Sample records for cleavage stimulation factor

  1. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.

    PubMed

    Wolf, Myles; White, Kenneth E

    2014-07-01

    High levels of fibroblast growth factor 23 (FGF23) cause the rare disorders of hypophosphatemic rickets and are a risk factor for cardiovascular disease and death in patients with chronic kidney disease (CKD). Despite major advances in understanding FGF23 biology, fundamental aspects of FGF23 regulation in health and in CKD remain mostly unknown. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage, but affected individuals experience a waxing and waning course of phosphate wasting. This led to the discovery that iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. Unlike osteocytes in ADHR, normal osteocytes couple increased FGF23 production with commensurately increased FGF23 cleavage to ensure that normal phosphate homeostasis is maintained in the event of iron deficiency. Simultaneous measurement of FGF23 by intact and C-terminal assays supported these breakthroughs by providing minimally invasive insight into FGF23 production and cleavage in bone. These findings also suggest a novel mechanism of FGF23 elevation in patients with CKD, who are often iron deficient and demonstrate increased FGF23 production and decreased FGF23 cleavage, consistent with an acquired state that mimics the molecular pathophysiology of ADHR. Iron deficiency stimulates FGF23 production, but normal osteocytes couple increased FGF23 production with increased cleavage to maintain normal circulating levels of biologically active hormone. These findings uncover a second level of FGF23 regulation within osteocytes, failure of which culminates in elevated levels of biologically active FGF23 in ADHR and perhaps CKD.

  2. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis

    PubMed Central

    Čabart, Pavel; Jin, Huiyan; Li, Liangtao; Kaplan, Craig D

    2014-01-01

    In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn2+ stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF. PMID:25764335

  3. Separase is recruited to mitotic chromosomes to dissolve sister chromatid cohesion in a DNA-dependent manner.

    PubMed

    Sun, Yuxiao; Kucej, Martin; Fan, Heng-Yu; Yu, Hong; Sun, Qing-Yuan; Zou, Hui

    2009-04-03

    Sister chromatid separation is triggered by the separase-catalyzed cleavage of cohesin. This process is temporally controlled by cell-cycle-dependent factors, but its biochemical mechanism and spatial regulation remain poorly understood. We report that cohesin cleavage by human separase requires DNA in a sequence-nonspecific manner. Separase binds to DNA in vitro, but its proteolytic activity, measured by its autocleavage, is not stimulated by DNA. Instead, biochemical characterizations suggest that DNA mediates cohesin cleavage by bridging the interaction between separase and cohesin. In human cells, a fraction of separase localizes to the mitotic chromosome. The importance of the chromosomal DNA in cohesin cleavage is further demonstrated by the observation that the cleavage of the chromosome-associated cohesins is sensitive to nuclease treatment. Our observations explain why chromosome-associated cohesins are specifically cleaved by separase and the soluble cohesins are left intact in anaphase.

  4. Regulation of blood vessels by prolactin and vasoinhibins.

    PubMed

    Clapp, Carmen; Thebault, Stéphanie; Macotela, Yazmín; Moreno-Carranza, Bibiana; Triebel, Jakob; Martínez de la Escalera, Gonzalo

    2015-01-01

    Prolactin (PRL) stimulates the growth of new blood vessels (angiogenesis) either directly through actions on endothelial cells or indirectly by upregulating proangiogenic factors like vascular endothelial growth factor (VEGF). Moreover, PRL acquires antiangiogenic properties after undergoing proteolytic cleavage to vasoinhibins, a family of PRL fragments (including 16 kDa PRL) with potent antiangiogenic, vasoconstrictive, and antivasopermeability effects. In view of the opposing actions of PRL and vasoinhibins, the regulation of the proteases responsible for specific PRL cleavage represents an efficient mechanism for controlling blood vessel growth and function. This review briefly describes the vascular actions of PRL and vasoinhibins, and addresses how their interplay could help drive biological effects of PRL in the context of health and disease.

  5. Efficient Cleavage of Ribosome-Associated Poly(A)-Binding Protein by Enterovirus 3C Protease

    PubMed Central

    Kuyumcu-Martinez, N. Muge; Joachims, Michelle; Lloyd, Richard E.

    2002-01-01

    Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. PMID:11836384

  6. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene.

    PubMed

    Anderson, Hope D I; Wang, Feng; Gardner, David G

    2004-03-05

    The epidermal growth factor receptor (EGFR) and ectoshedding of heparin-binding epidermal growth factor (HBEGF), an EGFR ligand, have been linked to the development of cardiac myocyte hypertrophy. However, the precise role that the liganded EGFR plays in the transcriptional activation of the gene program that accompanies hypertrophy remains undefined. Utilizing the human (h) BNP gene as a model of hypertrophy-dependent gene activation, we show that activation of the EGFR plays an important role in mediating mechanical strain-dependent stimulation of the hBNP promoter. Strain promotes endothelin (ET) generation through NAD(P)H oxidase-dependent production of reactive oxygen species. ET in turn induces metalloproteinase-mediated cleavage of pro-HBEGF and ectoshedding of HBEGF, which activates the EGFR and stimulates hBNP promoter activity. HBEGF also stimulates other phenotypic markers of hypertrophy including protein synthesis and sarcomeric assembly. The antioxidant N-acetylcysteine or the NAD(P)H oxidase inhibitor, apocynin, inhibited strain-dependent activation of the ET-1 promoter, HBEGF shedding, and hBNP promoter activation. The metalloproteinase inhibitor, GM-6001, prevented the induction of HBEGF ectoshedding and the hBNP promoter response to strain, suggesting a critical role for the metalloproteinase-dependent cleavage event in signaling the strain response. These findings suggest that metalloproteinase activity as an essential step in this pathway may prove to be a relevant therapeutic target in the management of cardiac hypertrophy.

  7. Chymase Cleavage of Stem Cell Factor Yields a Bioactive, Soluble Product

    NASA Astrophysics Data System (ADS)

    Longley, B. Jack; Tyrrell, Lynda; Ma, Yongsheng; Williams, David A.; Halaban, Ruth; Langley, Keith; Lu, Hsieng S.; Schechter, Norman M.

    1997-08-01

    Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.

  8. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    PubMed

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the microsomal reductant. Interactions between rifamycin SV, iron and NADH generating hydroxyl-radical-like species may play a role in some of the hepatotoxic effects associated with the use of this antibacterial antibiotic.

  9. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    PubMed

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  10. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    PubMed Central

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  11. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates.

    PubMed Central

    Wilusz, J; Shenk, T; Takagaki, Y; Manley, J L

    1990-01-01

    A 64-kilodalton (kDa) polypeptide that is cross-linked by UV light specifically to polyadenylation substrate RNAs containing a functional AAUAAA element has been identified previously. Fractionated HeLa nuclear components that can be combined to regenerate efficient and accurate polyadenylation in vitro have now been screened for the presence of the 64-kDa protein. None of the individual components contained an activity which could generate the 64-kDa species upon UV cross-linking in the presence of substrate RNA. It was necessary to mix two components, cleavage stimulation factor and specificity factor, to reconstitute 64-kDa protein-RNA cross-linking. The addition of cleavage factors to this mixture very efficiently reconstituted the AAUAAA-specific 64-kDa protein-RNA interaction. The 64-kDa protein, therefore, is present in highly purified, reconstituted polyadenylation reactions. However, it is necessary to form a multicomponent complex to efficiently cross-link the protein to a substrate RNA. Images PMID:2304466

  12. The A12.2 Subunit Is an Intrinsic Destabilizer of the RNA Polymerase I Elongation Complex.

    PubMed

    Appling, Francis D; Scull, Catherine E; Lucius, Aaron L; Schneider, David A

    2018-06-05

    Despite sharing a highly conserved core architecture with their prokaryotic counterparts, eukaryotic multisubunit RNA polymerases (Pols) have undergone structural divergence and biological specialization. Interesting examples of structural divergence are the A12.2 and C11 subunits of Pols I and III, respectively. Whereas all known cellular Pols possess cognate protein factors that stimulate cleavage of the nascent RNA, Pols I and III have incorporated their cleavage factors as bona fide subunits. Although it is not yet clear why these polymerases have incorporated their cleavage factors as subunits, a picture is emerging that identifies roles for these subunits beyond providing nucleolytic activity. Specifically, it appears that both A12.2 and C11 are required for efficient termination of transcription by Pols I and III. Given that termination involves destabilization of the elongation complex (EC), we tested whether A12.2 influences stability of the Pol I EC. Using, to our knowledge, a novel assay to measure EC dissociation kinetics, we have determined that A12.2 is an intrinsic destabilizer of the Pol I EC. In addition, the salt concentration dependence of Pol I EC dissociation kinetics suggests that A12.2 alters electrostatic interactions within the EC. Importantly, these data present a mechanistic basis for the requirement of A12.2 in Pol I termination. Combined with recent work demonstrating the direct involvement of A12.2 in Pol I nucleotide incorporation, this study further supports the concept that A12.2 cannot be viewed solely as a cleavage factor. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion.

    PubMed

    Magnussen, Synnove Norvoll; Hadler-Olsen, Elin; Costea, Daniela Elena; Berg, Eli; Jacobsen, Cristiane Cavalcanti; Mortensen, Bente; Salo, Tuula; Martinez-Zubiaurre, Inigo; Winberg, Jan-Olof; Uhlin-Hansen, Lars; Svineng, Gunbjorg

    2017-05-19

    Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.

  14. Cisplatin or LA-12 enhance killing effects of TRAIL in prostate cancer cells through Bid-dependent stimulation of mitochondrial apoptotic pathway but not caspase-10

    PubMed Central

    Herůdková, Jarmila; Krkoška, Martin; Tománková, Silvie; Kahounová, Zuzana; Anděra, Ladislav; Bouchal, Jan; Kharaishvili, Gvantsa; Král, Milan; Sova, Petr; Kozubík, Alois

    2017-01-01

    Searching for new strategies for effective elimination of human prostate cancer cells, we investigated the cooperative cytotoxic action of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and two platinum-based complexes, cisplatin or LA-12, and related molecular mechanisms. We demonstrated a notable ability of cisplatin or LA-12 to enhance the sensitivity of several human prostate cancer cell lines to TRAIL-induced cell death via an engagement of mitochondrial apoptotic pathway. This was accompanied by augmented Bid cleavage, Bak activation, loss of mitochondrial membrane potential, activation of caspase-8, -10, -9, and -3, and XIAP cleavage. RNAi-mediated silencing of Bid or Bak in Bax-deficient DU 145 cells suppressed the drug combination-induced cytotoxicity, further underscoring the involvement of mitochondrial signaling. The caspase-10 was dispensable for enhancement of cisplatin/LA-12 and TRAIL combination-induced cell death and stimulation of Bid cleavage. Importantly, we newly demonstrated LA-12-mediated enhancement of TRAIL-induced cell death in cancer cells derived from human patient prostate tumor specimens. Our results provide convincing evidence that employing TRAIL combined with cisplatin/LA-12 could contribute to more effective killing of prostate cancer cells compared to the individual action of the drugs, and offer new mechanistic insights into their cooperative anticancer action. PMID:29182622

  15. The transmembrane domain of the p75 neurotrophin receptor stimulates phosphorylation of the TrkB tyrosine kinase receptor.

    PubMed

    Saadipour, Khalil; MacLean, Michael; Pirkle, Sean; Ali, Solav; Lopez-Redondo, Maria-Luisa; Stokes, David L; Chao, Moses V

    2017-10-06

    The function of protein products generated from intramembraneous cleavage by the γ-secretase complex is not well defined. The γ-secretase complex is responsible for the cleavage of several transmembrane proteins, most notably the amyloid precursor protein that results in Aβ, a transmembrane (TM) peptide. Another protein that undergoes very similar γ-secretase cleavage is the p75 neurotrophin receptor. However, the fate of the cleaved p75 TM domain is unknown. p75 neurotrophin receptor is highly expressed during early neuronal development and regulates survival and process formation of neurons. Here, we report that the p75 TM can stimulate the phosphorylation of TrkB (tyrosine kinase receptor B). In vitro phosphorylation experiments indicated that a peptide representing p75 TM increases TrkB phosphorylation in a dose- and time-dependent manner. Moreover, mutagenesis analyses revealed that a valine residue at position 264 in the rat p75 neurotrophin receptor is necessary for the ability of p75 TM to induce TrkB phosphorylation. Because this residue is just before the γ-secretase cleavage site, we then investigated whether the p75(αγ) peptide, which is a product of both α- and γ-cleavage events, could also induce TrkB phosphorylation. Experiments using TM domains from other receptors, EGFR and FGFR1, failed to stimulate TrkB phosphorylation. Co-immunoprecipitation and biochemical fractionation data suggested that p75 TM stimulates TrkB phosphorylation at the cell membrane. Altogether, our results suggest that TrkB activation by p75(αγ) peptide may be enhanced in situations where the levels of the p75 receptor are increased, such as during brain injury, Alzheimer's disease, and epilepsy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Activated release of membrane-anchored TGF-alpha in the absence of cytosol

    PubMed Central

    1993-01-01

    The ectodomain of proTGF-alpha, a membrane-anchored growth factor, is converted into soluble TGF-alpha by a regulated cellular proteolytic system that recognizes proTGF-alpha via the C-terminal valine of its cytoplasmic tail. In order to define the biochemical components involved in proTGF-alpha cleavage, we have used cells permeabilized with streptolysin O (SLO) that have been extensively washed to remove cytosol. PMA, acting through a Ca(2+)-independent protein kinase C, activates cleavage as efficiently in permeabilized cells as it does in intact cells. ProTGF-alpha cleavage is also stimulated by GTP gamma S through a mechanism whose pharmacological properties suggest the involvement of a heterotrimeric G protein acting upstream of the PMA- sensitive Ca(2+)-independent protein kinase C. Activated proTGF-alpha cleavage is dependent on ATP hydrolysis, appears not to require vesicular traffic, and acts specifically on proTGF-alpha that has reached the cell surface. These results indicate that proTGF-alpha is cleaved from the cell surface by a regulated system whose signaling, recognition, and proteolytic components are retained in cells devoid of cytosol. PMID:8314849

  17. The Vps27/Hrs/STAM (VHS) Domain of the Signal-transducing Adaptor Molecule (STAM) Directs Associated Molecule with the SH3 Domain of STAM (AMSH) Specificity to Longer Ubiquitin Chains and Dictates the Position of Cleavage*

    PubMed Central

    Baiady, Nardeen; Padala, Prasanth; Mashahreh, Bayan; Cohen-Kfir, Einav; Todd, Emily A.; Du Pont, Kelly E.; Berndsen, Christopher E.; Wiener, Reuven

    2016-01-01

    The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys63-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys63-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys63-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage. PMID:26601948

  18. Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions.

    PubMed

    Strulson, Christopher A; Yennawar, Neela H; Rambo, Robert P; Bevilacqua, Philip C

    2013-11-19

    In an effort to relate RNA folding to function under cellular-like conditions, we monitored the self-cleavage reaction of the human hepatitis delta virus-like CPEB3 ribozyme in the background of physiological ionic concentrations and various crowding and cosolute agents. We found that at physiological free Mg(2+) concentrations (∼0.1-0.5 mM), both crowders and cosolutes stimulate the rate of self-cleavage, up to ∼6-fold, but that in 10 mM Mg(2+) (conditions widely used for in vitro ribozyme studies) these same additives have virtually no effect on the self-cleavage rate. We further observe a dependence of the self-cleavage rate on crowder size, wherein the level of rate stimulation is diminished for crowders larger than the size of the unfolded RNA. Monitoring effects of crowding and cosolute agents on rates in biological amounts of urea revealed additive-promoted increases at both low and high Mg(2+) concentrations, with a maximal stimulation of more than 10-fold and a rescue of the rate to its urea-free values. Small-angle X-ray scattering experiments reveal a structural basis for this stimulation in that higher-molecular weight crowding agents favor a more compact form of the ribozyme in 0.5 mM Mg(2+) that is essentially equivalent to the form under standard ribozyme conditions of 10 mM Mg(2+) without a crowder. This finding suggests that at least a portion of the rate enhancement arises from favoring the native RNA tertiary structure. We conclude that cellular-like crowding supports ribozyme reactivity by favoring a compact form of the ribozyme, but only under physiological ionic and cosolute conditions.

  19. Manduca sexta proprophenoloxidase activating proteinase-3 (PAP3) stimulates melanization by activating proPAP3, proSPHs, and proPOs

    PubMed Central

    Wang, Yang; Lu, Zhiqiang; Jiang, Haobo

    2014-01-01

    Melanization participates in various insect physiological processes including antimicrobial immune responses. Phenoloxidase (PO), a critical component of the enzyme system catalyzing melanin formation, is produced as an inactive precursor prophenoloxidase (proPO) and becomes active via specific proteolytic cleavage by proPO activating proteinase (PAP). In Manduca sexta, three PAPs can activate proPOs in the presence of two serine proteinase homologs (SPH1 and SPH2). While the hemolymph proteinases (HPs) that generate the active PAPs are known, it is unclear how the proSPHs (especially proSPH1) are activated. In this study, we isolated from plasma of bar-stage M. sexta larvae an Ile-Glu-Ala-Arg-p-nitroanilide hydrolyzing enzyme that cleaved the proSPHs. This proteinase, PAP3, generated active SPH1 and SPH2, which function as cofactors for PAP3 in proPO activation. Cleavage of the purified recombinant proSPHs by PAP3 yielded 38 kDa bands similar in mobility to the SPHs formed in vivo. Surprisingly, PAP3 also can activate proPAP3 to stimulate melanization in a direct positive feedback loop. The enhanced proPO activation concurred with the cleavage activation of proHP6, proHP8, proPAP1, proPAP3, proSPH1, proSPH2, proPOs, but not proHP14 or proHP21. These results indicate that PAP3, like PAP1, is a key factor of the self-reinforcing mechanism in the proPO activation system, which is linked to other immune responses in M. sexta. PMID:24768974

  20. Fully human antibodies against the Protease-Activated Receptor-2 (PAR-2) with anti-inflammatory activity.

    PubMed

    Giblin, Patricia; Boxhammer, Rainer; Desai, Sudha; Kroe-Barrett, Rachel; Hansen, Gale; Ksiazek, John; Panzenbeck, Maret; Ralph, Kerry; Schwartz, Racheline; Zimmitti, Clare; Pracht, Catrin; Miller, Sandra; Magram, Jeanne; Litzenburger, Tobias

    2011-01-01

    PAR-2 belongs to a family of G-protein coupled Protease-Activated Receptors (PAR) which are activated by specific proteolytic cleavage in the extracellular N-terminal region. PAR-2 is activated by proteases such as trypsin, tryptase, proteinase 3, factor VIIa, factor Xa and is thought to be a mediator of inflammation and tissue injury, where elevated levels of proteases are found. Utilizing the HuCAL GOLD® phage display library we generated fully human antibodies specifically blocking the protease cleavage site in the N-terminal domain. In vitro affinity optimization resulted in antibodies with up to 1000-fold improved affinities relative to the original parental antibodies with dissociation constants as low as 100 pM. Corresponding increases in potency were observed in a mechanistic protease cleavage assay. The antibodies effectively inhibited PAR-2 mediated intracellular calcium release and cytokine secretion in various cell types stimulated with trypsin. In addition, the antibodies demonstrated potent inhibition of trypsin induced relaxation of isolated rat aortic rings ex vivo. In a short term mouse model of inflammation, the trans vivo DTH model, anti-PAR-2 antibodies showed inhibition of the inflammatory swelling response. In summary, potent inhibitors of PAR-2 were generated which allow further assessment of the role of this receptor in inflammation and evaluation of their potential as therapeutic agents.

  1. Proteomic Analysis of Tendon Extracellular Matrix Reveals Disease Stage-specific Fragmentation and Differential Cleavage of COMP (Cartilage Oligomeric Matrix Protein)*

    PubMed Central

    Dakin, Stephanie Georgina; Smith, Roger Kenneth Whealands; Heinegård, Dick; Önnerfjord, Patrik; Khabut, Areej; Dudhia, Jayesh

    2014-01-01

    During inflammatory processes the extracellular matrix (ECM) is extensively remodeled, and many of the constituent components are released as proteolytically cleaved fragments. These degradative processes are better documented for inflammatory joint diseases than tendinopathy even though the pathogenesis has many similarities. The aims of this study were to investigate the proteomic composition of injured tendons during early and late disease stages to identify disease-specific cleavage patterns of the ECM protein cartilage oligomeric matrix protein (COMP). In addition to characterizing fragments released in naturally occurring disease, we hypothesized that stimulation of tendon explants with proinflammatory mediators in vitro would induce fragments of COMP analogous to natural disease. Therefore, normal tendon explants were stimulated with IL-1β and prostaglandin E2, and their effects on the release of COMP and its cleavage patterns were characterized. Analyses of injured tendons identified an altered proteomic composition of the ECM at all stages post injury, showing protein fragments that were specific to disease stage. IL-1β enhanced the proteolytic cleavage and release of COMP from tendon explants, whereas PGE2 had no catabolic effect. Of the cleavage fragments identified in early stage tendon disease, two fragments were generated by an IL-1-mediated mechanism. These fragments provide a platform for the development of neo-epitope assays specific to injury stage for tendon disease. PMID:24398684

  2. The removal of RNA primers from DNA synthesized by the reverse transcriptase of the retrotransposon Tf1 is stimulated by Tf1 integrase.

    PubMed

    Herzig, Eytan; Voronin, Nickolay; Hizi, Amnon

    2012-06-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process.

  3. The Removal of RNA Primers from DNA Synthesized by the Reverse Transcriptase of the Retrotransposon Tf1 Is Stimulated by Tf1 Integrase

    PubMed Central

    Herzig, Eytan; Voronin, Nickolay

    2012-01-01

    The Tf1 retrotransposon represents a group of long terminal repeat retroelements that use an RNA self-primer for initiating reverse transcription while synthesizing the minus-sense DNA strand. Tf1 reverse transcriptase (RT) was found earlier to generate the self-primer in vitro. Here, we show that this RT can remove from the synthesized cDNA the entire self-primer as well as the complete polypurine tract (PPT) sequence (serving as a second primer for cDNA synthesis). However, these primer removals, mediated by the RNase H activity of Tf1 RT, are quite inefficient. Interestingly, the integrase of Tf1 stimulated the specific Tf1 RT-directed cleavage of both the self-primer and PPT, although there was no general enhancement of the RT's RNase H activity (and the integrase by itself is devoid of any primer cleavage). The RTs of two prototype retroviruses, murine leukemia virus and human immunodeficiency virus, showed only a partial and nonspecific cleavage of both Tf1-associated primers with no stimulation by Tf1 integrase. Mutagenesis of Tf1 integrase revealed that the complete Tf1 integrase protein (excluding its chromodomain) is required for stimulating the Tf1 RT primer removal activity. Nonetheless, a double mutant integrase that has lost its integration functions can still stimulate the RT's activity, though heat-inactivated integrase cannot enhance primer removals. These findings suggest that the enzymatic activity of Tf1 integrase is not essential for stimulating the RT-mediated primer removal, while the proper folding of this protein is obligatory for this function. These results highlight possible new functions of Tf1 integrase in the retrotransposon's reverse transcription process. PMID:22491446

  4. Inhibition of the hammerhead ribozyme by neomycin.

    PubMed Central

    Stage, T K; Hertel, K J; Uhlenbeck, O C

    1995-01-01

    A series of antibiotics was tested for stimulation or inhibition of the hammerhead ribozyme cleavage reaction. Neomycin was found to be a potent inhibitor of the reaction with a Kl of 13.5 microM. Two hammerheads with well-characterized kinetics were used to determine which steps in the reaction mechanism were inhibited by neomycin. The data suggest that neomycin interacts preferentially with the enzyme-substrate complex and that this interaction leads to a reduction in the cleavage rate by stabilizing the ground state of the complex and destabilizing the transition state of the cleavage step. A comparison of neomycin with other aminoglycosides and inhibitors of hammerhead cleavage implies that the ammonium ions of neomycin are important for the antibiotic-hammerhead interaction. PMID:7489494

  5. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ye-Ji; Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul; Lee, Seung-Hae

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0more » increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.« less

  6. Polycystin-1 Surface Localization Is Stimulated by Polycystin-2 and Cleavage at the G Protein-coupled Receptor Proteolytic Site

    PubMed Central

    Chapin, Hannah C.; Rajendran, Vanathy

    2010-01-01

    Polycystin (PC)1 and PC2 are membrane proteins implicated in autosomal dominant polycystic kidney disease. A physiologically relevant cleavage at PC1's G protein-coupled receptor proteolytic site (GPS) occurs early in the secretory pathway. Our results suggest that PC2 increases both PC1 GPS cleavage and PC1's appearance at the plasma membrane. Mutations that prevent PC1's GPS cleavage prevent its plasma membrane localization. PC2 is a member of the trp family of cation channels and is an important PC1 binding partner. The effect of PC2 on PC1 localization is independent of PC2 channel activity, as tested using channel-inhibiting PC2 mutations. PC1 and PC2 can interact through their C-terminal tails, but removing the C-terminal tail of either protein has no effect on PC1 surface localization in human embryonic kidney 293 cells. Experiments in polarized LLC-PK cells show that apical and ciliary PC1 localization requires PC2 and that this delivery is sensitive to PC2 truncation. In sum, our work shows that PC2 expression is required for the movement of PC1 to the plasma and ciliary membranes. In fibroblast cells this localization effect is independent of PC2's channel activity or PC1 binding ability but involves a stimulation of PC1's GPS cleavage before the PC1 protein's surface delivery. PMID:20980620

  7. Angiotensin-converting enzyme 2 ectodomain shedding cleavage-site identification: determinants and constraints.

    PubMed

    Lai, Zon W; Hanchapola, Iresha; Steer, David L; Smith, A Ian

    2011-06-14

    ADAM17, also known as tumor necrosis factor α-converting enzyme, is involved in the ectodomain shedding of many integral membrane proteins. We have previously reported that ADAM17 is able to mediate the cleavage secretion of the ectodomain of human angiotensin-converting enzyme 2 (ACE2), a functional receptor for the severe acute respiratory syndrome coronavirus. In this study, we demonstrate that purified recombinant human ADAM17 is able to cleave a 20-amino acid peptide mimetic corresponding to the extracellular juxtamembrane region of human ACE2 between Arg(708) and Ser(709). A series of peptide analogues were also synthesized, showing that glutamate subtitution at Arg(708) and/or Arg(710) attenuated the cleavage process, while alanine substitution at Arg(708) and/or Ser(709) did not inhibit peptide cleavage by recombinant ADAM17. Analysis of CD spectra showed a minimal difference in the secondary structure of the peptide analogues in the buffer system used for the ADAM17 cleavage assay. The observation of the shedding profiles of ACE2 mutants expressing CHO-K1 and CHO-P cells indicates that the Arg(708) → Glu(708) mutation and the Arg(708)Arg(710) → Glu(708)Glu(710) double mutation produced increases in the amount of ACE2 shed when stimulated by phorbol ester PMA. In summary, we have demonstrated that ADAM17 is able to cleave ACE2 peptide sequence analogues between Arg(708) and Ser(709). These findings also indicate that Arg(708) and Arg(710) play a role in site recognition in the regulation of ACE2 ectodomain shedding mediated by ADAM17.

  8. Proteolytic cleavage and PKA phosphorylation of α1C subunit are not required for adrenergic regulation of CaV1.2 in the heart.

    PubMed

    Katchman, Alexander; Yang, Lin; Zakharov, Sergey I; Kushner, Jared; Abrams, Jeffrey; Chen, Bi-Xing; Liu, Guoxia; Pitt, Geoffrey S; Colecraft, Henry M; Marx, Steven O

    2017-08-22

    Calcium influx through the voltage-dependent L-type calcium channel (Ca V 1.2) rapidly increases in the heart during "fight or flight" through activation of the β-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of β-adrenergic activation of cardiac Ca V 1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α 1C and C-terminal proteolytic cleavage of the α 1C subunit. We generated transgenic mice expressing an α 1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for β-adrenergic regulation of Ca V 1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute β-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α 1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α 1C Prevention of C-terminal cleavage did not alter β-adrenergic stimulation of Ca V 1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α 1C in β-adrenergic stimulation of Ca V 1.2, and show that phosphoregulatory sites on α 1C are not redundant and do not each fractionally contribute to the net stimulatory effect of β-adrenergic stimulation. Further, proteolytic cleavage of α 1C is not required for β-adrenergic stimulation of Ca V 1.2.

  9. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.

    PubMed

    Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter

    2004-02-11

    In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.

  10. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase

    PubMed Central

    Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter

    2004-01-01

    In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity. PMID:14749727

  11. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

    PubMed

    Chen, Xinli; Liu, Lisha; Jiang, Chen

    2016-07-01

    Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

  12. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    PubMed Central

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  13. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    PubMed Central

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  14. Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain-cleavage enzyme, P450scc [corrected], in human steroidogenic tissues.

    PubMed Central

    Voutilainen, R; Miller, W L

    1987-01-01

    Insulin-like growth factors (IGFs) are single-chain polypeptides important for cell proliferation and growth. IGFs are produced in several tissues, suggesting that they function in a paracrine or autocrine fashion as well as functioning as endocrine hormones. We studied the hormonal regulation of IGF-I and IGF-II mRNA in human steroidogenic tissues. In cultured human ovarian granulosa cells, follicle-stimulating hormone, human chorionic gonadotropin, and dibutyryl cAMP increased IGF-II mRNA, but corticotropin [adrenocorticotropic hormone (ACTH)], chorionic somatomammotropin, growth hormone, prolactin, dexamethasone, estradiol, and progesterone had no effect. In cultured human fetal adrenal cells, ACTH and dibutyryl cAMP increased IGF-II mRNA accumulation, but human chorionic gonadotropin and angiotensin II did not. The same five size species of IGF-II mRNA were detected in transfer blots of RNA from granulosa cells and fetal adrenal cells, and all of these increased after hormonal stimuli. Dibutyryl cAMP also increased IGF-II mRNA accumulation in cultured human placental cells. Accumulation of mRNA for the cholesterol side-chain-cleavage monooxygenase [P450scc [corrected]; cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving), EC 1.14.15.6] was regulated in parallel with IGF-II mRNA in all these steroidogenic tissues. IGF-I mRNA was not detected in transfer blots of these RNAs, and the minimal amounts detected in dot blots showed no detectable change after any of the hormonal stimuli studied. The data indicate that the IGF-II gene is expressed in human steroidogenic tissues and is regulated by cAMP. These data suggest that IGF-II may act in an autocrine or paracrine fashion to stimulate the adrenal and gonadal growth stimulated by ACTH and gonadotropins, respectively. Images PMID:3031644

  15. Molecular cloning of rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha and its effect on the respiratory burst activity of phagocytes.

    PubMed

    Kim, Min Sun; Hwang, Yoon Jung; Yoon, Ki Joon; Zenke, Kosuke; Nam, Yoon Kwon; Kim, Sung Koo; Kim, Ki Hong

    2009-11-01

    Rock bream (Oplegnathus fasciatus) tumor necrosis factor-alpha (rbTNF-alpha) gene was cloned, recombinantly produced, and the effect of the recombinant rbTNF-alpha on the respiratory burst activity of rock bream phagocytes was analyzed. Structurally, genomic DNA of rbTNF-alpha was comprised with four exons and three introns, and deduced amino acid sequence of its cDNA possessed the TNF family signature, a transmembrane domain, a protease cleavage site, and two cysteine residues, which are the typical characteristics of TNF-alpha gene in mammals and fish. The chemiluminescent (CL) response of rock bream phagocytes was significantly enhanced by pre-incubation with recombinant rbTNF-alpha, when opsonized zymosan was used as a stimulant of the respiratory burst. However, CL enhancing effect of the recombinant rbTNF-alpha was very weak when the respiratory burst activity of phagocytes was triggered with phorbol-12-myristate-13-acetate (PMA) instead of zymosan. These results suggest that rock bream TNF-alpha might have an ability to prime the respiratory burst activity of phagocytes against receptor-mediated phagocytosis inducing stimulants, such as zymosan, but have little ability against stimulants not accompanying receptor-mediated phagocytosis.

  16. α-Synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson's disease.

    PubMed

    Kang, Seong Su; Ahn, Eun Hee; Zhang, Zhentao; Liu, Xia; Manfredsson, Fredric P; Sandoval, Ivette M; Dhakal, Susov; Iuvone, P Michael; Cao, Xuebing; Ye, Keqiang

    2018-06-15

    Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with abnormal dopamine metabolism by MAO-B (monoamine oxidase-B) and intracellular α-Synuclein (α-Syn) aggregates, called the Lewy body. However, the molecular relationship between α-Syn and MAO-B remains unclear. Here, we show that α-Syn directly binds to MAO-B and stimulates its enzymatic activity, which triggers AEP (asparagine endopeptidase; legumain) activation and subsequent α-Syn cleavage at N103, leading to dopaminergic neurodegeneration. Interestingly, the dopamine metabolite, DOPAL, strongly activates AEP, and the N103 fragment of α-Syn binds and activates MAO-B. Accordingly, overexpression of AEP in SNCA transgenic mice elicits α-Syn N103 cleavage and accelerates PD pathogenesis, and inhibition of MAO-B by Rasagiline diminishes α-Syn-mediated PD pathology and motor dysfunction. Moreover, virally mediated expression of α-Syn N103 induces PD pathogenesis in wild-type, but not MAO-B-null mice. Our findings thus support that AEP-mediated cleavage of α-Syn at N103 is required for the association and activation of MAO-B, mediating PD pathogenesis. © 2018 The Authors.

  17. Nicked-site substrates for a serine recombinase reveal enzyme-DNA communications and an essential tethering role of covalent enzyme-DNA linkages.

    PubMed

    Olorunniji, Femi J; McPherson, Arlene L; Pavlou, Hania J; McIlwraith, Michael J; Brazier, John A; Cosstick, Richard; Stark, W Marshall

    2015-07-13

    To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase-DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    PubMed

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Interaction of TIF-90 and filamin A in the regulation of rRNA synthesis in leukemic cells.

    PubMed

    Nguyen, Le Xuan Truong; Chan, Steven M; Ngo, Tri Duc; Raval, Aparna; Kim, Kyeong Kyu; Majeti, Ravindra; Mitchell, Beverly S

    2014-07-24

    The transcription initiation factor I (TIF-IA) is an important regulator of the synthesis of ribosomal RNA (rRNA) through its facilitation of the recruitment of RNA polymerase I (Pol I) to the ribosomal DNA promoter. Activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, which occurs commonly in acute myelogenous leukemia, enhances rRNA synthesis through TIF-IA stabilization and phosphorylation. We have discovered that TIF-IA coexists with a splicing isoform, TIF-90, which is expressed preferentially in the nucleolus and at higher levels in proliferating and transformed hematopoietic cells. TIF-90 interacts directly with Pol I to increase rRNA synthesis as a consequence of Akt activation. Furthermore, TIF-90 binds preferentially to a 90-kDa cleavage product of the actin binding protein filamin A (FLNA) that inhibits rRNA synthesis. Increased expression of TIF-90 overcomes the inhibitory effect of this cleavage product and stimulates rRNA synthesis. Because activated Akt also reduces FLNA cleavage, these results indicate that activated Akt and TIF-90 function in parallel to increase rRNA synthesis and, as a consequence, cell proliferation in leukemic cells. These results provide evidence that the direct targeting of Akt would be an effective therapy in acute leukemias in which Akt is activated. © 2014 by The American Society of Hematology.

  20. IGF-1 receptor cleavage in hypertension.

    PubMed

    Cirrik, Selma; Schmid-Schönbein, Geert W

    2018-06-01

    Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.

  1. Cleavage of Poly(A)-Binding Protein by Enterovirus Proteases Concurrent with Inhibition of Translation In Vitro

    PubMed Central

    Joachims, Michelle; Van Breugel, Pieter C.; Lloyd, Richard E.

    1999-01-01

    Many enteroviruses, members of the family Picornaviridae, cause a rapid and drastic inhibition of host cell protein synthesis during infection, a process referred to as host cell shutoff. Poliovirus, one of the best-studied enteroviruses, causes marked inhibition of host cell translation while preferentially allowing translation of its own genomic mRNA. An abundance of experimental evidence has accumulated to indicate that cleavage of an essential translation initiation factor, eIF4G, during infection is responsible at least in part for this shutoff. However, evidence from inhibitors of viral replication suggests that an additional event is necessary for the complete translational shutoff observed during productive infection. This report examines the effect of poliovirus infection on a recently characterized 3′ end translational stimulatory protein, poly(A)-binding protein (PABP). PABP is involved in stimulating translation initiation in lower eukaryotes by its interaction with the poly(A) tail on mRNAs and has been proposed to facilitate 5′-end–3′-end interactions in the context of the closed-loop translational model. Here, we show that PABP is specifically degraded during poliovirus infection and that it is cleaved in vitro by both poliovirus 2A and 3C proteases and coxsackievirus B3 2A protease. Further, PABP cleavage by 2A protease is accompanied by concurrent loss of translational activity in an in vitro-translation assay. Similar loss of translational activity also occurs simultaneously with partial 3C protease-mediated cleavage of PABP in translation assays. Further, PABP is not degraded during infections in the presence of guanidine-HCl, which blocks the complete development of host translation shutoff. These results provide preliminary evidence that cleavage of PABP may contribute to inhibition of host translation in infected HeLa cells, and they are consistent with the hypothesis that PABP plays a role in facilitating translation initiation in higher eukaryotes. PMID:9847378

  2. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    PubMed

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  3. Programmable RNA recognition and cleavage by CRISPR/Cas9

    PubMed Central

    O’Connell, Mitchell R.; Oakes, Benjamin L.; Sternberg, Samuel H.; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A.

    2014-01-01

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA:DNA complementarity to identify target sites for sequence-specific doublestranded DNA (dsDNA) cleavage1-5. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, the protospacer adjacent motif (PAM), next to and on the strand opposite the 20-nucleotide target site in dsDNA4-7. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in many cell types and organisms8, but it has been thought to be incapable of targeting RNA5. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalyzed DNA cleavage7. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous mRNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable and tagless transcript recognition. PMID:25274302

  4. Antiapoptotic effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant in H9c2 rat cardiomyocytes.

    PubMed

    Chung, Hee Kyoung; Ko, Eun Mi; Kim, Sung Woo; Byun, Sung-June; Chung, Hak-Jae; Kwon, Moosik; Lee, Hwi-Cheul; Yang, Byoung-Chul; Han, Deug-Woo; Park, Jin-Ki; Hong, Sung-Gu; Chang, Won-Kyong; Kim, Kyung-Woon

    2012-12-01

    Granulocyte colony-stimulating factor (G-CSF) is used for heart failure therapy and promotes myocardial regeneration by inducing mobilization of bone marrow stem cells to the injured heart after myocardial infarction; however, this treatment has one weakness in that its biological effect is transient. In our previous report, we generated 5 mutants harboring N-linked glycosylation to improve its antiapoptotic activities. Among them, one mutant (Phe140Asn) had higher cell viability than wild-type hG-CSF in rat cardiomyocytes, even after treatment with an apoptotic agent (H2O2). Cells treated with this mutant significantly upregulated the antiapoptotic proteins, and experienced reductions in caspase 3 activity and PARP cleavage. Moreover, the total number of apoptotic cells was dramatically lower in cultures treated with mutant hG-CSF. Taken together, these results suggest that the addition of an N-linked glycosylation was successful in improving the antiapoptotic activity of hG-CSF, and that this mutated product will be a feasible therapy for patients who have experienced heart failure.

  5. Matrix metalloproteinase-1 facilitates MSC migration via cleavage of IGF-2/IGFBP2 complex.

    PubMed

    Guan, Shou P; Lam, Alan T L; Newman, Jennifer P; Chua, Kevin L M; Kok, Catherine Y L; Chong, Siao T; Chua, Melvin L K; Lam, Paula Y P

    2018-01-01

    The specific mechanism underlying the tumor tropism of human mesenchymal stem cells (MSCs) for cancer is not well defined. We previously showed that the migration potential of MSCs correlated with the expression and protease activity of matrix metalloproteinase (MMP)-1. Furthermore, highly tumor-tropic MSCs expressed higher levels of MMP-1 and insulin-like growth factor (IGF)-2 than poorly migrating MSCs. In this study, we examined the functional roles of IGF-2 and MMP-1 in mediating the tumor tropism of MSCs. Exogenous addition of either recombinant IGF-2 or MMP-1 could stimulate MSC migration. The correlation between IGF-2, MMP-1 expression, and MSC migration suggests that MMP-1 may play a role in regulating MSC migration via the IGF-2 signaling cascade. High concentrations of IGF binding proteins (IGFBPs) can inhibit IGF-stimulated functions by blocking its binding to its receptors and proteolysis of IGFBP is an important mechanism for the regulation of IGF signaling. We thus hypothesized that MMP-1 acts as an IGFBP2 proteinase, resulting in the cleavage of IGF-2/IGFBP2 complex and extracellular release of free IGF-2. Indeed, our results showed that conditioned media from highly migrating MSCs, which expressed high levels of MMP-1, cleaved the IGF-2/IGFBP2 complex. Taken together, these results showed that the MMP-1 secreted by highly tumor-tropic MSCs cleaved IGF-2/IGFBP2 complex. Free IGF-2 released from the complex may facilitate MSC migration toward tumor.

  6. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases.

    PubMed

    Abraham, R T; Acquarone, M; Andersen, A; Asensi, A; Bellé, R; Berger, F; Bergounioux, C; Brunn, G; Buquet-Fagot, C; Fagot, D

    1995-01-01

    Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1/S and the G2/M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.

  7. Pharmacokinetic variability of long-acting stimulants in the treatment of children and adults with attention-deficit hyperactivity disorder.

    PubMed

    Ermer, James C; Adeyi, Ben A; Pucci, Michael L

    2010-12-01

    Methylphenidate- and amfetamine-based stimulants are first-line pharmacotherapies for attention-deficit hyperactivity disorder, a common neurobehavioural disorder in children and adults. A number of long-acting stimulant formulations have been developed with the aim of providing once-daily dosing, employing various means to extend duration of action, including a transdermal delivery system, an osmotic-release oral system, capsules with a mixture of immediate- and delayed-release beads, and prodrug technology. Coefficients of variance of pharmacokinetic measures can estimate the levels of pharmacokinetic variability based on the measurable variance between different individuals receiving the same dose of stimulant (interindividual variability) and within the same individual over multiple administrations (intraindividual variability). Differences in formulation clearly impact pharmacokinetic profiles. Many medications exhibit wide interindividual variability in clinical response. Stimulants with low levels of inter- and intraindividual variability may be better suited to provide consistent levels of medication to patients. The pharmacokinetic profile of stimulants using pH-dependent bead technology can vary depending on food consumption or concomitant administration of medications that alter gastric pH. While delivery of methylphenidate with the transdermal delivery system would be unaffected by gastrointestinal factors, intersubject variability is nonetheless substantial. Unlike the beaded formulations and, to some extent (when considering total exposure) the osmotic-release formulation, systemic exposure to amfetamine with the prodrug stimulant lisdexamfetamine dimesylate appears largely unaffected by such factors, likely owing to its dependence on systemic enzymatic cleavage of the precursor molecule, which occurs primarily in the blood involving red blood cells. The high capacity but as yet unidentified enzymatic system for conversion of lisdexamfetamine dimesylate may contribute to its consistent pharmacokinetic profile. The reasons underlying observed differential responses to stimulants are likely to be multifactorial, including pharmacodynamic factors. While the use of stimulants with low inter- and intrapatient pharmacokinetic variability does not obviate the need to titrate stimulant doses, stimulants with low intraindividual variation in pharmacokinetic parameters may reduce the likelihood of patients falling into subtherapeutic drug concentrations or reaching drug concentrations at which the risk of adverse events increases. As such, clinicians are urged both to adjust stimulant doses based on therapeutic response and the risk for adverse events and to monitor patients for potential causes of pharmacokinetic variability.

  8. Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

    PubMed Central

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook

    2014-01-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410

  9. PrP(C) homodimerization stimulates the production of PrPC cleaved fragments PrPN1 and PrPC1.

    PubMed

    Béland, Maxime; Motard, Julie; Barbarin, Alice; Roucou, Xavier

    2012-09-19

    An endoproteolytic cleavage termed α-cleavage between residues 111/112 is a characteristic feature of the cellular prion protein (PrP(C)). This cleavage generates a soluble N-terminal fragment (PrPN1) and a glycosylphosphatidylinositol-anchored C-terminal fragment (PrPC1). Independent studies demonstrate that modulating PrP(C) α-cleavage represents a potential therapeutic strategy in prion diseases. The regulation of PrP(C) α-cleavage is unclear. The only known domain that is essential for the α-cleavage to occur is a hydrophobic domain (HD). Importantly, the HD is also essential for the formation of PrP(C) homodimers. To explore the role of PrP(C) homodimerization on the α-cleavage, we used a well described inducible dimerization strategy whereby a chimeric PrP(C) composed of a modified FK506-binding protein (Fv) fused with PrP(C) and termed Fv-PrP is incubated in the presence of a dimerizer AP20187 ligand. We show that homodimerization leads to a considerable increase of PrP(C) α-cleavage in cultured cells and release of PrPN1 and PrPC1. Interestingly, enforced homodimerization increased PrP(C) levels at the plasma membrane, and preventing PrP(C) trafficking to the cell surface inhibited dimerization-induced α-cleavage. These observations were confirmed in primary hippocampal neurons from transgenic mice expressing Fv-PrP. The proteases responsible for the α-cleavage are still elusive, and in contrast to initial studies we confirm more recent investigations that neither ADAM10 nor ADAM17 are involved. Importantly, PrPN1 produced after PrP(C) homodimerization protects against toxic amyloid-β (Aβ) oligomers. Thus, our results show that PrP(C) homodimerization is an important regulator of PrP(C) α-cleavage and may represent a potential therapeutic avenue against Aβ toxicity in Alzheimer's disease.

  10. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies

    PubMed Central

    Morshed, S. A.; Davies, T. F.

    2016-01-01

    The immunologic processes involved in Graves' disease (GD) have one unique characteristic – the autoantibodies to the TSH receptor (TSHR) – which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called “neutral” antibodies and which we now characterize as autoantibodies to the “cleavage” region of the TSHR ectodomain. PMID:26361259

  11. SWI/SNF interacts with cleavage and polyadenylation factors and facilitates pre-mRNA 3' end processing.

    PubMed

    Yu, Simei; Jordán-Pla, Antonio; Gañez-Zapater, Antoni; Jain, Shruti; Rolicka, Anna; Östlund Farrants, Ann-Kristin; Visa, Neus

    2018-05-31

    SWI/SNF complexes associate with genes and regulate transcription by altering the chromatin at the promoter. It has recently been shown that these complexes play a role in pre-mRNA processing by associating at alternative splice sites. Here, we show that SWI/SNF complexes are involved also in pre-mRNA 3' end maturation by facilitating 3' end cleavage of specific pre-mRNAs. Comparative proteomics show that SWI/SNF ATPases interact physically with subunits of the cleavage and polyadenylation complexes in fly and human cells. In Drosophila melanogaster, the SWI/SNF ATPase Brahma (dBRM) interacts with the CPSF6 subunit of cleavage factor I. We have investigated the function of dBRM in 3' end formation in S2 cells by RNA interference, single-gene analysis and RNA sequencing. Our data show that dBRM facilitates pre-mRNA cleavage in two different ways: by promoting the association of CPSF6 to the cleavage region and by stabilizing positioned nucleosomes downstream of the cleavage site. These findings show that SWI/SNF complexes play a role also in the cleavage of specific pre-mRNAs in animal cells.

  12. Evidence of a novel aggrecan-degrading activity in cartilage: Studies of mice deficient in both ADAMTS-4 and ADAMTS-5.

    PubMed

    Rogerson, Fraser M; Stanton, Heather; East, Charlotte J; Golub, Suzanne B; Tutolo, Leonie; Farmer, Pamela J; Fosang, Amanda J

    2008-06-01

    To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.

  13. Activation of histamine H4 receptor inhibits TNFα/IMD-0354-induced apoptosis in human salivary NS-SV-AC cells.

    PubMed

    Stegajev, Vasili; Kouri, Vesa-Petteri; Salem, Abdelhakim; Rozov, Stanislav; Stark, Holger; Nordström, Dan C E; Konttinen, Yrjö T

    2014-12-01

    Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10. Expression and internalization of H₄R were studied by immunofluorescence staining ± clathrin inhibitor methyl-β-cyclodextrin (MβCD). Apoptosis induced using tumor necrosis factor-α with nuclear factor-κB inhibitor IMD-0354 was studied using phase contrast microscopy, Western blot, flow cytometry and polymerase chain reaction (qRT-PCR). HST-10-stimulated H₄R internalization was inhibited by MβCD. Western blotting revealed diminished phosphorylated c-Jun N-terminal kinase JNK, but unchanged levels of phosphorylated extracellular signal regulated kinase pERK1/2 in H₄R-stimulated samples compared to controls. qRT-PCR showed up-regulated expression of anti-apoptotic B cell lymphoma-extra large/Bcl-xL mRNAs and proteins, whereas pro-apoptotic Bcl-2-associated X protein/BAX remained unchanged in H4R-stimulated samples. H₄R stimulation diminished cleavage of PARP and flow cytometry showed significant dose-dependent inhibitory effect of H₄R stimulation on apoptosis. As far as we know this is the first study showing inhibitory effect of H₄R activation on apoptosis of human salivary gland cells. Diminished H₄R-mediated activation may contribute to loss of immune tolerance in autoimmune diseases and in SS in particular.

  14. Characterization of MUDENG, a novel anti-apoptotic protein

    PubMed Central

    Choi, J-H; Lim, J-B; Wickramanayake, D D; Wagley, Y; Kim, J; Lee, H-C; Seo, H G; Kim, T-H; Oh, J-W

    2016-01-01

    MUDENG (Mu-2-related death-inducing gene, MuD) is revealed to be involved in cell death signaling. Astrocytes, the major glial cell type in the central nervous system, are a source of brain tumors. In this study, we examined MuD expression and function in human astroglioma cells. Stimulation of U251-MG cells with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resulted in a 40% decrease in cell viability and a 33% decrease in MuD protein levels, although not in MuD mRNA levels. To study the functional relevance of MuD expression, stable transfectants expressing high levels of MuD were generated. Stimulation of these transfectants with TRAIL resulted in enhanced cell survival (77% for stable and 46% for control transfectants). Depletion of MuD led to a marked reduction upon TRAIL stimulation in cell viability (22% in MuD-depleted cells and 54% in control cells). In addition, we observed that MuD depletion increased the susceptibility of the cells to TRAIL by enhancing the cleavage of caspase-3/-9 and BH3-interacting domain death agonist (Bid). A unique 25-kDa fragment of B-cell lymphoma 2 (Bcl-2) lacking BH4 was observed 60–180 min post TRAIL treatment in MuD-depleted cells, suggesting that Bcl-2 is converted from its anti-apoptotic form to the truncated pro-apoptotic form. Importantly, the TRAIL-mediated decrease in cell viability in MuD-depleted cells was abrogated upon Bid depletion, indicating that the role of MuD in apoptotic signaling takes place at the Bid and Bcl-2 junction. MuD localizes predominantly in the endoplasmic reticulum and partly in the mitochondria and its amounts are reduced 6 h post TRAIL stimulation, presumably via caspase-3-mediated MuD cleavage. Collectively, these results suggest that MuD, a novel signaling protein, not only possesses an anti-apoptotic function but may also constitute an important target for the design of ideal candidates for combinatorial treatment strategies for glioma cells. PMID:27136675

  15. Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced Rho signaling

    PubMed Central

    Gabet, A-S; Coulon, S; Fricot, A; Vandekerckhove, J; Chang, Y; Ribeil, J-A; Lordier, L; Zermati, Y; Asnafi, V; Belaid, Z; Debili, N; Vainchenker, W; Varet, B; Hermine, O; Courtois, G

    2011-01-01

    Stem cell factor (SCF) and erythropoietin are strictly required for preventing apoptosis and stimulating proliferation, allowing the differentiation of erythroid precursors from colony-forming unit-E to the polychromatophilic stage. In contrast, terminal maturation to generate reticulocytes occurs independently of cytokine signaling by a mechanism not fully understood. Terminal differentiation is characterized by a sequence of morphological changes including a progressive decrease in cell size, chromatin condensation in the nucleus and disappearance of organelles, which requires transient caspase activation. These events are followed by nucleus extrusion as a consequence of plasma membrane and cytoskeleton reorganization. Here, we show that in early step, SCF stimulates the Rho/ROCK pathway until the basophilic stage. Thereafter, ROCK-1 is activated independently of Rho signaling by caspase-3-mediated cleavage, allowing terminal maturation at least in part through phosphorylation of the light chain of myosin II. Therefore, in this differentiation system, final maturation occurs independently of SCF signaling through caspase-induced ROCK-1 kinase activation. PMID:21072057

  16. Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.

    PubMed

    Weber, U; Beier, H; Gross, H J

    1996-06-15

    The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.

  17. Post-translational processing of progastrin: inhibition of cleavage, phosphorylation and sulphation by brefeldin A.

    PubMed Central

    Varro, A; Dockray, G J

    1993-01-01

    The precursor for the acid-stimulating hormone gastrin provides a useful model for studies of post-translational processing because defined sites of cleavage, amidation, sulphation and phosphorylation occur within a dodecapeptide sequence. The factors determining these post-translational processing events are still poorly understood. We have used brefeldin A, which disrupts transport from rough endoplasmic reticulum to the Golgi complex, to examine the mechanisms of cleavage, phosphorylation and sulphation of rat progastrin-derived peptides. Biosynthetic products were detected after immunoprecipitation using antibodies specific for the extreme C-terminus of progastrin, followed by reversed-phase and ion-exchange h.p.l.c. Gastrin cells incorporated [3H]tyrosine, [32P]phosphate and [35S]sulphate into both progastrin and its extreme C-terminal tryptic (nona-) peptide. Ion-exchange chromatography resolved four forms of the C-terminal tryptic fragment of progastrin which differed in whether they were phosphorylated at Ser96, sulphated at Tyr103, both or neither. The specific activity of [3H]tyrosine in the peak that was both phosphorylated and sulphated was higher than in the others. Brefeldin A inhibited the appearance of [3H]tyrosine-labelled C-terminal tryptic fragment but there was an accumulation of labelled progastrin and a peptide corresponding to the C-terminal 46 residues of progastrin. Brefeldin A also inhibited incorporation of 32P and 35S into both progastrin and its C-terminal fragment. Thus phosphorylation of Ser96, sulphation of Tyr103 and cleavage at Arg94-Arg95 depend on passage of newly synthesized progastrin along the secretory pathway; as brefeldin A is thought to act proximal to the trans-Golgi, these processing steps would appear to occur distal to this point. The data also indicate that the stores of unphosphorylated C-terminal tryptic fragment are not available for phosphorylation, implying that this modification occurs proximal to the secretory granule; cleavage is known to occur in the secretory granule which suggests that it occurs after phosphorylation. Images Figure 1 PMID:8240296

  18. The roles of SSU processome components and surveillance factors in the initial processing of human ribosomal RNA

    PubMed Central

    Sloan, Katherine E.; Bohnsack, Markus T.; Schneider, Claudia; Watkins, Nicholas J.

    2014-01-01

    During eukaryotic ribosome biogenesis, three of the mature ribosomal (r)RNAs are released from a single precursor transcript (pre-rRNA) by an ordered series of endonucleolytic cleavages and exonucleolytic processing steps. Production of the 18S rRNA requires the removal of the 5′ external transcribed spacer (5′ETS) by endonucleolytic cleavages at sites A0 and A1/site 1. In metazoans, an additional cleavage in the 5′ETS, at site A′, upstream of A0, has also been reported. Here, we have investigated how A′ processing is coordinated with assembly of the early preribosomal complex. We find that only the tUTP (UTP-A) complex is critical for A′ cleavage, while components of the bUTP (UTP-B) and U3 snoRNP are important, but not essential, for efficient processing at this site. All other factors involved in the early stages of 18S rRNA processing that were tested here function downstream from this processing step. Interestingly, we show that the RNA surveillance factors XRN2 and MTR4 are also involved in A′ cleavage in humans. A′ cleavage is largely bypassed when XRN2 is depleted, and we also discover that A′ cleavage is not always the initial processing event in all cell types. Together, our data suggest that A′ cleavage is not a prerequisite for downstream pre-rRNA processing steps and may, in fact, represent a quality control step for initial pre-rRNA transcripts. Furthermore, we show that components of the RNA surveillance machinery, including the exosome and TRAMP complexes, also play key roles in the recycling of excised spacer fragments and degradation of aberrant pre-rRNAs in human cells. PMID:24550520

  19. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning

    PubMed Central

    Odell, Garrett M.; Foe, Victoria E.

    2008-01-01

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457–470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation. PMID:18955556

  20. An agent-based model contrasts opposite effects of dynamic and stable microtubules on cleavage furrow positioning.

    PubMed

    Odell, Garrett M; Foe, Victoria E

    2008-11-03

    From experiments by Foe and von Dassow (Foe, V.E., and G. von Dassow. 2008. J. Cell Biol. 183:457-470) and others, we infer a molecular mechanism for positioning the cleavage furrow during cytokinesis. Computer simulations reveal how this mechanism depends on quantitative motor-behavior details and explore how robustly this mechanism succeeds across a range of cell sizes. The mechanism involves the MKLP1 (kinesin-6) component of centralspindlin binding to and walking along microtubules to stimulate cortical contractility where the centralspindlin complex concentrates. The majority of astral microtubules are dynamically unstable. They bind most MKLP1 and suppress cortical Rho/myosin II activation because the tips of unstable microtubules usually depolymerize before MKLP1s reach the cortex. A subset of astral microtubules stabilizes during anaphase, becoming effective rails along which MKLP1 can actually reach the cortex. Because stabilized microtubules aim statistically at the equatorial spindle midplane, that is where centralspindlin accumulates to stimulate furrow formation.

  1. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly.

    PubMed Central

    Ryner, L C; Takagaki, Y; Manley, J L

    1989-01-01

    To investigate the role of sequences lying downstream of the conserved AAUAAA hexanucleotide in pre-mRNA cleavage and polyadenylation, deletions or substitutions were constructed in polyadenylation signals from simian virus 40 and adenovirus, and their effects were assayed in both crude and fractionated HeLa cell nuclear extracts. As expected, these sequences influenced the efficiency of both cleavage and polyadenylation as well as the accuracy of the cleavage reaction. Sequences near or upstream of the actual site of poly(A) addition appeared to specify a unique cleavage site, since their deletion resulted, in some cases, in heterogeneous cleavage. Furthermore, the sequences that allowed the simian virus 40 late pre-RNA to be cleaved preferentially by partially purified cleavage activity were also those at the cleavage site itself. Interestingly, sequences downstream of the cleavage site interacted with factors not directly involved in catalyzing cleavage and polyadenylation, since the effects of deletions were substantially diminished when partially purified components were used in assays. In addition, these sequences contained elements that could affect 3'-end formation both positively and negatively. Images PMID:2566911

  2. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding

    PubMed Central

    Gilad, Yoav; Pritchard, Jonathan K.; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede. PMID:26406244

  3. msCentipede: Modeling Heterogeneity across Genomic Sites and Replicates Improves Accuracy in the Inference of Transcription Factor Binding.

    PubMed

    Raj, Anil; Shim, Heejung; Gilad, Yoav; Pritchard, Jonathan K; Stephens, Matthew

    2015-01-01

    Understanding global gene regulation depends critically on accurate annotation of regulatory elements that are functional in a given cell type. CENTIPEDE, a powerful, probabilistic framework for identifying transcription factor binding sites from tissue-specific DNase I cleavage patterns and genomic sequence content, leverages the hypersensitivity of factor-bound chromatin and the information in the DNase I spatial cleavage profile characteristic of each DNA binding protein to accurately infer functional factor binding sites. However, the model for the spatial profile in this framework fails to account for the substantial variation in the DNase I cleavage profiles across different binding sites. Neither does it account for variation in the profiles at the same binding site across multiple replicate DNase I experiments, which are increasingly available. In this work, we introduce new methods, based on multi-scale models for inhomogeneous Poisson processes, to account for such variation in DNase I cleavage patterns both within and across binding sites. These models account for the spatial structure in the heterogeneity in DNase I cleavage patterns for each factor. Using DNase-seq measurements assayed in a lymphoblastoid cell line, we demonstrate the improved performance of this model for several transcription factors by comparing against the Chip-seq peaks for those factors. Finally, we explore the effects of DNase I sequence bias on inference of factor binding using a simple extension to our framework that allows for a more flexible background model. The proposed model can also be easily applied to paired-end ATAC-seq and DNase-seq data. msCentipede, a Python implementation of our algorithm, is available at http://rajanil.github.io/msCentipede.

  4. Oligomerization-Dependent Regulation of Motility and Morphogenesis by the Collagen Xviii Nc1/Endostatin Domain

    PubMed Central

    Kuo, Calvin J.; LaMontagne, Kenneth R.; Garcia-Cardeña, Guillermo; Ackley, Brian D.; Kalman, Daniel; Park, Susan; Christofferson, Rolf; Kamihara, Junne; Ding, Yuan-Hua; Lo, Kin-Ming; Gillies, Stephen; Folkman, Judah; Mulligan, Richard C.; Javaherian, Kashi

    2001-01-01

    Collagen XVIII (c18) is a triple helical endothelial/epithelial basement membrane protein whose noncollagenous (NC)1 region trimerizes a COOH-terminal endostatin (ES) domain conserved in vertebrates, Caenorhabditis elegans and Drosophila. Here, the c18 NC1 domain functioned as a motility-inducing factor regulating the extracellular matrix (ECM)-dependent morphogenesis of endothelial and other cell types. This motogenic activity required ES domain oligomerization, was dependent on rac, cdc42, and mitogen-activated protein kinase, and exhibited functional distinction from the archetypal motogenic scatter factors hepatocyte growth factor and macrophage stimulatory protein. The motility-inducing and mitogen-activated protein kinase–stimulating activities of c18 NC1 were blocked by its physiologic cleavage product ES monomer, consistent with a proteolysis-dependent negative feedback mechanism. These data indicate that the collagen XVIII NC1 region encodes a motogen strictly requiring ES domain oligomerization and suggest a previously unsuspected mechanism for ECM regulation of motility and morphogenesis. PMID:11257123

  5. GPR3 Stimulates Aβ Production via Interactions with APP and β-Arrestin2

    PubMed Central

    Nelson, Christopher D.; Sheng, Morgan

    2013-01-01

    The orphan G protein-coupled receptor (GPCR) GPR3 enhances the processing of Amyloid Precursor Protein (APP) to the neurotoxic beta-amyloid (Aβ) peptide via incompletely understood mechanisms. Through overexpression and shRNA knockdown experiments in HEK293 cells, we show that β-arrestin2 (βarr2), a GPCR-interacting scaffold protein reported to bind γ-secretase, is an essential factor for GPR3-stimulated Aβ production. For a panel of GPR3 receptor mutants, the degree of stimulation of Aβ production correlates with receptor-β-arrestin binding and receptor trafficking to endocytic vesicles. However, GPR3’s recruitment of βarr2 cannot be the sole explanation, because interaction with βarr2 is common to most GPCRs, whereas GPR3 is relatively unique among GPCRs in enhancing Aβ production. In addition to β-arrestin, APP is present in a complex with GPR3 and stimulation of Aβ production by GPR3 mutants correlates with their level of APP binding. Importantly, among a broader selection of GPCRs, only GPR3 and prostaglandin E receptor 2 subtype EP2 (PTGER2; another GPCR that increases Aβ production) interact with APP, and PTGER2 does so in an agonist-stimulated manner. These data indicate that a subset of GPCRs, including GPR3 and PTGER2, can associate with APP when internalized via βarr2, and thereby promote the cleavage of APP to generate Aβ. PMID:24069330

  6. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    PubMed

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  7. GARP is regulated by miRNAs and controls latent TGF-β1 production by human regulatory T cells.

    PubMed

    Gauthy, Emilie; Cuende, Julia; Stockis, Julie; Huygens, Caroline; Lethé, Bernard; Collet, Jean-François; Bommer, Guido; Coulie, Pierre G; Lucas, Sophie

    2013-01-01

    GARP is a transmembrane protein present on stimulated human regulatory T lymphocytes (Tregs), but not on other T lymphocytes (Th cells). It presents the latent form of TGF-β1 on the Treg surface. We report here that GARP favors the cleavage of the pro-TGF-β1 precursor and increases the amount of secreted latent TGF-β1. Stimulated Tregs, which naturally express GARP, and Th cells transfected with GARP secrete a previously unknown form of latent TGF-β1 that is disulfide-linked to GARP. These GARP/TGF-β1 complexes are possibly shed from the T cell surface. Secretion of GARP/TGF-β1 complexes was not observed with transfected 293 cells and may thus be restricted to the T cell lineage. We conclude that in stimulated human Tregs, GARP not only displays latent TGF-β1 at the cell surface, but also increases its secretion by forming soluble disulfide-linked complexes. Moreover, we identified six microRNAs (miRNAs) that are expressed at lower levels in Treg than in Th clones and that target a short region of the GARP 3' UTR. In transfected Th cells, the presence of this region decreased GARP levels, cleavage of pro-TGF-β1, and secretion of latent TGF-β1.

  8. Effect of a Histone Deacetylases Inhibitor of IL-18 and TNF-Alpha Secretion in Vitro.

    PubMed

    Dobreva, Zlatka Georgieva; Grigorov, Boncho Grigorov; Stanilova, Spaska Angelova

    2018-02-15

    Interleukin-18 (IL-18) and Tumor Necrosis Factor-alpha (TNF-α) are proinflammatory cytokines that increased the development of Th1 immune response, but have a different type of regulation of the gene expression. Whereas TNF-α has an inducible expression, IL-18 is translated as an inactive protein and required proteolytic cleavage by Casp-1 in inflammasome complexes. To investigate the effect of the histone deacetylases inhibitor Suberoylanilide Hydroxamic Acid (SAHA) on the gene expression and secretion of both cytokines, IL-18 and TNF-α, according to their contribution to the cancer development and anticancer immunity. Isolated peripheral blood mononuclear cells (PBMC) were stimulated with LPS and C3bgp with or without SAHA. Cytokine production was assessed by ELISA at 6 and 24h. IL-18 and TNF-α secretion was significantly increased at 6h and 24h in response to stimulation. TNF-α production from stimulated PBMC was downregulated by SAHA at 6 and 24h. Treatment with SAHA does not inhibit the secretion of IL-18 significantly either at 6 or 24h of stimulation. The inhibition of histone deacetylases by SAHA does not influence the inflammasome-dependent production of immunologically active IL-18. In contrast, the production of proinflammatory TNF-α in cultures was mediated by the activity of HDAC class I and class II enzymes.

  9. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits

    USDA-ARS?s Scientific Manuscript database

    Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...

  10. The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration

    PubMed Central

    Mathavan, Ketan; Khedgikar, Vikram; Bartolo, Vanessa

    2017-01-01

    During development, a multi-potent group of cells known as the cranial neural crest (CNC) migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3) is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors. PMID:29190819

  11. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qingyong, E-mail: li_qingyong@126.com; Zhang, Li; Zu, Yuangang

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actionsmore » in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.« less

  12. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity

    PubMed Central

    Wood, Jeremy P.; Silveira, Jay R.; Maille, Nicole M.; Haynes, Laura M.

    2011-01-01

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca2+-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC50 = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin. PMID:21131592

  13. Prothrombin activation on the activated platelet surface optimizes expression of procoagulant activity.

    PubMed

    Wood, Jeremy P; Silveira, Jay R; Maille, Nicole M; Haynes, Laura M; Tracy, Paula B

    2011-02-03

    Effective hemostasis relies on the timely formation of α-thrombin via prothrombinase, a Ca(2+)-dependent complex of factors Va and Xa assembled on the activated platelet surface, which cleaves prothrombin at Arg271 and Arg320. Whereas initial cleavage at Arg271 generates the inactive intermediate prethrombin-2, initial cleavage at Arg320 generates the enzymatically active intermediate meizothrombin. To determine which of these intermediates is formed when prothrombin is processed on the activated platelet surface, the cleavage of prothrombin, and prothrombin mutants lacking either one of the cleavage sites, was monitored on the surface of either thrombin- or collagen-activated platelets. Regardless of the agonist used, prothrombin was initially cleaved at Arg271 generating prethrombin-2, with α-thrombin formation quickly after via cleavage at Arg320. The pathway used was independent of the source of factor Va (plasma- or platelet-derived) and was unaffected by soluble components of the platelet releasate. When both cleavage sites are presented within the same substrate molecule, Arg271 effectively competes against Arg320 (with an apparent IC(50) = 0.3μM), such that more than 90% to 95% of the initial cleavage occurs at Arg271. We hypothesize that use of the prethrombin-2 pathway serves to optimize the procoagulant activity expressed by activated platelets, by limiting the anticoagulant functions of the alternate intermediate, meizothrombin.

  14. Crack stability and branching at interfaces

    NASA Astrophysics Data System (ADS)

    Thomson, Robb

    1995-11-01

    The various events that occur at a crack on an interface are explored, and described in terms of a simple graphical construction called the crack stability diagram. For simple Griffith cleavage in a homogeneous material, the stability diagram is a sector of a circle in the space of stress intensity factors, KI/KII. The Griffith circle is limited in both positive and negative KII directions by nonblunting dislocation emission on the cleavage plane. For a branching plane inclined at an angle to the original cleavage plane, both cleavage and emission (which blunts the crack) can be described as a balance between an elastic driving force and a lattice resistance for the event. We use an analytic expression obtained by Cotterell and Rice for cleavage, and show that it is an excellent approximation, but show that the lattice resistance includes a cornering resistance, in addition to the standard surface energy in the final cleavage criterion. Our discussion of the lattaice resistance is derived from simulations in two-dimensional hexagonal lattices with UBER force laws with a variety of shapes. Both branching cleavage and blunting emission can be described in terms of a stability diagram in the space of the remote stress intensity factors, and the competition between events on the initial cleavage plane and those on the branching plane can be described by overlays of the two appropriate stability diagrams. The popular criterion that kII=0 on the branching plane is explored for lattices and found to fail significantly, because the lattice stabilizes cleavage by the anisotropy of the surface energy. Also, in the lattice, dislocation emission must must always be considered as an alternative competing event to branching.

  15. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    PubMed Central

    Wang, Lihong; Liu, Liping; Shi, Yan; Cao, Hanwei; Chaturvedi, Rupesh; Calcutt, M. Wade; Hu, Tianhui; Ren, Xiubao; Wilson, Keith T.; Polk, D. Brent; Yan, Fang

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth. PMID:22574158

  16. Testosterone stimulates progesterone production and STAR, P450 cholesterol side-chain cleavage and LH receptor mRNAs expression in hen (Gallus domesticus) granulosa cells.

    PubMed

    Rangel, P L; Rodríguez, A; Rojas, S; Sharp, P J; Gutierrez, C G

    2009-12-01

    The chicken ovary is organized into a hierarchy of yellow yolky follicles that ovulate on successive days. Active or passive immunization of laying hens against testosterone blocks ovulation without affecting follicle development. Testosterone may play a role in pre-ovulatory follicle maturation by stimulating granulosa progesterone production. We assessed whether this stimulus is dose-related and depends on the maturity of the donor follicle, and if it does so by stimulating granulosa cell STAR, P450 cholesterol side-chain cleavage (P450scc), and LH receptor (LHCGR) mRNAs expression. Progesterone production by granulosa cells from F1, F3, and F4 follicles, cultured for 3 h without testosterone was greater in cells collected 11-14 h than 1-4 h after ovulation. These differences in progesterone production were less pronounced after granulosa cells had been cultured for 24 h. Culture of granulosa cells for 3 or 24 h with testosterone (1-100 ng/ml) stimulated progesterone production in cells collected from F4, F3, or F1 follicles 1-4, or 11-14 h after ovulation. Testosterone (0-4000 ng/ml) alone or in combination with LH (0-100 ng/ml) increased progesterone production by F1 granulosa cells, collected 1-4 and 11-14 h after ovulation and cultured for 3 h. Finally, testosterone (10 or 100 ng/ml) increased STAR, P450scc, and LHCGR mRNAs, when added to 3 h cultures of F1 granulosa cells. In conclusion, testosterone stimulates granulosa cell progesterone production in hen pre-ovulatory hierarchical follicles irrespective of maturational state, acting alone or additively with LH. We propose that testosterone promotes granulosa cell maturation to facilitate the pre-ovulatory release of LH.

  17. Splicing stimulates siRNA formation at Drosophila DNA double-strand breaks

    PubMed Central

    Merk, Karin; Breinig, Marco; Böttcher, Romy; Krebs, Stefan; Blum, Helmut; Boutros, Michael

    2017-01-01

    DNA double-strand breaks trigger the production of locus-derived siRNAs in fruit flies, human cells and plants. At least in flies, their biogenesis depends on active transcription running towards the break. Since siRNAs derive from a double-stranded RNA precursor, a major question is how broken DNA ends can generate matching sense and antisense transcripts. We performed a genome-wide RNAi-screen in cultured Drosophila cells, which revealed that in addition to DNA repair factors, many spliceosome components are required for efficient siRNA generation. We validated this observation through site-specific DNA cleavage with CRISPR-cas9 followed by deep sequencing of small RNAs. DNA breaks in intron-less genes or upstream of a gene’s first intron did not efficiently trigger siRNA production. When DNA double-strand breaks were induced downstream of an intron, however, this led to robust siRNA generation. Furthermore, a downstream break slowed down splicing of the upstream intron and a detailed analysis of siRNA coverage at the targeted locus revealed that unspliced pre-mRNA contributes the sense strand to the siRNA precursor. Since splicing factors are stimulating the response but unspliced transcripts are entering the siRNA biogenesis, the spliceosome is apparently stalled in a pre-catalytic state and serves as a signaling hub. We conclude that convergent transcription at DNA breaks is stimulated by a splicing dependent control process. The resulting double-stranded RNA is converted into siRNAs that instruct the degradation of cognate mRNAs. In addition to a potential role in DNA repair, the break-induced transcription may thus be a means to cull improper RNAs from the transcriptome of Drosophila melanogaster. Since the splicing factors identified in our screen also stimulated siRNA production from high copy transgenes, it is possible that this surveillance mechanism serves in genome defense beyond DNA double-strand breaks. PMID:28628606

  18. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    PubMed

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    PubMed

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice

    PubMed Central

    Gerard-O'Riley, Rita L.; Acton, Dena; McQueen, Amie K.; Strobel, Isabel E.; Witcher, Phillip C.; Feng, Jian Q.; Econs, Michael J.

    2017-01-01

    Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression. PMID:28005411

  1. A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice.

    PubMed

    Ichikawa, Shoji; Gerard-O'Riley, Rita L; Acton, Dena; McQueen, Amie K; Strobel, Isabel E; Witcher, Phillip C; Feng, Jian Q; Econs, Michael J

    2017-03-01

    Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression. Copyright © 2017 by the Endocrine Society.

  2. Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*

    PubMed Central

    Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.

    2009-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093

  3. Obesity adversely impacts the number and maturity of oocytes in conventional IVF not in minimal stimulation IVF.

    PubMed

    Zhang, John J; Feret, Maciej; Chang, Lyndon; Yang, Mingxue; Merhi, Zaher

    2015-05-01

    The objective of this study was to assess the relationship between BMI and oocyte number and maturity in participants who underwent minimal stimulation (mini-) or conventional IVF. Participants who underwent their first autologous cycle of either conventional (n = 219) or mini-IVF (n = 220) were divided according to their BMI to analyze IVF outcome parameters. The main outcome measure was the number of oocytes in metaphase II (MII). Secondary outcomes included the number of total oocytes retrieved, fertilized (2PN) oocytes, cleavage and blastocyst stage embryos, clinical pregnancy (CP), and live birth (LB) rates. In conventional IVF, but not in mini-IVF, the number of total oocytes retrieved (14.5  ±  0.8 versus 8.8  ±  1.3) and MII oocytes (11.2 ± 0.7 versus 7.1 ± 1.1) were significantly lower in obese compared with normal BMI women. Multivariable linear regression adjusting for age, day 3 FSH, days of stimulation, and total gonadotropin dose demonstrated that BMI was an independent predictor of the number of MII oocytes in conventional IVF (p = 0.0004). Additionally, only in conventional IVF, BMI was negatively correlated with the total number of 2PN oocytes, as well as the number of cleavage stage embryos. Female adiposity might impair oocyte number and maturity in conventional IVF but not in mini-IVF. These data suggest that mild ovarian stimulation might yield healthier oocytes in obese women.

  4. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coseno,M.; Martin, G.; Berger, C.

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present heremore » the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.« less

  5. Crystal structure of the 25 kDa subunit of human cleavage factor Im

    PubMed Central

    Coseno, Molly; Martin, Georges; Berger, Christopher; Gilmartin, Gregory; Keller, Walter; Doublié, Sylvie

    2008-01-01

    Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing. PMID:18445629

  6. DNA strand scission induced by adriamycin and aclacinomycin A.

    PubMed

    Someya, A; Tanaka, N

    1979-08-01

    The binding of adriamycin and aclacinomycin A with PM2 DNA, and the consequent cleavage of DNA have been demonstrated by agarose gel electrophoresis, using an ethidium bromide assay. Adriamycin was observed to induce a single strand scission of DNA in the presence of a reducing agent, but aclacinomycin A caused much less degree of DNA breaks. The DNA cleavage was enhanced by Cu2+ and Fe2+, but not significantly by Ni2+, Zn2+, Mg2+ and Ca2+, suggesting that reduction and auto-oxidation of the quinone moiety and H2O2 production participate in the DNA-cutting effect. The DNA degradation was dependent upon concentrations of the anthracyclines and CuCl2. The degree of DNA cleavage at 0.04 mM adriamycin was similar to that at 0.4 mM aclacinomycin A in the presence of 1 mM NADPH and 0.4 mM CuCl2. DNA was degraded to small fragments at 0.4 mM adriamycin and 0.2 mM CuCl2. The anthracycline-induced DNA cleavage was stimulated by H2O2, but partially inhibited by potassium iodide, superoxide dismutase, catalase and nitrogen gas atmosphere. The results suggested that both free radical of anthracycline quinones and hydroxyl radical directly react with DNA strands.

  7. Promotion of human early embryonic development and blastocyst outgrowth in vitro using autocrine/paracrine growth factors.

    PubMed

    Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W

    2012-01-01

    Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.

  8. Targeting of a chlamydial protease impedes intracellular bacterial growth.

    PubMed

    Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar

    2011-09-01

    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.

  9. Proline Oxidase (POX) as A Target for Cancer Therapy.

    PubMed

    Kononczuk, Joanna; Czyzewska, Urszula; Moczydlowska, Joanna; Surażyński, Arkadiusz; Palka, Jerzy; Miltyk, Wojciech

    2015-01-01

    Proline dehydrogenase/proline oxidase (PRODH/POX) is an enzyme catalyzing the first step of proline degradation, during which ROS and/or ATP is generated. POX is widely distributed in living organisms and is responsible for a number of regulatory processes such as redox homeostasis, osmotic adaptation, cell signaling and oxidative stress. Recent data provided evidence that POX plays an important role in carcinogenesis and tumor growth. POX may induce apoptosis in both intrinsic and extrinsic way. Due to ROS generation, POX may induce caspase-9 activity, which mediates mitochondrial apoptosis (intrinsic apoptosis pathway). POX can also stimulate TRAIL (tumor necrosis factorrelated apoptosis inducing ligand) and DR5 (death receptor 5) expression, resulting in cleavage of procaspase-8 and thus extrinsic apoptotic pathway. However, this tumor suppressor in certain environmental conditions may act as a prosurvival factor. Genotoxic, inflammatory and metabolic stress may switch POX from tumor growth inhibiting to tumor growth supporting factor. The potential mechanisms which may regulate switching of POX mode are discussed in this review.

  10. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development.

    PubMed

    Conover, Cheryl A; Bale, Laurie K; Overgaard, Michael T; Johnstone, Edward W; Laursen, Ulla H; Füchtbauer, Ernst-Martin; Oxvig, Claus; van Deursen, Jan

    2004-03-01

    Pregnancy-associated plasma protein A (PAPPA) is a metzincin superfamily metalloproteinase in the insulin-like growth factor (IGF) system. PAPPA increases IGF bioavailability and mitogenic effectiveness in vitro through regulated cleavage of IGF-binding protein 4 (IGFBP4). To determine its function in vivo, we generated PAPPA-null mice by gene targeting. Mice homozygous for targeted disruption of the PAPPA gene were viable but 60% the size of wild-type littermates at birth. The impact of the mutation was exerted during the early embryonic period prior to organogenesis, resulting in proportional dwarfism. PAPPA, IGF2 and IGFBP4 transcripts co-localized in wild-type embryos, and expression of IGF2 and IGFBP4 mRNA was not altered in PAPPA-deficient embryos. However, IGFBP4 proteolytic activity was completely lacking in fibroblasts derived from PAPPA-deficient embryos, and IGFBP4 effectively inhibited IGF-stimulated mitogenesis in these cells. These results provide the first direct evidence that PAPPA is an essential growth regulatory factor in vivo, and suggest a novel mechanism for regulated IGF bioavailability during early fetal development.

  11. Membrane-bound transcription factors: regulated release by RIP or RUP.

    PubMed

    Hoppe, T; Rape, M; Jentsch, S

    2001-06-01

    Regulated nuclear transport of transcription factors from cytoplasmic pools is a major route by which eukaryotes control gene expression. Exquisite examples are transcription factors that are kept in a dormant state in the cytosol by membrane anchors; such proteins are released from membranes by proteolytic cleavage, which enables these transcription factors to enter the nucleus. Cleavage can be mediated either by regulated intramembrane proteolysis (RIP) catalysed by specific membrane-bound proteases or by regulated ubiquitin/proteasome-dependent processing (RUP). In both cases processing can be controlled by cues that originate at or in the vicinity of the membrane.

  12. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C’-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease,more » Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins.« less

  13. FAP finds FGF21 easy to digest.

    PubMed

    Gillum, Matthew P; Potthoff, Matthew J

    2016-05-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates carbohydrate and lipid metabolism. In humans, circulating FGF21 is inactivated by proteolytic cleavage of its C-terminus, thereby preventing signalling through a receptor complex. The mechanism for this cleavage event and the factors contributing to the post-translational regulation of FGF21 activity has previously been unknown. In a recent issue of the Biochemical Journal, Zhen et al. have identified fibroblast activation protein (FAP) as the endopeptidase responsible for this site-specific cleavage of human FGF21 (hFGF21), and propose that inhibition of FAP may be a therapeutic strategy to increase endogenous levels of active FGF21. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Autotransporter structure reveals intra-barrel cleavage followed by conformational changes.

    PubMed

    Barnard, Travis J; Dautin, Nathalie; Lukacik, Petra; Bernstein, Harris D; Buchanan, Susan K

    2007-12-01

    Autotransporters are virulence factors produced by Gram-negative bacteria. They consist of two domains, an N-terminal 'passenger' domain and a C-terminal beta-domain. beta-domains form beta-barrel structures in the outer membrane while passenger domains are translocated into the extracellular space. In some autotransporters, the two domains are separated by proteolytic cleavage. Using X-ray crystallography, we solved the 2.7-A structure of the post-cleavage state of the beta-domain of EspP, an autotransporter produced by Escherichia coli strain O157:H7. The structure consists of a 12-stranded beta-barrel with the passenger domain-beta-domain cleavage junction located inside the barrel pore, approximately midway between the extracellular and periplasmic surfaces of the outer membrane. The structure reveals an unprecedented intra-barrel cleavage mechanism and suggests that two conformational changes occur in the beta-domain after cleavage, one conferring increased stability on the beta-domain and another restricting access to the barrel pore.

  15. Somatic cell nuclear transfer using transported in vitro-matured oocytes in cynomolgus monkey.

    PubMed

    Chen, N; Liow, S-L; Abdullah, R Bin; Embong, W Khadijah Wan; Yip, W-Y; Tan, L-G; Tong, G-Q; Ng, S-C

    2007-02-01

    Somatic cell nuclear transfer (SCNT) is not successful so far in non-human primates. The objective of this study was to investigate the effects of stimulation cycles (first and repeat) on oocyte retrieval and in vitro maturation (IVM) and to evaluate the effects of stimulation cycles and donor cell type (cumulus and fetal skin fibroblasts) on efficiency of SCNT with transported IVM oocytes. In this study, 369 immature oocytes were collected laparoscopically at 24 h following human chorionic gonadotrophin (hCG) treatment from 12 cynomolgus macaque (Macaca fascicularis) in 24 stimulation cycles, and shipped in pre-equilibrated IVM medium for a 5 h journey, placed in a dry portable incubator (37 degrees C) without CO(2) supplement. A total of 70.6% (247/350) of immature oocytes reached metaphase II (MII) stage at 36 h after hCG administration, MII spindle could be seen clearly in 80.6% (104/129) of matured IVM oocytes under polarized microscopy. A total of 50.0% (37/74) of reconstructive SCNT embryos cleaved after activation; after cleavage, 37.8% (14/37) developed to the 8-cell stage and 8.1% (3/37) developed to morula, but unfortunately none developed to the blastocyst stage. Many more oocytes could be retrieved per cycle from monkeys in the first cycle than in repeated cycles (19.1 vs. 11.7, p < 0.05). There were no significant differences in the maturation rate (70.0 vs. 71.4%, p > 0.05) and MII spindle rate under polarized microscopy (76.4 vs. 86.0%, p > 0.05) between the first and repeat cycles. There were also no significant differences in the cleavage rate, and the 4-cell, 8-cell and morula development rate of SCNT embryos between the first and repeat cycles. When fibroblast cells and cumulus cells were used as the donor cells for SCNT, first cleavage rate was not significantly different, but 4-cell (50.0 vs. 88.9%, p < 0.05) and 8-cell (0 vs. 51.9%, p < 0.01) development rate were significantly lower for the former. In conclusion, the number of stimulation cycles has a significant effect on oocyte retrieval, but has no effect on maturation and SCNT embryo development; however, different donor cell types (cumulus and fibroblast) resulted in different developmental potentials of SCNT embryos.

  16. Neutral Porphyrin Derivative Exerts Anticancer Activity by Targeting Cellular Topoisomerase I (Top1) and Promotes Apoptotic Cell Death without Stabilizing Top1-DNA Cleavage Complexes

    PubMed Central

    2017-01-01

    Camptothecin (CPT) selectively traps topoisomerase 1-DNA cleavable complexes (Top1cc) to promote anticancer activity. Here, we report the design and synthesis of a new class of neutral porphyrin derivative 5,10-bis(4-carboxyphenyl)-15, 20-bis(4-dimethylaminophenyl)porphyrin (compound 8) as a potent catalytic inhibitor of human Top1. In contrast to CPT, compound 8 reversibly binds with the free enzyme and inhibits the formation of Top1cc and promotes reversal of the preformed Top1cc with CPT. Compound 8 induced inhibition of Top1cc formation in live cells was substantiated by fluorescence recovery after photobleaching (FRAP) assays. We established that MCF7 cells treated with compound 8 trigger proteasome-mediated Top1 degradation, accumulate higher levels of reactive oxygen species (ROS), PARP1 cleavage, oxidative DNA fragmentation, and stimulate apoptotic cell death without stabilizing apoptotic Top1-DNA cleavage complexes. Finally, compound 8 shows anticancer activity by targeting cellular Top1 and preventing the enzyme from directly participating in the apoptotic process. PMID:29290109

  17. 3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7

    PubMed Central

    Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo

    2015-01-01

    ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321

  18. Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.

    PubMed

    Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung

    2017-08-16

    Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.

  19. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm

    PubMed Central

    Gaur, Shailly; Mandelbaum, Max; Herold, Mona; Majumdar, Himani Datta; Neilson, Karen M.; Maynard, Thomas M.; Mood, Kathy; Daar, Ira O.; Moody, Sally A.

    2016-01-01

    The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activity is required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologues of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. PMID:27092474

  20. BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence.

    PubMed Central

    Vitkute, J; Maneliene, Z; Petrusyte, M; Janulaitis, A

    1997-01-01

    Bcg I and Bcg I-like restriction endonucleases cleave double stranded DNA specifically on both sides of their asymmetric recognition sequences which are interrupted by several ambiguous base pairs. Their heterosubunit structure, bifunctionality and stimulation by AdoMet make them different from other classified restriction enzymes. Here we report on a new Bcg I-like restriction endonuclease, Bpl I from Bacillus pumilus , which in contrast to all other Bcg I-like enzymes, recognizes a symmetric interrupted sequence, and which, like Bcg I, cleaves double stranded DNA upstream and downstream of its recognition sequence (8/13)GAGN5CTC(13/8). Like Bcg I, Bpl I is a bifunctional enzyme revealing both DNA cleavage and methyltransferase activities. There are two polypeptides in the homogeneous preparation of Bpl I with molecular masses of approximately 74 and 37 kDa. The sizes of the Bpl I subunits are close to those of Bcg I, but the proportion 1:1 in the final preparation is different from that of 2:1 in Bcg I. Low activity observed with Mg2+increases >100-fold in the presence of AdoMet. Even with AdoMet though, specific cleavage is incomplete. S -adenosylhomocysteine (AdoHcy) or sinefungin can replace AdoMet in the cleavage reaction. AdoHcy activated Bpl I yields complete cleavage of DNA. PMID:9358150

  1. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase.

    PubMed

    McComb, Scott; Shutinoski, Bojan; Thurston, Susan; Cessford, Erin; Kumar, Kriti; Sad, Subash

    2014-06-15

    It has recently been shown that programmed necrosis, necroptosis, may play a key role in the development of inflammation. Deciphering the regulation of this pathway within immune cells may therefore have implications in pathology associated with inflammatory diseases. We show that treatment of macrophages with the pan caspase inhibitor (zVAD-FMK) results in both increased phosphorylation and decreased cleavage of receptor interacting protein kinase-1 (Rip1), leading to necroptosis that is dependent on autocrine TNF signaling. Stimulation of cells with TLR agonists such as LPS in the presence of zVAD-FMK also induced Rip1-phosphorylation via a TNFR-independent mechanism. Further examination of Rip1 expression under these stimulatory conditions revealed a regulatory cleavage of Rip1 in macrophages that is not apparently attributable to caspase-8. Instead, we provide novel evidence that cysteine family cathepsins, which are highly abundant in myeloid cells, can also cleave Rip1 kinase. Using small interfering RNA knockdown, specific cathepsin inhibitors, and cell-free cleavage assays, we demonstrate that cysteine cathepsins B and S can directly cleave Rip1. Finally, we demonstrate that only through combined inhibition of cathepsins and caspase-8 could a potent induction of macrophage necroptosis be achieved. These data reveal a novel mechanism of regulation of necroptosis by cathepsins within macrophage cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  2. Lipopolysaccharides-stimulated macrophage products enhance Withaferin A-induced apoptosis via activation of caspases and inhibition of NF-κB pathway in human cancer cells.

    PubMed

    Piao, Liang; Canguo, Zhao; Wenjie, Lu; Xiaoli, Cheng; Wenli, Shi; Li, Lu

    2017-01-01

    Macrophages, as a major cellular component in tumor microenvironment, play an important role in tumor progression. However, their roles in modulation of cytotoxic chemotherapy are still not fully understood. Here, we investigated the influence of Lipoplysaccharides (LPS)-stimulated macrophage products (LSMP) on Withaferin A (WA), a natural compound that derived from the medicinal plant Withania somnifera, as an antitumor agent in human breast cancer cells MDA-MB-231 and prostate cancer cells PC-3. Our results revealed that LSMP may enhance WA-induced apoptosis in both cell lines, the underlying mechanisms of which are closely associated with activation of caspase-8, -9 and -3, cleavage of poly ADP-ribose polymerase (PARP), as well as specifically inhibiting the translocation of nuclear factor-κB (NF-κB) and down-regulation of anti-apoptotic proteins X-linked inhibitor of apoptosis protein (XIAP) and inhibitor of apoptosis protein (cIAP1/2). These findings demonstrate that macrophages in tumor microenvironment can modulate tumor responses to chemotoxic agents, providing an effective strategy that targets macrophages to enhance the antitumor efficacy of cytotoxic chemotherapy. Copyright © 2016. Published by Elsevier Ltd.

  3. Bond Dissociation Free Energies (BDFEs) of the Acidic H-A Bonds in HA(*)(-) Radical Anions by Three Different Pathways.

    PubMed

    Zhao, Yongyu; Bordwell, Frederick G.

    1996-09-20

    Cleavage of radical anions, HA(*)(-), have been considered to give either H(*) + A(-) (path a) or H(-) + A(*) (path b), and factors determining the preferred mode of cleavage have been discussed. It is conceivable that cleavage to give a proton and a radical dianion, HA(*)(-) right harpoon over left harpoon H(+) + A(*)(2)(-) (path c), might also be feasible. A method, based on a thermodynamic cycle, to estimate the bond dissociation free energy (BDFE) by path c has been devised. Comparison of the BDFEs for cleavage of the radical anions derived from 24 nitroaromatic OH, SH, NH, and CH acids by paths a, b, c has shown that path c is favored thermodynamically.

  4. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeti, Balazs; Gregus, Zoltan

    2009-09-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished bymore » ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.« less

  5. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    PubMed Central

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  6. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    PubMed

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  7. Altered regulation of ELAVL1/HuR in HLA-B27-expressing U937 monocytic cells.

    PubMed

    Sahlberg, Anna S; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A

    2013-01-01

    To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA-B27, or mutated HLA-B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response.

  8. HIV-1 evades innate immune recognition through specific cofactor recruitment

    NASA Astrophysics Data System (ADS)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  9. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta.

    PubMed

    Seki, E; Tsutsui, H; Nakano, H; Tsuji, N; Hoshino, K; Adachi, O; Adachi, K; Futatsugi, S; Kuida, K; Takeuchi, O; Okamura, H; Fujimoto, J; Akira, S; Nakanishi, K

    2001-02-15

    IL-18, produced as biologically inactive precursor, is secreted from LPS-stimulated macrophages after cleavage by caspase-1. In this study, we investigated the mechanism underlying caspase-1-mediated IL-18 secretion. Kupffer cells constantly stored IL-18 and constitutively expressed caspase-1. Inhibition of new protein synthesis only slightly reduced IL-18 secretion, while it decreased and abrogated their IL-1beta and IL-12 secretion, respectively. Kupffer cells deficient in Toll-like receptor (TLR) 4, an LPS-signaling receptor, did not secrete IL-18, IL-1beta, and IL-12 upon LPS stimulation. In contrast, Kupffer cells lacking myeloid differentiation factor 88 (MyD88), an adaptor molecule for TLR-mediated-signaling, secreted IL-18 without IL-1beta and IL-12 production in a caspase-1-dependent and de novo synthesis-independent manner. These results indicate that MyD88 is essential for IL-12 and IL-1beta production from Kupffer cells while their IL-18 secretion is mediated via activation of endogenous caspase-1 without de novo protein synthesis in a MyD88-independent fashion after stimulation with LPS. In addition, infection with Listeria monocytogenes, products of which have the capacity to activate TLR, increased serum levels of IL-18 in wild-type and MyD88-deficient mice but not in caspase-1-deficient mice, whereas it induced elevation of serum levels of IL-12 in both wild-type and caspase-1-deficient mice but not in MyD88-deficient mice. Taken together, these results suggested caspase-1-dependent, MyD88-independent IL-18 release in bacterial infection.

  10. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    DTIC Science & Technology

    2014-10-01

    Kubo , T., Wada, T., Yamaguchi, Y., Shimizu, A. & Handa, H. Knock-down of 25 kDa subunit of cleavage factor Im inHela cells alters alternative...usage was calculated as 62normalized DDDCT. Oligonucleotides used for qRT–PCR. Cyclin D1 common forward, 59-CTGC CAGGAGCAGATCGAAG; reverse, 59...CTdeviation of either amplicon at all of the dilutions was calculated as a correction factor. d, The experiment shown in c was repeated for DICER1 and

  11. Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS13

    PubMed Central

    Bonnefoy, Arnaud; Daenens, Kim; Feys, Hendrik B.; De Vos, Rita; Vandervoort, Petra; Vermylen, Jos; Lawler, Jack; Hoylaerts, Marc F.

    2006-01-01

    The function of thrombospondin-1 (TSP-1) in hemostasis was investigated in wild-type (WT) and Tsp1-/- mice, via dynamic platelet interaction studies with A23187-stimulated mesenteric endothelium and with photochemically injured cecum subendothelium. Injected calcein-labeled WT platelets tethered or firmly adhered to almost all A23187-stimulated blood vessels of WT mice, but Tsp1-/- platelets tethered to 45% and adhered to 25.8% of stimulated Tsp1-/- vessels only. Stimulation generated temporary endothelium-associated ultralarge von Willebrand factor (VWF) multimers, triggering platelet string formation in 48% of WT versus 20% of Tsp1-/- vessels. Injection of human TSP-1 or thrombotic thrombocytopenic purpura (TTP) patient-derived neutralizing anti-ADAMTS13 antibodies corrected the defective platelet recruitment in Tsp1-/- mice, while having a moderate effect in WT mice. Photochemical injury of intestinal blood vessels induced thrombotic occlusions with longer occlusion times in Tsp1-/- venules (1027 ± 377 seconds) and arterioles (858 ± 289 seconds) than in WT vessels (559 ± 241 seconds, P < .001; 443 ± 413 seconds, P < .003) due to defective thrombus adherence, resulting in embolization of complete thrombi, a defect restored by both human TSP-1 and anti-ADAMTS13 antibodies. We conclude that in a shear field, soluble or local platelet-released TSP-1 can protect unfolded endothelium-bound and subendothelial VWF from degradation by plasma ADAMTS13, thus securing platelet tethering and thrombus adherence to inflamed and injured endothelium, respectively. PMID:16204318

  12. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients

    PubMed Central

    2012-01-01

    Objectives This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. Study design We compared the clinical results of embryo transfer on the 3rd (cleavage stage) or 5th (blastocyst stage) day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Results Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05) and implantation rate (31.8% vs 31.2%, p>0.05) in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05). Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8%) and implantation rate (47%) compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively). For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p<0.05). However, the cumulative multiple pregnancy rates showed no significant difference between the two groups. Conclusions In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients. PMID:23039212

  13. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients.

    PubMed

    Tong, Guo Qing; Cao, Shan Ren; Wu, Xun; Zhang, Jun Qiang; Cui, Ji; Heng, Boon Chin; Ling, Xiu Feng

    2012-10-05

    This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. We compared the clinical results of embryo transfer on the 3rd (cleavage stage) or 5th (blastocyst stage) day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05) and implantation rate (31.8% vs 31.2%, p>0.05) in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05). Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8%) and implantation rate (47%) compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively). For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p<0.05). However, the cumulative multiple pregnancy rates showed no significant difference between the two groups. In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients.

  14. A sunflower WRKY transcription factor stimulates the mobilization of seed-stored reserves during germination and post-germination growth.

    PubMed

    Raineri, Jesica; Hartman, Matías D; Chan, Raquel L; Iglesias, Alberto A; Ribichich, Karina F

    2016-09-01

    The sunflower transcription factor HaWRKY10 stimulates reserves mobilization in Arabidopsis. Gene expression and enzymes activity assays indicated that lipolysis and gluconeogenesis were increased. Microarray results suggested a parallelism in sunflower. Germinating oilseeds converts stored lipids into sugars, and thereafter in metabolic energy that is used in seedling growth and establishment. During germination, the induced lipolysis linked to the glyoxylate pathway and gluconeogenesis produces sucrose, which is then transported to the embryo and driven through catabolic routes. Herein, we report that the sunflower transcription factor HaWRKY10 regulates carbon partitioning by reducing carbohydrate catabolism and increasing lipolysis and gluconeogenesis. HaWRKY10 was regulated by abscisic acid and gibberellins in the embryo leaves 48 h after seed imbibition and highly expressed during sunflower seed germination and seedling growth, concomitantly with lipid mobilization. Sunflower leaf disks overexpressing HaWRKY10 showed repressed expression of genes related to sucrose cleavage and glycolysis compared with controls. Moreover, HaWRKY10 constitutive expression in Arabidopsis seeds produced higher decrease in lipid reserves, whereas starch and sucrose were more preserved compared with wild type. Gene transcripts abundance and enzyme activities involved in stored lipid mobilization and gluconeogenesis increased more in transgenic than in wild type seeds 36 h after imbibition, whereas the negative regulator of lipid mobilization, ABI4, was repressed. Altogether, the results point out a functional parallelism between tissues and plant species, and reveal HaWRKY10 as a positive regulator of storage reserve mobilization in sunflower.

  15. Differentiated thyroid cancer cell invasion is regulated through epidermal growth factor receptor-dependent activation of matrix metalloproteinase (MMP)-2/gelatinase A

    PubMed Central

    Yeh, Michael W; Rougier, Jean-Philippe; Park, Jin-Woo; Duh, Quan-Yang; Wong, Mariwil; Werb, Zena; Clark, Orlo H

    2008-01-01

    Mechanisms of invasion in thyroid cancer remain poorly understood. We hypothesized that signaling via the epidermal growth factor receptor (EGFR) stimulates thyroid cancer cell invasion by altering the expression and cleavage of matrix metalloproteinases (MMPs). Papillary and follicular carcinoma cell lines were treated with EGF, the EGFR tyrosine kinase inhibitor AG1478, and the MMP inhibitors GM-6001 and Col-3. Flow cytometry was used to detect EGFR. In vitro invasion assays, gelatin zymography, and quantitative reverse transcription-PCR were used to assess the changes in invasive behavior and MMP expression and activation. All cell lines were found to overexpress functional EGFR. EGF stimulated invasion by thyroid cancer cells up to sevenfold (P<0.0001), a process that was antagonized completely by AG1478 and Col-3, partially by GM-6001, but not by the serine protease inhibitor aprotinin. EGF upregulated expression of MMP-9 (2.64– to 8.89-fold, P<0.0001) and membrane type-1 MMP (MT1-MMP, 1.97- to 2.67-fold, P<0.0001). This effect was blocked completely by AG1478 and partially by Col-3. The activation of MMP-2 paralleled MT1-MMP expression. We demonstrate that MMPs are critical effectors of invasion in the papillary and follicular thyroid cancer cell lines studied. Invasion is regulated by signaling through EGFR, an effect mediated by augmentation of gelatinase expression and activation. MMP inhibitors and growth factor antagonists may be effective tumoristatic agents for the treatment of aggressive thyroid carcinomas. PMID:17158762

  16. Withaferin A Associated Differential Regulation of Inflammatory Cytokines.

    PubMed

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.

  17. Withaferin A Associated Differential Regulation of Inflammatory Cytokines

    PubMed Central

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases. PMID:29479354

  18. Chemotaxis of basophils by lymphocyte-dependent and lymphocyte-independent mechanisms.

    PubMed

    Ward, P A; Dvorak, H F; Cohen, S; Yoshida, T; Data, R; Selvaggio, S S

    1975-05-01

    Guine pigs basophils obtained from blood or bone marrow have been studied for their chemotactic responsiveness. Chemotactic factors for basophils include a substance (lymphokine) present in culture fluids from antigen-stimulated lymphocytes, a material generated in zymosan-activated guinea pig serum, a C5 cleavage factor, and a bacterial factor. When compared with homologous neutrophils and monocytes, basophils respond most rapidly to a chemotactic stimulus. The lymphokine basophil chemotactic factor is physicochemically similar to the previously described monocyte chemotactic factor but appears to be distinct from it as well as MIF and neutrophil chemotactic factor present in the same fluids, Part of the evidence for this is the ability to detect basophil chemotactic factor in the absence of other lymphokine activities under appropriate experimental conditions. More evidence, specifically relating to the monocyte factor, is that monocytes can adsorb basophil chemotactic activity but not vice versa. This latter observation may have implications for the mechanism whereby the accumulation of basophils is controlled and limited in vivo. In addition, it was noted that specific antigen could also suppress basophil chemotaxis. Although the mechanism of this phenomenon is unclear, it could serve as a second means by which basophil accumulation may be controlled in the intact animal. Taken together, these observations provide further definition of the chemotactic behavior of basophils in general, and underscore some of the ways in which lymphocytes can influence basophils through lymphokine-dependent mechanisms.

  19. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor

    PubMed Central

    Bierings, Ruben; Meems, Henriet; Mul, Frederik P. J.; Geerts, Dirk; Vlaar, Alexander P. J.; Voorberg, Jan; Hordijk, Peter L.

    2017-01-01

    Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi. PMID:28249049

  20. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    PubMed

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  1. Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases.

    PubMed Central

    Reinholdt, J; Kilian, M

    1991-01-01

    Bacterial immunoglobulin A1 (IgA1) proteases cleaving IgA1 and secretory IgA1 molecules in the hinge region are believed to be important virulence factors. Previous studies have indicated that IgA of humans, gorillas, and chimpanzees are the exclusive substrates of these enzymes. In a recent study, IgA from the rhesus monkey was found to be susceptible to the IgA1 protease activity of Streptococcus pneumoniae. In an attempt to reproduce this observation, we found that neither five isolates of S. pneumoniae nor other IgA1 protease-producing bacteria representing different cleavage specificities caused cleavage of rhesus monkey IgA. Hence, the rhesus monkey does not appear to be a suitable animal model for studies of IgA1 proteases as virulence factors. Images PMID:2037384

  2. Racial Cleavage in Local Voting: The Case of School and Tax Issue Referendums.

    ERIC Educational Resources Information Center

    Button, James

    1993-01-01

    Explores voting behavior of African Americans and whites in local school and tax referenda to determine whether racial conflict is still a primal factor in noncandidate elections. Results for voters in 5 counties in Florida (over 1,699,000 voters) reveal African-American underregistration and the continuing importance of racial cleavage. (SLD)

  3. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) andmore » increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.« less

  4. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    PubMed Central

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  5. MMP‐2 and MMP‐14 Silencing Inhibits VEGFR2 Cleavage and Induces the Differentiation of Porcine Adipose‐Derived Mesenchymal Stem Cells to Endothelial Cells

    PubMed Central

    Almalki, Sami G.; Llamas Valle, Yovani

    2017-01-01

    Abstract The molecular mechanisms that control the ability of adipose‐derived mesenchymal stem cells (AMSCs) to remodel three‐dimensional extracellular matrix barriers during differentiation are not clearly understood. Herein, we studied the expression of matrix metalloproteinases (MMPs) during the differentiation of AMSCs to endothelial cells (ECs) in vitro. MSCs were isolated from porcine abdominal adipose tissue, and characterized by immunopositivity to CD44, CD90, CD105, and immunonegativity to CD14 and CD45. Plasticity of AMSCs was confirmed by multilineage differentiation. The mRNA transcripts for MMPs and Tissue Inhibitor of Metalloproteinases (TIMPs), and protein expression of EC markers were analyzed. The enzyme activity and protein expression were analyzed by gelatin zymography, enzyme‐linked immunosorbent assay (ELISA), and Western blot. The differentiation of AMSCs to ECs was confirmed by mRNA and protein expressions of the endothelial markers. The mRNA transcripts for MMP‐2 and MMP‐14 were significantly increased during the differentiation of MSCs into ECs. Findings revealed an elevated MMP‐14 and MMP‐2 expression, and MMP2 enzyme activity. Silencing of MMP‐2 and MMP‐14 significantly increased the expression of EC markers, formation of capillary tubes, and acetylated‐low‐density lipoprotein uptake, and decreased the cleavage of vascular endothelial growth factor receptor type 2 (VEGFR2). Inhibition of VEGFR2 significantly decreased the expression of EC markers. These novel findings demonstrate that the upregulation of MMP2 and MMP14 has an inhibitory effect on the differentiation of AMSCs to ECs, and silencing these MMPs inhibit the cleavage of VEGFR2 and stimulate the differentiation of AMSCs to ECs. These findings provide a potential mechanism for the regulatory role of MMP‐2 and MMP‐14 in the re‐endothelialization of coronary arteries following intervention. Stem Cells Translational Medicine 2017;6:1385–1398 PMID:28213979

  6. A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44.

    PubMed

    Stoeck, Alexander; Keller, Sascha; Riedle, Svenja; Sanderson, Michael P; Runz, Steffen; Le Naour, Francois; Gutwein, Paul; Ludwig, Andreas; Rubinstein, Eric; Altevogt, Peter

    2006-02-01

    Ectodomain shedding is a proteolytic mechanism by which transmembrane molecules are converted into a soluble form. Cleavage is mediated by metalloproteases and proceeds in a constitutive or inducible fashion. Although believed to be a cell-surface event, there is increasing evidence that cleavage can take place in intracellular compartments. However, it is unknown how cleaved soluble molecules get access to the extracellular space. By analysing L1 (CD171) and CD44 in ovarian carcinoma cells, we show in the present paper that the cleavage induced by ionomycin, APMA (4-aminophenylmercuric acetate) or MCD (methyl-beta-cyclodextrin) is initiated in an endosomal compartment that is subsequently released in the form of exosomes. Calcium influx augmented the release of exosomes containing functionally active forms of ADAM10 (a disintegrin and metalloprotease 10) and ADAM17 [TACE (tumour necrosis factor a-converting enzyme)] as well as CD44 and L1 cytoplasmic cleavage fragments. Cleavage could also proceed in released exosomes, but only depletion of ADAM10 by small interfering RNA blocked cleavage under constitutive and induced conditions. In contrast, cleavage of L1 in response to PMA occurred at the cell surface and was mediated by ADAM17. We conclude that different ADAMs are involved in distinct cellular compartments and that ADAM10 is responsible for shedding in vesicles. Our findings open up the possibility that exosomes serve as a platform for ectodomain shedding and as a vehicle for the cellular export of soluble molecules.

  7. [CHALLENGING THE OPTIMAL NUMBER OF RETRIEVED OOCYTES AND ITS IMPACT ON PREGNANCY AND LIVE BIRTH RATES IN IVF/ICSI CYCLES].

    PubMed

    Blais, Idit; Lahav-Baratz, Shirly; Koifman, Mara; Wiener-Megnazi, Zofnat; Auslender, Ron; Dirnfeld, Martha

    2015-06-01

    Large numbers of retrieved oocytes are associated with higher chances of having cryopreservation of embryos. However, the process entailed exposes women to increased risk for ovarian hyperstimulation syndrome. Furthermore, mild ovary stimulation protocols are more patient-friendly and with less adverse effects. Only limited reports exist on the significance of the number of retrieved oocytes achieved in a single stimulation cycle. To investigate the optimal number of retrieved oocytes to achieve pregnancy and live birth. This retrospective analysis included 1590 IVF cycles. Oocytes maturation, fertilization, cleavage, as well as pregnancy and live birth rates were analyzed according to the number of retrieved oocytes. Oocyte maturation, fertilization and cleavage rates were lower in cycles with more than 10 retrieved oocytes compared with other groups. Live birth rates were highest when the number of retrieved oocytes was 11-15. Retrieval of more than 15 oocytes was not associated with a significant increase in chances of conception and birth. The better oocyte quality with 10 or less oocytes retrieved could be the result of a possible interference with the natural selection, or the minimized exposure of growing follicles to the potentially negative effects of ovarian stimulation. Although the average number of available embryos was higher when more than 10 oocytes were retrieved, achievement of more than 15 oocytes did not improve IVF outcome in terms of pregnancy and delivery rates. Analysis of 1590 IVF cycles including the frozen-thawed transfers shows that the best outcomes were achieved with an optimal number of 11-15 oocytes.

  8. Tissue-specific autoregulation of Drosophila suppressor of forked by alternative poly(A) site utilization leads to accumulation of the suppressor of forked protein in mitotically active cells.

    PubMed Central

    Juge, F; Audibert, A; Benoit, B; Simonelig, M

    2000-01-01

    The Suppressor of forked protein is the Drosophila homolog of the 77K subunit of human cleavage stimulation factor, a complex required for the first step of the mRNA 3'-end-processing reaction. We have shown previously that wild-type su(f) function is required for the accumulation of a truncated su(f) transcript polyadenylated in intron 4 of the gene. This led us to propose a model in which the Su(f) protein would negatively regulate its own accumulation by stimulating 3'-end formation of this truncated su(f) RNA. In this article, we demonstrate this model and show that su(f) autoregulation is tissue specific. The Su(f) protein accumulates at a high level in dividing tissues, but not in nondividing tissues. We show that this distribution of the Su(f) protein results from stimulation by Su(f) of the tissue-specific utilization of the su(f) intronic poly(A) site, leading to the accumulation of the truncated su(f) transcript in nondividing tissues. Utilization of this intronic poly(A) site is affected in a su(f) mutant and restored in the mutant with a transgene encoding wild-type Su(f) protein. These data provide an in vivo example of cell-type-specific regulation of a protein level by poly(A) site choice, and confirm the role of Su(f) in regulation of poly(A) site utilization. PMID:11105753

  9. Effects of Single Amino Acid Substitution on the Collision-Induced Dissociation of Intact Protein Ions: Turkey Ovomucoid Third Domain

    PubMed Central

    Newton, Kelly A.; Pitteri, Sharon J.; Laskowski, Michael; McLuckey, Scott A.

    2005-01-01

    Expanded understanding of the factors that direct polypeptide ion fragmentation can lead to improved specificity in the use of tandem mass spectrometry for the identification and characterization of proteins. Like the fragmentation of peptide cations, the dissociation of whole protein cations shows several preferred cleavages, the likelihood for which is parent ion charge dependent. While such cleavages are often observed, they are far from universally observed, despite the presence of the residues known to promote them. Furthermore, cleavages at residues not noted to be common in a variety of proteins can be dominant for a particular protein or protein ion charge state. Motivated by the ability to study a small protein, turkey ovomucoid third domain, for which a variety of single amino acid variants are available, the effects of changing the identity of one amino acid in the protein sequence on its dissociation behavior were examined. In particular, changes in amino acids associated with C-terminal aspartic acid cleavage and N-terminal proline cleavage were emphasized. Consistent with previous studies, the product ion spectra were found to be dependent upon the parent ion charge state. Furthermore, the fraction of possible C-terminal aspartic acid cleavages observed to occur for this protein was significantly larger than the fraction of possible N-terminal proline cleavages. In fact, very little N-terminal proline cleavage was noted for the wild-type protein despite the presence of three proline residues in the protein. The addition/removal of proline and aspartic acids was studied along with changes in selected residues adjacent to proline residues. Evidence for inhibition of proline cleavage by the presence of nearby basic residues was noted, particularly if the basic residue was likely to be protonated. PMID:15473693

  10. A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site

    PubMed Central

    Straus, Marco R.; Whittaker, Gary R.

    2017-01-01

    Cleavage activation of the hemagglutinin (HA) protein by host proteases is a crucial step in the infection process of influenza A viruses (IAV). However, IAV exists in eighteen different HA subtypes in nature and their cleavage sites vary considerably. There is uncertainty regarding which specific proteases activate a given HA in the human respiratory tract. Understanding the relationship between different HA subtypes and human-specific proteases will be valuable in assessing the pandemic potential of circulating viruses. Here we utilized fluorogenic peptides mimicking the HA cleavage motif of representative IAV strains causing disease in humans or of zoonotic/pandemic potential and tested them with a range of proteases known to be present in the human respiratory tract. Our results show that peptides from the H1, H2 and H3 subtypes are cleaved efficiently by a wide range of proteases including trypsin, matriptase, human airway tryptase (HAT), kallikrein-related peptidases 5 (KLK5) and 12 (KLK12) and plasmin. Regarding IAVs currently of concern for human adaptation, cleavage site peptides from H10 viruses showed very limited cleavage by respiratory tract proteases. Peptide mimics from H6 viruses showed broader cleavage by respiratory tract proteases, while H5, H7 and H9 subtypes showed variable cleavage; particularly matriptase appeared to be a key protease capable of activating IAVs. We also tested HA substrate specificity of Factor Xa, a protease required for HA cleavage in chicken embryos and relevant for influenza virus production in eggs. Overall our data provide novel tool allowing the assessment of human adaptation of IAV HA subtypes. PMID:28358853

  11. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.

    PubMed

    Lioe, Hadi; Laskin, Julia; Reid, Gavin E; O'Hair, Richard A J

    2007-10-25

    The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes are much slower compared to amide bond cleavage, explaining why these selective bond cleavages are not observed if fragmentation is performed under mobile proton conditions. This study further affirms that fragmentation of peptide ions in the gas phase are predominantly governed by entropic effects.

  12. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses.

    PubMed

    Xue, Xiaoguang; Wu, Jin; Ricklin, Daniel; Forneris, Federico; Di Crescenzio, Patrizia; Schmidt, Christoph Q; Granneman, Joke; Sharp, Thomas H; Lambris, John D; Gros, Piet

    2017-08-01

    The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.

  13. Neopterin formation and tryptophan degradation by a human myelomonocytic cell line (THP-1) upon cytokine treatment.

    PubMed

    Werner-Felmayer, G; Werner, E R; Fuchs, D; Hausen, A; Reibnegger, G; Wachter, H

    1990-05-15

    Determination of neopterin [D-erythro-6-(1',2',3'-trihydroxypropyl)pterin] in body fluids is a powerful diagnostic tool in a variety of diseases in which activation of cellular immune mechanisms is involved, such as certain malignancies, allograft rejection, and autoimmune and infectious diseases. In vitro, neopterin is released into the supernatant by peripheral blood-derived monocytes/macrophages upon stimulation with gamma-interferon. In parallel, cleavage of tryptophan by indoleamine 2,3-dioxygenase is induced. We report here that the human myelomonocytic cell line THP-1 forms neopterin and degrades tryptophan upon treatment with gamma-interferon. Like in macrophages alpha-interferon and beta-interferon induce these pathways only to a much smaller degree. The action of interferons is enhanced by cotreatment with tumor necrosis factor alpha, lipopolysaccharide, or dexamethasone. gamma-Interferon-induced neopterin formation and indoleamine 2,3-dioxygenase activity are increased by raising extracellular tryptophan concentrations. The pattern of intracellularly formed pteridines upon stimulation with gamma-interferon shows the unique characteristics of human monocytes/macrophages. Neopterin, monapterin, and biopterin are produced in a 50:2:1 ratio. Thus, the THP-1 cell line provides a permanent, easily accessible in vitro system for studying the induction and mechanism of neopterin formation.

  14. Proteolytic Cleavage of ProBDNF into Mature BDNF in the Basolateral Amygdala Is Necessary for Defeat-Induced Social Avoidance

    ERIC Educational Resources Information Center

    Dulka, Brooke N.; Ford, Ellen C.; Lee, Melissa A.; Donnell, Nathaniel J.; Goode, Travis D.; Prosser, Rebecca; Cooper, Matthew A.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for memory processes. The present study tested whether proteolytic cleavage of proBDNF into mature BDNF (mBDNF) within the basolateral amygdala (BLA) regulates the consolidation of defeat-related memories. We found that acute social defeat increases the expression of mBDNF, but not proBDNF, in…

  15. HtrC Is Involved in Proteolysis of YpeB during Germination of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Bernhards, Casey B.; Chen, Yan; Toutkoushian, Hannah

    2014-01-01

    Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn2+ or Ca2+ ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation. PMID:25384476

  16. Cytotoxicity and inhibitory properties against topoisomerase II of doxorubicin and its formamidine derivatives.

    PubMed

    Kik, Krzysztof; Studzian, Kazimierz; Wasowska-Łukawska, Małgorzata; Oszczapowicz, Irena; Szmigiero, Leszek

    2009-01-01

    This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II.

  17. Impact of PCOS on early embryo cleavage kinetics.

    PubMed

    Wissing, M L; Bjerge, M R; Olesen, A I G; Hoest, T; Mikkelsen, A L

    2014-04-01

    This study investigated whether polycystic ovary syndrome (PCOS) affected early embryo development assessed by time-lapse analysis of embryo kinetics from fertilization to the blastocyst stage. This was a prospective cohort study of two pronuclei (2PN) embryos from 25 hyperandrogenic PCOS patients (110 2PN embryos), 26 normoandrogenic PCOS patients (140 2PN embryos) and 20 healthy, regularly cycling women (controls, 97 2PN embryos). Patients underwent the same baseline evaluation and the same ovarian stimulation from April 2010 to February 2013. Oocytes were fertilized by intracytoplasmic sperm injection and incubated in an EmbryoScope with pictures taken every 20 min in seven focal planes. Time to 2PN breakdown, first cleavage and cleavage to 3, 4, 5, 6, 7 and 8 cells, morula and blastocyst (t₂, t₃, t₄, t₅, t₆, t₇, t₈, t(M), t(B)) were annotated. Differences in embryo kinetics between groups were assessed by mixed modelling. Compared with controls, embryos from hyperandrogenic PCOS patients were significantly delayed at 2PN breakdown, t₂, t₃, t₄ and t₇ but not at t₅, t₆, t₈, t(M) or t(B). Embryos from hyperandrogenic PCOS women had developed slower from fertilization to the 8-cell stage compared with embryos from controls. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  18. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    PubMed

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  19. Prion protein cleavage fragments regulate adult neural stem cell quiescence through redox modulation of mitochondrial fission and SOD2 expression.

    PubMed

    Collins, Steven J; Tumpach, Carolin; Groveman, Bradley R; Drew, Simon C; Haigh, Cathryn L

    2018-03-24

    Neurogenesis continues in the post-developmental brain throughout life. The ability to stimulate the production of new neurones requires both quiescent and actively proliferating pools of neural stem cells (NSCs). Actively proliferating NSCs ensure that neurogenic demand can be met, whilst the quiescent pool makes certain NSC reserves do not become depleted. The processes preserving the NSC quiescent pool are only just beginning to be defined. Herein, we identify a switch between NSC proliferation and quiescence through changing intracellular redox signalling. We show that N-terminal post-translational cleavage products of the prion protein (PrP) induce a quiescent state, halting NSC cellular growth, migration, and neurite outgrowth. Quiescence is initiated by the PrP cleavage products through reducing intracellular levels of reactive oxygen species. First, inhibition of redox signalling results in increased mitochondrial fission, which rapidly signals quiescence. Thereafter, quiescence is maintained through downstream increases in the expression and activity of superoxide dismutase-2 that reduces mitochondrial superoxide. We further observe that PrP is predominantly cleaved in quiescent NSCs indicating a homeostatic role for this cascade. Our findings provide new insight into the regulation of NSC quiescence, which potentially could influence brain health throughout adult life.

  20. Activity-dependent shedding of the NMDA receptor glycine binding site by matrix metalloproteinase 3: a PUTATIVE mechanism of postsynaptic plasticity.

    PubMed

    Pauly, Thorsten; Ratliff, Miriam; Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen

    2008-07-16

    Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS.

  1. Activity-Dependent Shedding of the NMDA Receptor Glycine Binding Site by Matrix Metalloproteinase 3: A PUTATIVE Mechanism of Postsynaptic Plasticity

    PubMed Central

    Pietrowski, Eweline; Neugebauer, Rainer; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen

    2008-01-01

    Functional and structural alterations of clustered postsynaptic ligand gated ion channels in neuronal cells are thought to contribute to synaptic plasticity and memory formation in the human brain. Here, we describe a novel molecular mechanism for structural alterations of NR1 subunits of the NMDA receptor. In cultured rat spinal cord neurons, chronic NMDA receptor stimulation induces disappearance of extracellular epitopes of NMDA receptor NR1 subunits, which was prevented by inhibiting matrix metalloproteinases (MMPs). Immunoblotting revealed the digestion of solubilized NR1 subunits by MMP-3 and identified a fragment of about 60 kDa as MMPs-activity-dependent cleavage product of the NR1 subunit in cultured neurons. The expression of MMP-3 in the spinal cord culture was shown by immunoblotting and immunofluorescence microscopy. Recombinant NR1 glycine binding protein was used to identify MMP-3 cleavage sites within the extracellular S1 and S2-domains. N-terminal sequencing and site-directed mutagenesis revealed S542 and L790 as two putative major MMP-3 cleavage sites of the NR1 subunit. In conclusion, our data indicate that MMPs, and in particular MMP-3, are involved in the activity dependent alteration of NMDA receptor structure at postsynaptic membrane specializations in the CNS. PMID:18629001

  2. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    PubMed Central

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  3. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation.

    PubMed

    Hoyt, Laura R; Ather, Jennifer L; Randall, Matthew J; DePuccio, Daniel P; Landry, Christopher C; Wewers, Mark D; Gavrilin, Mikhail A; Poynter, Matthew E

    2016-08-15

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli.

    PubMed Central

    McEntee, K; Weinstock, G M

    1981-01-01

    The requirements for polynucleotide-dependent hydrolysis of ATP and for proteolytic cleavage of phage lambda repressor have been examined for both the wild-type (recA+ protein) and the tif-1 mutant form [tif(recA) protein] of the recA gene product. The recA+ and tif(recA) proteins catalyze both reactions in the presence of long single-stranded DNAs or certain deoxyhomopolymers. However, short oligonucleotides [(dT)12, (dA)14] stimulate neither the protease nor the ATPase activities of the recA+ protein. In contrast, these short oligonucleotides activate tif(recA) protein to cleave lambda repressor without stimulating its ATPase activity. Moreover, both the ATPase and protease activities of the tif(recA) protein are stimulated by poly(rU) and poly(rC) whereas the recA+ protein does not respond to these ribopolymers. We have purified the recA protein from a strain in which the tif mutation is intragenically suppressed. This mutant protein (recA629) is inactive in the presence of (dT)12, (dA)14, poly(rU), and poly(rC) for lambda repressor cleavage and ATP hydrolysis. These results argue that the tif-1 mutation (or mutations) alters the DNA binding site of the recA protein. We suggest that in vivo the tif(recA) protein is activated for cleaving repressors of SOS genes by complex formation with short single-stranded regions or gaps that normally occur near the growing fork of replicating chromosomes and are too short for activating the recA+ enzyme. This mechanism can account for the expression of SOS functions in the absence of DNA damage in tif mutant strains. Images PMID:7031642

  5. Altered Regulation of ELAVL1/HuR in HLA-B27–Expressing U937 Monocytic Cells

    PubMed Central

    Sahlberg, Anna S.; Ruuska, Marja; Granfors, Kaisa; Penttinen, Markus A.

    2013-01-01

    Objective To investigate the role of HLA-B27 expression in the regulation of RNA binding protein (RBP) Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) expression in Salmonella-infected or LPS-stimulated human monocytic cells, since HuR is a critical regulator of the post-transcriptional fate of many genes (e.g. TNFα) important in inflammatory response. Methods U937 monocytic cells were stably transfected with pSV2neo resistant vector (mock), wild type HLA–B27, or mutated HLA–B27 with amino acid substitutions in the B pocket. Cells were differentiated, infected with Salmonella enteritidis or stimulated with lipopolysaccharide. The expression levels of HuR protein and cleavage products (CP1 and CP2) were detected by Western blotting and flow cytometry. Specific inhibitors were used to study the role of PKR and p38 in HuR expression and generation of CPs. TNFα and IL-10 secretion after p38 and PKR inhibition were measured by ELISA. Results Full length HuR is overexpressed and HuR cleavage is disturbed in U937 monocytic cells expressing HLA-B27 heavy chains (HC). Increased full length HuR expression, disturbed cleavage and reduced dependence on PKR after infection correlate with the expression of glutamic acid 45 in the B pocket that is linked to the misfolding of HLA-B27. Conclusion Results show that the expression of HLA-B27 HCs modulates the intracellular environment of U937 monocyte/macrophages by altering HuR regulation. This phenomenon is at least partly dependent on the misfolding feature of the B27 molecule. Since HuR is an important regulator of multiple genes involved in inflammatory response observations offer an explanation how HLA-B27 may modulate inflammatory response. PMID:23894643

  6. Aminopeptidase activity in rat brain synaptosomes - 2-mercaptoethanol stimulation and Arg-vasopressin degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, W.H.; Orawski, A.T.

    1986-03-05

    Rat brain synaptic plasma membranes contain an amastatin-inhibited aminopeptidase activity which degrades Arg-vaso-pressin (AVP). The pH optimum for AVP cleavage was found to be 6.8, similar to that reported for oxytocin. The ability of other peptides and arylamides such as oxytocin, Tyr-Phe-Met-Arg-Phe-NH/sub 2/ and Arg-Arg-..beta..NA to inhibit cleavage of (/sup 3/H-Tyr/sup 2/)-AVP suggests that the enzyme may not be specific for AVP. The AVP-cleaving activity has been solubilized and partially characterized. Synaptosomes were lysed with hypotonic buffer, washed, and extracted with 1% Nonidet P-40 detergent. The solubilized protein was chromatographed by gel filtration HPLC on Superose 6. A single peakmore » of activity was found with a M.W. = 117,000 which could hydrolyze 1mM Ala-..beta..NA, Arg-..beta..NA, Arg-Arg-..beta..NA, Phe-Met and Phe-Arg as well as slowly cleave AVP with the ultimate release of /sup 3/H-Tyr. 2-Mercaptoethanol (3.9mM) (ME) stimulated activity 3.6 to 6.6-fold for arylamide and dipeptide substrates, but 35-fold for labelled AVP, possibly owing to reduction of the AVP disulfide bond. All activities in the presence of ME were completely inhibited by 0.2mM amastatin.« less

  7. Endonuclease G promotes mitochondrial genome cleavage and replication

    PubMed Central

    Wiehe, Rahel Stefanie; Gole, Boris; Chatre, Laurent; Walther, Paul; Calzia, Enrico; Ricchetti, Miria; Wiesmüller, Lisa

    2018-01-01

    Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis. PMID:29719607

  8. Anti-amyloid precursor protein antibodies inhibit amyloid-β production by steric hindrance

    PubMed Central

    Thomas, Rhian S.; Liddell, J. Eryl; Kidd, Emma J.

    2015-01-01

    Summary Cleavage of amyloid precursor protein (APP) by β- and γ-secretases results in the production of amyloid-β (Aβ) in Alzheimer’s disease (AD). We raised two monoclonal antibodies, 2B3 and 2B12, that recognise the β-secretase cleavage site on APP but not Aβ. We hypothesised that these antibodies would reduce Aβ levels via steric hindrance of β-secretase. Both antibodies decreased extracellular Aβ levels from astrocytoma cells, but 2B3 was more potent than 2B12. Levels of soluble sAPPα from the non-amyloidogenic α-secretase pathway and intracellular APP were not affected by either antibody nor were there any effects on cell viability. 2B3 exhibited a higher affinity for APP than 2B12 and its epitope appeared to span the cleavage site while 2B12 bound slightly upstream. Both of these factors probably contribute to its greater effect on Aβ levels. After 60 minutes incubation at pH 4.0, most 2B3 and 2B12 remained bound to their antigen, suggesting that the antibodies will remain bound to APP in the acidic endosomes where β-secretase cleavage probably occurs. Only 2B3 and 2B12, but not control antibodies, inhibited the cleavage of sAPPα by β-secretase in a cell-free assay where effects of antibody internalisation and intracellular degradation were excluded. 2B3 virtually abolished this cleavage. In addition, levels of C-terminal APP fragments, βCTF, generated following β-secretase cleavage, were significantly reduced in cells after incubation with 2B3. These results strongly suggest that anti-cleavage site antibodies can generically reduce Aβ levels via inhibition of β-secretase by steric hindrance and may provide a novel alternative therapy for AD. PMID:21122073

  9. Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice.

    PubMed

    Chen, Zu-Lin; Revenko, Alexey S; Singh, Pradeep; MacLeod, A Robert; Norris, Erin H; Strickland, Sidney

    2017-05-04

    Vascular abnormalities and inflammation are found in many Alzheimer disease (AD) patients, but whether these changes play a causative role in AD is not clear. The factor XII (FXII) -initiated contact system can trigger both vascular pathology and inflammation and is activated in AD patients and AD mice. We have investigated the role of the contact system in AD pathogenesis. Cleavage of high-molecular-weight kininogen (HK), a marker for activation of the inflammatory arm of the contact system, is increased in a mouse model of AD, and this cleavage is temporally correlated with the onset of brain inflammation. Depletion of FXII in AD mice inhibited HK cleavage in plasma and reduced neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. Moreover, FXII-depleted AD mice showed better cognitive function than untreated AD mice. These results indicate that FXII-mediated contact system activation contributes to AD pathogenesis, and therefore this system may offer novel targets for AD treatment. © 2017 by The American Society of Hematology.

  10. Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.

    2014-02-01

    The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.

  11. RAPID COMMUNICATION: Nerve growth factor influences cleavage rate and embryo development in sheep.

    PubMed

    Crispo, M; Dos Santos-Neto, P C; Vilariño, M; Mulet, A P; de León, A; Barbeito, L; Menchaca, A

    2016-10-01

    Recent information about Nerve growth factor (NGF), a protein traditionally associated to the nervous system that regulates survival and maturation of developing neurons, suggests that it may exert action also on different levels in the reproductive system. The aim of this study was to evaluate the effect of NGF added during in vitro oocyte maturation, fertilization or in vitro embryo development in sheep. Nerve growth factor was supplemented to the culture medium at 0, 100, or 1,000 ng/mL, during either in vitro maturation (Exp. 1), in vitro fertilization (Exp. 2), or in vitro culture (Exp. 3). In addition, NGF mRNA expression was determined in cumulus cells and oocytes. Nerve growth factor induced early cleavage when added during oocyte maturation or fertilization, improved embryo development when added during fertilization, and had no significant effect when added during embryo culture. In general, the effect was more evident with 100 rather than 1,000 ng/mL (P < 0.05). Expression of endogenous NGF was not detected in oocytes, and increased in cumulus cells when 1,000 ng/mL of NGF was added during fertilization, but not during maturation and embryo culture. In conclusion, the addition of NGF during oocyte maturation and fertilization affects in vitro cleavage and embryo development in sheep. We suggest a possible effect of this growth factor on oocyte maturation and mainly on the fertilization process.

  12. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto.

    PubMed

    Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.

  13. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto

    PubMed Central

    Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi

    2017-01-01

    Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3’UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3’UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3’UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo. PMID:28253363

  14. Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a.

    PubMed

    Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene; Alfandari, Dominique

    2017-08-22

    Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration.

  15. Dual control of pcdh8l/PCNS expression and function in Xenopus laevis neural crest cells by adam13/33 via the transcription factors tfap2α and arid3a

    PubMed Central

    Khedgikar, Vikram; Abbruzzese, Genevieve; Mathavan, Ketan; Szydlo, Hannah; Cousin, Helene

    2017-01-01

    Adam13/33 is a cell surface metalloprotease critical for cranial neural crest (CNC) cell migration. It can cleave multiple substrates including itself, fibronectin, ephrinB, cadherin-11, pcdh8 and pcdh8l (this work). Cleavage of cadherin-11 produces an extracellular fragment that promotes CNC migration. In addition, the adam13 cytoplasmic domain is cleaved by gamma secretase, translocates into the nucleus and regulates multiple genes. Here, we show that adam13 interacts with the arid3a/dril1/Bright transcription factor. This interaction promotes a proteolytic cleavage of arid3a and its translocation to the nucleus where it regulates another transcription factor: tfap2α. Tfap2α in turn activates multiple genes including the protocadherin pcdh8l (PCNS). The proteolytic activity of adam13 is critical for the release of arid3a from the plasma membrane while the cytoplasmic domain appears critical for the cleavage of arid3a. In addition to this transcriptional control of pcdh8l, adam13 cleaves pcdh8l generating an extracellular fragment that also regulates cell migration. PMID:28829038

  16. Microbial Biosensor for the Detection of Protease-Virulent Factors from Pathogens

    DTIC Science & Technology

    2017-04-28

    cleavage in the extracellular space. The cleavage of TCS receptor protein would abolish the kinase activity responsible for the phosphorylation of the...cytoplasmic response regulator, AgrA, which functions as a transcriptional activator . As the cell-based protease biosensor response requires over...to AIP; AgrC is a AIP receptor that phosphorylates AgrA, an activator for P2 and P3. Protein-based protease biosensor construction To facilitate

  17. Innate immunity: Bacterial cell-wall muramyl peptide targets the conserved transcription factor YB-1.

    PubMed

    Laman, A G; Lathe, R; Savinov, G V; Shepelyakovskaya, A O; Boziev, Kh M; Baidakova, L K; Chulin, A N; Brovko, F A; Svirshchevskaya, E V; Kotelevtsev, Y; Eliseeva, I A; Guryanov, S G; Lyabin, D N; Ovchinnikov, L P; Ivanov, V T

    2015-07-08

    The bacterial cell wall muramyl dipeptides MDP and glucosaminyl-MDP (GMDP) are powerful immunostimulators but their binding target remains controversial. We previously reported expression cloning of GMDP-binding polypeptides and identification of Y-box protein 1 (YB-1) as their sole target. Here we show specific binding of GMDP to recombinant YB-1 protein and subcellular colocalization of YB-1 and GMDP. GMDP binding to YB-1 upregulated gene expression levels of NF-κB2, a mediator of innate immunity. Furthermore, YB-1 knockdown abolished GMDP-induced Nfkb2 expression. GMDP/YB-1 stimulation led to NF-κB2 cleavage, transport of activated NF-κB2 p52 to the nucleus, and upregulation of NF-κB2-dependent chemokine Cxcr4 gene expression. Therefore, our findings identify YB-1 as new target for muramyl peptide signaling. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. The Tick Salivary Protein Sialostatin L2 Inhibits Caspase-1-Mediated Inflammation during Anaplasma phagocytophilum Infection

    PubMed Central

    Chen, Gang; Wang, Xiaowei; Severo, Maiara S.; Sakhon, Olivia S.; Sohail, Mohammad; Brown, Lindsey J.; Sircar, Mayukh; Snyder, Greg A.; Sundberg, Eric J.; Ulland, Tyler K.; Olivier, Alicia K.; Andersen, John F.; Zhou, Yi; Shi, Guo-Ping; Sutterwala, Fayyaz S.; Kotsyfakis, Michail

    2014-01-01

    Saliva from arthropod vectors facilitates blood feeding by altering host inflammation. Whether arthropod saliva counters inflammasome signaling, a protein scaffold that regulates the activity of caspase-1 and cleavage of interleukin-1β (IL-1β) and IL-18 into mature molecules, remains elusive. In this study, we provide evidence that a tick salivary protein, sialostatin L2, inhibits inflammasome formation during pathogen infection. We show that sialostatin L2 targets caspase-1 activity during host stimulation with the rickettsial agent Anaplasma phagocytophilum. A. phagocytophilum causes macrophage activation and hemophagocytic syndrome features. The effect of sialostatin L2 in macrophages was not due to direct caspase-1 enzymatic inhibition, and it did not rely on nuclear factor κB or cathepsin L signaling. Reactive oxygen species from NADPH oxidase and the Loop2 domain of sialostatin L2 were important for the regulatory process. Altogether, our data expand the knowledge of immunoregulatory pathways of tick salivary proteins and unveil an important finding in inflammasome biology. PMID:24686067

  19. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    NASA Astrophysics Data System (ADS)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky < k_{cl} < k_{ig} and σ_{y0} < σ_{cl0} < σ_{ig0} , respectively. Based on the Hall-Petch relationships, micro-yielding in a bcc steel occurs at the instance that the pile-up dislocations within a specific grain showing the Schmid factor of 0.5 propagate into the neighboring grain. The initial brittle crack is formed at the instance that the flow strength exceeds the brittle fracture strength. Once the brittle crack is formed, it grows catastrophically. Due to the smallest and ky and σ_{y0} , the cleavage and the intergranular fracture occur always after micro-yielding. The {100} cleavage fracture of the steel is due to the lowest theoretical {100} cleavage strength. Due to the thermal components included in cleavage and intergranular fracture strengths, they show also the temperature and strain rate dependence observed in yield strength. The increase in susceptibility to brittle fracture with decreasing temperature and increasing strain rate is due to the increase in dislocation density which causes the high work hardening rate.

  20. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    PubMed

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    PubMed

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  2. The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin β and ADAM10.

    PubMed

    Jefferson, Tamara; Auf dem Keller, Ulrich; Bellac, Caroline; Metz, Verena V; Broder, Claudia; Hedrich, Jana; Ohler, Anke; Maier, Wladislaw; Magdolen, Viktor; Sterchi, Erwin; Bond, Judith S; Jayakumar, Arumugam; Traupe, Heiko; Chalaris, Athena; Rose-John, Stefan; Pietrzik, Claus U; Postina, Rolf; Overall, Christopher M; Becker-Pauly, Christoph

    2013-01-01

    The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.

  3. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    PubMed

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  4. Sulforaphane inhibits endothelial protein C receptor shedding in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Han, Min-Su; Bae, Jong-Sup

    2014-10-01

    Sulforaphane (SFN), a natural isothiocyanate present in cruciferous vegetables such as broccoli and cabbage, is effective in preventing carcinogenesis, diabetes, and inflammatory responses. Increasing evidence has demonstrated that beyond its role in the activation of protein C, endothelial cell protein C receptor (EPCR) is also involved in vascular inflammation. EPCR activity is markedly changed by ectodomain cleavage and its release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-α converting enzyme (TACE). However, little is known about the effects of SFN on EPCR shedding. Our results demonstrated that SFN induced potent inhibition of phorbol-12-myristate 13-acetate (PMA)-, tumor necrosis factor (TNF)-α-, interleukin (IL)-1β, and cecal ligation and puncture (CLP)-induced EPCR shedding. SFN also inhibited the expression and activity of PMA-induced TACE in endothelial cells. In addition, treatment with SFN resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of SFN as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Withaferin A is an inhibitor of endothelial protein C receptor shedding in vitro and in vivo.

    PubMed

    Ku, Sae-Kwang; Han, Min-Su; Bae, Jong-Sup

    2014-06-01

    Withaferin A (WFA), an active compound from Withania somnifera, has been widely researched for its anti-inflammatory and cardioactive properties and effects on the central nervous system. The endothelial cell protein C receptor (EPCR) plays important roles in blood coagulation and inflammation. EPCR activity is markedly changed by ectodomain cleavage and release as the soluble EPCR. EPCR is shed from the cell surface, mediated by tumor necrosis factor-α converting enzyme (TACE). In this study, we investigated the effects of WFA on the EPCR shedding in human umbilical vein endothelial cells (HUVECs) and in mice and the associated signaling pathways. WFA was found to induce inhibition of phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and on cecal ligation and puncture (CLP)-induced EPCR shedding and WFA suppressed the expression and activity of TACE. In addition, treatment with WFA resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate a therapeutic potentiality of WFA as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures.

    PubMed

    Piotrowska, Anna; Popiolek-Barczyk, Katarzyna; Pavone, Flaminia; Mika, Joanna

    2017-01-01

    Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity.

  7. Comparison of the Expression Changes after Botulinum Toxin Type A and Minocycline Administration in Lipopolysaccharide-Stimulated Rat Microglial and Astroglial Cultures

    PubMed Central

    Piotrowska, Anna; Popiolek-Barczyk, Katarzyna; Pavone, Flaminia; Mika, Joanna

    2017-01-01

    Botulinum neurotoxin type A (BoNT/A) and minocycline are potent drugs used in clinical therapies. The primary molecular mechanism of BoNT/A is the cleavage of SNARE proteins, which prevents cells from releasing neurotransmitters from vesicles, while the effects of minocycline are related to the inhibition of p38 activation. Both BoNT/A and minocycline exhibit analgesic effects, however, their direct impact on glial cells is not fully known. Therefore, the aim of the present study was to determine the effects of those drugs on microglial and astroglial activity after lipopolysaccharide (LPS) stimulation and their potential synergistic action. Our results show that BoNT/A and minocycline influenced primary microglial cells by inhibiting intracellular signaling pathways, such as p38, ERK1/2, NF-κB, and the release of pro-inflammatory factors, including IL-1β, IL-18, IL-6, and NOS2. We have revealed that, in contrast to minocycline, BoNT/A treatment did not decrease LPS-induced release of pro-inflammatory factors in the astroglia. In addition, BoNT/A decreased SNAP-23 in both types of glial cells and also SNAP-25 expressed only in astrocytes. Moreover, BoNT/A increased TLR2 and its adaptor protein MyD88, but not TLR4 exclusively in microglial cells. Furthermore, we have shown the impact of BoNT/A on microglial and astroglial cells, with a particular emphasis on its molecular target, TLR2. In contrast, minocycline did not affect any of those factors. We have revealed that despite of different molecular targets, minocycline, and BoNT/A reduced the release of microglia-derived pro-inflammatory factors. In conclusion, we have shown that BoNT/A and minocycline are effective drugs for the management of neuroinflammation by dampening the activation of microglial cells, with minocycline also affecting astroglial activity. PMID:28491822

  8. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane

    PubMed Central

    Kotadia, Shaila; Montembault, Emilie; Sullivan, William

    2012-01-01

    Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030

  9. Protein Kinase C- ɛ Regulates the Apoptosis and Survival of Glioma Cells

    PubMed Central

    Okhrimenko, Hana; Lu, Wei; Xiang, Cunli; Hamburger, Nathan; Kazimirsky, Gila; Brodie, Chaya

    2005-01-01

    In this study, we examined the role of protein kinase C (PKC)-ɛ in the apoptosis and survival of glioma cells using tumor necrosis factor–related apoptosis inducing ligand (TRAIL)- stimulated cells and silencing of PKCɛ expression. Treatment of glioma cells with TRAIL induced activation, caspase-dependent cleavage, and down-regulation of PKCɛ within 3 to 5 hours of treatment. Overexpression of PKCɛ inhibited the apoptosis induced by TRAIL, acting downstream of caspase 8 and upstream of Bid cleavage and cytochrome c release from the mitochondria. A caspase-resistant PKCɛ mutant (D383A) was more protective than PKCɛ, suggesting that both the cleavage of PKCɛ and its down-regulation contributed to the apoptotic effect of TRAIL. To further study the role of PKCɛ in glioma cell apoptosis, we employed short interfering RNAs directed against the mRNA of PKCɛ and found that silencing of PKCɛ expression induced apoptosis of various glioma cell lines and primary glioma cultures. To delineate the molecular mechanisms involved in the apoptosis induced by silencing of PKCɛ, we examined the expression and phosphorylation of various apoptosis-related proteins. We found that knockdown of PKCɛ did not affect the expression of Bcl2 and Bax or the phosphorylation and expression of Erk1/2, c-Jun-NH2-kinase, p38, or STAT, whereas it selectively reduced the expression of AKT. Similarly, TRAIL reduced the expression of AKT in glioma cells and this decrease was abolished in cells overexpressing PKCɛ. Our results suggest that the cleavage of PKCɛ and its down-regulation play important roles in the apoptotic effect of TRAIL. Moreover, PKCɛ regulates AKT expression and is essential for the survival of glioma cells. PMID:16103081

  10. Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2007-01-01

    Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized “RzB” hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na+ alone, although the cleavage rates are reduced by more than 1,000-fold relative to the rates observed in Mg2+ and in transition metal ions. The trivalent cobalt hexammine (CoHex) ion is often used as an exchange-inert analog of hydrated magnesium ion. Trans-cleavage rates exceeded 8 min−1 in 20 mM CoHex, which promoted cleavage through outersphere interactions. The stimulation of catalysis afforded by the tertiary structural interactions within RzB does not require Mg2+, unlike other extended hammerhead ribozymes. Site-specific interaction with at least one Mg2+ ion is suggested by CoHex competition experiments. In the presence of a constant, low concentration of Mg2+, low concentrations of CoHex decreased the rate by two to three orders of magnitude relative to the rate in Mg2+ alone. Cleavage rates increased as CoHex concentrations were raised further, but the final fraction cleaved was lower than what was observed in CoHex or Mg2+ alone. These observations suggest that Mg2+ and CoHex compete for binding and that they cause misfolded structures when they are together. The results of this study support the existence of an alternate catalytic mechanism used by nondivalent ions (especially CoHex) that is distinct from the one promoted by divalent metal ions, and they imply that divalent metals influence catalysis through a specific nonstructural role. PMID:17456566

  11. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme

    PubMed Central

    Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P. C.; Ovaa, Huib; Drag, Marcin; Lima, Christopher D.; Huang, Tony T.

    2015-01-01

    Ubiquitin (Ub) and the ubiquitin-like modifier interferon stimulated gene 15 (ISG15) participate in the host defense of viral infections. Viruses, including the Severe Acute Respiratory Syndrome human coronavirus (SARS hCoV), have co-opted Ub/ISG15-conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub/ISG15-conjugated host proteins. Here, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle Eastern Respiratory Syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that similar to SARS PLpro, MERS PLpro is both a deubiquitinating and a deISGylating enzyme. Further analysis of the intrinsic deubiquitinating enzyme (DUB) activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, while SARS PLpro prefers to cleave Lys48-linked polyUb chains. Second, MERS PLpro cleaves polyUb chains in a “mono-distributive” manner (one Ub at a time), and SARS PLpro prefers to cleave K48-linked poly-Ub chains by sensing a di-Ub moiety as a minimal recognition element using a “di-distributive” cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses. PMID:25764917

  12. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme.

    PubMed

    Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P C; Ovaa, Huib; Drag, Marcin; Lima, Christopher D; Huang, Tony T

    2015-06-01

    Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.

  13. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.

    PubMed

    Mattheij, Nadine J A; Gilio, Karen; van Kruchten, Roger; Jobe, Shawn M; Wieschhaus, Adam J; Chishti, Athar H; Collins, Peter; Heemskerk, Johan W M; Cosemans, Judith M E M

    2013-05-10

    Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.

  14. Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells

    PubMed Central

    2013-01-01

    Background Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored. Results In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4. Conclusion Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells. PMID:23442976

  15. Unconjugated Bilirubin Inhibits Proteolytic Cleavage of von Willebrand Factor by ADAMTS13 Protease

    PubMed Central

    Lu, Rui-Nan; Yang, Shangbin; Wu, Haifeng M.; Zheng, X. Long

    2015-01-01

    Summary Background Bilirubin is a yellow breakdown product of heme catabolism. Increased serum levels of unconjugated bilirubin are conditions commonly seen in premature neonates and adults with acute hemolysis including thrombotic microangiopathy. Previous studies have shown that unconjugated bilirubin lowers plasma ADAMTS13 activity, but the mechanism is not fully understood. Objectives The study is to determine whether unconjugated bilirubin directly inhibits the cleavage of von Willebrand factor (VWF) and its analogs by ADAMTS13. Methods Fluorogenic, SELDI-TOF mass spectrometric assay, and Western blotting analyses were employed to address this question. Results Unconjugated bilirubin inhibits the cleavage of F485-rVWF73-H, D633-rVWF73-H, and GST-rVWF71-11K by ADAMTS13 in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of ~13 μM, ~70 μM, and ~17 μM, respectively. Unconjugated bilirubin also dose-dependently inhibits the cleavage of multimeric VWF by ADAMTS13 under denaturing conditions. The inhibitory activity of bilirubin on the cleavage of D633-rVWF73-H and multimeric VWF, but not F485-rVWF73-H, was eliminated after incubation with bilirubin oxidase that converts bilirubin to biliverdin. Furthermore, plasma ADAMTS13 activity in patients with hyperbilirubinemia is lower prior to than after treatment with bilirubin oxidase. Conclusions unconjugated bilirubin directly inhibits ADAMTS13’s ability to cleave both peptidyl and native VWF substrates in addition to its interference with certain fluorogenic assays. Our findings may help proper interpretation of ADAMTS13 results under pathological conditions. Whether elevated serum unconjugated bilirubin has an adverse effect in vivo remains to be determined in our future study. PMID:25782102

  16. Kinetic Control in the Cleavage of Unsymmetrical Disilanes.

    PubMed

    Hevesi, Làszlò; Dehon, Michael; Crutzen, Raphael; Lazarescu-Grigore, Adriana

    1997-04-04

    A series of 12 phenyl-substituted arylpentamethyldisilanes 1a-l have been synthesized in order to examine the regioselectivity of their nucleophilic Si,Si bond cleavage reactions under Still's conditions (MeLi/HMPA/0 degrees C). It has been found that the sensitivity of these reactions to the electronic effects of the substituents in the phenyl ring could be described by the Hammett-type equation log(k(A)/k(B)) = 0.4334 + 2.421(Sigmasigma); (correlation coefficient R = 0.983). The k(A)/k(B) ratio represents the relative rate of attack at silicon atom A (linked to the aryl ring) or at silicon atom B (away from the aryl ring) of the unsymmetrical disilanes. Thus, the present investigation shows that the earlier belief according to which the nucleophilic cleavage of unsymmetrical disilanes always produces the more stable silyl anionic species (thermodynamic control) should be abandoned, or at least seriously amended: kinetic factors appear to exert a primary influence on the regioselectivity of such reactions. Since the two major kinetic factors (i.e., electrophilic character of and steric hindrance at a given silicon atom) have opposite effects on the orientation of the reaction, it may happen that kinetic and thermodynamic control lead to the same result. For some of the unsymmetrical disilanes studied, the major reaction path was not the Si,Si bond cleavage; instead, Si-aryl bond breaking occurred, producing the corresponding aryl anions.

  17. Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage

    PubMed Central

    Jennebach, Stefan; Herzog, Franz; Aebersold, Ruedi; Cramer, Patrick

    2012-01-01

    RNA polymerase (Pol) I contains a 10-subunit catalytic core that is related to the core of Pol II and includes subunit A12.2. In addition, Pol I contains the heterodimeric subcomplexes A14/43 and A49/34.5, which are related to the Pol II subcomplex Rpb4/7 and the Pol II initiation factor TFIIF, respectively. Here we used lysine-lysine crosslinking, mass spectrometry (MS) and modeling based on five crystal structures, to extend the previous homology model of the Pol I core, to confirm the location of A14/43 and to position A12.2 and A49/34.5 on the core. In the resulting model of Pol I, the C-terminal ribbon (C-ribbon) domain of A12.2 reaches the active site via the polymerase pore, like the C-ribbon of the Pol II cleavage factor TFIIS, explaining why the intrinsic RNA cleavage activity of Pol I is strong, in contrast to the weak cleavage activity of Pol II. The A49/34.5 dimerization module resides on the polymerase lobe, like TFIIF, whereas the A49 tWH domain resides above the cleft, resembling parts of TFIIE. This indicates that Pol I and also Pol III are distantly related to a Pol II–TFIIS–TFIIF–TFIIE complex. PMID:22396529

  18. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Couzigou, Jean-Malo; Lauressergues, Dominique; André, Olivier; Gutjahr, Caroline; Guillotin, Bruno; Bécard, Guillaume; Combier, Jean-Philippe

    2017-01-11

    Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Protective potential of royal jelly against cadmium-induced infertility in male rats.

    PubMed

    Ahmed, Mohamed M; El-Shazly, Samir A; Alkafafy, Mohamed E; Mohamed, Alaa A; Mousa, Ahmed A

    2018-06-01

    This study aimed to investigate the protective potential of Royal jelly (RJ) against cadmium (Cd)-induced testicular dysfunction in rats. Thirty-five adult male Wistar rats were assigned into five groups. G I; (control) injected intraperitoneally with saline, G II injected intraperitoneally with a single dose of CdCl 2 (1 mg/kg BW), G III received RJ (100 mg/kg BW/day) orally, G IV was pre-treated with RJ for 1 week then, treated with CdCl 2 , and G V was co-treated with RJ and CdCl 2 . After day 56, serum and tissue samples were collected and analysed. The results showed decreased serum testosterone, luteinising hormone (LH), follicle-stimulating hormone (FSH), superoxide dismutase, glutathione reductase, sperm motility and count while increased malondialdehyde, nitric oxide, tumour necrosis factor-α (TNF-α) and sperm abnormalities, along with a severely damaged seminiferous tubules epithelium with cytoplasmic and nuclear disruptions following Cd toxicity. Additionally, Cd stimulated testicular mRNA expression of TNF-α while inhibited those of steroidogenic acute regulatory protein, cytochrome P450 cholesterol side chain cleavage enzyme androgen binding protein, FSH-receptor, LH-receptor, androgen receptor, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and cytochrome P450 17A1. These negative alterations of cadmium were greatly reduced by RJ treatment. This study concluded that RJ protects against Cd-induced testicular toxicity. © 2018 Blackwell Verlag GmbH.

  20. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage

    PubMed Central

    Dai, Weijun; Zhang, Gen; Makeyev, Eugene V.

    2012-01-01

    RNA-binding protein HuR modulates the stability and translational efficiency of messenger RNAs (mRNAs) encoding essential components of the cellular proliferation, growth and survival pathways. Consistent with these functions, HuR levels are often elevated in cancer cells and reduced in senescent and quiescent cells. However, the molecular mechanisms that control HuR expression are poorly understood. Here we show that HuR protein autoregulates its abundance through a negative feedback loop that involves interaction of the nuclear HuR protein with a GU-rich element (GRE) overlapping with the HuR major polyadenylation signal (PAS2). An increase in the cellular HuR protein levels stimulates the expression of long HuR mRNA species containing an AU-rich element (ARE) that destabilizes the mRNAs and thus reduces the protein production output. The PAS2 read-through occurs due to a reduced recruitment of the CstF-64 subunit of the pre-mRNA cleavage stimulation factor in the presence of the GRE-bound HuR. We propose that this mechanism maintains HuR homeostasis in proliferating cells. Since only the nuclear HuR is expected to contribute to the auto-regulation, our model may explain the longstanding observation that the increase in the total HuR expression in cancer cells often correlates with the accumulation of its substantial fraction in the cytoplasm. PMID:21948791

  1. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage.

    PubMed

    Dai, Weijun; Zhang, Gen; Makeyev, Eugene V

    2012-01-01

    RNA-binding protein HuR modulates the stability and translational efficiency of messenger RNAs (mRNAs) encoding essential components of the cellular proliferation, growth and survival pathways. Consistent with these functions, HuR levels are often elevated in cancer cells and reduced in senescent and quiescent cells. However, the molecular mechanisms that control HuR expression are poorly understood. Here we show that HuR protein autoregulates its abundance through a negative feedback loop that involves interaction of the nuclear HuR protein with a GU-rich element (GRE) overlapping with the HuR major polyadenylation signal (PAS2). An increase in the cellular HuR protein levels stimulates the expression of long HuR mRNA species containing an AU-rich element (ARE) that destabilizes the mRNAs and thus reduces the protein production output. The PAS2 read-through occurs due to a reduced recruitment of the CstF-64 subunit of the pre-mRNA cleavage stimulation factor in the presence of the GRE-bound HuR. We propose that this mechanism maintains HuR homeostasis in proliferating cells. Since only the nuclear HuR is expected to contribute to the auto-regulation, our model may explain the longstanding observation that the increase in the total HuR expression in cancer cells often correlates with the accumulation of its substantial fraction in the cytoplasm.

  2. A comparative study of matrix metalloproteinase and aggrecanase mediated release of latent cytokines at arthritic joints.

    PubMed

    Mullen, Lisa; Adams, Gill; Foster, Julie; Vessillier, Sandrine; Köster, Mario; Hauser, Hansjörg; Layward, Lorna; Gould, David; Chernajovsky, Yuti

    2014-09-01

    Latent cytokines are engineered by fusing the latency associated peptide (LAP) derived from transforming growth factor-β (TGF-β) with the therapeutic cytokine, in this case interferon-β (IFN-β), via an inflammation-specific matrix metalloproteinase (MMP) cleavage site. To demonstrate latency and specific delivery in vivo and to compare therapeutic efficacy of aggrecanase-mediated release of latent IFN-β in arthritic joints to the original MMP-specific release. Recombinant fusion proteins with MMP, aggrecanase or devoid of cleavage site were expressed in CHO cells, purified and characterised in vitro by Western blotting and anti-viral protection assays. Therapeutic efficacy and half-life were assessed in vivo using the mouse collagen-induced arthritis model (CIA) of rheumatoid arthritis and a model of acute paw inflammation, respectively. Transgenic mice with an IFN-regulated luciferase gene were used to assess latency in vivo and targeted delivery to sites of disease. Efficient localised delivery of IFN-β to inflamed paws, with low levels of systemic delivery, was demonstrated in transgenic mice using latent IFN-β. Engineering of latent IFN-β with an aggrecanase-sensitive cleavage site resulted in efficient cleavage by ADAMTS-4, ADAMTS-5 and synovial fluid from arthritic patients, with an extended half-life similar to the MMP-specific molecule and greater therapeutic efficacy in the CIA model. Latent cytokines require cleavage in vivo for therapeutic efficacy, and they are delivered in a dose dependent fashion only to arthritic joints. The aggrecanase-specific cleavage site is a viable alternative to the MMP cleavage site for the targeting of latent cytokines to arthritic joints. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Regulation of macrophage migration by products of the complement system.

    PubMed Central

    Bianco, C; Götze, O; Cohn, Z A

    1979-01-01

    Agents formerly shown to induce rapid macrophage spreading were examined for their ability to modify the migration of macrophages in the capillary tube assay. Products of the activation of the contact phase of blood coagulation as well as the purified component Bb, the large cleavage fragment of factor B of the alternative complement pathway produced a dose-dependent inhibition of migration. In addition, inflammatory macrophages elicited with either a lipopolysaccharide endotoxin or thioglycollate medium exhibited rapid spreading and inhibited migration, whereas resident cells did not. A close correlation existed, therefore, between enhanced spreading and inhibited migration under both in vitro induced and in vivo situations. Cleavage products of component C5 of the classical complement pathway enhanced macrophage migration and did not alter spreading. In mixtures of C5 cleavage products and Bb, the predominant peptide determined the outcome of the reaction. Factor B, a normal secretory product of macrophages, may represent a common substrate for several of the proteases that induce spreading, inhibit migration, and lead to the generation of the enzymatically active fragment Bb. PMID:284412

  4. Trypsin cleavage of the baculovirus occlusion-derived virus attachment protein P74 is prerequisite in per os infection.

    PubMed

    Slack, Jeffrey M; Lawrence, Susan D; Krell, Peter J; Arif, Basil M

    2008-10-01

    Baculovirus occlusion-derived virions (ODVs) contain a number of infectivity factors essential for the initiation of infection in larval midgut cells. Deletion of any of these factors neutralizes infectivity by the per os route. We have observed that P74 of the group I alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is N-terminally cleaved when a soluble form of the protein was incubated with insect midgut tissues under alkaline conditions and that cleavage was prevented by soybean trypsin inhibitor (SBTI). Presently, biological assays were carried out that suggest SBTI inhibits and trypsin enhances baculovirus per os infectivity. We developed a method to rescue per os infectivity of a P74 null virus involving co-transfection of viral DNA with a plasmid that transiently expresses p74. We used this plasmid rescue method to functionally characterize P74. A series of site-directed mutants were generated at the N terminus to evaluate if trypsin cleavage sites were necessary for function. Mutagenesis of R195, R196 and R199 compromised per os infectivity and rendered P74 resistant to midgut trypsin.

  5. Investigation of the mechanism of meiotic DNA cleavage by VMA1-derived endonuclease uncovers a meiotic alteration in chromatin structure around the target site.

    PubMed

    Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu

    2006-06-01

    VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation.

  6. Investigation of the Mechanism of Meiotic DNA Cleavage by VMA1-Derived Endonuclease Uncovers a Meiotic Alteration in Chromatin Structure around the Target Site

    PubMed Central

    Fukuda, Tomoyuki; Ohta, Kunihiro; Ohya, Yoshikazu

    2006-01-01

    VMA1-derived endonuclease (VDE), a homing endonuclease in Saccharomyces cerevisiae, is encoded by the mobile intein-coding sequence within the nuclear VMA1 gene. VDE recognizes and cleaves DNA at the 31-bp VDE recognition sequence (VRS) in the VMA1 gene lacking the intein-coding sequence during meiosis to insert a copy of the intein-coding sequence at the cleaved site. The mechanism underlying the meiosis specificity of VMA1 intein-coding sequence homing remains unclear. We studied various factors that might influence the cleavage activity in vivo and found that VDE binding to the VRS can be detected only when DNA cleavage by VDE takes place, implying that meiosis-specific DNA cleavage is regulated by the accessibility of VDE to its target site. As a possible candidate for the determinant of this accessibility, we analyzed chromatin structure around the VRS and revealed that local chromatin structure near the VRS is altered during meiosis. Although the meiotic chromatin alteration exhibits correlations with DNA binding and cleavage by VDE at the VMA1 locus, such a chromatin alteration is not necessarily observed when the VRS is embedded in ectopic gene loci. This suggests that nucleosome positioning or occupancy around the VRS by itself is not the sole mechanism for the regulation of meiosis-specific DNA cleavage by VDE and that other mechanisms are involved in the regulation. PMID:16757746

  7. The caspase-generated cleavage product of Ets-1 p51 and Ets-1 p27, Cp17, induces apoptosis.

    PubMed

    Choul-Li, Souhaila; Tulasne, David; Aumercier, Marc

    2016-11-04

    The transcription factor Ets-1 is involved in various physiological processes and invasive pathologies. Human Ets-1 exists under three isoforms: p51, the predominant full-length isoform, p42 and p27, shorter alternatively spliced isoforms. We have previously demonstrated that Ets-1 p51, but not the spliced variant Ets-1 p42, is processed by caspases in vitro and during apoptosis. However, the caspase cleavage of the second spliced variant Ets-1 p27 remains to investigate. In the present study, we demonstrate that Ets-1 p27 is a cleavage substrate of caspases. We show that Ets-1 p27 is processed in vitro by caspase-3, resulting in three C-terminal fragments Cp20, Cp17 and Cp14. Similarly, Ets-1 p27 was cleaved during apoptotic cell death induced by anisomycin, producing fragments consistent with those observed in in vitro cleavage assay. These fragments are generated by cleavage at three sites located in the exon VII-encoded region of Ets-1 p27. As a functional consequences, Cp17 fragment, the major cleavage product generated during apoptosis, induced itself apoptosis when transfected into cells. Our results show that Ets-1 p27 is cleaved in the same manner as Ets-1 p51 within the exon VII-encoded region, thus generating a stable C-terminal fragment that induces cell death by initiating apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Metallurgical Aspects of Layered Cracks in Hot-Rolled Plates

    NASA Astrophysics Data System (ADS)

    Farber, V. M.; Arabey, A. B.; Khotinov, V. A.; Morozova, A. N.; Karabanalov, M. S.

    2018-03-01

    The nature of separations arising in hot-rolled plates from high-toughness steels of the new generation like 05G2B and of cleavages arising in traditional building steels of type 09G2S is studied. Like and unlike features of separations and cleavages are determined. The concept of "critical stress σb^{cr} " describing the strength of the interlayer boundaries responsible for formation of layered cracks is used to analyze various factors responsible for the susceptibility of rolled plates to layered fracture.

  9. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  10. Initial observation of potential factors involved in the specification process of oral-aboral axis in the sand dollar Scaphechinus mirabilis.

    PubMed

    Satoh, Kanehide; Kominami, Tetsuya

    2008-10-01

    To elucidate factors involved in the oral-aboral axis specification, several observations and experiments were undertaken using the sand dollar Scaphechinus mirabilis. Unlike in Strongylcentrotus purpuratus, localization of mitochondria was not detected in unfertilized eggs. After fertilization, however, the bulk of mitochondria became localized to the opposite side of sperm entry. The first cleavage divided this mitochondrial cluster into daughter blastomeres. On the other hand, a second cleavage produced daughter blastomeres containing quite different amounts of mitochondria. To know whether such mitochondrial localization affects the oral-aboral axis specification, 4-cell-stage embryos were separated along the second cleavage plane. Although both half embryos developed into morphologically normal plutei, some differences, such as the number of pigment cells, were noticed between the siblings. In contrast, cell tracing revealed that the first cleavage separated the oral from the aboral part in most cases, indicating that the unequal distribution of mitochondria is not critical for the oral-aboral axis specification. Further, stained and non-stained half embryo fragments were combined. Such combined embryos developed into normal plutei with a single oral-aboral axis. The plane dividing labeled and non-labeled parts were incident, oblique or perpendicular to the median plane of the combined embryo, and the appearance frequencies of those labeling patterns were similar to those obtained by cell tracing in intact embryos. Interestingly, the half fragments derived from embryos inseminated earlier showed a tendency to form the oral part. These suggest that several factors as well as the localized cytoplasmic components would be involved in the specification process of oral-aboral axis.

  11. Characterization of a high-spin non-heme Fe(III)-OOH intermediate and its quantitative conversion to an Fe(IV)═O complex.

    PubMed

    Li, Feifei; Meier, Katlyn K; Cranswick, Matthew A; Chakrabarti, Mrinmoy; Van Heuvelen, Katherine M; Münck, Eckard; Que, Lawrence

    2011-05-18

    We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted. © 2011 American Chemical Society

  12. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system.

    PubMed

    Liu, Xiaoxi; Homma, Ayaka; Sayadi, Jamasb; Yang, Shu; Ohashi, Jun; Takumi, Toru

    2016-01-27

    The CRISPR-Cas9 system has recently emerged as a versatile tool for biological and medical research. In this system, a single guide RNA (sgRNA) directs the endonuclease Cas9 to a targeted DNA sequence for site-specific manipulation. In addition to this targeting function, the sgRNA has also been shown to play a role in activating the endonuclease activity of Cas9. This dual function of the sgRNA likely underlies observations that different sgRNAs have varying on-target activities. Currently, our understanding of the relationship between sequence features of sgRNAs and their on-target cleavage efficiencies remains limited, largely due to difficulties in assessing the cleavage capacity of a large number of sgRNAs. In this study, we evaluated the cleavage activities of 218 sgRNAs using in vitro Surveyor assays. We found that nucleotides at both PAM-distal and PAM-proximal regions of the sgRNA are significantly correlated with on-target efficiency. Furthermore, we also demonstrated that the genomic context of the targeted DNA, the GC percentage, and the secondary structure of sgRNA are critical factors contributing to cleavage efficiency. In summary, our study reveals important parameters for the design of sgRNAs with high on-target efficiencies, especially in the context of high throughput applications.

  13. Vaccination of rhesus macaques with the anthrax vaccine adsorbed vaccine produces a serum antibody response that effectively neutralizes receptor-bound protective antigen in vitro.

    PubMed

    Clement, Kristin H; Rudge, Thomas L; Mayfield, Heather J; Carlton, Lena A; Hester, Arelis; Niemuth, Nancy A; Sabourin, Carol L; Brys, April M; Quinn, Conrad P

    2010-11-01

    Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.

  14. VPS34 stimulation of p62 phosphorylation for cancer progression.

    PubMed

    Jiang, X; Bao, Y; Liu, H; Kou, X; Zhang, Z; Sun, F; Qian, Z; Lin, Z; Li, X; Liu, X; Jiang, L; Yang, Y

    2017-12-14

    Vps34, a class III PtdIns3 lipid kinase involved in the control of both autophagic and endocytic systems, has been studied extensively in numerous fundamental cellular processes. Accumulating evidence indicates that Vps34 may also contribute to the development and progression of human cancers. However, the mechanism of Vps34 in tumorigenesis remains elusive. Here, we report an unanticipated role of Vps34 in the activation of p62 for cancer development. We identified that Vps34 is a transcriptional activator of p62 through competition of Nrf2 (nuclear factor erythroid 2-related factor 2) for Keap1 binding. Vps34 augments the association of PKC-δ with p62 for its phosphorylation at Serine 349, which leads to positive feedback on the Nrf2-dependent transcription of oncogenes. Additionally, we found that the expression of Vps34 is correlated with the tumorigenic activity of human breast cancer cells. Normally inactive in breast cancer, caspase 8 can cleave Vps34 at residue D285, which directly abolished its lipid kinase activity and dramatically altered cell invasion potential, colony formation, as well as tumorigenesis in orthotopic engraftments in mice. The cleavage at D285 blocks expression of LC3-II, Nrf2 and subsequently, p62, in addition to blocking tumor growth, indicating that the intact structure of Vps34 is essential for its activity. Moreover, either knockout of PKC-δ or knockdown of p62 by small interfering RNA in MCF-7 cells abrogates Vps34-dependent tumor growth. Data presented here suggested that Vps34 stimulates tumor development mainly through PKC-δ- activation of p62.

  15. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons.

    PubMed

    Hendrickson, Peter G; Doráis, Jessie A; Grow, Edward J; Whiddon, Jennifer L; Lim, Jong-Won; Wike, Candice L; Weaver, Bradley D; Pflueger, Christian; Emery, Benjamin R; Wilcox, Aaron L; Nix, David A; Peterson, C Matthew; Tapscott, Stephen J; Carrell, Douglas T; Cairns, Bradley R

    2017-06-01

    To better understand transcriptional regulation during human oogenesis and preimplantation development, we defined stage-specific transcription, which highlighted the cleavage stage as being highly distinctive. Here, we present multiple lines of evidence that a eutherian-specific multicopy retrogene, DUX4, encodes a transcription factor that activates hundreds of endogenous genes (for example, ZSCAN4, KDM4E and PRAMEF-family genes) and retroviral elements (MERVL/HERVL family) that define the cleavage-specific transcriptional programs in humans and mice. Remarkably, mouse Dux expression is both necessary and sufficient to convert mouse embryonic stem cells (mESCs) into 2-cell-embryo-like ('2C-like') cells, measured here by the reactivation of '2C' genes and repeat elements, the loss of POU5F1 (also known as OCT4) protein and chromocenters, and the conversion of the chromatin landscape (as assessed by transposase-accessible chromatin using sequencing (ATAC-seq)) to a state strongly resembling that of mouse 2C embryos. Thus, we propose mouse DUX and human DUX4 as major drivers of the cleavage or 2C state.

  16. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites.

    PubMed

    Jenal, Mathias; Elkon, Ran; Loayza-Puch, Fabricio; van Haaften, Gijs; Kühn, Uwe; Menzies, Fiona M; Oude Vrielink, Joachim A F; Bos, Arnold J; Drost, Jarno; Rooijers, Koos; Rubinsztein, David C; Agami, Reuven

    2012-04-27

    Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1 resulted in extensive 3' untranslated region shortening. Messenger RNA transcription, stability analyses, and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites (CSs) as the underlying mechanism. Using Cyclin D1 as a test case, we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression. Triplet-repeat expansion in PABPN1 (trePABPN1) causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD). The expression of trePABPN1 in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage, linked to binding to endogenous PABPN1 and its sequestration in nuclear aggregates. Our results elucidate a novel function for PABPN1 as a suppressor of APA. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium.

    PubMed

    Khan, Muhammad Imran; Lee, Jaejin; Yoo, Keunje; Kim, Seonghoon; Park, Joonhong

    2015-12-30

    In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility

    PubMed Central

    Dass, Brinda; Tardif, Steve; Park, Ji Yeon; Tian, Bin; Weitlauf, Harry M.; Hess, Rex A.; Carnes, Kay; Griswold, Michael D.; Small, Christopher L.; MacDonald, Clinton C.

    2007-01-01

    Polyadenylation, the process of eukaryotic mRNA 3′ end formation, is essential for gene expression and cell viability. Polyadenylation of male germ cell mRNAs is unusual, exhibiting increased alternative polyadenylation, decreased AAUAAA polyadenylation signal use, and reduced downstream sequence element dependence. CstF-64, the RNA-binding component of the cleavage stimulation factor (CstF), interacts with pre-mRNAs at sequences downstream of the cleavage site. In mammalian testes, meiotic XY-body formation causes suppression of X-linked CstF-64 expression during pachynema. Consequently, an autosomal paralog, τCstF-64 (gene name Cstf2t), is expressed during meiosis and subsequent haploid differentiation. Here we show that targeted disruption of Cstf2t in mice causes aberrant spermatogenesis, specifically disrupting meiotic and postmeiotic development, resulting in male infertility resembling oligoasthenoteratozoospermia. Furthermore, the Cstf2t mutant phenotype displays variable expressivity such that spermatozoa show a broad range of defects. The overall phenotype is consistent with a requirement for τCstF-64 in spermatogenesis as indicated by the significant changes in expression of thousands of genes in testes of Cstf2t−/− mice as measured by microarray. Our results indicate that, although the infertility in Cstf2t−/− males is due to low sperm count, multiple genes controlling many aspects of germ-cell development depend on τCstF-64 for their normal expression. Finally, these transgenic mice provide a model for the study of polyadenylation in an isolated in vivo system and highlight the role of a growing family of testis-expressed autosomal retroposed variants of X-linked genes. PMID:18077340

  19. Association of CD30 transcripts with Th1 responses and proinflammatory cytokines in patients with end-stage renal disease.

    PubMed

    Velásquez, Sonia Y; Opelz, Gerhard; Rojas, Mauricio; Süsal, Caner; Alvarez, Cristiam M

    2016-05-01

    High serum sCD30 levels are associated with inflammatory disorders and poor outcome in renal transplantation. The contribution to these phenomena of transcripts and proteins related to CD30-activation and -cleavage is unknown. We assessed in peripheral blood of end-stage renal disease patients (ESRDP) transcripts of CD30-activation proteins CD30 and CD30L, CD30-cleavage proteins ADAM10 and ADAM17, and Th1- and Th2-type immunity-related factors t-bet and GATA3. Additionally, we evaluated the same transcripts and release of sCD30 and 32 cytokines after allogeneic and polyclonal T-cell activation. In peripheral blood, ESRDP showed increased levels of t-bet and GATA3 transcripts compared to healthy controls (HC) (both P<0.01) whereas levels of CD30, CD30L, ADAM10 and ADAM17 transcripts were similar. Polyclonal and allogeneic stimulation induced higher levels of CD30 transcripts in ESRDP than in HC (both P<0.001). Principal component analysis (PCA) in allogeneic cultures of ESRDP identified two correlation clusters, one consisting of sCD30, the Th-1 cytokine IFN-γ, MIP-1α, RANTES, sIL-2Rα, MIP-1β, TNF-β, MDC, GM-CSF and IL-5, and another one consisting of CD30 and t-bet transcripts, IL-13 and proinflammatory proteins IP-10, IL-8, IL-1Rα and MCP-1. Reflecting an activated immune state, ESRDP exhibited after allostimulation upregulation of CD30 transcripts in T cells, which was associated with Th1 and proinflammatory responses. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  20. Collagen Type I Selectively Activates Ectodomain Shedding of the Discoidin Domain Receptor 1: Involvement of Src Tyrosine Kinase

    PubMed Central

    Slack, Barbara E.; Siniaia, Marina S.; Blusztajn, Jan K.

    2008-01-01

    The discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that is highly expressed in breast carcinoma cells. Upon binding to collagen, DDR1 undergoes autophosphorylation followed by limited proteolysis to generate a tyrosine phosphorylated C-terminal fragment (CTF). Although it was postulated that this fragment is formed as a result of shedding of the N-terminal ectodomain, collagen-dependent release of the DDR1 extracellular domain has not been demonstrated. We now report that, in conjunction with CTF formation, collagen type I stimulates concentration-dependent, saturable shedding of the DDR1 ectodomain from two carcinoma cell lines, and from transfected cells. In contrast, collagen did not promote cleavage of other transmembrane proteins including the amyloid precursor protein (APP), ErbB2, and E-cadherin. Collagen-dependent tyrosine phosphorylation and proteolysis of DDR1 in carcinoma cells were reduced by a pharmacologic Src inhibitor. Moreover, expression of a dominant negative Src mutant protein in human embryonic kidney cells inhibited collagen-dependent phosphorylation and shedding of co-transfected DDR1. The hydroxamate-based metalloproteinase inhibitor TAPI-1 (tumor necrosis factor-α protease inhibitor-1), and tissue inhibitor of metalloproteinase (TIMP)-3, also blocked collagen-evoked DDR1 shedding, but did not reduce levels of the phosphorylated CTF. Neither shedding nor CTF formation were affected by the γ-secretase inhibitor, L-685,458. The results demonstrate that collagen-evoked ectodomain cleavage of DDR1 is mediated in part by Src-dependent activation or recruitment of a matrix- or disintegrin metalloproteinase, and that CTF formation can occur independently of ectodomain shedding. Delayed shedding of the DDR1 ectodomain may represent a mechanism that limits DDR1-dependent cell adhesion and migration on collagen matrices. PMID:16440311

  1. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  2. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  3. Mechanism of poliovirus inactivation by ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.

    1978-05-01

    Poliovirus inactivation by ammonia causes a slight reduction in the sedimentation coefficients of viral particles, but has no detectable effect on either the electrophoretic pattern of viral capsid proteins or the isoelectric points of inactivated particles. These virions still attach to cells, but are unable to repress host translation or stimulate the synthesis of detectable amounts of viral RNA. Although ammonia has no detectable effect on naked poliovirus RNA, it causes cleavage of this RNA when still within viral particles. Therefore, the RNA genome appears to be the only component of poliovirus significantly affected by ammonia.

  4. Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

    PubMed Central

    Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin

    2015-01-01

    Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188

  5. Novel Family of Insect Salivary Inhibitors Blocks Contact Pathway Activation by Binding to Polyphosphate, Heparin, and Dextran Sulfate

    PubMed Central

    Alvarenga, Patricia H.; Xu, Xueqing; Oliveira, Fabiano; Chagas, Andrezza C.; Nascimento, Clarissa R.; Francischetti, Ivo M.B.; Juliano, Maria A.; Juliano, Luiz; Scharfstein, Julio; Valenzuela, Jesus G.; Ribeiro, José M.C.; Andersen, John F.

    2014-01-01

    Objective Polyphosphate and heparin are anionic polymers released by activated mast cells and platelets that are known to stimulate the contact pathway of coagulation. These polymers promote both the autoactivation of factor XII and the assembly of complexes containing factor XI, prekallikrein, and high-molecular-weight kininogen. We are searching for salivary proteins from blood-feeding insects that counteract the effect of procoagulant and proinflammatory factors in the host, including elements of the contact pathway. Approach and Results Here, we evaluate the ability of the sand fly salivary proteins, PdSP15a and PdSP15b, to inhibit the contact pathway by disrupting binding of its components to anionic polymers. We attempt to demonstrate binding of the proteins to polyphosphate, heparin, and dextran sulfate. We also evaluate the effect of this binding on contact pathway reactions. We also set out to determine the x-ray crystal structure of PdSP15b and examine the determinants of relevant molecular interactions. Both proteins bind polyphosphate, heparin, and dextran sulfate with high affinity. Through this mechanism they inhibit the autoactivation of factor XII and factor XI, the reciprocal activation of factor XII and prekallikrein, the activation of factor XI by thrombin and factor XIIa, the cleavage of high-molecular-weight kininogen in plasma, and plasma extravasation induced by polyphosphate. The crystal structure of PdSP15b contains an amphipathic helix studded with basic side chains that forms the likely interaction surface. Conclusions The results of these studies indicate that the binding of anionic polymers by salivary proteins is used by blood feeders as an antihemostatic/anti-inflammatory mechanism. PMID:24092749

  6. The Anthrax Protective Antigen (PA63) Bound Conformation of a Peptide Inhibitor of the Binding of Lethal Factor to PA63: As Determined by trNOESY NMR and Molecular Modelling

    DTIC Science & Technology

    2004-01-01

    cleavage site for the furin protease.1 due to the formation of black skin lesions.1 The name Domain 2 is involved in pore formation and contains a now...the binding protomer, which proteolytic cleavage by furin , or a furin -like protease, interacts with a toxin-specific receptor located on the at a...How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000, 82, 427- 446. (4) Swaminathan , S.; Eswaramoorthy, S. Structural

  7. 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori

    PubMed Central

    Wang, Yuancheng; Wang, Feng; Wang, Riyuan; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Fundamental and applied studies of silkworms have entered the functional genomics era. Here, we report a multi-gene expression system (MGES) based on 2A self-cleaving peptide (2A), which regulates the simultaneous expression and cleavage of multiple gene targets in the silk gland of transgenic silkworms. First, a glycine-serine-glycine spacer (GSG) was found to significantly improve the cleavage efficiency of 2A. Then, the cleavage efficiency of six types of 2As with GSG was analyzed. The shortest porcine teschovirus-1 2A (P2A-GSG) exhibited the highest cleavage efficiency in all insect cell lines that we tested. Next, P2A-GSG successfully cleaved the artificial human serum albumin (66 kDa) linked with human acidic fibroblast growth factor (20.2 kDa) fusion genes and vitellogenin receptor fragment (196 kD) of silkworm linked with EGFP fusion genes, importantly, vitellogenin receptor protein was secreted to the outside of cells. Furthermore, P2A-GSG successfully mediated the simultaneous expression and cleavage of a DsRed and EGFP fusion gene in silk glands and caused secretion into the cocoon of transgenic silkworms using our sericin1 expression system. We predicted that the MGES would be an efficient tool for gene function research and innovative research on various functional silk materials in medicine, cosmetics, and other biomedical areas. PMID:26537835

  8. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    PubMed

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  9. Custom-Designed Molecular Scissors for Site-Specific Manipulation of the Plant and Mammalian Genomes

    NASA Astrophysics Data System (ADS)

    Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    Zinc finger nucleases (ZFNs) are custom-designed molecular scissors, engineered to cut at specific DNA sequences. ZFNs combine the zinc finger proteins (ZFPs) with the nonspecific cleavage domain of the FokI restriction enzyme. The DNA-binding specificity of ZFNs can be easily altered experimentally. This easy manipulation of the ZFN recognition specificity enables one to deliver a targeted double-strand break (DSB) to a genome. The targeted DSB stimulates local gene targeting by several orders of magnitude at that specific cut site via homologous recombination (HR). Thus, ZFNs have become an important experimental tool to make site-specific and permanent alterations to genomes of not only plants and mammals but also of many other organisms. Engineering of custom ZFNs involves many steps. The first step is to identify a ZFN site at or near the chosen chromosomal target within the genome to which ZFNs will bind and cut. The second step is to design and/or select various ZFP combinations that will bind to the chosen target site with high specificity and affinity. The DNA coding sequence for the designed ZFPs are then assembled by polymerase chain reaction (PCR) using oligonucleotides. The third step is to fuse the ZFP constructs to the FokI cleavage domain. The ZFNs are then expressed as proteins by using the rabbit reticulocyte in vitro transcription/translation system and the protein products assayed for their DNA cleavage specificity.

  10. Influenza virus site recognized by a murine helper T cell specific for H1 strains. Localization to a nine amino acid sequence in the hemagglutinin molecule.

    PubMed

    Hackett, C J; Dietzschold, B; Gerhard, W; Ghrist, B; Knorr, R; Gillessen, D; Melchers, F

    1983-08-01

    The functional helper T cell line Vir-2, derived from a PR8 (H1N1) influenza virus-immunized BALB/c mouse, proliferates in response to syngeneic antigen-presenting cells and naturally occurring strains of subtype H1 human influenza virus from 1934-1957 and 1977-1980 isolates. A conserved region of the hemagglutinin molecule around amino acid position 115 in the heavy chain (HA1) was implicated as being important in this recognition by the lack of stimulatory activity associated with a glutamic acid to lysine substitution at position 115 in the laboratory mutant RV6, derived from wild-type PR8. Characterization of the stimulatory determinant on the wild-type hemagglutinin molecule was then undertaken using cleavage products and synthetic peptides. Vir-2 cells recognized the reduced and alkylated purified HA1 of PR8 virus, and this reactivity was retained after cleavage at methionine and tryptophan residues. High-pressure liquid chromatography separation of cleavage fragments indicated that a short sequence of the HA1 containing residue 115 was being recognized. This recognition was localized to a nine amino acid segment (positions 111-119) by assaying stimulation with synthetic peptide homologues of different lengths from that region. As with native hemagglutinin, Vir-2 cells responded to active peptides when presented by H-2d but not H-2k antigen-presenting cells.

  11. Multilayer regulatory mechanisms control cleavage factor I proteins in filamentous fungi

    PubMed Central

    Rodríguez-Romero, J.; Franceschetti, M.; Bueno, E.; Sesma, A.

    2015-01-01

    Cleavage factor I (CFI) proteins are core components of the polyadenylation machinery that can regulate several steps of mRNA life cycle, including alternative polyadenylation, splicing, export and decay. Here, we describe the regulatory mechanisms that control two fungal CFI protein classes in Magnaporthe oryzae: Rbp35/CfI25 complex and Hrp1. Using mutational, genetic and biochemical studies we demonstrate that cellular concentration of CFI mRNAs is a limited indicator of their protein abundance. Our results suggest that several post-transcriptional mechanisms regulate Rbp35/CfI25 complex and Hrp1 in the rice blast fungus, some of which are also conserved in other ascomycetes. With respect to Rbp35, these include C-terminal processing, RGG-dependent localization and cleavage, C-terminal autoregulatory domain and regulation by an upstream open reading frame of Rbp35-dependent TOR signalling pathway. Our proteomic analyses suggest that Rbp35 regulates the levels of proteins involved in melanin and phenylpropanoids synthesis, among others. The drastic reduction of fungal CFI proteins in carbon-starved cells suggests that the pre-mRNA processing pathway is altered. Our findings uncover broad and multilayer regulatory mechanisms controlling fungal polyadenylation factors, which have profound implications in pre-mRNA maturation. This area of research offers new avenues for fungicide design by targeting fungal-specific proteins that globally affect thousands of mRNAs. PMID:25514925

  12. Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK-TBK1-IKKε-IRF3 complex.

    PubMed

    Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui; Cui, Shangjin; Li, Jiangnan; Weng, Changjiang

    2017-06-09

    TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. © 2017 The Author(s).

  13. Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK–TBK1–IKKε–IRF3 complex

    PubMed Central

    Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui

    2017-01-01

    TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)–(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK–TBK1–IKKε–IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. PMID:28487378

  14. Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage.

    PubMed

    Bronner, Denise N; Abuaita, Basel H; Chen, Xiaoyun; Fitzgerald, Katherine A; Nuñez, Gabriel; He, Yongqun; Yin, Xiao-Ming; O'Riordan, Mary X D

    2015-09-15

    Endoplasmic reticulum (ER) stress is observed in many human diseases, often associated with inflammation. ER stress can trigger inflammation through nucleotide-binding domain and leucine-rich repeat containing (NLRP3) inflammasome, which might stimulate inflammasome formation by association with damaged mitochondria. How ER stress triggers mitochondrial dysfunction and inflammasome activation is ill defined. Here we have used an infection model to show that the IRE1α ER stress sensor regulates regulated mitochondrial dysfunction through an NLRP3-mediated feed-forward loop, independently of ASC. IRE1α activation increased mitochondrial reactive oxygen species, promoting NLRP3 association with mitochondria. NLRP3 was required for ER stress-induced cleavage of caspase-2 and the pro-apoptotic factor, Bid, leading to subsequent release of mitochondrial contents. Caspase-2 and Bid were necessary for activation of the canonical inflammasome by infection-associated or general ER stress. These data identify an NLRP3-caspase-2-dependent mechanism that relays ER stress to the mitochondria to promote inflammation, integrating cellular stress and innate immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Interallelic Complementation at the Suppressor of Forked Locus of Drosophila Reveals Complementation between Suppressor of Forked Proteins Mutated in Different Regions

    PubMed Central

    Simonelig, M.; Elliott, K.; Mitchelson, A.; O'Hare, K.

    1996-01-01

    The Su(f) protein of Drosophila melanogaster shares extensive homologies with proteins from yeast (RNA14) and man (77 kD subunit of cleavage stimulation factor) that are required for 3' end processing of mRNA. These homologies suggest that su(f) is involved in mRNA 3' end formation and that some aspects of this process are conserved throughout eukaryotes. We have investigated the genetic and molecular complexity of the su(f) locus. The su(f) gene is transcribed to produce three RNAs and could encode two proteins. Using constructs that contain different parts of the locus, we show that only the larger predicted gene product of 84 kD is required for the wild-type function of su(f). Some lethal alleles of su(f) complement to produce viable combinations. The structures of complementing and noncomplementing su(f) alleles indicate that 84-kD Su(f) proteins mutated in different domains can act in combination for partial su(f) function. Our results suggest protein-protein interaction between or within wild-type Su(f) molecules. PMID:8846900

  16. Simocyclinone D8, an inhibitor of DNA gyrase with a novel mode of action.

    PubMed

    Flatman, Ruth H; Howells, Alison J; Heide, Lutz; Fiedler, Hans-Peter; Maxwell, Anthony

    2005-03-01

    We have characterized the interaction of a new class of antibiotics, simocyclinones, with bacterial DNA gyrase. Even though their structures include an aminocoumarin moiety, a key feature of novobiocin, coumermycin A(1), and clorobiocin, which also target gyrase, simocyclinones behave strikingly differently from these compounds. Simocyclinone D8 is a potent inhibitor of gyrase supercoiling, with a 50% inhibitory concentration lower than that of novobiocin. However, it does not competitively inhibit the DNA-independent ATPase reaction of GyrB, which is characteristic of other aminocoumarins. Simocyclinone D8 also inhibits DNA relaxation by gyrase but does not stimulate cleavage complex formation, unlike quinolones, the other major class of gyrase inhibitors; instead, it abrogates both Ca(2+)- and quinolone-induced cleavage complex formation. Binding studies suggest that simocyclinone D8 interacts with the N-terminal domain of GyrA. Taken together, our results demonstrate that simocyclinones inhibit an early step of the gyrase catalytic cycle by preventing binding of the enzyme to DNA. This is a novel mechanism for a gyrase inhibitor and presents new possibilities for antibacterial drug development.

  17. Division of constricted and urethane-treated sand dollar eggs: a test of the polar stimulation hypothesis.

    PubMed

    Rappaport, R; Rappaport, B N

    1984-07-01

    In spherical cells with a central mitotic apparatus, the centers of the asters are closer to the poles than to the equator. This circumstance is basic to several hypothetical explanations of the way in which the mitotic apparatus establishes the division mechanism. This investigation was designed to determine whether that geometrical relationship is necessary for division. Fertilized, mechanically denuded sand dollar eggs were inserted into glass loops, which reduced the diameter in the constriction plane from the normal 142 to 78-80 microns and partly constricted the cell into equal parts. The mitotic apparatus straddled the constriction, and its length was not significantly changed. The manipulation increased the distance from the astral centers to the poles and decreased the distance from the astral centers to the equator to a degree that reversed the normal distance relations. These cells divided normally. Ethyl urethane (0.06 M) reduces the size of the mitotic apparatus and blocks cleavage in spherical cells. When treated cells are confined in 80-microns i.d. capillaries, they divide. Treated cells also divide when they are constricted by an 80-microns i.d. glass loop if the mitotic apparatus straddles the constriction. An equal degree of constriction in the subfurrow and subpolar areas did not reverse the effect of urethane. The results demonstrate that cleavage does not depend on the normal distance relation between the mitotic apparatus and the poles, and that the urethane effect can be remedied only by reducing the distance between the mitotic apparatus and the equatorial surface. Both findings are inconsistent with the polar stimulation hypothesis.

  18. 3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3

    PubMed Central

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R. Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-01-01

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)–mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1–RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3′ cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3′ cleavage fragment. When the 3′ nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3′ cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1–RISC via the double-stranded RNA formed by the 3′-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1–RISC molecular surface, (ii) SGS3 protects the 3′ cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3′ fragment of TAS2 RNA is key to tasiRNA production. PMID:23417299

  19. 3' fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3.

    PubMed

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-03-05

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)-mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1-RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3' cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3' cleavage fragment. When the 3' nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3' cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1-RISC via the double-stranded RNA formed by the 3'-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1-RISC molecular surface, (ii) SGS3 protects the 3' cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3' fragment of TAS2 RNA is key to tasiRNA production.

  20. 116 kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells.

    PubMed

    Ko, Jeong-Hyeon; Lee, Sei-Jung; Lim, Kye-Taek

    2005-09-14

    Ulmus davidiana Nakai (UDN) has been used in folk medicine for its anti-inflammatory activity. In the present study, we investigated the antiapoptotic effect of UDN glycoprotein in glucose/glucose oxidase (G/GO)-induced BNL CL.2 cells. To evaluate the antiapoptotic effect of UDN glycoprotein, experiments were carried out using Western blot analysis for nuclear factor-kappa B (NF-kappaB), caspase-3, and poly(ADP-ribose) polymerase (PARP). We also examined nitric oxide (NO) production and nuclear staining. When BNL CL.2 cells were treated with G/GO (50 mU/ml), viability of the cells was 54.1%. However, the number of living cells after the addition of UDN glycoprotein in the presence of G/GO increased. UDN glycoprotein protected from cell damage caused by G/GO. Interestingly, UDN glycoprotein decreased NF-kappaB activation and stimulated NO production in G/GO-induced BNL CL.2 cells. In apoptotic parameters, UDN glycoprotein inhibited activations of caspase-3 and PARP cleavage in G/GO-induced BNL CL.2 cells. The results of nuclear staining indicated that UDN glycoprotein (50 microg/ml) has a protective ability from apoptotic cell death caused G/GO (50 mU/ml). In conclusion, UDN glycoprotein has a protective effect on apoptosis induced by G/GO through the inhibition of NF-kappaB, caspase-3, and PARP activity, and the stimulation of NO production in BNL CL.2 cells.

  1. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma

    PubMed Central

    Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick; Ørtoft, Gitte; Vestergaard, Poul; Magnusson, Nils E.; Conover, Cheryl A.; Tramm, Trine; Hager, Henrik; Høgdall, Claus; Høgdall, Estrid; Oxvig, Claus; Frystyk, Jan

    2015-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P < 0.001). The majority (80%) of PAPP-A was enzymatically active. This is supported by the finding that ascites contained more cleaved than intact IGFBP-4 (P < 0.03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P < 0.05); in 8 of 22 patients by more than two-fold. In contrast, ascites contained similar levels of immunoreactive IGF-I, and lower levels of IGF-II (P < 0.001). Immunohistochemistry demonstrated the presence of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P < 0.05). In conclusion, human ovarian tumors express PAPP-A, IGFBP-4 and IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth. PMID:26336825

  2. A CONSTITUTIVELY ACTIVE FORM OF NEUROKININ 1 RECEPTOR AND NEUROKININ 1 RECEPTOR-MEDIATED APOPTOSIS IN GLIOBLASTOMAS

    PubMed Central

    Akazawa, Toshimasa; Kwatra, Shawn G.; Goldsmith, Laura E.; Richardson, Mark D.; Cox, Elizabeth A.; Sampson, John H.; Kwatra, Madan M.

    2009-01-01

    Previous studies have shown that neurokinin 1 receptor (NK1R) occurs naturally in human glioblastomas and its stimulation causes cell proliferation. In the present study we show that stimulation of NK1R in human U373 glioblastoma cells by substance P (SP) increases Akt phosphorylation by 2.5-fold, with an EC50 of 57 nM. Blockade of NK1R lowers basal phosphorylation of Akt, indicating the presence of a constitutively active form of NK1R; similar results are seen in U251 MG and DBTRG-05 glioblastoma cells. Linkage of NK1R to Akt implicates NK1R in apoptosis of glioblastoma cells. Indeed, treatment of serum-starved U373 cells with SP reduces apoptosis by 53 ± 1% (P < 0.05), and treatment with NK1R antagonist L-733,060 increases apoptosis by 64 ± 16 % (P < 0.01). Further, the blockade of NK1R in human glioblastoma cells with L-733,060 causes cleavage of Caspase-3 and proteolysis of poly (ADP-ribose) polymerase (PARP). Experiments designed to elucidate the mechanism of NK1R-mediated Akt phosphorylation revealed total involvement of non-receptor tyrosine kinase Src and PI-3-kinase, a partial involvement of epidermal growth factor receptor (EGFR), and no involvement of MEK. Taken together, the results of the present study indicate a key role for NK1R in glioblastoma apoptosis. PMID:19519779

  3. Identification and Mechanistic Analysis of a Novel Tick-Derived Inhibitor of Thrombin

    PubMed Central

    Jablonka, Willy; Kotsyfakis, Michalis; Mizurini, Daniella M.; Monteiro, Robson Q.; Lukszo, Jan; Drake, Steven K.; Ribeiro, José M. C.; Andersen, John F.

    2015-01-01

    A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic. PMID:26244557

  4. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  5. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to constructmore » an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.« less

  6. Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites

    PubMed Central

    Gratias, Ariane; Lepère, Gersende; Garnier, Olivier; Rosa, Sarah; Duharcourt, Sandra; Malinsky, Sophie; Meyer, Eric; Bétermier, Mireille

    2008-01-01

    Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants. PMID:18420657

  7. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  8. Mechanical Loading of Articular Cartilage Reduces IL-1-Induced Enzyme Expression

    PubMed Central

    Torzilli, P. A.; Bhargava, M.; Chen, C. T.

    2011-01-01

    Objective: Exposure of articular cartilage to interleukin-1 (IL-1) results in increased synthesis of matrix degrading enzymes. Previously mechanical load applied together with IL-1 stimulation was found to reduce aggrecan cleavage by ADAMTS-4 and 5 and MMP-1, -3, -9, and -13 and reduce proteoglycan loss from the extracellular matrix. To further delineate the inhibition mechanism the gene expression of ADAMTS-4 and 5; MMP-1, -3, -9, and -13; and TIMP-1, -2, and -3 were measured. Design: Mature bovine articular cartilage was stimulated with a 0.5 MPa compressive stress and 10 ng/ml of IL-1α for 3 days and then allowed to recover without stimulation for 1 additional day. The media was assayed for proteoglycan content on a daily basis, while chondrocyte gene expression (mRNA) was measured during stimulation and 1 day of recovery. Results: Mechanical load alone did not change the gene expression for ADAMTS, MMP, or TIMP. IL-1 caused an increase in gene expression for all enzymes after 1 day of stimulation while not affecting the TIMP levels. Load applied together with IL-1 decreased the expression levels of ADAMTS-4 and -5 and MMP-1 and -3 and increased TIMP-3 expression. Conclusions: A mechanical load appears to modify cartilage degradation by IL-1 at the cellular level by reducing mRNA. PMID:22039566

  9. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway.

    PubMed

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-05-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.

  10. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  11. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.

  12. DELAY OF CLEAVAGE OF THE ARBACIA EGG BY ULTRAVIOLET RADIATION

    PubMed Central

    Blum, Harold F.; Price, Judith P.

    1950-01-01

    While our data do not permit us to state the exact locus or mode of action of ultraviolet radiation in the Arbacia egg, certain general conclusions may be reached. The amount of delay of cleavage of these eggs is determined by two principal factors: (1) The extent of an effect, resulting from photochemical action induced by ultraviolet radiation, which is reversible in a biological sense, the reversibility not being directly dependent upon the process of cell division. (2) The sensitivity of the cell division process to the effects of the ultraviolet-induced photochemical reaction. This factor varies with the stage of cell division, the cell being insensitive during a period corresponding to most of mitosis. It seems likely that these findings may apply to cell division in general, but, since the quantitative relationships observed must, in this case, reflect the integration of two semi-independent factors, the over-all picture may appear quite different for different kinds of cells. PMID:15410486

  13. Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response

    PubMed Central

    Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J

    2016-01-01

    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231–1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process. PMID:27831555

  14. Promising System for Selecting Healthy In Vitro–Fertilized Embryos in Cattle

    PubMed Central

    Sugimura, Satoshi; Akai, Tomonori; Hashiyada, Yutaka; Somfai, Tamás; Inaba, Yasushi; Hirayama, Muneyuki; Yamanouchi, Tadayuki; Matsuda, Hideo; Kobayashi, Shuji; Aikawa, Yoshio; Ohtake, Masaki; Kobayashi, Eiji; Konishi, Kazuyuki; Imai, Kei

    2012-01-01

    Conventionally, in vitro–fertilized (IVF) bovine embryos are morphologically evaluated at the time of embryo transfer to select those that are likely to establish a pregnancy. This method is, however, subjective and results in unreliable selection. Here we describe a novel selection system for IVF bovine blastocysts for transfer that traces the development of individual embryos with time-lapse cinematography in our developed microwell culture dish and analyzes embryonic metabolism. The system can noninvasively identify prognostic factors that reflect not only blastocyst qualities detected with histological, cytogenetic, and molecular analysis but also viability after transfer. By assessing a combination of identified prognostic factors—(i) timing of the first cleavage; (ii) number of blastomeres at the end of the first cleavage; (iii) presence or absence of multiple fragments at the end of the first cleavage; (iv) number of blastomeres at the onset of lag-phase, which results in temporary developmental arrest during the fourth or fifth cell cycle; and (v) oxygen consumption at the blastocyst stage—pregnancy success could be accurately predicted (78.9%). The conventional method or individual prognostic factors could not accurately predict pregnancy. No newborn calves showed neonatal overgrowth or death. Our results demonstrate that these five predictors and our system could provide objective and reliable selection of healthy IVF bovine embryos. PMID:22590579

  15. Prodomain–growth factor swapping in the structure of pro-TGF-β1

    PubMed Central

    Xu, Shutong; Dong, Xianchi; Lu, Chafen; Springer, Timothy A.

    2018-01-01

    TGF-β is synthesized as a proprotein that dimerizes in the endoplasmic reticulum. After processing in the Golgi to cleave the N-terminal prodomain from the C-terminal growth factor (GF) domain in each monomer, pro-TGF-β is secreted and stored in latent complexes. It is unclear which prodomain and GF monomer are linked before proprotein convertase cleavage and how much conformational change occurs following cleavage. We have determined a structure of pro-TGF-β1 with the proprotein convertase cleavage site mutated to mimic the structure of the TGF-β1 proprotein. Structure, mutation, and model building demonstrate that the prodomain arm domain in one monomer is linked to the GF that interacts with the arm domain in the other monomer in the dimeric structure (i.e. the prodomain arm domain and GF domain in each monomer are swapped). Swapping has important implications for the mechanism of biosynthesis in the TGF-β family and is relevant to the mechanism for preferential formation of heterodimers over homodimers for some members of the TGF-β family. Our structure, together with two previous ones, also provides insights into which regions of the prodomain–GF complex are highly structurally conserved and which are perturbed by crystal lattice contacts. PMID:29109152

  16. Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response.

    PubMed

    Burgess, Joshua T; Bolderson, Emma; Adams, Mark N; Baird, Anne-Marie; Zhang, Shu-Dong; Gately, Kathy A; Umezawa, Kazuo; O'Byrne, Kenneth J; Richard, Derek J

    2016-11-10

    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231-1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process.

  17. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells.

    PubMed

    Manithody, Chandrashekhara; Yang, Likui; Rezaie, Alireza R

    2012-03-27

    Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.

  18. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.

    PubMed

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2013-04-01

    Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.

  19. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation.

    PubMed

    Barallobre-Barreiro, Javier; Gupta, Shashi K; Zoccarato, Anna; Kitazume-Taneike, Rika; Fava, Marika; Yin, Xiaoke; Werner, Tessa; Hirt, Marc N; Zampetaki, Anna; Viviano, Alessandro; Chong, Mei; Bern, Marshall; Kourliouros, Antonios; Domenech, Nieves; Willeit, Peter; Shah, Ajay M; Jahangiri, Marjan; Schaefer, Liliana; Fischer, Jens W; Iozzo, Renato V; Viner, Rosa; Thum, Thomas; Heineke, Joerg; Kichler, Antoine; Otsu, Kinya; Mayr, Manuel

    2016-09-13

    Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors. © 2016 American Heart Association, Inc.

  20. Effect of medium variations (zinc supplementation during oocyte maturation, perifertilization pH, and embryo culture protein source) on equine embryo development after intracytoplasmic sperm injection.

    PubMed

    Choi, Young-Ho; Gibbons, John R; Canesin, Heloísa S; Hinrichs, Katrin

    2016-10-15

    Prospective studies were conducted to help define procedural factors affecting in vitro embryo production via intracytoplasmic sperm injection (ICSI) of equine oocytes. In experiment 1, use of 10% fetal bovine serum as a protein source in embryo culture medium resulted in a higher blastocyst rate than did use of a combination of 3% fetal bovine serum, 3% equine preovulatory follicular fluid, and 4% human serum substitute (37% vs. 15%, respectively, P < 0.05). In experiment 2, the effect of zinc supplementation (0, 0.5, 1, or 1.5 μg/mL) during IVM was examined. There were no significant differences in rates of cleavage or blastocyst development (20%-31%). However, the proportion of blastocysts that developed on Day 7 for the added-zinc treatments was significantly higher than that for the control treatment (45% vs. 8%). In experiment 3, we tested whether use of high-pH medium (pH 8.0-8.4) during ICSI procedures would improve blastocyst rate when sperm with low cleavage rates after ICSI was used. When high-pH conditions were used for sperm preparation and also for the first 2 hours of incubation of injected oocytes after ICSI, the cleavage rate was unaffected but no blastocysts developed (0% vs. 24% for control). When high-pH conditions were used for sperm preparation only, the blastocyst rate was 37%. This was repeated using sperm from a second stallion; there was no significant difference in cleavage or blastocyst rates between sperm preparation in high pH vs. control medium. These findings add to our knowledge of factors affecting in vitro production of equine embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. 4-Hydroxytamoxifen-stimulated processing of cyclin E is mediated via G protein-coupled receptor 30 (GPR30) and accompanied by enhanced migration in MCF-7 breast cancer cells.

    PubMed

    Li, Yang; Chen, Yan; Zhu, Zhu-Xia; Liu, Xiao-Hong; Yang, Li; Wan, Lei; Lei, Ting-Wen; Wang, Xu-Dong

    2013-07-05

    Over-expression of cleaved cyclin E in breast tumors is closely associated with tumor progression and resistance to antiestrogens. 17β-Estradiol (E2) has been recently shown to induce cyclin E processing in breast cancer cells. Tamoxifen has been used in patients with estrogen-sensitive breast cancer, yet resistance to antiestrogens and recurrence will appear in some of the patients after its continued use. We therefore addressed possible effects of tamoxifen on the generation of cleaved cyclin E and its signal mechanism(s) in estrogen-responsive MCF-7 breast cancer cells that express both G protein-coupled protein (GPR) 30 and estrogen receptor α (ERα). 4-Hydroxytamoxifen (OHT, tamoxifen's active form) failed to prevent E2-induced proteolysis of cyclin E and migration, but rather triggered cyclin E cleavage coincident with augmented migration. OHT-induced cyclin E truncation also occurred in SK-BR-3 cells that express GPR30 and lack ERα, but not in MDA-MB-231 cells that express neither GPR30 nor ERα. G1, a specific GPR 30 agonist, caused dramatic proteolysis of cyclin E and enhanced migration. Furthermore, OHT-stimulated cleavage of cyclin E and migration were tremendously attenuated by G15, a GPR30 antagonist, or siRNA against GPR30. In addition, inhibitors for EGFR or ERK1/2 remarkably suppressed OHT-induced truncation of cyclin E, suggesting involvement of EGFR signaling. Collectively, our data indicate that OHT contributes to the production of proteolyzed cyclin E via GPR30 with augmented migration in MCF-7 cells. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation during Angiotensin II Hypertension

    PubMed Central

    Veiras, Luciana C.; Han, Jiyang; Ralph, Donna L.; McDonough, Alicia A.

    2016-01-01

    Ang II hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na+ channel (ENaC) abundance and activating cleavage. Acutely raising plasma [K+] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K+] with a single 3 hr 2% potassium meal would lower NCCp in Sprague Dawley rats after 14 days of AngII (400 ng/kg/min). The potassium-rich meal neither decreased NCCp nor increased K+ excretion. AngII infused rats exhibited lower plasma [K+] versus controls (3.6 ± 0.2 vs. 4.5 ± 0.1 mmol/L, p < 0.05) suggesting that Ang II mediated ENaC activation provokes K+ depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K+ depletion during AngII infusion and, thus, prevent NCC accumulation. A2K fed rats exhibited normal plasma [K+] and 2-fold higher K+ excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (p< 0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. ENaC subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK abundance was unaffected by Ang II or dietary K+. In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by ENaC stimulation. PMID:27600183

  3. Temporally Distinct Regulation of Pathways Contributing to Cardiac Proteostasis During the Acute and Recovery Phases of Sepsis.

    PubMed

    Crowell, Kristen T; Moreno, Samantha; Steiner, Jennifer L; Coleman, Catherine S; Soybel, David I; Lang, Charles H

    2017-12-13

    Cardiac dysfunction is a common manifestation of sepsis and is associated with early increases in inflammation and decreases in myocardial protein synthesis. However, little is known regarding the molecular mechanisms regulating protein homeostasis during the recovery phase after the removal of the septic nidus. Therefore, the purpose of this study was to investigate diverse signal transduction pathways that regulate myocardial protein synthesis and degradation. Adult male C57BL/6 mice were used to identify potential mechanisms mediating the acute (24 h) effect of cecal ligation and puncture (CLP) as well as long-term changes that manifest during the chronic (10 d) recovery phase. Acutely, sepsis decreased cardiac protein synthesis that was associated with reduced phosphorylation of S6K1/S6 but not 4E-BP1. Sepsis also decreased proteasome activity, although with no change in MuRF1 and atrogin-1 mRNA expression. Sepsis acutely increased apoptosis (increased caspase-3 and PARP cleavage), autophagosome formation (increased LC3B-II), and canonical inflammasome activity (increased NLRP3, TMS1, cleaved caspase-1). In contrast, during the recovery phase, independent of a difference in food consumption, global protein synthesis was increased, the early repression in proteasome activity was restored to basal levels, while stimulation of apoptosis, autophagosome formation and the canonical inflammasome pathway had abated. However, during recovery there was a selective stimulation of the non-canonical inflammasome pathway as evidenced by activation of caspase-11 with cleavage of Gasdermin D. These data demonstrate a temporally distinct homeostatic shift in the cardiac proteostatic response to acute infection and recovery.

  4. Cross-talk between the Tissue Factor/coagulation factor VIIa complex and the tyrosine kinase receptor EphA2 in cancer.

    PubMed

    Eriksson, Oskar; Thulin, Åsa; Asplund, Anna; Hegde, Geeta; Navani, Sanjay; Siegbahn, Agneta

    2016-05-31

    Tissue Factor (TF) forms a proteolytically active complex together with coagulation factor VIIa (FVIIa) and functions as the trigger of blood coagulation or alternatively activates cell signaling. We recently described that EphA2 of the Eph tyrosine kinase receptor family is cleaved directly by the TF/FVIIa complex. The aim of the present study was to further characterize the cross-talk between TF/FVIIa and EphA2 using in vitro model systems and human cancer specimens. Cleavage and phosphorylation of EphA2 was studied by Western blot. Subcellular localization of TF and EphA2 was investigated by a proximity ligation assay and confocal microscopy. Phalloidin staining of the actin cytoskeleton was used to study cell rounding and retraction fiber formation. Expression of TF and EphA2 in human colorectal cancer specimens was examined by immunohistochemistry. TF and EphA2 co-localized constitutively in MDA-MB-231 cells, and addition of FVIIa resulted in cleavage of EphA2 by a PAR2-independent mechanism. Overexpression of TF in U251 glioblastoma cells lead to co-localization with EphA2 at the leading edge and FVIIa-dependent cleavage of EphA2. FVIIa potentiated ephrin-A1-induced cell rounding and retraction fiber formation in MDA-MB-231 cells through a RhoA/ROCK-dependent pathway that did not require PAR2-activation. TF and EphA2 were expressed in colorectal cancer specimens, and were significantly correlated. These results suggest that TF/FVIIa-EphA2 cross-talk might potentiate ligand-dependent EphA2 signaling in human cancers, and provide initial evidence that it is possible for this interaction to occur in vivo.

  5. Fibroblast Growth Factor 10 Enhances the Developmental Efficiency of Somatic Cell Nuclear Transfer Embryos by Accelerating the Kinetics of Cleavage During In Vitro Maturation.

    PubMed

    Son, Yeo-Jin; Lee, Seung-Eun; Park, Yun-Gwi; Jeong, Sang-Gi; Shin, Min-Young; Kim, Eun-Young; Park, Se-Pill

    2018-06-01

    Somatic cell nuclear transfer (SCNT) is required for the generation of transgenic animals as disease models. During the in vitro development of SCNT embryos, the quality of matured oocytes is one of the major factors regulating the developmental potential of embryos. Time-lapse monitoring systems are new tools that assess the developmental capacity of embryos for use in embryo transfer. In this study, we investigated the effect of fibroblast growth factor 10 (FGF 10) on the developmental potential of SCNT embryos. After the in vitro maturation (IVM) of oocytes in IVM medium containing 10 ng/mL FGF 10 (10 F), the polar body extrusion rate was significantly higher than in the control. However, there was no difference in the percentage of fused embryos between the groups. The cleavage and blastocyst formation rates of embryos were significantly increased in the 10 F compared with the control. In addition, the total cell number was higher and the apoptotic index was lower in the 10 F than control at day 7. The messenger RNA (mRNA) expression of genes involved in apoptosis (baculoviral inhibitor of apoptosis repeat containing 5 [BIRC5] and caspase 3 [CASP3]) and development (octamer-binding transcription factor 4 [POU5F1] and sex determining region Y box 2 [SOX2]) increased after 10 F treatment. Furthermore, the kinetics of the first cleavage was faster and the percentage of embryos at cell block was significantly lower in the 10 F group than in the control. These results demonstrate that exposure of oocytes to FGF 10 during IVM promotes developmental competence.

  6. Blackbody infrared radiative dissociation of oligonucleotide anions.

    PubMed

    Klassen, J S; Schnier, P D; Williams, E R

    1998-11-01

    The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [d(A)7(2-), d(AATTAAT)2-, d(TTAATTA)2-, and d(CCGGCCG)2-] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5') phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)7(2-), d(AATTAAT)2-, and d(TTAATTA)2- has an average activation energy (Ea) of approximately 1.0 eV and a preexponential factor (A) of 10(10) s-1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2-. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 +/- 0.03 eV and A = 10(13.3 +/- 0.3) s-1. No loss of thymine was observed for mixed adenine-thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)7(2-) over a 600 s reaction delay at 207 degrees C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors < or = 10(13) s-1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction.

  7. Blackbody Infrared Radiative Dissociation of Oligonucleotide Anions

    PubMed Central

    Klassen, John S.; Schnier, Paul D.; Williams, Evan R.

    2005-01-01

    The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [ d(A)72-, d(AATTAAT)2−, d(TTAATTA)2−, and d(CCGGCCG)2−] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5′) phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)72-, d(AATTAAT)2−, and d(TTAATTA)2− has an average activation energy (Ea) of ~1.0 eV and a preexponential factor (A) of 1010 s−1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2−. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 ± 0.03 eV and A = 1013.3±0.3 s−1. No loss of thymine was observed for mixed adenine–thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)72- over a 600 s reaction delay at 207 °C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors ≤1013 s−1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction. PMID:9794082

  8. Insulinlike growth factor I improves yak (Bos grunniens) spermatozoa motility and the oocyte cleavage rate by modulating the expression of Bax and Bcl-2.

    PubMed

    Pan, Yangyang; Cui, Yan; Baloch, Abdul Rasheed; Fan, Jiangfeng; He, Junfeng; Li, Guyue; Zheng, Hongfei; Zhang, Yifu; Lv, Peng; Yu, Sijiu

    2015-09-15

    The aim of our present study was to examine the effects of insulinlike growth factor 1 (IGF-1) on yak sperm motility during in vitro capacitation and the relationship between the effects of IGF-1 on yak sperm motility and apoptosis was evaluated. Frozen-thawed yak spermatozoa were incubated at 38 °C for 1 hour in Tyrode's bicarbonate-buffered medium for sperm culture (Sp-TALP) with different concentrations (0, 50, 100, and 200 ng/mL) of IGF-1. In every treatment, the sperm motility was measured by a computer-assisted sperm analyzer system. The fertilizing ability of spermatozoa was evaluated on the basis of oocyte cleavage rate after insemination. The expression of Bax and Bcl-2 was examined by real-time polymerase chain reaction and Western blot for the messenger RNA and protein levels. It is interesting to note that IGF-1 improved yak spermatozoa motility and the cleavage rate of oocytes; these improvements were highest in the 100 ng/mL IGF-1 group, followed by the 200 ng/mL and 50 ng/mL groups, with the lowest improvements in motility and cleavage rates in groups without IGF-1. The expression level of Bax was downregulated by IGF-1, whereas Bcl-2 was upregulated. Both messenger RNA and Bax proteins were lowest in groups with 100 ng/mL IGF-1, where the Bcl-2 was the highest. Bax expression in the groups with IGF-1 was lower than that in the group without IGF-1, and Bcl-2 expression was higher in groups with IGF-1 than that in the group without IGF-1. In conclusion, this research reports that improvements in yak spermatozoa motility and the oocyte cleavage rate after the addition of IGF-I may be a result of the reduction of spermatozoa apoptosis rates by modulating the expression of Bax and Bcl-2. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Modulation of nitric oxide, hydrogen peroxide and cytokine production in a clonal macrophage model by the trichothecene vomitoxin (deoxynivalenol).

    PubMed

    Ji, G E; Park, S Y; Wong, S S; Pestka, J J

    1998-02-06

    Characterization of how vomitoxin (VT) and other trichothecenes affect macrophage regulatory and effector function may contribute to improved understanding of mechanisms by which these mycotoxins impact the immune system. The RAW 264.7 murine cell line was used as a macrophage model to assess effects of the VT on proliferation and the production of nitric oxide (NO), hydrogen peroxide (H2O2) and cytokines. Using the MTT cleavage assay, VT at concentrations of 50 ng/ml or higher was found to significantly decrease proliferation and viability of RAW 264.7 cells without stimulation or with stimulation by lipopolysaccharide (LPS) or interferon (IFN)-gamma. In the absence of an activation agent, VT (25-250 ng/ml) had negligible effects on the production of NO, H2O2, and cytokines. Upon activation with LPS at concentrations of 10 to 100 ng/ml, VT at 25-100 ng/ml markedly enhanced production of H2O2 but was inhibitory at 250 ng/ml. VT enhancement of H2O2 production was observed as early as 12 h after LPS stimulation. When IFN-gamma was used as the stimulant, VT (25-250 ng/ml) delayed peak H2O2 production. VT (25-250 ng/ml) also markedly decreased NO production in cells activated with LPS or IFN-gamma. Interestingly, VT superinduced TNF-alpha and IL-6 production in LPS-stimulated cells and also elevated TNF-alpha in IFN-gamma stimulated cells. These results suggest that VT can selectively and concurrently upregulate or downregulate critical functions associated with activated macrophages.

  10. Effect of platelet-derived β-thromboglobulins on coagulation.

    PubMed

    Egan, Karl; van Geffen, Johanna P; Ma, Hui; Kevane, Barry; Lennon, Aine; Allen, Seamus; Neary, Elaine; Parsons, Martin; Maguire, Patricia; Wynne, Kieran; O' Kennedy, Richard; Heemskerk, Johan W M; Áinle, Fionnuala Ní

    2017-06-01

    β-thromboglobulins are derived from the cleavage of the CXC chemokine platelet basic protein and are released in high concentrations by activated platelets. Platelet-derived β-thromboglobulins (βTG) share 70% homology with platelet factor 4 (PF4), another CXC chemokine released by activated platelets. PF4 modulates coagulation by inhibiting heparin-antithrombin interactions, promoting protein C activation, and attenuating the activity of activated protein C. In contrast, the effect of βTG on coagulation is unknown. Clotting times, thrombin generation, chromogenic clotting factor assays, and surface plasmon resonance (SPR) were used to assess the effect of purified βTG on coagulation. In normal pooled plasma, βTG shortened the lagtime and time to peak thrombin generation of tissue factor (TF)-dependent and TF-independent thrombin generation. In factor VIII and factor IX-deficient plasmas, βTG induced thrombin generation in the absence of a TF stimulus and in the presence of anti-TF and factor VIIa inhibitory antibodies. The procoagulant effect was not observed when thrombin generation was independent of factor X activation (supplementation of factor X-deficient plasma with factor Xa). Cleavage of a factor Xa-specific chromogenic substrate was observed when βTG was incubated with factor X, suggesting a direct interaction between βTG and factor X. Using SPR, βTG were found to bind to immobilised factor X in a dose dependent manner. βTG modulate coagulation in vitro via an interaction with factor X. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP

    NASA Astrophysics Data System (ADS)

    Pang, Petti T.; Nagappan, Guhan; Guo, Wei; Lu, Bai

    2016-05-01

    Although late-phase long-term potentiation (L-LTP) is implicated in long-term memory, its molecular mechanisms are largely unknown. Here we provide evidence that L-LTP can be divided into two stages: an induction stage (I) and a maintenance stage (II). Both stages require mature brain-derived neurotrophic factor (mBDNF), but involve distinct underlying mechanisms. Stage I requires secretion of existing proBDNF followed by extracellular cleavage by tPA/plasmin. Stage II depends on newly synthesized BDNF. Surprisingly, mBDNF at stage II is derived from intracellular cleavage of proBDNF by furin/PC1. Moreover, stage I involves BDNF-TrkB signaling mainly through MAP kinase, whereas all three signaling pathways (phospholipase C-γ, PI3 kinase, and MAP kinase) are required for the maintenance of L-LTP at stage II. These results reveal the molecular basis for two temporally distinct stages in L-LTP, and provide insights on how BDNF modulates this long-lasting synaptic alternation at two critical time windows.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, wasmore » able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.« less

  13. alpha-Putrescinylthymine and the sensitivity of bacteriophage phi W-14 DNA to restriction endonucleases.

    PubMed Central

    Miller, P B; Wakarchuk, W W; Warren, R A

    1985-01-01

    The modified base alpha-putrescinylthymine (putT) in phi W-14 DNA blocks cleavage of the DNA by 17 of 32 Type II restriction endonucleases. The enzymes cleaving the DNA do so to widely varying extents. The frequencies of cleavage of three altered forms of the DNA show that putT blocks recognition sites either when it occurs within the site or when it is in a sequence flanking the site. The blocking is dependent on both charge and steric factors. The charge effects can be greater than the steric effects for some of the enzymes tested. All the enzymes cleaving phi W-14 DNA release discrete fragments, showing that the distribution of putT is ordered. The cleavage frequencies for different enzymes suggest that the sequence CAputTG occurs frequently in the DNA. Only TaqI of the enzymes tested appeared not to be blocked by putT, but it was slowed down. TaqI generated fragments are joinable by T4 DNA ligase. PMID:2987859

  14. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence.

    PubMed

    Freimuth, P; Anderson, C W

    1993-03-01

    The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.

  15. Both positional and chemical variables control in vitro proteolytic cleavage of a presenilin ortholog

    PubMed Central

    Naing, Swe-Htet; Kalyoncu, Sibel; Smalley, David M.; Kim, Hyojung; Tao, Xingjian; George, Josh B.; Jonke, Alex P.; Oliver, Ryan C.; Urban, Volker S.; Torres, Matthew P.; Lieberman, Raquel L.

    2018-01-01

    Mechanistic details of intramembrane aspartyl protease (IAP) chemistry, which is central to many biological and pathogenic processes, remain largely obscure. Here, we investigated the in vitro kinetics of a microbial intramembrane aspartyl protease (mIAP) fortuitously acting on the renin substrate angiotensinogen and the C-terminal transmembrane segment of amyloid precursor protein (C100), which is cleaved by the presenilin subunit of γ-secretase, an Alzheimer disease (AD)-associated IAP. mIAP variants with substitutions in active-site and putative substrate-gating residues generally exhibit impaired, but not abolished, activity toward angiotensinogen and retain the predominant cleavage site (His–Thr). The aromatic ring, but not the hydroxyl substituent, within Tyr of the catalytic Tyr–Asp (YD) motif plays a catalytic role, and the hydrolysis reaction incorporates bulk water as in soluble aspartyl proteases. mIAP hydrolyzes the transmembrane region of C100 at two major presenilin cleavage sites, one corresponding to the AD-associated Aβ42 peptide (Ala–Thr) and the other to the non-pathogenic Aβ48 (Thr–Leu). For the former site, we observed more favorable kinetics in lipid bilayer–mimicking bicelles than in detergent solution, indicating that substrate–lipid and substrate–enzyme interactions both contribute to catalytic rates. High-resolution MS analyses across four substrates support a preference for threonine at the scissile bond. However, results from threonine-scanning mutagenesis of angiotensinogen demonstrate a competing positional preference for cleavage. Our results indicate that IAP cleavage is controlled by both positional and chemical factors, opening up new avenues for selective IAP inhibition for therapeutic interventions. PMID:29382721

  16. Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells.

    PubMed

    Lee, K H; Choi, E Y; Hyun, M S; Jang, B I; Kim, T N; Kim, S W; Song, S K; Kim, J H; Kim, J-R

    2007-01-01

    Proteolytic shedding of the ectodomain of a variety of transmembrane proteins, including cell-to-cell adhesion molecules, has been observed in solid cancers. We have investigated whether extracellular cleavage of E-cadherin mediated by matrix metalloproteinase-7 (MMP-7) is involved in hepatocyte growth factor (HGF) induced in vitro invasion in stomach cancer cells. The effects of HGF on the expression of E-cadherin/beta-catenin and MMP-7 at both the protein and mRNA levels were assessed in stomach cancer cells, NUGC-3 and MKN-28, and in cells in which the expression of MMP-7 was downregulated by transfection with a MMP-7 short hairpin RNA plasmid. Treatment with HGF increased the extracellular cleavage of E-cadherin and the release of MMP-7 and reduced the level of E-cadherin in a dose- and time-dependent manner. HGF treatment repressed the phosphorylation of beta-catenin in a Triton-soluble fraction, but enhanced this phosphorylation in a Triton-insoluble fraction. The association of E-cadherin with beta-catenin was decreased by HGF treatment in the Triton-soluble fraction. In addition, treatment of MMP-7 short hairpin RNA transfected NUGC-3 cells with HGF resulted in no extracellular cleavage of E-cadherin and also decreased the in vitro cell invasion. These results suggest that incubation with HGF mediated the release of MMP-7, resulting in extracellular cleavage of E-cadherin from stomach cancer cells. This might be a key mechanism in HGF-induced in vitro invasion and metastasis. Copyright 2007 S. Karger AG, Basel.

  17. Disclosure of key stereoelectronic factors for efficient H2 binding and cleavage in the active site of [NiFe]-hydrogenases.

    PubMed

    Bruschi, Maurizio; Tiberti, Matteo; Guerra, Alessandro; De Gioia, Luca

    2014-02-05

    A comparative analysis of a series of DFT models of [NiFe]-hydrogenases, ranging from minimal NiFe clusters to very large systems including both the first and second coordination sphere of the bimetallic cofactor, was carried out with the aim of unraveling which stereoelectronic properties of the active site of [NiFe]-hydrogenases are crucial for efficient H2 binding and cleavage. H2 binding to the Ni-SIa redox state is energetically favored (by 4.0 kcal mol(-1)) only when H2 binds to Ni, the NiFe metal cluster is in a low spin state, and the Ni cysteine ligands have a peculiar seesaw coordination geometry, which in the enzyme is stabilized by the protein environment. The influence of the Ni coordination geometry on the H2 binding affinity was then quantitatively evaluated and rationalized analyzing frontier molecular orbitals and populations. Several plausible reaction pathways leading to H2 cleavage were also studied. It turned out that a two-step pathway, where H2 cleavage takes place on the Ni-SIa redox state of the enzyme, is characterized by very low reaction barriers and favorable reaction energies. More importantly, the seesaw coordination geometry of Ni was found to be a key feature for facile H2 cleavage. The discovery of the crucial influence of the Ni coordination geometry on H2 binding and activation in the active site of [NiFe]-hydrogenases could be exploited in the design of novel biomimetic synthetic catalysts.

  18. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 thatmore » forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.« less

  19. Granule swelling and cleavage of mitogen-activated protein kinases in human neutrophils undergoing apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, Takayuki, E-mail: tkato@med.osaka-cu.ac.jp; Ikemoto, Masaru; Hato, Fumihiko

    2009-04-10

    Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.

  20. Modulation of gonadotrophin induced steroidogenic enzymes in granulosa cells by d-chiroinositol.

    PubMed

    Sacchi, Sandro; Marinaro, Federica; Tondelli, Debora; Lui, Jessica; Xella, Susanna; Marsella, Tiziana; Tagliasacchi, Daniela; Argento, Cindy; Tirelli, Alessandra; Giulini, Simone; La Marca, Antonio

    2016-08-31

    d-chiroinositol (DCI) is a inositolphosphoglycan (IPG) involved in several cellular functions that control the glucose metabolism. DCI functions as second messenger in the insulin signaling pathway and it is considered an insulin sensitizer since deficiency in tissue availability of DCI were shown to cause insulin resistance (IR). Polycystic ovary syndrome (PCOS) is a pathological condition that is often accompanied with insulin resistance. DCI can positively affects several aspect of PCOS etiology decreasing the total and free testosterone, lowering blood pressure, improving the glucose metabolism and increasing the ovulation frequency. The purpose of this study was to evaluate the effects of DCI and insulin combined with gonadotrophins namely follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on key steroidogenic enzymes genes regulation, cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and cytochrome P450 side-chain cleavage (P450scc) in primary cultures of human granulosa cells (hGCs). We also investigated whether DCI, being an insulin-sensitizer would be able to counteract the expected stimulator activity of insulin on human granulosa cells (hGCs). The study was conducted on primary cultures of hGCs. Gene expression was evaluated by RT-qPCR method. Statistical analysis was performed applying student t-test, as appropriate (P < 0.05) set for statistical significance. DCI is able to reduce the gene expression of CYP19A1, P450scc and insulin-like growth factor 1 receptor (IGF-1R) in dose-response manner. The presence of DCI impaired the increased expression of steroidogenic enzyme genes generated by the insulin treatment in gonadotrophin-stimulated hGCs. Insulin acts as co-gonadotrophin increasing the expression of steroidogenic enzymes genes in gonadotrophin-stimulated granulosa cells. DCI is an insulin-sensitizer that counteracts this action by reducing the expression of the genes CYP19A1, P450scc and IGF-1R. The ability of DCI to modulate in vitro ovarian activity of insulin could in part explain its beneficial effect when used as treatment for conditions associated to insulin resistance.

  1. Cell cycle-related fluctuations in transcellular ionic currents and plasma membrane Ca2+/Mg2+ ATPase activity during early cleavages of Lymnaea stagnalis embryos.

    PubMed

    Zivkovic, Danica; Créton, Robbert; Dohmen, René

    1991-08-01

    During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca 2+ -stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 μA/cm 2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca 2+ /Mg 2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca 2+ -stimulated ATPase. The ionic currents and Ca 2+ -stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca 2+ -stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca 2+ -stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.

  2. Domain of dentine sialoprotein mediates proliferation and differentiation of human periodontal ligament stem cells.

    PubMed

    Ozer, Alkan; Yuan, Guohua; Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C; Donly, Kevin J; MacDougall, Mary; Chen, Shuo

    2013-01-01

    Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation.  The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP).  The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application.

  3. Domain of Dentine Sialoprotein Mediates Proliferation and Differentiation of Human Periodontal Ligament Stem Cells

    PubMed Central

    Yang, Guobin; Wang, Feng; Li, Wentong; Yang, Yuan; Guo, Feng; Gao, Qingping; Shoff, Lisa; Chen, Zhi; Gay, Isabel C.; Donly, Kevin J.; MacDougall, Mary; Chen, Shuo

    2013-01-01

    Classic embryological studies have documented the inductive role of root dentin on adjacent periodontal ligament differentiation.  The biochemical composition of root dentin includes collagens and cleavage products of dentin sialophosphoprotein (DSPP), such as dentin sialoprotein (DSP).  The high abundance of DSP in root dentin prompted us to ask the question whether DSP or peptides derived thereof would serve as potent biological matrix components to induce periodontal progenitors to further differentiate into periodontal ligament cells. Here, we test the hypothesis that domain of DSP influences cell fate. In situ hybridization and immunohistochemical analyses showed that the COOH-terminal DSP domain is expressed in mouse periodontium at various stages of root development. The recombinant COOH-terminal DSP fragment (rC-DSP) enhanced attachment and migration of human periodontal ligament stem cells (PDLSC), human primary PDL cells without cell toxicity. rC-DSP induced PDLSC cell proliferation as well as differentiation and mineralization of PDLSC and PDL cells by formation of mineralized tissue and ALPase activity. Effect of rC-DSP on cell proliferation and differentiation was to promote gene expression of tooth/bone-relate markers, transcription factors and growth factors. The results for the first time showed that rC-DSP may be one of the components of cell niche for stimulating stem/progenitor cell proliferation and differentiation and a natural scaffold for periodontal regeneration application. PMID:24400037

  4. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    PubMed

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  5. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes.

    PubMed Central

    Nishino, S F; Spain, J C

    1993-01-01

    A Pseudomonas pseudoalcaligenes able to use nitrobenzene as the sole source of carbon, nitrogen, and energy was isolated from soil and groundwater contaminated with nitrobenzene. The range of aromatic substrates able to support growth was limited to nitrobenzene, hydroxylaminobenzene, and 2-aminophenol. Washed suspensions of nitrobenzene-grown cells removed nitrobenzene from culture fluids with the concomitant release of ammonia. Nitrobenzene, nitrosobenzene, hydroxylaminobenzene, and 2-aminophenol stimulated oxygen uptake in resting cells and in extracts of nitrobenzene-grown cells. Under aerobic and anaerobic conditions, crude extracts converted nitrobenzene to 2-aminophenol with oxidation of 2 mol of NADPH. Ring cleavage, which required ferrous iron, produced a transient yellow product with a maximum A380. In the presence of NAD, the product disappeared and NADH was produced. In the absence of NAD, the ring fission product was spontaneously converted to picolinic acid, which was not further metabolized. These results indicate that the catabolic pathway involves the reduction of nitrobenzene to nitrosobenzene and then to hydroxylaminobenzene; each of these steps requires 1 mol of NADPH. An enzyme-mediated Bamberger-like rearrangement converts hydroxylaminobenzene to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. The mechanism for release of ammonia and subsequent metabolism are under investigation. PMID:8368838

  6. Effect of in-utero diethylstilboestrol exposure on human oocyte quality and fertilization in a programme of in-vitro fertilization.

    PubMed

    Kerjean, A; Poirot, C; Epelboin, S; Jouannet, P

    1999-06-01

    Genital tract abnormalities and adverse pregnancy outcome are well known in women exposed in utero to diethylstilboestrol (DES). Data about adverse reproductive performance in women exposed to DES have been published, including controversial reports of menstrual dysfunction, poor responses after ovarian stimulation, oocyte maturation and fertilization abnormalities. We compared oocyte quality, in-vitro fertilization results and embryo quality for women exposed in utero to DES with a control group. Between 1989 and 1996, 56 DES-exposed women who had 125 in-vitro fertilization (IVF) attempts were retrospectively compared to a control group of 45 women with tubal disease, who underwent 73 IVF attempts. Couples suffering from male infertility were excluded. The parameters compared were oocyte quality (maturation abnormalities, immature oocyte, mature oocyte), fertilization and cleavage rate (per treated and metaphase II oocytes), and embryo quality (number and grade). We found no significant difference in oocyte maturational status, fertilization rates, cleavage rates, embryo quality and development between DES-exposed subjects and control subjects. These results suggest that in-utero exposure to DES has no significant influence on oocyte quality and fertilization ability as judged during IVF attempts.

  7. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Paul; Schafer, Elizabeth A.; Rieder, Elizabeth, E-mail: elizabeth.rieder@ars.usda.gov

    2012-03-30

    Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C{sup pro} induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within themore » 5 Prime non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C{sup pro}.« less

  8. Targeting Mycobacterium tuberculosis Topoisomerase I by Small-Molecule Inhibitors

    PubMed Central

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K.; Ekins, Sean

    2014-01-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules. PMID:25534741

  9. Locked and proteolysis-based transcription activator-like effector (TALE) regulation.

    PubMed

    Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman

    2016-02-18

    Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The role of the NG2 proteoglycan in OPC and CNS network function.

    PubMed

    Sakry, Dominik; Trotter, Jacqueline

    2016-05-01

    In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane protein, exerting multiple roles in the CNS including intracellular signaling within the OPC, with effects on migration, cytoskeleton interaction and target gene regulation. It has been recently shown that the extracellular region of NG2, in addition to an adhesive function, acts as a soluble ECM component with the capacity to alter defined neuronal network properties. This region of NG2 is thus endowed with neuromodulatory properties. In order to generate biologically active fragments yielding these properties, the sequential cleavage of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments which all have been associated with distinct biological functions. Here we summarize these functions, focusing on recent discoveries and their implications for the CNS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cleavage of the vesicular glutamate transporters under excitotoxic conditions.

    PubMed

    Lobo, Andrea C; Gomes, João R; Catarino, Tatiana; Mele, Miranda; Fernandez, Pedro; Inácio, Ana R; Bahr, Ben A; Santos, Armanda E; Wieloch, Tadeusz; Carvalho, Ana Luísa; Duarte, Carlos B

    2011-12-01

    Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters (VGLUTs), and alterations in the transporters expression directly regulate neurotransmitter release. We investigated changes in VGLUT1 and VGLUT2 protein levels after ischemic and excitotoxic insults. The results show that VGLUT2 is cleaved by calpains after excitotoxic stimulation of hippocampal neurons with glutamate, whereas VGLUT1 is downregulated to a lower extent. VGLUT2 was also cleaved by calpains after oxygen/glucose deprivation (OGD), and downregulated after middle cerebral artery occlusion (MCAO) and intrahippocampal injection of kainate. In contrast, VGLUT1 was not affected after OGD. Incubation of isolated synaptic vesicles with recombinant calpain also induced VGLUT2 cleavage, with a little effect observed for VGLUT1. N-terminal sequencing analysis showed that calpain cleaves VGLUT2 in the C-terminus, at Asn(534) and Lys(542). The truncated GFP-VGLUT2 forms were found to a great extent in non-synaptic regions along neurites, when compared to GFP-VGLUT2. These findings show that excitotoxic and ischemic insults downregulate VGLUT2, which is likely to affect glutamatergic transmission and cell death, especially in the neonatal period when the transporter is expressed at higher levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Role of Protein Kinase C in Endothelin Converting Enzyme-1 trafficking and shedding from endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@med.monash.edu.au; Tochon-Danguy, Natalie; Ian Smith, A.

    2010-07-23

    Research highlights: {yields} PKC activation increases the trafficking of ECE-1 to the cell surface. {yields} This in turn leads to an increase in the amount of ECE-1 shed. {yields} Only the catalytically active C-terminal region is shed from the cell surface. -- Abstract: This study aimed to determine the consequences of Protein Kinase C (PKC) mediated Endothelin Converting Enzyme-1 (ECE-1) phosphorylation and its relationship to ECE-1 expression and shedding. The proteins on the surface of EA.hy926 cells were labelled with EZ-Link NHS-SS-Biotin both prior to (control) and following stimulation by 2 {mu}M phorbol 12-myristate 13-acetate (PMA) which activates PKC. Themore » biotinylated proteins were isolated using neutravidin beads, resolved by gel electrophoresis and analysed by western blotting using anti-ECE-1 antibodies. Significant increase in ECE-1 expression at the cell surface was observed following stimulation by PMA, compared to unstimulated control cells (170 {+-} 32.3% of control, n = 5). The ECE-1 activity (expressed as {mu}M substrate cleaved/min) was determined by monitoring the cleavage of a quenched fluorescent substrate. The specificity of cleavage was confirmed using the ECE-1 inhibitor (CGS35066). The stimulation of cells by PMA (1 {mu}M, 6 h) significantly increased the ECE-1 activity (0.28 {+-} 0.02; n = 3) compared to the control (0.07 {+-} 0.02; n = 3). This increase was prevented by prior incubation with the PKC inhibitor bisindolymaleimide (BIM; 2 {mu}M for 1 h; 0.10 {+-} 0.01; n = 3). Treatment with PMA also increased the activity of ECE-1 in the media (0.18 {+-} 0.01; n = 3) compared to control (0.08 {+-} 0.01; n = 3). In addition, this study confirmed by western immunoblotting that only the extracellular region of ECE-1 is released from the cell surface. These data indicate for the first time that PKC activation induces the trafficking and shedding of ECE to and from the cell surface, respectively.« less

  13. DNA Stimulates ATP-Dependent Proteolysis and Protein-Dependent ATPase Activity of Protease La from Escherichia coli

    NASA Astrophysics Data System (ADS)

    Chung, Chin Ha; Goldberg, Alfred L.

    1982-02-01

    The product of the lon gene in Escherichia coli is an ATP-dependent protease, protease La, that also binds strongly to DNA. Addition of double-stranded or single-stranded DNA to the protease in the presence of ATP was found to stimulate the hydrolysis of casein or globin 2- to 7-fold, depending on the DNA concentration. Native DNA from several sources (plasmid pBR322, phage T7, or calf thymus) had similar effects, but after denaturation the DNA was 20-100% more effective than the native form. Although poly(rA), globin mRNA, and various tRNAs did not stimulate proteolysis, poly(rC) and poly(rU) were effective. Poly(dT) was stimulatory but (dT)10 was not. In the presence of DNA as in its absence, proteolysis required concomitant ATP hydrolysis, and the addition of DNA also enhanced ATP hydrolysis by protease La 2-fold, but only in the presence of casein. At much higher concentrations, DNA inhibited proteolysis as well as ATP cleavage. Thus, association of this enzyme with DNA may regulate the degradation of cell proteins in vivo.

  14. The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism.

    PubMed

    Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L; Alberini, Cristina M; Huntley, George W; Salton, Stephen R J

    2008-09-24

    VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, in which it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knock-out mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nm), and tPA STOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75(NTR) function-blocking antiserum, or previous tetanic stimulation. Although LTP was normal in slices from VGF knock-out mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior.

  15. Protective effect of metoclopramide against organophosphate-induced apoptosis in the murine skin fibroblast L929.

    PubMed

    Jaber, Basem M; Petroianu, Georg A; Rizvi, Syed A; Borai, Anwar; Saleh, Nada A; Hala, Sharif M; Saleh, Ayman M

    2018-03-01

    This study was performed to evaluate the protective efficacy of metoclopramide (MCP) against the organophosphates paraoxon (POX)- and malathion (MLT)-induced apoptosis in the murine L929 skin fibroblasts. L929 cells were exposed to either POX (10 nm) or 1.0 μm MLT in the absence and presence of increased concentrations of MCP. The protective effect of MCP on these organophosphate-stimulated apoptotic events was evaluated by flow cytometry analysis after staining with annexin-V/propidium iodide, processing and activation of the executioner caspase-3, cleavage of the poly-ADP ribose polymerase, fragmentation of the nucleosomal DNA and disruption of the mitochondrial membrane potential (Δψ). Our results showed that increased doses of MCP alone (≥10 μm) did not induce apoptosis or activation of caspase-3. Pretreatment of the cells with MCP attenuated all the apoptotic events triggered by the organophosphate compounds in a dose-dependent manner reaching ~70-80% protection when they were preincubated at 1 and 5 μm of the drug before the addition of POX and MLT, respectively. Interestingly, MCP did not offer a significant protective effect against the cytotoxicity of tumor necrosis factor-α, cisplatinum, etoposide or paclitaxel, which stimulate apoptosis by various mechanisms, suggesting that the anti-apoptotic effect of the drug is specific to organophosphates. The strong and specific anti-apoptotic activity of subclinical doses of MCP against the cytotoxicity of organophosphate compounds suggests its potential clinical application in treating their poisoning. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin

    Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that anmore » rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.« less

  17. Zinc-dependent cleavage in the catalytic core of the hammerhead ribozyme: evidence for a pH-dependent conformational change

    PubMed Central

    Borda, Emily J.; Markley, John C.; Sigurdsson, Snorri Th.

    2003-01-01

    We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach a maximum yield at about pH 8.5. These data, together with the fact that no metal ion-binding site is observed in proximity to the U4 cleavage site in either of the crystal structures, point toward a pH-dependent conformational change in the hammerhead ribozyme. We have described previously Zn2+-dependent cleavage between G8 and A9 in the hammerhead ribozyme and have discovered that U4 cleavage occurs only after A9 cleavage. To our knowledge, this is the first example of sequential cleavage events as a possible regulatory mechanism in ribozymes. PMID:12736309

  18. Crenulation cleavage development by partitioning of deformation into zones of progressive shearing (combined shearing, shortening and volume loss) and progressive shortening (no volume loss): quantification of solution shortening and intermicrolithon-movement

    NASA Astrophysics Data System (ADS)

    Stewart, L. K.

    1997-11-01

    An analytical method for determining amounts of cleavage-normal dissolution and cleavage-parallel shear movement that occurred between adjacent microlithons during crenulation cleavage seam formation within a deformed slate is developed for the progressive bulk inhomogeneous shortening (PBIS) mechanism of crenulation cleavage formation. The method utilises structural information obtained from samples where a diverging bed and vein are offset by a crenulation cleavage seam. Several samples analysed using this method produced ratios of relative, cleavage-parallel movement of microlithons to the material thickness removed by dissolution typically in the range of 1.1-3.4:1. The mean amount of solution shortening attributed to the formation of the cleavage seams examined is 24%. The results indicate that a relationship may exist between the width of microlithons and the amount of cleavage-parallel intermicrolithon-movement. The method presented here has the potential to help determine whether crenulation cleavage seams formed by the progressive bulk inhomogeneous shortening mechanism or by that involving cleavage-normal pressure solution alone.

  19. Prothrombin Activation by Platelet-associated Prothrombinase Proceeds through the Prethrombin-2 Pathway via a Concerted Mechanism*

    PubMed Central

    Haynes, Laura M.; Bouchard, Beth A.; Tracy, Paula B.; Mann, Kenneth G.

    2012-01-01

    The protease α-thrombin is a key enzyme of the coagulation process as it is at the cross-roads of both the pro- and anti-coagulant pathways. The main source of α-thrombin in vivo is the activation of prothrombin by the prothrombinase complex assembled on either an activated cell membrane or cell fragment, the most relevant of which is the activated platelet surface. When prothrombinase is assembled on synthetic phospholipid vesicles, prothrombin activation proceeds with an initial cleavage at Arg-320 yielding the catalytically active, yet effectively anticoagulant intermediate meizothrombin, which is released from the enzyme complex ∼30–40% of the time. Prothrombinase assembled on the surface of activated platelets has been shown to proceed through the inactive intermediate prethrombin-2 via an initial cleavage at Arg-271 followed by cleavage at Arg-320. The current work tests whether or not platelet-associated prothrombinase proceeds via a concerted mechanism through a study of prothrombinase assembly and function on collagen-adhered, thrombin-activated, washed human platelets in a flow chamber. Prothrombinase assembly was demonstrated through visualization of bound factor Xa by confocal microscopy using a fluorophore-labeled anti-factor Xa antibody, which demonstrated the presence of distinct platelet subpopulations capable of binding factor Xa. When prothrombin activation was monitored at a typical venous shear rate over preassembled platelet-associated prothrombinase neither potential intermediate, meizothrombin or prethrombin-2, was observed in the effluent. Collectively, these findings suggest that platelet-associated prothrombinase activates prothrombin via an efficient concerted mechanism in which neither intermediate is released. PMID:22989889

  20. Effects of porcine 25 kDa amelogenin and its proteolytic derivatives on bone sialoprotein expression.

    PubMed

    Nakayama, Y; Yang, L; Mezawa, M; Araki, S; Li, Z; Wang, Z; Sasaki, Y; Takai, H; Nakao, S; Fukae, M; Ogata, Y

    2010-10-01

    Amelogenins are hydrophobic proteins that are the major component of developing enamel. Enamel matrix derivative has been used for periodontal regeneration. Bone sialoprotein is an early phenotypic marker of osteoblast differentiation. In this study, we examined the ability of porcine amelogenins to regulate bone sialoprotein transcription. To determine the molecular basis of the transcriptional regulation of the bone sialoprotein gene by amelogenins, we conducted northern hybridization, transient transfection analyses and gel mobility shift assays using the osteoblast-like ROS 17/2.8 cells. Amelogenins (100 ng/mL) up-regulated bone sialoprotein mRNA at 3 h, with maximal mRNA expression occurring at 12 h (25 and 20 kDa) and 6 h (13 and 6 kDa). Amelogenins (100 ng/mL, 12 h) increased luciferase activities in pLUC3 (nucleotides -116 to +60), and 6 kDa amelogenin up-regulated pLUC4 (nucleotides -425 to +60) activity. The tyrosine kinase inhibitor inhibited amelogenin-induced luciferase activities, whereas the protein kinase A inhibitor abolished 25 kDa amelogenin-induced bone sialoprotein transcription. The effects of amelogenins were abrogated by 2-bp mutations in the fibroblast growth factor 2 response element (FRE). Gel-shift assays with radiolabeled FRE, homeodomain-protein binding site (HOX) and transforming growth factor-beta1 activation element (TAE) double-strand oligonucleotides revealed increased binding of nuclear proteins from amelogenin-stimulated ROS 17/2.8 cells at 3 h (25 and 13 kDa) and 6 h (20 and 6 kDa). These results demonstrate that porcine 25 kDa amelogenin and its proteolytic derivatives stimulate bone sialoprotein transcription by targeting FRE, HOX and TAE in the bone sialoprotein gene promoter, and that full-length amelogenin and amelogenin cleavage products are able to regulate bone sialoprotein transcription via different signaling pathways. (c) 2010 John Wiley & Sons A/S.

  1. Interleukin-1 Acts via the JNK-2 Signaling Pathway to Induce Aggrecan Degradation by Human Chondrocytes.

    PubMed

    Ismail, Heba M; Yamamoto, Kazuhiro; Vincent, Tonia L; Nagase, Hideaki; Troeberg, Linda; Saklatvala, Jeremy

    2015-07-01

    Aggrecan enables articular cartilage to bear load and resist compression. Aggrecan loss occurs early in osteoarthritis and rheumatoid arthritis and can be induced by inflammatory cytokines such as interleukin-1 (IL-1). IL-1 induces cleavage of specific aggrecans characteristic of the ADAMTS proteinases. The aim of this study was to identify the intracellular signaling pathways by which IL-1 causes aggrecan degradation by human chondrocytes and to investigate how aggrecanase activity is controlled by chondrocytes. We developed a cell-based assay combining small interfering RNA (siRNA)-induced knockdown with aggrecan degradation assays. Human articular chondrocytes were overlaid with bovine aggrecan after transfection with siRNAs against molecules of the IL-1 signaling pathway. After IL-1 stimulation, released aggrecan fragments were detected with AGEG and ARGS neoepitope antibodies. Aggrecanase activity and tissue inhibitor of metalloproteinases 3 levels were measured by enzyme-linked immunosorbent assay. Low-density lipoprotein receptor-related protein 1 (LRP-1) shedding was analyzed by Western blotting. ADAMTS-5 is a major aggrecanase in human chondrocytes, regulating aggrecan degradation in response to IL-1. The tumor necrosis factor receptor-associated 6 (TRAF-6)/transforming growth factor β-activated kinase 1 (TAK-1)/MKK-4 signaling axis is essential for IL-1-induced aggrecan degradation, while NF-κB is not. Of the 3 MAPKs (ERK, p38, and JNK), only JNK-2 showed a significant role in aggrecan degradation. Chondrocytes constitutively secreted aggrecanase, which was continuously endocytosed by LRP-1, keeping the extracellular level of aggrecanase low. IL-1 induced aggrecanase activity in the medium in a JNK-2-dependent manner, possibly by reducing aggrecanase endocytosis, because IL-1 caused JNK-2-dependent shedding of LRP-1. The signaling axis TRAF-6/TAK-1/MKK-4/JNK-2 mediates IL-1-induced aggrecanolysis. The level of aggrecanase is controlled by its endocytosis, which may be reduced upon IL-1 stimulation because of LRP-1 shedding. © 2015, American College of Rheumatology.

  2. Cleavage crystallography of liquid metal embrittled aluminum alloys

    NASA Technical Reports Server (NTRS)

    Reynolds, A. P.; Stoner, G. E.

    1991-01-01

    The crystallography of liquid metal-induced transgranular cleavage in six aluminum alloys having a variety of microstructures has been determined via Laue X-ray back reflection. The cleavage crystallography was independent of alloy microstructure, and the cleavage plane was 100-plane oriented in all cases. It was further determined that the cleavage crystallography was not influenced by alloy texture. Examination of the fracture surface indicated that there was not a unique direction of crack propagation. In addition, the existence of 100-plane cleavage on alloy 2024 fracture surfaces was inferred by comparison of secondary cleavage crack intersection geometry on the 2024 surfaces with the geometry of secondary cleavage crack intersections on the test alloys.

  3. Molecular Basis for the Recognition and Cleavages of IGF-II, TGF-[alpha], and Amylin by Human Insulin-Degrading Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Qing; Manolopoulou, Marika; Bian, Yao

    2010-02-11

    Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} bymore » human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.« less

  4. Poor Mobilization in T-Cell-Deficient Nude Mice is Explained by Defective Activation of Granulocytes and Monocytes

    PubMed Central

    Wysoczynski, Marcin; Adamiak, Mateusz; Suszynska, Malwina; Abdel-Latif, Ahmed; Ratajczak, Janina; Ratajczak, Mariusz Z.

    2017-01-01

    It has been reported that both SCID mice and SCID patients poorly mobilize hematopoietic stem/progenitor cells (HSPCs) in response to granulocyte colony-stimulating factor (G-CSF). This defect has been proposed to result from a lack of naturally occurring IgM immunoglobulins to trigger activation of the complement cascade (ComC) and release of C5 cleavage fragments crucial in the mobilization process. However, SCID individuals also have T-cell deficiency, and T cells have been shown to modulate trafficking of HSPCs. To learn more about the role of T lymphocytes, we performed mobilization studies in T-lymphocyte-deficient nude mice and found that these mice respond poorly to G-CSF and zymosan but are normal mobilizers in response to AMD3100. Since nude mice have normal levels of IgM immunoglobulins in peripheral blood and may activate the ComC, we focused on the potential involvement of Gr1+ granulocytes and monocytes, which show defective maturation in these animals. Using a nude mouse mobilization model, we found further support for the proposition that proper function of Gr1+ cells is crucial for optimal mobilization of HSPCs. PMID:27436627

  5. Poor Mobilization in T-Cell-Deficient Nude Mice Is Explained by Defective Activation of Granulocytes and Monocytes.

    PubMed

    Wysoczynski, Marcin; Adamiak, Mateusz; Suszynska, Malwina; Abdel-Latif, Ahmed; Ratajczak, Janina; Ratajczak, Mariusz Z

    2017-01-24

    It has been reported that both SCID mice and SCID patients poorly mobilize hematopoietic stem/progenitor cells (HSPCs) in response to granulocyte colony-stimulating factor (G-CSF). This defect has been proposed to result from a lack of naturally occurring IgM immunoglobulins to trigger activation of the complement cascade (ComC) and release of C5 cleavage fragments crucial in the mobilization process. However, SCID individuals also have T-cell deficiency, and T cells have been shown to modulate trafficking of HSPCs. To learn more about the role of T lymphocytes, we performed mobilization studies in T-lymphocyte-deficient nude mice and found that these mice respond poorly to G-CSF and zymosan but are normal mobilizers in response to AMD3100. Since nude mice have normal levels of IgM immunoglobulins in peripheral blood and may activate the ComC, we focused on the potential involvement of Gr1+ granulocytes and monocytes, which show defective maturation in these animals. Using a nude mouse mobilization model, we found further support for the proposition that proper function of Gr1+ cells is crucial for optimal mobilization of HSPCs.

  6. The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage.

    PubMed Central

    Yamauchi, N; Kiessling, A A; Cooper, G M

    1994-01-01

    We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. Images PMID:7935384

  7. E. coli derived Von Willebrand Factor-A2 domain FRET proteins that quantify ADAMTS13 activity

    PubMed Central

    Dayananda, Kannayakanahalli M.; Gogia, Shobhit; Neelamegham, Sriram

    2010-01-01

    The cleavage of the A2-domain of Von Willebrand Factor (VWF) by the metalloprotease ADAMTS13 regulates VWF size and platelet thrombosis rates. Reduction or inhibition of this enzyme activity leads to thrombotic thrombocytopenic purpura (TTP). We generated a set of novel molecules called VWF-A2 FRET proteins’, where variants of YFP (Venus) and CFP (Cerulean) flank either the entire VWF-A2 domain (175 amino acids) or truncated fragments (141, 113, 77 amino acids) of this domain. These proteins were expressed in E. coli in soluble form, and they exhibited Fluorescence/Förster Resonance Energy Transfer (FRET) properties. Results show that introduction of Venus/Cerulean itself did not alter the ability of VWF-A2 to undergo ADAMTS13 mediated cleavage. The smallest FRET protein, XS-VWF, detected plasma ADAMTS13 activity down to 10% of normal levels. Tests of acquired and inherited TTP could be completed within 30 min. VWF-A2 conformation changed progressively, and not abruptly, upon increasing urea concentration. While proteins with 77 and 113 VWF-A2 residues were cleaved in the absence of denaturant, 4M urea was required for the efficient cleavage of larger constructs. Overall, VWF-A2 FRET proteins can be applied both for the rapid diagnosis of plasma ADAMTS13 activity, and as a tool to study VWF-A2 conformation dynamics. PMID:21146487

  8. Hypoxic Switch in Mitochondrial Myeloid Cell Leukemia Factor-1/Mtd Apoptotic Rheostat Contributes to Human Trophoblast Cell Death in Preeclampsia

    PubMed Central

    Soleymanlou, Nima; Jurisicova, Andrea; Wu, Yuanhong; Chijiiwa, Mari; Ray, Jocelyn E.; Detmar, Jacqui; Todros, Tullia; Zamudio, Stacy; Post, Martin; Caniggia, Isabella

    2007-01-01

    Preeclampsia, a disorder of pregnancy, is characterized by increased trophoblast cell death and altered trophoblast-mediated remodeling of myometrial spiral arteries resulting in reduced uteroplacental perfusion. Mitochondria-associated Bcl-2 family members are important regulators of programed cell death. The mechanism whereby hypoxia alters the mitochondrial apoptotic rheostat is essential to our understanding of placental disease. Herein, myeloid cell leukemia factor-1 (Mcl-1) isoform expression was examined in physiological/pathological models of placental hypoxia. Preeclamptic placentae were characterized by caspase-dependent cleavage of death-suppressing Mcl-1L and switch toward cell death-inducing Mcl-1S. In vitro, Mcl-1L cleavage was induced by hypoxia-reoxygenation in villous explants, whereas Mcl-1L overexpression under hypoxia-reoxygenation rescued trophoblast cells from undergoing apoptosis. Cleavage was mediated by caspase-3/-7 because pharmacological caspase inhibition prevented this process. Altitude-induced chronic hypoxia was characterized by expression of Mcl-1L; resulting in a reduction of apoptotic markers (cleaved caspase-3/-8 and p85 poly-ADP-ribose polymerase). Moreover, in both physiological (explants and high altitude) and pathological (preeclampsia) placental hypoxia, decreased trophoblast syncytin expression was observed. Hence, although both pathological and physiological placental hypoxia are associated with slowed trophoblast differentiation, trophoblast apoptosis is only up-regulated in preeclampsia, because of a hypoxia-reoxygenation-induced switch in generation of proapoptotic Mcl-1 isoforms. PMID:17600131

  9. Improving the prospects of cleavage-based nanopore sequencing engines

    NASA Astrophysics Data System (ADS)

    Brady, Kyle T.; Reiner, Joseph E.

    2015-08-01

    Recently proposed methods for DNA sequencing involve the use of cleavage-based enzymes attached to the opening of a nanopore. The idea is that DNA interacting with either an exonuclease or polymerase protein will lead to a small molecule being cleaved near the mouth of the nanopore, and subsequent entry into the pore will yield information about the DNA sequence. The prospects for this approach seem promising, but it has been shown that diffusion related effects impose a limit on the capture probability of molecules by the pore, which limits the efficacy of the technique. Here, we revisit the problem with the goal of optimizing the capture probability via a step decrease in the nucleotide diffusion coefficient between the pore and bulk solutions. It is shown through random walk simulations and a simplified analytical model that decreasing the molecule's diffusion coefficient in the bulk relative to its value in the pore increases the nucleotide capture probability. Specifically, we show that at sufficiently high applied transmembrane potentials (≥100 mV), increasing the potential by a factor f is equivalent to decreasing the diffusion coefficient ratio Dbulk/Dpore by the same factor f. This suggests a promising route toward implementation of cleavage-based sequencing protocols. We also discuss the feasibility of forming a step function in the diffusion coefficient across the pore-bulk interface.

  10. Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation.

    PubMed

    Hanne, Janina; Göttfert, Fabian; Schimer, Jiří; Anders-Össwein, Maria; Konvalinka, Jan; Engelhardt, Johann; Müller, Barbara; Hell, Stefan W; Kräusslich, Hans-Georg

    2016-09-27

    Concomitant with human immunodeficiency virus type 1 (HIV-1) budding from a host cell, cleavage of the structural Gag polyproteins by the viral protease (PR) triggers complete remodeling of virion architecture. This maturation process is essential for virus infectivity. Electron tomography provided structures of immature and mature HIV-1 with a diameter of 120-140 nm, but information about the sequence and dynamics of structural rearrangements is lacking. Here, we employed super-resolution STED (stimulated emission depletion) fluorescence nanoscopy of HIV-1 carrying labeled Gag to visualize the virion architecture. The incomplete Gag lattice of immature virions was clearly distinguishable from the condensed distribution of mature protein subunits. Synchronized activation of PR within purified particles by photocleavage of a caged PR inhibitor enabled time-resolved in situ observation of the induction of proteolysis and maturation by super-resolution microscopy. This study shows the rearrangement of subviral structures in a super-resolution light microscope over time, outwitting phototoxicity and fluorophore bleaching through synchronization of a biological process by an optical switch.

  11. Centrosomal Latency of Incoming Foamy Viruses in Resting Cells

    PubMed Central

    Giron, Marie Lou; Roingeard, Philippe; Clave, Emmanuel; Tobaly-Tapiero, Joelle; Bittoun, Patricia; Toubert, Antoine; de Thé, Hugues; Saïb, Ali

    2007-01-01

    Completion of early stages of retrovirus infection depends on the cell cycle. While gammaretroviruses require mitosis for proviral integration, lentiviruses are able to replicate in post-mitotic non-dividing cells. Resting cells such as naive resting T lymphocytes from peripheral blood cannot be productively infected by retroviruses, including lentiviruses, but the molecular basis of this restriction remains poorly understood. We demonstrate that in G0 resting cells (primary fibroblasts or peripheral T cells), incoming foamy retroviruses accumulate in close proximity to the centrosome, where they lie as structured and assembled capsids for several weeks. Under these settings, virus uncoating is impaired, but upon cell stimulation, Gag proteolysis and capsid disassembly occur, which allows viral infection to proceed. The data imply that foamy virus uncoating is the rate-limiting step for productive infection of primary G0 cells. Incoming foamy retroviruses can stably persist at the centrosome, awaiting cell stimulation to initiate capsid cleavage, nuclear import, and viral gene expression. PMID:17530924

  12. Does granulocyte colony-stimulating factor ameliorate the proinflammatory response in human meningococcal septic shock?

    PubMed

    Rojahn, Astrid; Brusletto, Berit; Øvstebø, Reidun; Haug, Kari B F; Kierulf, Peter; Brandtzaeg, Petter

    2008-09-01

    To test the hypothesis that granulocyte colony-stimulating factor acts cooperatively with interleukin-10 in down-regulating monocyte function in severe meningococcal septic shock. 1) We quantified the plasma levels of granulocyte colony-stimulating factor, interleukin-10, Neisseria meningitidis lipopolysaccharide and the number of N. meningitidis DNA copies in 28 patients with systemic meningococcal disease. 2) We studied the inhibitory effect of recombinant human granulocyte colony-stimulating factor on normal human monocytes stimulated with purified meningococcal lipopolysaccaride. 3) We monitored the inhibitory effects of endogenously produced granulocyte colony-stimulating factor and interleukin-10 in meningococcal shock plasmas on monocytes. Comparative, experimental study. University Hospital and laboratory. Twenty-eight patients with systemic meningococcal disease, 13 with persistent shock, 7 died, and 15 without shock. The median levels of granulocyte colony-stimulating factor in shock and nonshock patients were 1.7 x 10(6) and 8.1 x 10(2) pg/mL; interleukin-10, 2.1 x 10(4) and 4 x 10(1) pg/mL; number of N. meningitidis DNA copies, 2.9 x 10(7) and <10(3)/mL; and lipopolysaccharide, 105 and <0.04 endotoxin units/mL, respectively. The plasma levels of granulocyte colony-stimulating factor were reduced by 50% within 4 to 6 hrs after initiation of antibiotic treatment. In model experiments with lipopolysaccharide-stimulated human monocytes, recombinant human granulocyte colony-stimulating factor and interleukin-10 reduced the release of tumor necrosis factor-alpha by mean 30% and 92%, respectively. When plasmas from three shock patients were depleted of native granulocyte colony-stimulating factor or interleukin-10 by immunoprecipitation, no increase in tumor necrosis factor-alpha release occurred after removal of granulocyte colony-stimulating factor, whereas removal of interleukin-10 increased the tumor necrosis factor-alpha release eight-fold. Although granulocyte colony-stimulating factor in plasma increases by five orders of magnitude in patients with meningococcal shock, the anti-inflammatory effect on patients' monocytes is uncertain.

  13. Doxorubicin resistance mediated by cytoplasmic macrophage colony-stimulating factor is associated with switch from apoptosis to autophagic cell death in MCF-7 breast cancer cells

    PubMed Central

    Zhang, Mengxia; Zhang, Hailiang; Tang, Fan; Wang, Yuhua; Mo, Zhongcheng; Lei, Xiaoyong

    2016-01-01

    Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death. PMID:27439542

  14. Cellular FLICE-inhibitory Protein (cFLIP) Isoforms Block CD95- and TRAIL Death Receptor-induced Gene Induction Irrespective of Processing of Caspase-8 or cFLIP in the Death-inducing Signaling Complex*

    PubMed Central

    Kavuri, Shyam M.; Geserick, Peter; Berg, Daniela; Dimitrova, Diana Panayotova; Feoktistova, Maria; Siegmund, Daniela; Gollnick, Harald; Neumann, Manfred; Wajant, Harald; Leverkus, Martin

    2011-01-01

    Death receptors (DRs) induce apoptosis but also stimulate proinflammatory “non-apoptotic” signaling (e.g. NF-κB and mitogen-activated protein kinase (MAPK) activation) and inhibit distinct steps of DR-activated maturation of procaspase-8. To examine whether isoforms of cellular FLIP (cFLIP) or its cleavage products differentially regulate DR signaling, we established HaCaT cells expressing cFLIPS, cFLIPL, or mutants of cFLIPL (cFLIPD376N and cFLIPp43). cFLIP variants blocked TRAIL- and CD95L-induced apoptosis, but the cleavage pattern of caspase-8 in the death inducing signaling complex was different: cFLIPL induced processing of caspase-8 to the p43/41 fragments irrespective of cFLIP cleavage. cFLIPS or cFLIPp43 blocked procaspase-8 cleavage. Analyzing non-apoptotic signaling pathways, we found that TRAIL and CD95L activate JNK and p38 within 15 min. cFLIP variants and different caspase inhibitors blocked late death ligand-induced JNK or p38 MAPK activation suggesting that these responses are secondary to cell death. cFLIP isoforms/mutants also blocked death ligand-mediated gene induction of CXCL-8 (IL-8). Knockdown of caspase-8 fully suppressed apoptotic and non-apoptotic signaling. Knockdown of cFLIP isoforms in primary human keratinocytes enhanced CD95L- and TRAIL-induced NF-κB activation, and JNK and p38 activation, underscoring the regulatory role of cFLIP for these DR-mediated signals. Whereas the presence of caspase-8 is critical for apoptotic and non-apoptotic signaling, cFLIP isoforms are potent inhibitors of TRAIL- and CD95L-induced apoptosis, NF-κB activation, and the late JNK and p38 MAPK activation. cFLIP-mediated inhibition of CD95 and TRAIL DR could be of crucial importance during keratinocyte skin carcinogenesis and for the activation of innate and/or adaptive immune responses triggered by DR activation in the skin. PMID:21454681

  15. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage

    PubMed Central

    Sheng, Gang; Zhao, Hongtu; Wang, Jiuyu; Rao, Yu; Tian, Wenwen; Swarts, Daan C.; van der Oost, John; Patel, Dinshaw J.; Wang, Yanli

    2014-01-01

    We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5′-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand. PMID:24374628

  16. Characteristics of eyes with inner retinal cleavage.

    PubMed

    Hwang, Young Hoon; Kim, Yong Yeon; Kim, Hwang Ki; Sohn, Yong Ho

    2015-02-01

    Inner retinal cleavage can be misdiagnosed as a glaucomatous retinal nerve fiber layer (RNFL) defect. This study was performed to characterize eyes with inner retinal cleavage. Inner retinal cleavage is defined as the appearance of a dark spindle-shaped space between the nerve fibers. Patients who presented at our institution with inner retinal cleavage were enrolled in the study. All participants were evaluated by fundus examination, visual field testing with standard automated perimetry, and optical coherence tomography (OCT) imaging. A total of 15 eyes of 11 subjects with inner retinal cleavage were included in the study. The median age of the subjects was 57 years (age range, 30-67 years). In each case, inner retinal cleavage was located adjacent to retinal blood vessels. Tissue bridging the cleavage area was observed in ten eyes. Six eyes had epiretinal membranes (ERMs), two eyes had glaucoma, and one eye had ERM in addition to glaucoma. Six eyes with inner retinal cleavage without combined ocular abnormalities had highly myopic refractive error (-6.50 to -8.50 diopters). Cross-sectional OCT images of the areas of inner retinal cleavage demonstrated defects with irregular margins and empty spaces in the inner layers of the retina. During the follow-up period, no eye showed changes in inner retinal layer cleavage or visual field sensitivity. Inner retinal cleavage was found in eyes with high myopia or ERMs. Inner retinal cleavage was associated with structural changes distinct from those associated with glaucomatous RNFL defects.

  17. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    PubMed

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  18. Interfering with interferon-γ signalling in intestinal epithelial cells: selective inhibition of apoptosis-maintained secretion of anti-inflammatory interleukin-18 binding protein

    PubMed Central

    Schuhmann, D; Godoy, P; Weiß, C; Gerloff, A; Singer, M V; Dooley, S; Böcker, U

    2011-01-01

    The intestinal epithelial barrier represents an important component in the pathogenesis of inflammatory bowel diseases. Interferon (IFN)-γ, a T helper type 1 (Th1) cytokine, regulated by the interleukin (IL)-18/IL-18 binding protein (bp) system, modulates the integrity of this barrier. The aim of this work was to study functionally the consequences of IFN-γ on intestinal epithelial cells (IEC) and to interfere selectively with identified adverse IFN-γ effects. IEC lines were stimulated with IFN-γ. IL-18 and IL-18bp were assessed by enzyme-linked immunosorbent assay. Staining of phosphatidylserine, DNA laddering, lactate dehydrogenase (LDH) release, cleavage of poly-adenosine diphosphate-ribose-polymerase (PARP) and activation of caspase-3 were analysed to determine cell death. Inhibitors of tyrosine kinase, caspase-3 or p38 mitogen-activated kinase ((MAP) activity were used. Cytokines were measured in supernatants of colonic biopsies of healthy controls and inflammatory bowel disease (IBD) patients. In IEC lines, IFN-γ up-regulated IL-18bp selectively. Ex vivo, IFN-γ was present in supernatants from cultured biopsies and up-regulated with inflammation. Contrary to previous reports, IFN-γ alone induced apoptosis in IEC lines, as demonstrated by phosphatidylserin staining, DNA cleavage and LDH release. Further, activation of caspase-3, PARP cleavage and expression of pro-apoptotic Bad were induced. Partial inhibition of caspase-3 and of p38 but not JAK tyrosine kinase, preserved up-regulation of IL-18bp expression. Selective inhibition of IFN-γ mediated apoptosis, while preserving its beneficial consequences on the ratio of IL-18/IL-18bp, could contribute to the integrity of the mucosal barrier in intestinal inflammation. PMID:21078084

  19. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34.

    PubMed

    Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf

    2011-06-01

    p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.

  20. Effects of the bradykinin antagonist B4310 on smooth muscles and blood pressure in the rat, and its enzymatic degradation.

    PubMed Central

    Griesbacher, T.; Lembeck, F.; Saria, A.

    1989-01-01

    1. Six competitive bradykinin (Bk) antagonists were tested for their agonistic properties on the rat uterus. Five of these peptides showed agonistic effects only at concentrations at least two orders of magnitude higher than those of bradykinin. 2. The antagonistic potency of Lys-Lys-3-Hyp-5,8-Thi-7-DPhe-Bk (B4310) in the rat uterus (pA2 = 7.24) and in the rat duodenum (pA2 = 7.31) was very similar to that determined in an earlier study for the antagonism of the bradykinin-induced stimulation of the trigeminal nerve in the rabbit iris sphincter muscle preparation (pA2 = 7.59). 3. The fall in mean arterial blood pressure induced by i.a. injections of bradykinin was greatly reduced during an i.a. infusion of B4310, but not 10 min thereafter, which indicates a rapid inactivation of B4310 in vivo. Bacitracin possibly interferes with the enzymatic cleavage of B4310 but seems to have no effect on the degradation of bradykinin. 4. An i.a. infusion of captopril greatly enhanced the potency of bradykinin in inducing a fall in arterial blood pressure, confirming the important role of angiotensin converting enzyme in the cleavage of bradykinin. However, the design of this experiment did not allow conclusions about the effect of captopril on the degradation of B4310. 5. B4310 incubated with rat lung tissue disappeared from the incubation medium within a few minutes, i.e. as fast as bradykinin, which explains its short duration of action in vivo. Captopril partially inhibited the cleavage of both bradykinin and B4310.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2655805

  1. Stimulation of Fas/FasL-mediated apoptosis by luteolin through enhancement of histone H3 acetylation and c-Jun activation in HL-60 leukemia cells.

    PubMed

    Wang, Shih-Wei; Chen, Yun-Ru; Chow, Jyh-Ming; Chien, Ming-Hsien; Yang, Shun-Fa; Wen, Yu-Ching; Lee, Wei-Jiunn; Tseng, Tsui-Hwa

    2018-07-01

    Luteolin (3',4',5,7-tetrahydroxyflavone), which exists in fruits, vegetables, and medicinal herbs, is used in Chinese traditional medicine for treating various diseases, such as hypertension, inflammatory disorders, and cancer. However, the gene-regulatory role of luteolin in cancer prevention and therapy has not been clarified. Herein, we demonstrated that treatment with luteolin resulted in a significant decrease in the viability of human leukemia cells. In the present study, by evaluating fragmentation of DNA and poly (ADP-ribose) polymerase (PARP), we found that luteolin was able to induce PARP cleavage and nuclear fragmentation as well as an increase in the sub-G 0 /G 1 fraction. In addition, luteolin also induced Fas and Fas ligand (FasL) expressions and subsequent activation of caspases-8 and -3, which can trigger the extrinsic apoptosis pathway, while knocking down Fas-associated protein with death domain (FADD) prevented luteolin-induced PARP cleavage. Immunoblot and chromatin immunoprecipitation (ChIP) analyses revealed that luteolin increased acetylation of histone H3, which is involved in the upregulation of Fas and FasL. Moreover, both the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways are involved in luteolin-induced histone H3 acetylation. Finally, luteolin also activated the c-Jun signaling pathway, which contributes to FasL, but not Fas, gene expression and downregulation of c-Jun expression by small interfering RNA transfection which resulted in a significant decrease in luteolin-induced PARP cleavage. Thus, our results demonstrate that luteolin induced apoptosis of HL-60 cells, and this was associated with c-Jun activation and histone H3 acetylation-mediated Fas/FasL expressions. © 2018 Wiley Periodicals, Inc.

  2. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant tomore » the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.« less

  3. The Structure and Specificity of the Type III Secretion System Effector NleC Suggest a DNA Mimicry Mechanism of Substrate Recognition

    PubMed Central

    2015-01-01

    Many pathogenic bacteria utilize the type III secretion system (T3SS) to translocate effector proteins directly into host cells, facilitating colonization. In enterohemmorhagic Escherichia coli (EHEC), a subset of T3SS effectors is essential for suppression of the inflammatory response in hosts, including humans. Identified as a zinc protease that cleaves NF-κB transcription factors, NleC is one such effector. Here, we investigate NleC substrate specificity, showing that four residues around the cleavage site in the DNA-binding loop of the NF-κB subunit RelA strongly influence the cleavage rate. Class I NF-κB subunit p50 is cleaved at a reduced rate consistent with conservation of only three of these four residues. However, peptides containing 10 residues on each side of the scissile bond were not efficiently cleaved by NleC, indicating that elements distal from the cleavage site are also important for substrate recognition. We present the crystal structure of NleC and show that it mimics DNA structurally and electrostatically. Consistent with this model, mutation of phosphate-mimicking residues in NleC reduces the level of RelA cleavage. We propose that global recognition of NF-κB subunits by DNA mimicry combined with a high sequence selectivity for the cleavage site results in exquisite NleC substrate specificity. The structure also shows that despite undetectable similarity of its sequence to those of other Zn2+ proteases beyond its conserved HExxH Zn2+-binding motif, NleC is a member of the Zincin protease superfamily, albeit divergent from its structural homologues. In particular, NleC displays a modified Ψ-loop motif that may be important for folding and refolding requirements implicit in T3SS translocation. PMID:25040221

  4. Proteolysis suppresses spontaneous prion generation in yeast.

    PubMed

    Okamoto, Atsushi; Hosoda, Nao; Tanaka, Anri; Newnam, Gary P; Chernoff, Yury O; Hoshino, Shin-Ichi

    2017-12-08

    Prions are infectious proteins that cause fatal neurodegenerative disorders including Creutzfeldt-Jakob and bovine spongiform encephalopathy (mad cow) diseases. The yeast [ PSI + ] prion is formed by the translation-termination factor Sup35, is the best-studied prion, and provides a useful model system for studying such diseases. However, despite recent progress in the understanding of prion diseases, the cellular defense mechanism against prions has not been elucidated. Here, we report that proteolytic cleavage of Sup35 suppresses spontaneous de novo generation of the [ PSI + ] prion. We found that during yeast growth in glucose media, a maximum of 40% of Sup35 is cleaved at its N-terminal prion domain. This cleavage requires the vacuolar proteases PrA-PrB. Cleavage occurs in a manner dependent on translation but independently of autophagy between the glutamine/asparagine-rich (Q/N-rich) stretch critical for prion formation and the oligopeptide-repeat region required for prion maintenance, resulting in the removal of the Q/N-rich stretch from the Sup35 N terminus. The complete inhibition of Sup35 cleavage, by knocking out either PrA ( pep4 Δ) or PrB ( prb1 Δ), increased the rate of de novo formation of [ PSI + ] prion up to ∼5-fold, whereas the activation of Sup35 cleavage, by overproducing PrB, inhibited [ PSI + ] formation. On the other hand, activation of the PrB pathway neither cleaved the amyloid conformers of Sup35 in [ PSI + ] strains nor eliminated preexisting [ PSI + ]. These findings point to a mechanism antagonizing prion generation in yeast. Our results underscore the usefulness of the yeast [ PSI + ] prion as a model system to investigate defense mechanisms against prion diseases and other amyloidoses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Crystallization and characterization of human chorionic gonadotropin in chemically deglycosylated and enzymatically desialylated states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, J.W.; Birken, S.; Pileggi, N.F.

    1989-11-28

    Crystals suitable for X-ray diffraction studies at moderate resolution have been grown from two forms of human chorionic gonadotropin (hCG): HF-treated hCG and neuraminidase-treated hCG. The enzymatically desialylated form of hCG produced crystals that diffract to 2.8 {angstrom} as compared to the HF-treated hCG crystals that diffract to 3.0 {angstrom}. Although it was assumed that the high and heterogeneous carbohydrate content of the glycoprotein hormones inhibited their crystallization, this report suggests that it is the negatively charged surface sugars and neither the total carbohydrate content nor its heterogeneity which interferes with crystal formation. Chemical deglycosylation resulted in significantly increased proteinmore » degradation during crystal growth. Such peptide bond cleavages were observed to a much lesser extent in the crystals grown from neuraminidase-digested hCG. Sequence analysis of the HF-treated hCG crystals suggested that up to 45% of the molecules within the crystal had an acid-labile peptide bond cleaved. In contrast, the neuraminidase-treated hCG exhibited less than 9% of this type of cleavage. The manner in which hCG was treated prior to crystallization was found to be a very important factor in the extent of peptide bound cleavages occurring during crystal growth. HF treatment of glycoproteins may render glycoproteins more susceptible to peptide bond cleavage during crystal growth.« less

  6. Modification of the Hemagglutinin Cleavage Site Allows Indirect Activation of Avian Influenza Virus H9N2 by Bacterial Staphylokinase

    PubMed Central

    Tse, Longping V.; Whittaker, Gary R.

    2015-01-01

    Influenza H9N2 is considered to be a low pathogenicity avian influenza (LPAI) virus that commonly infects avian species and can also infect humans. In 1996, the influenza virus, A/chicken/Korea/MS96-CE6/1996/H9N2 (MS96) was isolated from an outbreak in multiple farms in South Korea that resulted in upwards of 30% mortality in infected chickens, with the virus infecting a number of extrapulmonary tissues, indicating internal spread. However, in experimental infections, complete recovery of specific pathogen free (SPF) chickens occurred. Such a discrepancy indicated an alternative pathway for MS96 virus to gain virulence in farmed chickens. A key determinant of influenza pathogenesis is the susceptibility of the viral hemagglutinin (HA) to proteolytic cleavage/activation. Here, we identified that an amino acid substitution, Ser to Tyr found at the P2 position of the MS96 HA cleavage site optimizes cleavage by the protease plasmin (Pm). Importantly, we identified that certain Staphylococcus sp. are able to cleave and activate MS96 HA by activating plasminogen (Plg) to plasmin by use of a virulence factor, staphylokinase. Overall, these studies provide an in-vitro mechanism for bacterially mediated enhancement of influenza activation, and allow insight into the microbiological mechanisms underlying the avian influenza H9N2 outbreak in Korea in1996. PMID:25841078

  7. The strategy of fusion genes construction determines efficient expression of introduced transcription factors.

    PubMed

    Adamus, Tomasz; Konieczny, Paweł; Sekuła, Małgorzata; Sułkowski, Maciej; Majka, Marcin

    2014-01-01

    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space.

  8. Access of Hydrogen-Radicals to the Peptide-Backbone as a Measure for Estimating the Flexibility of Proteins Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Takayama, Mitsuo; Nagoshi, Keishiro; Iimuro, Ryunosuke; Inatomi, Kazuma

    2014-01-01

    A factor for estimating the flexibility of proteins is described that uses a cleavage method of “in-source decay (ISD)” coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The MALDI-ISD spectra of bovine serum albumin (BSA), myoglobin and thioredoxin show discontinuous intense ion peaks originating from one-side preferential cleavage at the N-Cα bond of Xxx-Asp, Xxx-Asn, Xxx-Cys and Gly-Xxx residues. Consistent with these observations, Asp, Asn and Gly residues are also identified by other flexibility measures such as B-factor, turn preference, protection and fluorescence decay factors, while Asp, Asn, Cys and Gly residues are identified by turn preference factor based on X-ray crystallography. The results suggest that protein molecules embedded in/on MALDI matrix crystals partly maintain α-helix and that the reason some of the residues are more susceptible to ISD (Asp, Asn, Cys and Gly) and others less so (Ile and Val) is because of accessibility of the peptide backbone to hydrogen-radicals from matrix molecules. The hydrogen-radical accessibility in MALDI-ISD could therefore be adopted as a factor for measuring protein flexibility. PMID:24828203

  9. Hypophyseal corticosteroids stimulate somatotrope differentiation in the embryonic chicken pituitary gland.

    PubMed

    Zheng, Jun; Takagi, Hiroyasu; Tsutsui, Chihiro; Adachi, Akihito; Sakai, Takafumi

    2008-03-01

    Although it is known that glucocorticoids induce differentiation of growth hormone (GH)-producing cells in rodents and birds, the effect of mineralocorticoids on GH mRNA expression and the origin of corticosteroids affecting somatotrope differentiation have not been elucidated. In this study, we therefore carried out experiments to determine the effect of mineralocorticoids on GH mRNA expression in the chicken anterior pituitary gland in vitro and to determine whether corticosteroids are synthesized in the chicken embryonic pituitary gland. In a pituitary culture experiment with E11 embryos, both corticosterone and aldosterone stimulated GH mRNA expression and increased the number of GH cells in both lobes of the pituitary gland in a dose-dependent manner. These effects of the corticosteroids were significantly reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist, or spironolactone, a mineralocorticoid receptor (MR) antagonist. Interestingly, an in vitro serum-free culture experiment with an E11 pituitary gland showed that the GH mRNA level spontaneously increased during cultivation for 2 days without any extra stimulation, and this increase in GH mRNA level was completely suppressed by metyrapone, a corticosterone-producing enzyme P450C11 inhibitor. Moreover, progesterone, the corticosterone precursor, also stimulated GH mRNA expression in the cultured chicken pituitary gland, and this effect was blocked by pretreatment with metyrapone. We also detected mRNA expression of enzymes of cytochrome P450 cholesterol side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase1 (3beta-HSD1) in the developmental chicken pituitary gland from E14 and E18, respectively. These results suggest that mineralocorticoids as well as glucocorticoids can stimulate GH mRNA expression and that corticosteroids generated in the embryonic pituitary gland by intrinsic steroidogenic enzymes stimulate somatotrope differentiation.

  10. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells.

    PubMed

    Nielsen, C H; Albertsen, L; Bendtzen, K; Baslund, B

    2007-05-01

    The mechanism of action of methotrexate (MTX) in autoimmune diseases (AID) is unclear. A pro-apoptotic effect has been demonstrated in mitogen-stimulated peripheral blood mononuclear cells (PBMC), but studies employing conventional antigens have disputed a pro-apoptotic effect. CD4+ T helper (Th) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th cells took up MTX, nearly all the dividing Th cells did, and this abrogated further cell division. Among dividing Th cells, MTX induced an approximately sixfold increase over baseline levels in the proportion of apoptotic cells. This proportion could be reverted to baseline by the addition of folic acid. Exposure of CA-stimulated PBMC to MTX significantly increased their level of cleaved poly(ADP-ribose) polymerase (PARP), and a similar tendency was observed in TT-stimulated cells. Unlike CA and TT, the mitogen phytohaemagglutinin (PHA) induced proliferation of both CD4- and CD4+ T cells, and induced apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative of stimulation with self-antigens in AID, and that a pro-apoptotic effect of MTX on self-antigen-stimulated Th cells contributes to the effect of MTX in the treatment of AID.

  11. γ-Secretase Modulators and APH1 Isoforms Modulate γ-Secretase Cleavage but Not Position of ε-Cleavage of the Amyloid Precursor Protein (APP).

    PubMed

    Lessard, Christian B; Cottrell, Barbara A; Maruyama, Hiroko; Suresh, Suraj; Golde, Todd E; Koo, Edward H

    2015-01-01

    The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.

  12. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.

    PubMed

    Jasin, Maria; Haber, James E

    2016-08-01

    DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution. Copyright © 2016. Published by Elsevier B.V.

  13. Kinetic analysis of the effects of target structure on siRNA efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  14. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death.

    PubMed

    Kambara, Hiroto; Liu, Fei; Zhang, Xiaoyu; Liu, Peng; Bajrami, Besnik; Teng, Yan; Zhao, Li; Zhou, Shiyi; Yu, Hongbo; Zhou, Weidong; Silberstein, Leslie E; Cheng, Tao; Han, Mingzhe; Xu, Yuanfu; Luo, Hongbo R

    2018-03-13

    Gasdermin D (GSDMD) is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT) to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE), released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT) that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The Democratization of Gene Editing: Insights from site-specific cleavage and double-strand break repair

    PubMed Central

    Jasin, Maria; Haber, James E.

    2017-01-01

    DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occur by homologous recombination that relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution. PMID:27261202

  16. Bacterial size matters: Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis

    PubMed Central

    Salamaga, Bartłomiej; Prajsnar, Tomasz K.; Willemse, Joost; Bewley, Martin A.; Chau, Françoise

    2017-01-01

    Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections. PMID:28742152

  17. In vivo characterization of the Drosophila mRNA 3′ end processing core cleavage complex

    PubMed Central

    Michalski, Daniel; Steiniger, Mindy

    2015-01-01

    A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3′ end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272–1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3′ end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3′ end processing similar to RNAi-depletion of histone-specific 3′ end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3′ end processing of histone mRNAs. PMID:26081560

  18. Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics.

    PubMed

    Kaul, Artur; Stauffer, Sarah; Berger, Carola; Pertel, Thomas; Schmitt, Jennifer; Kallis, Stephanie; Zayas, Margarita; Lopez, Margarita Zayas; Lohmann, Volker; Luban, Jeremy; Bartenschlager, Ralf

    2009-08-01

    Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication.

  19. Accurate and rapid modeling of iron-bleomycin-induced DNA damage using tethered duplex oligonucleotides and electrospray ionization ion trap mass spectrometric analysis.

    PubMed

    Harsch, A; Marzilli, L A; Bunt, R C; Stubbe, J; Vouros, P

    2000-05-01

    Bleomycin B(2)(BLM) in the presence of iron [Fe(II)] and O(2)catalyzes single-stranded (ss) and double-stranded (ds) cleavage of DNA. Electrospray ionization ion trap mass spectrometry was used to monitor these cleavage processes. Two duplex oligonucleotides containing an ethylene oxide tether between both strands were used in this investigation, allowing facile monitoring of all ss and ds cleavage events. A sequence for site-specific binding and cleavage by Fe-BLM was incorporated into each analyte. One of these core sequences, GTAC, is a known hot-spot for ds cleavage, while the other sequence, GGCC, is a hot-spot for ss cleavage. Incubation of each oligo-nucleotide under anaerobic conditions with Fe(II)-BLM allowed detection of the non-covalent ternary Fe-BLM/oligonucleotide complex in the gas phase. Cleavage studies were then performed utilizing O(2)-activated Fe(II)-BLM. No work-up or separation steps were required and direct MS and MS/MS analyses of the crude reaction mixtures confirmed sequence-specific Fe-BLM-induced cleavage. Comparison of the cleavage patterns for both oligonucleotides revealed sequence-dependent preferences for ss and ds cleavages in accordance with previously established gel electrophoresis analysis of hairpin oligonucleotides. This novel methodology allowed direct, rapid and accurate determination of cleavage profiles of model duplex oligonucleotides after exposure to activated Fe-BLM.

  20. Cultural Cleavage and Criminal Justice.

    ERIC Educational Resources Information Center

    Scheingold, Stuart A.

    1978-01-01

    Reviews major theories of criminal justice, proposes an alternative analytic framework which focuses on cultural factors, applies this framework to several cases, and discusses implications of a cultural perspective for rule of law values. Journal available from Office of Publication, Department of Political Science, University of Florida,…

  1. Interdependence between transcription and mRNP processing and export, and its impact on genetic stability.

    PubMed

    Luna, Rosa; Jimeno, Sonia; Marín, Mercedes; Huertas, Pablo; García-Rubio, María; Aguilera, Andrés

    2005-06-10

    The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.

  2. Molecular interaction study of commercial cyclic peptides and MERS-COV papain-like protease as novel drug candidate for MERS-COV

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Azzuhdi, M. G.; Tambunan, U. S. F.

    2017-07-01

    Middle-east respiratory syndrome coronavirus (MERS-CoV) has become the current outbreak, MERS-CoV infection results in illness at the respiratory system, digestive, and even lead to death with an average mortality caused by MERS-CoV infection reaches 50 %. Until now, there is not any effective vaccine or drug to ward off MERS-CoV infection. Papain-like protease (PLpro) is responsible for cleavage of a nonstructural protein that is essential for viral maturation. Inhibition of PLpro with a ligand will block the cleavage process of nonstructural protein, thus reduce the infection of MERS-CoV. Through of bioinformatics study with molecular docking and binding interaction analysis of commercial cyclic peptides, aldosterone secretion inhibiting factor (1-35) (bovine) was obtained as an inhibitor for PLpro. Thus, aldosterone secretion inhibiting factor (1-35) (bovine) has a potential as a novel candidate drug for treating MERS-CoV.

  3. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis

    PubMed Central

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L.; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R.

    2015-01-01

    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aβ levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aβ production and release. Additional studies are needed to explore the therapeutic potential of this approach. PMID:26338325

  4. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B.

    PubMed

    Lennemann, Nicholas J; Coyne, Carolyn B

    2017-02-01

    The endoplasmic reticulum (ER) is exploited by several diverse viruses during their infectious life cycles. Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), utilize the ER as a source of membranes to establish their replication organelles and to facilitate their assembly and eventual maturation along the secretory pathway. To maintain normal homeostasis, host cells have evolved highly efficient processes to dynamically regulate the ER, such as through reticulophagy, a selective form of autophagy that leads to ER degradation. Here, we identify the ER-localized reticulophagy receptor FAM134B as a host cell restriction factor for both DENV and ZIKV. We show that RNAi-mediated depletion of FAM134B significantly enhances both DENV and ZIKV replication at an early stage of the viral life cycle. Consistent with its role as an antiviral host factor, we found that several flaviviruses including DENV, ZIKV, and West Nile virus (WNV), utilize their NS3 virally-encoded proteases to directly cleave FAM134B at a single site within its reticulon homology domain (RHD). Mechanistically, we show that NS3-mediated cleavage of FAM134B blocks the formation of ER and viral protein-enriched autophagosomes, suggesting that the cleavage of FAM134B serves to specifically suppress the reticulophagy pathway. These findings thus point to an important role for FAM134B and reticulophagy in the regulation of flavivirus infection and suggest that these viruses specifically target these pathways to promote viral replication.

  5. Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila.

    PubMed

    Isaac, R Elwyn; Johnson, Erik C; Audsley, Neil; Shirras, Alan D

    2007-12-01

    Recent studies have firmly established pigment dispersing factor (PDF), a C-terminally amidated octodecapeptide, as a key neurotransmitter regulating rhythmic circadian locomotory behaviours in adult Drosophila melanogaster. The mechanisms by which PDF functions as a circadian peptide transmitter are not fully understood, however; in particular, nothing is known about the role of extracellular peptidases in terminating PDF signalling at synapses. In this study we show that PDF is susceptible to hydrolysis by neprilysin, an endopeptidase that is enriched in synaptic membranes of mammals and insects. Neprilysin cleaves PDF at the internal Ser7-Leu8 peptide bond to generate PDF1-7 and PDF8-18. Neither of these fragments were able to increase intracellular cAMP levels in HEK293 cells cotransfected with the Drosophila PDF receptor cDNA and a firefly luciferase reporter gene, confirming that such cleavage results in PDF inactivation. The Ser7-Leu8 peptide bond was also the principal cleavage site when PDF was incubated with membranes prepared from heads of adult Drosophila. This endopeptidase activity was inhibited by the neprilysin inhibitors phosphoramidon (IC(50,) 0.15 micromol l(-1)) and thiorphan (IC(50,) 1.2 micromol l(-1)). We propose that cleavage by a member of the Drosophila neprilysin family of endopeptidases is the most likely mechanism for inactivating synaptic PDF and that neprilysin might have an important role in regulating PDF signals within circadian neural circuits.

  6. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  7. Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Kornacki, James R.; Adamson, Julie T.; Håkansson, Kristina

    2012-11-01

    Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto- N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.

  8. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.

    PubMed

    Yan, Winston X; Chong, Shaorong; Zhang, Huaibin; Makarova, Kira S; Koonin, Eugene V; Cheng, David R; Scott, David A

    2018-04-19

    Bacterial class 2 CRISPR-Cas systems utilize a single RNA-guided protein effector to mitigate viral infection. We aggregated genomic data from multiple sources and constructed an expanded database of predicted class 2 CRISPR-Cas systems. A search for novel RNA-targeting systems identified subtype VI-D, encoding dual HEPN domain-containing Cas13d effectors and putative WYL-domain-containing accessory proteins (WYL1 and WYL-b1 through WYL-b5). The median size of Cas13d proteins is 190 to 300 aa smaller than that of Cas13a-Cas13c. Despite their small size, Cas13d orthologs from Eubacterium siraeum (Es) and Ruminococcus sp. (Rsp) are active in both CRISPR RNA processing and targeting, as well as collateral RNA cleavage, with no target-flanking sequence requirements. The RspWYL1 protein stimulates RNA cleavage by both EsCas13d and RspCas13d, demonstrating a common regulatory mechanism for divergent Cas13d orthologs. The small size, minimal targeting constraints, and modular regulation of Cas13d effectors further expands the CRISPR toolkit for RNA manipulation and detection. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI.

    PubMed

    Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V

    2014-08-01

    In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. The RNA-induced silencing complex is a Mg2+-dependent endonuclease.

    PubMed

    Schwarz, Dianne S; Tomari, Yukihide; Zamore, Phillip D

    2004-05-04

    In the Drosophila and mammalian RNA interference (RNAi) pathways, target RNA destruction is catalyzed by the siRNA-guided, RNA-induced silencing complex (RISC). RISC has been proposed to be an siRNA-directed endonuclease, catalyzing cleavage of a single phosphodiester bond on the RNA target. Although 5' cleavage products are readily detected for RNAi in vitro, only 3' cleavage products have been observed in vivo. Proof that RISC acts as an endonuclease requires detection of both 5' and 3' cleavage products in a single experimental system. Here, we show that siRNA-programmed RISC generates both 5' and 3' cleavage products in vitro; cleavage requires Mg(2+), but not Ca(2+), and the cleavage product termini suggest a role for Mg(2+) in catalysis. Moreover, a single phosphorothioate in place of the scissile phosphate blocks cleavage; the phosphorothioate effect can be rescued by the thiophilic cation Mn(2+), but not by Ca(2+) or Mg(2+). We propose that during catalysis, a Mg(2+) ion is bound to the RNA substrate through a nonbridging oxygen of the scissile phosphate. The mechanism of endonucleolytic cleavage is not consistent with the mechanisms of the previously identified RISC nuclease, Tudor-SN. Thus, the RISC-component that mediates endonucleolytic cleavage of the target RNA remains to be identified.

  11. Platelet-free shear flow assay facilitates analysis of shear-dependent functions of VWF and ADAMTS13.

    PubMed

    Kraus, Emma; Kraus, Kristina; Obser, Tobias; Oyen, Florian; Klemm, Ulrike; Schneppenheim, Reinhard; Brehm, Maria A

    2014-12-01

    The multimeric form of von Willebrand factor (VWF), is the largest soluble protein in mammals and exhibits a multidomain structure resulting in multiple functions. Upon agonist stimulation endothelial cells secrete VWF multimers from Weibel-Palade bodies into the blood stream where VWF plays an essential role in platelet-dependent primary hemostasis. Elongation of VWF strings on the cells' surface leads to accessibility of VWF binding sites for proteins, such as platelet membrane glycoprotein Ib. The prothrombotic strings are size-regulated by the metalloprotease ADAMTS13 by shear force-activated proteolytic cleavage. VWF string formation was induced by histamine stimulation of HUVEC cells under unidirectional shear flow and VWF strings were detected employing the VWF binding peptide of platelet glycoprotein Ib coupled to latex beads. VWF strings were then used as substrate for kinetic studies of recombinant and plasma ADAMTS13. To investigate specific aspects of the shear-dependent functions of VWF and ADAMTS13, we developed a shear flow assay that allows observation of VWF string formation and their degradation by ADAMTS13 without the need for isolated platelets. Our assay specifically detects VWF strings, can be coupled with fluorescent applications and allows semi-automated, quantitative assessment of recombinant and plasma ADAMTS13 activity. Our assay may serve as a valuable research tool to investigate the biochemical characteristics of VWF and ADAMTS13 under shear flow and could complement diagnostics of von Willebrand Disease and Thrombotic Thrombocytopenic Purpura as it allows detection of shear flow-dependent dysfunction of VWD-associated VWF mutants as well as TTP-associated ADAMTS13 mutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus.

    PubMed

    Loxham, M; Smart, D E; Bedke, N J; Smithers, N P; Filippi, I; Blume, C; Swindle, E J; Tariq, K; Howarth, P H; Holgate, S T; Davies, D E

    2018-03-01

    CX3CL1 has been implicated in allergen-induced airway CD4 + T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection-allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding-this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.

  13. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli.

    PubMed

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin; Li, Shan; Wang, Jufang

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H 10 . The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  14. Protein composition of catalytically active U7-dependent processing complexes assembled on histone pre-mRNA containing biotin and a photo-cleavable linker

    PubMed Central

    Skrajna, Aleksandra; Yang, Xiao-cui; Dadlez, Michał; Marzluff, William F; Dominski, Zbigniew

    2018-01-01

    Abstract 3′ end cleavage of metazoan replication-dependent histone pre-mRNAs requires the multi-subunit holo-U7 snRNP and the stem–loop binding protein (SLBP). The exact composition of the U7 snRNP and details of SLBP function in processing remain unclear. To identify components of the U7 snRNP in an unbiased manner, we developed a novel approach for purifying processing complexes from Drosophila and mouse nuclear extracts. In this method, catalytically active processing complexes are assembled in vitro on a cleavage-resistant histone pre-mRNA containing biotin and a photo-sensitive linker, and eluted from streptavidin beads by UV irradiation for direct analysis by mass spectrometry. In the purified processing complexes, Drosophila and mouse U7 snRNP have a remarkably similar composition, always being associated with CPSF73, CPSF100, symplekin and CstF64. Many other proteins previously implicated in the U7-dependent processing are not present. Drosophila U7 snRNP bound to histone pre-mRNA in the absence of SLBP contains the same subset of polyadenylation factors but is catalytically inactive and addition of recombinant SLBP is sufficient to trigger cleavage. This result suggests that Drosophila SLBP promotes a structural rearrangement of the processing complex, resulting in juxtaposition of the CPSF73 endonuclease with the cleavage site in the pre-mRNA substrate. PMID:29529248

  15. HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    We have previously shown that exposure to zinc ions can activate epidermal growth factor (EGF) receptor (EGFR) signaling in murine fibroblasts and A431 cells through a mechanism involving Src kinase. While studying the effects of zinc ions in normal human bronchial epithelial cel...

  16. Selected sperm traits are simultaneously altered after scrotal heat stress and play specific roles in in vitro fertilization and embryonic development.

    PubMed

    Lucio, Aline C; Alves, Benner G; Alves, Kele A; Martins, Muller C; Braga, Lucas S; Miglio, Luisa; Alves, Bruna G; Silva, Thiago H; Jacomini, José O; Beletti, Marcelo E

    2016-09-01

    Improvements in the estimation of male fertility indicators require advances in laboratory tests for sperm assessment. The aims of the present work were (1) to apply a multivariate analysis to examine sperm set of alterations and interactions and (2) to evaluate the importance of sperm parameters on the outcome of standard IVF and embryonic development. Bulls (n = 3) were subjected to scrotal insulation, and ejaculates were collected before (preinsulation = Day 0) and through 56 days (Days 7, 14, 21, 28, 35, 42, 49, and 56) of the experimental period. Sperm head morphometry and chromatin variables were assessed by a computational image analysis, and IVF was performed. Scrotal heat stress induced alterations in all evaluated sperm head features, as well as cleavage and blastocyst rates. A principal component analysis revealed three main components (factors) that represented almost 89% of the cumulative variance. In addition, an association of factor scores with cleavage (factor 1) and blastocyst (factor 3) rates was observed. In conclusion, several sperm traits were simultaneously altered as a result of a thermal insult. These sperm traits likely play specific roles in IVF and embryonic development. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion

    PubMed Central

    Schwarz, Friedrich W.; van Aelst, Kara; Tóth, Júlia; Seidel, Ralf; Szczelkun, Mark D.

    2011-01-01

    DNA cleavage by the Type III Restriction–Modification enzymes requires communication in 1D between two distant indirectly-repeated recognitions sites, yet results in non-specific dsDNA cleavage close to only one of the two sites. To test a recently proposed ATP-triggered DNA sliding model, we addressed why one site is selected over another during cleavage. We examined the relative cleavage of a pair of identical sites on DNA substrates with different distances to a free or protein blocked end, and on a DNA substrate using different relative concentrations of protein. Under these conditions a bias can be induced in the cleavage of one site over the other. Monte-Carlo simulations based on the sliding model reproduce the experimentally observed behaviour. This suggests that cleavage site selection simply reflects the dynamics of the preceding stochastic enzyme events that are consistent with bidirectional motion in 1D and DNA cleavage following head-on protein collision. PMID:21724613

  18. GPS-CCD: A Novel Computational Program for the Prediction of Calpain Cleavage Sites

    PubMed Central

    Gao, Xinjiao; Ma, Qian; Ren, Jian; Xue, Yu

    2011-01-01

    As one of the most essential post-translational modifications (PTMs) of proteins, proteolysis, especially calpain-mediated cleavage, plays an important role in many biological processes, including cell death/apoptosis, cytoskeletal remodeling, and the cell cycle. Experimental identification of calpain targets with bona fide cleavage sites is fundamental for dissecting the molecular mechanisms and biological roles of calpain cleavage. In contrast to time-consuming and labor-intensive experimental approaches, computational prediction of calpain cleavage sites might more cheaply and readily provide useful information for further experimental investigation. In this work, we constructed a novel software package of GPS-CCD (Calpain Cleavage Detector) for the prediction of calpain cleavage sites, with an accuracy of 89.98%, sensitivity of 60.87% and specificity of 90.07%. With this software, we annotated potential calpain cleavage sites for hundreds of calpain substrates, for which the exact cleavage sites had not been previously determined. In this regard, GPS-CCD 1.0 is considered to be a useful tool for experimentalists. The online service and local packages of GPS-CCD 1.0 were implemented in JAVA and are freely available at: http://ccd.biocuckoo.org/. PMID:21533053

  19. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Junwei; Zhang, Huan; Fang, Liurong

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferasemore » by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.« less

  20. Clomiphene citrate is associated with favorable cycle characteristics but impaired outcomes of obese women with polycystic ovarian syndrome undergoing ovarian stimulation for in vitro fertilization

    PubMed Central

    Jiang, Shutian; Kuang, Yanping

    2017-01-01

    Abstract The aim of this study was to explore the effect of clomiphene citrate (CC) on the cycle characteristics and outcomes of obese women with polycystic ovarian syndrome (PCOS) undergoing ovarian stimulation for in vitro fertilization (IVF). This is a retrospective cohort study, and it was conducted at the tertiary-care academic medical center. This study included 174 obese PCOS patients undergoing IVF. In the study group (n = 90), CC and human menopausal gonadotropin (HMG) were administered simultaneously beginning on cycle day 3, while in control group (n = 84) HMG was used only. Both of the 2 groups used medroxyprogesterone acetate (MPA) for preventing premature luteinizing hormone (LH) surges. Ovulation was cotriggered by a GnRH agonist and hCG when dominant follicles matured. The primary outcome measure was the number of oocytes retrieved. Secondary outcomes included the number of top-quality embryos, maturation rate, fertilization rate, cleavage rate, incidence of premature LH surge, and OHSS. The study group received obviously lower total HMG dose [1650 (975–4800) vs 2025 (1350–3300) IU, P = 2.038E–4] but similar HMG duration. While the antral follicle count (AFC) is higher in study group, the number of oocytes retrieved and top-quality embryos are remarkably less [5 (0–30) vs 13 (0–42), P = 6.333E–5; 2 (0–14) vs 3.5 (0–15), P = .003; respectively]. The mature oocyte rate is higher in study group (P = .036). No significant differences were detected in fertilization rate and cleavage rate between 2 groups. CC has a positive influence on cycle characteristics, but might be correlated with the impaired IVF outcomes (less oocytes retrieved and top quality embryos, lower oocyte retrieval rate) in obese PCOS patients undergoing IVF, when HMG and MPA are used simultaneously. PMID:28796038

  1. Characterisation of lubricin in synovial fluid from horses with osteoarthritis.

    PubMed

    Svala, E; Jin, C; Rüetschi, U; Ekman, S; Lindahl, A; Karlsson, N G; Skiöldebrand, E

    2017-01-01

    The glycoprotein lubricin contributes to the boundary lubrication of the articular cartilage surface. The early events of osteoarthritis involve the superficial layer where lubricin is synthesised. To characterise the glycosylation profile of lubricin in synovial fluid from horses with osteoarthritis and study secretion and degradation of lubricin in an in vitro inflammation cartilage model. In vitro study. Synovial fluid samples collected from horses with joints with normal articular cartilage and structural osteoarthritic lesions; with and without osteochondral fragments, were analysed for the lubricin glycosylation profiles. Articular cartilage explants were stimulated with or without interleukin-1β for 25 days. Media samples collected at 3-day intervals were analysed by quantitative proteomics, western blot and enzyme-linked immunosorbent assay. O-glycosylation profiles in synovial fluid revealed both Core 1 and 2 O-glycans, with Core 1 O-glycans predominating. Synovial fluid from normal joints (49.5 ± 1.9%) contained significantly lower amounts of monosialylated Core 1 O-glycans compared with joints with osteoarthritis (53.8 ± 7.8%, P = 0.03) or joints with osteochondral fragments (57.3 ± 8.8%, P = 0.001). Additionally, synovial fluid from normal joints (26.7 ± 6.7%) showed higher amounts of disialylated Core 1 O-glycan than from joints with osteochondral fragments (21.2 ± 4.9%, P = 0.03). A C-terminal proteolytic cleavage site in lubricin was found in synovial fluid from normal and osteochondral fragment joints and in media from interleukin-1β stimulated and unstimulated articular cartilage explants. This is the first demonstration of a change in the glycosylation profile of lubricin in synovial fluid from diseased equine joints compared with that from normal joints. We demonstrate an identical proteolytic cleavage site of lubricin both in vitro and in vivo. The reduced sialation of lubricin in synovial fluid from diseased joints may affect the boundary lubricating ability of the superficial layer of articular cartilage and could be one of the early events in the progression of osteoarthritis. © 2015 EVJ Ltd.

  2. C2K77 ELISA detects cleavage of type II collagen by cathepsin K in equine articular cartilage.

    PubMed

    Noé, B; Poole, A R; Mort, J S; Richard, H; Beauchamp, G; Laverty, S

    2017-12-01

    Develop a species-specific ELISA for a neo-epitope generated by cathepsin K cleavage of equine type II collagen to: (1) measure cartilage type II collagen degradation by cathepsin K in vitro, (2) identify cytokines that upregulate cathepsin K expression and (3) compare cathepsin K with matrix metalloproteinase (MMP) collagenase activity in stimulated cartilage explants and freshly isolated normal and osteoarthritic (OA) articular cartilages. A new ELISA (C2K77) was developed and tested by measuring the activity of exogenous cathepsin K on equine articular cartilage explants. The ELISA was then employed to measure endogenous cathepsin K activity in cultured cartilage explants with or without stimulation by interleukin-1 beta (IL-1β), tumour necrosis-alpha (TNF-α), oncostatin M (OSM) and lipopolysaccharide (LPS). Cathepsin K activity in cartilage explants (control and osteoarthritic-OA) and freshly harvested cartilage (control and OA) was compared to that of MMPs employing C2K77 and C1,2C immunoassays. The addition of Cathepsin K to normal cartilage caused a significant increase (P < 0.01) in the C2K77 epitope release. Whereas the content of C1,2C, that reflects MMP collagenase activity, was increased in media by the addition to cartilage explants of TNF-α and OSM (P < 0.0001) or IL-1β and OSM (P = 0.002), no change was observed in C2K77 which also unchanged in OA cartilages compared to normal. The ELISA C2K77 measured the activity of cathepsin K in equine cartilage which was unchanged in OA cartilage. Cytokines that upregulate MMP collagenase activity had no effect on endogenous cathepsin K activity, suggesting a different activation mechanism that requires further study. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Potassium Supplementation Prevents Sodium Chloride Cotransporter Stimulation During Angiotensin II Hypertension.

    PubMed

    Veiras, Luciana C; Han, Jiyang; Ralph, Donna L; McDonough, Alicia A

    2016-10-01

    Angiotensin II (AngII) hypertension increases distal tubule Na-Cl cotransporter (NCC) abundance and phosphorylation (NCCp), as well as epithelial Na(+) channel abundance and activating cleavage. Acutely raising plasma [K(+)] by infusion or ingestion provokes a rapid decrease in NCCp that drives a compensatory kaliuresis. The first aim tested whether acutely raising plasma [K(+)] with a single 3-hour 2% potassium meal would lower NCCp in Sprague-Dawley rats after 14 days of AngII (400 ng/kg per minute). The potassium-rich meal neither decreased NCCp nor increased K(+) excretion. AngII-infused rats exhibited lower plasma [K(+)] versus controls (3.6±0.2 versus 4.5±0.1 mmol/L; P<0.05), suggesting that AngII-mediated epithelial Na(+) channel activation provokes K(+) depletion. The second aim tested whether doubling dietary potassium intake from 1% (A1K) to 2% (A2K) would prevent K(+) depletion during AngII infusion and, thus, prevent NCC accumulation. A2K-fed rats exhibited normal plasma [K(+)] and 2-fold higher K(+) excretion and plasma [aldosterone] versus A1K. In A1K rats, NCC, NCCpS71, and NCCpT53 abundance increased 1.5- to 3-fold versus controls (P<0.05). The rise in NCC and NCCp abundance was prevented in the A2K rats, yet blood pressure did not significantly decrease. Epithelial Na(+) channel subunit abundance and cleavage increased 1.5- to 3-fold in both A1K and A2K; ROMK (renal outer medulla K(+) channel abundance) abundance was unaffected by AngII or dietary K(+) In summary, the accumulation and phosphorylation of NCC seen during chronic AngII infusion hypertension is likely secondary to potassium deficiency driven by epithelial Na(+) channel stimulation. © 2016 American Heart Association, Inc.

  4. Voluntary Association Membership and Social Cleavages: A Micro-Macro Link in Generalized Trust

    ERIC Educational Resources Information Center

    Park, Chan-ung; Subramanian, S. V.

    2012-01-01

    Generalized trust varies across individuals and countries. Past studies on trust have demonstrated that voluntary association membership, inequality and ethnic homogeneity at country level are important. However, those studies examined either individual-level or country-level factors separately. In this paper, we conceptualized the emergence of…

  5. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    PubMed

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  6. Kinetics of hairpin ribozyme cleavage in yeast.

    PubMed Central

    Donahue, C P; Fedor, M J

    1997-01-01

    Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A). PMID:9292496

  7. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Ehrenwald, E.; Fox, P. L.

    1996-01-01

    Cultured vascular smooth muscle cells (SMC) and endothelial cells (EC) stimulate low density lipoprotein (LDL) oxidation by free radical-mediated, transition metal-dependent mechanisms. The physiological source(s) of metal ions is not known; however, purified ceruloplasmin, a plasma protein containing 7 coppers, oxidizes LDL in vitro. We now show that ceruloplasmin also increases LDL oxidation by vascular cells. In metal ion-free medium, human ceruloplasmin increased bovine aortic SMC- and EC-mediated LDL oxidation by up to 30- and 15-fold, respectively. The maximal response was at 100-300 microg ceruloplasmin/ml, a level at or below the unevoked physiological plasma concentration. Oxidant activity was dependent on protein structure as a specific proteolytic cleavage or removal of one of the seven ceruloplasmin copper atoms inhibited activity. Three lines of evidence indicated a critical role for cellular superoxide (O2.) in ceruloplasmin-stimulated oxidation. First, the rate of production of O2. by cells correlated with their rates of LDL oxidation. Second, superoxide dismutase effectively blocked ceruloplasmin-stimulated oxidation by both cell types. Finally, O2. production by SMC quantitatively accounted for the observed rate of LDL oxidation. To show this, the course of O2. production by SMC was simulated by repeated addition of xanthine and xanthine oxidase to culture medium under cell-free conditions. Neither ceruloplasmin nor O2. alone increased LDL oxidation, but together they completely reconstituted the oxidation rate of ceruloplasmin-stimulated SMC. These results are the first to show that ceruloplasmin stimulates EC- and SMC-mediated oxidation of LDL and that cell-derived O2. accounts quantitatively for metal-dependent, free radical-initiated oxidation of LDL by these cells.

  8. Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation.

    PubMed

    Chowdhury, Indrajit; Thomas, Kelwyn; Zeleznik, Anthony; Thompson, Winston E

    2016-05-01

    Published results from our laboratory identified prohibitin (PHB), a gene product expressed in granulosa cells (GCs) that progressively increases during follicle maturation. Our current in vitro studies demonstrate that follicle-stimulating hormone (FSH) stimulates Phb expression in rat primary GCs. The FSH-dependent expression of PHB was primarily localized within mitochondria, and positively correlates with the morphological changes in GCs organelles, and synthesis and secretions of estradiol (E2) and progesterone (P4). In order to confirm that PHB plays a regulatory role in rat GC differentiation, endogenous PHB-knockdown studies were carried out in undifferentiated GCs using adenoviral (Ad)-mediated RNA interference methodology. Knockdown of PHB in GCs resulted in the suppression of the key steroidogenic enzymes including steroidogenic acute regulatory protein (StAR), p450 cholesterol side-chain cleavage enzyme (p450scc), 3β-hydroxysteroid dehydrogenase (3β-HSD), and aromatase (Cyp19a1); and decreased E2 and P4 synthesis and secretions in the presence of FSH stimulation. Furthermore, these experimental studies also provided direct evidence that PHB within the mitochondrial fraction in GCs is phosphorylated at residues Y249, T258, and Y259 in response to FSH stimulation. The observed levels of phosphorylation of PHB at Y249, T258, and Y259 were significantly low in GCs in the absence of FSH stimulation. In addition, during GC differentiation FSH-induced expression of phospho-PHB (pPHB) requires the activation of MEK1-ERK1/2 signaling pathway. Taken together, these studies provide new evidence supporting FSH-dependent PHB/pPHB upregulation in GCs is required to sustain the differentiated state of GCs. © 2016 The authors.

  9. Glucagon-like petide-2 acts on colon cancer myofibroblasts to stimulate proliferation, migration and invasion of both myofibroblasts and cancer cells via the IGF pathway.

    PubMed

    Shawe-Taylor, Marianne; Kumar, J Dinesh; Holden, Whitney; Dodd, Steven; Varga, Akos; Giger, Olivier; Varro, Andrea; Dockray, Graham J

    2017-05-01

    Glucagon-like peptide (GLP)-2 stimulates intestinal epithelial proliferation by acting, in part, via IGF release from sub-epithelial myofibroblasts. The response of myofibroblasts to GLP-2 remains incompletely understood. We studied the action of GLP-2 on myofibroblasts from colon cancer and adjacent tissue, and the effects of conditioned medium from these cells on epithelial cell proliferation, migration and invasion. GLP-2 stimulated proliferation, migration and invasion of myofibroblasts and the proliferative and invasive responses of cancer-associated myofibroblasts were greater than those of myofibroblasts from adjacent tissue. The responses were inhibited by an IGF receptor inhibitor, AG1024. Conditioned medium from GLP-2 treated myofibroblasts increased proliferation, migration and invasion of SW480, HT29, LoVo epithelial cells and these responses were inhibited by AG1024; GLP-2 alone had no effect on these cells. In addition, when myofibroblasts and epithelial cells were co-cultured in Ibidi chambers there was mutual stimulation of migration in response to GLP-2. The latter increased both IGF-1 and IGF-2 transcript abundance in myofibroblasts. Moreover, a number of IGF binding proteins (IGFBP-4, -5, -7) were identified in myofibroblast medium; in the presence of GLP-2 there was increased abundance of the cleavage products of IGBBP-4 and IGFBP-5 suggesting activation of a degradation mechanism that might increase IGF bioavailability. The data suggest that GLP-2 stimulates cancer myofibroblast proliferation, migration and invasion; GLP-2 acts indirectly on epithelial cells partly via increased IGF expression in myofibroblasts and partly, perhaps, by increased bioavailability through degradation of IGFBPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Alternate pathways of thyroid hormone metabolism.

    PubMed

    Wu, Sing-Yung; Green, William L; Huang, Wen-Sheng; Hays, Marguerite T; Chopra, Inder J

    2005-08-01

    The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and sulfated iodothyronines can be hydrolyzed to their precursors in gastrointestinal tract and various tissues. Thus, these conjugates can serve as a reservoir for biologically active iodothyronines (e.g., T(4), T(3), or T(2)). The acetic acid derivatives of T(4), tetrac and triac, are minor products in normal thyroid physiology. However, triac has a different pattern of receptor affinity than T(3), binding preferentially to the beta receptor. This makes it useful in the treatment of the syndrome of resistance to thyroid hormone action, where the typical mutation affects only the beta receptor. Thus, adequate binding to certain mutated beta receptors can be achieved without excessive stimulation of alpha receptors, which predominate in the heart. Ether link cleavage of TH is also a minor pathway in normal subjects. However, this pathway may become important during infections, when augmented TH breakdown by ether-link cleavage (ELC) may assist in bactericidal activity. There is a recent claim that decarboxylated derivates of thyronines, that is, monoiodothyronamine (T(1)am) and thyronamine (T(0)am), may be biologically important and have actions different from those of TH. Further information on these interesting derivatives is awaited.

  11. Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling

    PubMed Central

    Lin, Michelle I; Price, Emily N; Boatman, Sonja; Hagedorn, Elliott J; Trompouki, Eirini; Satishchandran, Sruthi; Carspecken, Charles W; Uong, Audrey; DiBiase, Anthony; Yang, Song; Canver, Matthew C; Dahlberg, Ann; Lu, Zhigang; Zhang, Cheng Cheng; Orkin, Stuart H; Bernstein, Irwin D; Aster, Jon C; White, Richard M; Zon, Leonard I

    2015-01-01

    Angiopoietin-like proteins (angptls) are capable of ex vivo expansion of mouse and human hematopoietic stem and progenitor cells (HSPCs). Despite this intriguing ability, their mechanism is unknown. In this study, we show that angptl2 overexpression is sufficient to expand definitive HSPCs in zebrafish embryos. Angptl1/2 are required for definitive hematopoiesis and vascular specification of the hemogenic endothelium. The loss-of-function phenotype is reminiscent of the notch mutant mindbomb (mib), and a strong genetic interaction occurs between angptls and notch. Overexpressing angptl2 rescues mib while overexpressing notch rescues angptl1/2 morphants. Gene expression studies in ANGPTL2-stimulated CD34+ cells showed a strong MYC activation signature and myc overexpression in angptl1/2 morphants or mib restored HSPCs formation. ANGPTL2 can increase NOTCH activation in cultured cells and ANGPTL receptor interacted with NOTCH to regulate NOTCH cleavage. Together our data provide insight to the angptl-mediated notch activation through receptor interaction and subsequent activation of myc targets. DOI: http://dx.doi.org/10.7554/eLife.05544.001 PMID:25714926

  12. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    PubMed

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Electron Capture Dissociation of Divalent Metal-adducted Sulfated N-Glycans Released from Bovine Thyroid Stimulating Hormone

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Håkansson, Kristina

    2013-11-01

    Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.

  14. A novel Death Defying Domain in Met entraps the active site of Caspase-3 and blocks apoptosis in hepatocytes

    PubMed Central

    Ma, Jihong; Zou, Chunbin; Guo, Lida; Seneviratne, Danushka S.; Tan, Xinping; Kwon, Yong-Kook; An, Jiyan; Bowser, Robert; DeFrances, Marie C.; Zarnegar, Reza

    2013-01-01

    Met, the transmembrane tyrosine kinase receptor for hepatocyte growth factor (HGF) is known to function as a potent anti-apoptotic mediator in normal and neoplastic cells. Herein we report that intracellular cytoplasmic tail of Met has evolved to harbor a tandem pair of Caspase-3 cleavage sites, which bait, trap and disable the active site of Caspase-3, thereby blocking the execution of apoptosis. We call this Caspase-3 cleavage motif the ‘Death Defying Domain’ (DDD). This site consists of the following sequence: DNAD-DEVD-T (where the hyphens denote caspase cleavage sites). Through functional and mechanistic studies, we show that upon DDD cleavage by Caspase-3, the resulting DEVD-T peptide acts as a competitive inhibitor and entraps the active site of Caspase-3 akin to DEVD-CHO, which is a potent, synthetic inhibitor of Caspase-3 activity. By gain and loss-of-function studies using restoration of DDD expression in DDD deficient hepatocytic cells, we found that both Caspase-3 sites in DDD are necessary for inhibition of Caspase-3 and promotion of cell survival. Employing mutagenesis studies, we show that DDD could operate independently of Met’s enzymatic activity as determined by using kinase-dead human Met mutant constructs. Studies of both human liver cancer tissues and cell lines uncovered that DDD cleavage and entrapment of Caspase-3 by DDD occur in vivo, further proving that this site has physiological and pathophysiological relevance. Conclusion Our findings show that Met can directly inhibit Caspase-3 via a novel mechanism and promote hepato-cyte survival. Results presented here will further our understanding of the mechanisms that control not only normal tissue homeostasis but also abnormal tissue growth such as cancer and degenerative diseases in which apoptotic caspases are at play. PMID:24122846

  15. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids.

    PubMed

    Schöckel, Laura; Möckel, Martin; Mayer, Bernd; Boos, Dominik; Stemmann, Olaf

    2011-07-10

    Cohesin pairs sister chromatids by forming a tripartite Scc1-Smc1-Smc3 ring around them. In mitosis, cohesin is removed from chromosome arms by the phosphorylation-dependent prophase pathway. Centromeric cohesin is protected by shugoshin 1 and protein phosphatase 2A (Sgo1-PP2A) and opened only in anaphase by separase-dependent cleavage of Scc1 (refs 4-6). Following chromosome segregation, centrioles loosen their tight orthogonal arrangement, which licenses later centrosome duplication in S phase. Although a role of separase in centriole disengagement has been reported, the molecular details of this process remain enigmatic. Here, we identify cohesin as a centriole-engagement factor. Both premature sister-chromatid separation and centriole disengagement are induced by ectopic activation of separase or depletion of Sgo1. These unscheduled events are suppressed by expression of non-cleavable Scc1 or inhibition of the prophase pathway. When endogenous Scc1 is replaced by artificially cleavable Scc1, the corresponding site-specific protease triggers centriole disengagement. Separation of centrioles can alternatively be induced by ectopic cleavage of an engineered Smc3. Thus, the chromosome and centrosome cycles exhibit extensive parallels and are coordinated with each other by dual use of the cohesin ring complex.

  16. Resistance of Actin to Cleavage during Apoptosis

    NASA Astrophysics Data System (ADS)

    Song, Qizhong; Wei, Tie; Lees-Miller, Susan; Alnemri, Emad; Watters, Dianne; Lavin, Martin F.

    1997-01-01

    A small number of cellular proteins present in the nucleus, cytosol, and membrane fraction are specifically cleaved by the interleukin-1β -converting enzyme (ICE)-like family of proteases during apoptosis. Previous results have demonstrated that one of these, the cytoskeletal protein actin, is degraded in rat PC12 pheochromocytoma cells upon serum withdrawal. Extracts from etoposide-treated U937 cells are also capable of cleaving actin. It was assumed that cleavage of actin represented a general phenomenon, and a mechanism coordinating proteolytic, endonucleolytic, and morphological aspects of apoptosis was proposed. We demonstrate here that actin is resistant to degradation in several different human cells induced to undergo apoptosis in response to a variety of stimuli, including Fas ligation, serum withdrawal, cytotoxic T-cell killing, and DNA damage. On the other hand, cell-free extracts from these cells and the ICE-like protease CPP32 were capable of cleaving actin in vitro. We conclude that while actin contains cleavage sites for ICE-like proteases, it is not degraded in vivo in human cells either because of lack of access of these proteases to actin or due to the presence of other factors that prevent degradation.

  17. Thermolysin damages animal life through degradation of plasma proteins enhanced by rapid cleavage of serpins and activation of proteases.

    PubMed

    Kong, Lulu; Lu, Anrui; Guan, Jingmin; Yang, Bing; Li, Muwang; Hillyer, Julián F; Ramarao, Nalini; Söderhäll, Kenneth; Liu, Chaoliang; Ling, Erjun

    2015-01-01

    Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin-induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin-3, but did not directly activate the melanization rate-limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians. © 2014 Wiley Periodicals, Inc.

  18. An association between RBMX, a heterogeneous nuclear ribonucleoprotein, and ARTS-1 regulates extracellular TNFR1 release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamik, Barbara; Islam, Aminul; Rouhani, Farshid N.

    The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released to the extracellular space by two mechanisms, the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains. Both pathways appear to be regulated by an interaction between TNFR1 and ARTS-1 (aminopeptidase regulator of TNFR1 shedding). Here, we sought to identify ARTS-1-interacting proteins that modulate TNFR1 release. Co-immunoprecipitation identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1{beta}-mediated inducible proteolyticmore » cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1{beta}-mediated inducible shedding of TNFR1 ectodomains. This identifies RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains.« less

  19. A Statistics-based Platform for Quantitative N-terminome Analysis and Identification of Protease Cleavage Products*

    PubMed Central

    auf dem Keller, Ulrich; Prudova, Anna; Gioia, Magda; Butler, Georgina S.; Overall, Christopher M.

    2010-01-01

    Terminal amine isotopic labeling of substrates (TAILS), our recently introduced platform for quantitative N-terminome analysis, enables wide dynamic range identification of original mature protein N-termini and protease cleavage products. Modifying TAILS by use of isobaric tag for relative and absolute quantification (iTRAQ)-like labels for quantification together with a robust statistical classifier derived from experimental protease cleavage data, we report reliable and statistically valid identification of proteolytic events in complex biological systems in MS2 mode. The statistical classifier is supported by a novel parameter evaluating ion intensity-dependent quantification confidences of single peptide quantifications, the quantification confidence factor (QCF). Furthermore, the isoform assignment score (IAS) is introduced, a new scoring system for the evaluation of single peptide-to-protein assignments based on high confidence protein identifications in the same sample prior to negative selection enrichment of N-terminal peptides. By these approaches, we identified and validated, in addition to known substrates, low abundance novel bioactive MMP-2 targets including the plasminogen receptor S100A10 (p11) and the proinflammatory cytokine proEMAP/p43 that were previously undescribed. PMID:20305283

  20. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    PubMed

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Gene PA2449 Is Essential for Glycine Metabolism and Pyocyanin Biosynthesis in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lundgren, Benjamin R.; Thornton, William; Dornan, Mark H.; Villegas-Peñaranda, Luis Roberto; Boddy, Christopher N.

    2013-01-01

    Many pseudomonads produce redox active compounds called phenazines that function in a variety of biological processes. Phenazines are well known for their toxicity against non-phenazine-producing organisms, which allows them to serve as crucial biocontrol agents and virulence factors during infection. As for other secondary metabolites, conditions of nutritional stress or limitation stimulate the production of phenazines, but little is known of the molecular details underlying this phenomenon. Using a combination of microarray and metabolite analyses, we demonstrate that the assimilation of glycine as a carbon source and the biosynthesis of pyocyanin in Pseudomonas aeruginosa PAO1 are both dependent on the PA2449 gene. The inactivation of the PA2449 gene was found to influence the transcription of a core set of genes encoding a glycine cleavage system, serine hydroxymethyltransferase, and serine dehydratase. PA2449 also affected the transcription of several genes that are integral in cell signaling and pyocyanin biosynthesis in P. aeruginosa PAO1. This study sheds light on the unexpected relationship between the utilization of an unfavorable carbon source and the production of pyocyanin. PA2449 is conserved among pseudomonads and might be universally involved in the assimilation of glycine among this metabolically diverse group of bacteria. PMID:23457254

  2. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    PubMed

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  3. Estrogen receptor β regulates endometriotic cell survival through SGK1 activation

    PubMed Central

    Monsivais, Diana; Dyson, Matthew T.; Yin, Ping; Navarro, Antonia; Coon, John S; Pavone, Mary Ellen; Bulun, Serdar E.

    2016-01-01

    OBJECTIVE To determine the expression and biological roles of SGK1 in tissues and cells from patients with endometriosis and from healthy controls. DESIGN Case-control. SETTING University research setting. PATIENTS Premenopausal women. INTERVENTIONS Endometriotic tissues (E-Osis) were obtained from women with ovarian endometriosis and normal endometrial tissues (NoEM) were obtained from women undergoing hysterectomy for benign conditions. MAIN OUTCOMES MEASURES Expression levels of serum and glucocorticoid regulated kinase (SGK1), the role of SGK1 in E-Osis pathology, and the regulation of SGK1 by ERβ. RESULTS Transcript and protein levels of SGK1 were significantly higher in endometriotic tissues and cells compared to normal endometrium. SGK1 mRNA and protein levels were stimulated by estradiol, by the ERβ-selective agonist, diarylpropionitrile, and by prostaglandin E2. SGK1 was transcriptionally regulated by ERβ based on siRNA knockdown and chromatin immunoprecipitation of ERβ followed by quantitative PCR (ChIP-qPCR). SGK1 knockdown led to increased cleavage of PARP, and SGK1 activation was correlated with the phosphorylation of FOXO3a, a pro-apoptotic factor. CONCLUSIONS ERβ leads to SGK1 overexpression in endometriosis, which contributes to the survival of endometriotic lesions through inhibition of apoptosis. PMID:26827666

  4. Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H.

    PubMed

    Schultz, Sharon J; Zhang, Miaohua; Champoux, James J

    2010-03-19

    The RNase H activity of reverse transcriptase is required during retroviral replication and represents a potential target in antiviral drug therapies. Sequence features flanking a cleavage site influence the three types of retroviral RNase H activity: internal, DNA 3'-end-directed, and RNA 5'-end-directed. Using the reverse transcriptases of HIV-1 (human immunodeficiency virus type 1) and Moloney murine leukemia virus (M-MuLV), we evaluated how individual base preferences at a cleavage site direct retroviral RNase H specificity. Strong test cleavage sites (designated as between nucleotide positions -1 and +1) for the HIV-1 and M-MuLV enzymes were introduced into model hybrid substrates designed to assay internal or DNA 3'-end-directed cleavage, and base substitutions were tested at specific nucleotide positions. For internal cleavage, positions +1, -2, -4, -5, -10, and -14 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV significantly affected RNase H cleavage efficiency, while positions -7 and -12 for HIV-1 and positions -4, -9, and -11 for M-MuLV had more modest effects. DNA 3'-end-directed cleavage was influenced substantially by positions +1, -2, -4, and -5 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV. Cleavage-site distance from the recessed end did not affect sequence preferences for M-MuLV reverse transcriptase. Based on the identified sequence preferences, a cleavage site recognized by both HIV-1 and M-MuLV enzymes was introduced into a sequence that was otherwise resistant to RNase H. The isolated RNase H domain of M-MuLV reverse transcriptase retained sequence preferences at positions +1 and -2 despite prolific cleavage in the absence of the polymerase domain. The sequence preferences of retroviral RNase H likely reflect structural features in the substrate that favor cleavage and represent a novel specificity determinant to consider in drug design. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Neural Compensations After Lesion of the Cerebral Cortex

    PubMed Central

    Kolb, Bryan; Brown, Russell; Witt-Lajeunesse, Alane; Gibb, Robbin

    2001-01-01

    Functional improvement after cortical injury can be stimulated by various factors including experience, psychomotor stimulants, gonadal hormones, and neurotrophic factors. The, timing of the administration of these factors may be critical, however. For example, factors such as gonadal hormones, nerve growth factor, or psychomotor stimulants may act to either enhance or retard recovery, depending upon the timing of administration. Nicotine, for instance, stimulates recovery if given after an injury but is without neuroprotective effect and may actually retard recovery if it is given only preinjury. A related timing problem concerns the interaction of different treatments. For example, behavioral therapies may act, in part, via their action in stimulating the endogenous production of trophic factors. Thus, combining behavioral therapies with pharmacological administration of compounds to increase the availability of trophic factors enhances functional outcome. Finally, anatomical evidence suggests that the mechanism of action of many treatments is through changes in dendritic arborization, which presumably reflects changes in synaptic organization. Factors that enhance dendritic change stimulate functional compensation, whereas factors that retard or block dendritic change block or retard compensation. PMID:11530881

  6. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma.

    PubMed

    Manning, Michael L; Williams, Simon A; Jelinek, Christine A; Kostova, Maya B; Denmeade, Samuel R

    2013-03-15

    Prostate-specific Ag (PSA) is a serine protease that is expressed exclusively by normal and malignant prostate epithelial cells. The continued high-level expression of PSA by the majority of men with both high- and low-grade prostate cancer throughout the course of disease progression, even in the androgen-ablated state, suggests that PSA has a role in the pathogenesis of disease. Current experimental and clinical evidence suggests that chronic inflammation, regardless of the cause, may predispose men to prostate cancer. The responsibility of the immune system in immune surveillance and eventually tumor progression is well appreciated but not completely understood. In this study, we used a mass spectrometry-based evaluation of prostatic fluid obtained from diseased prostates after removal by radical prostatectomy to identify potential immunoregulatory proteins. This analysis revealed the presence of Igs and the complement system proteins C3, factor B, and clusterin. Verification of these findings by Western blot confirmed the high-level expression of C3 in the prostatic fluid and the presence of a previously uncharacterized C-terminal C3 cleavage product. Biochemical analysis of this C3 cleavage fragment revealed a putative PSA cleavage site after tyrosine-1348. Purified PSA was able to cleave iC3b and the related complement protein C5. These results suggest a previously uncharacterized function of PSA as an immunoregulatory protease that could help to create an environment hospitable to malignancy through proteolysis of the complement system.

  8. New Arab social order: a study of the social impact of oil wealth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, S.E.

    1982-01-01

    The skyrocketing Arab oil revenues of the 1970s have triggered socio-economic forces in the Arab world. Observers have studied the financial and geopolitical aspects of Arab oil, but generally have ignored the human and social repercussions stimulated by the oil wealth. This book challenges the commonly accepted view of the impact of manpower movements across the Arab wealth divide, looking at the new social formations, class structures, value systems, and social cleavages that have been emerging in both rich and poor Arab countries. These developments may add up to a silent social revolution, and are possibly a prelude to moremore » overt tension, conflict, and political turmoil. 136 references, 13 figures, 39 tables.« less

  9. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions.

    PubMed

    Pettit, S C; Moody, M D; Wehbie, R S; Kaplan, A H; Nantermet, P V; Klein, C A; Swanstrom, R

    1994-12-01

    The proteolytic processing sites of the human immunodeficiency virus type 1 (HIV-1) Gag precursor are cleaved in a sequential manner by the viral protease. We investigated the factors that regulate sequential processing. When full-length Gag protein was digested with recombinant HIV-1 protease in vitro, four of the five major processing sites in Gag were cleaved at rates that differ by as much as 400-fold. Three of these four processing sites were cleaved independently of the others. The CA/p2 site, however, was cleaved approximately 20-fold faster when the adjacent downstream p2/NC site was blocked from cleavage or when the p2 domain of Gag was deleted. These results suggest that the presence of a C-terminal p2 tail on processing intermediates slows cleavage at the upstream CA/p2 site. We also found that lower pH selectively accelerated cleavage of the CA/p2 processing site in the full-length precursor and as a peptide primarily by a sequence-based mechanism rather than by a change in protein conformation. Deletion of the p2 domain of Gag results in released virions that are less infectious despite the presence of the processed final products of Gag. These findings suggest that the p2 domain of HIV-1 Gag regulates the rate of cleavage at the CA/p2 processing site during sequential processing in vitro and in infected cells and that p2 may function in the proper assembly of virions.

  10. E2F mediates enhanced alternative polyadenylation in proliferation.

    PubMed

    Elkon, Ran; Drost, Jarno; van Haaften, Gijs; Jenal, Mathias; Schrier, Mariette; Oude Vrielink, Joachim A F; Agami, Reuven

    2012-07-02

    The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation.

  11. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2

    PubMed Central

    Reinke, Lennart Michel; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael

    2017-01-01

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated. PMID:28636671

  12. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

    PubMed

    Reinke, Lennart Michel; Spiegel, Martin; Plegge, Teresa; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael; Pöhlmann, Stefan

    2017-01-01

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.

  13. Observations of cleavage steps, slip traces and dislocation hollow cores on cleaved ?100? faces of ?-arginine phosphate monohydrate single crystals by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sangwal, K.; Torrent-Burgués, J.; Sanz, F.; Servat, J.

    1997-03-01

    The results of an atomic force microscopy study of the nature of cleavage steps, observation of slip traces and formation of hollow cores at the centres of dislocations on the {100} faces of L-arginine phosphate monohydrate (LAP) single crystals grown from aqueous solutions are described and discussed. It was observed that: (1) most of the cleavage steps and all the slip traces are of elementary height, a = 1.085 nm; (2) the origin of a cleavage step may or may not have a hollow core; and (3) close to its origin, the curvature of a cleavage step may be positive or negative or may change from positive to negative. The results suggest that slip traces observed on the cleaved surfaces of LAP are formed during the cleavage process while the rounding and the rearrangement of elementary cleavage steps take place immediately after the occurrence of cleavage. Analysis of the results also shows that the dislocations responsible for the origin of hollow cores always represent a stress field state corresponding to a trapped solution of different local interface supersaturations.

  14. Rhodium-catalyzed kinetic resolution of tertiary homoallyl alcohols via stereoselective carbon-carbon bond cleavage.

    PubMed

    Shintani, Ryo; Takatsu, Keishi; Hayashi, Tamio

    2008-03-20

    A nonenzymatic kinetic resolution of tertiary homoallyl alcohols has been developed through a rhodium-catalyzed retro-allylation reaction under simple conditions. Selectivity factors of up to 12 have been achieved by employing (R)-H8-binap as the ligand, and the reaction can be conducted on a preparative scale.

  15. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing

    PubMed Central

    Sloan, Katherine E.; Mattijssen, Sandy; Lebaron, Simon; Tollervey, David; Pruijn, Ger J.M.

    2013-01-01

    Human ribosome production is up-regulated during tumorogenesis and is defective in many genetic diseases (ribosomopathies). We have undertaken a detailed analysis of human precursor ribosomal RNA (pre-rRNA) processing because surprisingly little is known about this important pathway. Processing in internal transcribed spacer 1 (ITS1) is a key step that separates the rRNA components of the large and small ribosomal subunits. We report that this was initiated by endonuclease cleavage, which required large subunit biogenesis factors. This was followed by 3′ to 5′ exonucleolytic processing by RRP6 and the exosome, an enzyme complex not previously linked to ITS1 removal. In contrast, RNA interference–mediated knockdown of the endoribonuclease MRP did not result in a clear defect in ITS1 processing. Despite the apparently high evolutionary conservation of the pre-rRNA processing pathway and ribosome synthesis factors, each of these features of human ITS1 processing is distinct from those in budding yeast. These results also provide significant insight into the links between ribosomopathies and ribosome production in human cells. PMID:23439679

  16. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water

    PubMed Central

    Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-01

    More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304

  17. Disulfiram Suppresses Growth of the Malignant Pleural Mesothelioma Cells in Part by Inducing Apoptosis

    PubMed Central

    Muthu, Magesh; Jamal, Shazia; Chen, Di; Yang, Huanjie; Polin, Lisa A.; Tarca, Adi L.; Pass, Harvey I.; Dou, Q. Ping; Sharma, Sunita; Wali, Anil; Rishi, Arun K.

    2014-01-01

    Dithiocarbamate compound Disulfiram (DSF) that binds with copper and functions as an inhibitor of aldehyde dehydrogenase is a Food and Drug Administration approved agent for treatment of alcoholism. Copper complexed DSF (DSF-Cu) also possesses anti-tumor and chemosensitizing properties; however, its molecular mechanisms of action remain unclear. Here we investigated malignant pleural mesothelioma (MPM) suppressive effects of DSF-Cu and the molecular mechanisms involved. DSF-Cu inhibited growth of the murine as well as human MPM cells in part by increasing levels of ubiquitinated proteins. DSF-Cu exposure stimulated apoptosis in MPM cells that involved activation of stress-activated protein kinases (SAPKs) p38 and JNK1/2, caspase-3, and cleavage of poly-(ADP-ribose)-polymerase, as well as increased expression of sulfatase 1 and apoptosis transducing CARP-1/CCAR1 protein. Gene-array based analyses revealed that DSF-Cu suppressed cell growth and metastasis-promoting genes including matrix metallopeptidase 3 and 10. DSF inhibited MPM cell growth and survival by upregulating cell cycle inhibitor p27Kip1, IGFBP7, and inhibitors of NF-κB such as ABIN 1 and 2 and Inhibitory κB (IκB)α and β proteins. DSF-Cu promoted cleavage of vimentin, as well as serine-phosphorylation and lysine-63 linked ubiquitination of podoplanin. Administration of 50 mg/kg DSF-Cu by daily i.p injections inhibited growth of murine MPM cell-derived tumors in vivo. Although podoplanin expression often correlates with metastatic disease and poor prognosis, phosphorylation of serines in cytoplasmic domain of podoplanin has recently been shown to interfere with cellular motility and migration signaling. Post-translational modification of podoplanin and cleavage of vimentin by DSF-Cu underscore a metastasis inhibitory property of this agent and together with our in vivo studies underscore its potential as an anti-MPM agent. PMID:24690739

  18. Bile acids at neutral and acidic pH induce apoptosis and gene cleavages in nasopharyngeal epithelial cells: implications in chromosome rearrangement.

    PubMed

    Tan, Sang-Nee; Sim, Sai-Peng

    2018-04-12

    Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC. We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced. BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute lymphoblastic leukaemia (ALL) patient. These findings suggest a role for BA-induced apoptosis in mediating chromosome rearrangements in NPC. In addition, CAD may be a key player in chromosome cleavages mediated by BA-induced apoptosis. Persistent exposure of sinonasal tract to gastric duodenal refluxate may increase genomic instability in surviving cells.

  19. Multifaceted regulation of V(D)J recombination

    NASA Astrophysics Data System (ADS)

    Wang, Guannan

    V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg 2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.

  20. Use of granulocyte-colony stimulating factor to prevent recurrent clozapine-induced neutropenia on drug rechallenge: A systematic review of the literature and clinical recommendations.

    PubMed

    Myles, Nicholas; Myles, Hannah; Clark, Scott R; Bird, Robert; Siskind, Dan

    2017-10-01

    Clozapine is the most effective medication for treatment-refractory schizophrenia; however, its use is contraindicated in people who have had previous clozapine-induced neutropenia. Co-prescription of granulocyte-colony stimulating factor may prevent recurrent neutropenia and allow continuation or rechallenge of clozapine. Systematic review of literature reporting the use of granulocyte-colony stimulating factor to allow rechallenge or continuation of clozapine in people with previous episodes of clozapine-induced neutropenia. The efficacy of granulocyte-colony stimulating factor and predictors of successful rechallenge will be determined to elucidate whether evidence-based recommendations can be made regarding the use of granulocyte-colony stimulating factor in this context. A total of 17 articles were identified that reported on clozapine rechallenge with granulocyte-colony stimulating factor support. In all, 76% of cases were able to continue clozapine at median follow-up of 12 months. There were no clear clinical or laboratory predictors of successful rechallenge; however, initial neutropenia was more severe in successful cases compared to unsuccessful cases. Cases co-prescribed lithium had lower success rates of rechallenge (60%) compared to those who were not prescribed lithium (81%). The most commonly reported rechallenge strategy was use of filgrastim 150-480 µg between daily to three times a week. There were no medication-specific side effects of granulocyte-colony stimulating factor reported apart from euphoria in one case. Three cases who failed granulocyte-colony stimulating factor had bacterial infection at time of recurrent neutropenia. No deaths were reported. Preliminary data suggest granulocyte-colony stimulating factor is safe and effective in facilitating rechallenge with clozapine. Clinical recommendations for use are discussed.

  1. In vitro oocyte maturation, fertilization and culture after ovum pick-up in an endangered gazelle (Gazella dama mhorr).

    PubMed

    Berlinguer, F; González, R; Succu, S; del Olmo, A; Garde, J J; Espeso, G; Gomendio, M; Ledda, S; Roldan, E R S

    2008-02-01

    The recovery of immature oocytes followed by in vitro maturation, fertilization and culture (IVMFC) allows the rescue of biological material of great genetic value for the establishment of genetic resource banks of endangered species. Studies exist on sperm cryopreservation of endangered Mohor gazelle (Gazella dama mhorr), but no work has been carried out yet on oocyte collection, fertilization and culture in this or related species. The purpose of this study was to develop a protocol for ovarian stimulation for the recovery of oocytes and subsequent IVMFC in the Mohor gazelle using frozen-thawed spermatozoa. Ovum pick-up was performed after ovarian stimulation with a total dose of 5.28 mg of ovine FSH. A total of 35 oocytes were recovered from 56 punctured follicles (62%) (N=6 females). Out of 29 cumulus-oocyte complexes matured in vitro, 3% were found at germinal vesicle stage, 7% at metaphase I, 21% were degenerated, and 69% advanced to metaphase II. Fertilization and cleavage rates of matured oocytes were 40 and 30%, respectively. Embryos cleaved in vitro up to the 6-8 cell stage but none progressed to the blastocyst stage, suggesting the existence of a developmental block and the need to improve culture conditions. Although more studies are needed to improve hormonal stimulation and oocyte harvesting, as well as IVMFC conditions, this study demonstrates for the first time the feasibility of in vitro fertilization with frozen-thawed semen of in vitro matured oocytes collected by ovum pick-up from FSH-stimulated endangered gazelles.

  2. Generation and Nuclear Translocation of Sumoylated Transmembrane Fragment of Cell Adhesion Molecule L1

    PubMed Central

    Lutz, David; Wolters-Eisfeld, Gerrit; Joshi, Gunjan; Djogo, Nevena; Jakovcevski, Igor; Schachner, Melitta; Kleene, Ralf

    2012-01-01

    The functions of the cell adhesion molecule L1 in the developing and adult nervous system are triggered by homophilic and heterophilic interactions that stimulate signal transductions that activate cellular responses. Here, we show that stimulation of signaling by function-triggering L1 antibodies or L1-Fc leads to serine protease-dependent cleavage of full-length L1 at the plasma membrane and generation of a sumoylated transmembrane 70-kDa fragment comprising the intracellular and transmembrane domains and part of the extracellular domain. The 70-kDa transmembrane fragment is transported from the plasma membrane to a late endosomal compartment, released from endosomal membranes into the cytoplasm, and transferred from there into the nucleus by a pathway that depends on importin and chromatin-modifying protein 1. Mutation of the sumoylation site at Lys1172 or of the nuclear localization signal at Lys1147 abolished L1-stimulated generation or nuclear import of the 70-kDa fragment, respectively. Nuclear import of the 70-kDa fragment may activate cellular responses in parallel or in association with phosphorylation-dependent signaling pathways. Alterations in the levels of the 70-kDa fragment during development and in the adult after spinal cord injury or in a mouse model of Alzheimer disease suggest that this fragment is functionally implicated in development, regeneration, neurodegeneration, tumorigenesis, and possibly synaptic plasticity in the mature nervous system. PMID:22431726

  3. Formononetin protects neurons against hypoxia-induced cytotoxicity through upregulation of ADAM10 and sAβPPα.

    PubMed

    Sun, Miao; Zhou, Ting; Zhou, Liang; Chen, Qiang; Yu, Yan; Yang, Huan; Zhong, Kaiyin; Zhang, Ximeng; Xu, Feng; Cai, Shaoqing; Yu, Albert; Zhang, Hui; Xiao, Ruizhong; Xiao, Dongsheng; Chui, Dehua

    2012-01-01

    Formononetin, an active constituent of the Chinese herb Astragali Radix, has been reported to have beneficial effects for Alzheimer's disease (AD). Yet the mechanism of this effect remains to be elucidated. The present study shows that formononetin increases soluble-AβPPα (sAβPPα) secretion and thus protects human-AβPP Swedish mutation cell (N2a-AβPP cell) from hypoxia-induced apoptosis. Using hypoxic N2a-AβPP cell as an in vitro model of AD-like pathology, we confirmed that regular treatment with formononetin could have neuroprotective effects, followed respectively by reduced caspase 3 activity and increased cell viability. Strikingly, our data revealed that the caspase 3-blocking effect of formononetin was largely mediated by stimulation of α-secretase cleavage of AβPP, and increasing the secretion of its soluble form, sAβPPα. Moreover, the protective effect of formononetin was totally inhibited by TAPI-2, an α-secretase complex inhibitor, suggesting the role of the sAβPPα pathway in the neuroprotective response to formononetin. We also found that the stimulative effect of formononetin on α-secretase activity was mainly conducted by upregulating ADAM10 expression at the transcriptional level. Altogether, our study provides novel insights into how formononetin mediates stimulation of the ADAM10-sAβPPα pathway and exerts a neuronal protective effect.

  4. Does Cleavage Work at Work? Men, but Not Women, Falsely Believe Cleavage Sells a Weak Product

    ERIC Educational Resources Information Center

    Glick, Peter; Chrislock, Karyna; Petersik, Korinne; Vijay, Madhuri; Turek, Aleksandra

    2008-01-01

    We examined whether men, but not women, would be distracted by a female sales representative's exposed cleavage, leading to greater perceived efficacy for a weak, but not for a strong product. A community sample of 88 men and 97 women viewed a video of a female pharmaceutical sales representative who (a) had exposed cleavage or dressed modestly…

  5. Mechanisms for ribotoxin-induced ribosomal RNA cleavage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Kaiyu; Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824; Zhou, Hui-Ren

    The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥ 25 ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥ 10 ng/ml) and ribosome-inactivating protein ricin (≥ 300 ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activatedmore » kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-μ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism. Highlights: ► Deoxynivalenol (DON) anisomycin, satratoxin G (SG) and ricin are ribotoxins. ► Ribotoxins induce 18s and 28s rRNA cleavage in the RAW 264.7 macrophage model. ► Ribotoxins induce rRNA cleavage via activation of p53, caspases and cathepsins. ► DON- and anisomycin-triggered rRNA cleavage is p38-dependent. ► SG- and ricin-induced rRNA cleavage is p38-independent.« less

  6. Time-lapse monitoring of zona pellucida-free embryos obtained through in vitro fertilization: a retrospective case series.

    PubMed

    Bodri, Daniel; Kato, Ryutaro; Kondo, Masae; Hosomi, Naoko; Katsumata, Yoshinari; Kawachiya, Satoshi; Matsumoto, Tsunekazu

    2015-05-01

    To report time-lapse monitoring of human oocytes in which the damaged zona pellucida was removed, producing zona-free (ZF) oocytes that were cultured until the blastocyst stage in time-lapse incubators. Retrospective case series. Private infertility clinic. Infertile patients (n = 32) undergoing minimal ovarian stimulation or natural cycle IVF treatment between October 2012 and June 2014. Intracytoplasmic sperm injection (ICSI) fertilization of ZF oocytes, prolonged embryo culture in time-lapse incubators, elective vitrification, and subsequent single vitrified-thawed blastocyst transfer (SVBT). Rate of fertilization, cleavage and blastocyst development, live-birth rate per SVBT cycle. In spite of advanced maternal age (39 ± 4.2; range, 30-46 years), good fertilization (94%), cleavage (94%), and blastocyst development rates (38%) were reached after fertilization and culturing of ZF oocytes/embryos. All thawed ZF blastocysts survived, and up to this date seven SVBT transfers were performed, yielding three (43%) term live births with healthy newborns. Time-lapse imagery gives a unique insight into the dynamics of embryo development in ZF embryos. Moreover, our case series demonstrate that an oocyte with a damaged zona pellucida that has been removed could be successfully fertilized with ICSI, cultured until blastocyst stage in a time-lapse incubator and vitrified electively for subsequent use. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. The TLR4 agonist fibronectin extra domain A is cryptic, exposed by elastase-2; use in a fibrin matrix cancer vaccine

    DOE PAGES

    Julier, Ziad; Martino, Mikaël M.; de Titta, Alexandre; ...

    2015-02-24

    Fibronectin (FN) is an extracellular matrix (ECM) protein including numerous fibronectin type III (FNIII) repeats with different functions. The alternatively spliced FN variant containing the extra domain A (FNIII EDA), located between FNIII 11 and FNIII 12, is expressed in sites of injury, chronic inflammation, and solid tumors. Although its function is not well understood, FNIII EDA is known to agonize Toll-like receptor 4 (TLR4). Here, by producing various FN fragments containing FNIII EDA, we found that FNIII EDA's immunological activity depends upon its local intramolecular context within the FN chain. N-terminal extension of the isolated FNIII EDA with itsmore » neighboring FNIII repeats (FNIII 9-10-11) enhanced its activity in agonizing TLR4, while C-terminal extension with the native FNIII 12-13-14 heparin-binding domain abrogated it. We reveal that an elastase 2 cleavage site is present between FNIII EDA and FNIII 12. Activity of the C-terminally extended FNIII EDA could be restored after cleavage of the FNIII 12-13-14 domain by elastase 2. FN being naturally bound to the ECM, we immobilized FNIII EDA-containing FN fragments within a fibrin matrix model along with antigenic peptides. Such matrices were shown to stimulate cytotoxic CD8 + T cell responses in two murine cancer models.« less

  8. Topoisomerase poisoning activity of novel disaccharide anthracyclines.

    PubMed

    Guano, F; Pourquier, P; Tinelli, S; Binaschi, M; Bigioni, M; Animati, F; Manzini, S; Zunino, F; Kohlhagen, G; Pommier, Y; Capranico, G

    1999-07-01

    Doxorubicin and idarubicin are very effective anticancer drugs in the treatment of human hematological malignancies and solid tumors. These agents are well known topoisomerase II poisons; however, some anthracycline analogs recently have been shown to poison topoisomerase I. In the present work, we assayed novel disaccharide analogs and the parent drug, idarubicin, for their poisoning effects of human topoisomerase I and topoisomerases IIalpha and IIbeta. Drugs were evaluated with a DNA cleavage assay in vitro and with a yeast system to test whether the agents were able to poison the enzymes in vivo. We have found that the test agents are potent poisons of both topoisomerases IIalpha and IIbeta. The axial orientation of the second sugar relative to the first one of the novel disaccharide analogs was shown to be required for poisoning activity and cytotoxicity. Interestingly, idarubicin and the new analogs stimulated topoisomerase I-mediated DNA cleavage at low levels in vitro. As expected, the cytotoxic level of the drug was highly affected by the content of topoisomerase II; nevertheless, the test agents had a yeast cell-killing activity that also was weakly dependent on cellular topoisomerase I content. The results are relevant for the full understanding of the molecular mechanism of topoisomerase poisoning by anticancer drugs, and they define structural determinants of anthracyclines that may help in the rational design of new compounds directed against topoisomerase I.

  9. Amelioration of Alcoholic Liver Steatosis by Dihydroquercetin through the Modulation of AMPK-Dependent Lipogenesis Mediated by P2X7R-NLRP3-Inflammasome Activation.

    PubMed

    Zhang, Yu; Jin, Quan; Li, Xia; Jiang, Min; Cui, Ben-Wen; Xia, Kai-Li; Wu, Yan-Ling; Lian, Li-Hua; Nan, Ji-Xing

    2018-05-16

    Dihydroquercetin (TAX) is the most abundant dihydroflavone found in onions, milk thistle, and Douglas fir bark. We investigated whether TAX could inhibit lipid accumulation in alcoholic liver steatosis in vivo and in vitro. An in vivo model was established by intragastrically treating mice with ethanol, and an in vitro model was created by treating HepG2 cells with ethanol. TAX regulated SREBP1 and ACC expression by elevating LKB1 and AMPK phosphorylation. Also, TAX upregulated SIRT1 expression, which was suppressed by ethanol intake. Decreased expression of P2X7R and NLRP3 and suppressed cleavage of caspase-1 by TAX resulted in the inhibition of IL-1β production and release. Additionally, TAX reduced lipogenesis and promoted lipid oxidation via the regulation of AMPK and ACC in ethanol-treated steatotic HepG2 cells. TAX downregulated IL-1β cleavage responses to LPS and ATP stimulation in HepG2 cells. P2X7R deficiency attenuated lipid accumulation, characterized by increased AMPK activity and decreased SREBP1 expression in ethanol-treated HepG2 cells. Our data showed that TAX exhibited the ability to inhibit lipogenesis and a hepatoprotective capacity, indicating that TAX has therapeutic potential for preventing alcoholic liver steatosis.

  10. The cathelicidin LL-37 activates human mast cells and is degraded by mast cell tryptase: counter-regulation by CXCL4.

    PubMed

    Schiemann, Florian; Brandt, Ernst; Gross, Roland; Lindner, Buko; Mittelstädt, Jessica; Sommerhoff, Christian P; Schulmistrat, Jan; Petersen, Frank

    2009-08-15

    The cathelicidin LL-37 represents a potent antimicrobial and cell-stimulating agent, most abundantly expressed in peripheral organs such as lung and skin during inflammation. Because mast cells (MC) overtake prominent immunomodulatory roles in these organs, we wondered whether interactions exist between MC and LL-37. In this study, we show for the first time to our knowledge that physiological concentrations of LL-37 induce degranulation in purified human lung MC. Intriguingly, as a consequence LL-37 rapidly undergoes limited cleavage by a released protease. The enzyme was identified as beta-tryptase by inhibitor studies and by comparison to the recombinant protease. Examining the resulting LL-37 fragments for their functional activity, we found that none of the typical capacities of intact LL-37, i.e., MC degranulation, bactericidal activity, and neutralization of LPS, were retained. Conversely, we found that another inflammatory protein, the platelet-derived chemokine CXCL4, protects LL-37 from cleavage by beta-tryptase. Interestingly, CXCL4 did not act as a direct enzyme inhibitor, but destabilized active tetrameric beta-tryptase by antagonizing the heparin component required for the integrity of the tetramer. Altogether our results suggest that interaction of LL-37 and MC initiates an effective feedback loop to limit cathelicidin activity during inflammation, whereas CXCL4 may represent a physiological counter-regulator of beta-tryptase activity.

  11. Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice.

    PubMed

    Glenn, David R J; McClure, Neil; Cosby, S Louise; Stevenson, Michael; Lewis, Sheena E M

    2009-03-01

    To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage. This acute mammal study included male and female mice assigned randomly, the females sacrificed after mating and their oocytes/embryos evaluated at four time periods after treatment. Academic research environment. Male and female CBAB(6) mice. Female mice were injected intraperitoneally with 5 IU gonadotropin (hCG) to stimulate follicular growth and induce ovulation. They were each caged with a male that had been gavaged with sildenafil citrate (0.06 mg/0.05 mL) and allowed to mate. After 12, 36, 60, and 84 h, females were killed, their oviducts were dissected out, and retrieved embryos were assessed for blastomere number and quality. Fertilization rates and numbers of embryos were evaluated after treatment. Fertilization rates (day 1) were markedly reduced (-33%) in matings where the male had taken sildenafil citrate. Over days 2-4, the numbers of embryos developing in the treated group were significantly fewer than in the control group. There was also a trend for impaired cleavage rates within those embryos, although this did not reach significance. The impairments to fertility caused by sildenafil citrate have important implications for infertility centers and for couples who are using this drug precoitally while attempting to conceive.

  12. Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells.

    PubMed Central

    Pörn-Ares, M Isabella; Saido, Takaomi C; Andersson, Tommy; Ares, Mikko P S

    2003-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to induce apoptosis in endothelial cells, and this is believed to contribute to the progression of atherosclerosis. In the present study we made the novel observation that oxLDL-induced death of HMEC-1 cells is accompanied by activation of calpain. The mu-calpain inhibitor PD 151746 decreased oxLDL-induced cytotoxicity, whereas the general caspase inhibitor BAF (t-butoxycarbonyl-Asp-methoxyfluoromethylketone) had no effect. Also, oxLDL provoked calpain-dependent proteolysis of cytoskeletal alpha-fodrin in the HMEC-1 cells. Our observation of an autoproteolytic cleavage of the 80 kDa subunit of mu-calpain provided further evidence for an oxLDL-induced stimulation of calpain activity. The Bcl-2 protein Bid was also cleaved during oxLDL-elicited cell death, and this was prevented by calpain inhibitors, but not by inhibitors of cathepsin B and caspases. Treating the HMEC-1 cells with oxLDL did not result in detectable activation of procaspase 3 or cleavage of PARP [poly(ADP-ribose) polymerase], but it did cause polyubiquitination of caspase 3, indicating inactivation and possible degradation of this protease. Despite the lack of caspase 3 activation, oxLDL treatment led to the formation of nucleosomal DNA fragments characteristic of apoptosis. These novel results show that oxLDL initiates a calpain-mediated death-signalling pathway in endothelial cells. PMID:12775216

  13. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.

    PubMed

    Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C

    2018-05-01

    Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.

  14. Functional analysis of coordinated cleavage in V(D)J recombination.

    PubMed

    Kim, D R; Oettinger, M A

    1998-08-01

    V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.

  15. [Effects of body mass index and age on the treatment of in vitro fertilization-embryo transfer among patients with non-polycystic ovarian syndrome].

    PubMed

    Chen, Hong; Wang, Wen-jun; Chen, Yu-zhen; Mai, Mei-qi; Ouyang, Neng-yong; Chen, Jing-hua; Tuo, Ping

    2010-05-01

    To investigate the impacts of body mass index (BMI) and age on in vitro fertilization-embryo transfer (IVF) and intracytoplasmic sperm injection (ICSI) treatment in infertile patients without polycystic ovary syndrome (PCOS). A retrospective study of 1426 patients during Jun. 2001 - Nov. 2009 was carried out. Multiple regression was used to analyze the effects of BMI (low weight: BMI < 18.5 kg/m(2), normal weight: BMI 18.5 - 23.99 kg/m(2) and over weight-obesity: BMI ≥ 24 kg/m(2)) and age (young: 20 - 34 years old, eld: 35 - 45 years old) on controlled ovarian stimulation (COH) [including: dose and duration of Gn, E2 level on day of human chorionic gonadotropin (HCG) administration, number of oocytes collected and full-grown follicles], number of fertilization, cleavage, two-pronucleus, normal embryos and cryopreserved embryos and clinical pregnancy outcome. (1) Gn dose for the patients whose age were 35 and the above, had a positive correlation with age (P < 0.001), 12.70% of the total variation of Gn dose was related to age (standardized partial regression coefficient was 0.343). (2) Estradiol level on day of HCG administration had a negative correlation with BMI in overweight-obesity patients, and so were the patients whose age were 35 and above (P value respectively lower than 0.037 and 0.018). 0.80% of the total variation of estradiol (HCG day) is related to age and overweight-obesity while age took greater proportion (standardized partial regression coefficients were 0.066 and 0.058 respectively). (3) For older patients, age appeared to have negative relationships with duration of Gn and number of oocytes collected, full-grown follicles, fertilization, cleavage, two-pronucleus, normal embryos and cryopreserved embryos (P < 0.05). (4) Compared to young-normal weight patients, the odds ratio of pregnancy in eld-low weight and eld-overweight-obesity patients were 0.482 and 0.529 (P < 0.05) respectively. Age, but not the BMI, had significant effects on IVF/ICSI treatment. It seems that factors as losing weight before IVF or ICSI treatment effective in reducing the dose of Gn.

  16. Hairpin ribozyme cleavage catalyzed by aminoglycoside antibiotics and the polyamine spermine in the absence of metal ions.

    PubMed Central

    Earnshaw, D J; Gait, M J

    1998-01-01

    The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells. PMID:9837982

  17. Constitutive α- and β-secretase cleavages of the amyloid precursor protein are partially coupled in neurons, but not in frequently used cell lines.

    PubMed

    Colombo, Alessio; Wang, Huanhuan; Kuhn, Peer-Hendrik; Page, Richard; Kremmer, Elisabeth; Dempsey, Peter J; Crawford, Howard C; Lichtenthaler, Stefan F

    2013-01-01

    Proteolytic cleavage of the amyloid precursor protein (APP) by the two proteases α- and β-secretases controls the generation of the amyloid β peptide (Aβ), a key player in Alzheimer's disease pathogenesis. The α-secretase ADAM10 and the β-secretase BACE1 have opposite effects on Aβ generation and are assumed to compete for APP as a substrate, such that their cleavages are inversely coupled. This concept was mainly demonstrated in studies using activation or overexpression of α- and β-secretases. Here, we report that this inverse coupling is not seen to the same extent upon inhibition of the endogenous proteases. Genetic and pharmacological inhibition of ADAM10 and BACE1 revealed that the endogenous, constitutive α-secretase cleavage of APP is largely uncoupled from β-secretase cleavage and Aβ generation in neuroglioma H4 cells and in neuronally differentiated SH-SY5Y cells. In contrast, inverse coupling was observed in primary cortical neurons. However, this coupling was not bidirectional. Inhibition of BACE1 increased ADAM10 cleavage of APP, but a reduction of ADAM10 activity did not increase the BACE1 cleavage of APP in the neurons. Our analysis shows that the inverse coupling of the endogenous α- and β-secretase cleavages depends on the cellular model and suggests that a reduction of ADAM10 activity is unlikely to increase the AD risk through increased β-secretase cleavage. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Intermolecular cleavage by UmuD-like mutagenesis proteins

    PubMed Central

    McDonald, John P.; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger

    1998-01-01

    The activity of a number of proteins is regulated by self-processing reactions. Elegant examples are the cleavage of the prokaryotic LexA and λCI transcriptional repressors and the UmuD-like mutagenesis proteins. Various studies support the hypothesis that LexA and λCI cleavage reactions are predominantly intramolecular in nature. The recently described crystal structure of the Escherichia coli UmuD′ protein (the posttranslational cleavage product of the UmuD protein) suggests, however, that the region of the protein corresponding to the cleavage site is at least 50 Å away from the catalytic active site. We considered the possibility, therefore, that the UmuD-like proteins might undergo self-processing that, in contrast to LexA and λCI, occurs via an intermolecular rather than intramolecular reaction. To test this hypothesis, we introduced into E. coli compatible plasmids with mutations at either the cleavage or the catalytic site of three UmuD-like proteins. Cleavage of these proteins only occurs in the presence of both plasmids, indicating that the reaction is indeed intermolecular in nature. Furthermore, this intermolecular reaction is completely dependent upon the multifunctional RecA protein and leads to the restoration of cellular mutagenesis in nonmutable E. coli strains. Intermolecular cleavage of a biotinylated UmuD active site mutant was also observed in vitro in the presence of the wild-type UmuD′ protein, indicating that in addition to the intact UmuD protein, the normal cleavage product (UmuD′) can also act as a classical enzyme. PMID:9465040

  19. Specific Cleavage of the Nucleoprotein of Fish Rhabdovirus.

    PubMed

    Zhou, G-Z; Yi, Y-J; Chen, Z-Y; Zhang, Q-Y

    2015-11-01

    Siniperca chuatsi rhabdovirus (SCRV) is one of myriad rhabdoviruses recorded in fish. Preliminary data show that inhibition of the SCRV nucleoprotein (N) could significantly reduce the progeny virus titers in infected Epithelioma papulosum cyprinid (EPC) cells. Here, the authors propose that cleavage of the viral 47-kDa N protein is caspase-mediated based on caspase inhibition experiments, transient expression in EPC transfection, and analysis of cleavage sites. Cleavage of the SCRV N protein in culture was prevented by a pan-caspase inhibitor, z-VAD-FMK (z-Val-Ala-DL-Asp-fluoromethyl ketone). Subsequently, N was transiently expressed in EPC cells, the results of which indicated that the specific cleavage of N also occurred in the cells transfected with N-GFP plasmid. Several truncated fragments of the N gene were constructed and transiently transfected into EPC cells. Immunoblotting results indicated that D324 and D374 are the cleavage sites of N by caspases. The authors also found that z-VAD-FMK could inhibit the cytopathic effect in SCRV-infected EPC cells but not affect the production of infectious progeny, suggesting that the caspase-mediated cleavage of N protein is not required for in vitro SCRV replication. To the authors' knowledge, this is the first report on the cleavage of rhabdovirus proteins. © The Author(s) 2015.

  20. Analysis of RNA Processing Reactions Using Cell Free Systems: 3' End Cleavage of Pre-mRNA Substrates in vitro

    PubMed Central

    Jablonski, Joseph; Clementz, Mark; Ryan, Kevin; Valente, Susana T.

    2014-01-01

    The 3’ end of mammalian mRNAs is not formed by abrupt termination of transcription by RNA polymerase II (RNPII). Instead, RNPII synthesizes precursor mRNA beyond the end of mature RNAs, and an active process of endonuclease activity is required at a specific site. Cleavage of the precursor RNA normally occurs 10-30 nt downstream from the consensus polyA site (AAUAAA) after the CA dinucleotides. Proteins from the cleavage complex, a multifactorial protein complex of approximately 800 kDa, accomplish this specific nuclease activity. Specific RNA sequences upstream and downstream of the polyA site control the recruitment of the cleavage complex. Immediately after cleavage, pre-mRNAs are polyadenylated by the polyA polymerase (PAP) to produce mature stable RNA messages. Processing of the 3’ end of an RNA transcript may be studied using cellular nuclear extracts with specific radiolabeled RNA substrates. In sum, a long 32P-labeled uncleaved precursor RNA is incubated with nuclear extracts in vitro, and cleavage is assessed by gel electrophoresis and autoradiography. When proper cleavage occurs, a shorter 5’ cleaved product is detected and quantified. Here, we describe the cleavage assay in detail using, as an example, the 3’ end processing of HIV-1 mRNAs. PMID:24835792

  1. Characterization of Bleomycin-Mediated Cleavage of a Hairpin DNA Library

    PubMed Central

    Segerman, Zachary J.; Roy, Basab; Hecht, Sidney M.

    2013-01-01

    A study of BLM A5 was conducted using a previously isolated library of hairpin DNAs found to bind strongly to metal free BLM. The ability of Fe(II)•BLM to effect cleavage on both the 3' and 5'-arms of the hairpin DNAs was characterized. The strongly bound DNAs were found to be efficient substrates for Fe•BLM A5-mediated hairpin DNA cleavage. Surprisingly, the most prevalent site of BLM-mediated cleavage was found to be the 5′-AT-3′ dinucleotide sequence. This dinucleotide sequence, and other sequences generally not cleaved well by BLM when examined using arbitrarily chosen DNA substrates, were apparent when examining the library of ten hairpin DNAs. In total, 132 sites of DNA cleavage were produced by exposure of the hairpin DNA library to Fe•BLM A5. The existence of multiple sites of cleavage on both the 3′- and 5′-arms of the hairpin DNAs suggested that some of these might be double-strand cleavage events. Accordingly, an assay was developed with which to test the propensity of the hairpin DNAs to undergo double-strand DNA damage. One hairpin DNA was characterized using this method, and gave results consistent with earlier reports of double-strand DNA cleavage, but with a sequence selectivity different from those reported previously. PMID:23834496

  2. Quantification of DNA cleavage specificity in Hi-C experiments.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Sequence specificity of the hammerhead ribozyme revisited; the NHH rule.

    PubMed Central

    Kore, A R; Vaish, N K; Kutzke, U; Eckstein, F

    1998-01-01

    The sequence specificity of hammerhead ribozyme cleavage has been re-evaluated with respect to the NUH rule. Contrary to previous reports it was found that substrates with GAC triplets were also cleaved. This was established in three different sequence contexts. The rate of cleavage under single turnover conditions was between 3 and 7% that of cleavage 3' of GUC. Specificity of cleavage of substrates containing a central A in the cleavable triplet can be described as NAH, where N can be any nucleotide and H any nucleotide but G. As cleavage 3' of NCH triplets has recently been described, the NUH rule can be reformulated to NHH. PMID:9722629

  4. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.

    PubMed

    Dong, Jing-fei; Moake, Joel L; Nolasco, Leticia; Bernardo, Aubrey; Arceneaux, Wendy; Shrimpton, Corie N; Schade, Alicia J; McIntire, Larry V; Fujikawa, Kazuo; López, José A

    2002-12-01

    Thrombotic thrombocytopenic purpura (TTP) is a devastating thrombotic disorder caused by widespread microvascular thrombi composed of platelets and von Willebrand factor (VWF). The disorder is associated with a deficiency of the VWF-cleaving metalloprotease, ADAMTS-13, with consequent accumulation of ultralarge (UL) VWF multimers in the plasma. ULVWF multimers, unlike plasma forms of VWF, attach spontaneously to platelet GP Ibalpha, a component of the GP Ib-IX-V complex. We have found that ULVWF multimers secreted from stimulated endothelial cells (ECs) remained anchored to the endothelial surface where platelets and Chinese hamster ovary cells expressing the GP Ib-IX-V complex attached to form long beads-on-a-string structures in the presence of fluid shear stresses in both the venous (2.5 dyne/cm(2)) and arterial (20 and 50 dyne/cm(2)) ranges. Although measurement of the activity of the ADAMTS-13 VWF-cleaving metalloprotease in vitro requires prolonged incubation of the enzyme with VWF under nonphysiologic conditions, EC-derived ULVWF strings with attached platelets were cleaved within seconds to minutes in the presence of normal plasma (containing approximately 100% ADAMTS-13 activity) or in the presence of partially purified ADAMTS-13. By contrast, the strings persisted for the entire period of perfusion (10 minutes) in the presence of plasma from patients with TTP containing 0% to 10% ADAMTS-13 activity. These results suggest that cleavage of EC-derived ULVWF multimers by ADAMTS-13 is a rapid physiologic process that occurs on endothelial cell surfaces.

  5. Yeast two-hybrid cloning of a novel zinc finger protein that interacts with the multifunctional transcription factor YY1.

    PubMed Central

    Kalenik, J L; Chen, D; Bradley, M E; Chen, S J; Lee, T C

    1997-01-01

    Muscle-restricted transcription of sarcomeric actin genes is negatively controlled by the zinc finger protein YY1, which is down-regulated at the protein level during myogenic differentiation. To identify cellular proteins that might mediate the function/stability of YY1 in muscle cells, we screened an adult human muscle cDNA library using the yeast two-hybrid cloning system. We report the isolation and characterization of a novel protein termed YAF2 (YY1- associated factor 2) that interacts with YY1. The YAF2 cDNA encodes a 180 amino acid basic protein (pI 10.5) containing a single N-terminal C2-X10-C2 zinc finger. Lysine clusters are present that may function as a nuclear localization signal. Domain mapping analysis shows that the first and second zinc fingers of YY1 are targeted for YAF2 protein interaction. In contrast to the down-regulation of YY1, YAF2 message levels increase during in vitro differentiation of both rat skeletal and cardiac muscle cells. YAF2 appears to have a promyogenic regulatory role, since overexpression of YAF2 in C2 myoblasts stimulates myogenic promoter activity normally restricted by YY1. Co-transfection of YY1 reverses the stimulatory effect of YAF2. YAF2 also greatly potentiates proteolytic cleavage of YY1 by the calcium- activated protease m-calpain. The isolation of YAF2 may help in understanding the mechanisms through which inhibitors of myogenic transcription may be antagonized or eliminated by proteolysis during muscle development. PMID:9016636

  6. Development of Quenching-qPCR (Q-Q) assay for measuring absolute intracellular cleavage efficiency of ribozyme.

    PubMed

    Kim, Min Woo; Sun, Gwanggyu; Lee, Jung Hyuk; Kim, Byung-Gee

    2018-06-01

    Ribozyme (Rz) is a very attractive RNA molecule in metabolic engineering and synthetic biology fields where RNA processing is required as a control unit or ON/OFF signal for its cleavage reaction. In order to use Rz for such RNA processing, Rz must have highly active and specific catalytic activity. However, current methods for assessing the intracellular activity of Rz have limitations such as difficulty in handling and inaccuracies in the evaluation of correct cleavage activity. In this paper, we proposed a simple method to accurately measure the "intracellular cleavage efficiency" of Rz. This method deactivates unwanted activity of Rz which may consistently occur after cell lysis using DNA quenching method, and calculates the cleavage efficiency by analyzing the cleaved fraction of mRNA by Rz from the total amount of mRNA containing Rz via quantitative real-time PCR (qPCR). The proposed method was applied to measure "intracellular cleavage efficiency" of sTRSV, a representative Rz, and its mutant, and their intracellular cleavage efficiencies were calculated as 89% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Resolution of model Holliday junctions by yeast endonuclease: effect of DNA structure and sequence.

    PubMed Central

    Parsons, C A; Murchie, A I; Lilley, D M; West, S C

    1989-01-01

    The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease. Images PMID:2653810

  8. Identification of Proteolytic Cleavage Sites of EphA2 by Membrane Type 1 Matrix Metalloproteinase on the Surface of Cancer Cells.

    PubMed

    Kikuchi, Keiji; Kozuka-Hata, Hiroko; Oyama, Masaaki; Seiki, Motoharu; Koshikawa, Naohiko

    2018-01-01

    Proteolytic cleavage of membrane proteins can alter their functions depending on the cleavage sites. We recently demonstrated that membrane type 1 matrix metalloproteinase (MT1-MMP ) converts the tumor suppressor EphA2 into an oncogenic signal transducer through EphA2 cleavage. The cleaved EphA2 fragment that remains at the cell surface may be a better target for cancer therapy than intact EphA2. To analyze the cleavage site(s) of EphA2, we purified the fragments from tumor cells expressing MT1-MMP and Myc- and 6× His-tagged EphA2 by two-step affinity purification . The purified fragment was digested with trypsin to generate proteolytic peptides , and the amino acid sequences of these peptides were determined by nano-LC-mass spectrometry to identify the MT1-MMP-mediated cleavage site(s) of EphA2.

  9. Chemical Stress Cracking of Acrylic Fibers.

    DTIC Science & Technology

    1982-05-01

    stress, high fiber permeability, moderate fibe orientation, and water- plasticization . The proposed mechanism for bond cleava e involves cyclization of...tensile stress, high fiber permeability, moderate fiber orientation, and water- plasticization . The proposed mechanism for bond cleavage involves...chemical composition, plasticization , and other factors. It will be shown that the etching behavior does not reflect underlying hetero- geneities in the

  10. Motoneurons secrete angiogenin to induce RNA cleavage in astroglia.

    PubMed

    Skorupa, Alexandra; King, Matthew A; Aparicio, Isabela M; Dussmann, Heiko; Coughlan, Karen; Breen, Bridget; Kieran, Dairin; Concannon, Caoimhin G; Marin, Philippe; Prehn, Jochen H M

    2012-04-11

    Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder affecting motoneurons. Mutations in angiogenin, encoding a member of the pancreatic RNase A superfamily, segregate with ALS. We previously demonstrated that angiogenin administration shows promise as a neuroprotective therapeutic in studies using transgenic ALS mice and primary motoneuron cultures. Its mechanism of action and target cells in the spinal cord, however, are largely unknown. Using mixed motoneuron cultures, motoneuron-like NSC34 cells, and primary astroglia cultures as model systems, we here demonstrate that angiogenin is a neuronally secreted factor that is endocytosed by astroglia and mediates neuroprotection in paracrine. We show that wild-type angiogenin acts unidirectionally to induce RNA cleavage in astroglia, while the ALS-associated K40I mutant is also secreted and endocytosed, but fails to induce RNA cleavage. Angiogenin uptake into astroglia requires heparan sulfate proteoglycans, and engages clathrin-mediated endocytosis. We show that this uptake mechanism exists for mouse and human angiogenin, and delivers a functional RNase output. Moreover, we identify syndecan 4 as the angiogenin receptor mediating the selective uptake of angiogenin into astroglia. Our data provide new insights into the paracrine activities of angiogenin in the nervous system, and further highlight the critical role of non-neuronal cells in the pathogenesis of ALS.

  11. Molecular Mechanism of Processive 3' to 5' RNA Translocation in the Active Subunit of the RNA Exosome Complex.

    PubMed

    Vuković, Lela; Chipot, Christophe; Makino, Debora L; Conti, Elena; Schulten, Klaus

    2016-03-30

    Recent experimental studies revealed structural details of 3' to 5' degradation of RNA molecules, performed by the exosome complex. ssRNA is channeled through its multisubunit ring-like core into the active site tunnel of its key exonuclease subunit Rrp44, which acts both as an enzyme and a motor. Even in isolation, Rrp44 can pull and sequentially cleave RNA nucleotides, one at a time, without any external energy input and release a final 3-5 nucleotide long product. Using molecular dynamics simulations, we identify the main factors that control these processes. Our free energy calculations reveal that RNA transfer from solution into the active site of Rrp44 is highly favorable, but dependent on the length of the RNA strand. While RNA strands formed by 5 nucleotides or more correspond to a decreasing free energy along the translocation coordinate toward the cleavage site, a 4-nucleotide RNA experiences a free energy barrier along the same direction, potentially leading to incomplete cleavage of ssRNA and the release of short (3-5) nucleotide products. We provide new insight into how Rrp44 catalyzes a localized enzymatic reaction and performs an action distributed over several RNA nucleotides, leading eventually to the translocation of whole RNA segments into the position suitable for cleavage.

  12. Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function.

    PubMed

    Yang, Zheng Rong; Thomson, Rebecca; Hodgman, T Charles; Dry, Jonathan; Doyle, Austin K; Narayanan, Ajit; Wu, XiKun

    2003-11-01

    This paper presents an algorithm which is able to extract discriminant rules from oligopeptides for protease proteolytic cleavage activity prediction. The algorithm is developed using genetic programming. Three important components in the algorithm are a min-max scoring function, the reverse Polish notation (RPN) and the use of minimum description length. The min-max scoring function is developed using amino acid similarity matrices for measuring the similarity between an oligopeptide and a rule, which is a complex algebraic equation of amino acids rather than a simple pattern sequence. The Fisher ratio is then calculated on the scoring values using the class label associated with the oligopeptides. The discriminant ability of each rule can therefore be evaluated. The use of RPN makes the evolutionary operations simpler and therefore reduces the computational cost. To prevent overfitting, the concept of minimum description length is used to penalize over-complicated rules. A fitness function is therefore composed of the Fisher ratio and the use of minimum description length for an efficient evolutionary process. In the application to four protease datasets (Trypsin, Factor Xa, Hepatitis C Virus and HIV protease cleavage site prediction), our algorithm is superior to C5, a conventional method for deriving decision trees.

  13. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  14. Flexible Xxx–Asp/Asn and Gly–Xxx Residues of Equine Cytochrome c in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    PubMed Central

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908

  15. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    PubMed

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.

  16. Effect of Local Crystallographic Texture on the Fissure Formation During Charpy Impact Testing of Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Patra, Sudipta; Chatterjee, Arya; Chakrabarti, Debalay

    2016-06-01

    The severity of the formation of fissures (also known as splitting or delamination) on the fracture surface of Charpy impact-tested samples of a low-carbon steel has been found to increase with the decrease in finish rolling temperature [1093 K to 923 K (820 °C to 650 °C)]. Combined scanning electron microscopy and electron back-scattered diffraction study revealed that crystallographic texture was the prime factor responsible for the fissure formation. Through-thickness texture band composed of cube [Normal Direction (ND)║<001>] and gamma [ND║<111>] orientations developed during the inter-critical rolling treatment. Strain incompatibility between these two texture bands causes fissure cracking on the main fracture plane. A new approach based on the angle between {001} planes of neighboring crystals has been employed in order to estimate the `effective grain size,' which is used to determine the cleavage fracture stress on different planes of a sample. The severity of fissure formation was found to be directly related to the difference in cleavage fracture stress between the `main fracture plane' and `fissure plane.' Clustering of ferrite grains having cube texture promoted the fissure crack propagation along the transverse `fissure plane,' by increasing the `effective grain size' and decreasing the cleavage fracture stress on that plane.

  17. Nuclear assortment of eIF4E coincides with shut-off of host protein synthesis upon poliovirus infection.

    PubMed

    Sukarieh, R; Sonenberg, N; Pelletier, J

    2010-05-01

    Eukaryotic initiation factor (eIF) 4E is a subunit of the cap-binding protein complex, eIF4F, which recognizes the cap structure of cellular mRNAs to facilitate translation initiation. eIF4E is assembled into the eIF4F complex via its interaction with eIF4G, an event that is under Akt/mTOR regulation. The eIF4E-eIF4G interaction is regulated by the eIF4E binding partners, eIF4E-binding proteins and eIF4E-transporter. Cleavage of eIF4G occurs upon poliovirus infection and is responsible for the shut-off of host-cell protein synthesis observed early in infection. Here, we document that relocalization of eIF4E to the nucleus occurs concomitantly with cleavage of eIF4G upon poliovirus infection. This event is not dependent upon virus replication, but is dependent on eIF4G cleavage. We postulate that eIF4E nuclear relocalization may contribute to the shut-off of host protein synthesis that is a hallmark of poliovirus infection by perturbing the circular status of actively translating mRNAs.

  18. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation

    PubMed Central

    Matsuda, Morihiro; Korn, Bobby S.; Hammer, Robert E.; Moon, Young-Ah; Komuro, Ryutaro; Horton, Jay D.; Goldstein, Joseph L.; Brown, Michael S.; Shimomura, Iichiro

    2001-01-01

    In liver, the synthesis of cholesterol and fatty acids increases in response to cholesterol deprivation and insulin elevation, respectively. This regulatory mechanism underlies the adaptation to cholesterol synthesis inhibitors (statins) and high calorie diets (insulin). In nonhepatic cells, lipid synthesis is controlled by sterol regulatory element-binding proteins (SREBPs), membrane-bound transcription factors whose active domains are released proteolytically to enter the nucleus and activate genes involved in the synthesis and uptake of cholesterol and fatty acids. SCAP (SREBP cleavage-activating protein) is a sterol-regulated escort protein that transports SREBPs from their site of synthesis in the endoplasmic reticulum to their site of cleavage in the Golgi. Here, we produced a conditional deficiency of SCAP in mouse liver by genomic recombination mediated by inducible Cre recombinase. SCAP-deficient mice showed an 80% reduction in basal rates of cholesterol and fatty acid synthesis in liver, owing to decreases in mRNAs encoding multiple biosynthetic enzymes. Moreover, these mRNAs failed to increase normally in response to cholesterol deprivation produced by a cholesterol synthesis inhibitor and to insulin elevation produced by a fasting–refeeding protocol. These data provide in vivo evidence that SCAP and the SREBPs are required for hepatic lipid synthesis under basal and adaptive conditions. PMID:11358865

  19. HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

    PubMed Central

    Nami, Babak; Wang, Zhixiang

    2017-01-01

    HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab. PMID:28445439

  20. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis.

    PubMed

    Ashraf, Nasheeman; Jain, Deepti; Vishwakarma, Ram A

    2015-02-01

    Crocus sativus is a triploid sterile plant with long red stigmas which form commercial saffron. Saffron is the site for synthesis and accumulation of apocarotenoids like crocin, picrocrin and safranal which are responsible for its color, flavour and aroma making it world's most expensive spice. These compounds are formed by oxidative cleavage of zeaxanthin by carotenoid cleavage dioxygenases. Although the biosynthetic pathway of apocarotenoids is known to a considerable extent, the mechanism that regulates its tissue and developmental stage specific expression is not known. In the present work, we identified, cloned and characterized ultrapetala transcription factor called CsULT1 from Crocus. The gene contains an 80 amino acid long conserved SAND domain. The CsULT1 transcript was more abundant in stigma and showed increase in expression from pre anthesis stage till anthesis and decreased in post anthesis stage which corroborated with the accumulation pattern of crocin indicating its possible role in regulation of apocarotenoid biosynthesis. CsULT1 was found to be transcriptionally active and localized in nucleus. Its expression is induced in response to phytohormones like auxin, methyljasmonate and salicylic acid. Overexpression of CsULT1 in Crocus calli resulted in enhanced expression of key pathway genes like phytoene synthase (PSY), phytoene desaturase (PDS), beta carotene hydroxylase (BCH) and carotenoid cleavage dioxygenases (CCDs) indicating its role in regulation of apocarotenoid biosynthesis. This work presents first report on isolation and characterization of ultrapetala gene from Crocus. Our results suggest that CsULT1 is a novel regulator of Crocus apocarotenoid biosynthesis. We show for the first time involvement of plant SAND domain proteins in regulating secondary metabolic pathways.

  1. The action of the bacterial toxin microcin B17. Insight into the cleavage-religation reaction of DNA gyrase.

    PubMed

    Pierrat, Olivier A; Maxwell, Anthony

    2003-09-12

    We have examined the effects of the bacterial toxin microcin B17 (MccB17) on the reactions of Escherichia coli DNA gyrase. MccB17 slows down but does not completely inhibit the DNA supercoiling and relaxation reactions of gyrase. A kinetic analysis of the cleavage-religation equilibrium of gyrase was performed to determine the effect of the toxin on the forward (cleavage) and reverse (religation) reactions. A simple mechanism of two consecutive reversible reactions with a nicked DNA intermediate was used to simulate the kinetics of cleavage and religation. The action of MccB17 on the kinetics of cleavage and religation was compared with that of the quinolones ciprofloxacin and oxolinic acid. With relaxed DNA as substrate, only a small amount of gyrase cleavage complex is observed with MccB17 in the absence of ATP, whereas the presence of the nucleotide significantly enhances the effect of the toxin on both the cleavage and religation reactions. In contrast, ciprofloxacin, oxolinic acid, and Ca2+ show lesser dependence on ATP to stabilize the cleavage complex. MccB17 enhances the overall rate of DNA cleavage by increasing the forward rate constant (k2) of the second equilibrium. In contrast, ciprofloxacin increases the amount of cleaved DNA by a combined effect on the forward and reverse rate constants of both equilibria. Based on these results and on the observations that MccB17 only slowly inhibits the supercoiling and relaxation reactions, we suggest a model of the interaction of MccB17 with gyrase.

  2. Neutralizing VEGF Decreases Tortuosity and Alters Endothelial Cell Division Orientation in Arterioles and Veins in a Rat Model of ROP

    PubMed Central

    Hartnett, M. Elizabeth; Martiniuk, David; Byfield, Grace; Geisen, Pete; Zeng, Gefei; Bautch, Victoria L.

    2008-01-01

    Purpose To study the effects of vascular endothelial growth factor (VEGF) on endothelial nitric oxide synthetase (eNOS) and retinal vascular tortuosity and cleavage planes in a rat model of retinopathy of prematurity (ROP). Methods Within 4 hours of birth, pups and mothers were cycled between 50% and 10% oxygen daily. At postnatal day (p)12, pups received either intravitreous anti-rat neutralizing antibody to VEGF or control nonimmune rat IgG in one eye and returned to oxygen cycling until p14 when they were placed in room air (RA) for 4 days (50/10 oxygen-induced retinopathy [50/10 OIR]). Tortuosity indices and endothelial cleavage plane angles relative to the long axes of the major retinal vessels during anaphase were calculated from phosphohistone- and Alexa-isolectin-stained retinal flatmounts. Some retinas were processed for eNOS protein or phosphorylated/total eNOS. Results Retinas from 50/10 OIR had increased tortuosity over time with peaks at p12 and p14 (P < 0.001 vs. RA) before the development of intravitreous neovascularization, which peaked at p18. Compared with RA, eNOS/actin in 50/10 OIR retinas was increased at p12 (P = 0.0003) and p14 (P = 0.047). Inhibition of VEGF with a neutralizing antibody decreased tortuosity and caused endothelial mitosis cleavage planes to orient in favor of vessel elongation but did not affect eNOS protein or activation. Conclusions In the 50/10 OIR model, a model with relevance to ROP, arteriolar tortuosity, and venous dilation are increased through VEGF, which influences the orientation of endothelial cell cleavage in major arterioles and veins, independent of eNOS. PMID:18378573

  3. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos.

    PubMed

    McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H

    2018-04-24

    Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.

  4. Somatostatin increases glucocorticoid binding and signaling in macrophages by blocking the calpain-specific cleavage of Hsp 90.

    PubMed

    Bellocq, A; Doublier, S; Suberville, S; Perez, J; Escoubet, B; Fouqueray, B; Puyol, D R; Baud, L

    1999-12-24

    Somatostatin has direct anti-inflammatory actions and participates in the anti-inflammatory actions of glucocorticoids, but the mechanisms underlying this regulation remain poorly understood. The objective of this study was to evaluate whether somatostatin increases glucocorticoid responsiveness by up-regulating glucocorticoid receptor (GR) expression and signaling. Somatostatin promoted a time- and dose-dependent increase in [(3)H]dexamethasone binding to RAW 264.7 macrophages. Cell exposure to 10 nM somatostatin for 18 h promoted a 2-fold increase in the number of GR sites per cell without significant modification of the affinity. Analysis of GR heterocomplex components demonstrated that somatostatin increased the level of heat shock protein (Hsp) 90, whereas the level of GR remained almost unchanged. The increase in Hsp 90 was associated with a decrease in the cleavage of its carboxyl-terminal domain. Evidence for the involvement of calpain inhibition in this process was obtained by the demonstration that 1) somatostatin induced a dose-dependent decrease in calpain activity and 2) calpain inhibitors, calpain inhibitor I and calpeptin, both abolished the cleavage of Hsp 90 and induced a dose-dependent increase in [(3)H]dexamethasone binding. Increases in glucocorticoid binding after somatostatin treatment were associated with similar increases in the ability of GR to transactivate a minimal promoter containing two glucocorticoid response elements (GRE) and to interfere with the activation of nuclear factor-kappaB (NF-kappaB). Thus, the present findings indicate that somatostatin increases glucocorticoid binding and signaling by limiting the calpain-specific cleavage of GR-associated Hsp 90. This mechanism may represent a novel target for intervention to increase glucocorticoid responsiveness.

  5. E2F mediates enhanced alternative polyadenylation in proliferation

    PubMed Central

    2012-01-01

    Background The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Results Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Conclusions Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation. PMID:22747694

  6. Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.

    PubMed

    Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R

    2017-10-27

    Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  8. Enhancing Interleukin-6 and Interleukin-11 receptor cleavage.

    PubMed

    Lokau, Juliane; Wandel, Marieke; Garbers, Christoph

    2017-04-01

    Proteolytic cleavage of the membrane-bound Interleukin-6 receptor (IL-6R) by the metalloprotease ADAM17 releases an agonistic soluble form of the IL-6R (sIL-6R), which is responsible for the pro-inflammatory trans-signaling branch of the cytokine's activities. This proteolytic step, which is also called ectodomain shedding, is critically regulated by the cleavage site within the IL-6R stalk, because mutations or small deletions within this region are known to render the IL-6R irresponsive towards proteolysis. In the present study, we employed cleavage site profiling data of ADAM17 to generate an IL-6R with increased cleavage susceptibility. Using site-directed mutagenesis, we showed that the non-prime sites P3 and P2 and the prime site P1' were critical for this increase in proteolysis, whereas other positions within the cleavage site were of minor importance. Insertion of this optimized cleavage site into the stalk of the Interleukin-11 receptor (IL-11R) was not sufficient to enable ADAM17-mediated proteolysis, but transfer of different parts of the IL-6R stalk enabled shedding by ADAM17. These findings shed light on the cleavage site specificities of ADAM17 using a native substrate and reveal further differences in the proteolysis of IL-6R and IL-11R. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cleavage reaction of HDV ribozymes in the presence of Mg2+ is accompanied by a conformational change.

    PubMed

    Tanaka, Yoichiro; Tagaya, Mitsuhiro; Hori, Tamaki; Sakamoto, Taiichi; Kurihara, Yasuyuki; Katahira, Masato; Uesugi, Seiichi

    2002-06-01

    Hepatitis delta virus (HDV) ribozymes cleave RNA in the presence of divalent metal ions. We have previously elucidated the solution conformation of a minimized trans-acting HDV ribozyme and obtained evidence by NMR study that an Mg2+ ion binds to a site close to the cleavage site. We examined two ribozyme systems: a pre-cleavage complex with a non-cleavable substrate analogue (mS8) and a post-cleavage complex with a 3' cleavage product (P7). Upon titration with MgCl2, the complex with P7 showed a profound spectral change, while that with mS8 showed broadening of the signals. Analysis of the NOESY spectra of the P7 complex at high Mg2+ concentration revealed that a G:U pair is formed within the L3 loop, and the P1 and P4 stems are stabilized with respect to those of the pre-cleavage complex. The present analysis indicates that the cleavage reaction of the HDV ribozyme produces a big conformational change. Furthermore, presence of the 5'-terminal cytidine residue prevents this conformational change and its absence stabilizes the product-ribozyme complex in the presence of Mg2+. The structure of the Mg2+-bound P7 complex is similar to the crystal structure found for a product-ribozyme complex but is different from the pre-cleavage structure.

  10. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    PubMed Central

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  11. Site-specific Phosphorylation Protects Glycogen Synthase Kinase-3β from Calpain-mediated Truncation of Its N and C Termini*

    PubMed Central

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-01-01

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38–Thr-39 and Ile-384–Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39–420), ΔC-GSK-3β (amino acids 1–384), and ΔN/ΔC-GSK-3β (amino acids 39–384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity. PMID:22496446

  12. Site-specific phosphorylation protects glycogen synthase kinase-3β from calpain-mediated truncation of its N and C termini.

    PubMed

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-06-29

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38-Thr-39 and Ile-384-Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39-420), ΔC-GSK-3β (amino acids 1-384), and ΔN/ΔC-GSK-3β (amino acids 39-384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity.

  13. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis.

    PubMed

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R; Diwan, Abhinav; Lee, Jin-Moo

    2015-09-02

    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aβ levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aβ production and release. Additional studies are needed to explore the therapeutic potential of this approach. Copyright © 2015 the authors 0270-6474/15/3512137-15$15.00/0.

  14. The structure and stratigraphy of the Pen Argyl Member of the Martinsburg Formation in Lehigh and Berks counties, Pennsylvania

    USGS Publications Warehouse

    Lash, Gary George

    1978-01-01

    The Pen Argyl Member, the upper claystone slate member of the Martinsburg Formation, was studied in three quadrangles in Lehigh and Berks Counties, Pennsylvania. Graptolites collected from the Pen Argyl Member at Lehigh Gap indicate a lower Upper Ordovician (Edenian-Maysvillian) age for the Pen Argyl Member. The Pen Argyl Member in this area is located on the normal limb and in the brow of the large, recumbent Musconetcong nappe. It is a deep water flysch deposit emplaced by turbidity currents from a southeasterly source. Sedimentologic and structural evidence show that the Pen Argyl member overlies the sandy middle Ramseyburg Member, thus supporting the tripartite subdivision of the Martinsburg Formation. Field and thin section study indicates that the penetrative slaty cleavage formed in an indurated rock probably by pressure solution and neocrystallization under lower greenschist facies metamorphism. Strain-slip cleavage formed as a result of a stress couple operating parallel to the slaty cleavage that transposed the slaty cleavage into a more spaced cleavage. Both cleavages are believed to have formed within the same stress continuum and in close succession. Analysis of the folds in the Pen Argyl Member indicate six phases of major and minor folding. The earliest folding, F1, resulted in the development of the recumbent nappe. F2 folds can only be determined statistically; these axes plunge either northeast or southwest Asymmetric folds, F3, and associated F4 crenulations formed within the same stress continuum. F5 folds are large open folds and are exemplified by the Mosservi!le anticline. Kink folds, F6 and associated crenulations are fault related and were the last folds to form. Faults in the Pen Argyl Member range from small displacements along slaty cleavage to large reverse faults. The largest of these, the Eckville fault, is recognized throughout the three quadrangle area. It is a high angle reverse fault that separates the Shochary sequence from the Pen Argyl member to the north. Detailed fabric analysis of the Pen Argyl Member indicates that (1) the strike of the slaty cleavage is consistent throughout the study area, (2) bedding strikes are undulose indicating that the rocks were folded prior to slaty cleavage development, (3) slaty cleavage-bedding intersections indicate an early northeast-southwest fold set and a later east-west trend of fold axes, and (4) slaty cleavage-strain-slip cleavage intersections indicate two periods of strain-slip cleavage development, the later period being fault related. Synthesis of field work and fabric data suggest that the Pen Argyl Member was deposited in the waning stages of flysch deposition during the Taconic orogeny. The nappe, F1, was formed at this time as a result of stress generated by plate convergence to the southeast. Further Taconian deformation of the normal limb of the nappe resulted in the northeast-southwest plunging F2 folds. Initial Alleghenian deformation resulted in the F3 asymmetric folds and slaty cleavage, S1. Later in the same stress continuum the F4 crenulations and strain-slip cleavage, S2, formed. Subsequently, F5 open folding occurred. Kink folds and crenulations, F6, and strain-slip cleavage, S3, formed in conjunction with late Alleghenian reverse faults such as the Eckville fault.

  15. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    PubMed Central

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  16. The DSIF subunits Spt4 and Spt5 have distinct roles at various phases of immunoglobulin class switch recombination.

    PubMed

    Stanlie, Andre; Begum, Nasim A; Akiyama, Hideo; Honjo, Tasuku

    2012-01-01

    Class-switch recombination (CSR), induced by activation-induced cytidine deaminase (AID), can be divided into two phases: DNA cleavage of the switch (S) regions and the joining of the cleaved ends of the different S regions. Here, we show that the DSIF complex (Spt4 and Spt5), a transcription elongation factor, is required for CSR in a switch-proficient B cell line CH12F3-2A cells, and Spt4 and Spt5 carry out independent functions in CSR. While neither Spt4 nor Spt5 is required for transcription of S regions and AID, expression array analysis suggests that Spt4 and Spt5 regulate a distinct subset of transcripts in CH12F3-2A cells. Curiously, Spt4 is critically important in suppressing cryptic transcription initiating from the intronic Sμ region. Depletion of Spt5 reduced the H3K4me3 level and DNA cleavage at the Sα region, whereas Spt4 knockdown did not perturb the H3K4me3 status and S region cleavage. H3K4me3 modification level thus correlated well with the DNA breakage efficiency. Therefore we conclude that Spt5 plays a role similar to the histone chaperone FACT complex that regulates H3K4me3 modification and DNA cleavage in CSR. Since Spt4 is not involved in the DNA cleavage step, we suspected that Spt4 might be required for DNA repair in CSR. We examined whether Spt4 or Spt5 is essential in non-homologous end joining (NHEJ) and homologous recombination (HR) as CSR utilizes general repair pathways. Both Spt4 and Spt5 are required for NHEJ and HR as determined by assay systems using synthetic repair substrates that are actively transcribed even in the absence of Spt4 and Spt5. Taken together, Spt4 and Spt5 can function independently in multiple transcription-coupled steps of CSR.

  17. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  18. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  1. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  2. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.).

    PubMed

    Choi, Ji Won; Synytsya, Andriy; Capek, Peter; Bleha, Roman; Pohl, Radek; Park, Yong Il

    2016-08-01

    A water-soluble polysaccharide JS-MP-1 was isolated from Korean mulberry fruits Oddi (Morus alba L.). Sugar linkage analysis and NMR data confirmed that it is a rhamnogalacturonan type I (RG I) polymer carrying arabinan and arabinogalactan (AG II) side chains. JS-MP-1 reduced dose-dependently the viability of 3T3-L1 pre-adipocyte cells, significantly stimulated the cleavage of caspases 9 and 3 and poly (ADP-ribose) polymerase (PARP) and decreased the ratio of Bcl-2 to Bax expression level that led to mitochondrial dysfunction and apoptosis in pre-adipocyte cells. The apoptotic death was mediated by stimulation of MAPKs (ERK and p38) signalling pathway. These results suggest that JS-MP-1 is able to reduce the number of fat cells and the mass of adipose tissue via inhibition of pre-adipocyte proliferation and thus JS-MP-1 itself or a crude aqueous Oddi extract containing this polysaccharide can be used as functional ingredient of health-beneficial food supplements for the treatment or prevention of obesity disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The stimulation of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils by phorbol myristate acetate, opsonized zymosan and IgG2-containing soluble immune complexes.

    PubMed Central

    Baxter, M A; Leslie, R G; Reeves, W G

    1983-01-01

    The kinetics of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils were determined following in vitro stimulation with phorbol myristate acetate (PMA), opsonized zymosan (OZ) and soluble immune complexes of guinea-pig IgG2 (SIC). Superoxide production was recorded as chemiluminescence (CL) arising from the reductive cleavage of lucigenin. With PMA, both macrophages and neutrophils displayed a two-phase response consisting of a rapid initial burst of CL, which preceded ligand ingestion, followed by a plateau in the CL response which persisted for more than 30 min. By contrast, OZ induced a slow progressive increase in CL in both phagocytes which was consistent with the development of an oxidative burst concomitant with ingestion. The phagocytes differed in their responses to SIC, the macrophages displaying CL kinetics similar to those observed with PMA, whereas the neutrophils responded in the manner observed with OZ. The relationship between disparity in the patterns of macrophage and neutrophil CL responses to SIC and differences in their expression of Fc receptors for IgG2 (Coupland & Leslie, 1983) is discussed. PMID:6299935

  4. The Efficiency of Dentin Sialoprotein-Phosphophoryn Processing Is Affected by Mutations Both Flanking and Distant from the Cleavage Site*

    PubMed Central

    Yang, Robert T.; Lim, Glendale L.; Dong, Zhihong; Lee, Arthur M.; Yee, Colin T.; Fuller, Robert S.; Ritchie, Helena H.

    2013-01-01

    Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G447↓D448 cleavage site in DSP-PP240 had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P4 to P4′ blocked, impaired, or enhanced DSP-PP240 cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP240 had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP240 significantly modified the amount of PP240 product generated from DSP-PP240 precursor protein cleavage suggests that such mutation may affect the mineralization process. PMID:23297400

  5. The efficiency of dentin sialoprotein-phosphophoryn processing is affected by mutations both flanking and distant from the cleavage site.

    PubMed

    Yang, Robert T; Lim, Glendale L; Dong, Zhihong; Lee, Arthur M; Yee, Colin T; Fuller, Robert S; Ritchie, Helena H

    2013-02-22

    Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G(447)↓D(448) cleavage site in DSP-PP(240) had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P(4) to P(4)' blocked, impaired, or enhanced DSP-PP(240) cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP(240) had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP(240) significantly modified the amount of PP(240) product generated from DSP-PP(240) precursor protein cleavage suggests that such mutation may affect the mineralization process.

  6. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor

    NASA Astrophysics Data System (ADS)

    Jepsen, Morten Leth; Harmsen, Charlotte; Godbole, Adwait Anand; Nagaraja, Valakunja; Knudsen, Birgitta R.; Ho, Yi-Ping

    2015-12-01

    We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes. Electronic supplementary information (ESI) available: Characterization of the QD-based DNA Nanosensor. See DOI: 10.1039/c5nr06326d

  7. Effects of flexibility of the α2 chain of type I collagen on collagenase cleavage.

    PubMed

    Mekkat, Arya; Poppleton, Erik; An, Bo; Visse, Robert; Nagase, Hideaki; Kaplan, David L; Brodsky, Barbara; Lin, Yu-Shan

    2018-05-12

    Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage. To investigate MMP-1 cleavage, recombinant homotrimers were constructed with sequences from the MMP cleavage regions of human collagen chains inserted into a host bacterial collagen protein system. All triple-helical constructs were cleaved by MMP-1, with α2(I) homotrimers cleaved efficiently at a rate similar to that seen for α1(II) and α1(III) homotrimers, while α1(I) homotrimers were cleaved at a much slower rate. The introduction of destabilizing Gly to Ser mutations within the human collagenase susceptible region of the α2(I) chain did not interfere with MMP-1 cleavage. Molecular dynamics simulations indicated a greater degree of transient hydrogen bond breaking in α2(I) homotrimers compared with α1(I) homotrimers at the MMP-1 cleavage site, and showed an extensive disruption of hydrogen bonding in the presence of a Gly to Ser mutation, consistent with chymotrypsin digestion results. This study indicates that α2(I) homotrimers are susceptible to MMP-1, proves that the presence of an α1(I) chain is not a requirement for α2(I) cleavage, and supports the importance of local unfolding of α2(I) in collagenase cleavage. Copyright © 2018. Published by Elsevier Inc.

  8. Decellularized heart valve as a scaffold for in vivo recellularization: deleterious effects of granulocyte colony-stimulating factor.

    PubMed

    Juthier, Francis; Vincentelli, André; Gaudric, Julien; Corseaux, Delphine; Fouquet, Olivier; Calet, Christine; Le Tourneau, Thierry; Soenen, Valérie; Zawadzki, Christophe; Fabre, Olivier; Susen, Sophie; Prat, Alain; Jude, Brigitte

    2006-04-01

    Autologous recellularization of decellularized heart valve scaffolds is a promising challenge in the field of tissue-engineered heart valves and could be boosted by bone marrow progenitor cell mobilization. The aim of this study was to examine the spontaneous in vivo recolonization potential of xenogeneic decellularized heart valves in a lamb model and the effects of granulocyte colony-stimulating factor mobilization of bone marrow cells on this process. Decellularized porcine aortic valves were implanted in 12 lambs. Six lambs received granulocyte colony-stimulating factor (10 microg x kg(-1) x d(-1) for 7 days, granulocyte colony-stimulating factor group), and 6 received no granulocyte colony-stimulating factor (control group). Additionally, nondecellularized porcine valves were implanted in 5 lambs (xenograft group). Angiographic and histologic evaluation was performed at 3, 6, 8, and 16 weeks. Few macroscopic modifications of leaflets and the aortic wall were observed in the control group, whereas progressive shrinkage and thickening of the leaflets appeared in the granulocyte colony-stimulating factor and xenograft groups. In the 3 groups progressive ovine cell infiltration (fluorescence in situ hybridization) was observed in the leaflets and in the adventitia and the intima of the aortic wall but not in the media. Neointimal proliferation of alpha-actin-positive cells, inflammatory infiltration, adventitial neovascularization, and calcifications were more important in the xenograft and the granulocyte colony-stimulating factor groups than in the control group. Continuous re-endothelialization appeared only in the control group. Decellularized xenogeneic heart valve scaffolds allowed partial autologous recellularization. Granulocyte colony-stimulating factor led to accelerated heart valve deterioration similar to that observed in nondecellularized xenogeneic cardiac bioprostheses.

  9. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  10. A Serendipitous Discover that in situ Proteolysis is Essential for the Crystallization of Yeast CPSF-100 (Ydh1p)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandel,C.; Gebauer, D.; Zhang, H.

    2006-01-01

    The cleavage and polyadenylation specificity factor (CPSF) complex is required for the cleavage and polyadenylation of the 3'-end of messenger RNA precursors in eukaryotes. During structural studies of the 100 kDa subunit (CPSF-100, Ydh1p) of the yeast CPSF complex, it was serendipitously discovered that a solution that is infected by a fungus (subsequently identified as Penicillium) is crucial for the crystallization of this protein. Further analyses suggest that the protein has undergone partial proteolysis during crystallization, resulting in the deletion of an internal segment of about 200 highly charged and hydrophilic residues, very likely catalyzed by a protease secreted bymore » the fungus. With the removal of this segment, yeast CPSF-100 (Ydh1p) has greatly reduced solubility and can be crystallized in the presence of a minute amount of precipitant.« less

  11. Structure of the Integral Membrane Protein CAAX Protease Ste24p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor Jr., Edward E.; Horanyi, Peter S.; Clark, Kathleen M.

    2012-10-26

    Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a -factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavitymore » containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.« less

  12. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice.

    PubMed

    Jansen, A J Gerard; Josefsson, Emma C; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M; Sackstein, Robert; von Andrian, Ulrich H; Wagner, Denisa D; Hartwig, John H; Hoffmeister, Karin M

    2012-02-02

    When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17(ΔZn/ΔZn) platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage.

  13. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbα metalloproteinase-mediated cleavage in mice

    PubMed Central

    Jansen, A. J. Gerard; Josefsson, Emma C.; Rumjantseva, Viktoria; Liu, Qiyong Peter; Falet, Hervé; Bergmeier, Wolfgang; Cifuni, Stephen M.; Sackstein, Robert; von Andrian, Ulrich H.; Wagner, Denisa D.; Hartwig, John H.

    2012-01-01

    When refrigerated platelets are rewarmed, they secrete active sialidases, including the lysosomal sialidase Neu1, and express surface Neu3 that remove sialic acid from platelet von Willebrand factor receptor (VWFR), specifically the GPIbα subunit. The recovery and circulation of refrigerated platelets is greatly improved by storage in the presence of inhibitors of sialidases. Desialylated VWFR is also a target for metalloproteinases (MPs), because GPIbα and GPV are cleaved from the surface of refrigerated platelets. Receptor shedding is inhibited by the MP inhibitor GM6001 and does not occur in Adam17ΔZn/ΔZn platelets expressing inactive ADAM17. Critically, desialylation in the absence of MP-mediated receptor shedding is sufficient to cause the rapid clearance of platelets from circulation. Desialylation of platelet VWFR therefore triggers platelet clearance and primes GPIbα and GPV for MP-dependent cleavage. PMID:22101895

  14. RNA-programmed genome editing in human cells

    PubMed Central

    Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer

    2013-01-01

    Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3′ end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells. DOI: http://dx.doi.org/10.7554/eLife.00471.001 PMID:23386978

  15. Binding and cleavage of nucleic acids by the "hairpin" ribozyme.

    PubMed

    Chowrira, B M; Burke, J M

    1991-09-03

    The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+.

  16. Hematopoietic growth factors and human acute leukemia.

    PubMed

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  17. APP Regulates Microglial Phenotype in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Manocha, Gunjan D.; Floden, Angela M.; Rausch, Keiko; Kulas, Joshua A.; McGregor, Brett A.; Rojanathammanee, Lalida; Puig, Kelley R.; Puig, Kendra L.; Karki, Sanjib; Nichols, Michael R.; Darland, Diane C.; Porter, James E.

    2016-01-01

    Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimer's disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimer's disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains. PMID:27511018

  18. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages*

    PubMed Central

    Babasola, Oladunni; Rees-Milton, Karen J.; Bebe, Siziwe; Wang, Jiaxi; Anastassiades, Tassos P.

    2014-01-01

    Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30–214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on 1H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule. PMID:25053413

  19. Modulation of steroidogenesis and estrogen signalling in the estuarine killifish (Fundulus heteroclitus) exposed to ethinylestradiol.

    PubMed

    Hogan, Natacha S; Currie, Suzanne; LeBlanc, Sacha; Hewitt, L Mark; MacLatchy, Deborah L

    2010-06-10

    Previous studies have shown that mummichog (Fundulus heteroclitus; a lunar, asynchronous-spawning killifish of the western Atlantic) exposed to 17alpha-ethynylestradiol (EE2) exhibit decreased plasma reproductive steroid levels, decreased gonadal steroid production, increased plasma vitellogenin, decreased fecundity and impaired fertilization. The objective of this study was to determine the potential mechanisms by which EE2 depresses gonadal steroidogenesis and influences estrogen signalling in the mummichog. Adult recrudesced fish were exposed to the potent synthetic estrogen, ethinylestradiol (EE2; 0-270ng/L) for 14 days. Following exposure, gonadal tissue was removed and incubated for 24h with stimulators of steroidogenesis, including forskolin; 25-OH cholesterol; or pregnenolone. Testosterone production was decreased in basal, forskolin-stimulated and pregnenolone-stimulated EE2-exposed males, indicating effects on the steroidogenic pathway both at and downstream of cholesterol mobilization to P450 side-chain cleavage (P450scc) and/or P450scc conversion of cholesterol to pregnenolone. Hepatic transcript levels of estrogen receptor alpha (ERalpha) and vitellogenin were increased in EE2-treated males compared to control recrudescing males and females confirming an estrogenic response. Hepatic heat shock protein 90 (Hsp90), a chaperoning molecule involved in estrogen signalling, was not affected by EE2 exposure at either the transcript or protein level. However, higher levels of Hsp90 observed in the membrane fractions of female fish raise interesting questions regarding the influence of gender on Hsp90's role in estrogen signalling. These results demonstrate that EE2 can alter steroid production at specific sites within the steroidogenic pathway and can stimulate hepatic estrogen signalling, providing important information regarding the molecular mechanisms underlying the endocrine response of the mummichog to exogenous estrogen.

  20. Outcomes from a university-based low-cost in vitro fertilization program providing access to care for a low-resource socioculturally diverse urban community.

    PubMed

    Herndon, Christopher N; Anaya, Yanett; Noel, Martha; Cakmak, Hakan; Cedars, Marcelle I

    2017-10-01

    To report on outcomes from a university-based low-cost and low-complexity IVF program using mild stimulation approaches and simplified protocols to provide basic access to ART to a socioculturally diverse low-income urban population. Retrospective cohort study. Academic infertility center. Sixty-five infertile couples were enrolled from a county hospital serving a low-resource largely immigrant population. Patients were nonrandomly allocated to one of four mild stimulation protocols: clomiphene/letrozole alone, two clomiphene/letrozole-based protocols involving sequential or flare addition of low-dose gonadotropins, and low-dose gonadotropins alone. Clinical fellows managed all aspects of cycle preparation, monitoring, oocyte retrieval, and embryo transfer under an attending preceptor. Retrieval was undertaken without administration of deep anesthesia, and laboratory interventions were minimized. All embryo transfers were performed at the cleavage stage. Sociomedical demographics, treatment response, and pregnancy outcomes were recorded. From August 2010 to June 2016, 65 patients initiated 161 stimulation IVF cycles, which resulted in 107 retrievals, 91 fresh embryo transfers, and 40 frozen embryo transfer cycles. The mean age of patients was 33.3 years, and mean reported duration of infertility was 5.3 years; 33.5% (54/161) of cycles were cancelled before oocyte retrieval, with 13% due to premature ovulation. Overall, cumulative live birth rates per retrieval including subsequent use of frozen embryos was 29.0%; 44.6% (29/65) of patients enrolled in the program achieved pregnancy. Use of mild stimulation protocols, simplified monitoring, and minimized laboratory handling procedures enabled access to care in a low-resource socioculturally diverse infertile population. Copyright © 2017. Published by Elsevier Inc.

  1. Endothelin-converting enzyme-1 degrades internalized somatostatin-14.

    PubMed

    Roosterman, Dirk; Kempkes, Cordula; Cottrell, Graeme S; Padilla, Benjamin E; Bunnett, Nigel W; Turck, Christoph W; Steinhoff, Martin

    2008-05-01

    Agonist-induced internalization of somatostatin receptors (ssts) determines subsequent cellular responsiveness to peptide agonists and influences sst receptor scintigraphy. To investigate sst2A trafficking, rat sst2A tagged with epitope was expressed in human embryonic kidney cells and tracked by antibody labeling. Confocal microscopical analysis revealed that stimulation with sst and octreotide induced internalization of sst2A. Internalized sst2A remained sequestrated within early endosomes, and 60 min after stimulation, internalized sst2A still colocalized with beta-arrestin1-enhanced green fluorescence protein (EGFP), endothelin-converting enzyme-1 (ECE-1), and rab5a. Internalized (125)I-Tyr(11)-SST-14 was rapidly hydrolyzed by endosomal endopeptidases, with radioactive metabolites being released from the cell. Internalized (125)I-Tyr(1)-octreotide accumulated as an intact peptide and was released from the cell as an intact peptide ligand. We have identified ECE-1 as one of the endopeptidases responsible for inactivation of internalized SST-14. ECE-1-mediated cleavage of SST-14 was inhibited by the specific ECE-1 inhibitor, SM-19712, and by preventing acidification of endosomes using bafilomycin A(1). ECE-1 cleaved SST-14 but not octreotide in an acidic environment. The metallopeptidases angiotensin-1 converting enzyme and ECE-2 did not hydrolyze SST-14 or octreotide. Our results show for the first time that stimulation with SST-14 and octreotide induced sequestration of sst2A into early endosomes and that endocytosed SST-14 is degraded by endopeptidases located in early endosomes. Furthermore, octreotide was not degraded by endosomal peptidases and was released as an intact peptide. This mechanism may explain functional differences between octreotide and SST-14 after sst2A stimulation. Moreover, further investigation of endopeptidase-regulated trafficking of neuropeptides may result in novel concepts of neuropeptide receptor inactivation in cancer diagnosis.

  2. A Potential Role for Endoplasmic Reticulum Stress in Progesterone Deficiency in Obese Women.

    PubMed

    Takahashi, Nozomi; Harada, Miyuki; Hirota, Yasushi; Zhao, Lin; Azhary, Jerilee M K; Yoshino, Osamu; Izumi, Gentaro; Hirata, Tetsuya; Koga, Kaori; Wada-Hiraike, Osamu; Fujii, Tomoyuki; Osuga, Yutaka

    2017-01-01

    Obesity in reproductive-aged women is associated with a shorter luteal phase and lower progesterone levels. Lipid accumulation in follicles of obese women compromises endoplasmic reticulum (ER) function, activating ER stress in granulosa cells. We hypothesized that ER stress activation in granulosa-lutein cells (GLCs) would modulate progesterone production and contribute to obesity-associated progesterone deficiency. Pretreatment with an ER stress inducer, tunicamycin or thapsigargin, inhibited human chorionic gonadotropin (hCG)-stimulated progesterone production in cultured human GLCs. Pretreatment of human GLCs with tunicamycin inhibited hCG-stimulated expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) messenger RNAs (mRNAs) without affecting expression of cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), as determined by real-time quantitative polymerase chain reaction. Pretreatment with tunicamycin also inhibited hCG-stimulated expression of StAR protein and 3β-HSD enzyme activity in cultured human GLCs, as determined by Western blot analysis and an enzyme immunoassay, respectively, but did not affect hCG-induced intracellular 3',5'-cyclic adenosine monophosphate accumulation. Furthermore, tunicamycin attenuated hCG-induced protein kinase A and extracellular signal-regulated kinase activation, as determined by Western blot analysis. In vivo administration of tunicamycin to pregnant mare serum gonadotropin-treated immature mice prior to hCG treatment inhibited the hCG-stimulated increase in serum progesterone levels and hCG-induced expression of StAR and 3β-HSD mRNA in the ovary without affecting serum estradiol levels or the number of corpora lutea. Our findings indicate that ER stress in the follicles of obese women contributes to progesterone deficiency by inhibiting hCG-induced progesterone production in granulosa cells. Copyright © 2017 by the Endocrine Society.

  3. The Dimer Interfaces of Protease and Extra-Protease Domains Influence the Activation of Protease and the Specificity of GagPol Cleavage

    PubMed Central

    Pettit, Steven C.; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H.

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation. PMID:12477841

  4. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.

    PubMed

    Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.

  5. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    PubMed Central

    Ribot, Wilson J.; Panchal, Rekha G.; Brittingham, Katherine C.; Ruthel, Gordon; Kenny, Tara A.; Lane, Douglas; Curry, Bob; Hoover, Timothy A.; Friedlander, Arthur M.; Bavari, Sina

    2006-01-01

    Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses. Although several factors contribute to inhalational anthrax, we hypothesized that unimpeded infection of Bacillus anthracis is directly linked to disabling the innate immune functions contributed by AM. Here, we investigated the effects of lethal toxin (LT), one of the binary complex virulence factors produced by B. anthracis, on freshly isolated nonhuman primate AM. Exposure of AM to doses of LT that killed susceptible macrophages had no effect on the viability of AM, despite complete MEK1 cleavage. Intoxicated AM remained fully capable of B. anthracis spore phagocytosis. However, pretreatment of AM with LT resulted in a significant decrease in the clearance of both the Sterne strain and the fully virulent Ames strain of B. anthracis, which may have been a result of impaired AM secretion of proinflammatory cytokines. Our data imply that cytolysis does not correlate with MEK1 cleavage, and this is the first report of LT-mediated impairment of nonhuman primate AM bactericidal activity against B. anthracis. PMID:16926394

  6. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways.

    PubMed

    Kerwin, Bruce A

    2008-08-01

    Polysorbates 20 and 80 (Tween 20 and Tween 80) are used in the formulation of biotherapeutic products for both preventing surface adsorption and as stabilizers against protein aggregation. The polysorbates are amphipathic, nonionic surfactants composed of fatty acid esters of polyoxyethylene sorbitan being polyoxyethylene sorbitan monolaurate for polysorbate 20 and polyoxyethylene sorbitan monooleate for polysorbate 80. The polysorbates used in the formulation of biopharmaceuticals are mixtures of different fatty acid esters with the monolaurate fraction of polysorbate 20 making up only 40-60% of the mixture and the monooleate fraction of polysorbate 80 making up >58% of the mixture. The polysorbates undergo autooxidation, cleavage at the ethylene oxide subunits and hydrolysis of the fatty acid ester bond. Autooxidation results in hydroperoxide formation, side-chain cleavage and eventually formation of short chain acids such as formic acid all of which could influence the stability of a biopharmaceutical product. Oxidation of the fatty acid moiety while well described in the literature has not been specifically investigated for polysorbate. This review focuses on the chemical structure of the polysorbates, factors influencing micelle formation and factors and excipients influencing stability and degradation of the polyoxyethylene and fatty acid ester linkages.

  7. IGFBP-4 and PAPP-A in normal physiology and disease.

    PubMed

    Hjortebjerg, Rikke

    2018-05-30

    Insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) is a modulator of the IGF system, exerting both inhibitory and stimulatory effects on IGF-induced cellular growth. IGFBP-4 is the principal substrate for the enzyme pregnancy-associated plasma protein-A (PAPP-A). Through IGF-dependent cleavage of IGFBP-4 in the vicinity of the IGF receptor, PAPP-A is able to increase IGF bioavailability and stimulate IGF-mediated growth. Recently, the stanniocalcins (STCs) were identified as novel inhibitors of PAPP-A proteolytic activity, hereby adding additional members to the seemingly endless list of proteins belonging to the IGF family. Our understanding of these proteins has advanced throughout recent years, and there is evidence to suggest that the role of IGFBP-4 and PAPP-A in defining the relationship between total IGF and IGF bioactivity can be linked to a number of pathological conditions. This review provides an overview of the experimental and clinical findings on the IGFBP-4/PAPP-A/STC axis as a regulator of IGF activity and examines the conundrum surrounding extrapolation of circulating concentrations to tissue action of these proteins. The primary focus will be on the biological significance of IGFBP-4 and PAPP-A in normal physiology and in pathophysiology with emphasis on metabolic disorders, cardiovascular diseases, and cancer. Finally, the review assesses current new trajectories of IGFBP-4 and PAPP-A research. Copyright © 2018. Published by Elsevier Ltd.

  8. The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition.

    PubMed

    Zayed, Hatem; Izsvák, Zsuzsanna; Khare, Dheeraj; Heinemann, Udo; Ivics, Zoltán

    2003-05-01

    Sleeping Beauty (SB) is the most active Tc1/ mariner-type transposon in vertebrates. SB contains two transposase-binding sites (DRs) at the end of each terminal inverted repeat (IR), a feature termed the IR/DR structure. We investigated the involvement of cellular proteins in the regulation of SB transposition. Here, we establish that the DNA-bending, high-mobility group protein, HMGB1 is a host-encoded cofactor of SB transposition. Transposition was severely reduced in mouse cells deficient in HMGB1. This effect was rescued by transient over-expression of HMGB1, and was partially complemented by HMGB2, but not with the HMGA1 protein. Over-expression of HMGB1 in wild-type mouse cells enhanced transposition, indicating that HMGB1 can be a limiting factor of transposition. SB transposase was found to interact with HMGB1 in vivo, suggesting that the transposase may recruit HMGB1 to transposon DNA. HMGB1 stimulated preferential binding of the transposase to the DR further from the cleavage site, and promoted bending of DNA fragments containing the transposon IR. We propose that the role of HMGB1 is to ensure that transposase-transposon complexes are first formed at the internal DRs, and subsequently to promote juxtaposition of functional sites in transposon DNA, thereby assisting the formation of synaptic complexes.

  9. Caspase-1 Deficiency Alleviates Dopaminergic Neuronal Death via Inhibiting Caspase-7/AIF Pathway in MPTP/p Mouse Model of Parkinson's Disease.

    PubMed

    Qiao, Chen; Zhang, Lin-Xia; Sun, Xi-Yang; Ding, Jian-Hua; Lu, Ming; Hu, Gang

    2017-08-01

    Caspase family has been recognized to be involved in dopaminergic (DA) neuronal death and to exert an unfavorable role in Parkinson's disease (PD) pathology. Our previous study has revealed that caspase-1, as an important component of NLRP3 inflammasome, induces microglia-mediated neuroinflammation in the pathogenesis of PD. However, the role of caspase-1 in DA neuronal degeneration in the onset of PD remains unclear. Here, we showed that caspase-1 knockout ameliorated DA neuronal loss and dyskinesia in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced PD model mice. We further found that caspase-1 knockout decreased MPTP/p-induced caspase-7 cleavage, subsequently inhibited nuclear translocation of poly (ADP-ribose) polymerase 1 (PARP1), and reduced the release of apoptosis-inducing factor (AIF). Consistently, we demonstrated that caspase-1 inhibitor suppressed caspase-7/PARP1/AIF-mediated apoptosis pathway by 1-methyl-4-phenylpyridinium ion (MPP + ) stimulation in SH-SY5Y cells. Caspase-7 overexpression reduced the protective effects of caspase-1 inhibitor on SH-SY5Y cell apoptosis. Collectively, our results have revealed that caspase-1 regulates DA neuronal death in the pathogenesis of PD in mice via caspase-7/PARP1/AIF pathway. These findings will shed new insight into the potential of caspase-1 as a target for PD therapy.

  10. Saccharomyces cerevisiae-Secreted Fusion Proteins Pfs25 and Pfs28 Elicit Potent Plasmodium falciparum Transmission-Blocking Antibodies in Mice

    PubMed Central

    Gozar, Mary Margaret G.; Price, Virginia L.; Kaslow, David C.

    1998-01-01

    Transmission-blocking vaccines based on sexual-stage surface antigens of Plasmodium falciparum may assist in the control of this lethal form of human malaria. Two vaccine candidates, Pfs25 and Pfs28, were produced as single recombinant fusion proteins. The 39-kDa chimeric proteins, having a C-terminal His6 tag, were secreted by Saccharomyces cerevisiae, using the prepro-α-factor leader sequence. Pfs25-28 fusion proteins were significantly more potent than either Pfs25 or Pfs28 alone in eliciting antibodies in mice that blocked oocyst development in Anopheles freeborni mosquitoes: complete inhibition of oocyst development in the mosquito midgut was achieved with fewer vaccinations, at a lower dose, and for a longer duration than with either Pfs25 or Pfs28 alone. Increased antigen-specific immunoglobulin G titers and highly significant lymphoproliferative stimulation by Pfs28-containing antigens suggest the presence of an immunodominant helper T-cell epitope in the Pfs28 portion of the fusion proteins. This epitope may be responsible for the enhanced humoral response to both Pfs25 and Pfs28 antigens. Protein production of the fusion protein was improved 12-fold by converting Pfs28 codons to yeast-preferred codons (TBV28), using a modified ADH2 promoter and incorporating a (Glu-Ala)2 repeat after the Kex2 cleavage site. PMID:9423839

  11. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic.

    PubMed

    Cheng, Emily; Armstrong, Cheryl L; Galisteo, Rebeca; Winkles, Jeffrey A

    2013-12-23

    The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.

  12. Identification and characterization of the sodium-binding site of activated protein C.

    PubMed

    He, X; Rezaie, A R

    1999-02-19

    Activated protein C (APC) requires both Ca2+ and Na+ for its optimal catalytic function. In contrast to the Ca2+-binding sites, the Na+-binding site(s) of APC has not been identified. Based on a recent study with thrombin, the 221-225 loop is predicted to be a potential Na+-binding site in APC. The sequence of this loop is not conserved in trypsin. We engineered a Gla domainless form of protein C (GDPC) in which the 221-225 loop was replaced with the corresponding loop of trypsin. We found that activated GDPC (aGDPC) required Na+ (or other alkali cations) for its amidolytic activity with dissociation constant (Kd(app)) = 44.1 +/- 8.6 mM. In the presence of Ca2+, however, the requirement for Na+ by aGDPC was eliminated, and Na+ stimulated the cleavage rate 5-6-fold with Kd(app) = 2.3 +/- 0.3 mM. Both cations were required for efficient factor Va inactivation by aGDPC. In the presence of Ca2+, the catalytic function of the mutant was independent of Na+. Unlike aGDPC, the mutant did not discriminate among monovalent cations. We conclude that the 221-225 loop is a Na+-binding site in APC and that an allosteric link between the Na+ and Ca2+ binding loops modulates the structure and function of this anticoagulant enzyme.

  13. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    PubMed

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Protective Effect of Selenium on Aflatoxin B1-Induced Testicular Toxicity in Mice.

    PubMed

    Cao, Zheng; Shao, Bing; Xu, Feibo; Liu, Yunfeng; Li, Yanfei; Zhu, Yanzhu

    2017-12-01

    Aflatoxins have been considered as one of the major risk factors of male infertility, and aflatoxin B1 (AFB1) is the most highly toxic and prevalent member of the aflatoxins family. Selenium (Se), an essential nutritional trace mineral for normal testicular development and male fertility, has received extensive intensive on protective effects of male reproductive system due to its potential antioxidant and activating testosterone synthesis. To investigate the protective effect of Se on AFB1-induced testicular toxicity, the mice were orally administered with AFB1 (0.75 mg/kg) and Se (0.2 mg/kg or 0.4 mg/kg) for 45 days. We found that that Se elevated testes index, sperm functional parameters (concentration, malformation, and motility), and the level of serum testosterone in AFB1-exposed mice. Moreover, our results showed that Se attenuated the AFB1-induced oxidative stress and the reduction of testicular testosterone synthesis enzyme protein expression such as steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), and 17β-hydroxysteroid dehydrogenase (17β-HSD) in AFB1-exposed mice. These results demonstrated that Se conferred protection against AFB1-induced testicular toxicity and can be attributed to its antioxidant and increased testosterone level by stimulating protein expression of StAR and testosterone synthetic enzymes.

  15. Rpn (YhgA-Like) Proteins of Escherichia coli K-12 and Their Contribution to RecA-Independent Horizontal Transfer.

    PubMed

    Kingston, Anthony W; Ponkratz, Christine; Raleigh, Elisabeth A

    2017-04-01

    Bacteria use a variety of DNA-mobilizing enzymes to facilitate environmental niche adaptation via horizontal gene transfer. This has led to real-world problems, like the spread of antibiotic resistance, yet many mobilization proteins remain undefined. In the study described here, we investigated the uncharacterized family of YhgA-like transposase_31 (Pfam PF04754) proteins. Our primary focus was the genetic and biochemical properties of the five Escherichia coli K-12 members of this family, which we designate RpnA to RpnE, where Rpn represents r ecombination- p romoting n uclease. We employed a conjugal system developed by our lab that demanded RecA-independent recombination following transfer of chromosomal DNA. Overexpression of RpnA (YhgA), RpnB (YfcI), RpnC (YadD), and RpnD (YjiP) increased RecA-independent recombination, reduced cell viability, and induced the expression of reporter of DNA damage. For the exemplar of the family, RpnA, mutational changes in proposed catalytic residues reduced or abolished all three phenotypes in concert. In vitro , RpnA displayed magnesium-dependent, calcium-stimulated DNA endonuclease activity with little, if any, sequence specificity and a preference for double-strand cleavage. We propose that Rpn/YhgA-like family nucleases can participate in gene acquisition processes. IMPORTANCE Bacteria adapt to new environments by obtaining new genes from other bacteria. Here, we characterize a set of genes that can promote the acquisition process by a novel mechanism. Genome comparisons had suggested the horizontal spread of the genes for the YhgA-like family of proteins through bacteria. Although annotated as transposase_31, no member of the family has previously been characterized experimentally. We show that four Escherichia coli K-12 paralogs contribute to a novel RecA-independent recombination mechanism in vivo For RpnA, we demonstrate in vitro action as a magnesium-dependent, calcium-stimulated nonspecific DNA endonuclease. The cleavage products are capable of providing priming sites for DNA polymerase, which can enable DNA joining by primer-template switching. Copyright © 2017 Kingston et al.

  16. Acid-base interactions during exocrine pancreatic secretion. Primary role for ductal bicarbonate in acinar lumen function.

    PubMed

    Freedman, S D; Scheele, G A

    1994-03-23

    The role of acid-base interactions during coordinated acinar and duct cell secretion in the exocrine pancreas is described. The sequence of acid-base events may be summarized as follows: (1) Sorting of secretory proteins and membrane components into the regulated secretory pathway of pancreatic acinar cells is triggered by acid- and calcium-induced aggregation and association mechanisms located in the trans-Golgi network. (2) Cholecystokinin-stimulated exocytosis in acinar cells releases the acidic contents of secretory granules into the acinar lumen. (3) Secretin-stimulated bicarbonate secretion from duct and duct-like cells neutralizes the acidic pH of exocytic contents, which leads to dissociation of protein aggregates and solubilization of (pro)enzymes within the acinar lumen. (4) Stimulated fluid secretion transports solubilized enzymes through the ductal system. (5) Further alkalinization of acinar lumen pH accelerates the enzymatic cleavage of the glycosyl phosphatidyl-inositol anchor associated with GP2 and thus releases the GP2/proteoglycan matrix from lumenal membranes, a process that appears to be required for vesicular retrieval of granule membranes from the apical plasma membrane and their reuse in the secretory process. We conclude that the central function of bicarbonate secretion by centroacinar and duct cells in the pancreas is to neutralize and then alkalinize the pH of the acinar lumen, sequential process that are required for (a) solubilization of secreted proteins and (b) cellular retrieval of granule membranes, respectively.

  17. Effect of brominated flame retardant BDE-47 on androgen production of adult rat Leydig cells.

    PubMed

    Zhao, Yan; Ao, Hong; Chen, Li; Sottas, Chantal M; Ge, Ren-Shan; Zhang, Yunhui

    2011-08-28

    As one of the most abundant polybrominated diphenylethers (PBDEs) detected in adipose tissue and breast milk of humans, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is considered as a potential endocrine disruptor. The objective of this study is to explore whether environment-related level of BDE-47 could affect the androgen production in rat Leydig cells. Rat adult Leydig cells (ALCs) were treated with 10(-8) to 10(-4)M BDE-47 in vitro, the production of testosterone (T) and steroidogenic acute regulatory (StAR) protein level were determined. BDE-47 significantly increased basal T production and steroidogenic acute regulatory protein (StAR) level of ALCs after treatment with 10(-4)M BED-47. Overall, LH (0.1ng/ml) stimulated T production in ALCs by 6 folds, however it did not increase T production in BDE-47-treated ALCs when compared to untreated ALC. Both 8-Br-cAMP (for cAMP signaling) and 22R-hydroxycholesterol (22-diol, for P450 cholesterol side chain cleavage enzyme P450scc activity) significantly increased T production in ALCs treated with BDE-47 from 10(-7) to 10(-5)M. The results of this study indicate that environment-related level of BDE-47 in vitro increased T production in a dose-dependent manner. The stimulated effects of BDE-47 on StAR and P450scc might play key roles in BDE-47-mediated stimulation of T production. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Mitochondrial 3 beta-hydroxysteroid dehydrogenase (HSD) is essential for the synthesis of progesterone by corpora lutea: An hypothesis

    PubMed Central

    Chapman, John C; Polanco, Jose R; Min, Soohong; Michael, Sandra D

    2005-01-01

    In mouse ovaries, the enzyme 3 beta-hydroxysteroid dehydrogenase (HSD) is distributed between microsomes and mitochondria. Throughout the follicular phase of the estrous cycle, the HSD activity in microsomes is predominant; whereas, after LH stimulation, HSD activity during the luteal phase is highest in the mitochondria. The current study examined whether or not LH stimulation always results in an increase in mitochondrial HSD activity. This was accomplished by measuring the HSD activity in microsomal and mitochondrial fractions from ovaries of pregnant mice. These animals have two peaks of LH during gestation, and one peak of LH after parturition. It was found that mitochondrial HSD activity was highest after each peak of LH. It is proposed that mitochondrial HSD is essential for the synthesis of high levels of progesterone. The increase in HSD activity in mitochondria after LH stimulation occurs because: 1) LH initiates the simultaneous synthesis of HSD and the cholesterol side-chain cleavage enzyme (P450scc); and, 2) HSD and P450scc bind together to form a complex, which becomes inserted into the inner membrane of the mitochondria. High levels of progesterone are synthesized by mitochondrial HSD because: 1) the requisite NAD+ cofactor for progesterone synthesis is provided directly by the mitochondria, rather than indirectly via the rate limiting malate-aspartate shuttle; and, 2) the end-product inhibition of P450scc by pregnenolone is eliminated because pregnenolone is converted to progesterone. PMID:15804366

  19. Factors Associated with Speech-Sound Stimulability.

    ERIC Educational Resources Information Center

    Lof, Gregory L.

    1996-01-01

    This study examined stimulability in 30 children (ages 3 to 5) with articulation impairments. Factors found to relate to stimulability were articulation visibility, the child's age, the family's socioeconomic status, and the child's overall imitative ability. Perception, severity, otitis media history, language abilities, consistency of…

  20. Formation of Pmel17 Amyloid Is Regulated by Juxtamembrane Metalloproteinase Cleavage, and the Resulting C-terminal Fragment Is a Substrate for γ-Secretase*

    PubMed Central

    Kummer, Markus P.; Maruyama, Hiroko; Huelsmann, Claudia; Baches, Sandra; Weggen, Sascha; Koo, Edward H.

    2009-01-01

    The formation of insoluble cross β-sheet amyloid is pathologically associated with disorders such as Alzheimer, Parkinson, and Huntington diseases. One exception is the nonpathological amyloid derived from the protein Pmel17 within melanosomes to generate melanin pigment. Here we show that the formation of insoluble MαC intracellular fragments of Pmel17, which are the direct precursors to Pmel17 amyloid, depends on a novel juxtamembrane cleavage at amino acid position 583 between the furin-like proprotein convertase cleavage site and the transmembrane domain. The resulting Pmel17 C-terminal fragment is then processed by the γ-secretase complex to release a short-lived intracellular domain fragment. Thus, by analogy to the Notch receptor, we designate this cleavage the S2 cleavage site, whereas γ-secretase mediates proteolysis at the intramembrane S3 site. Substitutions or deletions at this S2 cleavage site, the use of the metalloproteinase inhibitor TAPI-2, as well as small interfering RNA-mediated knock-down of the metalloproteinases ADAM10 and 17 reduced the formation of insoluble Pmel17 fragments. These results demonstrate that the release of the Pmel17 ectodomain, which is critical for melanin amyloidogenesis, is initiated by S2 cleavage at a juxtamembrane position. PMID:19047044

  1. Argonaute-based programmable RNase as a tool for cleavage of highly-structured RNA.

    PubMed

    Dayeh, Daniel M; Cantara, William A; Kitzrow, Jonathan P; Musier-Forsyth, Karin; Nakanishi, Kotaro

    2018-06-12

    The recent identification and development of RNA-guided enzymes for programmable cleavage of target nucleic acids offers exciting possibilities for both therapeutic and biotechnological applications. However, critical challenges such as expensive guide RNAs and inability to predict the efficiency of target recognition, especially for highly-structured RNAs, remain to be addressed. Here, we introduce a programmable RNA restriction enzyme, based on a budding yeast Argonaute (AGO), programmed with cost-effective 23-nucleotide (nt) single-stranded DNAs as guides. DNA guides offer the advantage that diverse sequences can be easily designed and purchased, enabling high-throughput screening to identify optimal recognition sites in the target RNA. Using this DNA-induced slicing complex (DISC) programmed with 11 different guide DNAs designed to span the sequence, sites of cleavage were identified in the 352-nt human immunodeficiency virus type 1 5'-untranslated region. This assay, coupled with primer extension and capillary electrophoresis, allows detection and relative quantification of all DISC-cleavage sites simultaneously in a single reaction. Comparison between DISC cleavage and RNase H cleavage reveals that DISC not only cleaves solvent-exposed sites, but also sites that become more accessible upon DISC binding. This study demonstrates the advantages of the DISC system for programmable cleavage of highly-structured, functional RNAs.

  2. Association of a peptoid ligand with the apical loop of pri-miR-21 inhibits cleavage by Drosha

    PubMed Central

    Diaz, Jason P.; Chirayil, Rachel; Chirayil, Sara; Tom, Martin; Head, Katie J.; Luebke, Kevin J.

    2014-01-01

    We have found a small molecule that specifically inhibits cleavage of a precursor to the oncogenic miRNA, miR-21, by the microprocessor complex of Drosha and DGCR8. We identified novel ligands for the apical loop of this precursor from a screen of 14,024 N-substituted oligoglycines (peptoids) in a microarray format. Eight distinct compounds with specific affinity were obtained, three having affinities for the targeted loop in the low micromolar range and greater than 15-fold discrimination against a closely related hairpin. One of these compounds completely inhibits microprocessor cleavage of a miR-21 primary transcript at concentrations at which cleavage of another miRNA primary transcript, pri-miR-16, is little affected. The apical loop of pri-miR-21, placed in the context of pri-miR-16, is sufficient for inhibition of microprocessor cleavage by the peptoid. This compound also inhibits cleavage of pri-miR-21 containing the pri-miR-16 apical loop, suggesting an additional site of association within pri-miR-21. The reported peptoid is the first example of a small molecule that inhibits microprocessor cleavage by binding to the apical loop of a pri-miRNA. PMID:24497550

  3. A common origin for the bacterial toxin-antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions.

    PubMed

    Smith, Andrew B; López-Villarejo, Juan; Diago-Navarro, Elizabeth; Mitchenall, Lesley A; Barendregt, Arjan; Heck, Albert J; Lemonnier, Marc; Maxwell, Anthony; Díaz-Orejas, Ramón

    2012-01-01

    Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.

  4. The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study.

    PubMed

    Binns, D D; Helms, M K; Barylko, B; Davis, C T; Jameson, D M; Albanesi, J P; Eccleston, J F

    2000-06-20

    Dynamin II is a 98 kDa protein (870 amino acids) required for the late stages of clathrin-mediated endocytosis. The GTPase activity of dynamin is required for its function in the budding stages of receptor-mediated endocytosis and synaptic vesicle recycling. This activity is stimulated when dynamin self-associates on multivalent binding surfaces, such as microtubules and anionic liposomes. We first investigated the oligomeric state of dynamin II by analytical ultracentrifuge sedimentation equilibrium measurements at high ionic strength and found that it was best described by a monomer-tetramer equilibrium. We then studied the intrinsic dynamin GTPase mechanism by using a combination of fluorescence stopped-flow and HPLC methods using the fluorescent analogue of GTP, mantdGTP (2'-deoxy-3'-O-(N-methylanthraniloyl) guanosine-5'-triphosphate), under the same ionic strength conditions. The results are interpreted as showing that mantdGTP binds to dynamin in a two-step mechanism. The dissociation constant of mantdGTP binding to dynamin, calculated from the ratio of the off-rate to the on-rate (k(off)/k(on)), was 0.5 microM. Cleavage of mantdGTP then occurs to mantdGDP and P(i) followed by the rapid release of mantdGDP and P(i). No evidence of reversibility of hydrolysis was observed. The cleavage step itself is the rate-limiting step in the mechanism. This mechanism more closely resembles that of the Ras family of proteins involved in cell signaling than the myosin ATPase involved in cellular motility.

  5. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    PubMed

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  6. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    NASA Astrophysics Data System (ADS)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  7. A Common Origin for the Bacterial Toxin-Antitoxin Systems parD and ccd, Suggested by Analyses of Toxin/Target and Toxin/Antitoxin Interactions

    PubMed Central

    Mitchenall, Lesley A.; Barendregt, Arjan; Heck, Albert J.; Lemonnier, Marc; Maxwell, Anthony; Díaz-Orejas, Ramón

    2012-01-01

    Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets. PMID:23029540

  8. Hemopressin Peptides as Modulators of the Endocannabinoid System and their Potential Applications as Therapeutic Tools.

    PubMed

    Macedonio, Giorgia; Stefanucci, Azzurra; Maccallini, Cristina; Mirzaie, Sako; Novellino, Ettore; Mollica, Adriano

    2016-01-01

    The endocannabinoid system (ECS) is activated when natural arachidonic acid derivatives (endogenous cannabinoids or endocannabinoids) bind as lipophilic messengers to cannabinoid receptors CB1 and CB2. The ECS comprises many hydrolytic enzymes responsible for the endocannabinoids cleavage. These hydrolases, such as fatty acid amide hydrolase (FAAH) and monoacylglyceride lipase (MAGL), are possible therapeutic targets for the development of new drugs as indirect cannabinoid agonists. Recently, a new family of endocannabinoid modulators was discovered; the lead structure of this family is the nonapeptide hemopressin produced from enzymatic cleavage of the α-chain of hemoglobin and acting as negative allosteric modulator of CB1. Hemopressin shows several physiological effects, e.g., antinociception, hypophagy, and hypotension. However, it is still a matter of debate whether this peptide, isolated from the brain of rats, is a real neuromodulator of the ECS. Recent evidence indicates that hemopressin could be a by-product formed by chemical degradation of a longer peptide RVD-hemopressin during the extraction from the brain homolysate. Indeed, RVD-hemopressin is more active than hemopressin in certain biological tests and may bind to the same subsite as Rimonabant, which is an inverse agonist of CB1 and a μ-opioid receptor antagonist. These findings have stimulated several studies to verify this hypothesis and to evaluate possible therapeutic applications of hemopressin, its peptidic derivatives, and synthetic analogues, opening new perspectives to the development of novel cannabinoid drugs.

  9. Degradomic and yeast 2-hybrid inactive catalytic domain substrate trapping identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2).

    PubMed

    Butler, Georgina S; Connor, Andrea R; Sounni, Nor Eddine; Eckhard, Ulrich; Morrison, Charlotte J; Noël, Agnès; Overall, Christopher M

    2017-05-01

    Members of the CCN family of matricellular proteins are cytokines linking cells to the extracellular matrix. We report that CCN3 (Nov) and CCN5 (WISP2) are novel substrates of MMP14 (membrane-type 1-matrix metalloproteinase, MT1-MMP) that we identified using MMP14 "inactive catalytic domain capture" (ICDC) as a yeast two-hybrid protease substrate trapping platform in parallel with degradomics mass spectrometry screens for MMP14 substrates. CCN3 and CCN5, previously unknown substrates of MMPs, were biochemically validated as substrates of MMP14 and other MMPs in vitro-CCN5 was processed in the variable region by MMP14 and MMP2, as well as by MMP1, 3, 7, 8, 9 and 15. CCN1, 2 and 3 are proangiogenic factors yet we found novel opposing activity of CCN5 that was potently antiangiogenic in an aortic ring vessel outgrowth model. MMP14, a known regulator of angiogenesis, cleaved CCN5 and abrogated the angiostatic activity. CCN3 was also processed in the variable region by MMP14 and MMP2, and by MMP1, 8 and 9. In addition to the previously reported cleavages of CCN1 and CCN2 by several MMPs we found that MMPs 8, 9, and 1 process CCN1, and MMP8 and MMP9 also process CCN2. Thus, our study reveals additional and pervasive family-wide processing of CCN matricellular proteins/cytokines by MMPs. Furthermore, CCN5 cleavage by proangiogenic MMPs results in removal of an angiogenic brake held by CCN5. This highlights the importance of thorough dissection of MMP substrates that is needed to reveal higher-level control mechanisms beyond type IV collagen and other extracellular matrix protein remodelling in angiogenesis. We find CCN family member cleavage by MMPs is more pervasive than previously reported and includes CCN3 (Nov) and CCN5 (WISP2). CCN5 is a novel antiangiogenic factor, whose function is abrogated by proangiogenic MMP cleavage. By processing CCN proteins, MMPs regulate cell responses angiogenesis in connective tissues. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant human tissue, revealing a role for GPER in estrogen-induced breast physiology and pathology. PMID:24718936

  11. A SNAP-25 cleaving chimera of botulinum neurotoxin /A and /E prevents TNFα-induced elevation of the activities of native TRP channels on early postnatal rat dorsal root ganglion neurons.

    PubMed

    Nugent, Marc; Yusef, Yamil R; Meng, Jianghui; Wang, Jiafu; Dolly, J Oliver

    2018-06-12

    Transient receptor potential (TRP) vallinoid 1 (TRPV1) and ankyrin 1 (TRPA1) are two transducing channels expressed on peripheral sensory nerves involved in pain sensation. Upregulation of their expression, stimulated by inflammatory cytokines and growth factors in animal pain models, correlate with the induction of nociceptive hyper-sensitivity. Herein, we firstly demonstrate by immuno-cytochemical labelling that TNFα augments the surface content of these channels on rat cultured dorsal root ganglion (DRG) neurons which, in turn, enhances the electrophysiological and functional responses of the latter to their specific agonists. A molecular basis underlying this TNFα-dependent enhancement was unveiled by pre-treating DRGs with a recently-published chimeric protein, consisting of the protease light chain (LC) of botulinum neurotoxin (BoNT) serotype E fused to full-length BoNT/A (LC/E-BoNT/A). This cleaves synaptosomal-associated protein of Mr 25k (SNAP-25) and reported previously to exhibit anti-nociceptive activity in a rat model of neuropathic pain. Low pM concentrations of this chimera were found to prevent the TNFα-stimulated delivery of TRPV1/A1 to the neuronal plasmalemma and, accordingly, decreased their incremental functional activities relative to those of control cells, an effect accompanied by SNAP-25 cleavage. Advantageously, LC/E-BoNT/A did not reduce the basal surface contents of the two channels or their pharmacological responses. Thus, use of multiple complementary methodologies provides evidence that LC/E-BoNT/A abolishes the TNFα-dependent augmented, but not resting, surface trafficking of TRPV1/A1. As TNFα is known to induce nociceptive hyper-sensitivity in vivo, our observed inhibition by LC/E-BoNT/A of its action in vitro could contribute to its potential alleviation of pain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    PubMed

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  13. Increased risk of preterm birth in singleton pregnancies after blastocyst versus Day 3 embryo transfer: Canadian ART Register (CARTR) analysis.

    PubMed

    Dar, S; Librach, C L; Gunby, J; Bissonnette, F; Cowan, L

    2013-04-01

    Are the fetal outcomes of singleton pregnancies that result from cleavage stage embryo transfer (ET) different from the outcomes from Day 5/6 blastocyst stage ET? There was a significantly higher risk of preterm birth (<37 weeks) in singletons after extended embryo culture (Day 5/6) compared with cleavage stage (Day 3) transfer. Two recent studies, from Sweden and the USA, reported an increased risk of preterm birth in singleton pregnancies after Day 5/6 ET compared with Day 3 ET. The US study also showed increased early preterm births and the Swedish study showed increased fetal malformations in this group. A retrospective cohort study was performed. Data were collected from the Canadian ART Register database for all singleton births after fresh IVF/ICSI ET cycles (2001-2009). A total of 12 712 singleton births were included. Of these, 9506 resulted from a Day 3 ET and 3206 resulted from a blastocyst (Day 5/6) ET. Preterm birth rate <37 weeks (unadjusted by potential confounding factors) was higher with Day 5/6 versus Day 3 transfers (17.2 versus 14.1%, P < 0.001). Using logistic regression analysis to adjust for confounding factors, preterm birth rate <37 weeks was the only outcome significantly increased after Day 5/6 compared with Day 3 transfer (odds ratio 1.32, 95% confidence interval 1.17-1.49). The following confounding factors were adjusted for: year of treatment (2001-2009), maternal age (continuous), parity (0 versus ≥1 birth), diagnosis category, number of oocytes retrieved [≤20 versus >20 (high responder group)], insemination method (IVF versus ICSI), number of embryos transferred (1, 2 or ≥3) and the presence of a vanishing twin (≥1 fetal heart on the initial ultrasonographic examination). Post-natal follow-up studies will be required to determine if this difference we observed translates into adverse long-term effects on these offspring. The rate of early preterm births (<32 weeks) was higher in Day 5/6 versus Day 3, but the low number of cases in this category did not have the power to show a difference (3.0 versus 2.7%, P = 0.34). We found a significantly higher risk of preterm birth (<37 weeks) in singletons after extended embryo culture (Day 5/6) compared with cleavage stage (Day 3) transfer, even when adjusting for confounding factors. Our findings are in agreement with the previous two studies; however, we did not show a difference in the very preterm deliveries (unlike the US study) or in fetal malformations (as in the Swedish study). We hypothesize that there may be a deleterious effect of prolonged in vitro embryo culture on subsequent placentation. Longer term follow-up studies will be required to determine if prolonged in vitro culture to the blastocyst stage has an adverse effect on the long-term health of offspring when compared with shorter cleavage stage culture. None.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Robert T.; Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin; Advanced Materials and BioEngineering Research Centre

    Bone formation requires the recruitment, proliferation and osteogenic differentiation of mesenchymal progenitors. A potent stimulus driving this process is mechanical loading, yet the signalling mechanisms underpinning this are incompletely understood. The objective of this study was to investigate the role of the mechanically-stimulated osteocyte and osteoblast secretome in coordinating progenitor contributions to bone formation. Initially osteocytes (MLO-Y4) and osteoblasts (MC3T3) were mechanically stimulated for 24hrs and secreted factors within the conditioned media were collected and used to evaluate mesenchymal stem cell (MSC) and osteoblast recruitment, proliferation and osteogenesis. Paracrine factors secreted by mechanically stimulated osteocytes significantly enhanced MSC migration, proliferationmore » and osteogenesis and furthermore significantly increased osteoblast migration and proliferation when compared to factors secreted by statically cultured osteocytes. Secondly, paracrine factors secreted by mechanically stimulated osteoblasts significantly enhanced MSC migration but surprisingly, in contrast to the osteocyte secretome, inhibited MSC proliferation when compared to factors secreted by statically cultured osteoblasts. A similar trend was observed in osteoblasts. This study provides new information on mechanically driven signalling mechanisms in bone and highlights a contrasting secretome between cells at different stages in the bone lineage, furthering our understanding of loading-induced bone formation and indirect biophysical regulation of osteoprogenitors. - Highlights: • Physically stimulated osteocytes secrete factors that regulate osteoprogenitors. • These factors enhance recruitment, proliferation and osteogenic differentiation. • Physically stimulated osteoblasts secrete factors that also regulate progenitors. • These factors enhance recruitment but inhibit proliferation of osteoprogenitors. • This study highlights a contrasting secretome between osteocytes and osteoblasts.« less

  15. Mechanism of Intramembrane Cleavage of Alcadeins by γ-Secretase

    PubMed Central

    Piao, Yi; Kimura, Ayano; Urano, Satomi; Saito, Yuhki; Taru, Hidenori; Yamamoto, Tohru; Hata, Saori; Suzuki, Toshiharu

    2013-01-01

    Background Alcadein proteins (Alcs; Alcα, Alcβand Alcγ) are predominantly expressed in neurons, as is Alzheimer's β-amyloid (Aβ) precursor protein (APP). Both Alcs and APP are cleaved by primary α- or β-secretase to generate membrane-associated C-terminal fragments (CTFs). Alc CTFs are further cleaved by γ-secretase to secrete p3-Alc peptide along with the release of intracellular domain fragment (Alc ICD) from the membrane. In the case of APP, APP CTFβ is initially cleaved at the ε-site to release the intracellular domain fragment (AICD) and consequently the γ-site is determined, by which Aβ generates. The initial ε-site is thought to define the final γ-site position, which determines whether Aβ40/43 or Aβ42 is generated. However, initial intracellular ε-cleavage sites of Alc CTF to generate Alc ICD and the molecular mechanism that final γ-site position is determined remains unclear in Alcs. Methodology Using HEK293 cells expressing Alcs plus presenilin 1 (PS1, a catalytic unit of γ-secretase) and the membrane fractions of these cells, the generation of p3-Alc possessing C-terminal γ-cleavage site and Alc ICD possessing N-terminal ε-cleavage site were analysed with MALDI-TOF/MS. We determined the initial ε-site position of all Alcα, Alcβ and Alcγ, and analyzed the relationship between the initially determined ε-site position and the final γ-cleavage position. Conclusions The initial ε-site position does not always determine the final γ-cleavage position in Alcs, which differed from APP. No additional γ-cleavage sites are generated from artificial/non-physiological positions of ε-cleavage for Alcs, while the artificial ε-cleavage positions can influence in selection of physiological γ-site positions. Because alteration of γ-secretase activity is thought to be a pathogenesis of sporadic Alzheimer's disease, Alcs are useful and sensitive substrate to detect the altered cleavage of substrates by γ-secretase, which may be induced by malfunction of γ-secretase itself or changes of membrane environment for enzymatic reaction. PMID:23658629

  16. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    PubMed

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate.

    PubMed

    Chang, J Y

    1985-09-02

    alpha-Thrombin cleavage of 30 polypeptide hormones and their derivatives were analysed by quantitative amino-terminal analysis. The polypeptides included secretin, vasoactive intestinal polypeptide, cholecystokinin fragment, dynorphin A, somatostatins, gastrin-releasing peptide, calcitonins and human parathyroid hormone fragment. Most of them were selected mainly on the ground that they contain sequence structures homologous to the well known tripeptide substrates of alpha-thrombin. All selected polypeptides have one single major cleavage site and both Arg-Xaa and Lys-Xaa bonds were found to be selectively cleaved by alpha-thrombin. Under fixed conditions (1 nmol polypeptide/0.5 NIH unit alpha-thrombin in 20 microliters of 50 mM ammonium bicarbonate at 25 degrees C), the time required for 50% cleavage ranges from less than 1 min to longer than 24 h. Heparin invariably enhanced thrombin cleavage on all polypeptide analysed. The optimum cleavage site for alpha-thrombin has the structures of (a) P4-P3-Pro-Arg-P1'-P2', where P3 and P4 are hydrophobic amino acid and P1', P2' are nonacidic amino acids and (b) P2-Arg-P1', where P2 or P1' are Gly. The requirement for hydrophobic P3 and P4 was further demonstrated by the drastic decrease of thrombin cleavage rates in both gastrin-releasing peptide and calcitonins after chemical removal of hydrophobic P3 and P4 residues. The requirement for nonacidic P1' and P2' residues was demonstrated by the drastic increase of thrombin cleavage rates in both calcitonin and parathyroid hormone fragments, after specific chemical modification of acidic P1' and P2' residues. These findings confirm the importance of hydrophobic P2-P4 residues for thrombin specificity and provide new evidence to indicate that apolar P1' and P2' residues are also crucial for thrombin specificity. It is concluded that specific cleavage of polypeptides by alpha-thrombin can be reasonably predicted and that chemical modification can be a useful tool in enhancing thrombin cleavage.

  18. Factors influencing parental decision making about stimulant treatment for attention-deficit/hyperactivity disorder.

    PubMed

    Ahmed, Rana; McCaffery, Kirsten J; Aslani, Parisa

    2013-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is a pediatric psychological condition commonly treated with stimulant medications. Negative media reports and stigmatizing societal attitudes surrounding the use of these medications make it difficult for parents of affected children to accept stimulant treatment, despite it being first line therapy. The purpose of this study was to identify factors that influence parental decision making regarding stimulant treatment for ADHD. A systematic review of the literature was conducted to identify studies: 1) that employed qualitative methodology, 2) that highlighted treatment decision(s) about stimulant medication, 3) in which the decision(s) were made by the parent of a child with an official ADHD diagnosis, and 4) that examined the factors affecting the decision(s) made. Individual factors influencing parental treatment decision making, and the major themes encompassing these factors, were identified and followed by a thematic analysis. Eleven studies reporting on the experiences of 335 parents of children with ADHD were included. Four major themes encompassing influences on parents' decisions were derived from the thematic analysis performed: confronting the diagnosis, external influences, apprehension regarding therapy, and experience with the healthcare system. The findings of this systematic review reveal that there are multiple factors that influence parents' decisions about stimulant therapy. This information can assist clinicians in enhancing information delivery to parents of children with ADHD, and help reduce parental ambivalence surrounding stimulant medication use. Future work needs to address parental concerns about stimulants, and increase their involvement in shared decision making with clinicians to empower them to make the most appropriate treatment decision for their child.

  19. Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians.

    PubMed

    Lemaire, Patrick

    2009-08-01

    Ascidians were historically the first metazoans in which experimental embryology was carried out. These early works by Chabry and Conklin [Chabry, L., 1887. Embryologie normale et tératologique des Ascidie. Felix Alcan Editeur, Paris; Conklin, E., 1905. The organization and cell lineage of the ascidian egg. J. Acad., Nat. Sci. Phila. 13, 1], in particular, led to the idea that the developmental program of these animals was driven by the cell-autonomous inheritance of localised maternal determinants, rendered precise by the stereotyped pattern of invariant cell cleavages. Work in the past 20 years indeed identified several localised maternal determinants of the position of cleavage planes or of some early cell fates. The overwhelming majority of cells in the three germ layers, however, do not follow a cell-autonomous differentiation program. Instead, they respond to short-range signals, as described in this review. Careful analysis of cell-cell contacts suggests that a major function of the invariant position of cleavage plans, besides segregating competence factors, is to control the relative positions of inducing cells and those competent to respond. Surprisingly, while the cell lineage is very well conserved between the divergent species Halocynthia roretzi and Ciona intestinalis, the molecular nature of inducing signals can vary. The constraints on embryo anatomy thus appear stronger than those on the choice of individual regulatory molecules.

  20. Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer

    PubMed Central

    Nafi, Siti Norasikin Mohd; Generali, Daniele; Kramer-Marek, Gabriela; Gijsen, Merel; Strina, Carla; Cappelletti, Mariarosa; Andreis, Daniele; Haider, Syed; Li, Ji-Liang; Bridges, Esther; Capala, Jacek; Ioannis, Roxanis; Harris, Adrian L; Kong, Anthony

    2014-01-01

    The role of HER4 in breast cancer is controversial and its role in relation to trastuzumab resistance remains unclear. We showed that trastuzumab treatment and its acquired resistance induced HER4 upregulation, cleavage and nuclear translocation. However, knockdown of HER4 by specific siRNAs increased trastuzumab sensitivity and reversed its resistance in HER2 positive breast cancer cells. Preventing HER4 cleavage by a γ-secretase inhibitor and inhibiting HER4 tyrosine kinase activity by neratinib decreased trastuzumab-induced HER4 nuclear translocation and enhanced trastuzumab response. There was also increased nuclear HER4 staining in the tumours from BT474 xenograft mice and human patients treated with trastuzumab. Furthermore, nuclear HER4 predicted poor clinical response to trastuzumab monotherapy in patients undergoing a window study and was shown to be an independent poor prognostic factor in HER2 positive breast cancer. Our data suggest that HER4 plays a key role in relation to trastuzumab resistance in HER2 positive breast cancer. Therefore, our study provides novel findings that HER4 activation, cleavage and nuclear translocation influence trastuzumab sensitivity and resistance in HER2 positive breast cancer. Nuclear HER4 could be a potential prognostic and predictive biomarker and understanding the role of HER4 may provide strategies to overcome trastuzumab resistance in HER2 positive breast cancer. PMID:25153719

Top