance commutation. All of the proposed topologies along with the proposed control schemes have been analyzed and simulated in MATLABSimulink. A hardware prototype has been fabricated and tested. The simulation and experimental results verify the operation and advantages of the proposed topologies and their control.
TH-E-202-02: The Use of Hypoxia PET Imaging for Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humm, J.
2016-06-15
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
TH-E-202-00: PET for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
TH-E-202-03: PET for Tumor Response Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W.
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
Coercive control and abused women's decisions about their pets when seeking shelter.
Hardesty, Jennifer L; Khaw, Lyndal; Ridgway, Marcella D; Weber, Cheryl; Miles, Teresa
2013-09-01
The importance of pets in families, especially during major life stressors, is well documented. Research suggests links between pet ownership and intimate partner violence (IPV). This study explored abused women's decisions about pets when seeking help from a shelter. Interviews were conducted with 19 women who were pet owners. Using grounded theory methods, two patterns emerged surrounding abusers' treatment of pets, bonds to pets, women's decisions about pets upon seeking shelter, and future plans for pets. The presence of coercive control was central to these patterns. Women also discussed their experiences with and needs from shelter professionals and veterinarians with implications for practice.
Beuthien-Baumann, B
2018-05-01
Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.
Beiderwellen, Karsten J; Poeppel, Thorsten D; Hartung-Knemeyer, Verena; Buchbender, Christian; Kuehl, Hilmar; Bockisch, Andreas; Lauenstein, Thomas C
2013-05-01
The aim of this pilot study was to demonstrate the potential of simultaneously acquired 68-Gallium-DOTA-D-Phe1-Tyr3-octreotide (68Ga-DOTATOC) positron emission tomography/magnetic resonance imaging (PET/MRI) in comparison with 68Ga-DOTATOC PET/computed tomography (PET/CT) in patients with known gastroenteropancreatic neuroendocrine tumors (NETs). Eight patients (4 women and 4 men; mean [SD] age, 54 [17] years; median, 55 years; range 25-74 years) with histopathologically confirmed NET and scheduled 68Ga-DOTATOC PET/CT were prospectively enrolled for an additional integrated PET/MRI scan. Positron emission tomography/computed tomography was performed using a triple-phase contrast-enhanced full-dose protocol. Positron emission tomography/magnetic resonance imaging encompassed a diagnostic, contrast-enhanced whole-body MRI protocol. Two readers separately analyzed the PET/CT and PET/MRI data sets including their subscans in random order regarding lesion localization, count, and characterization on a 4-point ordinal scale (0, not visible; 1, benign; 2, indeterminate; and 3, malignant). In addition, each lesion was rated in consensus on a binary scale (allowing for benign/malignant only). Clinical imaging, existing prior examinations, and histopathology (if available) served as the standard of reference. In PET-positive lesions, the standardized uptake value (SUV max) was measured in consensus. A descriptive, case-oriented data analysis was performed, including determination of frequencies and percentages in detection of malignant, benign, and indeterminate lesions in connection to their localization. In addition, percentages in detection by a singular modality (such as PET, CT, or MRI) were calculated. Interobserver variability was calculated (Cohen's κ). The SUVs in the lesions in PET/CT and PET/MRI were measured, and the correlation coefficient (Pearson, 2-tailed) was calculated. According to the reference standard, 5 of the 8 patients had malignant NET lesions at the time of the examination. A total of 4 patients were correctly identified by PET/CT, with the PET and CT component correctly identifying 3 patients each. All 5 patients positive for NET disease were correctly identified by PET/MRI, with the MRI subscan identifying all 5 patients and the PET subscan identifying 3 patients. All lesions considered as malignant in PET/CT were equally depicted in and considered using PET/MRI. One liver lesion rated as "indetermined" in PET/CT was identified as metastasis in PET/MRI because of a diffusion restriction in diffusion-weighted imaging. Of the 4 lung lesions characterized in PET/CT, only 1 was depicted in PET/MRI. Of the 3 lymph nodes depicted in PET/CT, only 1 was characterized in PET/MRI. Interobserver reliability was equally very good in PET/CT (κ = 0.916) and PET/MRI (κ = 1.0). The SUV max measured in PET/CT and in PET/MRI showed a strong correlation (Pearson correlation coefficient, 0.996). This pilot study demonstrates the potential of 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic NET, with special advantages in the characterization of abdominal lesions yet certain weaknesses inherent to MRI, such as lung metastases and hypersclerotic bone lesions.
Allen, Karen; Blascovich, Jim; Mendes, Wendy B
2002-01-01
The purpose of this study was to examine the effects of the presence of friends, spouses, and pets on cardiovascular reactivity to psychological and physical stress. Cardiovascular reactivity was examined among 240 married couples, half of whom owned a pet. Mental arithmetic and cold pressor were performed in one of four randomly assigned social support conditions: alone, with pet or friend (friend present for non-pet owners), with spouse, with spouse and pet/friend. Relative to people without pets, people with pets had significantly lower heart rate and blood pressure levels during a resting baseline, significantly smaller increases (ie, reactivity) from baseline levels during the mental arithmetic and cold pressor, and faster recovery. Among pet owners, the lowest reactivity and quickest recovery was observed in the pet-present conditions. People perceive pets as important, supportive parts of their lives, and significant cardiovascular and behavioral benefits are associated with those perceptions.
[18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.
Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc
2010-03-01
The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain radioactive metabolites. Remarkably, in microPET studies, [(18)F]F15599 notably displayed a pattern of brain labelling that did not correlate with in vitro observations. Thus, in cat, the highest binding was observed in dorsal raphe and cingulate cortex with little binding in other cortical regions and none in hippocampus. In vivo binding was abolished by WAY100635, indicating specific labelling of 5-HT(1A) receptors. [(18)F]F15599 is a radiofluorinated agonist presenting interesting characteristics for probing in vitro and in vivo the high-affinity states of the 5-HT(1A) receptors. Its differential labelling of 5-HT(1A) receptors in vitro and in vivo may result from its reported preferential interaction with receptors coupled to specific G-protein subtypes.
Catalano, Onofrio Antonio; Daye, Dania; Signore, Alberto; Iannace, Carlo; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Filomena, Mazzeo; Mansi, Luigi; Soricelli, Andrea; Salvatore, Marco; Fuin, Niccolo; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert
2017-07-01
The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.
Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L
2015-01-01
Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069
Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Nakajima, Kenichi
2014-01-01
Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used.
Uprimny, Christian; Svirydenka, Anna; Fritz, Josef; Kroiss, Alexander Stephan; Nilica, Bernhard; Decristoforo, Clemens; Haubner, Roland; von Guggenberg, Elisabeth; Buxbaum, Sabine; Horninger, Wolfgang; Virgolini, Irene Johanna
2018-05-16
The purpose of this study was to investigate the diagnostic performance of 68 Ga-PSMA-11 PET/CT in the evaluation of bone metastases in metastatic prostate cancer (PC) patients scheduled for radionuclide therapy in comparison to [ 18 F]sodium fluoride ( 18 F-NaF) PET/CT. Sixteen metastatic PC patients with known skeletal metastases, who underwent both 68 Ga-PSMA-11 PET/CT and 18 F-NaF PET/CT for assessment of metastatic burden prior to radionuclide therapy, were analysed retrospectively. The performance of both tracers was calculated on a lesion-based comparison. Intensity of tracer accumulation of pathologic bone lesions on 18 F-NaF PET and 68 Ga-PSMA-11 PET was measured with maximum standardized uptake values (SUV max ) and compared to background activity of normal bone. In addition, SUV max values of PET-positive bone lesions were analysed with respect to morphologic characteristics on CT. Bone metastases were either confirmed by CT or follow-up PET scan. In contrast to 468 PET-positive lesions suggestive of bone metastases on 18 F-NaF PET, only 351 of the lesions were also judged positive on 68 Ga-PSMA-11 PET (75.0%). Intensity of tracer accumulation of pathologic skeletal lesions was significantly higher on 18 F-NaF PET compared to 68 Ga-PSMA-11 PET, showing a median SUV max of 27.0 and 6.0, respectively (p < 0.001). Background activity of normal bone was lower on 68 Ga-PSMA-11 PET, with a median SUV max of 1.0 in comparison to 2.7 on 18 F-NaF PET; however, tumour to background ratio was significantly higher on 18 F-NaF PET (9.8 versus 5.9 on 68 Ga-PSMA-11 PET; p = 0.042). Based on morphologic lesion characterisation on CT, 18 F-NaF PET revealed median SUV max values of 23.6 for osteosclerotic, 35.0 for osteolytic, and 19.0 for lesions not visible on CT, whereas on 68 Ga-PSMA-11 PET median SUV max values of 5.0 in osteosclerotic, 29.5 in osteolytic, and 7.5 in lesions not seen on CT were measured. Intensity of tracer accumulation between 18 F-NaF PET and 68 Ga-PSMA-11 PET was significantly higher in osteosclerotic (p < 0.001) and lesions not visible on CT (p = 0.012). In comparison to 68 Ga-PSMA-11 PET/CT, 18 F-NaF PET/CT detects a higher number of pathologic bone lesions in advanced stage PC patients scheduled for radionuclide therapy. Our data suggest that 68 Ga-PSMA-11 PET should be combined with 18 F-NaF PET in PC patients with skeletal metastases for restaging prior to initiation or modification of therapy.
Talking with Children about Furry Classroom Pets.
ERIC Educational Resources Information Center
Texas Child Care, 1994
1994-01-01
Notes that rodents and rabbits share many characteristics that make them suitable classroom pets and gives background information on rabbits, guinea pigs, hamsters, and gerbils. Offers advice on buying a classroom pet, the pet's home, feeding, helping the children handle the pet, and pet health and family planning. (TJQ)
Advances in prostate-specific membrane antigen PET of prostate cancer.
Bouchelouche, Kirsten; Choyke, Peter L
2018-05-01
In recent years, a large number of reports have been published on prostate-specific membrane antigen (PSMA)/PET in prostate cancer (PCa). This review highlights advances in PSMA PET in PCa during the past year. PSMA PET/computed tomography (CT) is useful in detection of biochemical recurrence, especially at low prostate-specific antigen (PSA) values. The detection rate of PSMA PET is influenced by PSA level. For primary PCa, PSMA PET/CT shows promise for tumour localization in the prostate, especially in combination with multiparametric MRI (mpMRI). For primary staging, PSMA PET/CT can be used in intermediate and high-risk PCa. Intraoperative PSMA radioligand guidance seems promising for detection of malignant lymph nodes. While the use of PSMA PET/MRI in primary localized disease is limited to high and intermediate-risk patients and localized staging, in the recurrence setting, PET/MRI can be particularly helpful when the lesions are subtle. PSMA PET/CT is superior to choline PET/CT and other conventional imaging modalities. Molecular imaging with PSMA PET continues to pave the way for personalized medicine in PCa.However, large prospective clinical studies are still needed to fully evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa.
NEMA NU 4-2008 comparison of preclinical PET imaging systems.
Goertzen, Andrew L; Bao, Qinan; Bergeron, Mélanie; Blankemeyer, Eric; Blinder, Stephan; Cañadas, Mario; Chatziioannou, Arion F; Dinelle, Katherine; Elhami, Esmat; Jans, Hans-Sonke; Lage, Eduardo; Lecomte, Roger; Sossi, Vesna; Surti, Suleman; Tai, Yuan-Chuan; Vaquero, Juan José; Vicente, Esther; Williams, Darin A; Laforest, Richard
2012-08-01
The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: microPET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand.
Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi; Nagata, Masayoshi
2003-11-01
It is crucial to evaluate an annual balance before-hand when an institution installs a PET system because the revised Japanese national insurance reimbursement system set the cost of a FDG PET study as 75,000 yen. A break-even point was calculated in an 8-hour or a 24-hour operation of a PET system, based on the total costs reported. The break-even points were as follows: 13.4, 17.7, 22.1 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in an ordinary PET system operation of 8 hours. The break-even points were 19.9, 25.5, 31.2 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in a full PET system operation of 24 hours. The results indicate no profit would accrue in an ordinary PET system operation of 8 hours. The annual profit and break-even point for the total cost including the initial investment would be respectively 530 million yen and 2.8 years in a 24-hour operation with 1 cyclotron-3 PET cameras system.
Feasibility of FDG-PET in myocarditis: Comparison to CMR using integrated PET/MRI.
Nensa, Felix; Kloth, Julia; Tezgah, Ercan; Poeppel, Thorsten D; Heusch, Philipp; Goebel, Juliane; Nassenstein, Kai; Schlosser, Thomas
2018-06-01
Besides cardiac sarcoidosis, FDG-PET is rarely used in the diagnosis of myocardial inflammation, while cardiac MRI (CMR) is the actual imaging reference for the workup of myocarditis. Using integrated PET/MRI in patients with suspected myocarditis, we prospectively compared FDG-PET to CMR and the feasibility of integrated FDG-PET/MRI in myocarditis. A total of 65 consecutive patients with suspected myocarditis were prospectively assessed using integrated cardiac FDG-PET/MRI. Studies comprised T2-weighted imaging, late gadolinium enhancement (LGE), and simultaneous PET acquisition. Physiological glucose uptake in the myocardium was suppressed using dietary preparation. FDG-PET/MRI was successful in 55 of 65 enrolled patients: two patients were excluded due to claustrophobia and eight patients due to failed inhibition of myocardial glucose uptake. Compared with CMR (LGE and/or T2), sensitivity and specificity of PET was 74% and 97%. Overall spatial agreement between PET and CMR was κ = 0.73. Spatial agreement between PET and T2 (κ = 0.75) was higher than agreement between PET and LGE (κ = 0.64) as well as between LGE and T2 (κ = 0.56). In patients with suspected myocarditis, FDG-PET is in good agreement with CMR findings.
Martini, Katharina; Meier, Andreas; Opitz, Isabelle; Weder, Walter; Veit-Haibach, Patrick; Stahel, Rolf A; Frauenfelder, Thomas
2016-04-01
To investigate the diagnostic accuracy of sequential co-registered PET+MR (PET+MR) for local staging of malignant pleural mesothelioma (MPM) compared to PET/CT. In a prospective clinical trial 34 consecutive patients (median age 66 years; range 40-79 years; 1 female, 33 male) with known MPM, who underwent PET/CT and PET+MR exams for either staging or re-staging/follow-up were evaluated. Imaging was conducted using a tri-modality PET/CT-MR set-up (Discovery PET/CT 690, 3T Discovery MR 750w, both GE Healthcare, Waukesha, WI, USA). In 26 cases histopathology served as standard of reference. Two independent readers evaluated images for T and N stage, confidence level (sure to unsure; 1-3) and subjective overall image quality (very good to non-diagnostic; 1-4). Inter-observer agreement of T and N stages (Cohen's kappa) and interclass correlation coefficient (ICC) between PET/CT vs. PET+MR was calculated. Inter observer agreement for evaluation of T and N Stage in PET/CT images was excellent (k=0.844 and k=0.824, respectively), whereas PET+MR imaging showed substantial agreement in T and N stage (k=0.729 and k=0.691, respectively). The ICC of PET/CT vs. PET+MR for evaluation of both, T and N Stage, was excellent (ICC=0.951 and ICC=0.93, respectively). Diagnostic confidence was scored significantly higher in PET+MR compared to PET/CT (mean score=1.66 and 1.93, respectively; p=0.004). Image quality was diagnostic for all image series. Comparing pT and pN stage vs cT and cN stage (n=26 cases), both imaging modalities showed excellent agreement for T stage (ICCPET+MR=0.888 vs. ICCPET/CT=0.853, respectively) and substantial to moderate agreement for N stage (ICCPET+MR=0.683 vs. ICC=0.595PET/CT, respectively). Our findings suggest that diagnostic accuracy of PET+MR is comparable to PET/CT for local staging of MPM, whereas radiologists felt significantly more confident staging PET+MR compared to PET/CT images (p=0003), using dedicated sequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
SU-G-IeP4-07: Feasibility of Low Dose 18FDG PET in Pediatric Oncology Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Binzel, K; Hall, NC
Purpose: To evaluate and demonstrate the feasibility of low dose FDG PET in pediatric oncology patients using virtual dose reduction as well as true patients PET/CT scans. Methods: Wholebody 18F-FDG PET/CT of 39 clinical pediatric patients (0.16±0.06MBq/kg) were scanned on a Gemini TF 64 system at 75±5 min post FDG injection using 3min/bed. Based on the 180s/bed listmode PET data, subsets of total counts in 120s, 90s, 60s, 30s and 15s per bed position were extracted for PET reconstruction to simulate lower dose PET at 2/3th, 1/2th, 1/3th, 1/6th and 1/12th dose levels. PET/CT scans of Jaszczak PET phantom withmore » 6 hot hollow spheres varying with sizes and contrast ratios were performed (real PET versus simulated PET) to validate the methodology of virtual dose PET simulation. Region of interests (ROIs) were placed on lesions and normal anatomical tissues with quantitative and qualitative assessment performed. Significant lower FDG dose PET/CT of 5 research adolescents were scanned to validate the proposal and low dose PET feasibility. Results: Although all lesions are visible on the 1/12th dose PET, overall PET image quality appears to be influenced in a multi-factorial way. 30%–60% dose reduction from current standard of care FDG PET is recommended to maintain equivalent quality and PET quantification. An optimized BMI-based FDG administration is recommended (from 1.1±0.5 mCi for BMI < 18.5 to 4.8±1.5 mCi for BMI > 30). A linear lowest “Dose-BMI” relationship is given. SUVs from 1/12th to full dose PETs were identified as consistent (R2 = 1.08, 0.99, 1.01, 1.00 and 0.98). No significant variances of count density, SUV and SNR were found across certain dose ranges (p<0.01). Conclusion: Pediatric PET/CT can be performed using current time-of-flight systems at substantially lower PET doses (30–60%) than the standard of care PET/CT without compromising qualitative and quantitative image quality in clinical.« less
Zirnsak, Mariana; Bärwolf, Robert; Freesmeyer, Martin
2016-11-08
Respiratory motion during PET/CT acquisition generates artifacts in the form of breath-related blurring, which influences the lesion detectability and diagnostic accuracy. The goal of this study was to verify whether breath-hold [68Ga]DOTA-TOC PET/CT (bhPET) allows detection of additional foci compared to free-breathing PET/CT (fbPET), and to assess the impact of breath-holding on standard uptake values (SUV) and isocontoured volume (Vic40) in patients with neuroendocrine tumors (NET). Patients with NET (n=39) were included in this study. BhPET and fbPET characteristics of 96 lesions were compared, and correlated with standard contrast-enhanced (ce) CT and MRI for lesion verification. Quantitative parameters SUV (max and mean) and Vic40 were assessed for both methods and evaluated by linear regression and Spearman's correlation. The impact of lesion size, localization and time interval between investigations was also analyzed. bhPET identified one additional metastasis not seen at fbPET but visible at ceMRI. Another additional bhPET focus did not have a morphological correlate. At bhPET, the SUVmax and SUVmean proved significantly higher and the Vic40 significantly lower than at fbPET. Lesion size, localization and time intervals did not impact significantly on SUV or Vic40. Currently, routine use of breath-hold [68Ga]DOTA-TOC PET/CT cannot be recommended as only one additional lesion was identified. Therefore, bhPET has currently no indication in patients with NET. If technical improvements regarding PET/CT scanner sensitivity are available, bhPET should be reevaluated in the future.
Ripa, Rasmus S; Knudsen, Andreas; Hag, Anne Mette F; Lebech, Anne-Mette; Loft, Annika; Keller, Sune H; Hansen, Adam E; von Benzon, Eric; Højgaard, Liselotte; Kjær, Andreas
2013-01-01
The study aimed at comparing PET/MR to PET/CT for imaging the carotid arteries in patients with known increased risk of atherosclerosis. Six HIV-positive men underwent sequential PET/MR and PET/CT of the carotid arteries after injection of 400 MBq of 18F-FDG. PET/MR was performed a median of 131 min after injection. Subsequently,PET/CT was performed. Regions of interest (ROI) were drawn slice by slice to include the carotid arteries and standardized uptake values (SUV) were calculated from both datasets independently. Quantitative comparison of 18F-FDG uptake revealed a high congruence between PET data acquired using the PET/MR system compared to the PET/CT system. The mean difference for SUVmean was -0.18 (p < 0.001) and -0.14 for SUVmax (p < 0.001) indicating a small but significant bias towards lower values using the PET/MR system. The 95% limits of agreement were -0.55 to 0.20 for SUVmean and -0.93 to 0.65 for SUVmax. The image quality of the PET/MR allowed for delineation of the carotid vessel wall. The correlations between 18F-FDG uptake from ROI including both vessel wall and vessel lumen to ROI including only the wall were strong (r = 0.98 for SUVmean and r = 1.00 for SUVmax) indicating that the luminal 18F-FDG content had minimal influence on the values. The study shows for the first time that simultaneous PET/MR of the carotid arteries is feasible in patients with increased risk of atherosclerosis. Quantification of 18F-FDG uptake correlated well between PET/MR and PET/CT despite difference in method of PET attenuation correction, reconstruction algorithm, and detector technology. PMID:23900769
Wu, Heyu; Tai, Yuan-Chuan
2011-09-07
To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.
Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho
2017-07-01
Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P < .001). The results were patient dependent (range, -9.3% to 0.57%) and VOI dependent (range, -5.9 to -2.2). In addition, when bone was not included for AC, the overall difference of PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P < .001). Finally, when patient bone was used for AC instead of atlas bone, the overall difference of PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P < .001). Conclusion ATAC in PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.
Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.
Rakvongthai, Yothin; El Fakhri, Georges
2017-07-01
Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.
Similarities between obesity in pets and children: the addiction model.
Pretlow, Robert A; Corbee, Ronald J
2016-09-01
Obesity in pets is a frustrating, major health problem. Obesity in human children is similar. Prevailing theories accounting for the rising obesity rates - for example, poor nutrition and sedentary activity - are being challenged. Obesity interventions in both pets and children have produced modest short-term but poor long-term results. New strategies are needed. A novel theory posits that obesity in pets and children is due to 'treats' and excessive meal amounts given by the 'pet-parent' and child-parent to obtain affection from the pet/child, which enables 'eating addiction' in the pet/child and results in parental 'co-dependence'. Pet-parents and child-parents may even become hostage to the treats/food to avoid the ire of the pet/child. Eating addiction in the pet/child also may be brought about by emotional factors such as stress, independent of parental co-dependence. An applicable treatment for child obesity has been trialled using classic addiction withdrawal/abstinence techniques, as well as behavioural addiction methods, with significant results. Both the child and the parent progress through withdrawal from specific 'problem foods', next from snacking (non-specific foods) and finally from excessive portions at meals (gradual reductions). This approach should adapt well for pets and pet-parents. Pet obesity is more 'pure' than child obesity, in that contributing factors and treatment points are essentially under the control of the pet-parent. Pet obesity might thus serve as an ideal test bed for the treatment and prevention of child obesity, with focus primarily on parental behaviours. Sharing information between the fields of pet and child obesity would be mutually beneficial.
Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou
2016-01-01
The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with 18F-FDG PET imaging (Kappa = 0.881 and Kappa = 0.240, respectively). 18F-FDG PET/CT integrated imaging is a more reliable modality in distinguishing malignant from benign pleural effusion than 18F-FDG PET imaging and CT imaging alone. For image interpretation of 18F-FDG PET/CT integrated imaging, the PET and CT portions play a major diagnostic role in identifying metastatic effusion and benign effusion, respectively.
Freitag, Martin T; Radtke, Jan P; Afshar-Oromieh, Ali; Roethke, Matthias C; Hadaschik, Boris A; Gleave, Martin; Bonekamp, David; Kopka, Klaus; Eder, Matthias; Heusser, Thorsten; Kachelriess, Marc; Wieczorek, Kathrin; Sachpekidis, Christos; Flechsig, Paul; Giesel, Frederik; Hohenfellner, Markus; Haberkorn, Uwe; Schlemmer, Heinz-Peter; Dimitrakopoulou-Strauss, A
2017-05-01
The positron emission tomography (PET) tracer 68 Ga-PSMA-11, targeting the prostate-specific membrane antigen (PSMA), is rapidly excreted into the urinary tract. This leads to significant radioactivity in the bladder, which may limit the PET-detection of local recurrence (LR) of prostate cancer (PC) after radical prostatectomy (RP), developing in close proximity to the bladder. Here, we analyze if there is additional value of multi-parametric magnetic resonance imaging (mpMRI) compared to the 68 Ga-PSMA-11-PET-component of PET/CT or PET/MRI to detect LR. One hundred and nineteen patients with biochemical recurrence after prior RP underwent both hybrid 68 Ga-PSMA-11-PET/CT low-dose (1 h p.i.) and -PET/MRI (2-3 h p.i.) including a mpMRI protocol of the prostatic bed. The comparison of both methods was restricted to the abdomen with focus on LR (McNemar). Bladder-LR distance and recurrence size were measured in axial T2w-TSE. A logistic regression was performed to determine the influence of these variables on detectability in 68 Ga-PSMA-11-PET. Standardized-uptake-value (SUV mean ) quantification of LR was performed. There were 93/119 patients that had at least one pathologic finding. In addition, 18/119 Patients (15.1%) were diagnosed with a LR in mpMRI of PET/MRI but only nine were PET-positive in PET/CT and PET/MRI. This mismatch was statistically significant (p = 0.004). Detection of LR using the PET-component was significantly influenced by proximity to the bladder (p = 0.028). The PET-pattern of LR-uptake was classified into three types (1): separated from bladder; (2): fuses with bladder, and (3): obliterated by bladder). The size of LRs did not affect PET-detectability (p = 0.84), mean size was 1.7 ± 0.69 cm long axis, 1.2 ± 0.46 cm short-axis. SUV mean in nine men was 8.7 ± 3.7 (PET/CT) and 7.0 ± 4.2 (PET/MRI) but could not be quantified in the remaining nine cases (obliterated by bladder). The present study demonstrates additional value of hybrid 68 Ga-PSMA-11-PET/MRI by gaining complementary diagnostic information compared to the 68 Ga-PSMA-11-PET/CT low-dose for patients with LR of PC.
Li, Xiang; Heber, Daniel; Rausch, Ivo; Beitzke, Dietrich; Mayerhoefer, Marius E; Rasul, Sazan; Kreissl, Michael; Mitthauser, Markus; Wadsak, Wolfgang; Hartenbach, Markus; Haug, Alexander; Zhang, Xiaoli; Loewe, Christian; Beyer, Thomas; Hacker, Marcus
2016-07-01
PET with (18)F-FDG has the potential to assess vascular macrophage metabolism. (18)F-FDG is most often used in combination with contrast-enhanced CT to localize increased metabolism to specific arterial lesions. Novel (18)F-FDG PET/MRI hybrid imaging shows high potential for the combined evaluation of atherosclerotic plaques, due to the superior morphological conspicuity of plaque lesions. The purpose of this study was to evaluate the reliability and accuracy of (18)F-FDG PET/MRI uptake quantification compared to PET/CT as a reference standard in patients with carotid atherosclerotic plaques. The study group comprised 34 consecutive oncological patients with carotid plaques who underwent both PET/CT and PET/MRI with (18)F-FDG on the same day. The presence of atherosclerotic plaques was confirmed by 3 T MRI scans. Maximum standardized uptake values (SUVmax) for carotid plaque lesions and the average SUV of the blood pool within the adjacent internal jugular vein were determined and target-to-blood ratios (TBRs, plaque to blood pool) were calculated. Atherosclerotic lesions with maximum colocalized focal FDG uptake were assessed in each patient. SUVmax values of carotid plaque lesions were significantly lower on PET/MRI than on PET/CT (2.3 ± 0.6 vs. 3.1 ± 0.6; P < 0.01), but were significantly correlated between PET/CT and PET/MRI (Spearman's r = 0.67, P < 0.01). In contrast, TBRmax values of plaque lesions were similar on PET/MRI and on PET/CT (2.2 ± 0.3 vs. 2.2 ± 0.3; P = 0.4), and again were significantly correlated between PET/MRI and PET/CT (Spearman's r = 0.73, P < 0.01). Considering the increasing trend in SUVmax and TBRmax values from early to delayed imaging time-points on PET/CT and PET/MRI, respectively, with continuous clearance of radioactivity from the blood, a slight underestimation of TBRmax values may also be expected with PET/MRI compared with PET/CT. SUVmax and TBRmax values are widely accepted reference parameters for estimation of the radioactivity of atherosclerotic plaques on PET/CT. However, due to a systematic underestimation of SUVmax and TBRmax with PET/MRI, the optimal cut-off values indicating the presence of inflamed plaque tissue need to be newly defined for PET/MRI.
24 CFR 960.707 - Pet ownership.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...
24 CFR 960.707 - Pet ownership.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...
24 CFR 960.707 - Pet ownership.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...
24 CFR 960.707 - Pet ownership.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Pet ownership. 960.707 Section 960... ADMISSION TO, AND OCCUPANCY OF, PUBLIC HOUSING Pet Ownership in Public Housing § 960.707 Pet ownership. (a..., may own one or more common household pets or have one or more common household pets present in the...
Quartuccio, Natale; Treglia, Giorgio; Salsano, Marco; Mattoli, Maria Vittoria; Muoio, Barbara; Piccardo, Arnoldo; Lopci, Egesta; Cistaro, Angelina
2013-06-01
The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with Fluorine-18-Fluorodeoxyglucose (FDG) in patients with osteosarcoma (OS). A comprehensive literature search of published studies through October 10(th), 2012 in PubMed/MEDLINE, Embase and Scopus databases regarding whole-body FDG-PET and FDG-PET/CT in patients with OS was performed. We identified 13 studies including 289 patients with OS. With regard to the staging and restaging of OS, the diagnostic performance of FDG-PET and PET/CT seem to be high; FDG-PET and PET/CT seem to be superior to bone scintigraphy and conventional imaging methods in detecting bone metastases; conversely, spiral CT seems to be superior to FDG-PET in detecting pulmonary metastases from OS. Metabolic imaging may provide additional information in the evaluation of OS patients. The combination of FDG-PET or FDG-PET/CT with conventional imaging methods seems to be a valuable tool in the staging and restaging of OS and may have a relevant impact on the treatment planning.
Small Pilot Survey on Parents’ Perception of the Relationship between Children and Pets
Russo, Natalia; Vergnano, Diana; Bergero, Domenico
2017-01-01
Since companion animals are taking on more important roles in family life, the aim of this study was to evaluate the perception of parents about the relationship between their children and pets. A number of parents were asked to fill in a questionnaire; the principal topics were: pet ownership, pet care, relationship between pets and children, and sources of information about pet management. Eighty-two parents completed the survey; 71.4% of them already had pets before having children; pet care and health has emerged to be rather important, since 96.4% of the pets are taken to the veterinarian at least once a year; moreover, the great majority of the parents (97.2%) were not worried about the possible risks, linked to pets, pertaining to their child’s health. The present survey confirms that pets are mostly considered as members of the family, and not only as a benefit for the children. Moreover, the relationship between children and pets is basically seen as a positive experience for children. PMID:29056710
PET/CT versus body coil PET/MRI: how low can you go?
Appenzeller, P; Mader, C; Huellner, M W; Schmidt, D; Schmid, D; Boss, A; von Schulthess, G; Veit-Haibach, P
2013-08-01
The purpose of this study was to evaluate if positron emission tomography (PET)/magnetic resonance imaging (MRI) with just one gradient echo sequence using the body coil is diagnostically sufficient compared with a standard, low-dose non-contrast-enhanced PET/computed tomography (CT) concerning overall diagnostic accuracy, lesion detectability, size and conspicuity evaluation. Sixty-three patients (mean age 58 years, range 19-86 years; 23 women, 40 men) referred for either staging or restaging/follow-up of various malignant tumours (malignant melanoma, lung cancer, breast cancer, Hodgkin's lymphoma, non-Hodgkin's lymphoma, CUP, gynaecology tumours, pleural mesothelioma, oesophageal cancer, colorectal cancer, stomach cancer) were prospectively included. Imaging was conducted using a tri-modality PET/CT-MR set-up (full ring, time-of-flight Discovery PET/CT 690, 3 T Discovery MR 750, both GE Healthcare, Waukesha, WI). All patients were positioned on a dedicated PET/CT- and MR-compatible examination table, allowing for patient transport from the MR system to the PET/CT without patient movement. In accordance with RECIST 1.1 criteria, measurements of the maximum lesion diameters on CT and MR images were obtained. In lymph nodes, the short axis was measured. A four-point scale was used for assessment of lesion conspicuity: 1 (>25 % of lesion borders definable), 2 (25-50 %), 3 (50-75 %) and 4 (>75 %). For each lesion the corresponding anatomical structure was noted based on anatomical information of the spatially co-registered PET/CT and PET/MRI image sections. Additionally, lesions were divided into three categories: "tumour mass", "lymph nodes" and "lesions". Differences in overall lesion detectability and conspicuity in PET/CT and PET/MRI, as well as differences in detectability based on the localisation and lesion type, were analysed by Wilcoxon signed rank test. A total of 126 PET-positive lesions were evaluated. Overall, no statistically significant superiority of PET/CT over PET/MRI or vice versa in terms of lesion conspicuity was found (p = 0.095; mean score CT 2.93, mean score MRI 2.75). A statistically significant superiority concerning conspicuity of PET/CT over PET/MRI was found in pulmonary lesions (p = 0.016). Additionally, a statistically significant superiority of PET/CT over PET/MRI in "lymph nodes" regarding lesion conspicuity was also found (p = 0.033). A higher mean score concerning bone lesions were found for PET/CT compared with PET/MRI; however, these differences did not achieve statistical significance. Overall, PET/MRI with body coil acquisition does not match entirely the diagnostic accuracy of standard low-dose PET/CT. Thus, it might only serve as a back-up solution in very few patients. Overall, more time needs to be invested on the MR imaging part (higher matrix, more breath-holds, additional surface coil acquired sequences) to match up with the standard low-dose PET/CT. • Evaluation of whether PET/MRI with one sequence using body coil is diagnostically sufficient compared with PET/CT • PET/MRI with body coil does not match entirely the diagnostic accuracy of standard low-dose PET/CT • PET/MRI might only serve as a backup solution in patients.
Are Pets in the Bedroom a Problem?
Krahn, Lois E; Tovar, M Diane; Miller, Bernie
2015-12-01
The presence of pets in the bedroom can alter the sleep environment in ways that could affect sleep. Data were collected by questionnaire and interview from 150 consecutive patients seen at the Center for Sleep Medicine, Mayo Clinic in Arizona. Seventy-four people (49%) reported having pets, with 31 (41% of pet owners) having multiple pets. More than half of pet owners (56%) allowed their pets to sleep in the bedroom. Fifteen pet owners (20%) described their pets as disruptive, whereas 31 (41%) perceived their pets as unobtrusive or even beneficial to sleep. Health care professionals working with patients with sleep concerns should inquire about the presence of companion animals in the sleep environment to help them find solutions and optimize their sleep. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Basic study of entire whole-body PET scanners based on the OpenPET geometry
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo
2010-09-01
A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.
Design of a Multichannel Low-Noise Front-End Readout ASIC Dedicated to CZT Detectors for PET Imaging
NASA Astrophysics Data System (ADS)
Gao, W.; Liu, H.; Gan, B.; Wei, T.; Gao, D.; Hu, Y.
2014-10-01
In this paper, we present the design and preliminary results of a novel low-noise front-end readout application-specific integrated circuit (ASIC) for a PET imaging system whose objective is to achieve the following performances: the spatial resolution of 1 mm3, the detection efficiency of 15% and the time resolution of 1 ns. A cascode amplifier based on the PMOS input transistor is selected to realize the charge-sensitive amplifier (CSA) for the sake of good noise performances. The output of the CSA is split into two branches. One is connected to a slow shaper for energy measurements. The other is connected to a fast shaper for time acquisition. A novel monostable circuits is designed to adjust the time delay of the trigger signals so that the peak value of the shaped voltages can be sampled and stored. An eight-channel front-end readout prototype chip is designed and implemented in 0.35 μm CMOS process. The die size is 2.286 mm ×2.282 mm. The input range of the ASIC is from 2000 e- to 180000 e-, reflecting to the energy level of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC. The tested result of ENC is 86.5 e- at zero farad plus 9.3 e- per picofarad. The nonlinearity is less than 3%. The crosstalk is less than 2%. The power dissipation is about 3 mW/channel.
NASA Astrophysics Data System (ADS)
Lage, E.; Tapias, G.; Villena, J.; Desco, M.; Vaquero, J. J.
2010-08-01
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s-1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
Lage, E; Tapias, G; Villena, J; Desco, M; Vaquero, J J
2010-08-07
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 x 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s(-1) when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
NASA Astrophysics Data System (ADS)
Moskal, P.; Zoń, N.; Bednarski, T.; Białas, P.; Czerwiński, E.; Gajos, A.; Kamińska, D.; Kapłon, Ł.; Kochanowski, A.; Korcyl, G.; Kowal, J.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Niedźwiecki, Sz.; Pałka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Salabura, P.; Sharma, N. G.; Silarski, M.; Słomski, A.; Smyrski, J.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zieliński, M.
2015-03-01
A novel method of hit time and hit position reconstruction in scintillator detectors is described. The method is based on comparison of detector signals with results stored in a library of synchronized model signals registered for a set of well-defined positions of scintillation points. The hit position is reconstructed as the one corresponding to the signal from the library which is most similar to the measurement signal. The time of the interaction is determined as a relative time between the measured signal and the most similar one in the library. A degree of similarity of measured and model signals is defined as the distance between points representing the measurement- and model-signal in the multi-dimensional measurement space. Novelty of the method lies also in the proposed way of synchronization of model signals enabling direct determination of the difference between time-of-flights (TOF) of annihilation quanta from the annihilation point to the detectors. The introduced method was validated using experimental data obtained by means of the double strip prototype of the J-PET detector and 22Na sodium isotope as a source of annihilation gamma quanta. The detector was built out from plastic scintillator strips with dimensions of 5 mm×19 mm×300 mm, optically connected at both sides to photomultipliers, from which signals were sampled by means of the Serial Data Analyzer. Using the introduced method, the spatial and TOF resolution of about 1.3 cm (σ) and 125 ps (σ) were established, respectively.
Freitag, Martin T; Kesch, Claudia; Cardinale, Jens; Flechsig, Paul; Floca, Ralf; Eiber, Matthias; Bonekamp, David; Radtke, Jan P; Kratochwil, Clemens; Kopka, Klaus; Hohenfellner, Markus; Stenzinger, Albrecht; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Giesel, Frederik
2018-03-01
The aim of the present study was to explore the clinical feasibility and reproducibility of a comprehensive whole-body 18 F-PSMA-1007-PET/MRI protocol for imaging prostate cancer (PC) patients. Eight patients with high-risk biopsy-proven PC underwent a whole-body PET/MRI (3 h p.i.) including a multi-parametric prostate MRI after 18 F-PSMA-1007-PET/CT (1 h p.i.) which served as reference. Seven patients presented with non-treated PC, whereas one patient presented with biochemical recurrence. SUV mean -quantification was performed using a 3D-isocontour volume-of-interest. Imaging data was consulted for TNM-staging and compared with histopathology. PC was confirmed in 4/7 patients additionally by histopathology after surgery. PET-artifacts, co-registration of pelvic PET/MRI and MRI-data were assessed (PI-RADS 2.0). The examinations were well accepted by patients and comprised 1 h. SUV mean -values between PET/CT (1 h p.i.) and PET/MRI (3 h p.i.) were significantly correlated (p < 0.0001, respectively) and similar to literature of 18 F-PSMA-1007-PET/CT 1 h vs 3 h p.i. The dominant intraprostatic lesion could be detected in all seven patients in both PET and MRI. T2c, T3a, T3b and T4 features were detected complimentarily by PET and MRI in five patients. PET/MRI demonstrated moderate photopenic PET-artifacts surrounding liver and kidneys representing high-contrast areas, no PET-artifacts were observed for PET/CT. Simultaneous PET-readout during prostate MRI achieved optimal co-registration results. The presented 18 F-PSMA-1007-PET/MRI protocol combines efficient whole-body assessment with high-resolution co-registered PET/MRI of the prostatic fossa for comprehensive oncological staging of patients with PC.
Cheng, Nai-Ming; Fang, Yu-Hua Dean; Tsan, Din-Li
2016-01-01
Purpose We compared attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal of investigating the impact of respiration-averaged CT on 18F FDG PET texture parameters. Materials and Methods A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images using the adaptive threshold. Twelve different texture parameters were computed: standard uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness, busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivariate Cox regression analyses were used to identify the parameters significantly associated with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45) was used for validation. Results SUV maximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. However, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of agreement. The lowest levels of variation between the two modalities were observed for SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical significance threshold. Conclusions Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the prediction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenuation correction methods. PMID:26930211
Joint PET-MR respiratory motion models for clinical PET motion correction
NASA Astrophysics Data System (ADS)
Manber, Richard; Thielemans, Kris; Hutton, Brian F.; Wan, Simon; McClelland, Jamie; Barnes, Anna; Arridge, Simon; Ourselin, Sébastien; Atkinson, David
2016-09-01
Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography (PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) imaging in PET-MR scanners provides complementary clinical information, and allows the use of high spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this paper we build on previous work to form a methodology for respiratory motion correction of PET data, and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic imaging component, and PET data, via low spatial resolution framing and principal component analysis, provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to predict respiratory motion by showing significantly improved image quality of PET data acquired before the motion model data. The method can be used to incorporate motion into the reconstruction of any length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required.
Nagamachi, Shigeki; Nishii, Ryuichi; Wakamatsu, Hideyuki; Mizutani, Youichi; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Sakae, Tatefumi; Furukoji, Eiji; Tamura, Shozo; Arita, Hideo; Chijiiwa, Kazuo; Kawai, Keiichi
2013-07-01
This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.
Cantiello, Francesco; Crocerossa, Fabio; Russo, Giorgio Ivan; Gangemi, Vincenzo; Ferro, Matteo; Vartolomei, Mihai Dorin; Lucarelli, Giuseppe; Mirabelli, Maria; Scafuro, Chiara; Ucciero, Giuseppe; De Cobelli, Ottavio; Morgia, Giuseppe; Damiano, Rocco; Cascini, Giuseppe Lucio
2018-06-04
To evaluate the diagnostic performance of 64 Cu-PSMA-617 positron emission tomography (PET) with computed tomography (CT) for restaging prostate cancer after biochemical recurrence (BCR) and to compare it with 18 F-choline PET/CT in a per-patient analysis. An observational study was performed of 43 patients with BCR after laparoscopic radical prostatectomy who underwent 64 Cu-PSMA-617 PET/CT and subsequently 18 F-choline PET/CT for restaging. The detection rates (DR) of 64 Cu-PSMA-617 PET/CT and of 18 F-choline PET/CT were calculated by standardized maximum uptake value (SUV max ) at 4 hours and SUV max at 1 hour as reference, respectively. Furthermore, univariate logistic regression analysis was carried out to identify independent predictive factors of positivity with 64 Cu-PSMA-617 PET/CT. An overall positivity with 64 Cu-PSMA-617 PET/CT was found in 32 patients (74.4%) versus 19 (44.2%) with 18 F-choline PET/CT. Specifically, after stratifying for prostate-specific antigen (PSA) values, we found a good performance of 64 Cu-PSMA-617 PET/CT at low PSA levels compared to 18 F-choline PET/CT, with a DR of 57.1% versus 14.3% for PSA 0.2-0.5 ng/mL (P = .031), and of 60% versus 30% with PSA 0.5-1 ng/mL. At univariate binary logistic regression analysis, PSA level was the only independent predictor of 64 Cu-PSMA-617 PET/CT positivity. No significant difference in terms of DR for both 64 Cu-PSMA-617 PET/CT and 18 F-choline PET/CT was found according to different Gleason score subgroups. In our study cohort, a better performance was observed for 64 Cu-PSMA-617 PET/CT compared to 18 F-choline PET/CT in restaging after BCR, especially in patients with low PSA values. Copyright © 2018 Elsevier Inc. All rights reserved.
TH-E-202-01: Pitfalls and Remedies in PET/CT Imaging for RT Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, T.
2016-06-15
PET/CT is a very important imaging tool in the management of oncology patients. PET/CT has been applied for treatment planning and response evaluation in radiation therapy. This educational session will discuss: Pitfalls and remedies in PET/CT imaging for RT planning The use of hypoxia PET imaging for radiotherapy PET for tumor response evaluation The first presentation will address the issue of mis-registration between the CT and PET images in the thorax and the abdomen. We will discuss the challenges of respiratory gating and introduce an average CT technique to improve the registration for dose calculation and image-guidance in radiation therapy.more » The second presentation will discuss the use of hypoxia PET Imaging for radiation therapy. We will discuss various hypoxia radiotracers, the choice of clinical acquisition protocol (in particular a single late static acquisition versus a dynamic acquisition), and the compartmental modeling with different transfer rate constants explained. We will demonstrate applications of hypoxia imaging for dose escalation/de-escalation in clinical trials. The last presentation will discuss the use of PET/CT for tumor response evaluation. We will discuss anatomic response assessment vs. metabolic response assessment, visual evaluation and semi-quantitative evaluation, and limitations of current PET/CT assessment. We will summarize clinical trials using PET response in guiding adaptive radiotherapy. Finally, we will summarize recent advancements in PET/CT radiomics and non-FDG PET tracers for response assessment. Learning Objectives: Identify the causes of mis-registration of CT and PET images in PET/CT, and review the strategies to remedy the issue. Understand the basics of PET imaging of tumor hypoxia (radiotracers, how PET measures the hypoxia selective uptake, imaging protocols, applications in chemo-radiation therapy). Understand the basics of dynamic PET imaging, compartmental modeling and parametric images. Understand the basics of using FDG PET/CT for tumor response evaluation. Learn about recent advancement in PET/CT radiomics and non-FDG PET tracers for response assessment. This work was supported in part by the National Cancer Institute Grants R01CA172638.; W. Lu, This work was supported in part by the National Cancer Institute Grants R01CA172638.« less
2012-01-01
Background Many human infections are transmitted through contact with animals (zoonoses), including household pets. Although pet ownership is common in most countries and non-pet owners may have frequent contact with pets, there is limited knowledge of the public’s pet contact practices and awareness of zoonotic disease risks from pets. The objective of this study was to characterize the general public’s knowledge, attitudes and risks related to pet ownership and animal contact in southern Ontario, Canada. Methods A self-administered questionnaire was distributed to individuals at two multi-physician clinics in Waterloo, Ontario, Canada during 2010. A single adult from each household was invited to participate in the study. Results Seventy five percent (641/853) of individuals approached completed the questionnaire. Pet ownership and contact were common; 64% of participants had a pet in their household and 37% of non-pet owning households had a member with at least weekly animal contact outside the home. Pet ownership was high (55%) for households with individuals at higher risk for infections (i.e., < 5 yrs, ≥ 65 yrs, immunocompromised). Most respondents (64%) indicated that they had never received information regarding pet-associated disease risks. When given a list of 11 infectious pathogens, respondents were only able to correctly classify just over half on their potential to be transmitted from pets to people (mean 6.4); independently, pet owners and those who recalled receiving information in the past about this topic were able to make significantly more correct identifications. Pet (36%) and non-pet owning households (10%) reported dog or cat bites or scratches during the preceding year. Households with individuals at higher risk for an infection did not differ from the remaining households regarding their perceived disease risk of pets, zoonotic disease knowledge, recall of being asked by their medical provider if they owned any pets, or recall of having received information regarding pet-associated disease risks and preventive measures. Conclusions These results suggest that there is a need for accessible zoonotic disease information for both pet and non-owning households, with additional efforts made by veterinary, human and public health personnel. Immediate educational efforts directed toward households with individuals at higher risk to infections are especially needed. PMID:22831165
A novel preparation of milk protein/polyethylene terephthalate fabric
NASA Astrophysics Data System (ADS)
Zhou, J. F.; Zheng, D. D.; Zhong, L.; Zhang, F. X.; Zhang, G. X.
2016-07-01
In this work, -NH2 groups were introduced to polyethylene terephthalate (PET) fibers by nitration and reduction method, and then milk protein was grafted on the nitrated and reduced PET (NR PET) fibers by sucrose glycidyl ether crosslinking agent. FTIR suggested the milk protein was successfully grafted on PET fiber surface. SEM images showed a layer of substance covered on the PET fiber surface. DSC demonstrated an excellent thermal stability of milk protein/PET fiber. The moisture regain was improved by milk protein/PET fiber. Moreover, the crease recovery angle and stiffness were retained by the milk protein/PET fabric.
Gholamrezanezhad, Ali; Basques, Kyle; Batouli, Ali; Matcuk, George; Alavi, Abass; Jadvar, Hossein
2018-06-01
With improvements in PET/CT and PET/MRI over the last decade, as well as increased understanding of the pathophysiology of musculoskeletal diseases, there is an emerging potential for PET as a primary or complementary modality in the management of rheumatologic and orthopedic conditions. We discuss the role of PET/CT and PET/MRI in nononcologic musculoskeletal disorders, including inflammatory and infectious conditions and postoperative complications. There is great potential for an increased role for PET to serve as a primary or complementary modality in the management of orthopedic and rheumatologic disorders.
PET/MRI in cancer patients: first experiences and vision from Copenhagen.
Kjær, Andreas; Loft, Annika; Law, Ian; Berthelsen, Anne Kiil; Borgwardt, Lise; Löfgren, Johan; Johnbeck, Camilla Bardram; Hansen, Adam Espe; Keller, Sune; Holm, Søren; Højgaard, Liselotte
2013-02-01
Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear Medicine & PET at Rigshospitalet in Copenhagen we installed an integrated PET/MRI in December 2011. Here, we describe our first clinical PET/MR cases and discuss some of the areas within oncology where we envision promising future application of integrated PET/MR imaging in clinical routine. Cases described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations.
Yoon, Hai-Jeon; Yoo, Jang; Kim, Yemi; Lee, Dong Hyeon; Kim, Bom Sahn
2017-10-01
We investigated the value of early dynamic (ED) PET for the detection and characterization of bladder cancer. Fifty-two bladder cancer patients were prospectively enrolled. The study protocol was composed of ED, whole-body (WB, 60 minutes after injection), and additional delayed (AD, 120 minutes after injection) PET acquisition. Early dynamic PET was acquired for 10 minutes and reconstructed as 5 frames at 2-minute intervals. A focal radiotracer accumulation confined to the bladder wall was considered as PET positive and referred for further quantitative measurement. SUVmax on ED (SUVmax, SUVmax, SUVmax, SUVmax, and SUVmax for 5 frames), WB (SUVmax), and AD PET (SUVmax) were measured. PET results were correlated with bladder cancer pathology variables. The sensitivities of ED, WB, and AD PET for bladder cancer were 84.6%, 57.7%, and 61.2%, respectively. The sensitivity of ED PET was significantly higher than that of WB (P = 0.002) and AD PET (P = 0.008). On ED PET, SUVmax was significantly correlated with muscle invasiveness, histological grade, and pathological tumor size (P = 0.018, P = 0.030, and P = 0.030). On WB and AD PET, only pathological tumor size showed significant positive correlation with SUVmax and SUVmax (P = 0.043 and P = 0.007). Early dynamic PET can help to detect and characterize bladder cancer.
Evacuating People and Their Pets: Older Floridians' Need for and Proximity to Pet-Friendly Shelters.
Douglas, Rachel; Kocatepe, Ayberk; Barrett, Anne E; Ozguven, Eren Erman; Gumber, Clayton
2017-10-04
Pets influence evacuation decisions, but little is known about pet-friendly emergency shelters' availability or older adults' need for them. Our study addresses this issue, focusing on the most densely populated area of Florida (Miami-Dade)-the state with the oldest population and greatest hurricane susceptibility. We use Geographic Information Systems (GIS)-based methodology to identify the shortest paths to pet-friendly shelters, based on distance and congested and uncongested travel times-taking into account the older population's spatial distribution. Logistic regression models using the 2013 American Housing Survey's Disaster Planning Module examine anticipated shelter use as a function of pet ownership and requiring pet evacuation assistance. Thirty-four percent of older adults in the Miami-Dade area have pets-35% of whom report needing pet evacuation assistance. However, GIS accessibility measures show that travel time factors are likely to impede older adults' use of the area's few pet-friendly shelters. Logistic regression results reveal that pet owners are less likely to report anticipating shelter use; however, the opposite holds for pet owners reporting they would need help evacuating their pets-they anticipate using shelters. High pet shelter need coupled with low availability exacerbates older adults' heightened vulnerability during Florida's hurricane season. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NEMA NU 4-2008 Comparison of Preclinical PET Imaging Systems
Goertzen, Andrew L.; Bao, Qinan; Bergeron, Mélanie; Blankemeyer, Eric; Blinder, Stephan; Cañadas, Mario; Chatziioannou, Arion F.; Dinelle, Katherine; Elhami, Esmat; Jans, Hans-Sonke; Lage, Eduardo; Lecomte, Roger; Sossi, Vesna; Surti, Suleman; Tai, Yuan-Chuan; Vaquero, Juan José; Vicente, Esther; Williams, Darin A.; Laforest, Richard
2014-01-01
The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. Methods We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: micro- PET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. Results The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. Conclusion Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand. PMID:22699999
Positron Emission Tomography - Computed Tomography (PET/CT)
... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...
Pet Ownership by Elderly People: Two New Issues.
ERIC Educational Resources Information Center
Smith, David W. E.; And Others
1992-01-01
Examined two issues of pet ownership in mail questionnaire and interview survey of 1,595 older adults over age 60, 377 of whom had a pet. Found evidence that pets were important determinant of housing choice. Many elderly pet owners had made no arrangements for pet if they predecease it or become unable to care for it. (Author/NB)
Parida, Girish Kumar; Tripathy, Sarthak; Datta Gupta, Shreya; Singhal, Abhinav; Kumar, Rakesh; Bal, Chandrasekhar; Shamim, Shamim Ahmed
2018-04-01
Ga-PSMA PET/CT is the upcoming imaging modality for staging, restaging and response assessment of prostate cancer. However, due to neuroendocrine differentiation in some of patients with prostate cancer, they express somatostatin receptors instead of prostate specific membrane antigen. This can be exploited and other modalities like Ga-DOTANOC PET/CT and F-FDG PET/CT should be used in such cases for guiding management. We hereby discuss a similar case of 67-year-old man of adenocarcinoma prostate with neuroendocrine differentiation, which shows the potential pitfall of Ga-PSMA PET/CT imaging and benefit of Ga-DOTANOC PET/CT and F-FDG PET/CT in such cases.
Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.
Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang
2015-09-01
Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low-dose brain [(18)F]FDG PET image. In this paper, the authors propose a framework to generate standard-dose brain [(18)F]FDG PET image using low-dose brain [(18)F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [(18)F]FDG PET can be well-predicted using MRI and low-dose brain [(18)F]FDG PET.
Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images
Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang
2015-01-01
Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced image quality of low-dose brain [18F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [18F]FDG PET image using low-dose brain [18F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [18F]FDG PET can be well-predicted using MRI and low-dose brain [18F]FDG PET. PMID:26328979
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.
Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk
2015-05-01
The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jiayin; Gao, Yaozong; Shi, Feng
Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET image and substantially enhanced image quality of low-dose brain [{sup 18}F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [{sup 18}F]FDG PET image using low-dose brain [{sup 18}F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [{sup 18}F]FDG PET can be well-predicted using MRI and low-dose brain [{sup 18}F]FDG PET.« less
Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger
2016-01-01
Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.
Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System
Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin
2017-01-01
The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05) for the K1 parameter and −19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05) for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742
Injuries caused by pets in Asian urban households: a cross-sectional telephone survey
Chan, Emily Y Y; Gao, Yang; Li, Liping; Lee, Po Yi
2017-01-01
Objectives Little is known about pet-related injuries in Asian populations. This study primarily aimed to investigate the incidence rate of pet-related household injuries in Hong Kong, an urban Chinese setting. Setting Cantonese-speaking non-institutionalised population of all ages in Hong Kong accessible by telephone land-line. Participants A total of 43 542 telephone numbers were dialled and 6570 residents successfully completed the interviews. Primary and secondary outcome measures Data of pet-related household injuries in the previous 12 months, pet ownership and socio-demographic characteristics were collected with a questionnaire. Direct standardisation of the incidence rates of pet-related household injuries by gender and age to the 2009 Hong Kong Population Census was estimated. Univariate and multivariate analyses were performed to estimate risks of socio-demographic factors and pet ownership for the injury. Results A total of 84 participants experienced pet-related household injuries in the past 12 months, with an overall person-based incidence rate of 1.28%. The majority of the victims were injured once (69.6%). Cats (51.6%) were the most common pets involved. Pet owners were at an extremely higher risk after controlling for other factors (adjusted OR: 52.0, 95% CI 22.1 to 98.7). Females, the unmarried, those with higher monthly household income and those living in lower-density housing were more likely to be injured by pets. Conclusions We project a pet-related household injury incidence rate of 1.24% in the general Hong Kong population, with 86 334 residents sustaining pet-related injuries every year. Pet ownership puts people at extremely high risk, especially the unmarried. Further studies should focus on educating pet owners to reduce pet-related injuries in urban Greater China. PMID:28110284
Competitive Advantage of PET/MRI
Jadvar, Hossein; Colletti, Patrick M.
2013-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129
Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI
NASA Astrophysics Data System (ADS)
Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.
2011-04-01
We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.
Caprio, M G; Capacchione, D; Mainolfi, C; Spera, A M; Salvatore, B; Cella, L; Salvatore, M; Pace, L
2012-01-01
The aim was to compare the imaging findings of (18)F-fluorodeoxyglucose ((18)F-FDG) PET and integrated PET/CT in patients with primary, recurrent or metastatic ovarian cancer. 21 women with ovarian cancer were evaluated. All patients had a integrated PET/CT scan. Localization, infiltration and uptake intensity of [(18)F]FDG were evaluated on PET and PET/CT. The certainty of localisation and characterisation was scored on a 3 point scale (L1 definite localisation; L2 probable localisation; L3 uncertain localisation; C1 benign; C2 equivocal; C3 malignant). PET scored as L1 54 lesions (44%), as L2 51 (42%), and as L3 17 (14%). On the other hand, PET/CT scored as L1 120 lesions (98%), as L2 2 (2%), and none as L3. Thus PET/CT allowed a better localization in 54% of lesions. Moreover, PET scored as C1 25 lesions (20%), as C2 62 (51%), and as C3 35 (29%). On the other hand, PET/CT scored as C1 57 lesions (47%), as C2 13 (11%), and as C3 52 (42%). Thus PET/CT allowed a sensible reduction in the number of equivocal lesions (40%). Even when patients were subgrouped on the basis of clinical stage of the disease, PET/CT was capable of better definition of the lesions either for localization and for characterization. In patients with ovarian cancer, PET/CT allows better anatomical localisation of pathologic uptake providing high accuracy for staging and restaging of ovarian cancer when compared with PET alone.
Competitive advantage of PET/MRI.
Jadvar, Hossein; Colletti, Patrick M
2014-01-01
Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca
2014-06-01
The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography ((18)F-FDG-PET or PET/CT). A comprehensive computer literature search of studies published through July 31(st) 2012 regarding FCIs detected by (18)F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Thirty-two studies comprising 89,061 patients evaluated by (18)F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by (18)F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6-4.7%). Overall, 1,044 FCIs detected by (18)F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60-75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. FCIs are observed in a not negligible number of patients who undergo (18)F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by (18)F-FDG-PET or PET/CT.
Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca
2014-01-01
Background The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (18F-FDG-PET or PET/CT). Methods A comprehensive computer literature search of studies published through July 31st 2012 regarding FCIs detected by 18F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Results Thirty-two studies comprising 89,061 patients evaluated by 18F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by 18F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6–4.7%). Overall, 1,044 FCIs detected by 18F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60–75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. Conclusions FCIs are observed in a not negligible number of patients who undergo 18F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by 18F-FDG-PET or PET/CT. PMID:24991198
Gulec, Seza A; Daghighian, Farhad; Essner, Richard
2016-12-01
Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions <1 cm, and the intraoperative localization of small PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.
Annunziata, Salvatore; Cuccaro, Annarosa; Tisi, Maria Chiara; Hohaus, Stefan; Rufini, Vittoria
2018-06-01
To retrospectively investigate the prognostic role of the ratio between target lesion and liver SUV max (rPET) in patients with follicular lymphoma (FL) submitted to FDG-PET/CT at the end of immuno-chemotherapy (PI-PET), and to compare rPET with International Harmonization Project criteria (IHP), Deauville Score (5p-DS) and FL International Prognostic Index at diagnosis (FLIPI). Eighty-nine patients with FL undergoing PI-PET were evaluated. The receiver operating characteristic (ROC) approach was applied to identify the optimal cut-point of rPET with respect to 5-years progression free survival (PFS). The prognostic significance of rPET was compared with IHP, DS and FLIPI. Positive predictive value (PPV) and negative predictive value (NPV) were calculated using the presence of adverse events as gold standard. The ROC analysis for rPET as predictor of progression showed an optimal rPET cut-point of 0.98. Patients with positive values of IHP, DS and rPET had a PFS of 50, 30 and 31%. PPV were of 56, 80 and 80%, NPV of 83, 86 and 88%, respectively. DS and rPET differed only in two patients. FLIPI was not predictive of progression and relapse. rPET is a prognostic factor in patients with FL submitted to PI-PET. Although it has a similar prognostic power as DS, it can have methodological advantages over visual analysis. PI-PET with different evaluation systems has a stronger prognostic power than FLIPI at diagnosis, so it could be useful to identify patients with FL at risk for early relapse after immuno-chemotherapy.
Westgarth, Carri; Heron, Jon; Ness, Andy R; Bundred, Peter; Gaskell, Rosalind M; Coyne, Karen P; German, Alexander J; McCune, Sandra; Dawson, Susan
2010-10-01
In developed nations, approximately half of household environments contain pets. Studies of Human-Animal Interaction (HAI) have proposed that there are health benefits and risks associated with pet ownership. However, accurately demonstrating and understanding these relationships first requires a better knowledge of factors associated with ownership of different pet types. A UK birth cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC), were used to collect pet ownership data from the mothers, from gestation to child age 10 years old. 14,663 children were included in the study, of which mothers of 13,557 reported pet information at gestation, and 7,800 by age 10. Pet types recorded include cat, dog, rabbit, rodent, bird, fish and tortoise/turtle. The dataset also contains a number of demographic, socioeconomic and behavioural variables relevant to human health behaviour. Logistic regression was used to build multivariable models for ownership of each pet type at age 7 years. Family pet ownership increased during childhood, in particular rabbits, rodents and fish. A number of socioeconomic and demographic factors were associated with ownership of different pet types and the effects differed depending on the pet type studied. Variables which require consideration by researchers include gender, presence of older siblings, ethnicity, maternal and paternal education, maternal and paternal social class, maternal age, number of people in the household, house type, and concurrent ownership of other pets. Whether the mother had pets during her childhood was a strong predictor of pet ownership in all models. In HAI studies, care should be taken to control for confounding factors, and to treat each pet type individually. ALSPAC and other similar birth cohorts can be considered a potential resource for research into the effects of pet ownership during childhood.
Westgarth, Carri; Heron, Jon; Ness, Andy R.; Bundred, Peter; Gaskell, Rosalind M.; Coyne, Karen P.; German, Alexander J.; McCune, Sandra; Dawson, Susan
2010-01-01
In developed nations, approximately half of household environments contain pets. Studies of Human-Animal Interaction (HAI) have proposed that there are health benefits and risks associated with pet ownership. However, accurately demonstrating and understanding these relationships first requires a better knowledge of factors associated with ownership of different pet types. A UK birth cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC), were used to collect pet ownership data from the mothers, from gestation to child age 10 years old. 14,663 children were included in the study, of which mothers of 13,557 reported pet information at gestation, and 7,800 by age 10. Pet types recorded include cat, dog, rabbit, rodent, bird, fish and tortoise/turtle. The dataset also contains a number of demographic, socioeconomic and behavioural variables relevant to human health behaviour. Logistic regression was used to build multivariable models for ownership of each pet type at age 7 years. Family pet ownership increased during childhood, in particular rabbits, rodents and fish. A number of socioeconomic and demographic factors were associated with ownership of different pet types and the effects differed depending on the pet type studied. Variables which require consideration by researchers include gender, presence of older siblings, ethnicity, maternal and paternal education, maternal and paternal social class, maternal age, number of people in the household, house type, and concurrent ownership of other pets. Whether the mother had pets during her childhood was a strong predictor of pet ownership in all models. In HAI studies, care should be taken to control for confounding factors, and to treat each pet type individually. ALSPAC and other similar birth cohorts can be considered a potential resource for research into the effects of pet ownership during childhood. PMID:21139856
Treglia, Giorgio; Mattoli, Maria Vittoria; Leccisotti, Lucia; Ferraccioli, Gianfranco; Giordano, Alessandro
2011-10-01
The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with fluorine-18-fluorodeoxyglucose (FDG) in patients with large-vessel vasculitis (LVV). A comprehensive literature search of published studies through April 2011 in PubMed/MEDLINE and Scopus databases regarding whole-body FDG-PET and PET/CT in patients with LVV was performed. We identified 32 studies including 604 LVV patients. The main findings of these studies are presented. The conclusions are the following: (1) FDG-PET and PET/CT are useful imaging methods in the initial diagnosis and in the assessment of activity and extent of disease in patients with LVV; (2) the correlation between FDG-PET findings and serological levels of inflammatory markers, as well as the usefulness of FDG-PET and PET/CT in evaluating treatment response, remains unclear; (3) it appears that there is a superiority of FDG-PET and PET/CT over conventional imaging methods in the diagnosis of LVV, but not in assessing disease activity under immunosuppressive treatment, in predicting relapse or in evaluating vascular complications; and (4) given the heterogeneity between studies with regard to PET analysis and diagnostic criteria, a standardization of the technique is needed.
Deformation field correction for spatial normalization of PET images
Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.
2015-01-01
Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272
Spick, Claudio; Herrmann, Ken; Czernin, Johannes
2016-01-01
18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709
Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan
2016-01-01
Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with 18F-FDG PET imaging (Kappa = 0.881 and Kappa = 0.240, respectively). Conclusion 18F-FDG PET/CT integrated imaging is a more reliable modality in distinguishing malignant from benign pleural effusion than 18F-FDG PET imaging and CT imaging alone. For image interpretation of 18F-FDG PET/CT integrated imaging, the PET and CT portions play a major diagnostic role in identifying metastatic effusion and benign effusion, respectively. PMID:27560933
Myths and misperceptions about ingredients used in commercial pet foods.
Laflamme, Dottie; Izquierdo, Oscar; Eirmann, Laura; Binder, Stephen
2014-07-01
Information and misinformation about pet nutrition and pet foods, including ingredients used in pet foods, is widely available through various sources. Often, this "information" raises questions or concerns among pet owners. Many pet owners will turn to their veterinarian for answers to these questions. One of the challenges that veterinarians have is keeping up with the volume of misinformation about pet foods and sorting out fact from fiction. The goal of this article is to provide facts regarding some common myths about ingredients used in commercial pet foods so as to better prepare veterinarians to address their client's questions. Copyright © 2014 Elsevier Inc. All rights reserved.
Quartuccio, Natale; Treglia, Giorgio; Salsano, Marco; Mattoli, Maria Vittoria; Muoio, Barbara; Piccardo, Arnoldo; Lopci, Egesta; Cistaro, Angelina
2013-01-01
Background The objective of this study is to systematically review the role of positron emission tomography (PET) and PET/computed tomography (PET/CT) with Fluorine-18-Fluorodeoxyglucose (FDG) in patients with osteosarcoma (OS). Methods A comprehensive literature search of published studies through October 10th, 2012 in PubMed/MEDLINE, Embase and Scopus databases regarding whole-body FDG-PET and FDG-PET/CT in patients with OS was performed. Results We identified 13 studies including 289 patients with OS. With regard to the staging and restaging of OS, the diagnostic performance of FDG-PET and PET/CT seem to be high; FDG-PET and PET/CT seem to be superior to bone scintigraphy and conventional imaging methods in detecting bone metastases; conversely, spiral CT seems to be superior to FDG-PET in detecting pulmonary metastases from OS Conclusions Metabolic imaging may provide additional information in the evaluation of OS patients. The combination of FDG-PET or FDG-PET/CT with conventional imaging methods seems to be a valuable tool in the staging and restaging of OS and may have a relevant impact on the treatment planning. PMID:23801904
Spadafora, Marco; Pace, Leonardo; Evangelista, Laura; Mansi, Luigi; Del Prete, Francesco; Saladini, Giorgio; Miletto, Paolo; Fanti, Stefano; Del Vecchio, Silvana; Guerra, Luca; Pepe, Giovanna; Peluso, Giuseppina; Nicolai, Emanuele; Storto, Giovanni; Ferdeghini, Marco; Giordano, Alessandro; Farsad, Mohsen; Schillaci, Orazio; Gridelli, Cesare; Cuocolo, Alberto
2018-05-05
Diagnosis of solitary pulmonary nodule (SPN) is an important public health issue and 18 F-FDG PET/CT has proven to be more effective than CT alone. Pre-test risk stratification and clinical presentation of SPN could affect the diagnostic strategy. A relevant issue is whether thoracic segmental (s)-PET/CT could be implemented in patients with SPN. This retrospective multicenter study compared the results of FDG whole-body (wb)-PET/CT to those of s-PET/CT. 18 F-FDG PET/CT of 502 patients, stratified for pre-test cancer risk, were retrospectively analyzed. The thoracic part of wb-PET/CT, considered s-PET/CT, was compared to wb-PET/CT. Clinical and PET/CT variables were investigated for SPN characterization as well as for identification of patients in whom s-PET/CT could be performed. Histopathology or follow-up data were used as a reference. In the study population, 36% had malignant, 35% benign, and 29% indeterminate SPN. 18 F-FDG uptake indicative of thoracic and extra-thoracic lesions was detectable in 13% and 3% of the patients. All patients with extra-thoracic metastases (n = 13) had thoracic lymph node involvement and highest 18 F-FDG uptake at level of SPN (negative predictive value 100%). Compared to wb-PET/CT, s-PET/CT could save about 2/3 of 18 F-FDG dose, radiation exposure or scan-time, without affecting the clinical impact of PET/CT. Pre-test probability of malignancy can guide the diagnostic strategy of 18 FDG-PET/CT in patients with SPN. In subjects with low-intermediate pretest probability s-PET/CT imaging might be planned in advance, while in those at high risk and with thoracic lymph node involvement a wb-PET/CT is necessary.
Ryvlin, P; Bouvard, S; Le Bars, D; De Lamérie, G; Grégoire, M C; Kahane, P; Froment, J C; Mauguière, F
1998-11-01
We assessed the clinical utility of [11C]flumazenil-PET (FMZ-PET) prospectively in 100 epileptic patients undergoing a pre-surgical evaluation, and defined the specific contribution of this neuro-imaging technique with respect to those of MRI and [18F]fluorodeoxyglucose-PET (FDG-PET). All patients benefited from a long term video-EEG monitoring, whereas an intracranial EEG investigation was performed in 40 cases. Most of our patients (73%) demonstrated a FMZ-PET abnormality; this hit rate was significantly higher in temporal lobe epilepsy (94%) than in other types of epilepsy (50%) (P < 0.001). Most FMZ-PET findings coexisted with a MRI abnormality (81%), including hippocampal atrophy (35%) and focal hypometabolism on FDG-PET (89%). The area of decreased FMZ binding was often smaller than that of glucose hypometabolism (48%) or larger than that of the MRI abnormality (28%). FMZ-PET did not prove superior to FDG-PET in assessing the extent of the ictal onset zone, as defined by intracranial EEG recordings. However, it provided useful data which were complementary to those of MRI and FDG-PET in three situations: (i) in temporal lobe epilepsy associated with MRI signs of hippocampal sclerosis, FMZ-PET abnormalities delineated the site of seizure onset precisely, whenever they were coextensive with FDG-PET abnormalities; (ii) in bi-temporal epilepsy, FMZ-PET helped to confirm the bilateral origin of seizures by showing a specific pattern of decreased FMZ binding in both temporal lobes in 33% of cases; (iii) in patients with a unilateral cryptogenic frontal lobe epilepsy, FMZ-PET provided further evidence of the side and site of seizure onset in 55% of cases. Thus, FMZ-PET deserves to be included in the pre-surgical evaluation of these specific categories of epileptic patients, representing approximately half of the population considered for epilepsy surgery.
Ghaneh, Paula; Hanson, Robert; Titman, Andrew; Lancaster, Gill; Plumpton, Catrin; Lloyd-Williams, Huw; Yeo, Seow Tien; Edwards, Rhiannon Tudor; Johnson, Colin; Abu Hilal, Mohammed; Higginson, Antony P; Armstrong, Tom; Smith, Andrew; Scarsbrook, Andrew; McKay, Colin; Carter, Ross; Sutcliffe, Robert P; Bramhall, Simon; Kocher, Hemant M; Cunningham, David; Pereira, Stephen P; Davidson, Brian; Chang, David; Khan, Saboor; Zealley, Ian; Sarker, Debashis; Al Sarireh, Bilal; Charnley, Richard; Lobo, Dileep; Nicolson, Marianne; Halloran, Christopher; Raraty, Michael; Sutton, Robert; Vinjamuri, Sobhan; Evans, Jonathan; Campbell, Fiona; Deeks, Jon; Sanghera, Bal; Wong, Wai-Lup; Neoptolemos, John P
2018-02-01
Pancreatic cancer diagnosis and staging can be difficult in 10-20% of patients. Positron emission tomography (PET)/computed tomography (CT) adds precise anatomical localisation to functional data. The use of PET/CT may add further value to the diagnosis and staging of pancreatic cancer. To determine the incremental diagnostic accuracy and impact of PET/CT in addition to standard diagnostic work-up in patients with suspected pancreatic cancer. A multicentre prospective diagnostic accuracy and clinical value study of PET/CT in suspected pancreatic malignancy. Patients with suspected pancreatic malignancy. All patients to undergo PET/CT following standard diagnostic work-up. The primary outcome was the incremental diagnostic value of PET/CT in addition to standard diagnostic work-up with multidetector computed tomography (MDCT). Secondary outcomes were (1) changes in patients' diagnosis, staging and management as a result of PET/CT; (2) changes in the costs and effectiveness of patient management as a result of PET/CT; (3) the incremental diagnostic value of PET/CT in chronic pancreatitis; (4) the identification of groups of patients who would benefit most from PET/CT; and (5) the incremental diagnostic value of PET/CT in other pancreatic tumours. Between 2011 and 2013, 589 patients with suspected pancreatic cancer underwent MDCT and PET/CT, with 550 patients having complete data and in-range PET/CT. Sensitivity and specificity for the diagnosis of pancreatic cancer were 88.5% and 70.6%, respectively, for MDCT and 92.7% and 75.8%, respectively, for PET/CT. The maximum standardised uptake value (SUV max. ) for a pancreatic cancer diagnosis was 7.5. PET/CT demonstrated a significant improvement in relative sensitivity ( p = 0.01) and specificity ( p = 0.023) compared with MDCT. Incremental likelihood ratios demonstrated that PET/CT significantly improved diagnostic accuracy in all scenarios ( p < 0.0002). PET/CT correctly changed the staging of pancreatic cancer in 56 patients ( p = 0.001). PET/CT influenced management in 250 (45%) patients. PET/CT stopped resection in 58 (20%) patients who were due to have surgery. The benefit of PET/CT was limited in patients with chronic pancreatitis or other pancreatic tumours. PET/CT was associated with a gain in quality-adjusted life-years of 0.0157 (95% confidence interval -0.0101 to 0.0430). In the base-case model PET/CT was seen to dominate MDCT alone and is thus highly likely to be cost-effective for the UK NHS. PET/CT was seen to be most cost-effective for the subgroup of patients with suspected pancreatic cancer who were thought to be resectable. PET/CT provided a significant incremental diagnostic benefit in the diagnosis of pancreatic cancer and significantly influenced the staging and management of patients. PET/CT had limited utility in chronic pancreatitis and other pancreatic tumours. PET/CT is likely to be cost-effective at current reimbursement rates for PET/CT to the UK NHS. This was not a randomised controlled trial and therefore we do not have any information from patients who would have undergone MDCT only for comparison. In addition, there were issues in estimating costs for PET/CT. Future work should evaluate the role of PET/CT in intraductal papillary mucinous neoplasm and prognosis and response to therapy in patients with pancreatic cancer. Current Controlled Trials ISRCTN73852054 and UKCRN 8166. The National Institute for Health Research Health Technology Assessment programme.
Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi
2018-04-01
Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.
Mughini Gras, L; Smid, J H; Wagenaar, J A; Koene, M G J; Havelaar, A H; Friesema, I H M; French, N P; Flemming, C; Galson, J D; Graziani, C; Busani, L; VAN Pelt, W
2013-12-01
We compared Campylobacter jejuni/coli multilocus sequence types (STs) from pets (dogs/cats) and their owners and investigated risk factors for pet-associated human campylobacteriosis using a combined source-attribution and case-control analysis. In total, 132/687 pet stools were Campylobacter-positive, resulting in 499 strains isolated (320 C. upsaliensis/helveticus, 100 C. jejuni, 33 C. hyointestinalis/fetus, 10 C. lari, 4 C. coli, 32 unidentified). There were 737 human and 104 pet C. jejuni/coli strains assigned to 154 and 49 STs, respectively. Dog, particularly puppy, owners were at increased risk of infection with pet-associated STs. In 2/68 cases vs. 0.134/68 expected by chance, a pet and its owner were infected with an identical ST (ST45, ST658). Although common sources of infection and directionality of transmission between pets and humans were unknown, dog ownership significantly increased the risk for pet-associated human C. jejuni/coli infection and isolation of identical strains in humans and their pets occurred significantly more often than expected.
The Spillover Effect of a Flood on Pets and Their People: Implications for Rental Housing.
Graham, Taryn M; Rock, Melanie J
2018-06-04
When disasters strike, companion animals (pets) matter. Emergency planning for them is a key aspect of disaster preparedness, especially considering that people may delay evacuation out of concern for their pets. Temporary boarding options for pets are important; however, caregivers (owners) must ultimately return to permanent housing. Surprisingly little attention has been paid to housing recovery in the disaster literature on pet ownership, and no studies have examined the potential for increased vulnerability among tenants with pets. This study analyzed online rental listings in a city that was severely flooded in 2013. In the following year, demand for pet-friendly rental housing outweighed supply. Landlords frequently stipulated restrictions on the allowable sizes, species, or breeds of pets. Dogs were often banned outright. To keep their pets, prospective tenants needed to exercise flexibility in location and pay higher surcharges. The implications of housing insecurity for tenants with pets have broad relevance, not just in disaster circumstances. Giving up a companion animal to secure housing can negatively impact resilience, whereas living in unsafe environments to avoid pet relinquishment may increase vulnerability.
Pet ownership increases human risk of encountering ticks.
Jones, E H; Hinckley, A F; Hook, S A; Meek, J I; Backenson, B; Kugeler, K J; Feldman, K A
2018-02-01
We examined whether pet ownership increased the risk for tick encounters and tickborne disease among residents of three Lyme disease-endemic states as a nested cohort within a randomized controlled trial. Information about pet ownership, use of tick control for pets, property characteristics, tick encounters and human tickborne disease were captured through surveys, and associations were assessed using univariate and multivariable analyses. Pet-owning households had 1.83 times the risk (95% CI = 1.53, 2.20) of finding ticks crawling on and 1.49 times the risk (95% CI = 1.20, 1.84) of finding ticks attached to household members compared to households without pets. This large evaluation of pet ownership, human tick encounters and tickborne diseases shows that pet owners, whether of cats or dogs, are at increased risk of encountering ticks and suggests that pet owners are at an increased risk of developing tickborne disease. Pet owners should be made aware of this risk and be reminded to conduct daily tick checks of all household members, including the pets, and to consult their veterinarian regarding effective tick control products. © 2017 Blackwell Verlag GmbH.
Parslow, Ruth A; Jorm, Anthony F; Christensen, Helen; Rodgers, Bryan; Jacomb, Patricia
2005-01-01
It is commonly assumed that owning a pet provides older residents in the community with health benefits including improved physical health and psychological well-being. It has also been reported that pet owners are lower on neuroticism and higher on extraversion compared with those without pets. However, findings of research on this topic have been mixed with a number of researchers reporting that, for older people, there is little or no health benefit associated with pet ownership. To identify health benefits associated with pet ownership and pet caring responsibilities in a large sample of older community-based residents. Using survey information provided by 2,551 individuals aged between 60 and 64 years, we compared the sociodemographic attributes, mental and physical health measures, and personality traits of pet owners and non-owners. For 78.8% of these participants, we were also able to compare the health services used, based on information obtained from the national insurer on the number of general practitioner (GP) visits they made over a 12-month period. Compared with non-owners, those with pets reported more depressive symptoms while female pet owners who were married also had poorer physical health. We found that caring for a pet was associated with negative health outcomes including more symptoms of depression, poorer physical health and higher rates of use of pain relief medication. No relationship was found between pet ownership and use of GP services. When we examined the personality traits of pet owners and carers, we found that men who cared for pets had higher extraversion scores. Our principal and unexpected finding, however, was that pet owners and carers reported higher levels of psychoticism as measured by the Revised Eysenck Personality Questionnaire. We conclude that pet ownership confers no health benefits for this age group. Instead, those with pets have poorer mental and physical health and use more pain relief medication. Further, our study suggests that those with pets are less conforming to social norms as indicated by their higher levels of psychoticism. Copyright (c) 2005 S. Karger AG, Basel
Eiber, Matthias; Martinez-Möller, Axel; Souvatzoglou, Michael; Holzapfel, Konstantin; Pickhard, Anja; Löffelbein, Dennys; Santi, Ivan; Rummeny, Ernst J; Ziegler, Sibylle; Schwaiger, Markus; Nekolla, Stephan G; Beer, Ambros J
2011-09-01
In this study, the potential contribution of Dixon-based MR imaging with a rapid low-resolution breath-hold sequence, which is a technique used for MR-based attenuation correction (AC) for MR/positron emission tomography (PET), was evaluated for anatomical correlation of PET-positive lesions on a 3T clinical scanner compared to low-dose CT. This technique is also used in a recently installed fully integrated whole-body MR/PET system. Thirty-five patients routinely scheduled for oncological staging underwent (18)F-fluorodeoxyglucose (FDG) PET/CT and a 2-point Dixon 3-D volumetric interpolated breath-hold examination (VIBE) T1-weighted MR sequence on the same day. Two PET data sets reconstructed using attenuation maps from low-dose CT (PET(AC_CT)) or simulated MR-based segmentation (PET(AC_MR)) were evaluated for focal PET-positive lesions. The certainty for the correlation with anatomical structures was judged in the low-dose CT and Dixon-based MRI on a 4-point scale (0-3). In addition, the standardized uptake values (SUVs) for PET(AC_CT) and PET(AC_MR) were compared. Statistically, no significant difference could be found concerning anatomical localization for all 81 PET-positive lesions in low-dose CT compared to Dixon-based MR (mean 2.51 ± 0.85 and 2.37 ± 0.87, respectively; p = 0.1909). CT tended to be superior for small lymph nodes, bone metastases and pulmonary nodules, while Dixon-based MR proved advantageous for soft tissue pathologies like head/neck tumours and liver metastases. For the PET(AC_CT)- and PET(AC_MR)-based SUVs (mean 6.36 ± 4.47 and 6.31 ± 4.52, respectively) a nearly complete concordance with a highly significant correlation was found (r = 0.9975, p < 0.0001). Dixon-based MR imaging for MR AC allows for anatomical allocation of PET-positive lesions similar to low-dose CT in conventional PET/CT. Thus, this approach appears to be useful for future MR/PET for body regions not fully covered by diagnostic MRI due to potential time constraints.
Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L
2014-12-01
The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.
Mhlanga, Joyce C.; Carrino, John A.; Lodge, Martin; Wang, Hao
2015-01-01
Purpose The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18F-FDG. Methods Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Results Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73±7.7 years). Six patients served as the control group (53.7±9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r=0.86. p =0.007; r=0.94, p=0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7±6.6 vs. 32.2±0.4, p=0.02; 37.5±5.4 vs. 32.2±0.4, p=0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8±4.2 vs. 18±1.8, p= 0.13; 22.8±5.38 vs. 20.1±1.54, p=0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9±31.3 vs. 0, p=0.03). Conclusion Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. PMID:25134669
Pet ownership, dog types and attachment to pets in 9–10 year old children in Liverpool, UK
2013-01-01
Background Little is known about ethnic, cultural and socioeconomic differences in childhood ownership and attitudes to pets. The objective of this study was to describe the factors associated with living with different pet types, as well as factors that may influence the intensity of relationship or ‘attachment’ that children have to their pet. Data were collected using a survey of 1021 9–10 year old primary school children in a deprived area of the city of Liverpool, UK. Results Dogs were the most common pet owned, most common ‘favourite’ pet, and species most attached to. Twenty-seven percent of dog-owning children (10% of all children surveyed) reported living with a ‘Bull Breed’ dog (which includes Pit Bulls and Staffordshire Bull Terriers), and the most popular dog breed owned was the Staffordshire Bull Terrier. Multivariable regression modelling identified a number of variables associated with ownership of different pets and the strength of attachment to the child’s favourite pet. Girls were more likely to own most pet types, but were no more or less attached to their favourite pet than boys. Children of white ethnicity were more likely to own dogs, rodents and ‘other’ pets but were no more or less attached to their pets than children of non-white ethnicity. Single and youngest children were no more or less likely to own pets than those with younger brothers and sisters, but they showed greater attachment to their pets. Children that owned dogs lived in more deprived areas than those without dogs, and deprivation increased with number of dogs owned. ‘Pit Bull or cross’ and ‘Bull Breed’ dogs were more likely to be found in more deprived areas than other dog types. Non-whites were also more likely to report owning a ‘Pit Bull or cross’ than Whites. Conclusions Gender, ethnicity and socioeconomic status were associated with pet ownership, and sibling status with level of attachment to the pet. These are important to consider when conducting research into the health benefits and risks of the common childhood phenomenon of growing up with pets. PMID:23668544
Pet ownership, dog types and attachment to pets in 9-10 year old children in Liverpool, UK.
Westgarth, Carri; Boddy, Lynne M; Stratton, Gareth; German, Alexander J; Gaskell, Rosalind M; Coyne, Karen P; Bundred, Peter; McCune, Sandra; Dawson, Susan
2013-05-13
Little is known about ethnic, cultural and socioeconomic differences in childhood ownership and attitudes to pets. The objective of this study was to describe the factors associated with living with different pet types, as well as factors that may influence the intensity of relationship or 'attachment' that children have to their pet. Data were collected using a survey of 1021 9-10 year old primary school children in a deprived area of the city of Liverpool, UK. Dogs were the most common pet owned, most common 'favourite' pet, and species most attached to. Twenty-seven percent of dog-owning children (10% of all children surveyed) reported living with a 'Bull Breed' dog (which includes Pit Bulls and Staffordshire Bull Terriers), and the most popular dog breed owned was the Staffordshire Bull Terrier. Multivariable regression modelling identified a number of variables associated with ownership of different pets and the strength of attachment to the child's favourite pet. Girls were more likely to own most pet types, but were no more or less attached to their favourite pet than boys. Children of white ethnicity were more likely to own dogs, rodents and 'other' pets but were no more or less attached to their pets than children of non-white ethnicity. Single and youngest children were no more or less likely to own pets than those with younger brothers and sisters, but they showed greater attachment to their pets. Children that owned dogs lived in more deprived areas than those without dogs, and deprivation increased with number of dogs owned. 'Pit Bull or cross' and 'Bull Breed' dogs were more likely to be found in more deprived areas than other dog types. Non-whites were also more likely to report owning a 'Pit Bull or cross' than Whites. Gender, ethnicity and socioeconomic status were associated with pet ownership, and sibling status with level of attachment to the pet. These are important to consider when conducting research into the health benefits and risks of the common childhood phenomenon of growing up with pets.
Treglia, Giorgio; Annunziata, Salvatore; Muoio, Barbara; Salvatori, Massimo; Ceriani, Luca; Giovanella, Luca
2013-01-01
Aggressive histological subtypes of thyroid cancer are rare and have a poor prognosis. The most important aggressive subtypes of thyroid cancer are Hürthle cell carcinoma (HCTC) and anaplastic and poorly differentiated carcinoma (ATC and PDTC). The American Thyroid Association recently published guidelines for the management of patients with ATC, but no specific guidelines have been done about HCTC. We performed an overview of the literature about the role of Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (FDG-PET or PET/CT) in aggressive histological subtypes of thyroid cancer. Only few original studies about the role of FDG-PET or PET/CT in HCTC, PDTC, and ATC have been published in the literature. FDG-PET or PET/CT seems to be useful in staging or followup of invasive and metastatic HCTC. FDG-PET or PET/CT should be used in patients with ATC in initial staging and in the followup after surgery to evaluate metastatic disease. Some authors suggest the use of FDG-PET/CT in staging of PDTC, but more studies are needed to define the diagnostic use of FDG-PET/CT in this setting. Limited experience suggests the usefulness of FDG-PET or PET/CT in patients with more aggressive histological subtypes of DTC. However, DTC presenting as radioiodine refractory and FDG-PET positive should be considered aggressive tumours with poor prognosis.
Pets for Handicapped Children.
ERIC Educational Resources Information Center
Frith, Greg H.
1982-01-01
Pets can provide valuable learning for handicapped children, but selection of a type of pet should consider cost, availability and care, parents' attitudes, locality, the animal's susceptibility to training, pet's life expectancy, and the child's handicap and emotional maturity. Suggested pet-related activities are listed. (CL)
Wells, M; Perrine, R
2001-01-01
This article reports the findings of an exploratory study examining the perceived functions and psychological and organizational effects of pets in the workplace. Participants were 193 employees from 31 companies allowing pets in the workplace who completed anonymous questionnaires. Results indicated that participants perceived pets in the workplace to reduce stress and to positively affect employee health and the organization. Participants who brought their pets to work perceived greater benefits than participants who did not bring their pets to work and participants who did not own pets.
Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S
2016-01-01
AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student’s t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10-3 mm2/s. The 1.0 × 10-3 ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar’s test). CONCLUSION: These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients. PMID:27028112
Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S
2016-03-28
To describe our preliminary experience with simultaneous whole body (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated (18)F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than that of benign lesions (1246.2 + 417.3; P = 0.0003; Student's t test). A range of ADCmin thresholds for malignancy were evaluated, from 0.5-1.5 × 10(-3) mm(2)/s. The 1.0 × 10(-3) ADCmin threshold performed best compared with PET-CT reference (68.3% accuracy). However, the accuracy of PET-MRI SUVmax was significantly better than ADCmin for detecting malignant lesions compared with PET-CT reference (P < 0.0001; two-tailed McNemar's test). These results suggest a clinical role for simultaneous whole body PET-MRI in evaluating pediatric cancer patients.
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Jin Ho; Choi, Yong, E-mail: ychoi.image@gmail.com; Jung, Jiwoong
2015-05-15
Purpose: The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. Methods: The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. Themore » PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. Results: No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Conclusions: Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.« less
Fantoni, Enrico R; Chalkidou, Anastasia; O' Brien, John T; Farrar, Gill; Hammers, Alexander
2018-01-01
Amyloid PET (aPET) imaging could improve patient outcomes in clinical practice, but the extent of impact needs quantification. To provide an aggregated quantitative analysis of the value added by aPET in cognitively impaired subjects. Systematic literature searches were performed in Embase and Medline until January 2017. 1,531 cases over 12 studies were included (1,142 cases over seven studies in the primary analysis where aPET was the key biomarker; the remaining cases included as defined groups in the secondary analysis). Data was abstracted by consensus among two observers and assessed for bias. Clinical utility was measured by diagnostic change, diagnostic confidence, and patient management before and after aPET. Three groups were further analyzed: control patients for whom feedback of aPET scan results was delayed; aPET Appropriate Use Criteria (AUC+) cases; and patients undergoing additional FDG/CSF testing. For 1,142 cases with only aPET, 31.3% of diagnoses were revised, whereas 3.2% of diagnoses changed in the delayed aPET control group (p < 0.0001). Increased diagnostic confidence following aPET was found for 62.1% of 870 patients. Management changes with aPET were found in 72.2% of 740 cases and in 55.5% of 299 cases in the control group (p < 0.0001). The diagnostic value of aPET in AUC+ patients or when FDG/CSF were additionally available did not substantially differ from the value of aPET alone in the wider population. Amyloid PET contributed to diagnostic revision in almost a third of cases and demonstrated value in increasing diagnostic confidence and refining management plans.
Guerra-García, Pilar; Hirsch, Steffen; Levine, Daniel S; Taj, Mary M
2017-12-01
Post-transplant lymphoproliferative disorder (PTLD) is a well-known complication following prolonged immunosuppression. Contrary to other lymphomas, there is no standardized imaging approach to assess PTLD either at staging or for response to therapy. Positron emission tomography/computed tomography (PET/CT) is an imaging modality that has proven to be useful in lymphoma. However, there is still limited data concerning its use in pediatric PTLD. Our study evaluates the use of PET/CT in pediatric PTLD at our institution. To assess the role of PET/CT in pediatric PTLD, we reviewed the pediatric patients with PTLD who had undergone PET/CT at our institution between 2000 and 2016. Nine patients were identified. Six had PET/CT at diagnosis. All lesions seen on CT were identified with PET/CT. Fourteen PET/CTs were done during treatment. Eight PET/CTs were negative, including three where CT showed areas of uncertain significance. In these cases, PET/CT helped us to stop treatment and the patients remain in remission after a long follow-up (mean 74.3 months; range 12.4-180.9 months). PET/CT revealed additional disease in two cases, therefore treatment was intensified. Six biopsies and close follow-up was done to confirm PET/CT results. In one case, PET/CT did not identify central nervous system involvement demonstrated on magnetic resonance imaging. PET/CT may have an important role in the staging and follow-up of pediatric PTLD. In our cohort, PET/CT was helpful in staging and assessing treatment response and in clarifying equivocal findings on other imaging modalities. © 2017 Wiley Periodicals, Inc.
Salem, A; Salem, A F; Al-Ibraheem, A; Lataifeh, I; Almousa, A; Jaradat, I
2011-01-01
In recent years, the role of positron emission tomography (PET) in the staging and management of gynecological cancers has been increasing. The aim of this study was to systematically review the role of PET in radiotherapy planning and brachytherapy treatment optimization in patients with cervical cancer. Systematic literature review. Systematic review of relevant literature addressing the utilization of PET and/or PET-computed tomography (CT) in external-beam radiotherapy planning and brachytherapy treatment optimization. We performed an extensive PubMed database search on 20 April 2011. Nineteen studies, including 759 patients, formed the basis of this systematic review. PET/ PET-CT is the most sensitive imaging modality for detecting nodal metastases in patients with cervical cancer and has been shown to impact external-beam radiotherapy planning by modifying the treatment field and customizing the radiation dose. This particularly applies to detection of previously uncovered para-aortic and inguinal nodal metastases. Furthermore, PET/ PET-CT guided intensity-modulated radiation therapy (IMRT) allows delivery of higher doses of radiation to the primary tumor, if brachytherapy is unsuitable, and to grossly involved nodal disease while minimizing treatment-related toxicity. PET/ PET-CT based brachytherapy optimization allows improved tumor-volume dose distribution and detailed 3D dosimetric evaluation of risk organs. Sequential PET/ PET-CT imaging performed during the course of brachytherapy form the basis of âadaptiveâ brachytherapy in cervical cancer. This review demonstrates the effectiveness of pretreatment PET/ PET-CT in cervical cancer patients treated by radiotherapy. Further prospective studies are required to define the group of patients who would benefit the most from this procedure.
Fantoni, Enrico R.; Chalkidou, Anastasia; O’ Brien, John T.; Farrar, Gill; Hammers, Alexander
2018-01-01
Background: Amyloid PET (aPET) imaging could improve patient outcomes in clinical practice, but the extent of impact needs quantification. Objective: To provide an aggregated quantitative analysis of the value added by aPET in cognitively impaired subjects. Methods: Systematic literature searches were performed in Embase and Medline until January 2017. 1,531 cases over 12 studies were included (1,142 cases over seven studies in the primary analysis where aPET was the key biomarker; the remaining cases included as defined groups in the secondary analysis). Data was abstracted by consensus among two observers and assessed for bias. Clinical utility was measured by diagnostic change, diagnostic confidence, and patient management before and after aPET. Three groups were further analyzed: control patients for whom feedback of aPET scan results was delayed; aPET Appropriate Use Criteria (AUC+) cases; and patients undergoing additional FDG/CSF testing. Results: For 1,142 cases with only aPET, 31.3% of diagnoses were revised, whereas 3.2% of diagnoses changed in the delayed aPET control group (p < 0.0001). Increased diagnostic confidence following aPET was found for 62.1% of 870 patients. Management changes with aPET were found in 72.2% of 740 cases and in 55.5% of 299 cases in the control group (p < 0.0001). The diagnostic value of aPET in AUC+ patients or when FDG/CSF were additionally available did not substantially differ from the value of aPET alone in the wider population. Conclusions: Amyloid PET contributed to diagnostic revision in almost a third of cases and demonstrated value in increasing diagnostic confidence and refining management plans. PMID:29689725
PET/MR Imaging in Gynecologic Oncology.
Ohliger, Michael A; Hope, Thomas A; Chapman, Jocelyn S; Chen, Lee-May; Behr, Spencer C; Poder, Liina
2017-08-01
MR imaging and PET using 2-Deoxy-2-[ 18 F]fluoroglucose (FDG) are both useful in the evaluation of gynecologic malignancies. MR imaging is superior for local staging of disease whereas fludeoxyglucose FDG PET is superior for detecting distant metastases. Integrated PET/MR imaging scanners have great promise for gynecologic malignancies by combining the advantages of each modality into a single scan. This article reviews the technology behind PET/MR imaging acquisitions and technical challenges relevant to imaging the pelvis. A dedicated PET/MR imaging protocol; the roles of PET and MR imaging in cervical, endometrial, and ovarian cancers; and future directions for PET/MR imaging are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Albert, Nathalie L.; Weller, Michael; Suchorska, Bogdana; Galldiks, Norbert; Soffietti, Riccardo; Kim, Michelle M.; la Fougère, Christian; Pope, Whitney; Law, Ian; Arbizu, Javier; Chamberlain, Marc C.; Vogelbaum, Michael; Ellingson, Ben M.
2016-01-01
This guideline provides recommendations for the use of PET imaging in gliomas. The review examines established clinical benefit in glioma patients of PET using glucose (18F-FDG) and amino acid tracers (11C-MET, 18F-FET, and 18F-FDOPA). An increasing number of studies have been published on PET imaging in the setting of diagnosis, biopsy, and resection as well radiotherapy planning, treatment monitoring, and response assessment. Recommendations are based on evidence generated from studies which validated PET findings by histology or clinical course. This guideline emphasizes the clinical value of PET imaging with superiority of amino acid PET over glucose PET and provides a framework for the use of PET to assist in the management of patients with gliomas. PMID:27106405
MO-FG-207-03: Maximizing the Utility of Integrated PET/MRI in Clinical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behr, S.
2015-06-15
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
MO-FG-207-00: Technological Advances in PET/MR Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT
Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick
2015-01-01
Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical routine based on the coils within the FOV and MR-sequences applied at the same time. The clinically realistic reduction in activity is slightly more than 50%. Further studies in a larger number of patients are needed to confirm our findings. PMID:26147919
Chan, Joachim; Carver, Antony; Brunt, John N H; Vinjamuri, Sobhan; Syndikus, Isabel
2017-03-01
Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. Fluoroethylcholine ( 18 F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUV max ) 60%] when compared with mpMRI. PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUV max was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. For visual contouring of boost volumes in prostate dose painting radiotherapy, 18 F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUV max may be more suitable. Additional use of PET with MRI for radiotherapy planning can significantly change the overall boost volumes compared with using MRI alone. Advances in knowledge: For prostate dose painting radiotherapy, the additional use of 18 F choline PET with MRI can significantly change the overall boost volumes, and PET should be performed before hormone therapy, especially if boost volumes are visually identified.
SU-C-9A-06: The Impact of CT Image Used for Attenuation Correction in 4D-PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Y; Bowsher, J; Yan, S
2014-06-01
Purpose: To evaluate the appropriateness of using 3D non-gated CT image for attenuation correction (AC) in a 4D-PET (gated PET) imaging protocol used in radiotherapy treatment planning simulation. Methods: The 4D-PET imaging protocol in a Siemens PET/CT simulator (Biograph mCT, Siemens Medical Solutions, Hoffman Estates, IL) was evaluated. CIRS Dynamic Thorax Phantom (CIRS Inc., Norfolk, VA) with a moving glass sphere (8 mL) in the middle of its thorax portion was used in the experiments. The glass was filled with {sup 18}F-FDG and was in a longitudinal motion derived from a real patient breathing pattern. Varian RPM system (Varian Medicalmore » Systems, Palo Alto, CA) was used for respiratory gating. Both phase-gating and amplitude-gating methods were tested. The clinical imaging protocol was modified to use three different CT images for AC in 4D-PET reconstruction: first is to use a single-phase CT image to mimic actual clinical protocol (single-CT-PET); second is to use the average intensity projection CT (AveIP-CT) derived from 4D-CT scanning (AveIP-CT-PET); third is to use 4D-CT image to do the phase-matched AC (phase-matching- PET). Maximum SUV (SUVmax) and volume of the moving target (glass sphere) with threshold of 40% SUVmax were calculated for comparison between 4D-PET images derived with different AC methods. Results: The SUVmax varied 7.3%±6.9% over the breathing cycle in single-CT-PET, compared to 2.5%±2.8% in AveIP-CT-PET and 1.3%±1.2% in phasematching PET. The SUVmax in single-CT-PET differed by up to 15% from those in phase-matching-PET. The target volumes measured from single- CT-PET images also presented variations up to 10% among different phases of 4D PET in both phase-gating and amplitude-gating experiments. Conclusion: Attenuation correction using non-gated CT in 4D-PET imaging is not optimal process for quantitative analysis. Clinical 4D-PET imaging protocols should consider phase-matched 4D-CT image if available to achieve better accuracy.« less
Advances in time-of-flight PET
Surti, Suleman; Karp, Joel S.
2016-01-01
This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577
How PET/MR Can Add Value For Children With Cancer.
Daldrup-Link, Heike
2017-03-01
To review how PET/MR technology could add value for pediatric cancer patients. Since many primary tumors in children are evaluated with MRI and metastases are detected with PET/CT, integrated PET/MR can be a time-efficient and convenient solution for pediatric cancer staging. 18 F-FDG PET/MR can assess primary tumors and the whole body in one imaging session, avoid repetitive anesthesia and reduce radiation exposure compared to 18 F-FDG PET/CT. This article lists 10 action points, which might improve the clinical value of PET/MR for children with cancer. However, even if PET/MR proves valuable, it cannot enter mainstream applications if it is not accessible to the majority of pediatric cancer patients. Therefore, innovations are needed to make PET/MR scanners affordable and increase patient throughput. PET/MR offers opportunities for more efficient, accurate and safe diagnoses of pediatric cancer patients. The impact on patient management and outcomes has to be substantiated by large-scale prospective clinical trials.
Technical aspects of cardiac PET/MRI.
Masuda, Atsuro; Nemoto, Ayaka; Takeishi, Yasuchika
2018-06-01
PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.
Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers.
Zhou, Jianfeng; Zheng, Dandan; Zhang, Fengxiu; Zhang, Guangxian
2016-12-01
In this paper, reactive -NH2 groups (8.36×10(-6)mol/g fabric) were introduced to the surface of polyethylene terephthalate (PET) fabrics by a nitration and reduction method, and epoxy groups were introduced to silkworm pupa protein (SPP) by reaction with epoxy chloropropane. PET-SPP composite fabrics were then prepared by reaction of these two precursors. The results showed that the SPP was firmly grafted onto the PET fabric surface and that the hydrophilicity of the fabric was markedly improved by the grafting of SPP. SEM images revealed a layer of substance covering the surface of the PET fibers, and XPS investigation showed that the nitrogen content of the PET-SPP fabric was higher than that of the original PET fabric (2.32% vs 0%). ATR-FTIR adsorption bands at 1653 and 1543cm(-1) suggested the successful grafting of SPP onto the PET fabric surface. The DSC and TG of the PET fibers demonstrated that the thermal stability of the original PET fibers was maintained well by the SPP-grafted PET fibers. The breaking strength, bending rigidity, air permeability, and crease recovery angle of the original PET fabric were also retained by the SPP-grafted PET fabric. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Zhenzhen; Wang, Yao; Wang, Jiuxing; Wang, Shichao; Zhuang, Hongwei; Liu, Jixian; Huang, Linjun; Wang, Yanxin; Wang, Wei; Belfiore, Laurence A.; Tang, Jianguo
2018-01-01
In this research contribution, the primary objective was to enhance the crystallization behavior of poly(ethylene terephthalate) (PET). To accomplish this tack, three kinds of new nucleating agents SiO2-diethylene glycol-LMPET (PET-3), SiO2-triethylene glycol–LMPET(PET-4) and SiO2-tetraethylene glycol-LMPET (PET-5) nucleating agents were prepared via grafting different oligomers (diethylene glycol; triethylene glycol and tetraethylene glycol) to the surface of nano-SiO2 and then linking to the low molecular weight poly(ethylene terephthalate) (LMPET). These nano-particle nucleating agents facilitated the crystallization of PET. Differential scanning calorimetry (DSC) studies of the composites that pure PET blended with PET-3, PET-4 and PET-5 indicated that the longer ethoxy segment in the nucleating agents exhibited (i) higher degrees of crystallinity; (ii) faster rates of crystallization; and (iii) higher crystallization temperatures. The Jeziorny method was employed to analyze the non-isothermal crystallization kinetics of the composites. These works demonstrated that the PET-3, PET-4 and PET-5 were attractive nucleating agents for poly(ethylene terephthalate), and the longer the chain length of the ethoxy segment in the nucleating agents, the more efficient the nucleation effect. PMID:29641456
PSMA PET in prostate cancer – a step towards personalized medicine
Bouchelouche, Kirsten; Choyke, Peter L.
2017-01-01
Purpose of review Increasing attention is being given to personalized medicine in oncology, where therapies are tailored to the particular characteristics of the individual cancer patient. In recent years, there has been greater focus on PSMA in prostate cancer (PCa) as a target for imaging and therapy with radionuclides. This review highlights the recent advancements in PSMA PET in PCa during the past year. Recent findings Several reports on PSMA PET/CT in PCa patients are demonstrating promising results, especially for detection of biochemical recurrence. 18F-PSMA PET/CT may be superior to 68Ga-PSMA PET/CT. The detection rate of PSMA PET is influenced by PSA level. PSMA PET/CT may have a higher detection rate than choline PET/CT. Only a few reports have been published on PSMA PET/MRI, and this modality remains to be elucidated further. Conclusion Molecular imaging with PSMA PET is paving the way for personalized medicine in PCa. However, large prospective clinical studies are needed to further evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa. PSMA is an excellent target for imaging and therapy with radionuclides, and the “image and treat” strategy has the potential to become a milestone in the management of PCa patients. PMID:26967720
Pet-keeping in early childhood and airway, nose and skin symptoms later in life.
Bornehag, C G; Sundell, J; Hagerhed, L; Janson, S
2003-09-01
It is discussed whether exposure to pets during childhood is a risk or a protective factor for sensitization and allergic symptoms. The aim of this study was to investigate the association between pet-keeping at time of birth and allergic symptoms in airways, nose and skin among young children in Sweden. A questionnaire was sent to the parents of 14 077 children (1-6 years), the focus being on allergic symptoms, home environment and other background factors including pet-keeping and avoidance behaviour. The response rate was 79%. Almost one-tenth of the population had got rid of pets because of allergy in the family, and 27.3% reported "avoidance" behaviour towards pets. In a cross-sectional analysis current pet-keeping was "protective", but this may be due to the fact that people avoid exposing their child to something that they believe is a risk factor for allergies. Pet-keeping at the time of birth was associated with "wheezing", "asthma" and "rhinitis on pet-exposure" later in life for children from families with an "avoidance" behaviour, and was not "protective" for other children. There was also an indication of a dose-response relationship between the number of types of furred pets at time of birth and later symptoms in analyses adjusted for avoidance behaviour or current pet-keeping. The distribution of pet-keeping in the population is largely explained by avoidance behaviour, meaning that those who have pets mainly are those who can stand them, indicating a "healthy pet-keeping effect".
Rojas-Anaya, Hector; Skogen, Karoline; Miles, Kenneth Alan
2012-06-01
To identify factors that influence the use of PET in phase III oncology trials in the UK by evaluating stakeholder perspectives. A wide range of UK PET research stakeholders with a potential interest in the use of PET in phase III trials were identified and invited to participate. These UK PET research stakeholders were consulted using a semistructured questionnaire on their personal experience with and involvement in PET research, the role of PET in phase III oncology clinical trials and on the promotion of UK PET research and unmet clinical needs in oncology. Responses were analysed quantitatively and by qualitative content analysis of free-text responses. A total of 118 responses were received from a wide range of stakeholders representing several professional groups and working environments. Of these respondents, 49 (42%) were using PET in their research. There was the general perception that using PET in clinical research is beneficial in oncology. The two major barriers identified were poor availability of PET and perceived difficulties in funding of excess treatment costs (75% of respondents). Other factors included limited coverage of PET in training, uncertainty about developing imaging protocols or the status of tracers other than 18F-fluorodeoxyglucose, and low awareness of the role of PET in patient selection for therapeutic trials. Patient concerns about radiation were not perceived as a research barrier. Interventions that improve the availability and funding pathways for PET research scans and that increase researcher awareness could help promote the use of PET for phase III oncology trials in the UK.
Gupta, Nidhi; Yadav, Tushar
2018-04-16
To evaluate the parents' acceptance to therapy pets, child's most favoured pet, child's choice of soft toy as compared to live pet, and child's preference of his own pet versus therapy pet. Sixty-two children of age groups 3-6 year, 6-9 year, and 9-12 year were selected. The data from completed questionnaires were statistically analysed and subjected to z test, Chi-squared test with P value<0.05 considered as significant. The consent to the presence of pet was given by 41.47% parents of 9- to 12-year-old children, 34.15% parents of 6- to 9-year-old children and 24.39% parents of 3- to 6-year-old children. Children who chose dog as their preferred pet were 56.7%; those who chose cat as their preferred pet were 44%. A majority of 3-to 6-year-olds (63.15%) had dog & cat as their choice, while 6- to 9-year-olds (65.21%) & 9- to 12-year-olds (40%) preferred dogs over all others. Dog was the favourite pet of 46.8% children. More percentage of children wanted pet provided by clinic. Animal-Assisted Therapy (AAT) can prove to be a good behaviour management technique if more parents are made aware and informed about AAT; dog is one of the highly recommended pets for AAT, and therapy pet should be preferred over home pet. © 2018 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel
2017-12-01
To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.
Injuries caused by pets in Asian urban households: a cross-sectional telephone survey.
Chan, Emily Y Y; Gao, Yang; Li, Liping; Lee, Po Yi
2017-01-20
Little is known about pet-related injuries in Asian populations. This study primarily aimed to investigate the incidence rate of pet-related household injuries in Hong Kong, an urban Chinese setting. Cantonese-speaking non-institutionalised population of all ages in Hong Kong accessible by telephone land-line. A total of 43 542 telephone numbers were dialled and 6570 residents successfully completed the interviews. Data of pet-related household injuries in the previous 12 months, pet ownership and socio-demographic characteristics were collected with a questionnaire. Direct standardisation of the incidence rates of pet-related household injuries by gender and age to the 2009 Hong Kong Population Census was estimated. Univariate and multivariate analyses were performed to estimate risks of socio-demographic factors and pet ownership for the injury. A total of 84 participants experienced pet-related household injuries in the past 12 months, with an overall person-based incidence rate of 1.28%. The majority of the victims were injured once (69.6%). Cats (51.6%) were the most common pets involved. Pet owners were at an extremely higher risk after controlling for other factors (adjusted OR: 52.0, 95% CI 22.1 to 98.7). Females, the unmarried, those with higher monthly household income and those living in lower-density housing were more likely to be injured by pets. We project a pet-related household injury incidence rate of 1.24% in the general Hong Kong population, with 86 334 residents sustaining pet-related injuries every year. Pet ownership puts people at extremely high risk, especially the unmarried. Further studies should focus on educating pet owners to reduce pet-related injuries in urban Greater China. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K; Herrmann, Ken
2016-07-01
Investigating the value of Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative F-choline-PET/CT. One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an F-choline-PET/CT. If negative, an additional Ga-PSMA-PET/CT was offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on F-choline-PET/CT and those who declined the additional Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for F-choline-PET/CT alone. Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of Ga-PSMA-PET/CT in F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. The sequential imaging approach designed to limit Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative F-choline PET/CT scans.
Bluemel, Christina; Krebs, Markus; Polat, Bülent; Linke, Fränze; Eiber, Matthias; Samnick, Samuel; Lapa, Constantin; Lassmann, Michael; Riedmiller, Hubertus; Czernin, Johannes; Rubello, Domenico; Bley, Thorsten; Kropf, Saskia; Wester, Hans-Juergen; Buck, Andreas K.; Herrmann, Ken
2016-01-01
Purpose Investigating the value of 68Ga-PSMA-PET/CT in biochemically recurring prostate cancer patients with negative 18F-choline-PET/CT. Patients and Methods One hundred thirty-nine consecutive patients with biochemical recurrence after curative (surgery and/or radiotherapy) therapy were offered participation in this sequential clinical imaging approach. Patients first underwent an 18F-choline-PET/CT. If negative, an additional 68Ga-PSMA-PET/CTwas offered. One hundred twenty-five of 139 eligible patients were included in the study; 32 patients underwent additional 68Ga-PSMA-PET/CT. Patients with equivocal findings (n = 5) on 18F-choline-PET/CT and those who declined the additional 68Ga-PSMA-PET/CT (n = 9) were excluded. Images were analyzed visually for the presence of suspicious lesions. Findings on PET/CT were correlated with PSA level, PSA doubling time (dt), and PSA velocity (vel). Results The overall detection rates were 85.6% (107/125) for the sequential imaging approach and 74.4% (93/125) for 18F-choline-PET/CT alone. 68Ga-PSMA-PET/CT detected sites of recurrence in 43.8% (14/32) of the choline-negative patients. Detection rates of the sequential imaging approach and 18F-choline-PET/CT alone increased with higher serum PSA levels and PSA vel. Subgroup analysis of 68Ga-PSMA-PET/CT in 18F-choline negative patients revealed detection rates of 28.6%, 45.5%, and 71.4% for PSA levels of 0.2 or greater to less than 1 ng/mL, 1 to 2 ng/mL, and greater than 2 ng/mL, respectively. Conclusions The sequential imaging approach designed to limit 68Ga-PSMA imaging to patients with negative choline scans resulted in high detection rates. 68Ga-PSMA-PET/CT identified sites of recurrent disease in 43.8% of the patients with negative 18F-choline PET/CT scans. PMID:26975008
Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert
Grant, Alexander M.; Lee, Brian J.; Chang, Chen-Ming; Levin, Craig S.
2017-01-01
Purpose A brain sized radio-frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission, and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ non-magnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. Methods The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. Results The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: the maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0±7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. Conclusions These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. PMID:28102949
Zhu, W; Xing, L; Yue, J; Sun, X; Sun, X; Zhao, H; Yu, J
2012-09-01
The objective of this study was to comprehensively review the evidence for use of pre-treatment, post-treatment and changes in tumour glucose uptake that were assessed by 18-fludeoxyglucose ((18)F-FDG) positron emission tomography (PET) early, during or immediately after neoadjuvant chemotherapy/chemoradiation to predict prognosis of localised oesophagogastric junction (AEG) cancer. We searched for articles published in English; limited to AEG; (18)F-FDG uptake on PET performed on a dedicated device; dealt with the impact of standard uptake value (SUV) on survival. We extracted an estimate of the log hazard ratios (HRs) and their variances and performed meta-analysis. 798 patients with AEG were included. And the scan time for (18)F-FDG-PET was as follows: prior to therapy (PET1, n=646), exactly 2 weeks after initiation of neoadjuvant therapy (PET2, n=245), and pre-operatively (PET3, n=278). In the two meta-analyses for overall survival, including the studies that dealt with reduction of tumour maximum SUV (SUV(max)) (from PET1 to PET2/PET3 and from PET1 to PET2), the results were similar, with the overall HR for non-responders being 1.83 [95% confidence interval (CI), 1.41-2.36] and 2.62 (95% CI, 1.61-4.26), respectively; as for disease-free survival, the combined HR was 2.92 (95% CI, 2.08-4.10) and 2.39 (95% CI, 1.57-3.64), respectively. The meta-analyses did not attribute significant prognostic values to SUV(max) before and during therapy in localised AEG. Relative changes in FDG-uptake of AEG are better prognosticators. Early metabolic changes from PET1 to PET2 may provide the same accuracy for prediction of treatment outcome as late changes from PET1 to PET3.
Freitag, Martin T; Radtke, Jan P; Hadaschik, Boris A; Kopp-Schneider, A; Eder, Matthias; Kopka, Klaus; Haberkorn, Uwe; Roethke, Matthias; Schlemmer, Heinz-Peter; Afshar-Oromieh, Ali
2016-01-01
To evaluate the reproducibility of the combination of hybrid PET/MRI and the (68)Ga-PSMA-11 tracer in depicting lymph node (LN) and bone metastases of prostate cancer (PC) in comparison with that of PET/CT. A retrospective analysis of 26 patients who were subjected to (68)Ga-PSMA PET/CTlow-dose (1 h after injection) followed by PET/MRI (3 h after injection) was performed. MRI sequences included T1-w native, T1-w contrast-enhanced, T2-w fat-saturated and diffusion-weighted sequences (DWIb800). Discordant PET-positive and morphological findings were evaluated. Standardized uptake values (SUV) of PET-positive LNs and bone lesions were quantified and their morphological size and conspicuity determined. Comparing the PET components, the proportion of discordant PSMA-positive suspicious findings was very low (98.5 % of 64 LNs concordant, 100 % of 28 bone lesions concordant). Two PET-positive bone metastases could not be confirmed morphologically using CTlow-dose, but could be confirmed using MRI. In 12 of 20 patients, 47 PET-positive LNs (71.9 %) were smaller than 1 cm in short axis diameter. There were significant linear correlations between PET/MRI SUVs and PET/CT SUVs in the 64 LN metastases (p < 0.0001) and in the 28 osseous metastases (p < 0.0001) for SUVmean and SUVmax, respectively. The LN SUVs were significantly higher on PET/MRI than on PET/CT (p SUVmax < 0.0001; p SUVmean < 0.0001) but there was no significant difference between the bone lesion SUVs (p SUVmax = 0.495; p SUVmean = 0.381). Visibility of LNs was significantly higher on MRI using the T1-w contrast-enhanced fat-saturated sequence (p = 0.013), the T2-w fat-saturated sequence (p < 0.0001) and the DWI sequence (p < 0.0001) compared with CTlow-dose. For bone lesions, only the overall conspicuity was higher on MRI compared with CTlow-dose (p < 0.006). Nodal and osseous metastases of PC are accurately and reliably depicted by hybrid PET/MRI using (68)Ga-PSMA-11 with very low discordance compared with PET/CT including PET-positive LNs of normal size. The correlation between PET/MRI SUVs and PET/CT SUVs was linear in LN and bone metastases but was significantly lower in control (non-metastatic) tissue.
Carr, Robert; Fanti, Stefano; Paez, Diana; Cerci, Juliano; Györke, Tamás; Redondo, Francisca; Morris, Tim P; Meneghetti, Claudio; Auewarakul, Chirayu; Nair, Reena; Gorospe, Charity; Chung, June-Key; Kuzu, Isinsu; Celli, Monica; Gujral, Sumeet; Padua, Rose Ann; Dondi, Maurizio
2014-12-01
The International Atomic Energy Agency sponsored a large, multinational, prospective study to further define PET for risk stratification of diffuse large B-cell lymphoma and to test the hypothesis that international biological diversity or diversity of healthcare systems may influence the kinetics of treatment response as assessed by interim PET (I-PET). Cancer centers in Brazil, Chile, Hungary, India, Italy, the Philippines, South Korea, and Thailand followed a common protocol based on treatment with R-CHOP (cyclophosphamide, hydroxyadriamycin, vincristine, prednisolone with rituximab), with I-PET after 2-3 cycles of chemotherapy and at the end of chemotherapy scored visually. Two-year survivals for all 327 patients (median follow-up, 35 mo) were 79% (95% confidence interval [CI], 74%-83%) for event-free survival (EFS) and 86% (95% CI, 81%-89%) for overall survival (OS). Two hundred ten patients (64%) were I-PET-negative, and 117 (36%) were I-PET-positive. Two-year EFS was 90% (95% CI, 85%-93%) for I-PET-negative and 58% (95% CI, 48%-66%) for I-PET-positive, with a hazard ratio of 5.31 (95% CI, 3.29-8.56). Two-year OS was 93% (95% CI, 88%-96%) for I-PET-negative and 72% (95% CI, 63%-80%) for I-PET-positive, with a hazard ratio of 3.86 (95% CI, 2.12-7.03). On sequential monitoring, 192 of 312 (62%) patients had complete response at both I-PET and end-of-chemotherapy PET, with an EFS of 97% (95% CI, 92%-98%); 110 of these with favorable clinical indicators had an EFS of 98% (95% CI, 92%-100%). In contrast, the 107 I-PET-positive cases segregated into 2 groups: 58 (54%) achieved PET-negative complete remission at the end of chemotherapy (EFS, 86%; 95% CI, 73%-93%); 46% remained PET-positive (EFS, 35%; 95% CI, 22%-48%). Heterogeneity analysis found no significant difference between countries for outcomes stratified by I-PET. This large international cohort delivers 3 novel findings: treatment response assessed by I-PET is comparable across disparate healthcare systems, secondly a negative I-PET findings together with good clinical status identifies a group with an EFS of 98%, and thirdly a single I-PET scan does not differentiate chemoresistant lymphoma from complete response and cannot be used to guide risk-adapted therapy. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Detecting abandoned objects using interacting multiple models
NASA Astrophysics Data System (ADS)
Becker, Stefan; Münch, David; Kieritz, Hilke; Hübner, Wolfgang; Arens, Michael
2015-10-01
In recent years, the wide use of video surveillance systems has caused an enormous increase in the amount of data that has to be stored, monitored, and processed. As a consequence, it is crucial to support human operators with automated surveillance applications. Towards this end an intelligent video analysis module for real-time alerting in case of abandoned objects in public spaces is proposed. The overall processing pipeline consists of two major parts. First, person motion is modeled using an Interacting Multiple Model (IMM) filter. The IMM filter estimates the state of a person according to a finite-state, discrete-time Markov chain. Second, the location of persons that stay at a fixed position defines a region of interest, in which a nonparametric background model with dynamic per-pixel state variables identifies abandoned objects. In case of a detected abandoned object, an alarm event is triggered. The effectiveness of the proposed system is evaluated on the PETS 2006 dataset and the i-Lids dataset, both reflecting prototypical surveillance scenarios.
Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging
NASA Astrophysics Data System (ADS)
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-06-01
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.
Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-01-01
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging. PMID:24953037
Fully roll-to-roll gravure printable wireless (13.56 MHz) sensor-signage tags for smart packaging.
Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin
2014-06-23
Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...
24 CFR 5.350 - Mandatory pet rules for housing programs.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Mandatory pet rules for housing... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Pet Ownership for the Elderly or Persons With Disabilities Pet Ownership Requirements for Housing Programs § 5.350 Mandatory pet rules for...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...
24 CFR 5.350 - Mandatory pet rules for housing programs.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Mandatory pet rules for housing... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Pet Ownership for the Elderly or Persons With Disabilities Pet Ownership Requirements for Housing Programs § 5.350 Mandatory pet rules for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Pets. 1002.15 Section 1002.15....15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building, public... possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying visually impaired...
24 CFR 5.350 - Mandatory pet rules for housing programs.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Mandatory pet rules for housing... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Pet Ownership for the Elderly or Persons With Disabilities Pet Ownership Requirements for Housing Programs § 5.350 Mandatory pet rules for...
24 CFR 5.350 - Mandatory pet rules for housing programs.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Mandatory pet rules for housing... and Urban Development GENERAL HUD PROGRAM REQUIREMENTS; WAIVERS Pet Ownership for the Elderly or Persons With Disabilities Pet Ownership Requirements for Housing Programs § 5.350 Mandatory pet rules for...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Pets. 502.11 Section 502.11 Agriculture Regulations of... CONDUCT ON BELTSVILLE AGRICULTURE RESEARCH CENTER PROPERTY, BELTSVILLE, MARYLAND § 502.11 Pets. Pets... vaccinations. Pets that are the property of employees residing on BARC must be up to date on their vaccinations...
Use of PET/CT scanning in cancer patients: technical and practical considerations
2005-01-01
This overview of the oncologic applications of positron emission tomography (PET) focuses on the technical aspects and clinical applications of a newer technique: the combination of a PET scanner and a computed tomography (CT) scanner in a single (PET/CT) device. Examples illustrate how PET/CT contributes to patient care and improves upon the previous state-of-the-art method of comparing a PET scan with a separate CT scan. Finally, the author presents some of the results from studies of PET/CT imaging that are beginning to appear in the literature. PMID:16252023
Hope, Thomas A; Afshar-Oromieh, Ali; Eiber, Matthias; Emmett, Louise; Fendler, Wolfgang P; Lawhn-Heath, Courtney; Rowe, Steven P
2018-06-27
The purpose of this article is to describe the large number of radiotracers being evaluated for prostate-specific membrane antigen (PSMA) PET, which is becoming a central tool in the staging of prostate cancer. PSMA PET is a highly promising modality for the staging of prostate cancer because of its higher detection rate compared with that of conventional imaging. Both PET/CT and PET/MRI offer benefits with PSMA radiotracers, and PSMA PET findings frequently lead to changes in management. It is imperative that subsequent treatment changes be evaluated to show improved outcomes. PSMA PET also has potential applications, including patient selection for PSMA-based radioligand therapy and evaluation of treatment response.
Krause-Parello, Cheryl A
2012-01-01
Pets can play a positive role in the both the physical and psychological health of older adults. This cross sectional study investigated the relationships among loneliness, pet attachment support, human social support, and depressed mood in a convenience sample of 159 pet-owning older women residing in the community. Participants completed loneliness, pet attachment support, human social support, and depressed mood scales. The results supported significant relationships between loneliness, pet attachment support, human social support, and depressed mood. No relationship was found between human social support and depressed mood. Pet attachment support, but not human social support, influenced the relationship between loneliness and depressed mood indicating the importance of pet attachment as a greater form of support in this sample. Clinical and social implications for nurses working with the geriatric population were identified and discussed. Copyright © 2012 Mosby, Inc. All rights reserved.
Effect of household pet ownership on infant immune response and subsequent sensitization
Simpson, Angela
2010-01-01
Sensitization to pets is a major risk factor for asthma. There are many reports on the relationship between household pets, sensitization to the pet, and sensitization to other allergens, often with conflicting results. Pet ownership is not random, and household pets are associated with exposures other than pet allergens. We will review some of the evidence regarding the effects of household pets on infant immune responses, focusing on data from birth cohort studies. It remains unclear precisely why some children develop specific sensitizations to pets whilst others do not in the face of equivalent exposures, but it is likely to be due to gene-environment interactions. Further long-term follow-up of children in whom neonatal and infant immune responses have been measured is necessary to understand how these events occur and how they relate to subsequent disease. PMID:21437047
18F-FDG PET/CT in Detecting Metastatic Infection in Children.
Kouijzer, Ilse J E; Blokhuis, Gijsbert J; Draaisma, Jos M T; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Bleeker-Rovers, Chantal P
2016-04-01
Metastatic infection is a severe complication of bacteremia with high morbidity and mortality. The aim of this study was to investigate the diagnostic value of 18F-FDG PET combined with CT (FDG PET/CT) in children suspected of having metastatic infection. The results of FDG PET/CT scans performed in children because of suspected metastatic infection from September 2003 to June 2013 were analyzed retrospectively. The results were compared with the final clinical diagnosis. FDG PET/CT was performed in 13 children with suspected metastatic infection. Of the total number of FDG PET/CT scans, 38% were clinically helpful. Positive predictive value of FDG PET/CT was 71%, and negative predictive value was 100%. FDG PET/CT appears to be a valuable diagnostic technique in children with suspected metastatic infection. Prospective studies of FDG PET/CT as part of a structured diagnostic protocol are needed to assess the exact additional diagnostic value.
Jagust, William J.; Landau, Susan M.; Koeppe, Robert A.; Reiman, Eric M.; Chen, Kewei; Mathis, Chester A.; Price, Julie C.; Foster, Norman L.; Wang, Angela Y.
2015-01-01
INTRODUCTION This paper reviews the work done in the ADNI PET core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. METHODS The PET Core has utilized [18F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of FDG-PET in clinical trials, and relationships between different biomarkers and cognition. RESULTS Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. CONCLUSION The PET Core has demonstrated a variety of methods for standardization of biomarkers such as florbetapir PET in a multicenter setting. PMID:26194311
Abarca V, Katia; López Del P, Javier; Peña D, Anamaría; López G, J Carlos
2011-06-01
To characterize pet ownership and pet health status in families of immunocompromised (IS) children, with emphasis in zoonotic diseases. Families of IS children from two hospitals in Santiago, Chile, were interviewed and their pets were evaluated by veterinary examination, coproparasitologic and skin dermatophytes test. In specific cases, other laboratory tests were performed in IS children or their relatives. 47 out of 70 contacted families had pets, 42 participated in the study. Several risk factors for IS children were observed, as having a turtle as a pet and to clean cat or turtle faeces. Lack of adequate veterinary control, immunizations and deparasitation of pets were observed. Some animals showed zoonotic diseases or agents, as Brucella canis, Cryptosporidium sp, Giardia intestinalis, Toxocara canis and scabies. 44% of dogs had ticks and 37% had fleas, both potential vectors of infections. Our results suggest that policies to provide safer pet contact in IS children are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaonkar, Amita, E-mail: ami.gaonkar@gmail.com; Murudkar, Vrishali, E-mail: vru0077@gmail.com; Deshpande, V. D., E-mail: vindesh2@rediffmail.com
2016-05-06
Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversionalmore » method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.« less
NASA Astrophysics Data System (ADS)
Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.
2016-05-01
Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversional method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laforest, R.
2015-06-15
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
[A report on clinical PET activities in Germany].
Tashiro, M; Kubota, K; Itoh, M; Sasaki, H; Moser, E
1999-09-01
Clinical diagnostic procedure using positron emission tomography (PET) requires high costs. To promote clinical use of PET, sociomedical evaluation is necessary. In this paper, sociomedical situations concerning clinical use of PET in Germany is reported. Some comparisons are made between Japan and this country putting emphases on several points such as 1) number of cyclotron and PET facilities, 2) social restriction to transportation of radioisotopes, 3) activities of satellite PET facilities, and 4) clinical indications for PET studies. Number of cyclotron was larger in Japan (29) than in Germany (17), but number of PET facilities was larger in Germany (47) than in Japan (29). The reason seems that in Germany transportation and buying of radioisotopes is less restricted. Hence, more than half of PET facilities in Germany are "satellite facilities" which do not have their own cyclotrons. Radioisotope distribution seems to serve as a backbone of "satellite concept." Additionally in Germany, list of clinical indications for PET study is almost completed and now is widely in applied to most cases. To promote clinical use of PET in Japan, the German system might serve as an important socioeconomic model in Europe instead of the United States.
Implement of the Owner Distinction Function for Healing-Type Pet Robots
NASA Astrophysics Data System (ADS)
Nambo, Hidetaka; Kimura, Haruhiko; Hirose, Sadaki
In recent years, a robotics technology is extremely progressive, and robots are widely applied in many fields. One of the most typical robots is a pet robot. The pet robot is based on an animal pet, such as a dog or a cat. Also, it is known that an animal pet has a healing effect. Therefore, the study to apply pet robots to Animal Assisted Therapy instead of an animal pet has begun to be investigated. We, also, have investigated a method of an owner distinction for pet robot, to emphasize a healing effect of pet robots. In this paper, taking account of implementation into pet robots, a real-time owner distinction method is proposed. In the concrete, the method provides a real-time matching algorithm and an oblivion mechanism. The real-time matching means that a matching and a data acquisition are processed simultaneously. The oblivion mechanism is deleting features of owners in the database of the pet robots. Additionally, the mechanism enables to reduce matching costs or size of database and it enables to follow a change of owners. Furthermore, effectivity and a practicality of the method are evaluated by experiments.
Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967
Pettinato, C; Nanni, C; Farsad, M; Castellucci, P; Sarnelli, A; Civollani, S; Franchi, R; Fanti, S; Marengo, M; Bergamini, C
2006-01-01
Positron emission tomography (PET) is a non-invasive imaging modality, which is clinically widely used both for diagnosis and accessing therapy response in oncology, cardiology and neurology. Fusing PET and CT images in a single dataset would be useful for physicians who could read the functional and the anatomical aspects of a disease in a single shot. The use of fusion software has been replaced in the last few years by integrated PET/CT systems, which combine a PET and a CT scanner in the same gantry. CT images have the double function to correct PET images for attenuation and can fuse with PET for a better visualization and localization of lesions. The use of CT for attenuation correction yields several advantages in terms of accuracy and patient comfort, but can also introduce several artefacts on PET-corrected images. PET/CT image artefacts are due primarily to metallic implants, respiratory motion, use of contrast media and image truncation. This paper reviews different types artefacts and their correction methods. PET/CT improves image quality and image accuracy. However, to avoid possible pitfalls the simultaneous display of both Computed Tomography Attenuation Corrected (CTAC) and non corrected PET images, side by side with CT images is strongly recommended. PMID:21614340
Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens
2016-08-01
Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P < .001 for all), but were underestimated by PET (P < .001 for all except ESV P = .79). PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P < .001, bias -3 ± 21%, P = .56). PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.
TH-A-17A-01: Innovation in PET Instrumentation and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, M; Miyaoka, R; Shao, Y
Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less
Treglia, Giorgio; Annunziata, Salvatore; Muoio, Barbara; Salvatori, Massimo; Ceriani, Luca; Giovanella, Luca
2013-01-01
Aggressive histological subtypes of thyroid cancer are rare and have a poor prognosis. The most important aggressive subtypes of thyroid cancer are Hürthle cell carcinoma (HCTC) and anaplastic and poorly differentiated carcinoma (ATC and PDTC). The American Thyroid Association recently published guidelines for the management of patients with ATC, but no specific guidelines have been done about HCTC. We performed an overview of the literature about the role of Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (FDG-PET or PET/CT) in aggressive histological subtypes of thyroid cancer. Only few original studies about the role of FDG-PET or PET/CT in HCTC, PDTC, and ATC have been published in the literature. FDG-PET or PET/CT seems to be useful in staging or followup of invasive and metastatic HCTC. FDG-PET or PET/CT should be used in patients with ATC in initial staging and in the followup after surgery to evaluate metastatic disease. Some authors suggest the use of FDG-PET/CT in staging of PDTC, but more studies are needed to define the diagnostic use of FDG-PET/CT in this setting. Limited experience suggests the usefulness of FDG-PET or PET/CT in patients with more aggressive histological subtypes of DTC. However, DTC presenting as radioiodine refractory and FDG-PET positive should be considered aggressive tumours with poor prognosis. PMID:23653645
Dodd, Emily; Cheston, Richard; Procter, Charlie; Heneker, Sarah; Gray, Richard; Fox, Chris; Nolan, Fiona
2018-04-01
During protected engagement time (PET), ward routines are adjusted so that staff can spend time together with patients without interruption. The aim of PET is to increase staff and patient interaction on wards, and ultimately patient well-being. Although PET has been implemented on inpatient wards within the UK, including older adult wards, there is no systematic evidence as to how PET is carried out or how it is experienced by staff, patients, and families. Semistructured interviews were conducted with 28 participants (8 patients, 10 family members, and 10 ward staff) from three different wards with PET, and transcriptions were analysed using thematic analysis. Three themes were identified: (i) the patient is at the heart of care; (ii) PET depends on staff; and (iii) tensions in how PET operates. There was support in our sample for the principles of PET and its potential for a positive impact on patient well-being. However, the implementation of PET was identified as challenging, highlighting an existing tension between an individual's needs and the wider needs of patients on the ward as a whole. The impact of PET was generally described as being dependent on how PET was organized and the level of staff commitment to PET. Participants emphasized that if PET is to be successful, then it should be a fluid process that fits in with the local context. © 2017 Australian College of Mental Health Nurses Inc.
NASA Astrophysics Data System (ADS)
Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga
2017-06-01
There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16 × 16 × 4 array of crystals with dimensions of 2.8 × 2.8 × 7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Natwa, M; Hall, NC
Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%).more » In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, J; Chino, J; Light, K
2014-06-01
Purpose: To compare PET extracted metrics and investigate the role of a gradient-based PET segmentation tool, PET Edge (MIM Software Inc., Cleveland, OH), in the context of an adaptive PET protocol for node positive gynecologic cancer patients. Methods: An IRB approved protocol enrolled women with gynecological, PET visible malignancies. A PET-CT was obtained for treatment planning prescribed to 45–50.4Gy with a 55– 70Gy boost to the PET positive nodes. An intra-treatment PET-CT was obtained between 30–36Gy, and all volumes re-contoured. Standard uptake values (SUVmax, SUVmean, SUVmedian) and GTV volumes were extracted from the clinician contoured GTVs on the pre- andmore » intra-treament PET-CT for primaries and nodes and compared with a two tailed Wilcoxon signed-rank test. The differences between primary and node GTV volumes contoured in the treatment planning system and those volumes generated using PET Edge were also investigated. Bland-Altman plots were used to describe significant differences between the two contouring methods. Results: Thirteen women were enrolled in this study. The median baseline/intra-treatment primary (SUVmax, mean, median) were (30.5, 9.09, 7.83)/( 16.6, 4.35, 3.74), and nodes were (20.1, 4.64, 3.93)/( 6.78, 3.13, 3.26). The p values were all < 0.001. The clinical contours were all larger than the PET Edge generated ones, with mean difference of +20.6 ml for primary, and +23.5 ml for nodes. The Bland-Altman revealed changes between clinician/PET Edge contours to be mostly within the margins of the coefficient of variability. However, there was a proportional trend, i.e. the larger the GTV, the larger the clinical contours as compared to PET Edge contours. Conclusion: Primary and node SUV values taken from the intratreament PET-CT can be used to assess the disease response and to design an adaptive plan. The PET Edge tool can streamline the contouring process and lead to smaller, less user-dependent contours.« less
Oturai, Peter S; Mortensen, Jann; Enevoldsen, Henriette; Eigtved, Annika; Backer, Vibeke; Olesen, Knud P; Nielsen, Henrik W; Hansen, Hanne; Stentoft, Poul; Friberg, Lars
2004-08-01
It is not clear whether high-quality coincidence gamma-PET (gPET) cameras can provide clinical data comparable with data obtained with dedicated PET (dPET) cameras in the primary diagnostic work-up of patients with suspected lung cancer. This study focuses on 2 main issues: direct comparison between foci resolved with the 2 different PET scanners and the diagnostic accuracy compared with final diagnosis determined by the combined information from all other investigations and clinical follow-up. Eighty-six patients were recruited to this study through a routine diagnostic program. They all had changes on their chest radiographs, suggesting malignant lung tumor. In addition to the standard diagnostic program, each patient had 2 PET scans that were performed on the same day. After administration of 419 MBq (range = 305-547 MBq) (18)F-FDG, patients were scanned in a dedicated PET scanner about 1 h after FDG administration and in a dual-head coincidence gamma-camera about 3 h after tracer injection. Images from the 2 scans were evaluated in a blinded set-up and compared with the final outcome. Malignant intrathoracic disease was found in 52 patients, and 47 patients had primary lung cancers. dPET detected all patients as having malignancies (sensitivity, 100%; specificity, 50%), whereas gPET missed one patient (sensitivity, 98%; specificity, 56%). For evaluating regional lymph node involvement, sensitivity and specificity rates were 78% and 84% for dPET and 61% and 90% for gPET, respectively. When comparing the 2 PET techniques with clinical tumor stage (TNM), full agreement was obtained in 64% of the patients (Cohen's kappa = 0.56). Comparing categorization of the patients into clinical relevant stages (no malignancy/malignancy suitable for treatment with curative intent/nontreatable malignancy), resulted in full agreement in 81% (Cohen's kappa = 0.71) of patients. Comparing results from a recent generation of gPET cameras obtained about 2 h later than those of dPET, there was a fairly good agreement with regard to detecting primary lung tumors but slightly reduced sensitivity in detecting smaller malignant lesions such as lymph nodes. Depending on the population to be investigated, and if dPET is not available, gPET might provide significant diagnostic information in patients in whom lung cancer is suspected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Egbert, Jonathan D.; Chen, Shentan
2014-04-28
Treatment of trans-[W(N2)2(dppe)(PEtNMePEt)] (dppe = Ph2PCH2CH2PPh2; PEtNMePEt = Et2PCH2N(Me)CH2PEt2) with three equivalents of tetrafluoroboric acid (HBF4∙Et2O) at -78 °C generated the seven-coordinate tungsten hydride trans-[W(N2)2(H)(dppe)(PEtNMePEt)][BF4]. Depending on the temperature of the reaction, protonation of a pendant amine is also observed, affording trans-[W(N2)2(H)(dppe)(PEtNMe(H)PEt)][BF4]2, with formation of the hydrazido complex, [W(NNH2)(dppe)(PEtNMe(H)PEt)][BF4]2, as a minor product. Similar product mixtures were obtained using triflic acid (HOTf). Upon acid addition to the carbonyl analogue, cis-[W(CO)2(dppe)(PEtNMePEt)], the seven-coordinate carbonyl-hydride complex, trans-[W(CO)2(H)(dppe)(PEtN(H)MePEt)][OTf]2 was generated. The mixed diphosphine complex without the pendant amine in the ligand backbone, trans-[W(N2)2(dppe)(depp)] (depp = Et2P(CH2)3PEt2), was synthesized and treated with HBF4∙Et2O, selectivelymore » generating a hydrazido complex, [W(NNH2)(F)(dppe)(depp)][BF4]. Computational analysis was used to probe proton affinity of three sites of protonation, the metal, pendant amine, and N2 ligand in these complexes. Room temperature reactions with 100 equivalents of HOTf produced NH4+ from reduction of the N2 ligand (electrons come from W). The addition of 100 equivalents HOTf to trans-[W(N2)2(dppe)(PEtNMePEt)] afforded 0.88 ± 0.02 equivalents NH4+, while 0.36 ± 0.02 equivalents of NH4+was formed upon treatment of trans-[W(N2)2(dppe)(depp)], the complex without the pendant amine. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less
Kroiss, Alexander; Putzer, Daniel; Frech, Andreas; Decristoforo, Clemens; Uprimny, Christian; Gasser, Rudolf Wolfgang; Shulkin, Barry Lynn; Url, Christoph; Widmann, Gerlig; Prommegger, Rupert; Sprinzl, Georg Mathias; Fraedrich, Gustav; Virgolini, Irene Johanna
2013-12-01
(18)F-Fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET offers high sensitivity and specificity in the imaging of nonmetastatic extra-adrenal paragangliomas (PGL) but lower sensitivity in metastatic or multifocal disease. These tumours are of neuroendocrine origin and can be detected by (68)Ga-DOTA-Tyr(3)-octreotide ((68)Ga-DOTA-TOC) PET. Therefore, we compared (68)Ga-DOTA-TOC and (18)F-DOPA as radiolabels for PET/CT imaging for the diagnosis and staging of extra-adrenal PGL. Combined cross-sectional imaging was the reference standard. A total of 5 men and 15 women (age range 22 to 73 years) with anatomical and/or histologically proven extra-adrenal PGL were included in this study. Of these patients, 5 had metastatic or multifocal lesions and 15 had single sites of disease. Comparative evaluation included morphological imaging with CT and functional imaging with (68)Ga-DOTA-TOC PET and (18)F-DOPA PET. The imaging results were analysed on a per-patient and a per-lesion basis. The maximum standardized uptake value (SUVmax) of each functional imaging modality in concordant tumour lesions was measured. Compared with anatomical imaging, (68)Ga-DOTA-TOC PET and (18)F-DOPA PET each had a per-patient and per-lesion detection rate of 100% in nonmetastatic extra-adrenal PGL. However, in metastatic or multifocal disease, the per-lesion detection rate of (68)Ga-DOTA-TOC was 100% and that of (18)F-DOPA PET was 56.0%. Overall, (68)Ga-DOTA-TOC PET identified 45 lesions; anatomical imaging identified 43 lesions, and (18)F-DOPA PET identified 32 lesions. The overall per-lesion detection rate of (68)Ga-DOTA-TOC PET was 100% (McNemar, P < 0.5), and that of (18)F-DOPA PET was 71.1% (McNemar, P < 0.001). The SUVmax (mean ± SD) of all 32 concordant lesions was 67.9 ± 61.5 for (68)Ga-DOTA-TOC PET and 11.8 ± 7.9 for (18)F-DOPA PET (Mann-Whitney U test, P < 0.0001). (68)Ga-DOTA-TOC PET may be superior to (18)F-DOPA PET and diagnostic CT in providing valuable information for pretherapeutic staging of extra-adrenal PGL, particularly in surgically inoperable tumours and metastatic or multifocal disease.
Blanchet, Elise M.; Millo, Corina; Martucci, Victoria; Maass-Moreno, Roberto; Bluemke, David A.; Pacak, Karel
2017-01-01
Purpose Paragangliomas (PGLs) are tumors that can metastasize and recur; therefore, lifelong imaging follow-up is required. Hybrid positron emission tomography (PET)/computed tomography (/CT) is an essential tool to image PGLs. Novel hybrid PET/magnetic resonance (/MR) scanners are currently being studied in clinical oncology. We studied the feasibility of simultaneous whole-body PET/MR imaging to evaluate patients with PGLs. Methods Fifty-three PGLs or PGL-related lesions from eight patients were evaluated. All patients underwent a single-injection, dual-modality imaging protocol consisting of a PET/CT and subsequent PET/MR scan. Four patients were evaluated with 18F-fluorodeoxyglucose (18F-FDG), two with 18F-fluorodihydroxyphenylalanine (18F-FDOPA), and two with 18F-fluorodopamine (18F-FDA). PET/MR data were acquired using a hybrid whole-body 3-Tesla integrated PET/MR scanner. PET and MR data (DIXON images for attenuation correction and T2-weighted sequences for anatomic allocation) were acquired simultaneously. Imaging workflow and imaging times were documented. PET/MR and PET/CT data were visually assessed (blindly) in regards to image quality, lesion detection, and anatomic allocation and delineation of the PET findings. Results With hybrid PET/MR, we obtained high quality images in an acceptable acquisition time (median: 31 min, range: 25–40 min) with good patient compliance. A total of 53 lesions, located in the head-and-neck area (6), mediastinum (2), abdomen and pelvis (13), lungs (2), liver (4), and bone (26) were evaluated. 51 lesions were detected with PET/MR and confirmed by PET/CT. Two bone lesions (L4 body (8 mm) and sacrum (6 mm)) were not detectable on an 18F-FDA scan PET/MR, likely due to washout of the 18F-FDA. Co-registered MR tended to be superior to co-registered CT for head-and-neck, abdomen, pelvis, and liver lesions for anatomic allocation and delineation. Conclusions Clinical PGL evaluation with hybrid PET/MR is feasible with high image-quality and can be obtained in a reasonable time. It could be particularly beneficial for the pediatric population and for precise lesion definition in the head-and-neck, abdomen, pelvis, and liver. PMID:24152658
Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E
2004-04-01
The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.
Olin, Anders; Ladefoged, Claes N; Langer, Natasha H; Keller, Sune H; Löfgren, Johan; Hansen, Adam E; Kjær, Andreas; Langer, Seppo W; Fischer, Barbara M; Andersen, Flemming L
2018-06-01
Quantitative PET/MRI is dependent on reliable and reproducible MR-based attenuation correction (MR-AC). In this study, we evaluated the quality of current vendor-provided thoracic MR-AC maps and further investigated the reproducibility of their impact on 18 F-FDG PET quantification in patients with non-small cell lung cancer. Methods: Eleven patients with inoperable non-small cell lung cancer underwent 2-5 thoracic PET/MRI scan-rescan examinations within 22 d. 18 F-FDG PET data were acquired along with 2 Dixon MR-AC maps for each examination. Two PET images (PET A and PET B ) were reconstructed using identical PET emission data but with MR-AC from these intrasubject repeated attenuation maps. In total, 90 MR-AC maps were evaluated visually for quality and the occurrence of categorized artifacts by 2 PET/MRI-experienced physicians. Each tumor was outlined by a volume of interest (40% isocontour of maximum) on PET A , which was then projected onto the corresponding PET B SUV mean and SUV max were assessed from the PET images. Within-examination coefficients of variation and Bland-Altman analyses were conducted for the assessment of SUV variations between PET A and PET B Results: Image artifacts were observed in 86% of the MR-AC maps, and 30% of the MR-AC maps were subjectively expected to affect the tumor SUV. SUV mean and SUV max resulted in coefficients of variation of 5.6% and 6.6%, respectively, and scan-rescan SUV variations were within ±20% in 95% of the cases. Substantial SUV variations were seen mainly for scan-rescan examinations affected by respiratory motion. Conclusion: Artifacts occur frequently in standard thoracic MR-AC maps, affecting the reproducibility of PET/MRI. These, in combination with other well-known sources of error associated with PET/MRI examinations, lead to inconsistent SUV measurements in serial studies, which may affect the reliability of therapy response assessment. A thorough visual inspection of the thoracic MR-AC map and Dixon images from which it is derived remains crucial for the detection of MR-AC artifacts that may influence the reliability of SUV. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H
2018-01-01
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Jo, Jae-Cheol; Yoon, Dok Hyun; Kim, Shin; Lee, Kyoungmin; Kang, Eun Hee; Park, Jung Sun; Ryu, Jin-Sook; Huh, Jooryung; Park, Chan-Sik; Kim, Jong Hoon; Lee, Sang Wook; Suh, Cheolwon
2017-09-01
18 F-fluoro-2-dexoy-D-glucose-positron emission tomography (PET)/computed tomography (CT) is a useful imaging technique for monitoring the treatment response in lymphoma cases. We investigated the value of interim brain PET/CT (I-PET/CT) for monitoring the response to intensive methotrexate-based chemotherapy in primary central nervous system lymphoma (PCNSL) patients with diffuse large B cell lymphoma (DLBCL). Of the 76 PCNSL patients treated with intensive methotrexate and cytarabine chemotherapy between September 2006 and December 2012, 66 patients with DLBCL were included in this study. The patient cohort of 66 individuals comprised 43 men and 23 women with a median age of 59 years (range, 17-75 years). During chemotherapy, 36 patients (54.5%) showed a negative metabolism on I-PET/CT, and 47 (71.2%) were negative on final (F) PET/CT. The baseline characteristics were similar between I-PET/CT-negative (n = 36) and I-PET/CT-positive patients (n = 30) except ECOG performance status. After a median follow-up of 27.5 months, there was no difference in the progression-free survival (PFS; P = 0.701) or overall survival (OS; P = 0.620) between the I-PET/CT-negative and I-PET/CT-positive groups. However, PFS in the F-PET/CT-negative group was significantly longer than that in the F-PET/CT-positive group (P < 0.001) without a significant difference in OS (P = 0.892). I-PET/CT may not predict the survival outcome of PCNSL patients with DLBCL treated with intensive methotrexate and cytarabine chemotherapy. Prospective trials are required to fully evaluate the role of I-PET/CT.
Does pet arrival trigger prosocial behaviors in individuals with autism?
Grandgeorge, Marine; Tordjman, Sylvie; Lazartigues, Alain; Lemonnier, Eric; Deleau, Michel; Hausberger, Martine
2012-01-01
Alteration of social interactions especially prosocial behaviors--an important aspect of development--is one of the characteristics of autistic disorders. Numerous strategies or therapies are used to improve communication skills or at least to reduce social impairments. Animal-assisted therapies are used widely but their relevant benefits have never been scientifically evaluated. In the present study, we evaluated the association between the presence or the arrival of pets in families with an individual with autism and the changes in his or her prosocial behaviors. Of 260 individuals with autism--on the basis of presence or absence of pets--two groups of 12 individuals and two groups of 8 individuals were assigned to: study 1 (pet arrival after age of 5 versus no pet) and study 2 (pet versus no pet), respectively. Evaluation of social impairment was assessed at two time periods using the 36-items ADI-R algorithm and a parental questionnaire about their child-pet relationships. The results showed that 2 of the 36 items changed positively between the age of 4 to 5 (t(0)) and time of assessment (t(1)) in the pet arrival group (study 1): "offering to share" and "offering comfort". Interestingly, these two items reflect prosocial behaviors. There seemed to be no significant changes in any item for the three other groups. The interactions between individuals with autism and their pets were more--qualitatively and quantitatively--reported in the situation of pet arrival than pet presence since birth. These findings open further lines of research on the impact of pet's presence or arrival in families with an individual with autism. Given the potential ability of individuals with autism to develop prosocial behaviors, related studies are needed to better understand the mechanisms involved in the development of such child-pet relationship.
Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R
2010-05-01
Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.
Automatic delineation of brain regions on MRI and PET images from the pig.
Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus
2018-01-15
The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.
Muijs, Christina T; Beukema, Jannet C; Woutersen, Dankert; Mul, Veronique E; Berveling, Maaike J; Pruim, Jan; van der Jagt, Eric J; Hospers, Geke A P; Groen, Henk; Plukker, John Th; Langendijk, Johannes A
2014-11-01
The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Ninety oesophageal cancer patients, eligible for high dose (neo-adjuvant) (chemo)radiotherapy, were included. All patients underwent a planning FDG-PET/CT-scan. Radiotherapy target volumes (TVs) were delineated on CT and patients were treated according to the CT-based treatment plans. The PET images remained blinded. After treatment, TVs were adjusted based on PET/CT, when appropriate. Follow up included CT-thorax/abdomen every 6months. If LRR was suspected, a PET/CT was conducted and the site of recurrence was compared to the original TVs. If the LRR was located outside the CT-based clinical TV (CTV) and inside the PET/CT-based CTV, we considered this LRR possibly preventable. Based on PET/CT, the gross tumour volume (GTV) was larger in 23% and smaller in 27% of the cases. In 32 patients (36%), >5% of the PET/CT-based GTV would be missed if the treatment planning was based on CT. The median follow up was 29months. LRRs were seen in 10 patients (11%). There were 3 in-field recurrences, 4 regional recurrences outside both CT-based and PET/CT-based CTV and 3 recurrences at the anastomosis without changes in TV by PET/CT; none of these recurrences were considered preventable by PET/CT. No LRR was found after CT-based radiotherapy that could have been prevented by PET/CT. The value of PET/CT for radiotherapy seems limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Chen, Song; Li, Xuena; Chen, Meijie; Yin, Yafu; Li, Na; Li, Yaming
2016-10-01
This study is aimed to compare the diagnostic power of using quantitative analysis or visual analysis with single time point imaging (STPI) PET/CT and dual time point imaging (DTPI) PET/CT for the classification of solitary pulmonary nodules (SPN) lesions in granuloma-endemic regions. SPN patients who received early and delayed (18)F-FDG PET/CT at 60min and 180min post-injection were retrospectively reviewed. Diagnoses are confirmed by pathological results or follow-ups. Three quantitative metrics, early SUVmax, delayed SUVmax and retention index(the percentage changes between the early SUVmax and delayed SUVmax), were measured for each lesion. Three 5-point scale score was given by blinded interpretations performed by physicians based on STPI PET/CT images, DTPI PET/CT images and CT images, respectively. ROC analysis was performed on three quantitative metrics and three visual interpretation scores. One-hundred-forty-nine patients were retrospectively included. The areas under curve (AUC) of the ROC curves of early SUVmax, delayed SUVmax, RI, STPI PET/CT score, DTPI PET/CT score and CT score are 0.73, 0.74, 0.61, 0.77 0.75 and 0.76, respectively. There were no significant differences between the AUCs in visual interpretation of STPI PET/CT images and DTPI PET/CT images, nor in early SUVmax and delayed SUVmax. The differences of sensitivity, specificity and accuracy between STPI PET/CT and DTPI PET/CT were not significantly different in either quantitative analysis or visual interpretation. In granuloma-endemic regions, DTPI PET/CT did not offer significant improvement over STPI PET/CT in differentiating malignant SPNs in both quantitative analysis and visual interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Pet owners' attitudes and behaviours related to smoking and second-hand smoke: a pilot study.
Milberger, S M; Davis, R M; Holm, A L
2009-04-01
Although research indicates that second-hand smoke (SHS) harms both human and animal health, data on the percentage of pet owners who smoke or allow smoking in their homes are not readily available. To investigate pet owners' smoking behaviour and policies on smoking in their homes, and the potential for educational interventions to motivate change in pet owners' smoking behaviour. A web-based survey was used with 3293 adult pet owners. The main outcome measures were smoking behaviour of pet owners and their cohabitants; policies on smoking in pet owners' homes; and impact of information about the dangers of pet exposure to SHS on pet owners' smoking intentions. Of respondents, 21% were current smokers and 27% of participants lived with at least one smoker. Pet owners who smoke reported that information on the dangers of pet exposure to SHS would motivate them to try to quit smoking (28.4%) and ask the people with whom they live to quit smoking (8.7%) or not to smoke indoors (14.2%). Moreover, non-smoking pet owners who live with smokers said that they would ask the people with whom they live to quit (16.4%) or not smoke indoors (24.2%) if given this information. About 40% of current smokers and 24% of non-smokers living with smokers indicated that they would be interested in receiving information on smoking, quitting, or SHS. Educational campaigns informing pet owners of the risks of SHS exposure for pets could motivate some owners to quit smoking. It could also motivate these owners and non-smoking owners who cohabit with smokers make their homes smoke-free.
Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S
2011-10-01
Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.
Value of FDG PET in the assessment of patients with multiple myeloma.
Bredella, Miriam A; Steinbach, Lynne; Caputo, Gary; Segall, George; Hawkins, Randall
2005-04-01
Our objective was to evaluate if whole-body PET with FDG is able to detect bone marrow involvement in patients with multiple myeloma and to assess its appearance and distribution pattern. Seventeen whole-body FDG PET scans were performed in 13 patients with multiple myeloma. Four patients were referred for evaluation of extent of disease pretherapy and nine patients were referred for assessment of therapy response (chemotherapy, radiation therapy, bone marrow transplant). FDG PET images were evaluated for distribution and uptake pattern. Standardized uptake values were obtained to quantify FDG uptake. Results of other imaging examinations (MRI, CT, radiography), laboratory data, biopsies, and the clinical course were used for verification of detected lesions. FDG PET was able to detect medullary involvement of multiple myeloma. There were two false-negative results. In one patient, the radiographic skeletal survey showed subcentimeter lytic lesions within the ribs that were not detected on FDG PET and in the other patient, a lytic lesion detected on radiographs showed only mildly increased FDG uptake that was not identified prospectively. There was one false-positive FDG PET result in a patient who had undergone radiation therapy 3 weeks before PET. FDG PET was helpful in differentiating between posttherapeutic changes and residual/recurrent tumor and in assessing response to therapy. FDG PET resulted in upstaging of disease in four patients, which influenced subsequent management and prognosis. Sensitivity of FDG PET in detecting myelomatous involvement was 85% and specificity was 92%. FDG PET is able to detect bone marrow involvement in patients with multiple myeloma. FDG PET is useful in assessing extent of disease at time of initial diagnosis, contributing to staging that is more accurate. FDG PET is also useful for evaluating therapy response.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice
NASA Astrophysics Data System (ADS)
Evans, Eleanor; Sawiak, Stephen J.; Ward, Alexander O.; Buonincontri, Guido; Hawkes, Robert C.; Adrian Carpenter, T.
2014-01-01
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18F-FDG respectively to ascertain the technique‧s validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Comparison of first pass bolus AIFs extracted from sequential 18F-FDG PET and DSC-MRI of mice.
Evans, Eleanor; Sawiak, Stephen J; Ward, Alexander O; Buonincontri, Guido; Hawkes, Robert C; Carpenter, T Adrian
2014-01-11
Accurate kinetic modelling of in vivo physiological function using positron emission tomography (PET) requires determination of the tracer time-activity curve in plasma, known as the arterial input function (AIF). The AIF is usually determined by invasive blood sampling methods, which are prohibitive in murine studies due to low total blood volumes. Extracting AIFs from PET images is also challenging due to large partial volume effects (PVE). We hypothesise that in combined PET with magnetic resonance imaging (PET/MR), a co-injected bolus of MR contrast agent and PET ligand can be tracked using fast MR acquisitions. This protocol would allow extraction of a MR AIF from MR contrast agent concentration-time curves, at higher spatial and temporal resolution than an image-derived PET AIF. A conversion factor could then be applied to the MR AIF for use in PET kinetic analysis. This work has compared AIFs obtained from sequential DSC-MRI and PET with separate injections of gadolinium contrast agent and 18 F-FDG respectively to ascertain the technique's validity. An automated voxel selection algorithm was employed to improve MR AIF reproducibility. We found that MR and PET AIFs displayed similar character in the first pass, confirmed by gamma variate fits (p<0.02). MR AIFs displayed reduced PVE compared to PET AIFs, indicating their potential use in PET/MR studies.
Geier, Johannes; Ballmer-Weber, Barbara K; Dickel, Heinrich; Frosch, Peter J; Bircher, Andreas; Weisshaar, Elke; Hillen, Uwe
2013-07-01
Being a contact allergen of general relevance, p-phenylenediamine (PPD) is patch tested in the baseline series. However, PPD 1% in petrolatum may actively sensitize. Patch testing with PPD at 0.35% pet. proved to be safe, as far as active sensitization is concerned. To determine whether PPD 0.3% pet. reliably detects PPD sensitization. Patch testing with PPD 0.3% pet. and 1% pet. synchronously was performed in consecutive patients in a multicentre study within the Information Network of Departments of Dermatology. Altogether, 2042 patients were patch tested. PPD 1% pet. yielded 6.0% positive reactions (n = 123), and PPD 0.3% pet. yielded 4.7% (n = 95). The synchronous reproducibility of PPD reactions was similar as known from parallel patch tests with identical PPD concentrations. The diagnostic properties of PPD 0.3% pet. expressed as reaction index and positivity ratio were good. Of the 123 patients reacting to PPD 1% pet., 32 (26%) had no positive reaction to PPD 0.3% pet. In 22 of these 32 patients (69%), no clinical relevance could be found. As patch testing with PPD 0.3% pet. is reliable according to our results, we recommend replacing PPD 1% pet. in the baseline series with PPD 0.3% pet. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pets. 2.15 Section 2.15 Parks... USE AND RECREATION § 2.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public... area closed to the possession of pets by the superintendent. This subparagraph shall not apply to guide...
ERIC Educational Resources Information Center
Pet Information Bureau, New York, NY.
This manual outlines ways in which observation and care of classroom pet animals may be used to enrich the education of elementary school children. Part one deals with the benefits of having pets in the classroom. Part two illustrates ways in which pets can serve as valuable teaching tools and gives examples of lessons in which the use of pets can…
Improvement of the Owner Distinction Method for Healing-Type Pet Robots
NASA Astrophysics Data System (ADS)
Nambo, Hidetaka; Kimura, Haruhiko; Hara, Mirai; Abe, Koji; Tajima, Takuya
In order to decrease human stress, Animal Assisted Therapy which applies pets to heal humans is attracted. However, since animals are insanitary and unsafe, it is difficult to practically apply animal pets in hospitals. For the reason, on behalf of animal pets, pet robots have been attracted. Since pet robots would have no problems in sanitation and safety, they are able to be applied as a substitute for animal pets in the therapy. In our previous study where pet robots distinguish their owners like an animal pet, we used a puppet type pet robot which has pressure type touch sensors. However, the accuracy of our method was not sufficient to practical use. In this paper, we propose a method to improve the accuracy of the distinction. The proposed method can be applied for capacitive touch sensors such as installed in AIBO in addition to pressure type touch sensors. Besides, this paper shows performance of the proposed method from experimental results and confirms the proposed method has improved performance of the distinction in the conventional method.
Saunders, Jessica; Parast, Layla; Babey, Susan H.; Miles, Jeremy V.
2017-01-01
There is conflicting evidence about whether living with pets results in better mental and physical health outcomes, with the majority of the empirical research evidence being inconclusive due to methodological limitations. We briefly review the research evidence, including the hypothesized mechanisms through which pet ownership may influence health outcomes. This study examines how pet and non-pet owners differ across a variety of socio-demographic and health measures, which has implications for the proper interpretation of a large number of correlational studies that attempt to draw causal attributions. We use a large, population-based survey from California administered in 2003 (n = 42,044) and find that pet owners and non-pet owners differ across many traits, including gender, age, race/ethnicity, living arrangements, and income. We include a discussion about how the factors associated with the selection into the pet ownership group are related to a range of mental and physical health outcomes. Finally, we provide guidance on how to properly model the effects of pet ownership on health to accurately estimate this relationship in the general population. PMID:28644848
Reevy, Gretchen M; Delgado, Mikel M
2015-01-01
Few studies have examined how personality traits may be related to the amounts and types of attachments humans have toward companion animals (pets). In this study, 1,098 companion animal guardians (owners) completed a survey that included the Big Five Inventory, the Lexington Attachment to Pets Scale, and the Pet Attachment Questionnaire. Each participant chose whether he or she identified as a Cat Person, Dog Person, Both, or Neither. Results indicated that neuroticism, conscientiousness, choosing a dog as a favorite pet, and identifying as a Cat Person, Dog Person, or Both predicted affection for a pet. Conscientiousness, extraversion, and openness decreased avoidant attachment to pets, and neuroticism increased anxious attachment to pets. Both dogs and cats could benefit from pet owners who are conscientious, and there may be some benefits of neuroticism in pet owners. The findings of this study will advance understanding of the human-animal bond. As this understanding increases, measurements of human attachment and personality may be useful for the development of tools that could assist shelter employees and veterinarians in counseling people about pet ownership.
Friends with benefits: on the positive consequences of pet ownership.
McConnell, Allen R; Brown, Christina M; Shoda, Tonya M; Stayton, Laura E; Martin, Colleen E
2011-12-01
Social support is critical for psychological and physical well-being, reflecting the centrality of belongingness in our lives. Human interactions often provide people with considerable social support, but can pets also fulfill one's social needs? Although there is correlational evidence that pets may help individuals facing significant life stressors, little is known about the well-being benefits of pets for everyday people. Study 1 found in a community sample that pet owners fared better on several well-being (e.g., greater self-esteem, more exercise) and individual-difference (e.g., greater conscientiousness, less fearful attachment) measures. Study 2 assessed a different community sample and found that owners enjoyed better well-being when their pets fulfilled social needs better, and the support that pets provided complemented rather than competed with human sources. Finally, Study 3 brought pet owners into the laboratory and experimentally demonstrated the ability of pets to stave off negativity caused by social rejection. In summary, pets can serve as important sources of social support, providing many positive psychological and physical benefits for their owners.
Zwarthoed, Colette; El-Galaly, Tarec Cristoffer; Canepari, Maria; Ouvrier, Matthieu John; Viotti, Julien; Ettaiche, Marc; Viviani, Simonetta; Rigacci, Luigi; Trentin, Livio; Rusconi, Chiara; Luminari, Stefano; Cantonetti, Maria; Bolis, Silvia; Borra, Anna; Darcourt, Jacques; Salvi, Flavia; Subocz, Edyta; Tajer, Joanna; Kulikowski, Waldemar; Malkowski, Bogdan; Zaucha, Jan Maciej; Gallamini, Andrea
2017-08-01
PET/CT-ascertained bone marrow involvement (BMI) constitutes the single most important reason for upstaging by PET/CT in Hodgkin lymphoma (HL). However, BMI assessment in PET/CT can be challenging. This study analyzed the clinicopathologic correlations and prognostic meaning of different patterns of bone marrow (BM) 18 F-FDG uptake in HL. Methods: One hundred eighty newly diagnosed early unfavorable and advanced-stage HL patients, all scanned at baseline and after 2 adriamycin-bleomycin-vinblastine-dacarbazine (ABVD) courses with 18 F-FDG PET, enrolled in 2 international studies aimed at assessing the role of interim PET scanning in HL, were retrospectively included. Patients were treated with ABVD × 4-6 cycles and involved-field radiation when needed, and no treatment adaptation on interim PET scanning was allowed. Two masked reviewers independently reported the scans. Results: Thirty-eight patients (21.1%) had focal lesions (fPET + ), 10 of them with a single (unifocal) and 28 with multiple (multifocal) BM lesions. Fifty-three patients (29.4%) had pure strong (>liver) diffuse uptake (dPET + ) and 89 (48.4%) showed no or faint (≤liver) BM uptake (nPET + ). BM biopsy was positive in 6 of 38 patients (15.7%) for fPET + , in 1 of 53 (1.9%) for dPET + , and in 5 of 89 (5.6%) for nPET + dPET + was correlated with younger age, higher frequency of bulky disease, lower hemoglobin levels, higher leukocyte counts, and similar diffuse uptake in the spleen. Patients with pure dPET + had a 3-y progression-free survival identical to patients without any 18 F-FDG uptake (82.9% and 82.2%, respectively, P = 0.918). However, patients with fPET+ (either unifocal or multifocal) had a 3-y progression-free survival significantly inferior to patients with dPET+ and nPET+ (66.7% and 82.5%, respectively, P = 0.03). The κ values for interobserver agreement were 0.84 for focal uptake and 0.78 for diffuse uptake. Conclusion: We confirmed that 18 F-FDG PET scanning is a reliable tool for BMI assessment in HL, and BM biopsy is no longer needed for routine staging. Moreover, the interobserver agreement for BMI in this study proved excellent and only focal 18 F-FDG BM uptake should be considered as a harbinger of HL. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Evaluating pet foods: how confident are you when you recommend a commercial pet food?
Zicker, Steven C
2008-08-01
The safety, adequacy, and efficacy of pet foods are important considerations for veterinarians and consumers. Manufacturers of pet foods in the United States are required to comply with multiple regulations from a variety of governmental and state agencies to market foods in the public sector. However, consumers and veterinarians may not be aware of the multiple systems in place that help ensure the safety and adequacy of foods for their pets. Since the veterinarian occupies a key role to make recommendations to consumers regarding pet foods, it is the purpose of this article to review the processes of pet food manufacturing, as well as the processes that have been developed to help ensure safety and adequacy of pet foods in the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, F.
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
Waste product profile: Polyethylene terephthalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C.
1996-02-01
Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweatersmore » and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.« less
The spatial distribution of pet dogs and pet cats on the island of Ireland
2011-01-01
Background There is considerable international research regarding the link between human demographics and pet ownership. In several international studies, pet ownership was associated with household demographics including: the presence of children in the household, urban/rural location, level of education and age/family structure. What is lacking across all these studies, however, is an understanding of how these pets are spatially distributed throughout the regions under study. This paper describes the spatial distribution of pet dog and pet cat owning households on the island of Ireland. Results In 2006, there were an estimated 640,620 pet dog owning households and 215,542 pet cat owning households in Ireland. These estimates are derived from logistic regression modelling, based on household composition to determine pet dog ownership and the type of house to determine pet cat ownership. Results are presented using chloropleth maps. There is a higher density of pet dog owning households in the east of Ireland and in the cities than the west of Ireland and rural areas. However, in urban districts there are a lower proportion of households owning pet dogs than in rural districts. There are more households with cats in the urban areas, but the proportion of households with cats is greater in rural areas. Conclusions The difference in spatial distribution of dog ownership is a reflection of a generally higher density of households in the east of Ireland and in major cities. The higher proportion of ownership in the west is understandable given the higher proportion of farmers and rural dwellings in this area. Spatial representation allows us to visualise the impact of human household distribution on the density of both pet dogs and pet cats on the island of Ireland. This information can be used when analysing risk of disease spread, for market research and for instigating veterinary care. PMID:21663606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halasz, Lia M.; Jacene, Heather A.; Catalano, Paul J.
2012-08-01
Purpose: To evaluate outcomes of patients treated for aggressive non-Hodgkin lymphoma (NHL) with combined modality therapy based on [{sup 18}F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET) response. Methods and Materials: We studied 59 patients with aggressive NHL, who received chemotherapy and radiation therapy (RT) from 2001 to 2008. Among them, 83% of patients had stage I/II disease. Patients with B-cell lymphoma received R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone)-based chemotherapy, and 1 patient with anaplastic lymphoma kinase-negative anaplastic T-cell lymphoma received CHOP therapy. Interim and postchemotherapy FDG-PET or FDG-PET/computed tomography (CT) scans were performed for restaging. All patients received consolidated involved-field RT.more » Median RT dose was 36 Gy (range, 28.8-50 Gy). Progression-free survival (PFS) and local control (LC) rates were calculated with and without a negative interim or postchemotherapy FDG-PET scan. Results: Median follow-up was 46.5 months. Thirty-nine patients had negative FDG-PET results by the end of chemotherapy, including 12 patients who had a negative interim FDG-PET scan and no postchemotherapy PET. Twenty patients were FDG-PET-positive, including 7 patients with positive interim FDG-PET and no postchemotherapy FDG-PET scans. The 3-year actuarial PFS rates for patients with negative versus positive FDG-PET scans were 97% and 90%, respectively. The 3-year actuarial LC rates for patients with negative versus positive FDG-PET scans were 100% and 90%, respectively. Conclusions: Patients who had a positive interim or postchemotherapy FDG-PET had a PFS rate of 90% at 3 years after combined modality treatment, suggesting that a large proportion of these patients can be cured with consolidated RT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannas, Peter, E-mail: p.bannas@uke.de; Weber, Christoph; Adam, Gerhard
2011-10-01
Purpose: The practice of surgical staging and treatment of anal cancer has been replaced by noninvasive staging and combined modality therapy. For appropriate patient management, accurate lymph node staging is crucial. The present study evaluated the feasibility and diagnostic accuracy of contrast-enhanced [{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG)-positron emission tomography/computed tomography (PET/CT) for staging and radiotherapy planning of anal cancer. Methods and Materials: A total of 22 consecutive patients (median age, 61 years old) with anal cancer underwent complete staging evaluation including physical examination, biopsy of the primary tumor, and contrast-enhanced (ce)-PET/CT. Patients were positioned as they would be for their subsequentmore » radiotherapy. PET and CT images were evaluated independently for detectability and localization of the primary tumor, pelvic and inguinal lymph nodes, and distant metastasis. The stage, determined by CT or PET alone, and the proposed therapy planning were compared with the stage and management determined by ce-PET/CT. Data from ce-PET/CT were used for radiotherapy planning. Results: ce-PET/CT revealed locoregional lymph node metastasis in 11 of 22 patients (50%). After simultaneous reading of PET and CT data sets by experienced observers, 3 patients (14%) were found to have sites of disease not seen on CT that were identified on PET. Two patients had sites of disease not seen on PET that were identified on CT. In summary, 2 patients were upstaged, and 4 patients were downstaged due to ce-PET/CT. However, radiotherapy fields were changed due to the results from ce-PET/CT in 23% of cases compared to CT or PET results alone. Conclusions: ce-PET/CT is superior to PET or CT alone for staging of anal cancer, with significant impact on therapy planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
Purpose: PET images are usually blurred due to the finite spatial resolution, while CT images suffer from low contrast. Segment a tumor from either a single PET or CT image is thus challenging. To make full use of the complementary information between PET and CT, we propose a novel variational method for simultaneous PET image restoration and PET/CT images co-segmentation. Methods: The proposed model was constructed based on the Γ-convergence approximation of Mumford-Shah (MS) segmentation model for PET/CT co-segmentation. Moreover, a PET de-blur process was integrated into the MS model to improve the segmentation accuracy. An interaction edge constraint termmore » over the two modalities were specially designed to share the complementary information. The energy functional was iteratively optimized using an alternate minimization (AM) algorithm. The performance of the proposed method was validated on ten lung cancer cases and five esophageal cancer cases. The ground truth were manually delineated by an experienced radiation oncologist using the complementary visual features of PET and CT. The segmentation accuracy was evaluated by Dice similarity index (DSI) and volume error (VE). Results: The proposed method achieved an expected restoration result for PET image and satisfactory segmentation results for both PET and CT images. For lung cancer dataset, the average DSI (0.72) increased by 0.17 and 0.40 than single PET and CT segmentation. For esophageal cancer dataset, the average DSI (0.85) increased by 0.07 and 0.43 than single PET and CT segmentation. Conclusion: The proposed method took full advantage of the complementary information from PET and CT images. This work was supported in part by the National Cancer Institute Grants R01CA172638. Shan Tan and Laquan Li were supported in part by the National Natural Science Foundation of China, under Grant Nos. 60971112 and 61375018.« less
Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.
Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700
Ku, Geoffrey Y; Kriplani, Anuja; Janjigian, Yelena Y; Kelsen, David P; Rusch, Valerie W; Bains, Manjit; Chou, Joanne; Capanu, Marinela; Wu, Abraham J; Goodman, Karyn A; Ilson, David H
2016-07-01
A positron emission tomography (PET) scan after induction chemotherapy before preoperative chemoradiation and surgery for esophageal adenocarcinoma predicts outcomes. Some patients with progression on PET after induction chemotherapy had long-term overall survival (OS) when they were changed to alternative chemotherapy during radiation. This study retrospectively reviewed esophageal adenocarcinoma patients who received induction chemotherapy and chemoradiation before planned surgery; all had undergone a PET scan before and after induction chemotherapy. There were 201 patients, and 113 (56%) were PET responders (≥35% decrease in the maximum standardized uptake value of the tumor). All PET responders received the same chemotherapy during radiation, whereas 38 of the 88 PET nonresponders (43%) changed chemotherapy. Among the 152 patients who underwent surgery, the pathologic complete response rate was 15% for PET responders and 3% for PET nonresponders who did not change chemotherapy (P = .046). The median progression-free survival (PFS; 18.9 vs 10.0 months, P < 0.01) and OS (37 vs 25.3 months, P = .02) were significantly better for PET responders versus PET nonresponders who did not change chemotherapy. The median PFS for PET nonresponders who changed chemotherapy was 17.9 months, and it was superior to the median PFS for PET nonresponders who did not change chemotherapy (P = .01). For PET nonresponders, the 5-year OS rates were 37% for those who changed chemotherapy and 25% for those who did not change chemotherapy (P = .18). A PET scan after induction chemotherapy predicts outcomes for locally advanced esophageal adenocarcinoma patients who undergo chemoradiation and surgery. The median PFS is improved, and trends toward improved OS appear possible in PET nonresponders who change chemotherapy during radiation. The fully accrued Cancer and Leukemia Group B 80803 study (NCT01333033) is evaluating this strategy. Cancer 2016;122:2083-90. © 2016 American Cancer Society. © 2016 American Cancer Society.
The spatial distribution of pet dogs and pet cats on the island of Ireland.
Downes, Martin J; Clegg, Tracy A; Collins, Daniel M; McGrath, Guy; More, Simon J
2011-06-10
There is considerable international research regarding the link between human demographics and pet ownership. In several international studies, pet ownership was associated with household demographics including: the presence of children in the household, urban/rural location, level of education and age/family structure. What is lacking across all these studies, however, is an understanding of how these pets are spatially distributed throughout the regions under study. This paper describes the spatial distribution of pet dog and pet cat owning households on the island of Ireland. In 2006, there were an estimated 640,620 pet dog owning households and 215,542 pet cat owning households in Ireland. These estimates are derived from logistic regression modelling, based on household composition to determine pet dog ownership and the type of house to determine pet cat ownership. Results are presented using chloropleth maps. There is a higher density of pet dog owning households in the east of Ireland and in the cities than the west of Ireland and rural areas. However, in urban districts there are a lower proportion of households owning pet dogs than in rural districts. There are more households with cats in the urban areas, but the proportion of households with cats is greater in rural areas. The difference in spatial distribution of dog ownership is a reflection of a generally higher density of households in the east of Ireland and in major cities. The higher proportion of ownership in the west is understandable given the higher proportion of farmers and rural dwellings in this area. Spatial representation allows us to visualise the impact of human household distribution on the density of both pet dogs and pet cats on the island of Ireland. This information can be used when analysing risk of disease spread, for market research and for instigating veterinary care.
Schmidt, Holger; Brendle, Cornelia; Schraml, Christina; Martirosian, Petros; Bezrukov, Ilja; Hetzel, Jürgen; Müller, Mark; Sauter, Alexander; Claussen, Claus D; Pfannenberg, Christina; Schwenzer, Nina F
2013-05-01
Hybrid whole-body magnetic resonance/positron emission tomography (MR/PET) systems are a new diagnostic tool enabling the simultaneous acquisition of morphologic and multiple functional data and thus allowing for a diversified characterization of oncological diseases.The aim of this study was to investigate the image and alignment quality of MR/PET in patients with pulmonary lesions and to compare the congruency of the 2 functional measurements of diffusion-weighted imaging (DWI) in MR imaging and 2-deoxy-[18F] fluoro-2-D-glucose (FDG) uptake in PET. A total of 15 patients were examined with a routine positron emission tomography/computer tomography (PET/CT) protocol and, subsequently, in a whole-body MR/PET scanner allowing for simultaneous PET and MR data acquisition. The PET and MR image quality was assessed visually using a 4-point score (1, insufficient; 4, excellent). The alignment quality of the rigidly registered PET/CT and MR/PET data sets was investigated on the basis of multiple anatomic landmarks of the lung using a scoring system from 1 (no alignment) to 4 (very good alignment). In addition, the alignment quality of the tumor lesions in PET/CT and MR/PET as well as for retrospective fusion of PET from PET/CT and MR images was assessed quantitatively and was compared between lesions strongly or less influenced by respiratory motion. The correlation of the simultaneously acquired DWI and FDG uptake in the pulmonary masses was analyzed using the minimum and mean apparent diffusion coefficient (ADC min and ADC mean) as well as the maximum and mean standardized uptake value (SUV max and SUV mean), respectively. In addition, the correlation of SUV max from PET/CT data was investigated as well. On lesions 3 cm or greater, a voxelwise analysis of ADC and SUV was performed. The visual evaluation revealed excellent image quality of the PET images (mean [SD] score, 3.6 [0.5]) and overall good image quality of DWI (mean [SD] score of 2.5 [0.5] for ADC maps and 2.7 [0.5] for diffusion-weighted images, respectively). The alignment quality of the data sets was very good in both MR/PET and PET/CT without significant differences (overall mean [SD] score of MR/PET, 3.8 [0.4]; PET/CT 3.6 [0.5]). Also, the alignment quality of the tumor lesions showed no significant differences between PET/CT and MR/PET (mean cumulative misalignment of MR/PET, 7.7 mm; PET/CT, 7.0 mm; P = 0.705) but between both modalities and a retrospective fusion (mean cumulative misalignment, 17.1 mm; P = 0.002 and P = 0.008 for PET/CT and MR/PET, respectively). Also, the comparison of the lesions strongly or less influenced by respiratory motion showed significant differences only for the retrospective fusion (21.3 mm vs 11.5 mm, respectively; P = 0.043). The ADC min and SUV max as measures of the cell density and glucose metabolism showed a significant reverse correlation (r = -0.80; P = 0.0006). No significant correlation was found between ADC mean and SUV mean (r = -0.42; P = 0.1392). Also, SUV max from the PET/CT data showed significant reverse correlation to ADC min (r = -0.62; P = 0.019). The voxelwise analysis of 5 pulmonary lesions each showed weak but significant negative correlation between ADC and SUV. Examinations of pulmonary lesions in a simultaneous whole-body MR/PET system provide diagnostic image quality in both modalities. Although DWI and FDG-PET reflect different tissue properties, there may very well be an association between the measures of both methods most probably because of increased cellularity and glucose metabolism of FDG-avid pulmonary lesions. A voxelwise DWI and FDG-PET correlation might provide a more sophisticated spatial characterization of pulmonary lesions.
Huisingh, Carrie; Levitan, Emily B; Irvin, Marguerite R; Owsley, Cynthia; McGwin, Gerald
2016-03-01
Distracted driving is a major cause of motor vehicle collision (MVC) involvement. Pets have been identified as potential distraction to drivers, particularly in the front. This type of distraction could be worse for those with impairment in the cognitive aspects of visual processing. The purpose of this study is to evaluate the association between driving with pets and rates of motor vehicle collision involvement in a cohort of older drivers. A three-year prospective study was conducted in a population-based sample of 2000 licensed drivers aged 70 years and older. At the baseline visit, a trained interviewer asked participants about pet ownership, whether they drive with pets, how frequently, and where the pet sits in the vehicle. Motor vehicle collision (MVC) involvement during the three-year study period was obtained from the Alabama Department of Public Safety. At-fault status was determined by the police officer who arrived on the scene. Participants were followed until the earliest of death, driving cessation, or end of the study period. Poisson regression was used to calculate crude and adjusted rate ratios (RR) examining the association between pet ownership, presence of a pet in a vehicle, frequency of driving with a pet, and location of the pet inside with vehicle with any and at-fault MVC involvement. We examined whether the associations differed by higher order visual processing impairment status, as measured by Useful Field of View, Trails B, and Motor-free Visual Perception Test. Rates of crash involvement were similar for older adults who have ever driven with a pet compared to those who never drove with their pet (RR=1.15, 95% CI 0.76-1.75). Drivers who reported always or sometimes driving with their pet had higher MVC rates compared to pet owners who never drive with a pet, but this association was not statistically significant (RR=1.39, 95% CI 0.86-2.24). In terms of location, those reporting having a pet frequently ride in the front of the vehicle had similar rates of MVC involvement compared to those who did not drive with a pet in the front. A similar pattern of results was observed for at-fault MVCs. This association was not modified by visual processing impairment status. The current study demonstrates a positive but non-significant association between frequently driving with pets and MVC involvement. More research is needed, particularly on restraint use and whether the pet was in the car at the time of the crash, to help characterize the public safety benefit of regulations on driving with pets. Copyright © 2015 Elsevier Ltd. All rights reserved.
FDG-PET Imaging in Hematological Malignancies
Valls, L.; Badve, C.; Avril, S.; Herrmann, K.; Faulhaber, P.; O'Donnell, J.; Avril, N.
2016-01-01
The majority of aggressive lymphomas is characterized by an up regulated glycolytic activity, which enables the visualization by F-18 FDG-PET/CT. One-stop hybrid FDG-PET/CT combines the functional and morphologic information, outperforming both, CT and FDG-PET as separate imaging modalities. This has resulted in several recommendations using FDG-PET/CT for staging, restaging, monitoring during therapy, and assessment of treatment response as well as identification of malignant transformation. FDG-PET/CT may obviate the need for a bone marrow biopsy in patients with Hodgkin's lymphoma and diffuse large B-cell lymphoma. FDG-PET/CT response assessment is recommended for FDG-avid lymphomas, whereas CT-based response evaluation remains important in lymphomas with low or variable FDG avidity. The treatment induced change in metabolic activity allows for assessment of response after completion of therapy as well as prediction of outcome early during therapy. The five point scale Deauville Criteria allows the assessment of treatment response based on visual FDG-PET analysis. Although the use of FDG-PET/CT for prediction of therapeutic response is promising it should only be conducted in the context of clinical trials. Surveillance FDG-PET/CT after complete remission is discouraged due to the relative high number of false-positive findings, which in turn may result in further unnecessary investigations. Future directions include the use of new PET tracers such as F-18 fluorothymidine (FLT), a surrogate biomarker of cellular proliferation and Ga-68 CXCR4, a chemokine receptor imaging biomarker as well as innovative digital PET/CT and PET/MRI techniques. PMID:27090170
Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R
2006-12-01
PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.
Adaptive template generation for amyloid PET using a deep learning approach.
Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung
2018-05-11
Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.
Gandolfi-Decristophoris, Paola; De Benedetti, Anna; Petignat, Christiane; Attinger, Monica; Guillaume, Jan; Fiebig, Lena; Hattendorf, Jan; Cernela, Nicole; Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther
2012-03-01
Pets, often used as companionship and for psychological support in the therapy of nursing home residents, have been implicated as reservoirs for antibiotic-resistant bacteria. We investigated the importance of pets as reservoirs of multidrug-resistant (MDR) staphylococci in nursing homes. We assessed the carriage of MDR staphylococci in pets and in 2 groups of residents, those living in nursing homes with pets and those living without pet contacts. We collected demographic, health status, and human-pet contact data by means of questionnaires. We assessed potential bacteria transmission pathways by investigating physical resident-to-pet contact. The observed prevalence of MDR staphylococci carriage was 84/229 (37%) in residents living with pets and 99/216 (46%) in those not living with pets (adjusted odds ratio [aOR], 0.6; 95% confidence interval [CI], 0.4-0.9). Active pet contact was associated with lower carriage of MDR staphylococci (aOR, 0.5; 95% CI, 0.4-0.8). Antibiotic treatment during the previous 3 months was associated with significantly increased risk for MDR carriage in residents (aOR, 3.1; 95% CI, 1.8-5.7). We found no evidence that the previously reported benefits of pet contact are compromised by the increased risk of carriage of MDR staphylococci in residents associated with interaction with these animals in nursing homes. Thus, contact with pets, always under good hygiene standards, should be encouraged in these settings. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Jiang, Jia; Ai, Chengchong; Zhan, Zufeng; Zhang, Peng; Wan, Fang; Chen, Jun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Chen, Tianwu; Zhou, Liang; Chen, Shiyi
2016-04-01
Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Maramraju, Sri Harsha; Smith, S. David; Rescia, Sergio; Stoll, Sean; Budassi, Michael; Vaska, Paul; Woody, Craig; Schlyer, David
2012-10-01
We previously integrated a magnetic resonance-(MR-) compatible small-animal positron emission tomograph (PET) in a Bruker 9.4 T microMRI system to obtain simultaneous PET/MR images of a rat's brain and of a gated mouse-heart. To minimize electromagnetic interactions in our MR-PET system, viz., the effect of radiofrequency (RF) pulses on the PET, we tested our modular front-end PET electronics with various shield configurations, including a solid aluminum shield and one of thin segmented layers of copper. We noted that the gradient-echo RF pulses did not affect PET data when the PET electronics were shielded with either the aluminum- or the segmented copper-shields. However, there were spurious counts in the PET data resulting from high-intensity fast spin-echo RF pulses. Compared to the unshielded condition, they were attenuated effectively by the aluminum shield ( 97%) and the segmented copper shield ( 90%). We noted a decline in the noise rates as a function of increasing PET energy-discriminator threshold. In addition, we observed a notable decrease in the signal-to-noise ratio in spin-echo MR images with the segmented copper shields in place; however, this did not substantially degrade the quality of the MR images we obtained. Our results demonstrate that by surrounding a compact PET scanner with thin layers of segmented copper shields and integrating it inside a 9.4 T MR system, we can mitigate the impact of the RF on PET, while acquiring good-quality MR images.
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas
2009-03-01
Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
Bryan, Jennifer L; Quist, Michelle C; Young, Chelsie M; Steers, Mai-Ly N; Foster, Dawn W; Lu, Qian
2014-10-01
This study evaluated pet affinity as a buffer between ambivalence over emotional expression (AEE) and social support. AEE occurs when one desires to express emotions but is reluctant to do so and is related to negative psychological outcomes. Individuals high in AEE may have difficulty receiving social support and thus may not gain accompanying benefits. Social support has been associated with positive health outcomes, and pet support is positively associated with human social support. The present study explores the potential protective effect of pet affinity. One hundred ninety-eight undergraduate dog owners completed measures assessing perceived social support, pet affinity, and AEE. AEE was expected to be negatively associated with social support, and pet affinity was expected to buffer the negative effects of AEE on social support. We found that AEE was negatively associated with perceived social support. An interaction between pet affinity and AEE emerged such that the negative association between AEE and social support was weaker among those higher in pet affinity. Thus, at high levels of AEE, those who felt a close connection with their pets reported more perceived social support than those less connected with their pets. Overall, these findings emphasize the potential benefits of pet affinity.
Oncologic PET/MRI, part 1: tumors of the brain, head and neck, chest, abdomen, and pelvis.
Buchbender, Christian; Heusner, Till A; Lauenstein, Thomas C; Bockisch, Andreas; Antoch, Gerald
2012-06-01
In oncology, staging forms the basis for prognostic consideration and directly influences patient care by determining the therapeutic approach. Cross-sectional imaging techniques, especially when combined with PET information, play an important role in cancer staging. With the recent introduction of integrated whole-body PET/MRI into clinical practice, a novel metabolic-anatomic imaging technique is now available. PET/MRI seems to be highly accurate in T-staging of tumor entities for which MRI has traditionally been favored, such as squamous cell carcinomas of the head and neck. By adding functional MRI to PET, PET/MRI may further improve diagnostic accuracy in the differentiation of scar tissue from recurrence of tumors such as rectal cancer. This hypothesis will have to be assessed in future studies. With regard to N-staging, PET/MRI does not seem to provide a considerable benefit as compared with PET/CT but provides similar N-staging accuracy when applied as a whole-body staging approach. M-staging will benefit from MRI accuracy in the brain and the liver. The purpose of this review is to summarize the available first experiences with PET/MRI and to outline the potential value of PET/MRI in oncologic applications for which data on PET/MRI are still lacking.
Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET
Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna
2014-01-01
Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157
An update on technical and methodological aspects for cardiac PET applications.
Presotto, Luca; Busnardo, Elena; Gianolli, Luigi; Bettinardi, Valentino
2016-12-01
Positron emission tomography (PET) is indicated for a large number of cardiac diseases: perfusion and viability studies are commonly used to evaluate coronary artery disease; PET can also be used to assess sarcoidosis and endocarditis, as well as to investigate amyloidosis. Furthermore, a hot topic for research is plaque characterization. Most of these studies are technically very challenging. High count rates and short acquisition times characterize perfusion scans while very small targets have to be imaged in inflammation/infection and plaques examinations. Furthermore, cardiac PET suffers from respiratory and cardiac motion blur. Each type of studies has specific requirements from the technical and methodological point of view, thus PET systems with overall high performances are required. Furthermore, in the era of hybrid PET/computed tomography (CT) and PET/Magnetic Resonance Imaging (MRI) systems, the combination of complementary functional and anatomical information can be used to improve diagnosis and prognosis. Moreover, PET images can be qualitatively and quantitatively improved exploiting information from the other modality, using advanced algorithms. In this review we will report the latest technological and methodological innovations for PET cardiac applications, with particular reference to the state of the art of the hybrid PET/CT and PET/MRI. We will also report the most recent advancements in software, from reconstruction algorithms to image processing and analysis programs.
Quantitative assessment of the physical potential of proton beam range verification with PET/CT.
Knopf, A; Parodi, K; Paganetti, H; Cascio, E; Bonab, A; Bortfeld, T
2008-08-07
A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6 degrees to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET scanner. PET/CT range verification was found to be able to detect small range modifications in the presence of complex tissue inhomogeneities. This study indicates the physical potential of the PET/CT verification method to detect the full-range characteristic of the delivered dose in the patient.
Quantitative assessment of the physical potential of proton beam range verification with PET/CT
NASA Astrophysics Data System (ADS)
Knopf, A.; Parodi, K.; Paganetti, H.; Cascio, E.; Bonab, A.; Bortfeld, T.
2008-08-01
A recent clinical pilot study demonstrated the feasibility of offline PET/CT range verification for proton therapy treatments. In vivo PET measurements are challenged by blood perfusion, variations of tissue compositions, patient motion and image co-registration uncertainties. Besides these biological and treatment specific factors, the accuracy of the method is constrained by the underlying physical processes. This phantom study distinguishes physical factors from other factors, assessing the reproducibility, consistency and sensitivity of the PET/CT range verification method. A spread-out Bragg-peak (SOBP) proton field was delivered to a phantom consisting of poly-methyl methacrylate (PMMA), lung and bone equivalent material slabs. PET data were acquired in listmode at a commercial PET/CT scanner available within 10 min walking distance from the proton therapy unit. The measured PET activity distributions were compared to simulations of the PET signal based on Geant4 and FLUKA Monte Carlo (MC) codes. To test the reproducibility of the measured PET signal, data from two independent measurements at the same geometrical position in the phantom were compared. Furthermore, activation depth profiles within identical material arrangements but at different positions within the irradiation field were compared to test the consistency of the measured PET signal. Finally, activation depth profiles through air/lung, air/bone and lung/bone interfaces parallel as well as at 6° to the beam direction were studied to investigate the sensitivity of the PET/CT range verification method. The reproducibility and the consistency of the measured PET signal were found to be of the same order of magnitude. They determine the physical accuracy of the PET measurement to be about 1 mm. However, range discrepancies up to 2.6 mm between two measurements and range variations up to 2.6 mm within one measurement were found at the beam edge and at the edge of the field of view (FOV) of the PET scanner. PET/CT range verification was found to be able to detect small range modifications in the presence of complex tissue inhomogeneities. This study indicates the physical potential of the PET/CT verification method to detect the full-range characteristic of the delivered dose in the patient.
21 CFR 212.90 - What actions must I take to control the distribution of PET drug products?
Code of Federal Regulations, 2013 CFR
2013-04-01
... distribution of PET drug products? 212.90 Section 212.90 Food and Drugs FOOD AND DRUG ADMINISTRATION... distribution of PET drug products? (a) Written distribution procedures. You must establish, maintain, and follow written procedures for the control of distribution of PET drug products shipped from the PET drug...
21 CFR 212.90 - What actions must I take to control the distribution of PET drug products?
Code of Federal Regulations, 2011 CFR
2011-04-01
... distribution of PET drug products? 212.90 Section 212.90 Food and Drugs FOOD AND DRUG ADMINISTRATION... distribution of PET drug products? (a) Written distribution procedures. You must establish, maintain, and follow written procedures for the control of distribution of PET drug products shipped from the PET drug...
21 CFR 212.90 - What actions must I take to control the distribution of PET drug products?
Code of Federal Regulations, 2012 CFR
2012-04-01
... distribution of PET drug products? 212.90 Section 212.90 Food and Drugs FOOD AND DRUG ADMINISTRATION... distribution of PET drug products? (a) Written distribution procedures. You must establish, maintain, and follow written procedures for the control of distribution of PET drug products shipped from the PET drug...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Pets. § 1002.15 Section Â... RECREATION § 1002.15 Pets. (a) The following are prohibited: (1) Possessing a pet in a public building... closed to the possession of pets by the Board. This paragraph shall not apply to guide dogs accompanying...
21 CFR 212.90 - What actions must I take to control the distribution of PET drug products?
Code of Federal Regulations, 2014 CFR
2014-04-01
... distribution of PET drug products? 212.90 Section 212.90 Food and Drugs FOOD AND DRUG ADMINISTRATION... distribution of PET drug products? (a) Written distribution procedures. You must establish, maintain, and follow written procedures for the control of distribution of PET drug products shipped from the PET drug...
Ascione, Frank R; Weber, Claudia V; Thompson, Teresa M; Heath, John; Maruyama, Mika; Hayashi, Kentaro
2007-04-01
Women residing at domestic violence shelters (S group) were nearly 11 times more likely to report that their partner had hurt or killed pets than a comparison group of women who said they had not experienced intimate violence (NS group). Reports of threatened harm to pets were more than 4 times higher for the S group. Using the Conflict Tactics Scale, the authors demonstrated that severe physical violence was a significant predictor of pet abuse. The vast majority of shelter women described being emotionally close to their pets and distraught by the abuse family pets experienced. Children were often exposed to pet abuse, and most reported being distressed by these experiences. A substantial minority of S-group women reported that their concern for their pets' welfare prevented them from seeking shelter sooner. This seemed truer for women without children, who may have had stronger pet attachments. This obstacle to seeking safety should be addressed by domestic violence agencies.
Characterization of surface modified polyester fabric.
Joseph, Roy; Shelma, R; Rajeev, A; Muraleedharan, C V
2009-12-01
Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.
Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates
NASA Astrophysics Data System (ADS)
Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun
2018-01-01
A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m-1 without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes.
NASA Astrophysics Data System (ADS)
Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas
2018-02-01
Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.
Albano, C; Camacho, N; Hernández, M; Matheus, A; Gutiérrez, A
2009-10-01
The goal of this work was to study the mechanical behavior of concrete with recycled Polyethylene Therephtalate (PET), varying the water/cement ratio (0.50 and 0.60), PET content (10 and 20 vol%) and the particle size. Also, the influence of the thermal degradation of PET in the concrete was studied, when the blends were exposed to different temperatures (200, 400, 600 degrees C). Results indicate that PET-filled concrete, when volume proportion and particle size of PET increased, showed a decrease in compressive strength, splitting tensile strength, modulus of elasticity and ultrasonic pulse velocity; however, the water absorption increased. On the other hand, the flexural strength of concrete-PET when exposed to a heat source was strongly dependent on the temperature, water/cement ratio, as well as on the PET content and particle size. Moreover, the activation energy was affected by the temperature, PET particles location on the slabs and water/cement ratio.
Toohey, Ann M; Hewson, Jennifer A; Adams, Cindy L; Rock, Melanie J
2018-06-01
ABSTRACTThe objective of this study was to assess whether pet ownership contributes to social participation and life satisfaction for older adults. We used baseline data from the Canadian Longitudinal Study on Aging (CLSA) for this purpose, and logistic regression models to estimate associations between social participation and life satisfaction for pet owners and non-owners. One third of all older adults (≥ 65 years, n = 7,474) in our sample reported pet ownership. Pet owners were less likely than non-pet owners to report life satisfaction and to participate frequently in social, recreational, or cultural activities, but pet owners were no less satisfied than were non-owners with their current levels of social participation. For pet owners experiencing barriers to social participation, pets appeared protective of life satisfaction in some circumstances. Both individual characteristics and structural factors linked to the World Health Organization's age-friendly communities framework were relevant to understanding these findings.
Transmission of Bacterial Zoonotic Pathogens between Pets and Humans: The Role of Pet Food.
Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Pradhan, Abani K
2016-01-01
Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.
Policies on pets for healthy cities: a conceptual framework
Rock, Melanie J.; Adams, Cindy L.; Degeling, Chris; Massolo, Alessandro; McCormack, Gavin R.
2015-01-01
Drawing on the One Health concept, and integrating a dual focus on public policy and practices of caring from the Ottawa Charter for Health Promotion, we outline a conceptual framework to help guide the development and assessment of local governments' policies on pets. This framework emphasizes well-being in human populations, while recognizing that these outcomes relate to the well-being of non-human animals. Five intersecting spheres of activity, each associated with local governments' jurisdiction over pets, are presented: (i) preventing threats and nuisances from pets, (ii) meeting pets' emotional and physical needs, (iii) procuring pets ethically, (iv) providing pets with veterinary services and (v) licensing and identifying pets. This conceptual framework acknowledges the tenets of previous health promotion frameworks, including overlapping and intersecting influences. At the same time, this framework proposes to advance our understanding of health promotion and, more broadly, population health by underscoring interdependence between people and pets as well as the dynamism of urbanized ecologies. PMID:24694682
Open-field mouse brain PET: design optimisation and detector characterisation.
Kyme, Andre Z; Judenhofer, Martin S; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R; Meikle, Steven R
2017-07-13
'Open-field' PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal's behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of 'retro-fitting' motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal's motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23 × 23 array of 0.785 × 0.785 × 20 mm 3 LSO crystals (overall dim. 19.6 × 19.6 × 20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for imaging the mouse brain. We also built and characterised the block detector modelled in the simulations, including a dual-ended readout based on 6 × 6 arrays of through-silicon-via silicon photomultipliers (active area 84%) for DoI estimation. Identification of individual crystals in the flood map was excellent, energy resolution varied from 12.4% ± 0.6% near the centre to 24.4% ± 3.4% at the ends of the crystal, and the average DoI resolution was 2.8 mm ± 0.35 mm near the central depth (10 mm) and 3.5 mm ± 1.0 mm near the ends. Timing resolution was 1.4 ± 0.14 ns. Therefore, the DoI detector module meets the target specifications for the application and will be used as the basis for a prototype open-field mouse PET scanner.
Open-field mouse brain PET: design optimisation and detector characterisation
NASA Astrophysics Data System (ADS)
Kyme, Andre Z.; Judenhofer, Martin S.; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R.; Meikle, Steven R.
2017-08-01
‘Open-field’ PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal’s behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of ‘retro-fitting’ motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal’s motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23 × 23 array of 0.785 × 0.785 × 20 mm3 LSO crystals (overall dim. 19.6 × 19.6 × 20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for imaging the mouse brain. We also built and characterised the block detector modelled in the simulations, including a dual-ended readout based on 6 × 6 arrays of through-silicon-via silicon photomultipliers (active area 84%) for DoI estimation. Identification of individual crystals in the flood map was excellent, energy resolution varied from 12.4% ± 0.6% near the centre to 24.4% ± 3.4% at the ends of the crystal, and the average DoI resolution was 2.8 mm ± 0.35 mm near the central depth (10 mm) and 3.5 mm ± 1.0 mm near the ends. Timing resolution was 1.4 ± 0.14 ns. Therefore, the DoI detector module meets the target specifications for the application and will be used as the basis for a prototype open-field mouse PET scanner.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Wood, Lisa; Martin, Karen; Christian, Hayley; Nathan, Andrea; Lauritsen, Claire; Houghton, Steve; Kawachi, Ichiro; McCune, Sandra
2015-01-01
While companion animals have been previously identified as a direct source of companionship and support to their owners, their role as a catalyst for friendship formation or social support networks among humans has received little attention. This study investigated the indirect role of pets as facilitators for three dimensions of social relatedness; getting to know people, friendship formation and social support networks. A telephone survey of randomly selected residents in four cities, one in Australia (Perth; n = 704) and three in the U.S. (San Diego, n = 690; Portland, n = 634; Nashville, n = 664) was conducted. All participants were asked about getting to know people within their neighborhood. Pet owners were asked additional questions about the type/s of pet/s they owned, whether they had formed friendships as a result of their pet, and if they had received any of four different types of social support from the people they met through their pet. Pet owners were significantly more likely to get to know people in their neighborhood than non-pet owners (OR 1.61; 95%CI: 1.30, 1.99). When analyzed by site, this relationship was significant for Perth, San Diego and Nashville. Among pet owners, dog owners in the three U.S. cities (but not Perth) were significantly more likely than owners of other types of pets to regard people whom they met through their pet as a friend (OR 2.59; 95%CI: 1.94, 3.46). Around 40% of pet owners reported receiving one or more types of social support (i.e. emotional, informational, appraisal, instrumental) via people they met through their pet. This research suggests companion animals can be a catalyst for several dimensions of human social relationships in neighborhood settings, ranging from incidental social interaction and getting to know people, through to formation of new friendships. For many pet owners, their pets also facilitated relationships from which they derived tangible forms of social support, both of a practical and emotionally supportive nature. Given growing evidence for social isolation as a risk factor for mental health, and, conversely, friendships and social support as protective factors for individual and community well-being, pets may be an important factor in developing healthy neighborhoods.
Issues in quantification of registered respiratory gated PET/CT in the lung.
Cuplov, Vesna; Holman, Beverley F; McClelland, Jamie; Modat, Marc; Hutton, Brian F; Thielemans, Kris
2017-12-14
PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent [Formula: see text]F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.
Issues in quantification of registered respiratory gated PET/CT in the lung
NASA Astrophysics Data System (ADS)
Cuplov, Vesna; Holman, Beverley F.; McClelland, Jamie; Modat, Marc; Hutton, Brian F.; Thielemans, Kris
2018-01-01
PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18 F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
NASA Astrophysics Data System (ADS)
Aklan, B.; Jakoby, B. W.; Watson, C. C.; Braun, H.; Ritt, P.; Quick, H. H.
2015-06-01
A simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop an accurate Monte Carlo (MC) simulation of a fully integrated 3T PET/MR hybrid imaging system (Siemens Biograph mMR). The PET/MR components of the Biograph mMR were simulated in order to allow a detailed study of variations of the system design on the PET performance, which are not easy to access and measure on a real PET/MR system. The 3T static magnetic field of the MR system was taken into account in all Monte Carlo simulations. The validation of the MC model was carried out against actual measurements performed on the PET/MR system by following the NEMA (National Electrical Manufacturers Association) NU 2-2007 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction, and count rate capability. The validated system model was then used for two different applications. The first application focused on investigating the effect of an extension of the PET field-of-view on the PET performance of the PET/MR system. The second application deals with simulating a modified system timing resolution and coincidence time window of the PET detector electronics in order to simulate time-of-flight (TOF) PET detection. A dedicated phantom was modeled to investigate the impact of TOF on overall PET image quality. Simulation results showed that the overall divergence between simulated and measured data was found to be less than 10%. Varying the detector geometry showed that the system sensitivity and noise equivalent count rate of the PET/MR system increased progressively with an increasing number of axial detector block rings, as to be expected. TOF-based PET reconstructions of the modeled phantom showed an improvement in signal-to-noise ratio and image contrast to the conventional non-TOF PET reconstructions. In conclusion, the validated MC simulation model of an integrated PET/MR system with an overall accuracy error of less than 10% can now be used for further MC simulation applications such as development of hardware components as well as for testing of new PET/MR software algorithms, such as assessment of point-spread function-based reconstruction algorithms.
Wood, Lisa; Martin, Karen; Christian, Hayley; Nathan, Andrea; Lauritsen, Claire; Houghton, Steve; Kawachi, Ichiro; McCune, Sandra
2015-01-01
Background While companion animals have been previously identified as a direct source of companionship and support to their owners, their role as a catalyst for friendship formation or social support networks among humans has received little attention. This study investigated the indirect role of pets as facilitators for three dimensions of social relatedness; getting to know people, friendship formation and social support networks. Methods A telephone survey of randomly selected residents in four cities, one in Australia (Perth; n = 704) and three in the U.S. (San Diego, n = 690; Portland, n = 634; Nashville, n = 664) was conducted. All participants were asked about getting to know people within their neighborhood. Pet owners were asked additional questions about the type/s of pet/s they owned, whether they had formed friendships as a result of their pet, and if they had received any of four different types of social support from the people they met through their pet. Results Pet owners were significantly more likely to get to know people in their neighborhood than non-pet owners (OR 1.61; 95%CI: 1.30, 1.99). When analyzed by site, this relationship was significant for Perth, San Diego and Nashville. Among pet owners, dog owners in the three U.S. cities (but not Perth) were significantly more likely than owners of other types of pets to regard people whom they met through their pet as a friend (OR 2.59; 95%CI: 1.94, 3.46). Around 40% of pet owners reported receiving one or more types of social support (i.e. emotional, informational, appraisal, instrumental) via people they met through their pet. Conclusion This research suggests companion animals can be a catalyst for several dimensions of human social relationships in neighborhood settings, ranging from incidental social interaction and getting to know people, through to formation of new friendships. For many pet owners, their pets also facilitated relationships from which they derived tangible forms of social support, both of a practical and emotionally supportive nature. Given growing evidence for social isolation as a risk factor for mental health, and, conversely, friendships and social support as protective factors for individual and community well-being, pets may be an important factor in developing healthy neighborhoods. PMID:25924013
... CDC.gov . Healthy Pets, Healthy People About Pets & People Pets & Other Animals Birds Cats Dogs Farm Animals Backyard ... pigs, and horses can also pass ringworm to people. Ringworm appearance in pets Dogs and cats Adult animals, especially long-haired ...
Hybrid PET/MR imaging: physics and technical considerations.
Shah, Shetal N; Huang, Steve S
2015-08-01
In just over a decade, hybrid imaging with FDG PET/CT has become a standard bearer in the management of cancer patients. An exquisitely sensitive whole-body imaging modality, it combines the ability to detect subtle biologic changes with FDG PET and the anatomic information offered by CT scans. With advances in MR technology and advent of novel targeted PET radiotracers, hybrid PET/MRI is an evolutionary technique that is poised to revolutionize hybrid imaging. It offers unparalleled spatial resolution and functional multi-parametric data combined with biologic information in the non-invasive detection and characterization of diseases, without the deleterious effects of ionizing radiation. This article reviews the basic principles of FDG PET and MR imaging, discusses the salient technical developments of hybrid PET/MR systems, and provides an introduction to FDG PET/MR image acquisition.
Diagnosis of non-osseous spinal metastatic disease: the role of PET/CT and PET/MRI.
Batouli, Ali; Braun, John; Singh, Kamal; Gholamrezanezhad, Ali; Casagranda, Bethany U; Alavi, Abass
2018-06-01
The spine is the third most common site for distant metastasis in cancer patients with approximately 70% of patients with metastatic cancer having spinal involvement. Positron emission tomography (PET), combined with computed tomography (CT) or magnetic resonance imaging (MRI), has been deeply integrated in modern clinical oncology as a pivotal component of the diagnostic work-up of patients with cancer. PET is able to diagnose several neoplastic processes before any detectable morphological changes can be identified by anatomic imaging modalities alone. In this review, we discuss the role of PET/CT and PET/MRI in the diagnostic management of non-osseous metastatic disease of the spinal canal. While sometimes subtle, recognizing such disease on FDG PET/CT and PET/MRI imaging done routinely in cancer patients can guide treatment strategies to potentially prevent irreversible neurological damage.
Self-consolidating concretes containing waste PET bottles as sand replacement
NASA Astrophysics Data System (ADS)
Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Mazenan, Puteri Natasya; Shahidan, Shahiron; Othman, Nor hazurina; Guntor, Nickholas Anting Anak
2018-02-01
This study evaluates the effect of self-consolidating concrete (SCC) containing waste polyethylene terephthalate (PET) granules on the fresh, mechanical and water absorption properties. Fine aggregates were replaced from 0% to 8% by PET granules. The fresh properties of SCC containing PET granules were determined using slump flow and V-funnel flow time tests. The compressive and splitting tensile strength were evaluated. The results indicated that utilization of waste PET granules in production of SCC could be an effective way for recycling purpose. The maximum amount of PET replacement should be limited to 5%. Exceeding 5% of PET content may result in an increase of V-funnel flow time to overpass the limiting value, decrease in strength. The production of high performance SCC containing 5% PET granules satisfies all the requirements for SCC with satisfactory outputs.
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
NASA Astrophysics Data System (ADS)
Yang, Qing; Ma, Zhuguo; Zheng, Ziyan; Duan, Yawen
2017-12-01
Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations. The most widely accepted definition of the term dryland is a ratio, called the Surface Wetness Index (SWI), of annual precipitation to potential evapotranspiration (PET) being below 0.65. PET is commonly estimated using the Thornthwaite (PET Th) and Penman-Monteith equations (PET PM). The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM. Results showed vast differences between PET Th and PET PM; however, the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands, except in North America, with high correlation coefficients ranging from 0.58 to 0.89. It was found that, during 1901-2014, global hyper-arid and semi-arid regions expanded, arid and dry sub-humid regions contracted, and drylands underwent interdecadal fluctuation. This was because precipitation variations made major contributions, whereas PET changes contributed to a much lesser degree. However, distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found. This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry-wet transition zone. Additionally, the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming, and the Thornthwaite method was found to be increasingly less applicable under climate change.
Glassner, Mathias; Palmieri, Luca; Monnery, Bryn D; Verbrugghen, Thomas; Deleye, Steven; Stroobants, Sigrid; Staelens, Steven; Wyffels, Leonie; Hoogenboom, Richard
2017-01-09
Poly(2-alkyl-2-oxazoline)s (PAOx) have received increasing interest for biomedical applications. Therefore, it is of fundamental importance to gain an in-depth understanding of the biodistribution profile of PAOx. We report the biodistribution of poly(2-ethyl-2-oxazoline) (PEtOx) with a molar mass of 5 kDa radiolabeled with PET isotopes 89 Zr and 18 F. 18 F-labeled PEtOx is prepared by the strain-promoted azide-alkyne cycloaddition (SPAAC) of [ 18 F]fluoroethylazide to bicyclo[6.1.0]non-4-yne (BCN)-functionalized PEtOx as many common labeling strategies were found to be unsuccessful for PEtOx. 89 Zr-labeled PEtOx is prepared using desferrioxamine end-groups as a chelator. Five kDa PEtOx shows a significantly faster blood clearance compared to PEtOx of higher molar mass while uptake in the liver is lower, indicating a minor contribution of the liver in excretion of the 5 kDa PEtOx. While [ 18 F]-PEtOx displays a rapid and efficient clearance from the kidneys, 5 kDa [ 89 Zr]-Df-PEtOx is not efficiently cleared over the time course of the study, which is most likely caused by trapping of 89 Zr-labeled metabolites in the renal tubules and not the polymer itself, demonstrating the importance of selecting the appropriate label for biodistribution studies.
Factors associated with furry pet ownership among patients with asthma.
Downes, Martin J; Roy, Angkana; McGinn, Thomas G; Wisnivesky, Juan P
2010-09-01
Exposure to indoor allergens is an established risk factor for poor asthma control. Current guidelines recommend removing pets from the home of patients with asthma. This cross-sectional study was conducted to determine the prevalence of furry pet ownership in asthmatics compared to non-asthmatics and to identify factors associated with furry pet ownership among those with asthma. Secondary analysis assessed characteristics among asthmatics that might be associated with allowing a furry pet into the bedroom. Using data from The National Asthma Survey collected from 2003 to 2004, we carried out univariate and multiple regression analyses, in 2009, to identify independent predictors of furry pet ownership in asthma sufferers after controlling for potential confounders. Overall, asthmatics were more likely to own a furry pet than nonasthmatic individuals in the general population (49.9% versus 44.8%, p < .001). Multivariate analysis showed that female sex, older age, white race, and high income were independent predictors of furry pet ownership among asthmatics. Additionally, 68.7% of patients with asthma who own a furry pet allowed them into their bedroom. Higher income and carrying out < or =2 environmental control practices in the home were associated with increased likelihood of allowing a furry pet into the bedroom. Furry pet ownership is equally or more common among asthmatics compared to those without asthma. The majority of asthmatics with furry pets allow them into the bedroom. Recognizing and addressing these problems may help decrease asthma morbidity.
Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang
2017-01-01
Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939
Jacobson, Kristen C.; Hoffman, Christy L.; Vasilopoulos, Terrie; Kremen, William S.; Panizzon, Matthew S.; Grant, Michael D.; Lyons, Michael J.; Xian, Hong; Franz, Carol E.
2014-01-01
There is growing evidence that pet ownership and human–animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51–60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63–71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics. PMID:25580056
Jacobson, Kristen C; Hoffman, Christy L; Vasilopoulos, Terrie; Kremen, William S; Panizzon, Matthew S; Grant, Michael D; Lyons, Michael J; Xian, Hong; Franz, Carol E
2012-12-01
There is growing evidence that pet ownership and human-animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51-60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63-71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics.
Behr, Spencer C; Bahroos, Emma; Hawkins, Randall A; Nardo, Lorenzo; Ravanfar, Vahid; Capbarat, Emily V; Seo, Youngho
2018-06-01
Newer high-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability to preserve diagnostic image quality with low count density, while maintaining a high raw photon detection sensitivity that would allow for a reduction in injected dose or rapid data acquisition. To assess this, we performed quantitative and visual assessments of the PET images acquired using a highly sensitive (23.3 cps/kBq) large field of view (25-cm axial) silicon photomultiplier (SiPM)-based TOF PET (400-ps timing resolution) integrated with 3 T-MRI in comparison to PET images acquired on non-TOF PET/x-ray computed tomography (CT) systems. Whole-body 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) PET/CT was acquired for 15 patients followed by whole body PET/magnetic resonance imaging (MRI) with an average injected dose of 325 ± 84 MBq. The PET list mode data from PET/MRI were reconstructed using full datasets (4 min/bed) and reduced datasets (2, 1, 0.5, and 0.25 min/bed). Qualitative assessment between PET/CT and PET/MR images were made. A Likert-type scale between 1 and 5, 1 for non-diagnostic, 3 equivalent to PET/CT, and 5 superior quality, was used. Maximum and mean standardized uptake values (SUV max and SUV mean ) of normal tissues and lesions detected were measured and compared. Mean visual assessment scores were 3.54 ± 0.32, 3.62 ± 0.38, and 3.69 ± 0.35 for the brain and 3.05 ± 0.49, 3.71 ± 0.45, and 4.14 ± 0.44 for the whole-body maximum intensity projections (MIPs) for 1, 2, and 4 min/bed PET/MR images, respectively. The SUV mean values for normal tissues were lower and statistically significant for images acquired at 4, 2, 1, 0.5, and 0.25 min/bed on the PET/MR, with values of - 18 ± 28 % (p < 0.001), - 16 ± 29 % (p = 0.001), - 16 ± 31 % (p = 0.002), - 14 ± 35 % (p < 0.001), and - 13 ± 34 % (p = 0.002), respectively. SUV max and SUV peak values of all lesions were higher and statistically significant (p < 0.05) for 4, 2, 1, 0.50, and 0.25 min/bed PET/MR datasets. High-sensitivity TOF PET showed comparable but still better visual image quality even at a much reduced activity in comparison to lower-sensitivity non-TOF PET. Our data translates to a seven times reduction in either injection dose for the same time or total scan time for the same injected dose. This "ultra-sensitivity" PET system provides a path to clinically acceptable extremely low-dose FDG PET studies (e.g., sub 1 mCi injection or sub-mSv effective dose) or PET studies as short as 1 min/bed (e.g., 6 min of total scan time) to cover whole body without compromising diagnostic performance.
Minamimoto, Ryogo; Fayad, Luis; Advani, Ranjana; Vose, Julie; Macapinlac, Homer; Meza, Jane; Hankins, Jordan; Mottaghy, Felix; Juweid, Malik
2016-01-01
Purpose To compare the performance characteristics of interim fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) (after two cycles of chemotherapy) by using the most prominent standardized interpretive criteria (including International Harmonization Project [IHP] criteria, European Organization for Research and Treatment of Cancer [EORTC] criteria, and PET Response Criteria in Solid Tumors (PERCIST) versus those of interim 18F fluorothymidine (FLT) PET/CT and simple visual interpretation. Materials and Methods This HIPAA-compliant prospective study was approved by the institutional review boards, and written informed consent was obtained. Patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL) underwent both FLT and FDG PET/CT 18–24 days after two cycles of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone or rituximab, etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin. For FDG PET/CT interpretation, IHP criteria, EORTC criteria, PERCIST, Deauville criteria, standardized uptake value, total lesion glycolysis, and metabolic tumor volume were used. FLT PET/CT images were interpreted with visual assessment by two reviewers in consensus. The interim (after cycle 2) FDG and FLT PET/CT studies were then compared with the end-of-treatment FDG PET/CT studies to determine which interim examination and/or criteria best predicted the result after six cycles of chemotherapy. Results From November 2011 to May 2014, there were 60 potential patients for inclusion, of whom 46 patients (24 men [mean age, 60.9 years ± 13.7; range, 28–78 years] and 22 women [mean age, 57.2 years ± 13.4; range, 25–76 years]) fulfilled the criteria. Thirty-four patients had complete response, and 12 had residual disease at the end of treatment. FLT PET/CT had a significantly higher positive predictive value (PPV) (91%) in predicting residual disease than did any FDG PET/CT interpretation method (42%–46%). No difference in negative predictive value (NPV) was found between FLT PET/CT (94%) and FDG PET/CT (82%–95%), regardless of the interpretive criteria used. FLT PET/CT showed statistically higher (P < .001–.008) or similar NPVs than did FDG PET/CT. Conclusion Early interim FLT PET/CT had a significantly higher PPV than standardized FDG PET/CT–based interpretation for therapeutic response assessment in DLBCL. © RSNA, 2016 Online supplemental material is available for this article. PMID:26854705
Cuaron, John; Dunphy, Mark; Rimner, Andreas
2013-01-01
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated 18F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. 18F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. 18F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on 18F-FDG-PET scan when CT criteria for malignant involvement are not met. 18F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. 18F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. 18F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3–6 months, using 18F-FDG-PET to evaluate equivocal CT findings. As high 18F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, 18F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable 18F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET. PMID:23316478
Cuaron, John; Dunphy, Mark; Rimner, Andreas
2012-01-01
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated (18)F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. (18)F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. (18)F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on (18)F-FDG-PET scan when CT criteria for malignant involvement are not met. (18)F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. (18)F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. (18)F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3-6 months, using (18)F-FDG-PET to evaluate equivocal CT findings. As high (18)F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, (18)F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable (18)F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET.
Pet ownership among persons with AIDS in three Florida counties.
Conti, L; Lieb, S; Liberti, T; Wiley-Bayless, M; Hepburn, K; Diaz, T
1995-11-01
Interviews were conducted among 408 adults with acquired immunodeficiency syndrome at three local health departments to determine the proportion who owned pets, their perceived attachment to their pets, and the proportion who were informed about zoonoses. Nearly half (187, or 46%) were living with pets, most commonly dogs (64%), followed by cats (38%), fish (15%), birds (8%), reptiles (3%), and rodents (2%). Most pet owners (81%) reported an attachment to their pet. Only 10% were informed of zoonoses, albeit some incorrectly. Health care providers should recognize the high pet ownership rate among persons infected with human immunodeficiency virus and correctly inform their patients of strategies to sustain a low zoonotic disease incidence.
Preparation and dyeing of super hydrophilic polyethylene terephthalate fabric
NASA Astrophysics Data System (ADS)
Zheng, D. D.; Zhou, J. F.; Xu, F.; Zhang, F. X.; Zhang, G. X.
2016-07-01
In this study, the dyeing properties of PET fabrics modified with sulfuric acid was investigated using disperse red E-4B and disperse blue 2BLNG-L at high temperature and high pressure. The results revealed that the sulfuric acid modification improved the K/S value of dyeing PET fabrics, and the modified PET fabric could be dyed uniformly. The a, b, C, L and H of modified PET fabric were almost the same as that of original PET fabric. The water contact angles were still 0o after 10s, indicating that the hydrophilic property of modified PET fabrics still kept excellent. The wash fastness of dyed PET fabrics after modification was generally good.
Practical Considerations for Clinical PET/MR Imaging.
Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan
2018-01-01
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Practical Considerations for Clinical PET/MR Imaging.
Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan
2017-05-01
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... (PET) Film, Sheet, and Strip From India: Final Results of the Expedited Second Sunset Review of the... terephthalate (PET) film, sheet, and strip (``PET film'') from India. The Department finds that revocation of...: Background The CVD order on PET film from India was published on July 1, 2002. See Notice of Countervailing...
9 CFR 130.10 - User fees for pet birds.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false User fees for pet birds. 130.10... AGRICULTURE USER FEES USER FEES § 130.10 User fees for pet birds. (a) User fees for pet birds of U.S. origin returning to the United States, except pet birds of U.S. origin returning from Canada, are as follows...
9 CFR 130.10 - User fees for pet birds.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false User fees for pet birds. 130.10... AGRICULTURE USER FEES USER FEES § 130.10 User fees for pet birds. (a) User fees for pet birds of U.S. origin returning to the United States, except pet birds of U.S. origin returning from Canada, are as follows...
9 CFR 130.10 - User fees for pet birds.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false User fees for pet birds. 130.10... AGRICULTURE USER FEES USER FEES § 130.10 User fees for pet birds. (a) User fees for pet birds of U.S. origin returning to the United States, except pet birds of U.S. origin returning from Canada, are as follows...
9 CFR 130.10 - User fees for pet birds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false User fees for pet birds. 130.10... AGRICULTURE USER FEES USER FEES § 130.10 User fees for pet birds. (a) User fees for pet birds of U.S. origin returning to the United States, except pet birds of U.S. origin returning from Canada, are as follows...
9 CFR 130.10 - User fees for pet birds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false User fees for pet birds. 130.10... AGRICULTURE USER FEES USER FEES § 130.10 User fees for pet birds. (a) User fees for pet birds of U.S. origin returning to the United States, except pet birds of U.S. origin returning from Canada, are as follows...
NASA Astrophysics Data System (ADS)
Razavizadeh, Mahmoud; Jamshidi, Masoud
2016-08-01
Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.
Gillman, Ashley; Smith, Jye; Thomas, Paul; Rose, Stephen; Dowson, Nicholas
2017-12-01
Patient motion is an important consideration in modern PET image reconstruction. Advances in PET technology mean motion has an increasingly important influence on resulting image quality. Motion-induced artifacts can have adverse effects on clinical outcomes, including missed diagnoses and oversized radiotherapy treatment volumes. This review aims to summarize the wide variety of motion correction techniques available in PET and combined PET/CT and PET/MR, with a focus on the latter. A general framework for the motion correction of PET images is presented, consisting of acquisition, modeling, and correction stages. Methods for measuring, modeling, and correcting motion and associated artifacts, both in literature and commercially available, are presented, and their relative merits are contrasted. Identified limitations of current methods include modeling of aperiodic and/or unpredictable motion, attaining adequate temporal resolution for motion correction in dynamic kinetic modeling acquisitions, and maintaining availability of the MR in PET/MR scans for diagnostic acquisitions. Finally, avenues for future investigation are discussed, with a focus on improvements that could improve PET image quality, and that are practical in the clinical environment. © 2017 American Association of Physicists in Medicine.
Clinical oncologic applications of PET/MRI: a new horizon
Partovi, Sasan; Kohan, Andres; Rubbert, Christian; Vercher-Conejero, Jose Luis; Gaeta, Chiara; Yuh, Roger; Zipp, Lisa; Herrmann, Karin A; Robbin, Mark R; Lee, Zhenghong; Muzic, Raymond F; Faulhaber, Peter; Ros, Pablo R
2014-01-01
Positron emission tomography/magnetic resonance imaging (PET/MRI) leverages the high soft-tissue contrast and the functional sequences of MR with the molecular information of PET in one single, hybrid imaging technology. This technology, which was recently introduced into the clinical arena in a few medical centers worldwide, provides information about tumor biology and microenvironment. Studies on indirect PET/MRI (use of positron emission tomography/computed tomography (PET/CT) images software fused with MRI images) have already generated interesting preliminary data to pave the ground for potential applications of PET/MRI. These initial data convey that PET/MRI is promising in neuro-oncology and head & neck cancer applications as well as neoplasms in the abdomen and pelvis. The pediatric and young adult oncology population requiring frequent follow-up studies as well as pregnant woman might benefit from PET/MRI due to its lower ionizing radiation dose. The indication and planning of therapeutic interventions and specifically radiation therapy in individual patients could be and to a certain extent are already facilitated by performing PET/MRI. The objective of this article is to discuss potential clinical oncology indications of PET/MRI. PMID:24753986
Schaarschmidt, Benedikt Michael; Gomez, Benedikt; Buchbender, Christian; Grueneisen, Johannes; Nensa, Felix; Sawicki, Lino Morris; Ruhlmann, Verena; Wetter, Axel; Antoch, Gerald; Heusch, Philipp
2017-01-01
We aimed to investigate the accuracy of 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) compared with contrast-enhanced 18F-FDG PET/computed tomography (PET/CT) for the characterization of incidental tracer uptake in examinations of the head and neck. A retrospective analysis of 81 oncologic patients who underwent contrast-enhanced 18F-FDG PET/CT and subsequent PET/MRI was performed by two readers for incidental tracer uptake. In a consensus reading, discrepancies were resolved. Each finding was either characterized as most likely benign, most likely malignant, or indeterminate. Using all available clinical information including results from histopathologic sampling and follow-up examinations, an expert reader classified each finding as benign or malignant. McNemar's test was used to compare the performance of both imaging modalities in characterizing incidental tracer uptake. Forty-six lesions were detected by both modalities. On PET/CT, 27 lesions were classified as most likely benign, one as most likely malignant, and 18 as indeterminate; on PET/MRI, 31 lesions were classified as most likely benign, one lesion as most likely malignant, and 14 as indeterminate. Forty-three lesions were benign and one lesion was malignant according to the reference standard. In two lesions, a definite diagnosis was not possible. McNemar's test detected no differences concerning the correct classification of incidental tracer uptake between PET/CT and PET/MRI (P = 0.125). In examinations of the head and neck area, incidental tracer uptake cannot be classified more accurately by PET/MRI than by PET/CT.
Lowe, V J; Dunphy, F R; Varvares, M; Kim, H; Wittry, M; Dunphy, C H; Dunleavy, T; McDonough, E; Minster, J; Fletcher, J W; Boyd, J H
1997-12-01
[F-18]Fluorodeoxyglucose (FDG)-positron emission tomography (PET) can measure the metabolic activity of tissues; FDG-PET may be able to predict response to chemotherapy by identifying changes in tumor metabolism. Measurement of response to treatment may help improve survival in the management of advanced head and neck cancer. We evaluated this particular use of FDG-PET in patients participating in a neoadjuvant organ-preservation protocol using taxol and carboplatin and compared pathologic response after chemotherapy with changes in tumor metabolism measured by FDG-PET. Serial FDG-PET studies (n = 56) were performed in patients (n = 28) with stage III/IV head and neck cancer participating in a neoadjuvant organ-preservation protocol. The FDG-PET studies were performed before and after chemotherapy. All patients had tissue biopsies before and after chemotherapy. Patients were classified as pathologic complete response (PCR) or residual disease (RD) based on tissue biopsies. Visual analysis of PET scans was performed to identify patients with complete response by PET, and these findings were compared with pathology results. Metabolic changes were also evaluated using standardized uptake ratios (SUR) of FDG. The sensitivity and specificity of PET for residual cancer after therapy was 90% (19/21) and 83% (5/6), respectively. Two patients had initially negative biopsies and positive PET studies for persistent disease. Pathology review and rebiospy led to confirmation of the PET results in these cases, giving a sensitivity of 90% for initial tissue biopsy. In this preliminary analysis, FDG-PET was accurate in classifying response to chemotherapy in most patients. Fluorodeoxyglucose-PET may identify residual viable tumor when it is otherwise undetectable.
Treglia, Giorgio; Sadeghi, Ramin; Annunziata, Salvatore; Lococo, Filippo; Cafarotti, Stefano; Bertagna, Francesco; Prior, John O; Ceriani, Luca; Giovanella, Luca
2014-01-01
To systematically review and meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the differential diagnosis between malignant and benign pleural lesions. A comprehensive literature search of studies published through June 2013 regarding the diagnostic performance of (18)F-FDG-PET and PET/CT in the differential diagnosis of pleural lesions was carried out. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) of (18)F-FDG-PET or PET/CT in the differential diagnosis of pleural lesions on a per-patient-based analysis were calculated. The area under the summary receiver operating characteristic curve (AUC) was calculated to measure the accuracy of these methods. Subanalyses considering device used (PET or PET/CT) were performed. Sixteen studies including 745 patients were included in the systematic review. The meta-analysis of 11 selected studies provided the following results: sensitivity 95% (95% confidence interval [95%CI]: 92-97%), specificity 82% (95%CI: 76-88%), LR+ 5.3 (95%CI: 2.4-11.8), LR- 0.09 (95%CI: 0.05-0.14), DOR 74 (95%CI: 34-161). The AUC was 0.95. No significant improvement of the diagnostic accuracy considering PET/CT studies only was found. (18)F-FDG-PET and PET/CT demonstrated to be accurate diagnostic imaging methods in the differential diagnosis between malignant and benign pleural lesions; nevertheless, possible sources of false-negative and false-positive results should be kept in mind. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Aukema, T S; Rutgers, E J Th; Vogel, W V; Teertstra, H J; Oldenburg, H S; Vrancken Peeters, M T F D; Wesseling, J; Russell, N S; Valdés Olmos, R A
2010-04-01
The aim of this study was to evaluate the impact of (18)F-fluorodeoxyglucose positron-emission tomography/computed tomography (FDG PET/CT) on clinical management in patients with locoregional breast cancer recurrence amenable for locoregional treatment and to compare the PET/CT results with the conventional imaging data. From January 2006 to August 2008, all patients with locoregional breast cancer recurrence underwent whole-body PET/CT. PET/CT findings were compared with results of the conventional imaging techniques and final pathology. The impact of PET/CT results on clinical management was evaluated based on clinical decisions obtained from patient files. 56 patients were included. In 32 patients (57%) PET/CT revealed additional tumour localisations. Distant metastases were detected in 11 patients on conventional imaging and in 23 patients on PET/CT images (p < 0.01). In 25 patients (45%), PET/CT detected additional lesions not visible on conventional imaging. PET/CT had an impact on clinical management in 27 patients (48%) by detecting more extensive locoregional disease or distant metastases. In 20 patients (36%) extensive surgery was prevented and treatment was changed to palliative treatment. The sensitivity, specificity, accuracy, positive and negative predictive values of FDG PET/CT were respectively 97%, 92%, 95%, 94% and 96%. PET/CT, in addition to conventional imaging techniques, plays an important role in staging patients with locoregional breast cancer recurrence since its result changed the clinical management in almost half of the patients. PET/CT could potentially replace conventional staging imaging in patients with a locoregional breast cancer recurrence. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation
NASA Astrophysics Data System (ADS)
España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M
2009-03-01
Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.
The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis
Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M
2017-01-01
The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a “routine” PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures. PMID:29348980
The value of FDG PET/CT for follow-up of patients with melanoma: a retrospective analysis.
Vensby, Philip H; Schmidt, Grethe; Kjær, Andreas; Fischer, Barbara M
2017-01-01
The incidence of melanoma (MM) is among the fastest rising cancers in the western countries. Positron Emission Tomography with Computed Tomography (PET/CT) is a valuable non-invasive tool for the diagnosis and staging of patients with MM. However, research on the value of PET/CT in follow-up of melanoma patients is limited. This study assesses the diagnostic value of PET/CT for follow-up after melanoma surgery. This retrospective study includes patients with MM who performed at least one PET/CT scan after initial surgery and staging. PET/CT findings were compared to histology, MRI or fine needle aspiration (FNA) to estimate the diagnostic accuracy. The diagnostic performance of PET/CT performed in patients with and without a clinical suspicion of relapse was compared. 238 patients (526 scans) were included. Of the 526 scans 130 (25%) scans were PET-positive, 365 (69%) PET-negative, and 28 (5%) had equivocal findings. Sensitivity was 89% [0.82-0.94], specificity 92% [0.89-0.95], positive and negative predictive values of 78% [0.70-0.84] and 97% [0.94-0.98] respectively. When stratified for reason of referral there was no statistical significant difference in the diagnostic accuracy of PET/CT between patients referred with or without a clinical suspicion of relapse. This study demonstrates that PET/CT despite a moderate sensitivity has a high negative predictive value in the follow-up of melanoma patients. Thus, a negative PET/CT-scan essentially rules out relapse. However, the frequency of false positive findings is relatively high, especially among patients undergoing a "routine" PET/CT with no clinical suspicion of relapse, potentially causing anxiety and leading to further diagnostic procedures.
18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.
Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K
2018-03-01
18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Diagnostic Performance of 11C-choline PET/CT and FDG PET/CT in Prostate Cancer.
Kitajima, Kazuhiro; Yamamoto, Shingo; Odawara, Soichi; Kobayashi, Kaoru; Fujiwara, Masayuki; Kamikonya, Norihiko; Fukushima, Kazuhito; Nakanishi, Yukako; Hashimoto, Takahiko; Yamada, Yusuke; Suzuki, Toru; Kanematsu, Akihiro; Nojima, Michio; Yamakado, Koichiro
2018-06-01
We compared 11C-choline and FDG PET/CT scan findings for the staging and restaging of prostate cancer. Twenty Japanese prostate cancer patients underwent 11C-choline and FDG PET/CT before (n=5) or after (n=15) treatment. Using a five-point scale, we compared these scanning modalities regarding patient- and lesion-based diagnostic performance for local recurrence, untreated primary tumor, and lymph node and bony metastases. Of the 20 patients, documented local lesions, and node and bony metastases were present in 11 (55.0%), 9 (45.0%), and 13 (65.0%), respectively. The patient-based sensitivity/specificity/accuracy/area under the receiver-operating-characteristic curve (AUC) values for 11C-choline-PET/CT for diagnosing local lesions were 90.9% /100%/ 95.0% / 1.0, whereas those for FDG-PET/CT were 45.5% /100%/ 75.0% / 0.773. Those for 11C-choline-PET/CT for node metastasis were 88.9% /100%/ 95.0% / 0.944, and those for FDG-PET/CT were 44.4%/100%/75.0%/0.722. Those for 11C-choline-PET/CT for bone metastasis were 84.6%/100%/90.0%/0.951, and those for FDG-PET/CT were 76.9% /100%/ 85.0% / 0.962. The AUCs for local lesion and node metastasis differed significantly (p=0.0039, p=0.011, respectively). The lesion-based detection rates of 11C-choline compared to FDG PET/CT for local lesion, and node and bone metastases were 91.7% vs. 41.7%, 92.0% vs. 32.0%, and 94.8% vs. 83.0% (p=0.041, p=0.0030, p<0.0001), respectively. 11C-choline-PET/CT is more useful for the staging and restaging of prostate cancer than FDG-PET/CT in Japanese men.
Image-Based 2D Re-Projection for Attenuation Substitution in PET Neuroimaging.
Laymon, Charles M; Minhas, Davneet S; Becker, Carl R; Matan, Cristy; Oborski, Matthew J; Price, Julie C; Mountz, James M
2018-02-27
In dual modality positron emission tomography (PET)/magnetic resonance imaging (MRI), attenuation correction (AC) methods are continually improving. Although a new AC can sometimes be generated from existing MR data, its application requires a new reconstruction. We evaluate an approximate 2D projection method that allows offline image-based reprocessing. 2-Deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) brain scans were acquired (Siemens HR+) for six subjects. Attenuation data were obtained using the scanner's transmission source (SAC). Additional scanning was performed on a Siemens mMR including production of a Dixon-based MR AC (MRAC). The MRAC was imported to the HR+ and the PET data were reconstructed twice: once using native SAC (ground truth); once using the imported MRAC (imperfect AC). The re-projection method was implemented as follows. The MRAC PET was forward projected to approximately reproduce attenuation-corrected sinograms. The SAC and MRAC images were forward projected and converted to attenuation-correction factors (ACFs). The MRAC ACFs were removed from the MRAC PET sinograms by division; the SAC ACFs were applied by multiplication. The regenerated sinograms were reconstructed by filtered back projection to produce images (SUBAC PET) in which SAC has been substituted for MRAC. Ideally SUBAC PET should match SAC PET. Via coregistered T1 images, FreeSurfer (FS; MGH, Boston) was used to define a set of cortical gray matter regions of interest. Regional activity concentrations were extracted for SAC PET, MRAC PET, and SUBAC PET. SUBAC PET showed substantially smaller root mean square error than MRAC PET with averaged values of 1.5 % versus 8.1 %. Re-projection is a viable image-based method for the application of an alternate attenuation correction in neuroimaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dabaja, Bouthaina S., E-mail: bdabaja@mdanderson.org; Hess, Kenneth; Shihadeh, Ferial
2014-06-01
Purpose: To assess the value of mid-therapy positron emission tomography (PET) findings for predicting survival and disease progression in patients with diffuse large B-cell lymphoma, considering type of therapy (chemotherapy with or without radiation therapy). Methods and Materials: We retrospectively evaluated 294 patients with histologically confirmed diffuse large B-cell lymphoma with respect to age, sex, disease stage, International Prognostic Index score, mid-therapy PET findings (positive or negative), and disease status after therapy and at last follow-up. Overall survival (OS) and progression-free survival (PFS) were compared according to mid-therapy PET findings. Results: Of the 294 patients, 163 (55%) were male, 144more » (49%) were age >61 years, 110 (37%) had stage I or II disease, 219 (74%) had International Prognostic Index score ≤2, 216 (73%) received ≥6 cycles of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone, and 88 (30%) received consolidation radiation therapy. Five-year PFS and OS rates were associated with mid-therapy PET status: PFS was 78% for those with PET-negative (PET−) disease versus 63% for PET-positive (PET+) disease (P=.024), and OS was 82% for PET− versus 62% for PET+ (P<.002). These associations held true for patients who received chemotherapy only (PFS 71% for PET− vs 52% PET+ [P=.012], OS 78% for PET− and 51% for PET+ [P=.0055]) but not for those who received consolidation radiation therapy (PFS 84% PET− vs 81% PET+ [P=.88]; OS 90% PET− vs 81% PET+ [P=.39]). Conclusion: Mid-therapy PET can predict patient outcome, but the use of consolidation radiation therapy may negate the significance of mid-therapy findings.« less
Observation of practices at petting zoos and the potential impact on zoonotic disease transmission.
Weese, J Scott; McCarthy, Lisa; Mossop, Michael; Martin, Hayley; Lefebvre, Sandi
2007-07-01
Although petting zoos are common at public events and allow the public to interact with animals, there has been minimal evaluation of practices at petting zoos. Unannounced observation was performed at 36 petting zoos in Ontario, Canada. Observers recorded information, including physical layout, animal species, animal health, types of animal contact permitted, animal sources, hand hygiene facilities, signage, sale of food for human consumption, and hand hygiene compliance. The majority of petting zoos (24 [67%] of 36 petting zoos) were part of temporary events, particularly agricultural fairs (21 [58%] of 36 petting zoos). A variety of animal species were present, including some animals that are considered to be at particularly high risk for disease transmission (neonatal calves and baby chicks). The following items that would come into contact with the mouths of infants and children were carried into the petting zoos: baby bottles (at 17 petting zoos; 50%), pacifiers (at 24 petting zoos; 71%), spill-proofs cups (at 19 petting zoos; 56%), and infant toys (at 22 petting zoos; 65%). Hand hygiene facilities were provided at 34 (94%) of 36 events, and hand hygiene compliance ranged from 0% through 77% (mean compliance [+/-SD], 30.9%+/-22.1%; median compliance, 26.5%). Predictors for increased hand hygiene compliance included the location of a hand hygiene station on an exit route, the presence of hand hygiene reminder signs, and the availability of running water. Numerous deficiencies were encountered. Better education of petting zoo operators and the general public is needed. Provision of hand hygiene stations with running water that are placed near exits is one effective way to encourage compliance.
Real-life Experience for Integration of PET-CT in the Treatment of Hodgkin Lymphoma in Lebanon.
Sakr, Riwa; Massoud, Marcel; Kerbage, Fouad; Rached, Layale; Zeghondy, Jean; Akoury, Elie; Nasr, Fady; Chahine, Georges
2017-07-01
Hodgkin lymphoma (HL) is a highly curable disease; < 80% of patients will achieve long-term survival. Positron emission tomography-computed tomography (PET-CT) has played a major role in the evaluation of both disease staging and response and has become an essential component in tailoring patients' treatment. We report the effect of integrating PET-CT into the management of HL in Lebanon. We analyzed the data regarding the usage of PET-CT at diagnosis, during treatment (interim PET), and at the end of treatment. We also analyzed the PET-CT findings from 2009 to 2015. The first PET-CT system was introduced in Lebanon in April 2002 but was not used for the evaluation of HL. Early in 2009, we started to incorporate PET-CT into the treatment of HL. By the end of 2009, 70% of patients were undergoing PET-CT at diagnosis and at the end of treatment. This proportion remained constant until 2013, when an increase occurred, with ≤ 94% of patients undergoing PET-CT at diagnosis. The usage of CT at diagnosis decreased significantly from 70% before 2009 to 52% after 2015. In contrast, CT usage at the end of treatment has fluctuated from 10% in 2009 to 0% in 2012, 2013, and 2014 and 11.76% in 2015. Functional imaging techniques are increasing in popularity compared with anatomic imaging. The usage of PET-CT has emerged as a highly valuable staging and follow-up method in the treatment of HL 8 years after the introduction of PET in Lebanon. PET was used first to improve the staging, then to evaluate the treatment response, and, recently, to tailor therapy according to the response. Copyright © 2017 Elsevier Inc. All rights reserved.
Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roels, Sarah; Slagmolen, Pieter; Nuyts, Johan
2009-11-01
Purpose: To investigate the feasibility of integrating multiple imaging modalities for image-guided radiotherapy in rectal cancer. Patients and Methods: Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) were performed before, during, and after preoperative chemoradiotherapy (CRT) in patients with resectable rectal cancer. The FDG-PET signals were segmented with an adaptive threshold-based and a gradient-based method. Magnetic resonance tumor volumes (TVs) were manually delineated. A nonrigid registration algorithm was applied to register the images, and mismatch analyses were carried out between MR and FDG-PET TVs and between TVs over time. Tumor volumes delineated on the images after CRTmore » were compared with the pathologic TV. Results: Forty-five FDG-PET/CT and 45 MR images were analyzed from 15 patients. The mean MRI and FDG-PET TVs showed a tendency to shrink during and after CRT. In general, MRI showed larger TVs than FDG-PET. There was an approximately 50% mismatch between the FDG-PET TV and the MRI TV at baseline and during CRT. Sixty-one percent of the FDG-PET TV and 76% of the MRI TV obtained after 10 fractions of CRT remained inside the corresponding baseline TV. On MRI, residual tumor was still suspected in all 6 patients with a pathologic complete response, whereas FDG-PET showed a metabolic complete response in 3 of them. The FDG-PET TVs delineated with the gradient-based method matched closest with pathologic findings. Conclusions: Integration of MRI and FDG-PET into radiotherapy seems feasible. Gradient-based segmentation is recommended for FDG-PET. Spatial variance between MRI and FDG-PET TVs should be taken into account for target definition.« less
Selecting Safe Pets (For Parents)
... kids to wash their hands with soap and water after handling pets. Don't keep undomesticated animals as house pets. Pet ownership has many benefits, and doing a little research before taking the plunge will help make your ...
9 CFR 2.7 - Annual report by licensees.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., dealers, exhibitors, retail pet stores, and persons for use as pets, by the licensee during the preceding..., exhibitors, retail pet stores, and persons for use as pets, during the preceding business year (calendar or...
Read the Label First: Protect Your Pets
Learn about the importance of reading pet products labels before purchasing and using any product to insure the safety of your pets. Find tips for ways to reduce the changes of pets accessing potentially dangerous products.