Science.gov

Sample records for cleaves strong c-h

  1. Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C-H Bonds.

    PubMed

    Kodera, Masahito; Ishiga, Shin; Tsuji, Tomokazu; Sakurai, Katsutoshi; Hitomi, Yutaka; Shiota, Yoshihito; Sajith, P K; Yoshizawa, Kazunari; Mieda, Kaoru; Ogura, Takashi

    2016-04-18

    Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is tolueneC-H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 .

  2. Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C-H Bonds with Stereoretention.

    PubMed

    Serrano-Plana, Joan; Oloo, Williamson N; Acosta-Rueda, Laura; Meier, Katlyn K; Verdejo, Begoña; García-España, Enrique; Basallote, Manuel G; Münck, Eckard; Que, Lawrence; Company, Anna; Costas, Miquel

    2015-12-23

    An unprecedentedly reactive iron species (2) has been generated by reaction of excess peracetic acid with a mononuclear iron complex [Fe(II)(CF3SO3)2(PyNMe3)] (1) at cryogenic temperatures, and characterized spectroscopically. Compound 2 is kinetically competent for breaking strong C-H bonds of alkanes (BDE ≈ 100 kcal·mol(-1)) through a hydrogen-atom transfer mechanism, and the transformations proceed with stereoretention and regioselectively, responding to bond strength, as well as to steric and polar effects. Bimolecular reaction rates are at least an order of magnitude faster than those of the most reactive synthetic high-valent nonheme oxoiron species described to date. EPR studies in tandem with kinetic analysis show that the 490 nm chromophore of 2 is associated with two S = 1/2 species in rapid equilibrium. The minor component 2a (∼5% iron) has g-values at 2.20, 2.19, and 1.99 characteristic of a low-spin iron(III) center, and it is assigned as [Fe(III)(OOAc)(PyNMe3)](2+), also by comparison with the EPR parameters of the structurally characterized hydroxamate analogue [Fe(III)(tBuCON(H)O)(PyNMe3)](2+) (4). The major component 2b (∼40% iron, g-values = 2.07, 2.01, 1.95) has unusual EPR parameters, and it is proposed to be [Fe(V)(O)(OAc)(PyNMe3)](2+), where the O-O bond in 2a has been broken. Consistent with this assignment, 2b undergoes exchange of its acetate ligand with CD3CO2D and very rapidly reacts with olefins to produce the corresponding cis-1,2-hydroxoacetate product. Therefore, this work constitutes the first example where a synthetic nonheme iron species responsible for stereospecific and site selective C-H hydroxylation is spectroscopically trapped, and its catalytic reactivity against C-H bonds can be directly interrogated by kinetic methods. The accumulated evidence indicates that 2 consists mainly of an extraordinarily reactive [Fe(V)(O)(OAc)(PyNMe3)](2+) (2b) species capable of hydroxylating unactivated alkyl C-H bonds with

  3. Overcoming the Limitations of C-H Activation with Strongly Coordinating N-Heterocycles by Cobalt Catalysis.

    PubMed

    Wang, Hui; Lorion, Mélanie M; Ackermann, Lutz

    2016-08-22

    Strongly coordinating nitrogen heterocycles, including pyrimidines, oxazolines, pyrazoles, and pyridines, were fully tolerated in cobalt-catalyzed C-H amidations by imidate assistance. Structurally complex quinazolines are thus accessible in a step-economic manner. Our findings also establish the relative powers of directing groups in cobalt(III)-catalyzed C-H functionalization for the first time.

  4. A Highly Reactive Mononuclear Non-Heme Manganese(IV)-Oxo Complex That Can Activate the Strong C-H Bonds of Alkanes

    SciTech Connect

    Wu, Xiujuan; Seo, Mi Sook; Davis, Katherine M; Lee, Yong-Min; Chen, Junying; Cho, Kyung-Bin; Pushkar, Yulia N; Nam, Wonwoo

    2012-03-15

    A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of ~4.4 in the oxidation of para-substituted thioanisoles.

  5. Binding to Redox-Inactive Alkali and Alkaline Earth Metal Ions Strongly Deactivates the C-H Bonds of Tertiary Amides toward Hydrogen Atom Transfer to Reactive Oxygen Centered Radicals.

    PubMed

    Salamone, Michela; Carboni, Giulia; Mangiacapra, Livia; Bietti, Massimo

    2015-09-18

    The effect of alkali and alkaline earth metal ions on the reactions of the cumyloxyl radical (CumO(•)) with N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) was studied by laser flash photolysis. In acetonitrile, a >2 order of magnitude decrease in the rate constant for hydrogen atom transfer (HAT) from the C-H bonds of these substrates (kH) was measured after addition of Li(+). This behavior was explained in terms of a strong interaction between Li(+) and the oxygen atom of both DMF and DMA that increases the extent of positive charge on the amide, leading to C-H bond deactivation toward HAT to the electrophilic radical CumO(•). Similar effects were observed after addition of Ca(2+), which was shown to strongly bind up to four equivalents of the amide substrates. With Mg(2+), weak C-H deactivation was observed for the first two substrate equivalents followed by stronger deactivation for two additional equivalents. No C-H deactivation was observed in DMSO after addition of Li(+) and Mg(2+). These results point toward the important role played by metal ion Lewis acidity and solvent Lewis basicity, indicating that C-H deactivation can be modulated by varying the nature of the metal cation and solvent and allowing for careful control over the HAT reactivity of amide substrates.

  6. 1,1,3,3-Tetratriflylpropene (TTP): A Strong, Allylic C-H Acid for Brønsted and Lewis Acid Catalysis.

    PubMed

    Höfler, Denis; van Gemmeren, Manuel; Wedemann, Petra; Kaupmees, Karl; Leito, Ivo; Leutzsch, Markus; Lingnau, Julia B; List, Benjamin

    2017-01-24

    Tetratrifylpropene (TTP) has been developed as a highly acidic, allylic C-H acid for Brønsted and Lewis acid catalysis. It can readily be obtained in two steps and consistently shows exceptional catalytic activities for Mukaiyama aldol, Hosomi-Sakurai, and Friedel-Crafts acylation reactions. X-ray analyses of TTP and its salts confirm its designed, allylic structure, in which the negative charge is delocalized over four triflyl groups. NMR experiments, acidity measurements, and theoretical investigations provide further insights to rationalize the remarkable reactivity of TTP.

  7. Intermolecular Redox-Neutral Amine C-H Functionalization Induced by the Strong Boron Lewis Acid B(C6 F5 )3 in the Frustrated Lewis Pair Regime.

    PubMed

    Chen, Guo-Qiang; Kehr, Gerald; Daniliuc, Constantin G; Bursch, Markus; Grimme, Stefan; Erker, Gerhard

    2017-02-06

    N,N-Dimethylmesitylamine undergoes an intermolecular redox-neutral C-H activation/C-C coupling process upon treatment with dimethyl acetylenedicarboxylate and the strong boron Lewis acid B(C6 F5 )3 . Similarly, N,N-dimethylmesitylamine reacts with two molar equivalents of ethyl acrylate to give the respective unsaturated coupling product with H2 transfer to the acrylic ester to form the ethyl propionate/B(C6 F5 )3 adduct. N,N-Dimethylmesitylamine also undergoes a C-H activation at the benzylic ortho sp(3) -carbon atom with dihydrogen formation upon treatment with Piers' borane [HB(C6 F5 )2 ]. The last two reactions of N,N-dimethylmesitylamine were analyzed by DFT calculations.

  8. Cocrystals of 1,4-diethynylbenzene with 1,3-diacetylbenzene and benzene-1,4-dicarbaldehyde exhibiting strong nonconventional alkyne-carbonyl C-H...O hydrogen bonds between the components.

    PubMed

    Bosch, Eric

    2016-10-01

    Weak interactions between organic molecules are important in solid-state structures where the sum of the weaker interactions support the overall three-dimensional crystal structure. The sp-C-H...N hydrogen-bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen-bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4-diethynylbenzene with 1,3-diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4-diethynylbenzene with benzene-1,4-dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl-carbonyl sp-C-H...O hydrogen bond is observed between the components. In cocrystal (1), the C-H...O hydrogen-bond angle is 171.8 (16)° and the H...O and C...O hydrogen-bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C-H...O hydrogen-bond angle is 172.5 (16)° and the H...O and C...O hydrogen-bond distances are 2.25 (2) and 3.203 (2) Å, respectively.

  9. C-H and C-N Activation at Redox-Active Pyridine Complexes of Iron.

    PubMed

    MacLeod, K Cory; Lewis, Richard A; DeRosha, Daniel E; Mercado, Brandon Q; Holland, Patrick L

    2017-01-19

    Pyridine activation by inexpensive iron catalysts has great utility, but the steps through which iron species can break the strong (105-111 kcal mol(-1) ) C-H bonds of pyridine substrates are unknown. In this work, we report the rapid room-temperature cleavage of C-H bonds in pyridine, 4-tert-butylpyridine, and 2-phenylpyridine by an iron(I) species, to give well-characterized iron(II) products. In addition, 4-dimethylaminopyridine (DMAP) undergoes room-temperature C-N bond cleavage, which forms a dimethylamidoiron(II) complex and a pyridyl-bridged tetrairon(II) square. These facile bond-cleaving reactions are proposed to occur through intermediates having a two-electron reduced pyridine that bridges two iron centers. Thus, the redox non-innocence of the pyridine can play a key role in enabling high regioselectivity for difficult reactions.

  10. The selective activation of a C-F bond with an auxiliary strong Lewis acid: a method to change the activation preference of C-F and C-H bonds.

    PubMed

    Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2016-11-15

    The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F2H3C6-(C[double bond, length as m-dash]NH)-n'-R-C6H4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe3)4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl2) was explored. As a result, iron(ii) halides ((H5C6-(C[double bond, length as m-dash]NH)-2-FH3C6)FeX(PMe3)3 (X = Br (8); Cl (9)) and (n-RH4C6-(C[double bond, length as m-dash]NH)-2'-FH3C6)FeX(PMe3)3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF4 instead of LiBr or ZnCl2, the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe3)4 afforded an ionic complex [(2,6-F2H3C6-(C[double bond, length as m-dash]NH)-H4C6)Fe(PMe3)4](BF4) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH4C6-(C[double bond, length as m-dash]NH)-2'-FH3C6)FeH(PMe3)3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe3)4 with the monofluoroarylmethanimines (2-FH4C6-(C[double bond, length as m-dash]NH)-2'-RC6H4 (R = H (4); Me (5))); however, in the presence of ZnCl2 or LiBr, iron(ii) halides ((2-RH4C6-(C[double bond, length as m-dash]NH)-H4C6)FeX(PMe3)3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F5C6-(C[double bond, length as m-dash]NH)-2,6-Y2C6H3 (Y = F (6); H (7))) could be realized in the presence of ZnCl2 to produce iron(ii) chlorides ((2,6-Y2H3C6-(C[double bond, length as m-dash]NH)-F4C6)FeCl(PMe3)3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be

  11. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  12. 1,2-Diphosphonium dication: a strong P-based Lewis acid in frustrated lewis pair (FLP)-activations of B-H, Si-H, C-H, and H-H bonds.

    PubMed

    Holthausen, Michael H; Bayne, Julia M; Mallov, Ian; Dobrovetsky, Roman; Stephan, Douglas W

    2015-06-17

    A highly Lewis acidic diphosphonium dication [(C10H6)(Ph2P)2](2+) (1), in combination with a Lewis basic phosphine, acts as a purely phosphorus-based frustrated Lewis pair (FLP) and abstracts hydride from [HB(C6F5)3](-) and Et3SiH demonstrating the remarkable hydridophilicity of 1. The P-based FLP is also shown to activate H2 and C-H bonds.

  13. Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride

    NASA Astrophysics Data System (ADS)

    Thomson, Robert K.; Cantat, Thibault; Scott, Brian L.; Morris, David E.; Batista, Enrique R.; Kiplinger, Jaqueline L.

    2010-09-01

    Uranium nitride [U≡N]x is an alternative nuclear fuel that has great potential in the expanding future of nuclear power; however, very little is known about the U≡N functionality. We show, for the first time, that a terminal uranium nitride complex can be generated by photolysis of an azide (U-N=N=N) precursor. The transient U≡N fragment is reactive and undergoes insertion into a ligand C-H bond to generate new N-H and N-C bonds. The mechanism of this unprecedented reaction has been evaluated through computational and spectroscopic studies, which reveal that the photochemical azide activation pathway can be shut down through coordination of the terminal azide ligand to the Lewis acid B(C6F5)3. These studies demonstrate that photochemistry can be a powerful tool for inducing redox transformations for organometallic actinide complexes, and that the terminal uranium nitride fragment is reactive, cleaving strong C-H bonds.

  14. Evolution of C-H Bond Functionalization from Methane to Methodology.

    PubMed

    Hartwig, John F

    2016-01-13

    This Perspective presents the fundamental principles, the elementary reactions, the initial catalytic systems, and the contemporary catalysts that have converted C-H bond functionalization from a curiosity to a reality for synthetic chemists. Many classes of elementary reactions involving transition-metal complexes cleave C-H bonds at typically unreactive positions. These reactions, coupled with a separate or simultaneous functionalization process lead to products containing new C-C, C-N, and C-O bonds. Such reactions were initially studied for the conversion of light alkanes to liquid products, but they have been used (and commercialized in some cases) most often for the synthesis of the more complex structures of natural products, medicinally active compounds, and aromatic materials. Such a change in direction of research in C-H bond functionalization is remarkable because the reactions must occur at an unactivated C-H bond over functional groups that are more reactive than the C-H bond toward classical reagents. The scope of reactions that form C-C bonds or install functionality at an unactivated C-H bond will be presented, and the potential future utility of these reactions will be discussed.

  15. C. H. Patterson: The Counselor's Counselor.

    ERIC Educational Resources Information Center

    Goodyear, Rodney K.; Watkins, C. Edward, Jr.

    1983-01-01

    Interviewed C. H. Patterson, spokesperson for client-centered therapy and for counseling itself. Discusses some of the books and articles he has written and their impact on the profession. The interview reviews Patterson's career and focuses on him as a person and as a professional. (JAC)

  16. Cobalt-catalyzed C-H borylation.

    PubMed

    Obligacion, Jennifer V; Semproni, Scott P; Chirik, Paul J

    2014-03-19

    A family of pincer-ligated cobalt complexes has been synthesized and are active for the catalytic C-H borylation of heterocycles and arenes. The cobalt catalysts operate with high activity and under mild conditions and do not require excess borane reagents. Up to 5000 turnovers for methyl furan-2-carboxylate have been observed at ambient temperature with 0.02 mol % catalyst loadings. A catalytic cycle that relies on a cobalt(I)-(III) redox couple is proposed.

  17. Oxidative C-H/C-H Coupling Reactions between Two (Hetero)arenes.

    PubMed

    Yang, Yudong; Lan, Jingbo; You, Jingsong

    2017-01-13

    Transition metal-mediated C-H bond activation and functionalization represent one of the most straightforward and powerful tools in modern organic synthetic chemistry. Bi(hetero)aryls are privileged π-conjugated structural cores in biologically active molecules, organic functional materials, ligands, and organic synthetic intermediates. The oxidative C-H/C-H coupling reactions between two (hetero)arenes through 2-fold C-H activation offer a valuable opportunity for rapid assembly of diverse bi(hetero)aryls and further exploitation of their applications in pharmaceutical and material sciences. This review provides a comprehensive overview of the fundamentals and applications of transition metal-mediated/catalyzed oxidative C-H/C-H coupling reactions between two (hetero)arenes. The substrate scope, limitation, reaction mechanism, regioselectivity, and chemoselectivity, as well as related control strategies of these reactions are discussed. Additionally, the applications of these established methods in the synthesis of natural products and exploitation of new organic functional materials are exemplified. In the last section, a short introduction on oxidant- or Lewis acid-mediated oxidative Ar-H/Ar-H coupling reactions is presented, considering that it is a very powerful method for the construction of biaryl units and polycylic arenes.

  18. Arene-metal π-complexation as a traceless reactivity enhancer for C-H arylation.

    PubMed

    Ricci, Paolo; Krämer, Katrina; Cambeiro, Xacobe C; Larrosa, Igor

    2013-09-11

    Current approaches to facilitate C-H arylation of arenes involve the use of either strongly electron-withdrawing substituents or directing groups. Both approaches require structural modification of the arene, limiting their generality. We present a new approach where C-H arylation is made possible without altering the connectivity of the arene via π-complexation of a Cr(CO)3 unit, greatly enhancing the reactivity of the aromatic C-H bonds. We apply this approach to monofluorobenzenes, highly unreactive arenes, which upon complexation become nearly as reactive as pentafluorobenzene itself in their couplings with iodoarenes. DFT calculations indicate that C-H activation via a concerted metalation-deprotonation transition state is facilitated by the predisposition of C-H bonds in (Ar-H)Cr(CO)3 to bend out of the aromatic plane.

  19. Manganese(I)-Catalyzed Dispersion-Enabled C-H/C-C Activation.

    PubMed

    Meyer, Tjark H; Liu, Weiping; Feldt, Milica; Wuttke, Axel; Mata, Ricardo A; Ackermann, Lutz

    2017-03-20

    C-H/C-C Functionalizations were achieved with the aid of a versatile manganese(I) catalyst. Thus, an organometallic manganese-catalyzed C-H activation set the stage for silver-free C-H/C-C transformations with ample substrate scope and excellent levels of chemo-, site-, and diastereo-selectivities. The robust nature of the manganese(I) catalysis regime was reflected by the first C-H/C-C functionalization on amino acids under racemization-free reaction conditions. Detailed experimental and computational mechanistic studies provided strong evidence for a facile C-H activation and a rate-determining C-C cleavage, with considerable contribution from London dispersion interactions.

  20. Approximate thermochemical tables for some C-H and C-H-O species

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1973-01-01

    Approximate thermochemical tables are presented for some C-H and C-H-O species and for some ionized species, supplementing the JANAF Thermochemical Tables for application to finite-chemical-kinetics calculations. The approximate tables were prepared by interpolation and extrapolation of limited available data, especially by interpolations over chemical families of species. Original estimations have been smoothed by use of a modification for the CDC-6600 computer of the Lewis Research Center PACl Program which was originally prepared for the IBM-7094 computer Summary graphs for various families show reasonably consistent curvefit values, anchored by properties of existing species in the JANAF tables.

  1. Optimized catalytic DNA-cleaving ribozymes

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1996-01-01

    The present invention discloses nucleic acid enzymes capable of cleaving nucleic acid molecules, including single-stranded DNA, in a site-specific manner under physiologic conditions, as well as compositions including same. The present invention also discloses methods of making and using the disclosed enzymes and compositions.

  2. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts.

    PubMed

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2013-10-16

    Mechanistic assessments based on kinetic and isotopic methods combined with density functional theory are used to probe the diverse pathways by which C-H bonds in CH4 react on bare Pd clusters, Pd cluster surfaces saturated with chemisorbed oxygen (O*), and PdO clusters. C-H activation routes change from oxidative addition to H-abstraction and then to σ-bond metathesis with increasing O-content, as active sites evolve from metal atom pairs (*-*) to oxygen atom (O*-O*) pairs and ultimately to Pd cation-lattice oxygen pairs (Pd(2+)-O(2-)) in PdO. The charges in the CH3 and H moieties along the reaction coordinate depend on the accessibility and chemical state of the Pd and O centers involved. Homolytic C-H dissociation prevails on bare (*-*) and O*-covered surfaces (O*-O*), while C-H bonds cleave heterolytically on Pd(2+)-O(2-) pairs at PdO surfaces. On bare surfaces, C-H bonds cleave via oxidative addition, involving Pd atom insertion into the C-H bond with electron backdonation from Pd to C-H antibonding states and the formation of tight three-center (H3C···Pd···H)(‡) transition states. On O*-saturated Pd surfaces, C-H bonds cleave homolytically on O*-O* pairs to form radical-like CH3 species and nearly formed O-H bonds at a transition state (O*···CH3(•)···*OH)(‡) that is looser and higher in enthalpy than on bare Pd surfaces. On PdO surfaces, site pairs consisting of exposed Pd(2+) and vicinal O(2-), Pd(ox)-O(ox), cleave C-H bonds heterolytically via σ-bond metathesis, with Pd(2+) adding to the C-H bond, while O(2-) abstracts the H-atom to form a four-center (H3C(δ-)···Pd(ox)···H(δ+)···O(ox))(‡) transition state without detectable Pd(ox) reduction. The latter is much more stable than transition states on *-* and O*-O* pairs and give rise to a large increase in CH4 oxidation turnover rates at oxygen chemical potentials leading to Pd to PdO transitions. These distinct mechanistic pathways for C-H bond activation, inferred from theory

  3. Iron-Catalyzed C-H Alkylation of Heterocyclic C-H Bonds.

    PubMed

    Babu, Kaki Raveendra; Zhu, Nengbo; Bao, Hongli

    2017-01-06

    An efficient, iron-catalyzed C-H alkylation of benzothiazoles by using alkyl diacyl peroxides and alkyl tert-butyl peresters which are readily accessible from carboxylic acids to synthesize 2-alkylbenzothiazoles is developed. This reaction is environmentally benign and compatible with a broad range of functional groups. Various primary, secondary, and tertiary alkyl groups can be efficiently incorporated into diverse benzothiazoles. The effectiveness of this method is illustrated by late-stage functionalization of biologically active heterocycles.

  4. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    SciTech Connect

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs.

  5. a-C:H/a-C:H(N) thin film deposition using 2.45 GHz expanding surface wave sustained plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Douai, David; Berndt, Johannes; Winter, Jörg

    2005-08-01

    Thin film properties such as homogeneity (radial profiles), optical constants, carbon density in the film, and the surface structures are strongly dependent on deposition conditions. We have investigated a-C:H/a-C:H(N) thin film deposition by expanding Ar-CH4 and Ar/N2-CH4 surface wave sustained plasmas at a frequency of 2.45 GHz. The influence of the plasma parameters such as pressure, input power, gas mixture rate, and an external bias voltage on the change of the film properties is systematically studied. An external bias applied to the substrate leads to more dense and harder a-C:H films, i.e. change from soft polymer-like to hard diamond-like. Rutherford backscattering and atomic force microscope surface topology confirm the densification of the films.

  6. The nature of the air-cleaved mica surface

    NASA Astrophysics Data System (ADS)

    Christenson, Hugo K.; Thomson, Neil H.

    2016-06-01

    The accepted image of muscovite mica is that of an inert and atomically smooth surface, easily prepared by cleavage in an ambient atmosphere. Consequently, mica is extensively used a model substrate in many fundamental studies of surface phenomena and as a substrate for AFM imaging of biomolecules. In this review we present evidence from the literature that the above picture is not quite correct. The mica used in experimental work is almost invariably cleaved in laboratory air, where a reaction between the mica surface, atmospheric CO2 and water occurs immediately after cleavage. The evidence suggests very strongly that as a result the mica surface becomes covered by up to one formula unit of K2CO3 per nm2, which is mobile under humid conditions, and crystallises under drier conditions. The properties of mica in air or water vapour cannot be fully understood without reference to the surface K2CO3, and many studies of the structure of adsorbed water on mica surfaces may need to be revisited. With this new insight, however, the air-cleaved mica should provide exciting opportunities to study phenomena such as two-dimensional ion diffusion, electrolyte effects on surface conductivity, and two-dimensional crystal nucleation.

  7. C-H fluorination: U can fluorinate unactivated bonds

    NASA Astrophysics Data System (ADS)

    Neumann, Constanze N.; Ritter, Tobias

    2016-09-01

    Introducing C-F bonds into organic molecules is a challenging task, particularly through C-H activation methods. Now, a uranium-based photocatalyst turns traditional selectivity rules on their heads and fluorinates unfunctionalized alkane Csp3-H bonds, even in the presence of C-H bonds that are typically more reactive.

  8. HDV-like self-cleaving ribozymes

    PubMed Central

    Webb, Chiu-Ho T

    2011-01-01

    HDV ribozymes catalyze their own scission from the transcript during rolling circle replication of the hepatitis delta virus. In vitro selection of self-cleaving ribozymes from a human genomic library revealed an HDV-like ribozyme in the second intron of the human CPEB3 gene and recent results suggest that this RNA affects episodic memory performance. Bioinformatic searches based on the secondary structure of the HDV/CPEB3 fold yielded numerous functional ribozymes in a wide variety of organisms. Genomic mapping of these RNAs suggested several biological roles, one of which is the 5′ processing of non-LTR retrotransposons. The family of HDV-like ribozymes thus continues to grow in numbers and biological importance. PMID:21734469

  9. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.

    PubMed

    Ackermann, Lutz

    2014-02-18

    H2O. Moreover, substrates displaying N-O bonds served as "internal oxidants" for the syntheses of isoquinolones and isoquinolines. Detailed experimental mechanistic studies have provided strong support for a catalytic cycle that relies on initial carboxylate-assisted C-H bond ruthenation, followed by coordinative insertion of the alkyne, reductive elimination, and reoxidation of the thus formed ruthenium(0) complex.

  10. Manganese Porphyrins Catalyze Selective C-H Bond Halogenations

    SciTech Connect

    Liu, Wei; Groves, John T.

    2010-08-31

    We report a manganese porphyrin mediated aliphatic C-H bond chlorination using sodium hypochlorite as the chlorine source. In the presence of catalytic amounts of phase transfer catalyst and manganese porphyrin Mn(TPP)Cl 1, reaction of sodium hypochlorite with different unactivated alkanes afforded alkyl chlorides as the major products with only trace amounts of oxygenation products. Substrates with strong C-H bonds, such as neopentane (BDE =~100 kcal/mol) can be also chlorinated with moderate yield. Chlorination of a diagnostic substrate, norcarane, afforded rearranged products indicating a long-lived carbon radical intermediate. Moreover, regioselective chlorination was achieved by using a hindered catalyst, Mn(TMP)Cl, 2. Chlorination of trans-decalin with 2 provided 95% selectivity for methylene-chlorinated products as well as a preference for the C2 position. This novel chlorination system was also applied to complex substrates. With 5α-cholestane as the substrate, we observed chlorination only at the C2 and C3 positions in a net 55% yield, corresponding to the least sterically hindered methylene positions in the A-ring. Similarly, chlorination of sclareolide afforded the equatorial C2 chloride in a 42% isolated yield. Regarding the mechanism, reaction of sodium hypochlorite with the MnIII porphyrin is expected to afford a reactive MnV=O complex that abstracts a hydrogen atom from the substrate, resulting in a free alkyl radical and a MnIV—OH complex. We suggest that this carbon radical then reacts with a MnIV—OCl species, providing the alkyl chloride and regenerating the reactive MnV=O complex. The regioselectivity and the preference for CH2 groups can be attributed to nonbonded interactions between the alkyl groups on the substrates and the aryl groups of the manganese porphyrin. The results are indicative of a bent [Mnv=O---H---C] geometry due to the C—H approach to the Mn

  11. Mechanism of a C-H bond activation reaction in room-temperature alkane solution

    SciTech Connect

    Bromberg, S.E.; Yang, H.; Asplund, M.C.

    1997-10-10

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx} 100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO){sub 2} (Tp* = HB-Pz{sub 3}*, Pz* = 3,5-di-methylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkyl hydride product have been estimated from transient lifetimes. 27 refs., 6 figs.

  12. The mechanism of a C-H Bond Activation reaction in roomtemperature alkane solution

    SciTech Connect

    Bromberg, Steven E.; Yang, Haw; Asplund, Matthew C.; Lian, T.; McNamara, B.K.; Kotz, K.T.; Yeston, J.S.; Wilkens, M.; Frei, H.; Bergman,Robert G.; Harris, C.B.

    1997-07-31

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx}100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO)2 (Tp* = HB-Pz3*, Pz* = 3,5-dimethylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkylhydride product have been estimated from transient lifetimes.

  13. Metal-Catalyzed Decarboxylative C-H Functionalization.

    PubMed

    Wei, Ye; Hu, Peng; Zhang, Min; Su, Weiping

    2017-03-07

    C-H bond activation and decarboxylation are two significant processes in organic synthesis. The combination of these processes provides a novel synthetic strategy, that is, decarboxylative C-H bond functionalization. Considerable attention has been focused on such an active research field. This review offers an overview of the utility of decarboxylative C-H bond functionalization in the synthesis of various organic compounds, such as styrenes, chalcones, biaryls, and heterocycles, covering most of the recent advances of the decarboxylative functionalization of Csp-H, Csp(2)-H, and Csp(3)-H bonds, as well as their scopes, limitations, practical applications, and synthetic potentials.

  14. C-H activation: Complex peptides made simple

    NASA Astrophysics Data System (ADS)

    Bartlett, Sean; Spring, David R.

    2017-01-01

    Nature oxidizes biosynthetic intermediates into structurally and functionally diverse peptides. An iron-catalysed C-H oxidation mimics this approach in the lab, enabling chemists to synthesize structural analogues with ease.

  15. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  16. Benzylic C-H trifluoromethylation of phenol derivatives.

    PubMed

    Egami, Hiromichi; Ide, Takafumi; Kawato, Yuji; Hamashima, Yoshitaka

    2015-12-04

    Phenol derivatives were trifluoromethylated using copper/Togni reagent. In dimethylformamide, the benzylic C-H bond at the para position of the hydroxyl group was selectively substituted with a CF3 group. In contrast, aromatic C-H trifluoromethylation occurred in alcoholic solvents. Practical utility of the reactions was demonstrated by application to the synthesis of a potent enoyl-acyl carrier protein reductase (FabI) inhibitor.

  17. Gold(I)-mediated C-H activation of arenes.

    PubMed

    Lu, Pengfei; Boorman, Tanya C; Slawin, Alexandra M Z; Larrosa, Igor

    2010-04-28

    We demonstrate the first Au(I)-mediated C-H activation of arenes. Au(I) salts undergo C-H activation with electron-poor arenes, in stark contrast to Au(III) salts, which activate electron-rich arenes. This operationally simple and highly regioselective process occurs under very mild conditions and gives access to a variety of Au(I)-arene complexes in excellent yields.

  18. General allylic C-H alkylation with tertiary nucleophiles.

    PubMed

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  19. Mechanistic insights into C-H amination via dicopper nitrenes.

    PubMed

    Aguila, Mae Joanne B; Badiei, Yosra M; Warren, Timothy H

    2013-06-26

    We examine important reactivity pathways relevant to stoichiometric and catalytic C-H amination via isolable β-diketiminato dicopper alkylnitrene intermediates {[Cl2NN]Cu}2(μ-NR). Kinetic studies involving the stoichiometric amination of ethylbenzene by {[Cl2NN]Cu}2(μ-N(t)Bu) (3) demonstrate that the terminal nitrene [Cl2NN]Cu═N(t)Bu is the active intermediate in C-H amination. Initial rates exhibit saturation behavior at high ethylbenzene loadings and an inverse dependence on the copper species [Cl2NN]Cu, both consistent with dissociation of a [Cl2NN]Cu fragment from 3 prior to C-H amination. C-H amination experiments employing 1,4-dimethylcyclohexane and benzylic radical clock substrate support a stepwise H-atom abstraction/radical rebound pathway. Dicopper nitrenes [Cu]2(μ-NCHRR') derived from 1° and 2° alkylazides are unstable toward tautomerization to copper(I) imine complexes [Cu](HN═CRR'), rendering 1° and 2° alkylnitrene complexes unsuitable for C-H amination.

  20. Scalable and sustainable electrochemical allylic C-H oxidation

    NASA Astrophysics Data System (ADS)

    Horn, Evan J.; Rosen, Brandon R.; Chen, Yong; Tang, Jiaze; Chen, Ke; Eastgate, Martin D.; Baran, Phil S.

    2016-05-01

    New methods and strategies for the direct functionalization of C-H bonds are beginning to reshape the field of retrosynthetic analysis, affecting the synthesis of natural products, medicines and materials. The oxidation of allylic systems has played a prominent role in this context as possibly the most widely applied C-H functionalization, owing to the utility of enones and allylic alcohols as versatile intermediates, and their prevalence in natural and unnatural materials. Allylic oxidations have featured in hundreds of syntheses, including some natural product syntheses regarded as “classics”. Despite many attempts to improve the efficiency and practicality of this transformation, the majority of conditions still use highly toxic reagents (based around toxic elements such as chromium or selenium) or expensive catalysts (such as palladium or rhodium). These requirements are problematic in industrial settings; currently, no scalable and sustainable solution to allylic oxidation exists. This oxidation strategy is therefore rarely used for large-scale synthetic applications, limiting the adoption of this retrosynthetic strategy by industrial scientists. Here we describe an electrochemical C-H oxidation strategy that exhibits broad substrate scope, operational simplicity and high chemoselectivity. It uses inexpensive and readily available materials, and represents a scalable allylic C-H oxidation (demonstrated on 100 grams), enabling the adoption of this C-H oxidation strategy in large-scale industrial settings without substantial environmental impact.

  1. C-H bond activation by f-block complexes.

    PubMed

    Arnold, Polly L; McMullon, Max W; Rieb, Julia; Kühn, Fritz E

    2015-01-02

    Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry.

  2. Oxidative esterification via photocatalytic C-H activation

    EPA Pesticide Factsheets

    Direct oxidative esterification of alcohol via photocatalytic C??H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.This dataset is associated with the following publication:Varma , R., S. Verma, R.B.N. Baig, C. Han, and M. Nadagouda. Oxidative esterification via photocatalytic C-H activation. GREEN CHEMISTRY. Royal Society of Chemistry, Cambridge, UK, 18: 251-254, (2015).

  3. Fine Control over Site and Substrate Selectivity in Hydrogen Atom Transfer-Based Functionalization of Aliphatic C-H Bonds.

    PubMed

    Salamone, Michela; Carboni, Giulia; Bietti, Massimo

    2016-10-07

    The selective functionalization of unactivated aliphatic C-H bonds over intrinsically more reactive ones represents an ongoing challenge of synthetic chemistry. Here we show that in hydrogen atom transfer (HAT) from the aliphatic C-H bonds of alkane, ether, alcohol, amide, and amine substrates to the cumyloxyl radical (CumO(•)) fine control over site and substrate selectivity is achieved by means of acid-base interactions. Protonation of the amines and metal ion binding to amines and amides strongly deactivates the C-H bonds of these substrates toward HAT to CumO(•), providing a powerful method for selective functionalization of unactivated or intrinsically less reactive C-H bonds. With 5-amino-1-pentanol, site-selectivity has been drastically changed through protonation of the strongly activating NH2 group, with HAT that shifts to the C-H bonds that are adjacent to the OH group. In the intermolecular selectivity studies, trifluoroacetic acid, Mg(ClO4)2, and LiClO4 have been employed in a orthogonal fashion for selective functionalization of alkane, ether, alcohol, and amide (or amine) substrates in the presence of an amine (or amide) one. Ca(ClO4)2, that promotes deactivation of amines and amides by Ca(2+) binding, offers, moreover, the opportunity to selectively functionalize the C-H bonds of alkane, ether, and alcohol substrates in the presence of both amines and amides.

  4. Pd-catalyzed C-H fluorination with nucleophilic fluoride.

    PubMed

    McMurtrey, Kate B; Racowski, Joy M; Sanford, Melanie S

    2012-08-17

    The palladium-catalyzed C-H fluorination of 8-methylquinoline derivatives with nucleophilic fluoride is reported. This transformation involves the use of AgF as the fluoride source in combination with a hypervalent iodine oxidant. Both the scope and mechanism of the reaction are discussed.

  5. Project T.E.A.C.H.: An Evaluative Study.

    ERIC Educational Resources Information Center

    Howarth, Les

    A survey of 17 graduates of Project T.E.A.C.H. (Teacher Effectiveness and Classroom Handling), an inservice education program offered through the Ontario (Canada) Public School Men Teacher's Association in conjunction with Lesley College, used closed- and open-ended questions to obtain evaluations of the project's effectiveness. Five project areas…

  6. Enzyme catalysis: C-H activation is a Reiske business

    NASA Astrophysics Data System (ADS)

    Bruner, Steven D.

    2011-05-01

    Enzymes that selectively oxidize unactivated C-H bonds are capable of constructing complex molecules with high efficiency. A new member of this enzyme family is RedG, a Reiske-type oxygenase that catalyses chemically challenging cyclizations in the biosynthesis of prodiginine natural products.

  7. Elaboration of copper-oxygen mediated C-H activation chemistry in consideration of future fuel and feedstock generation.

    PubMed

    Lee, Jung Yoon; Karlin, Kenneth D

    2015-04-01

    To contribute solutions to current energy concerns, improvements in the efficiency of dioxygen mediated C-H bond cleavage chemistry, for example, selective oxidation of methane to methanol, could minimize losses in natural gas usage or produce feedstocks for fuels. Oxidative C-H activation is also a component of polysaccharide degradation, potentially affording alternative biofuels from abundant biomass. Thus, an understanding of active-site chemistry in copper monooxygenases, those activating strong C-H bonds is briefly reviewed. Then, recent advances in the synthesis-generation and study of various copper-oxygen intermediates are highlighted. Of special interest are cupric-superoxide, Cu-hydroperoxo and Cu-oxy complexes. Such investigations can contribute to an enhanced future application of C-H oxidation or oxygenation processes using air, as concerning societal energy goals.

  8. INACTIVATION OF SEXUAL AGGLUTINATION IN HANSENULA WINGEI AND SACCHAROMYCES KLUYVERI BY DISULFIDE-CLEAVING AGENTS.

    PubMed

    TAYLOR, N W

    1964-10-01

    Taylor, Neil W. (Northern Regional Research Laboratory, Peoria, Ill.). Inactivation of sexual agglutination in Hansenula wingei and Saccharomyces kluyveri by disulfide-cleaving agents. J. Bacteriol. 88:929-936. 1964.-Mating types of both Hansenula wingei and Saccharomyces kluyveri can be activated to produce uniformly strong sexual agglutination by treatments with various solvents, such as 8 m LiBr. The strongly agglutinative mating-type preparations were irreversibly inactivated for sexual agglutination by various chemical treatments. Type 5 of H. wingei was inactivated by disulfide-cleaving reagents, but type 21 of H. wingei was not. Type 3 of S. kluyveri was more sensitive than type 26 of S. kluyveri to inactivation by disulfide-cleaving reagents. Comparison of sensitivities to these and other treatments, plus a moderately strong cross-agglutination between type 3 and type 21, indicated that the sexually agglutinative elements on type 3 are similar to type 5, and those of type 21 are similar to those of type 26. Inactivation-rate experiments showed a loss of agglutinative ability according to a sigmoid decrement with time for both types 5 and 21. The apparent extent of inactivation depended markedly on agglutination test conditions. Results of these experiments were interpreted to indicate tentatively, first, that the agglutinative elements of both types of a species are proteins and, second, that several agglutinating linkages are formed between any two cells in sexual agglutination.

  9. An Efficient Catalytic DNA that Cleaves L-RNA

    PubMed Central

    Tram, Kha; Xia, Jiaji; Gysbers, Rachel; Li, Yingfu

    2015-01-01

    Many DNAzymes have been isolated from synthetic DNA pools to cleave natural RNA (D-RNA) substrates and some have been utilized for the design of aptazyme biosensors for bioanalytical applications. Even though these biosensors perform well in simple sample matrices, they do not function effectively in complex biological samples due to ubiquitous RNases that can efficiently cleave D-RNA substrates. To overcome this issue, we set out to develop DNAzymes that cleave L-RNA, the enantiomer of D-RNA, which is known to be completely resistant to RNases. Through in vitro selection we isolated three L-RNA-cleaving DNAzymes from a random-sequence DNA pool. The most active DNAzyme exhibits a catalytic rate constant ~3 min-1 and has a structure that contains a kissing loop, a structural motif that has never been observed with D-RNA-cleaving DNAzymes. Furthermore we have used this DNAzyme and a well-known ATP-binding DNA aptamer to construct an aptazyme sensor and demonstrated that this biosensor can achieve ATP detection in biological samples that contain RNases. The current work lays the foundation for exploring RNA-cleaving DNAzymes for engineering biosensors that are compatible with complex biological samples. PMID:25946137

  10. Palladium-catalyzed allylic C-H fluorination.

    PubMed

    Braun, Marie-Gabrielle; Doyle, Abigail G

    2013-09-04

    The first catalytic allylic C-H fluorination reaction using a nucleophilic fluoride source is reported. Under the influence of a Pd/Cr cocatalyst system, simple olefin substrates undergo fluorination with Et3N·3HF in good yields with high branched:linear regioselectivity. The mild conditions and broad scope make this reaction a powerful alternative to established methods for the preparation of allylic fluorides from prefunctionalized substrates.

  11. Electron cyclotron resonance deposition of a-Si:H and a-C:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Yang, C. L.; Allevato, C. E.; Pool, F. S.

    1989-01-01

    Amorphous silicon (a-Si:H) and amorphous carbon (a-C:H) films have been deposited by electron cyclotron resonance (ECR) microwave plasma enhanced CVD. A high deposition rate of 25 A/sec and a light-to-dark conductivity ratio of 500,000 for a-Si:H films have been achieved by the ECR process using a pure silane plasma. ECR microwave plasmas have been analyzed by in situ optical emission spectroscopy (OES) and have shown a strong H-asterisk emission at 434 nm indicating higher chemical reactivity than RF plasmas. The linear correlation between the film deposition rate and the SiH-asterisk emission intensity of ECR silane plasma suggests that SiH-asterisk species are related to the neutral radicals which are responsible for the a-Si:H film deposition. Hard and soft a-C:H films have been deposited by ECR with and without RF bias power, respectively. The RF bias to the substrate is found to play a critical role in determining the film structure and the carbon bonding configuration of ECR deposited a-C:H films. Raman spectra of these films indicate that ECR deposition conditions can be optimized to produce diamond films.

  12. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.

    PubMed

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W

    2016-03-10

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  13. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.

    2016-11-01

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  14. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    PubMed

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  15. Carbon dioxide utilization via carbonate-promoted C-H carboxylation

    NASA Astrophysics Data System (ADS)

    Banerjee, Aanindeeta; Dick, Graham R.; Yoshino, Tatsuhiko; Kanan, Matthew W.

    2016-03-01

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO32-) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)—a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO32--promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  16. Scalable C-H Oxidation with Copper: Synthesis of Polyoxypregnanes.

    PubMed

    See, Yi Yang; Herrmann, Aaron T; Aihara, Yoshinori; Baran, Phil S

    2015-11-04

    Steroids bearing C12 oxidations are widespread in nature, yet only one preparative chemical method addresses this challenge in a low-yielding and not fully understood fashion: Schönecker's Cu-mediated oxidation. This work shines new light onto this powerful C-H oxidation method through mechanistic investigation, optimization, and wider application. Culminating in a scalable, rapid, high-yielding, and operationally simple protocol, this procedure is applied to the first synthesis of several parent polyoxypregnane natural products, representing a gateway to over 100 family members.

  17. Seeing the B-A-C-H motif

    NASA Astrophysics Data System (ADS)

    Catravas, Palmyra

    2005-09-01

    Musical compositions can be thought of as complex, multidimensional data sets. Compositions based on the B-A-C-H motif (a four-note motif of the pitches of the last name of Johann Sebastian Bach) span several centuries of evolving compositional styles and provide an intriguing set for analysis since they contain a common feature, the motif, buried in dissimilar contexts. We will present analyses which highlight the content of this unusual set of pieces, with emphasis on visual display of information.

  18. STS-30 MS Cleave monitors fluids experiment apparatus (FEA) equipment

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-30 Mission Specialist (MS) Mary L. Cleave monitors fluids experiment apparatus (FEA) equipment and conducts materials science experiments on Atlantis', Orbiter Vehicle (OV) 104's, middeck. FEA equipment is in configuration for 'Floating Zone Crystal Growth and Purification' experiment. Cleave looks up from portable laptop computer with FEA-2, 35mm camera, and 8mm video camcorder positioned above her in aft locker location. Cleave, wearing polo shirt and light blue flight coveralls, uses knee board note pad to make additional notations. Rockwell International (RI) through its Space Transportation Systems Division, Downey, California, is engaged in a joint endeavor agreement (JEA) with NASA's Office of Commercial Programs in the field for floating zone crystal growth research.

  19. Nickel-Catalyzed Insertion of Alkynes and Electron-Deficient Olefins into Unactivated sp(3) C-H Bonds.

    PubMed

    Maity, Soham; Agasti, Soumitra; Earsad, Arif Mahammad; Hazra, Avijit; Maiti, Debabrata

    2015-08-03

    Insertion of unsaturated systems such as alkynes and olefins into unactivated sp(3) C-H bonds remains an unexplored problem. We herein address this issue by successfully incorporating a wide variety of functionalized alkynes and electron-deficient olefins into the unactivated sp(3) C-H bond of pivalic acid derivatives with excellent syn- and linear- selectivity. A strongly chelating 8-aminoquinoline directing group proved beneficial for these insertion reactions, while an air-stable and inexpensive Ni(II) salt has been employed as the active catalyst.

  20. N-tosyloxycarbamates as a source of metal nitrenes: rhodium-catalyzed C-H insertion and aziridination reactions.

    PubMed

    Lebel, Hélène; Huard, Kim; Lectard, Sylvain

    2005-10-19

    The rhodium-catalyzed decomposition of N-tosyloxycarbamates to generate metal nitrenes which undergo intramolecular C-H insertion or aziridination reaction is described. Aliphatic N-tosyloxycarbamates produce oxazolidinones with high yields and stereospecificity through insertion in benzylic, tertiary, and secondary C-H bonds. Intramolecular aziridination occurs with allylic N-tosyloxycarbamates to produce aziridines as single diastereomers. The reaction proceeds at room temperature using a rhodium catalyst and an excess of potassium carbonate and does not require the use of strong oxidant, such as hypervalent iodine reagents. A rhodium nitrene species is presumably involved, as both reactions are stereospecific.

  1. Amidines for versatile ruthenium(II)-catalyzed oxidative C-H activations with internal alkynes and acrylates.

    PubMed

    Li, Jie; John, Michael; Ackermann, Lutz

    2014-04-25

    Cationic ruthenium complexes derived from KPF6 or AgOAc enabled efficient oxidative CH functionalizations on aryl and heteroaryl amidines. Thus, oxidative annulations of diversely decorated internal alkynes provided expedient access to 1-aminoisoquinolines, while catalyzed C-H activations with substituted acrylates gave rise to structurally novel 1-iminoisoindolines. The powerful ruthenium(II) catalysts displayed a remarkably high site-, regio- and, chemoselectivity. Therefore, the catalytic system proved tolerant of a variety of important electrophilic functional groups. Detailed mechanistic studies provided strong support for the cationic ruthenium(II) catalysts to operate by a facile, reversible C-H activation.

  2. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  3. German cockroach frass proteases cleave pro-matrix metalloproteinase-9.

    PubMed

    Hughes, Valerie S; Page, Kristen

    2007-01-01

    Matrix metalloproteinase (MMP)-9, secreted as pro-MMP-9, is cleaved by serine proteases at the N-terminus to generate active MMP-9. Pro-MMP-9 has been found in the bronchoalveolar lavage fluid of patients with asthma. Because many inhaled aeroallergens contain active proteases, the authors sought to determine whether German cockroach (GC) fecal remnants (frass) and house dust mite (HDM) were able to cleave pro-MMP-9. Treatment of recombinant human (rh) pro-MMP-9 with GC frass resulted in a dose- and time-dependent cleavage. This was abrogated by pretreating frass with an inhibitor of serine, but not cysteine protease activity. GC frass also induced cleavage of pro-MMP-9 from primary human neutrophils dependent on the active serine proteases in GC frass. HDM was less potent at cleaving pro-MMP-9. Alpha1-antitrypsin (A1AT), a naturally occurring protease inhibitor, attenuated GC frass-induced cleavage of pro-MMP-9. A1AT partially inactivated the serine protease activity in GC frass, while GC frass cleaved A1AT in a dose- and time-dependent manner. These data suggest that GC frass-derived serine proteases could regulate the activity of MMP-9 and that A1AT may play an important role in modulating GC frass activity in vivo. These data suggest a mechanism by which inhalation of GC frass could regulate airway remodeling through the activation of pro-MMP-9.

  4. Dirhodium Catalyzed C-H Arene Amination using Hydroxylamines

    PubMed Central

    Paudyal, Mahesh P.; Adebesin, Adeniyi Michael; Burt, Scott R.; Ess, Daniel H.; Ma, Zhiwei; Kürti, László; Falck, John R.

    2016-01-01

    Primary and N-alkyl arylamine motifs are key functional groups in pharmaceuticals, agrochemicals and functional materials as well as in bioactive natural products. However, there is a dearth of generally applicable methods for the direct replacement of aryl hydrogens with –NH2/-NH-alkyl moieties. Here, we present a mild dirhodium-catalyzed C-H amination for conversion of structurally diverse monocyclic and fused aromatics to the corresponding primary and N-alkyl arylamines using either NH2/NHalkyl-O-(sulfonyl)hydroxylamines as aminating agents; the relatively weak RSO2O-N bond functions as an internal oxidant. The methodology is operationally simple, scalable, and fast at or below ambient temperature, furnishing arylamines in moderate-to-good yields and with good regioselectivity. It can be readily extended to the synthesis of fused N-heterocycles. PMID:27609890

  5. Catalytic C-H bond silylation of aromatic heterocycles.

    PubMed

    Toutov, Anton A; Liu, Wen-Bo; Betz, Kerry N; Stoltz, Brian M; Grubbs, Robert H

    2015-12-01

    This protocol describes a method for the direct silylation of the carbon-hydrogen (C-H) bond of aromatic heterocycles using inexpensive and abundant potassium tert-butoxide (KOt-Bu) as the catalyst. This catalytic cross-dehydrogenative coupling of simple hydrosilanes and various electron-rich aromatic heterocycles enables the synthesis of valuable silylated heteroarenes. The products thus obtained can be used as versatile intermediates, which facilitate the divergent synthesis of pharmaceutically relevant compound libraries from a single Si-containing building block. Moreover, a variety of complex Si-containing motifs, such as those produced by this protocol, are being actively investigated as next-generation therapeutic agents, because they can have improved pharmacokinetic properties compared with the original all-carbon drug molecules. Current competing methods for C-H bond silylation tend to be incompatible with functionalities, such as Lewis-basic heterocycles, that are often found in pharmaceutical substances; this leaves de novo synthesis as the principal strategy for preparation of the target sila-drug analog. Moreover, competing methods tend to be limited in the scope of hydrosilane that can be used, which restricts the breadth of silicon-containing small molecules that can be accessed. The approach outlined in this protocol enables the chemoselective and regioselective late-stage silylation of small heterocycles, including drugs and drug derivatives, with a broad array of hydrosilanes in the absence of precious metal catalysts, stoichiometric reagents, sacrificial hydrogen acceptors or high temperatures. Moreover, H2 is the only by-product generated. The procedure normally requires 48-75 h to be completed.

  6. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  7. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    SciTech Connect

    Chen, Xinchun Kato, Takahisa

    2014-01-28

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ∼ 0.51 and β ∼ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ∼ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface “polishing” process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ∼9–10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp{sup 2}-bonded a–C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ∼0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N{sub 2} atmosphere. An extremely low friction coefficient of ∼0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  8. Growth mechanism and composition of ultrasmooth a-C:H:Si films grown from energetic ions for superlubricity

    NASA Astrophysics Data System (ADS)

    Chen, Xinchun; Kato, Takahisa

    2014-01-01

    Growth mechanism and ion energy dependence of composition of ultrasmooth a-C:H:Si films grown from ionization of tetramethylsilane (TMS) and toluene mixture at a fixed gas ratio have been investigated by varying the applied bias voltage. The dynamic scaling theory is employed to evaluate the roughness evolution of a-C:H:Si films, and to extract roughness and growth exponents of α ˜ 0.51 and β ˜ 0, respectively. The atomically smooth surface of a-C:H:Si films with Ra ˜ 0.1 nm is thermally activated by the energetic ion-impact induced subsurface "polishing" process for ion dominated deposition. The ion energy (bias voltage) plays a paramount role in determining the hydrogen incorporation, bonding structure and final stoichiometry of a-C:H:Si films. The hydrogen content in the films measured by ERDA gradually decreases from 36.7 to 17.3 at. % with increasing the bias voltage from 0.25 to 3.5 kV, while the carbon content in the films increases correspondingly from 52.5 to 70.1 at. %. The Si content is kept almost constant at ˜9-10 at. %. Depending on the ion-surface interactions, the bonding structure of a-C:H:Si films grown in different ion energy regions evolves from chain-developed polymer-like to cross-linked diamond-like to sp2-bonded a-C as revealed by XPS, Raman, and FTIR analysis. Such a structural evolution is reflected in their measured nanomechanical properties such as hardness, modulus, and compressive stress. An enhanced viscoplastic behavior (i.e., viscoplastic exponent of ˜0.06) is observed for polymeric a-C:H:Si films. A hydrogen content threshold (H > 20 at. %) exists for the as-grown a-C:H:Si films to exhibit superlow friction in dry N2 atmosphere. An extremely low friction coefficient of ˜0.001 can be obtained for polymer-like a-C:H:Si film. These near-frictionless a-C:H:Si films are strongly promising for applications in industrial lubricating systems.

  9. Enhanced Reactivity in Hydrogen Atom Transfer from Tertiary Sites of Cyclohexanes and Decalins via Strain Release: Equatorial C-H Activation vs Axial C-H Deactivation.

    PubMed

    Salamone, Michela; Ortega, Vanesa B; Bietti, Massimo

    2015-05-01

    Absolute rate constants for hydrogen atom transfer (HAT) from cycloalkanes and decalins to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. Very similar reactivities were observed for the C-H bonds of cyclopentane and cyclohexane, while the tertiary C-H bond of methylcyclopentane was found to be 6 times more reactive than the tertiary axial C-H bond of methylcyclohexane, pointing toward a certain extent of tertiary axial C-H bond deactivation. Comparison between the cis and trans isomers of 1,2-dimethylcyclohexane, 1,4-dimethylcyclohexane and decalin provides a quantitative evaluation of the role played by strain release in these reactions. kH values for HAT from tertiary equatorial C-H bonds were found to be at least 1 order of magnitude higher than those for HAT from the corresponding tertiary axial C-H bonds (kH(eq)/kH(ax) = 10-14). The higher reactivity of tertiary equatorial C-H bonds was explained in terms of 1,3-diaxial strain release in the HAT transition state. Increase in torsional strain in the HAT transition state accounts instead for tertiary axial C-H bond deactivation. The results are compared with those obtained for the corresponding C-H functionalization reactions by dioxiranes and nonheme metal-oxo species indicating that CumO(•) can represent a convenient model for the reactivity patterns of these oxidants.

  10. Palladium-Catalyzed Construction of Heteroatom-Containing π-Conjugated Systems by Intramolecular Oxidative C-H/C-H Coupling Reaction.

    PubMed

    Saito, Kenta; Chikkade, Prasanna Kumara; Kanai, Motomu; Kuninobu, Yoichiro

    2015-06-01

    Synthesis of heteroatom-containing ladder-type π-conjugated molecules was successfully achieved via a palladium-catalyzed intramolecular oxidative C-H/C-H cross-coupling reaction. This reaction provides a variety of π-conjugated molecules bearing heteroatoms, such as nitrogen, oxygen, phosphorus, and sulfur atoms, and a carbonyl group. The π-conjugated molecules were synthesized efficiently, even in gram scale, and larger π-conjugated molecules were also obtained by a double C-H/C-H cross-coupling reaction and successive oxidative cycloaromatization.

  11. Biochemical analysis of hatchet self-cleaving ribozymes

    PubMed Central

    Li, Sanshu; Lünse, Christina E.; Harris, Kimberly A.; Breaker, Ronald R.

    2015-01-01

    Hatchet RNAs are members of a novel self-cleaving ribozyme class that was recently discovered by using a bioinformatics search strategy. The consensus sequence and secondary structure of this class includes 13 highly conserved and numerous other modestly conserved nucleotides interspersed among bulges linking four base-paired substructures. A representative hatchet ribozyme from a metagenomic source requires divalent ions such as Mg2+ to promote RNA strand scission with a maximum rate constant of ∼4 min−1. As with all other small self-cleaving ribozymes discovered to date, hatchet ribozymes employ a general mechanism for catalysis involving the nucleophilic attack of a ribose 2′-oxygen atom on an adjacent phosphorus center. Kinetic characteristics of the reaction demonstrate that members of this ribozyme class have an essential requirement for divalent metal ions and that they might have a complex active site that employs multiple catalytic strategies to accelerate RNA cleavage by internal phosphoester transfer. PMID:26385510

  12. Quantum wire structures by MBE overgrowth on a cleaved edge

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Loren; Störmer, H. L.; West, K.; Baldwin, K. W.

    1991-05-01

    We have recently demonstrated the existence of a high mobility (6.1×10 5 cm 2/V·s) two-dimensional electron gas (2DEG) at the (110) vicinal surface formed by cleaving [L. Pfeiffer et al., Appl. Phys. Letters 56 (1990) 1697] a (100) GaAs wafer. We have now expanded this work to modulation-doped overgrowth on the cleaved edge of a multiperiod superlattice. We report here the first observation of the quantum Hall characteristics in such a two-dimensional system containing an atomically precise 71 Å GaAs by 31 Å Al 0.24Ga 0.76As compositional superlattice. The onset of Shubnikov-De Haas oscillations occurs at only 3000 G, implying the Landau cyclotron orbits are phase coherent over diameters as large as 5000 Å, corresponding to more than 200 GaAs/AlGaAs interface crossings.

  13. T. thermophila group I introns that cleave amide bonds

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor)

    1997-01-01

    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  14. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    SciTech Connect

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  15. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    PubMed

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  16. Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis.

    PubMed

    Kalyani, Dipannita; McMurtrey, Kate B; Neufeldt, Sharon R; Sanford, Melanie S

    2011-11-23

    This communication describes the development of a room-temperature ligand-directed C-H arylation reaction using aryldiazonium salts. This was achieved by the successful merger of palladium-catalyzed C-H functionalization and visible-light photoredox catalysis. The new method is general for a variety of directing groups and tolerates many common functional groups.

  17. Oxidative addition of methane and benzene C--H bonds to rhodium center: A DFT study

    NASA Astrophysics Data System (ADS)

    Bi, Siwei; Zhang, Zhenwei; Zhu, Shufen

    2006-11-01

    A density functional theory study on mechanisms of the oxidative addition of methane and benzene C-H bonds to the rhodium center containing Cp and PMe 3 ligands has been performed. Our calculated results confirm that the C-H bond cleavage from a sigma complex to a hydride alkyl complex is the rate-determining step. Compared with the case of methane C-H bond, the oxidative addition of benzene C-H bond is more favorable kinetically and thermodynamically. Stronger backdonation from metal center to the σ ∗ antibonding orbital of benzene C-H bond is responsible for the observations.

  18. Enzyme-controlled nitrogen-atom transfer enables regiodivergent C-H amination.

    PubMed

    Hyster, Todd K; Farwell, Christopher C; Buller, Andrew R; McIntosh, John A; Arnold, Frances H

    2014-11-05

    We recently demonstrated that variants of cytochrome P450BM3 (CYP102A1) catalyze the insertion of nitrogen species into benzylic C-H bonds to form new C-N bonds. An outstanding challenge in the field of C-H amination is catalyst-controlled regioselectivity. Here, we report two engineered variants of P450BM3 that provide divergent regioselectivity for C-H amination-one favoring amination of benzylic C-H bonds and the other favoring homo-benzylic C-H bonds. The two variants provide nearly identical kinetic isotope effect values (2.8-3.0), suggesting that C-H abstraction is rate-limiting. The 2.66-Å crystal structure of the most active enzyme suggests that the engineered active site can preorganize the substrate for reactivity. We hypothesize that the enzyme controls regioselectivity through localization of a single C-H bond close to the iron nitrenoid.

  19. Palladium mediated intramolecular multiple C-X/C-H cross coupling and C-H activation: synthesis of carbazole alkaloids calothrixin B and murrayaquinone A.

    PubMed

    Kaliyaperumal, Srinivasan A; Banerjee, Shyamapada; U K, Syam Kumar

    2014-08-28

    Straightforward palladium mediated syntheses of calothrixin B and murrayaquinone A are described. Regioselective palladium mediated intramolecular multiple C-X/C-H cross coupling reaction on N-(4-((2-bromophenyl)amino)-2,5-dimethoxybenzyl)-N-(2-iodophenyl)acetamide followed by CAN oxidation afforded calothrixin B in excellent yield in two steps. A linear synthesis has also been developed for calothrixin B. Utilizing C-H functionalization as well as palladium mediated intramolecular C-X/C-H cross coupling reaction, murrayaquinone A synthesis was achieved. Overall, these synthetic methodologies provide an expedient entry to these biologically active alkaloids in a short reaction sequence.

  20. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K(+)) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K(+) ions prefer to minimize the number of nearest neighbour K(+) ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K(+) distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  1. Laser cleaving on glass sheets with multiple laser beams

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Liang; Lin, Jehnming

    2008-05-01

    A multiple laser system consisting of CO 2 line-shaped and Nd-YAG pulsed lasers was applied to cleave a soda-lime glass substrate in this study. Due to an increase of absorption coefficient of the wavelength of 1.06 μm for Nd-YAG laser on the soda-lime glass at high temperatures, the glass sheets were preheated by the CO 2 line-shaped laser and followed with the pulsed Nd-YAG laser to generate a mixture fracture mode on the substrate. The stress distribution on the glass substrate cleaved by the multiple laser beams has been analyzed. An uncoupled thermal-elastic analysis based on the finite-element method (FEM) was made. The numerical results show that the stress field of the fracture region is caused by a complex stress state and the cleavages are significantly affected by the pulsed laser. A clean cut of the soda-lime glass substrate could be obtained due to a large shear stress state on the cutting direction with the pulsed laser radiated on the glass substrate.

  2. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-03-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  3. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    PubMed Central

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-01-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene. PMID:28262710

  4. Interplay of Tunneling, Two-State Reactivity, and Bell-Evans-Polanyi Effects in C-H Activation by Nonheme Fe(IV)O Oxidants.

    PubMed

    Mandal, Debasish; Shaik, Sason

    2016-02-24

    The study of C-H bond activation reactions by nonheme Fe(IV)O species with nine hydrocarbons shows that the kinetic isotope effect (KIE) involves strong tunneling and is a signature of the reactive spin states. Theory reproduces the observed spike-like appearance of plots of KIE(exp) against the C-H bond dissociation energy, and its origins are discussed. The experimentally observed Bell-Evans-Polanyi correlations, in the presence of strong tunneling, are reproduced, and the pattern is rationalized.

  5. Transition-metal-catalyzed additions of C-H bonds to C-X (X = N, O) multiple bonds via C-H bond activation.

    PubMed

    Yan, Guobing; Wu, Xiangmei; Yang, Minghua

    2013-09-14

    Chemical transformations via catalytic C-H bond activation have been established as one of the most powerful tools in organic synthetic chemistry. Transition-metal-catalyzed addition reactions of C-H bonds to polar C-X (X = N, O) multiple bonds, such as aldehydes, ketones, imines, isocyanates, nitriles, isocyanides, carbon monoxide and carbon dioxide, have undergone a rapid development in recent years. In this review, recent advances in this active area have been highlighted and their mechanisms have been discussed.

  6. A study on Zr-Ir multiple bonding active for C-H bond cleavage.

    PubMed

    Oishi, Masataka; Oshima, Masato; Suzuki, Hiroharu

    2014-07-07

    Zr-Ir hydrido complexes with ansa-(cyclopentadienyl)(amide) as the supporting ligand in the zirconium fragment, e.g., (L(1)ZrR)(Cp*Ir)(μ-H)3 [L(1) = Me2Si(η(5)-C5Me4)(N(t)Bu), R = Cl (5), Ph (7), Me (10), alkyl, and aryl] were designed, synthesized, and isolated as tractable early-late heterodinuclear complexes. Despite the presence of the three supporting hydride ligands, Zr-Ir distances in the crystal structures of 5, alkyl, and aryl complexes [2.74-2.76 Å] were slightly longer than the sum of the element radii of Zr and Ir [2.719 Å]. These hydrocarbyl complexes displayed the thermolytic C-H activation of a variety of aromatic compounds and several organometallic compounds. Also, the substrate scope and limitation in the Zr-Ir system were studied. The regiochemical outcomes during the C-H activation of pyridine derivatives and methoxyarenes suggested the in situ generation of a Lewis acidic active intermediate, i.e., (L(1)Zr)(Cp*IrH2) (III). The existence of III and relevant σ-complex intermediates {L(1)Zr(η(2)-R-H)}(Cp*IrH2) (IIR) (R = Me, Ph) in the ligand exchange was demonstrated by the direct isolation of a Et3PO-adduct of III (39b) from 7 and kinetic studies. The structure of the direct Zr-Ir bonds in IIPh, IIMe, III, and 39b were probed using computational studies. The unprecedented strong M-M' interactions in the early-late heterobimetallic (ELHB) complexes have been proposed herein.

  7. A General Strategy for the Nickel-Catalyzed C-H Alkylation of Anilines.

    PubMed

    Ruan, Zhixiong; Lackner, Sebastian; Ackermann, Lutz

    2016-02-24

    The C-H alkylation of aniline derivatives with both primary and secondary alkyl halides was achieved with a versatile nickel catalyst of a vicinal diamine ligand. Step-economic access to functionalized 2-pyrimidyl anilines, key structural motifs in anticancer drugs, is thus provided. The C-H functionalization proceeded through facile C-H activation and SET-type C-X bond cleavage with the assistance of a monodentate directing group, which could be removed in a traceless fashion.

  8. A recombinant RNA bacteriophage system to identify functionally important nucleotides in a self-cleaving ribozyme

    PubMed Central

    2014-01-01

    Background RNA bacteriophages like Qbeta and MS2 are well known for their high mutation rate, short infection cycle and strong selection against foreign inserts. The hammerhead ribozyme (HHRz) is a small self-cleaving RNA molecule whose active residues have previously been identified by mutational analysis of each individual base. Here the functionally important bases of HHRz were determined in a single screening experiment by inserting the HHRz into the genome of MS2. Findings The minimal HHRz of satellite Tobacco ringspot virus was cloned into the genome of RNA bacteriophage MS2. Sequence analysis of the surviving phages revealed that the majority had acquired single base-substitutions that apparently inactivated the HHRz. The positions of these substitutions exactly matched that of the previously determined core residues of the HHRz. Conclusions Natural selection against a ribozyme in the genome of MS2 can be used to quickly identify nucleotides required for self-cleavage. PMID:24946926

  9. Rh(III)-Catalyzed meta-C-H Olefination Directed by a Nitrile Template.

    PubMed

    Xu, Hua-Jin; Lu, Yi; Farmer, Marcus E; Wang, Huai-Wei; Zhao, Dan; Kang, Yan-Shang; Sun, Wei-Yin; Yu, Jin-Quan

    2017-02-15

    A range of Rh(III)-catalyzed ortho-C-H functionalizations have been developed; however, extension of this reactivity to remote C-H functionalizations through large-ring rhodacyclic intermediates has yet to be demonstrated. Herein we report the first example of the use of a U-shaped nitrile template to direct Rh(III)-catalyzed remote meta-C-H activation via a postulated 12-membered macrocyclic intermediate. Because the ligands used for Rh(III) catalysts are significantly different from those of Pd(II) catalysts, this offers new opportunities for future development of ligand-promoted meta-C-H activation reactions.

  10. An Iminium Salt Organocatalyst for Selective Aliphatic C-H Hydroxylation.

    PubMed

    Wang, Daoyong; Shuler, William G; Pierce, Conor J; Hilinski, Michael K

    2016-08-05

    The first examples of catalysis of aliphatic C-H hydroxylation by an iminium salt are presented. The method allows the selective organocatalytic hydroxylation of unactivated 3° C-H bonds at room temperature using hydrogen peroxide as the terminal oxidant. Hydroxylation of an unactivated 2° C-H bond is also demonstrated. Furthermore, improved functional group compatibility over other catalytic methods is reported in the form of selectivity for aliphatic C-H hydroxylation over alcohol oxidation. On the basis of initial mechanistic studies, an oxaziridinium species is proposed as the active oxidant.

  11. Pd(II)-catalyzed ortho- or meta-C-H olefination of phenol derivatives.

    PubMed

    Dai, Hui-Xiong; Li, Gang; Zhang, Xing-Guo; Stepan, Antonia F; Yu, Jin-Quan

    2013-05-22

    A combination of weakly coordinating auxiliaries and ligand acceleration allows for the development of both ortho- and meta-selective C-H olefination of phenol derivatives. These reactions demonstrate the feasibility of directing C-H functionalizations when functional groups are distal to target C-H bonds. The meta-C-H functionalization of electron-rich phenol derivatives is unprecedented and orthogonal to previous electrophilic substitution of phenols in terms of regioselectivity. These methods are also applied to functionalize α-phenoxyacetic acids, a fibrate class of drug scaffolds.

  12. Pressure-dependent studies on hydration of the C-H group in formic acid

    NASA Astrophysics Data System (ADS)

    Chang, Hai-Chou; Jiang, Jyh-Chiang; Chao, Ming-Chi; Lin, Ming-Shan; Lin, Sheng Hsien; Chen, Hsin-Yen; Hsueh, Hung-Chung

    2001-11-01

    The infrared spectroscopic profiles of HCOOD/D2O mixtures were measured as a function of pressure and concentration. The C-H bond of HCOOD shortens as the pressure is elevated, while the increase in C-H bond length upon diluting HCOOD with D2O was observed. Based on the experimental results, the shift in frequency of C-H stretching band is concluded to relate to the mechanism of the hydration of the C-H group and the water structure in the vicinity of the C-H group. The pressure-dependent results can be attributed to the strengthening of C-H---O electrostatic/dispersion interaction upon increasing pressure. The observations are in accord with ab initio calculation forecasting a blueshift of the C-H stretching mode via C-H---O interaction in HCOOD-water/(HCOOD)2-(D2O) complexes relative to the noninteracting monomer/dimer. Hydrogen-bonding nonadditivity and the size of water clusters are suggested to be responsible to cause the redshift in C-H stretching mode upon dilution HCOOD with D2O.

  13. Importance of C-H-donor and C-H-anion contact interactions for the crystal packing, the lattice softness and the superconducting transition temperatures of organic conducting salts

    SciTech Connect

    Whangbo, M.-H.; Novoa, J.J.; Jung, D. . Dept. of Chemistry); Williams, J.M.; Kinj, A.M.; Wang, H.H.; Geiser, U.; Beno, M.A.; Carlson, K.D. )

    1990-01-01

    The organic donor molecule BEDT-TTF and its analogs 2--4 have yielded a number of ambient-pressure superconducting salts. What structural and electronic factors govern the magnitudes of their superconducting transition temperature {Tc} has been a topic of intense studies. Examination of the band electronic structures of closely related superconducting salts shows, that the magnitudes of their {Tc}'s are primarily determined by the softness of their crystal lattices. The crystal packing and the lattice softness of organic donor salts are strongly influenced by the donor{hor ellipsis}donor and donor{hor ellipsis}anion contact interactions involving the donor-molecule C-H bonds. In the present work, we briefly review the electronic structures of some representative organic salt superconductors and discuss the softness of their crytsal lattices on the basis of the interaction energies calculated for the C-H{hor ellipsis}donor and C-H{hor ellipsis}anion contact interactions. 34 refs., 14 figs., 8 tabs.

  14. Chemistry and biology of self-cleaving ribozymes

    PubMed Central

    Jimenez, Randi M.; Polanco, Julio A.; Lupták, Andrej

    2015-01-01

    Self-cleaving ribozymes were discovered thirty years ago, but their biological distribution and catalytic mechanisms are only beginning to be defined. Each ribozyme family is defined by a distinct structure with unique active sites accelerating the same transesterification reaction across the families. Biochemical studies show that general acid-base catalysis is the most common mechanism of self-cleavage, but metal ions and metabolites can be employed as cofactors. Ribozymes have been discovered in highly diverse genomic contexts throughout nature, from viroids to vertebrates. Their biological roles include self-scission during rolling-circle replication of RNA genomes, co-transcriptional processing of retrotransposons, and metabolite-dependent gene expression regulation in bacteria. Other examples, including highly conserved mammalian ribozymes, suggest that many new biological roles are yet to be discovered. PMID:26481500

  15. Ruthenium-catalyzed direct C-H amidation of arenes including weakly coordinating aromatic ketones.

    PubMed

    Kim, Jiyu; Kim, Jinwoo; Chang, Sukbok

    2013-06-03

    C-H activation: The ruthenium-catalyzed direct sp(2) C-H amidation of arenes by using sulfonyl azides as the amino source is presented (see scheme). A wide range of substrates were readily amidated including arenes bearing weakly coordinating groups. Synthetic utility of the thus obtained products was demonstrated in the preparation of biologically active heterocycles.

  16. The C-H Dissociation Energy of C2H6

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    The C-H bond energy in C2H6 is computed to be 99.76 +/- 0.35 kcal/mol, which is in excellent agreement with the most recent experimental values. The calculation of the C-H bond energy by direct dissociation and by an isodesmic reaction is discussed.

  17. Fabrication of submicron devices on the (011) cleave surface of a cleaved-edge-overgrowth GaAs/AlGaAs crystal

    NASA Astrophysics Data System (ADS)

    Chang, A. M.; Zhang, Hao; Pfeiffer, L. N.; West, K. W.

    2012-03-01

    We describe the fabrication of submicron devices on the (011) cleave surface of a GaAs heterostructure crystal, in which this surface is extremely narrow. Special purpose devices are produced, which take advantage of the unique characteristics of cleaved-edge-overgrowth. The successful fabrication relies on understanding the surface tension of the electron beam polymethyl methacrylate resist, the workable degree of variation in resist thickness, and on gluing the crystal onto a backing substrate to increase structural strength. We demonstrate functional gate-controlled quantum point contact constrictions placed 9 μm from one edge of the cleave surface.

  18. Double C-H functionalization in sequential order: direct synthesis of polycyclic compounds by a palladium-catalyzed C-H alkenylation-arylation cascade.

    PubMed

    Ohno, Hiroaki; Iuchi, Mutsumi; Kojima, Naoto; Yoshimitsu, Takehiko; Fujii, Nobutaka; Tanaka, Tetsuaki

    2012-04-23

    Palladium-catalyzed cascade C-H alkenylation and arylation provides convenient access to polycyclic aromatic compounds. Treatment of 3-bromoaniline derivatives bearing a bromocinnamyl group on the nitrogen atom with a catalytic amount of [Pd(OAc)(2)] and PCy(3)·HBF(4) in the presence of Cs(2)CO(3) in dioxane affords naphthalene-fused indole derivatives in good yields. This double cyclization reaction is also applicable to heterocyclic substrates, giving fused indoles containing a heteroaromatic ring such as dibenzofuran, dibenzothiophene, carbazole, indole, or benzofuran through heterocyclic C-H arylation. When using a 2,6-unsubstituted aniline derivative, the first C-H arylation preferentially proceeds at the more hindered position of the aniline ring.

  19. Surface-Controlled Mono/Diselective ortho C-H Bond Activation.

    PubMed

    Li, Qing; Yang, Biao; Lin, Haiping; Aghdassi, Nabi; Miao, Kangjian; Zhang, Junjie; Zhang, Haiming; Li, Youyong; Duhm, Steffen; Fan, Jian; Chi, Lifeng

    2016-03-02

    One of the most charming and challenging topics in organic chemistry is the selective C-H bond activation. The difficulty arises not only from the relatively large bond-dissociation enthalpy, but also from the poor reaction selectivity. In this work, Au(111) and Ag(111) surfaces were used to address ortho C-H functionalization and ortho-ortho couplings of phenol derivatives. More importantly, the competition between dehydrogenation and deoxygenation drove the diversity of reaction pathways of phenols on surfaces, that is, diselective ortho C-H bond activation on Au(111) surfaces and monoselective ortho C-H bond activation on Ag(111) surfaces. The mechanism of this unprecedented phenomenon was extensively explored by scanning tunneling microscopy, density function theory, and X-ray photoelectron spectroscopy. Our findings provide new pathways for surface-assisted organic synthesis via the mono/diselective C-H bond activation.

  20. Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C-H Bonds.

    PubMed

    Larsen, Matthew A; Cho, Seung Hwan; Hartwig, John

    2016-01-27

    We report the iridium-catalyzed borylation of primary and secondary alkyl C-H bonds directed by a Si-H group to form alkylboronate esters site selectively. The reactions occur with high selectivity at primary C-H bonds γ to the hydrosilyl group to form primary alkyl bisboronate esters. In the absence of such primary C-H bonds, the borylation occurs selectively at a secondary C-H bond γ to the hydrosilyl group, and these reactions of secondary C-H bonds occur with high diastereoselectivity. The hydrosilyl-containing alkyl boronate esters formed by this method undergo transformations selectively at the carbon-boron or carbon-silicon bonds of these products under distinct conditions to give the products of amination, oxidation, and arylation.

  1. C-H bonds as ubiquitous functionality: preparation of multiple regioisomers of arylated 1,2,4-triazoles via C-H arylation.

    PubMed

    Joo, Jung Min; Guo, Pengfei; Sames, Dalibor

    2013-01-18

    We describe a general approach for the synthesis of complex aryl 1,2,4-triazoles. The electronic character of the C-H bonds and the triazole ring allows for the regioselective C-H arylation of 1-alkyl- and 4-alkyltriazoles under catalytic conditions. We have also developed the SEM and THP switch as well as trans-N-alkylation, which enable sequential arylation of the triazole ring to prepare 3,5-diaryltriazoles. This new strategy provides rapid access to a variety of arylated 1,2,4-triazoles and well complements existing cyclization methods.

  2. Structure of cleaved (001) USb2 single crystal

    SciTech Connect

    Chen, Shao-ping; Hawley, Marilyn; Bauer, Eric D; Stockum, Phil B; Manoharan, Hari C

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features observed in the STM will be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites) and the presence of contaminants

  3. Low-energy reaction rate constants for the Ni+-assisted decomposition of acetaldehyde: observation of C-H and C-C activation.

    PubMed

    Dee, S Jason; Castleberry, Vanessa A; Villarroel, Otsmar J; Laboren, Ivanna E; Bellert, Darrin J

    2010-02-04

    Rate constants for the low-energy Ni(+)-assisted dissociative reaction of acetaldehyde have been measured under jet-cooled conditions in the gas phase. The rate constants are acquired through monitoring the time dependence of fragment Ni(+)CO formation. The decomposition of the precursor Ni(+)-acetaldehyde cluster ion proceeds via consecutive, parallel reaction coordinates that originate with the Ni(+)-assisted cleavage of either a C-C or an aldehyde C-H bond. The energies used to initiate these reactions are well below that required to cleave sigma-bonds in the isolated acetaldehyde molecule. Direct measurement of the reaction kinetics over a range of energies indicates that the rate-limiting step in the dissociative mechanism changes at cluster ion internal energies = 17,200 +/- 400 cm(-1). Arguments are presented that this energy marks the closure of the dissociative coordinate that initiates with C-H sigma-bond activation and thus provides a measure of the activation energy of this dissociative pathway.

  4. Strong Interaction

    SciTech Connect

    Karsch, F.; Vogelsang, V.

    2009-09-29

    We will give here an overview of our theory of the strong interactions, Quantum Chromo Dynamics (QCD) and its properties. We will also briefly review the history of the study of the strong interactions, and the discoveries that ultimately led to the formulation of QCD. The strong force is one of the four known fundamental forces in nature, the others being the electromagnetic, the weak and the gravitational force. The strong force, usually referred to by scientists as the 'strong interaction', is relevant at the subatomic level, where it is responsible for the binding of protons and neutrons to atomic nuclei. To do this, it must overcome the electric repulsion between the protons in an atomic nucleus and be the most powerful force over distances of a few fm (1fm=1 femtometer=1 fermi=10{sup -15}m), the typical size of a nucleus. This property gave the strong force its name.

  5. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    PubMed Central

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; Nakayasu, Ernesto S.; Staiger, Christopher J.

    2017-01-01

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen. PMID:28129393

  6. Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Solaymani, S.; Akbarzadeh Pasha, M.; Vesaghi, M. A.

    2012-11-01

    NiCu NPs @ a-C:H thin films with different Cu content were prepared by co-deposition by RF-sputtering and RF-plasma enhanced chemical vapor deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. The prepared samples were used as catalysts for growing multi-wall carbon nanotubes (MWCNTs) from liquid petroleum gas (LPG) at 825 °C by thermal chemical vapor deposition (TCVD). By addition of Cu NPs @ a-C:H thin layer as substrate for Ni NPs catalyst, the density of the grown CNTs is greatly enhanced in comparison to bare Si substrate. Furthermore the average diameter of the grown CNTs decreases by decreasing of Cu content of Cu NPs @ a-C:H thin layer. However Cu NPs @ a-C:H by itself has no catalytic property in MWCNTs growth. Morphology and electrical and optical properties of Cu NPs @ a-C:H thin layer is affected by Cu content and each of them is effective parameter on growth of MWCNTs based on Ni NPs catalyst. Moreover, adding of a low amount of Ni NPs doesn't vary optical, electrical and morphology properties of Cu NPs @ a-C:H thin layer but it has a profound effect on its catalytic activity. Finally the density and diameter of MWCNTs can be optimized by selection of the Cu NPs @ a-C:H thin layer as substrate of Ni NPs.

  7. meta-C-H Bromination on Purine Bases by Heterogeneous Ruthenium Catalysis.

    PubMed

    Warratz, Svenja; Burns, David J; Zhu, Cuiju; Korvorapun, Korkit; Rogge, Torben; Scholz, Julius; Jooss, Christian; Gelman, Dmitri; Ackermann, Lutz

    2017-02-01

    Methods for positionally selective remote C-H functionalizations are in high demand. Herein, we disclose the first heterogeneous ruthenium catalyst for meta-selective C-H functionalizations, which enabled remote halogenations with excellent site selectivity and ample scope. The versatile heterogeneous Ru@SiO2 catalyst was broadly applicable and could be easily recovered and reused, which set the stage for the direct fluorescent labeling of purines. In contrast to palladium, rhodium, iridium, or cobalt complexes, solely the ruthenium catalysis manifold provided access to meta-halogenated purine derivatives, illustrating the unique power of ruthenium C-H activation catalysis.

  8. Effective DNA binding and cleaving tendencies of malonic acid coupled transition metal complexes

    NASA Astrophysics Data System (ADS)

    Pravin, Narayanaperumal; Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2016-11-01

    Eight transition metal complexes were designed to achieve maximum biological efficacy. They were characterized by elemental analysis and various other spectroscopic techniques. The monomeric complexes were found to espouse octahedral geometry and non-electrolytic nature. The DNA interaction propensity of the complexes with calf thymus DNA (CT-DNA), studied at physiological pH by spectrophotometric, spectrofluorometric, cyclic voltammetry, and viscometric techniques revealed intercalation as the possible binding mode. Fascinatingly, the complexes were found to exhibit greater binding strength than that of the free ligands. A strong hypochromism and a slight red shift were exhibited by complex 5 among the other complexes. The intrinsic binding constant values of all the complexes compared to cisplatin reveal that they are excellent metallonucleases than that of cisplatin. The complexes were also shown to reveal displacement of the ethidium bromide, a strong intercalator using fluorescence titrations. Gel electrophoresis was used to divulge the competence of the complexes in cleaving the supercoiled pBR322 plasmid DNA. From the results, it is concluded that the complexes, especially 5, are excellent chemical nucleases in the presence of H2O2. Furthermore, the in vitro antimicrobial screening of the complexes exposes that these complexes are excellent antimicrobial agents. Overall the effect of coligands is evident from the results of all the investigations.

  9. Trends in applying C-H oxidation to the total synthesis of natural products.

    PubMed

    Qiu, Yuanyou; Gao, Shuanhu

    2016-04-01

    Covering: 2006 to 2015C-H functionalization remains one of the frontier challenges in organic chemistry and drives quite an active area of research. It has recently been applied in various novel strategies for the synthesis of natural products. It can dramatically increase synthetic efficiency when incorporated into retrosynthetic analyses of complex natural products, making it an essential part of current trends in organic synthesis. In this Review, we focus on selected case studies of recent applications of C-H oxidation methodologies in which the C-H bond has been exploited effectively to construct C-O and C-N bonds in natural product syntheses. Examples of syntheses representing different types of C-H oxidation are discussed to illustrate the potential of this approach and inspire future applications.

  10. Charge-transfer-directed radical substitution enables para-selective C-H functionalization

    NASA Astrophysics Data System (ADS)

    Boursalian, Gregory B.; Ham, Won Seok; Mazzotti, Anthony R.; Ritter, Tobias

    2016-08-01

    Efficient C-H functionalization requires selectivity for specific C-H bonds. Progress has been made for directed aromatic substitution reactions to achieve ortho and meta selectivity, but a general strategy for para-selective C-H functionalization has remained elusive. Herein we introduce a previously unappreciated concept that enables nearly complete para selectivity. We propose that radicals with high electron affinity elicit arene-to-radical charge transfer in the transition state of radical addition, which is the factor primarily responsible for high positional selectivity. We demonstrate with a simple theoretical tool that the selectivity is predictable and show the utility of the concept through a direct synthesis of aryl piperazines. Our results contradict the notion, widely held by organic chemists, that radical aromatic substitution reactions are inherently unselective. The concept of radical substitution directed by charge transfer could serve as the basis for the development of new, highly selective C-H functionalization reactions.

  11. Manganese-catalyzed late-stage aliphatic C-H azidation.

    PubMed

    Huang, Xiongyi; Bergsten, Tova M; Groves, John T

    2015-04-29

    We report a manganese-catalyzed aliphatic C-H azidation reaction that can efficiently convert secondary, tertiary, and benzylic C-H bonds to the corresponding azides. The method utilizes aqueous sodium azide solution as the azide source and can be performed under air. Besides its operational simplicity, the potential of this method for late-stage functionalization has been demonstrated by successful azidation of various bioactive molecules with yields up to 74%, including the important drugs pregabalin, memantine, and the antimalarial artemisinin. Azidation of celestolide with a chiral manganese salen catalyst afforded the azide product in 70% ee, representing a Mn-catalyzed enantioselective aliphatic C-H azidation reaction. Considering the versatile roles of organic azides in modern chemistry and the ubiquity of aliphatic C-H bonds in organic molecules, we envision that this Mn-azidation method will find wide application in organic synthesis, drug discovery, and chemical biology.

  12. Enhanced Reactivity in Dioxirane C-H Oxidations via Strain Release: A Computational and Experimental Study

    PubMed Central

    Zou, Lufeng; Paton, Robert S.; Eschenmoser, Albert; Newhouse, Timothy R.; Baran, Phil S.; Houk, K. N.

    2013-01-01

    The site- and stereo-selectivities of C-H oxidations of substituted cyclohexanes and trans-decalins by dimethyldioxirane (DMDO) were investigated computationally with quantum mechanical density functional theory (DFT). The multi-configuration CASPT2 method was employed on model systems to establish the preferred mechanism and transition state geometry. The reaction pathway involving a rebound step is established to account for the retention of stereochemistry. The oxidation of sclareolide with dioxirane reagents is reported, including the oxidation by the in situ generated tBu-TFDO, a new dioxirane that better discriminates between C-H bonds based on steric effects. The release of 1,3-diaxial strain in the transition state contributes to the site selectivity and enhanced axial reactivity for tertiary C-H bonds, a result of the lowering of distortion energy. In addition to this strain release factor, steric and inductive effects contribute to the rates of C-H oxidation by dioxiranes. PMID:23461537

  13. Characterization of nanocomposite a-C:H/Ag thin films synthesized by a hybrid deposition process

    NASA Astrophysics Data System (ADS)

    Venkatesh, M.; Taktak, S.; Meletis, E. I.

    2015-08-01

    Silver containing amorphous carbon films were deposited on Si wafer using a hybrid deposition process combining d.c. magnetron sputtering and PECVD. The concentration of Ag in the films was varied from 1.3 to 8.3 at % by changing d.c. magnetron current of Ag target. The influence of incorporated Ag in the a-C:H on the atomic bond structure of the films were investigated by XPS, FTIR, Raman, and HRTEM methods of analysis. The XPS, FTIR, and Raman studies demonstrated that as the silver concentration increased in the a-C:H, sp2 bonding content increased and a-C:H films changed to more graphitic structure. The high resolution TEM cross sectional studies revealed that crystalline Ag particles formed with a size in the range of 2-4 nm throughout an amorphous a-C:H matrix.

  14. Synthesis of Dihydropyridines and Pyridines from Imines and Alkynes via C-H Activation

    SciTech Connect

    Ellman, Jonathan A.; Colby, Denise; Bergman, Robert

    2007-11-20

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and {alpha},{beta}-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  15. Synthesis of dihydropyridines and pyridines from imines and alkynes via C-H activation.

    PubMed

    Colby, Denise A; Bergman, Robert G; Ellman, Jonathan A

    2008-03-19

    A convenient one-pot C-H alkenylation/electrocyclization/aromatization sequence has been developed for the synthesis of highly substituted pyridine derivatives from alkynes and alpha,beta-unsaturated N-benzyl aldimines and ketimines that proceeds through dihydropyridine intermediates. A new class of ligands for C-H activation was developed, providing broader scope for the alkenylation step than could be achieved with previously reported ligands. Substantial information was obtained about the mechanism of the reaction. This included the isolation of a C-H activated complex and its structure determination by X-ray analysis; in addition, kinetic simulations using the Copasi software were employed to determine rate constants for this transformation, implicating facile C-H oxidative addition and slow reductive elimination steps.

  16. Asymmetric Allylic C-H Oxidation for the Synthesis of Chromans.

    PubMed

    Wang, Pu-Sheng; Liu, Peng; Zhai, Yu-Jia; Lin, Hua-Chen; Han, Zhi-Yong; Gong, Liu-Zhu

    2015-10-14

    An enantioselective intramolecular allylic C-H oxidation to generate optically active chromans has been accomplished under the cooperative catalysis of a palladium complex of chiral phosphoramidite ligand and 2-fluorobenzoic acid. Mechanistic studies suggest that this reaction commences with a Pd-catalyzed allylic C-H activation event and then undergoes asymmetric allylic alkoxylation. The synthetic significance of the method has been embodied by concisely building up a key chiral intermediate to access (+)-diversonol.

  17. Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C-H Borylation.

    PubMed

    Sadler, Scott A; Hones, Andrew C; Roberts, Bryan; Blakemore, David; Marder, Todd B; Steel, Patrick G

    2015-05-15

    In the absence of a steric directing group, iridium-catalyzed C-H borylation of N-protected indazoles occurs rapidly and selectively at C-3 and the resulting boronate esters can be utilized in a range of downstream conversions. The functional group tolerance of the iridium-catalyzed C-H borylation reaction enables simple and efficient multidirectional syntheses of substituted indazoles to be realized.

  18. A chiral rhodium carboxamidate catalyst for enantioselective C-H amination.

    PubMed

    Zalatan, David N; Du Bois, J

    2008-07-23

    Rh2(S-nap)4, a chiral dirhodium tetracarboxamidate complex, has been developed and shown to be an effective catalyst for the asymmetric, intramolecular C-H amination of sulfamate esters. Enantiomeric excesses range from 60-99% for a collection of disparately substituted 3-arylpropylsulfamates. In addition, Rh2(S-nap)4 is found to promote chemoselective allylic C-H oxidation of unsaturated sulfamates, a property not observed with other dirhodium complexes tested to date.

  19. Cobalt-catalyzed intramolecular C-H amination with arylsulfonyl azides.

    PubMed

    Ruppel, Joshua V; Kamble, Rajesh M; Zhang, X Peter

    2007-11-08

    Cobalt complexes of porphyrins are effective catalysts for intramolecular C-H amination with arylsulfonyl azides. The cobalt-catalyzed process can proceed efficiently under mild and neutral conditions in low catalyst loading without the need of other reagents or additives, generating nitrogen gas as the only byproduct. The catalytic system can be applied to primary, secondary, and tertiary C-H bonds and is suitable for a broad range of arylsulfonyl azides, leading to high-yielding syntheses of various benzosultams.

  20. Structure of an isolated unglycosylated antibody C(H)2 domain.

    PubMed

    Prabakaran, Ponraj; Vu, Bang K; Gan, Jianhua; Feng, Yang; Dimitrov, Dimiter S; Ji, Xinhua

    2008-10-01

    The C(H)2 (C(H)3 for IgM and IgE) domain of an antibody plays an important role in mediating effector functions and preserving antibody stability. It is the only domain in human immunoglobulins (Igs) which is involved in weak interchain protein-protein interactions with another C(H)2 domain solely through sugar moieties. The N-linked glycosylation at Asn297 is conserved in mammalian IgGs as well as in homologous regions of other antibody isotypes. To examine the structural details of the C(H)2 domain in the absence of glycosylation and other antibody domains, the crystal structure of an isolated unglycosylated antibody gamma1 C(H)2 domain was determined at 1.7 A resolution and compared with corresponding C(H)2 structures from intact Fc, IgG and Fc receptor complexes. Furthermore, the oligomeric state of the protein in solution was studied using size-exclusion chromatography. The results suggested that the unglycosylated human antibody C(H)2 domain is a monomer and that its structure is similar to that found in the intact Fc, IgG and Fc receptor complex structures. However, certain structural variations were observed in the Fc receptor-binding sites. Owing to its small size, stability and non-immunogenic Ig template, the C(H)2-domain structure could be useful for the development by protein design of antibody domains exerting effector functions and/or antigen specificity and as a robust scaffold in protein-engineering applications.

  1. Pushing the limits of catalytic C-H amination in polyoxygenated cyclobutanes.

    PubMed

    Nocquet, Pierre-Antoine; Hensienne, Raphaël; Wencel-Delord, Joanna; Laigre, Eugénie; Sidelarbi, Khadidja; Becq, Frédéric; Norez, Caroline; Hazelard, Damien; Compain, Philippe

    2016-03-07

    A synthetic route to a new class of conformationally constrained iminosugars based on a 5-azaspiro[3.4]octane skeleton has been developed by way of Rh(ii)-catalyzed C(sp(3))-H amination. The pivotal stereocontrolled formation of the quaternary C-N bond by insertion into the C-H bonds of the cyclobutane ring was explored with a series of polyoxygenated substrates. In addition to anticipated regioselective issues induced by the high density of activated α-ethereal C-H bonds, this systematic study showed that cyclobutane C-H bonds were, in general, poorly reactive towards catalytic C-H amination. This was demonstrated inter alia by the unexpected formation of a oxathiazonane derivative, which constitutes a very rare example of the formation of a 9-membered ring by way of catalyzed C(sp(3))-H amination. A complete stereocontrol could be however achieved by activating the key insertion position as an allylic C-H bond in combination with reducing the electron density at the undesired C-H insertion sites by using electron-withdrawing protecting groups. Preliminary biological evaluations of the synthesized spiro-iminosugars were performed, which led to the identification of a new class of correctors of the defective F508del-CFTR gating involved in cystic fibrosis.

  2. Ligand Lone-Pair Influence on Hydrocarbon C-H Activation. A Computational Perspective

    SciTech Connect

    Ess, Daniel H.; Gunnoe, T. Brent; Cundari, Thomas R.; Goddard, William A.; Periana, Roy A.

    2010-12-03

    Mid to late transition metal complexes that break hydrocarbon C-H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal-alkyl bond offer a promising strategy for C-H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of cis-(acac)2MX and TpM(L)X (M = Ir, Ru, Os, and Rh; acac = acetylacetonate, Tp = tris(pyrazolyl)borate; X = CH3, OH, OMe, NH2, and NMe2) systems for methane C-H bond activation reaction kinetics and thermodynamics. We address the importance of whether a ligand lone pair provides an intrinsic kinetic advantage through possible electronic dπ-pπ repulsions for M-OR and M-NR2 systems versus M-CH3 systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C-H bond coordination, and C-H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps. We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C-H activation steps.

  3. Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts.

    PubMed

    Che, Chi-Ming; Lo, Vanessa Kar-Yan; Zhou, Cong-Ying; Huang, Jie-Sheng

    2011-04-01

    The recent surge of interest in metal-catalysed C-H bond functionalisation reactions reflects the importance of such reactions in biomimetic studies and organic synthesis. This critical review focuses on metalloporphyrin-catalysed saturated C-H bond functionalisation reported since the year 2000, including C-O, C-N and C-C bond formation via hydroxylation, amination and carbenoid insertion, respectively, together with a brief description of previous achievements in this area. Among the metalloporphyrin-catalysed reactions highlighted herein are the hydroxylation of steroids, cycloalkanes and benzylic hydrocarbons; intermolecular amination of steroids, cycloalkanes and benzylic or allylic hydrocarbons; intramolecular amination of sulfamate esters and organic azides; intermolecular carbenoid insertion into benzylic, allylic or alkane C-H bonds; and intramolecular carbenoid C-H insertion of tosylhydrazones. These metalloporphyrin-catalysed saturated C-H bond functionalisation reactions feature high regio-, diastereo- or enantioselectivity and/or high product turnover numbers. Mechanistic studies suggest the involvement of metal-oxo, -imido (or nitrene), and -carbene porphyrin complexes in the reactions. The reactivity of such metal-ligand multiple bonded species towards saturated C-H bonds, including mechanistic studies through both experimental and theoretical means, is also discussed (244 references).

  4. Activation of remote meta-C-H bonds assisted by an end-on template.

    PubMed

    Leow, Dasheng; Li, Gang; Mei, Tian-Sheng; Yu, Jin-Quan

    2012-06-27

    Functionalization of unactivated carbon-hydrogen (C-H) single bonds is an efficient strategy for rapid generation of complex molecules from simpler ones. However, it is difficult to achieve selectivity when multiple inequivalent C-H bonds are present in the target molecule. The usual approach is to use σ-chelating directing groups, which lead to ortho-selectivity through the formation of a conformationally rigid six- or seven-membered cyclic pre-transition state. Despite the broad utility of this approach, proximity-driven reactivity prevents the activation of remote C-H bonds. Here we report a class of easily removable nitrile-containing templates that direct the activation of distal meta-C-H bonds (more than ten bonds away) of a tethered arene. We attribute this new mode of C-H activation to a weak 'end-on' interaction between the linear nitrile group and the metal centre. The 'end-on' coordination geometry relieves the strain of the cyclophane-like pre-transition state of the meta-C-H activation event. In addition, this template overrides the intrinsic electronic and steric biases as well as ortho-directing effects with two broadly useful classes of arene substrates (toluene derivatives and hydrocinnamic acids).

  5. Cleavage of ether, ester, and tosylate C(sp3)-O bonds by an iridium complex, initiated by oxidative addition of C-H bonds. Experimental and computational studies.

    PubMed

    Kundu, Sabuj; Choi, Jongwook; Wang, David Y; Choliy, Yuriy; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-04-03

    A pincer-ligated iridium complex, (PCP)Ir (PCP = κ(3)-C6H3-2,6-[CH2P(t-Bu)2]2), is found to undergo oxidative addition of C(sp(3))-O bonds of methyl esters (CH3-O2CR'), methyl tosylate (CH3-OTs), and certain electron-poor methyl aryl ethers (CH3-OAr). DFT calculations and mechanistic studies indicate that the reactions proceed via oxidative addition of C-H bonds followed by oxygenate migration, rather than by direct C-O addition. Thus, methyl aryl ethers react via addition of the methoxy C-H bond, followed by α-aryloxide migration to give cis-(PCP)Ir(H)(CH2)(OAr), followed by iridium-to-methylidene hydride migration to give (PCP)Ir(CH3)(OAr). Methyl acetate undergoes C-H bond addition at the carbomethoxy group to give (PCP)Ir(H)[κ(2)-CH2OC(O)Me] which then affords (PCP-CH2)Ir(H)(κ(2)-O2CMe) (6-Me) in which the methoxy C-O bond has been cleaved, and the methylene derived from the methoxy group has migrated into the PCP Cipso-Ir bond. Thermolysis of 6-Me ultimately gives (PCP)Ir(CH3)(κ(2)-O2CR), the net product of methoxy group C-O oxidative addition. Reaction of (PCP)Ir with species of the type ROAr, RO2CMe or ROTs, where R possesses β-C-H bonds (e.g., R = ethyl or isopropyl), results in formation of (PCP)Ir(H)(OAr), (PCP)Ir(H)(O2CMe), or (PCP)Ir(H)(OTs), respectively, along with the corresponding olefin or (PCP)Ir(olefin) complex. Like the C-O bond oxidative additions, these reactions also proceed via initial activation of a C-H bond; in this case, C-H addition at the β-position is followed by β-migration of the aryloxide, carboxylate, or tosylate group. Calculations indicate that the β-migration of the carboxylate group proceeds via an unusual six-membered cyclic transition state in which the alkoxy C-O bond is cleaved with no direct participation by the iridium center.

  6. Fabrication of Submicron Devices on the (011) Cleave Surface of a Cleaved-Edge-Overgrowth GaAs/AlGaAs Crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Pfeiffer, Loren; West, Kenneth; Chang, Albert

    2013-03-01

    We describe the fabrication of submicron devices on the (011)cleave surface of a GaAs heterostructure crystal, in which this surface is extremely narrow. Special purpose devices are produced, which take advantage of the unique characteristics of Cleaved-Edge-Overgrowth. The successful fabrication relies on understanding the surface tension of the electron beam PMMA resist, the workable degree of variation in resist thickness, and on gluing the crystal onto a backing substrate to increase structural strength. We demonstrate a functional gate-controlled point contact constriction placed 9 um from one edge of the cleave surface. This technique may enable the study of fractional quantum Hall fluid in a novel structure. Work supported by NSFDMR-0701948

  7. Site-selective and stereoselective functionalization of unactivated C-H bonds

    NASA Astrophysics Data System (ADS)

    Liao, Kuangbiao; Negretti, Solymar; Musaev, Djamaladdin G.; Bacsa, John; Davies, Huw M. L.

    2016-05-01

    The laboratory synthesis of complex organic molecules relies heavily on the introduction and manipulation of functional groups, such as carbon-oxygen or carbon-halogen bonds; carbon-hydrogen bonds are far less reactive and harder to functionalize selectively. The idea of C-H functionalization, in which C-H bonds are modified at will instead of the functional groups, represents a paradigm shift in the standard logic of organic synthesis. For this approach to be generally useful, effective strategies for site-selective C-H functionalization need to be developed. The most practical solutions to the site-selectivity problem rely on either intramolecular reactions or the use of directing groups within the substrate. A challenging, but potentially more flexible approach, would be to use catalyst control to determine which site in a particular substrate would be functionalized. Here we describe the use of dirhodium catalysts to achieve highly site-selective, diastereoselective and enantioselective C-H functionalization of n-alkanes and terminally substituted n-alkyl compounds. The reactions proceed in high yield, and functional groups such as halides, silanes and esters are compatible with this chemistry. These studies demonstrate that high site selectivity is possible in C-H functionalization reactions without the need for a directing or anchoring group present in the molecule.

  8. Optical properties of a-C:H thin films modified by Ti and Ag

    NASA Astrophysics Data System (ADS)

    Prikhodko, Oleg Yu.; Mikhailova, Svetlana L.; Mukhametkarimov, Ershan C.; Maksimova, Suyumbika Ya.; Manabaev, Nurlan K.; Dauthan, Kuanysh

    2016-09-01

    Structure and optical properties of amorphous diamond-like carbon (a-C: H) thin films modified with Ag, Ti and Ag + Ti metal impurities are studied. The films were prepared by ion-plasma magnetron sputtering of combined polycrystalline graphite and metal target in the mixture of Ar and CH4 gases. AFM, SEM and TEM methods show that a-C:H films are heterogeneous, nanostructured and characterized by the presence of silver nanoclusters on the surface sized 60 nm and both Ti and Ag nanoclusters with a mean size (2 ÷ 3) nm in the bulk of films. It was found that in a- C:H films as well as in a-C:H films plasma resonance absorption due to excitation of surface plasmons in silver nanoclusters in the visible region of spectrum takes place. Intensity of the resonance absorption in the a- C:H films increases with increase in concentration of silver. The results are important for produce of nanomaterials with nonlinear optical properties based on the amorphous diamond-like carbon films containing metal nanoclusters.

  9. Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds.

    PubMed

    Tian, Hua; Yang, Haijun; Zhu, Changjin; Fu, Hua

    2016-01-29

    Cross-dehydrogenative couplings of two different C-H bonds have emerged as an attractive goal in organic synthesis. However, achieving regioselective C-H activation is a great challenge because C-H bonds are ubiquitous in organic compounds. Actually, the regioselective couplings promoted by enzymes are a common occurrence in nature. Herein, we have developed simple, efficient and general transition metal-free intramolecular couplings of alphatic and aromatic C-H bonds. The protocol uses readily available aryl triazene as the radical initiator, cheap K2S2O8 as the oxidant, and the couplings were performed well with excellent tolerance of functional groups. Interestingly, α-carbon configuration of some amino acid residues in the substrates was kept after the reactions, and the couplings for substrates with substituted phenylalanine residues exhibited complete β-carbon diastereoselectivity for induction of the chiral α-carbon. Therefore, the present study should provide a novel strategy for regioselective cross-dehydrogenative couplings of two different C-H bonds.

  10. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease

    PubMed Central

    Zhang, Zhentao; Song, Mingke; Liu, Xia; Su Kang, Seong; Duong, Duc M.; Seyfried, Nicholas T.; Cao, Xuebing; Cheng, Liming; Sun, Yi E.; Ping Yu, Shan; Jia, Jianping; Levey, Allan I.; Ye, Keqiang

    2015-01-01

    The age-dependent deposition of amyloid-β peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimer's disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a δ-secretase, contributing to the age-dependent pathogenic mechanisms in AD. PMID:26549211

  11. A kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein.

    PubMed Central

    Lilja, H

    1985-01-01

    A 33-kD glycoprotein, known as the "prostate-specific antigen," was purified to homogeneity from human seminal plasma. The prostatic protein was identified as a serine protease, and its NH2-terminal sequence strongly suggests that it belongs to the family of glandular kallikreins. The structural protein of human seminal coagulum, the predominant protein in seminal vesicle secretion, was rapidly cleaved by the prostatic enzyme, which suggests that this seminal vesicle protein may serve as the physiological substrate for the protease. The prostatic enzyme hydrolyzed arginine- and lysine-containing substrates with a distinct preference for the former. All synthetic substrates tested were poor substrates for the enzyme. Synthetic Factor XIa substrate (pyro-glutamyl-prolyl-arginine-p-nitroanilide), and the synthetic kallikrein substrate (H-D-prolyl-phenylalanyl-arginine-p-nitroanilide) were hydrolyzed with maximum specific activities at 23 degrees C of 79 and 34 nmol/min per mg and Km values of 1.0 and 0.45 mM, respectively. Synthetic substrates for plasmin, chymotrypsin, and elastase were either not hydrolyzed by the enzyme at all, or only hydrolyzed very slowly. Images PMID:3902893

  12. Topographic and electronic structure of cleaved SrTiO{sub 3}(001) surfaces

    SciTech Connect

    Sitaputra, Wattaka Skowronski, Marek; Feenstra, Randall M.

    2015-05-15

    The topographic and electronic structure of cleaved SrTiO{sub 3}(001) surfaces were studied, employing samples that either had or had not been coated with Ti on their outer surfaces prior to fracture. In both cases, SrO- and TiO{sub 2}-terminated terraces were present on the cleavage surface, enabling in situ studies on either termination. However, the samples coated with Ti prior to fracture were found to yield a rougher morphology on TiO{sub 2}-terminated terraces as well as a higher density of oxygen vacancies during an annealing (outgassing) step following the coating. The higher density of oxygen vacancies in the bulk of the Ti-coated samples also provides higher conductivity, which, in turn, improves a sensitivity of the spectroscopy and reduces the effect of tip-induced band bending. Nonetheless, similar spectral features, unique to each termination, were observed for samples both with and without the Ti coating. Notably, with moderate-temperature annealing following fracture, a strong discrete peak in the conductance spectra, arising from oxygen vacancies, was observed on the SrO-terminated terraces. This peak appears at slightly different voltages for coated and uncoated samples, signifying a possible effect of tip-induced band bending.

  13. Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms

    PubMed Central

    Baac, Hyoung Won; Lee, Taehwa; Guo, L. Jay

    2013-01-01

    Laser-generated focused ultrasound (LGFU) is a unique modality that can produce single-pulsed cavitation and strong local disturbances on a tight focal spot (<100 μm). We utilize LGFU as a non-contact, non-thermal, high-precision tool to fractionate and cleave cell clusters cultured on glass substrates. Fractionation processes are investigated in detail, which confirms distinct cell behaviors in the focal center and the periphery of LGFU spot. For better understanding of local disturbances under LGFU, we use a high-speed laser-flash shadowgraphy technique and then fully visualize instantaneous microscopic processes from the ultrasound wave focusing to the micro-bubble collapse. Based on these visual evidences, we discuss possible mechanisms responsible for the focal and peripheral disruptions, such as a liquid jet-induced wall shear stress and shock emissions due to bubble collapse. The ultrasonic micro-fractionation is readily available for in vitro cell patterning and harvesting. Moreover, it is significant as a preliminary step towards high-precision surgery applications in future. PMID:24010006

  14. P450-catalyzed intramolecular sp(3) C-H amination with arylsulfonyl azide substrates.

    PubMed

    Singh, Ritesh; Bordeaux, Melanie; Fasan, Rudi

    2014-01-06

    The direct amination of aliphatic C-H bonds represents a most valuable transformation in organic chemistry. While a number of transition metal-based catalysts have been developed and investigated for this purpose, the possibility to execute this transformation with biological catalysts has remained largely unexplored. Here, we report that cytochrome P450 enzymes can serve as efficient catalysts for mediating intramolecular benzylic C-H amination reactions in a variety of arylsulfonyl azide compouds. Under optimized conditions, the P450 catalysts were found to support up to 390 total turnovers leading to the formation of the desired sultam products with excellent regioselectivity. In addition, the chiral environment provided by the enzyme active site allowed for the reaction to proceed in a stereo- and enantioselective manner. The C-H amination activity, substrate profile, and enantio/stereoselectivity of these catalysts could be modulated by utilizing enzyme variants with engineered active sites.

  15. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols.

    PubMed

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  16. Iron Complex Catalyzed Selective C-H Bond Oxidation with Broad Substrate Scope.

    PubMed

    Jana, Sandipan; Ghosh, Munmun; Ambule, Mayur; Sen Gupta, Sayam

    2017-02-17

    The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activated 2° C-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10β-hydroxyartemisinin. Mechanistic studies indicate Fe(V)(O) to be the active oxidant during these reactions.

  17. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    NASA Astrophysics Data System (ADS)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  18. Diverse sp3 C-H functionalization through alcohol β-sulfonyloxylation

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Yan, Guobing; Ren, Zhi; Dong, Guangbin

    2015-10-01

    Site-selective C-H functionalization has emerged as an attractive tool for derivatizing complex synthetic intermediates, but its use for late-stage diversification is limited by the functional groups that can be introduced, especially at unactivated sp3-hybridized positions. To overcome this, we introduce a strategy that directly installs a sulfonyloxy group at a β-C-H bond of a masked alcohol and subsequently employs nucleophilic substitution reactions to prepare various derivatives. Hydroxyl groups are widely found in bioactive molecules and are thus readily available as synthetic handles. A directing group is easily added (and subsequently removed) from the alcohols such that a formal site-selective β-C-H sulfonyloxylation of these alcohols is achieved. Substitution reactions with carbon, nitrogen, oxygen and other nucleophiles then lead to diverse functionalizations that may help to streamline the synthesis of complex analogues for drug discovery.

  19. Analyzing site selectivity in Rh2(esp)2-catalyzed intermolecular C-H amination reactions.

    PubMed

    Bess, Elizabeth N; DeLuca, Ryan J; Tindall, Daniel J; Oderinde, Martins S; Roizen, Jennifer L; Du Bois, J; Sigman, Matthew S

    2014-04-16

    Predicting site selectivity in C-H bond oxidation reactions involving heteroatom transfer is challenged by the small energetic differences between disparate bond types and the subtle interplay of steric and electronic effects that influence reactivity. Herein, the factors governing selective Rh2(esp)2-catalyzed C-H amination of isoamylbenzene derivatives are investigated, where modification to both the nitrogen source, a sulfamate ester, and substrate are shown to impact isomeric product ratios. Linear regression mathematical modeling is used to define a relationship that equates both IR stretching parameters and Hammett σ(+) values to the differential free energy of benzylic versus tertiary C-H amination. This model has informed the development of a novel sulfamate ester, which affords the highest benzylic-to-tertiary site selectivity (9.5:1) observed for this system.

  20. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes.

    PubMed

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M; Hall, Michael B; Bullock, R Morris

    2016-07-04

    Unusual cleavage of P-C and C-H bonds of the P2 N2 ligand, in heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode. The structures of both the heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P-C/C-H bond cleavage, which involves C-H bond cleavage, hydride rotation, Ni-C/P-H bond formation, and P-C bond cleavage.

  1. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Cuthbertson, James D.; MacMillan, David W. C.

    2015-03-01

    The direct functionalization of unactivated sp3 C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp3 C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  2. C-H and N-H bond dissociation energies of small aromatic hydrocarbons

    SciTech Connect

    Barckholtz, C.; Barckholtz, T.A.; Hadad, C.M.

    1999-01-27

    A survey of computational methods was undertaken to calculate the homolytic bond dissociation energies (BDEs) of the C-H and N-H bonds in monocyclic aromatic molecules that are representative of the functionalities present in coal. These include six-membered rings (benzene, pyridine, pyridazine, pyrimidine, pyrazine) and five-membered rings (furan, thiophene, pyrrole, oxazole). By comparison of the calculated C-H BDEs with the available experimental values for these aromatic molecules, the B3LYP/6-31G(d) level of theory was selected to calculate the BDEs of polycyclic aromatic hydrocarbons (PAHs), including carbonaceous PAHs (naphthalene, anthracene, pyrene, coronene) and heteroatomic PAHs (benzofuran, benzothiophene, indole, benzoxazole, quinoline, isoquinoline, dibenzofuran, carbazole). The cleavage of a C-H or a N-H bond generates a {sigma} radical that is, in general, localized at the site from which the hydrogen atom was removed. However, delocalization of the unpaired electron results in {approximately} 7 kcal {center{underscore}dot} mol{sup {minus}1} stabilization of the radical with respect to the formation of phenyl when the C-H bond is adjacent to a nitrogen atom in the azabenzenes. Radicals from five-membered rings are {approximately} 6 kcal {center{underscore}dot} mol{sup {minus}1} less stable than those formed from six-membered rings due to both localization of the spin density and geometric factors. The location of the heteroatoms in the aromatic ring affects the C-H bond strengths more significantly than does the size of the aromatic network. Therefore, in general, the monocyclic aromatic molecules can be used to predict the C-H BDE of the large PAHs within 1 kcal {center{underscore}dot} mol{sup {minus}1}.

  3. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.

    PubMed

    Cuthbertson, James D; MacMillan, David W C

    2015-03-05

    The direct functionalization of unactivated sp(3) C-H bonds is still one of the most challenging problems facing synthetic organic chemists. The appeal of such transformations derives from their capacity to facilitate the construction of complex organic molecules via the coupling of simple and otherwise inert building blocks, without introducing extraneous functional groups. Despite notable recent efforts, the establishment of general and mild strategies for the engagement of sp(3) C-H bonds in C-C bond forming reactions has proved difficult. Within this context, the discovery of chemical transformations that are able to directly functionalize allylic methyl, methylene and methine carbons in a catalytic manner is a priority. Although protocols for direct oxidation and amination of allylic C-H bonds (that is, C-H bonds where an adjacent carbon is involved in a C = C bond) have become widely established, the engagement of allylic substrates in C-C bond forming reactions has thus far required the use of pre-functionalized coupling partners. In particular, the direct arylation of non-functionalized allylic systems would enable access to a series of known pharmacophores (molecular features responsible for a drug's action), though a general solution to this long-standing challenge remains elusive. Here we report the use of both photoredox and organic catalysis to accomplish a mild, broadly effective direct allylic C-H arylation. This C-C bond forming reaction readily accommodates a broad range of alkene and electron-deficient arene reactants, and has been used in the direct arylation of benzylic C-H bonds.

  4. Electron gas quality at various (110)-GaAs interfaces as benchmark for cleaved edge overgrowth

    NASA Astrophysics Data System (ADS)

    Riedi, S.; Reichl, C.; Berl, M.; Alt, L.; Maier, A.; Wegscheider, W.

    2016-12-01

    We study molecular beam epitaxial growth on the unusual (110) surface of GaAs substrates as prerequisite for cleaved edge overgrown structures. We present the first systematic comparison of the quality of two dimensional electron systems on simultaneously overgrown (110) GaAs monitor wafers with ex situ as well as in situ cleaved (110) facets. Our study confirms that characterization of the monitor wafer is a valid benchmark for the magnetotransport characteristics of structures grown on cleaved facets. We show that deviating results can be traced back to (110) substrates of lower quality. We also demonstrate that the roughness of the in situ cleaved facets is decisive for the quality of the induced electron gas.

  5. Characterization of the laser cleaving on glass sheets with a line-shape laser beam

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Zan; Lin, Jehnming

    2007-07-01

    A CO 2 laser with a line-shape beam was used to cleave a soda-lime glass substrate at various beam-rotation angles to the cutting direction. The stress distribution on the glass substrate cleaved by the laser beam has been analyzed in this study. An uncoupled thermal-elastic analysis was achieved by the ABAQUS software based on the finite element method. The numerical results show that the stress field of the fracture is caused by a complex stress state and the cleavages are significantly affected by the heat diffusion and beam rotation angle. At the rotation angle of zero degree to the cleaving direction, the phenomena of the chip formation have been found due to a large temperature gradient at the cleaving depth of the glass substrate.

  6. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    SciTech Connect

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  7. Copper-Catalyzed, Directing Group-Assisted Fluorination of Arene and Heteroarene C-H Bonds

    PubMed Central

    Truong, Thanh; Klimovica, Kristine; Daugulis, Olafs

    2013-01-01

    We have developed a method for direct, copper-catalyzed, auxiliary-assisted fluorination of β-sp2 C-H bonds of benzoic acid derivatives and γ-sp2 C-H bonds of α,α-disubstituted benzylamine derivatives. The reaction employs CuI catalyst, AgF fluoride source, and DMF, pyridine, or DMPU solvent at moderately elevated temperatures. Selective mono- or difluorination can be achieved by simply changing reaction conditions. The method shows excellent functional group tolerance and provides a straightforward way for the preparation of ortho-fluorinated benzoic acids. PMID:23758609

  8. Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C-H Sites.

    PubMed

    Mbofana, Curren T; Chong, Eugene; Lawniczak, James; Sanford, Melanie S

    2016-09-02

    We report the development of an iron-catalyzed method for the selective oxyfunctionalization of benzylic C(sp(3))-H bonds in aliphatic amine substrates. This transformation is selective for benzylic C-H bonds that are remote (i.e., at least three carbons) from the amine functional group. High site selectivity is achieved by in situ protonation of the amine with trifluoroacetic acid, which deactivates more traditionally reactive C-H sites that are α to nitrogen. The scope and synthetic utility of this method are demonstrated via the synthesis and derivatization of a variety of amine-containing, biologically active molecules.

  9. C-H activation reactions as useful tools for medicinal chemists.

    PubMed

    Caro-Diaz, Eduardo J E; Urbano, Mariangela; Buzard, Daniel J; Jones, Robert M

    2016-11-15

    In recent years, there has been an exponential rise in the number of reports describing synthetic methods that utilize catalytic sp(3) and sp(2) C-H bond activation. Many have emerged as powerful synthetic tools for accessing biologically active motifs. Indeed, application to C-C and C-heteroatom bond formation, provides new directives for the construction of new pharmaceutical entities. Herein, we highlight some recent novel C-H activation processes that exemplify the utility of these transformations in medicinal chemistry.

  10. A Chiral Nitrogen Ligand for Enantioselective, Iridium-Catalyzed Silylation of Aromatic C-H Bonds.

    PubMed

    Su, Bo; Zhou, Tai-Gang; Li, Xian-Wei; Shao, Xiao-Ru; Xu, Pei-Lin; Wu, Wen-Lian; Hartwig, John F; Shi, Zhang-Jie

    2017-01-19

    Iridium catalysts containing dative nitrogen ligands are highly active for the borylation and silylation of C-H bonds, but chiral analogs of these catalysts for enantioselective silylation reactions have not been developed. We report a new chiral pyridinyloxazoline ligand for enantioselective, intramolecular silylation of symmetrical diarylmethoxy diethylsilanes. Regioselective and enantioselective silylation of unsymmetrical substrates was also achieved in the presence of this newly developed system. Preliminary mechanistic studies imply that C-H bond cleavage is irreversible, but not the rate-determining step.

  11. Mechanism of catalytic functionalization of primary C-H bonds using a silylation strategy.

    PubMed

    Parija, Abhishek; Sunoj, Raghavan B

    2013-08-16

    The mechanism of Ir-catalyzed γ-functionalization of a primary sp(3)(C-H) bond in 2-methyl cyclohexanol is examined using the density functional theory (M06). The nature of the active catalyst for the initial silylation of alcohol is identified as the monomer derived from [Ir(cod)OMe]2 while that for γ-sp(3)(C-H) activation leading to oxasilolane is [IrH(nbe)(phen)]. The rate-determining step is found to involve Si-C coupling through reductive elimination.

  12. Terminal olefins to chromans, isochromans, and pyrans via allylic C-H oxidation.

    PubMed

    Ammann, Stephen E; Rice, Grant T; White, M Christina

    2014-08-06

    The synthesis of chroman, isochroman, and pyran motifs has been accomplished via a combination of Pd(II)/bis-sulfoxide C-H activation and Lewis acid co-catalysis. A wide range of alcohols are found to be competent nucleophiles for the transformation under uniform conditions (catalyst, solvent, temperature). Mechanistic studies suggest that the reaction proceeds via initial C-H activation followed by a novel inner-sphere functionalization pathway. Consistent with this, the reaction shows reactivity trends orthogonal to those of traditional Pd(0)-catalyzed allylic substitutions.

  13. Predicting C-H/pi interactions with nonlocal density functional theory.

    PubMed

    Hooper, Joe; Cooper, Valentino R; Thonhauser, Timo; Romero, Nichols A; Zerilli, Frank; Langreth, David C

    2008-04-21

    We examine the performance of a recently developed nonlocal density functional in predicting a model noncovalent interaction, namely the weak bond between an aromatic pi system and an aliphatic C--H group. The new functional is a significant improvement over traditional density functionals, providing results which compare favorably to high-level quantum-chemistry techniques, but at considerably lower computational cost. Interaction energies in several model C--H/pi systems are in good general agreement with coupled-cluster calculations, though equilibrium distances are consistently overpredicted when using the revPBE functional for exchange. The new functional predicts changes in energy upon addition of halogen substituents correctly.

  14. Anomalous reversal of C-H and C-D quenching efficiencies in luminescent praseodymium cryptates.

    PubMed

    Scholten, Julia; Rosser, Geraldine A; Wahsner, Jessica; Alzakhem, Nicola; Bischof, Caroline; Stog, Felix; Beeby, Andrew; Seitz, Michael

    2012-08-29

    A series of selectively deuterated praseodymium cryptates has been synthesized. Their luminescence lifetimes in solution range from 150 to 595 ns for the (1)D(2) → (3)F(4) transition. Global fitting of the nonradiative deactivation rate differences of the isotopologic C-(H/D) oscillators revealed that aromatic C-D overtones anomalously quench the luminescence more than C-H vibrations. This is explained by the dominance of Franck-Condon overlap factors that greatly favor C-D oscillators, which are in almost ideal resonance with the relevant energy gap (1)D(2)-(1)G(4) of praseodymium.

  15. Intrinsic stress development in Ti-C:H ceramic nanocomposite coatings.

    SciTech Connect

    Shi, B.; Meng, W. J.; Rehn, L. E.; Baldo, P. M.; Materials Science Division; Louisiana State Univ.

    2002-07-08

    The development of intrinsic stresses within titanium-containing hydrocarbon (Ti-C:H) nanocomposite coatings was monitored during growth by in situ substrate curvature measurements using a multibeam optical sensing technique. Stress as a function of coating thickness was measured in a wide range of specimens, from nearly pure amorphous hydrocarbon (a-C:H) to nearly pure titanium carbide (TiC). The intrinsic stress within the nanocomposite coating was found to vary significantly in magnitude, and to depend systematically on the Ti composition. The observed stress variation as a function of the Ti composition correlates well with a previously reported percolation-type transition in the coating microstructure.

  16. Ruthenium(II)-catalyzed oxidative C-H alkenylations of sulfonic acids, sulfonyl chlorides and sulfonamides.

    PubMed

    Ma, Wenbo; Mei, Ruhuai; Tenti, Giammarco; Ackermann, Lutz

    2014-11-10

    Twofold C-H functionalization of aromatic sulfonic acids was achieved with an in situ generated ruthenium(II) catalyst. The optimized cross-dehydrogenative alkenylation protocol proved applicable to differently substituted arenes and a variety of alkenes, including vinyl arenes, sulfones, nitriles and ketones. The robustness of the ruthenium(II) catalyst was demonstrated by the chemoselective oxidative olefination of sulfonamides as well as sulfonyl chlorides. Mechanistic studies provided support for a reversible, acetate-assisted C-H ruthenation, along with a subsequent olefin insertion.

  17. Copper-catalyzed oxaziridine-mediated oxidation of C-H bonds.

    PubMed

    Motiwala, Hashim F; Gülgeze, Belgin; Aubé, Jeffrey

    2012-08-17

    The highly regio- and chemoselective oxidation of activated C-H bonds has been observed via copper-catalyzed reactions of oxaziridines. The oxidation proceeded with a variety of substrates, primarily comprising allylic and benzylic examples, as well as one example of an otherwise unactivated tertiary C-H bond. The mechanism of the reaction is proposed to involve single-electron transfer to the oxaziridines to generate a copper-bound radical anion, followed by hydrogen atom abstraction and collapse to products, with regeneration of the catalyst by a final single-electron transfer event. The involvement of allylic radical intermediates was supported by a radical-trapping experiment with TEMPO.

  18. Catalytic intermolecular amination of C-H bonds: method development and mechanistic insights.

    PubMed

    Fiori, Kristin Williams; Du Bois, J

    2007-01-24

    Reaction methodology for intermolecular C-H amination of benzylic and 3 degrees C-H bonds is described. This process uses the starting alkane as the limiting reagent, gives optically pure tetrasubstituted amines through stereospecific insertion into enantiomeric 3 degrees centers, displays high chemoselectivity for benzylic oxidation, and enables the facile preparation of isotopically enriched 15N-labeled compounds. Access to substituted amines, amino alcohols, and diamines is thereby made possible in a single transformation. Important information relevant to understanding the initial steps in the catalytic cycle, reaction chemoselectivity, the nature of the active oxidant, and pathways for catalyst inactivation has been gained through mechanistic analysis; these studies are also presented.

  19. Allylic C-H amination for the preparation of syn-1,3-amino alcohol motifs.

    PubMed

    Rice, Grant T; White, M Christina

    2009-08-26

    A highly selective and general Pd/sulfoxide-catalyzed allylic C-H amination reaction en route to syn-1,3-amino alcohol motifs is reported. Key to achieving this reactivity under mild conditions is the use of electron-deficient N-nosyl carbamate nucleophiles that are thought to promote functionalization by furnishing higher concentrations of anionic species in situ. The reaction is shown to be orthogonal to classical C-C bond-forming/-reduction sequences as well as nitrene-based C-H amination methods.

  20. Oxidation-promoted activation of a ferrocene C-H bond by a rhodium complex.

    PubMed

    Labande, Agnès; Debono, Nathalie; Sournia-Saquet, Alix; Daran, Jean-Claude; Poli, Rinaldo

    2013-05-14

    The oxidation of a rhodium(I) complex containing a ferrocene-based heterodifunctional phosphine N-heterocyclic carbene (NHC) ligand produces a stable, planar chiral rhodium(III) complex with an unexpected C-H activation on ferrocene. The oxidation of rhodium(I) to rhodium(III) may be accomplished by initial oxidation of ferrocene to ferrocenium and subsequent electron transfer from rhodium to ferrocenium. Preliminary catalytic tests showed that the rhodium(III) complex is active for the Grignard-type arylation of 4-nitrobenzaldehyde via C-H activation of 2-phenylpyridine.

  1. Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers.

    PubMed

    Bett, John S; Ritorto, Maria Stella; Ewan, Richard; Jaffray, Ellis G; Virdee, Satpal; Chin, Jason W; Knebel, Axel; Kurz, Thimo; Trost, Matthias; Tatham, Michael H; Hay, Ronald T

    2015-03-15

    Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here, we have screened for DUBs that preferentially cleave N-terminal Ub from protein substrates but do not act on Ub homopolymers. We show that members of the Ub C-terminal hydrolase (UCH) family of DUBs demonstrate this preference for N-terminal deubiquitylating activity as they are capable of cleaving N-terminal Ub from SUMO2 and Ube2W, while displaying no activity against any of the eight Ub linkage types. Surprisingly, this ability to cleave Ub from SUMO2 was 100 times more efficient for UCH-L3 when we deleted the unstructured N-terminus of SUMO2, demonstrating that UCH enzymes can cleave Ub from structured proteins. However, UCH-L3 could also cleave chemically synthesized isopeptide-linked Ub from lysine 11 (K11) of SUMO2 with similar efficiency, demonstrating that UCH DUB activity is not limited to peptide-linked Ub. These findings advance our understanding of the specificity of the UCH family of DUBs, which are strongly implicated in cancer and neurodegeneration but whose substrate preference has remained unclear. In addition, our findings suggest that the reversal of Ube2W-mediated N-terminal ubiquitylation may be one physiological role of UCH DUBs in vivo.

  2. N-Acyl Amino Acid Ligands for Ruthenium(II)-Catalyzed meta-C-H tert-Alkylation with Removable Auxiliaries.

    PubMed

    Li, Jie; Warratz, Svenja; Zell, Daniel; De Sarkar, Suman; Ishikawa, Eloisa Eriko; Ackermann, Lutz

    2015-11-04

    Acylated amino acid ligands enabled ruthenium(II)-catalyzed C-H functionalizations with excellent levels of meta-selectivity. The outstanding catalytic activity of the ruthenium(II) complexes derived from monoprotected amino acids (MPAA) set the stage for the first ruthenium-catalyzed meta-functionalizations with removable directing groups. Thereby, meta-alkylated anilines could be accessed, which are difficult to prepare by other means of direct aniline functionalizations. The robust nature of the versatile ruthenium(II)-MPAA was reflected by challenging remote C-H transformations with tertiary alkyl halides on aniline derivatives as well as on pyridyl-, pyrimidyl-, and pyrazolyl-substituted arenes. Detailed mechanistic studies provided strong support for an initial reversible C-H ruthenation, followed by a SET-type C-Hal activation through homolytic bond cleavage. Kinetic analyses confirmed this hypothesis through an unusual second-order dependence of the reaction rate on the ruthenium catalyst concentration. Overall, this report highlights the exceptional catalytic activity of ruthenium complexes derived from acylated amino acids, which should prove instrumental for C-H activation chemistry beyond remote functionalization.

  3. Improved fabrication of HgI/sub 2/ nuclear radiation detectors by machine-cleaving

    SciTech Connect

    Levi, A.; Burger, A.; Schieber, M.; Vandenberg, L.; Yellon, W.B.; Alkire, R.W.

    1982-01-01

    The perfection of machine-cleaved sections from HgI/sub 2/ bulk crystals was examined. The perfection of the machine-cleaved sections as established by gamma diffraction rocking curves was found to be much better than the perfection of hand-cleaved sections or as grown thin platelets, reaching a perfection similar to that of the wire-sawn sections of HgI/sub 2/. A correlation between the perfection and the thickness of the machine-cleaved section was also found, i.e., the thicker the cleaved-section the more perfect it is. The reproducibility of the fabrication was significantly improved by using machine cleaving in the process of fabrication. Large single crystals of HgI/sub 2/ weighing 20 to 200 g, can be grown from the vapor phase using the TOM Technique. In order to fabricate nuclear radiation detectors from these single crystals, thin sections of about 0.4 to 0.8 mm thickness have to be prepared. Up till now, the state-of-the-art of fabricating HgI/sub 2/ nuclear radiation detectors involved two methods to get thin sections from the large single crystals: (1) hand-cleaving using a razor-blade and (2) solution wire sawing. The chemical wire sawing method involves a loss of about 50% of the crystal volume and is usually followed by a chemical polishing process which involves a significant loss of volume of the original volume. This procedure is complicated and wasteful. The traditional fabrication method, i.e., hand-cleaving followed by rapid nonselective chemical etching, is simpler and less wasteful.

  4. Experimental and Metabolic Modeling Evidence for a Folate-Cleaving Side-Activity of Ketopantoate Hydroxymethyltransferase (PanB)

    PubMed Central

    Thiaville, Jennifer J.; Frelin, Océane; García-Salinas, Carolina; Harrison, Katherine; Hasnain, Ghulam; Horenstein, Nicole A.; Díaz de la Garza, Rocio I.; Henry, Christopher S.; Hanson, Andrew D.; de Crécy-Lagard, Valérie

    2016-01-01

    Tetrahydrofolate (THF) and its one-carbon derivatives, collectively termed folates, are essential cofactors, but are inherently unstable. While it is clear that chemical oxidation can cleave folates or damage their pterin precursors, very little is known about enzymatic damage to these molecules or about whether the folate biosynthesis pathway responds adaptively to damage to its end-products. The presence of a duplication of the gene encoding the folate biosynthesis enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (FolK) in many sequenced bacterial genomes combined with a strong chromosomal clustering of the folK gene with panB, encoding the 5,10-methylene-THF-dependent enzyme ketopantoate hydroxymethyltransferase, led us to infer that PanB has a side activity that cleaves 5,10-methylene-THF, yielding a pterin product that is recycled by FolK. Genetic and metabolic analyses of Escherichia coli strains showed that overexpression of PanB leads to accumulation of the likely folate cleavage product 6-hydroxymethylpterin and other pterins in cells and medium, and—unexpectedly—to a 46% increase in total folate content. In silico modeling of the folate biosynthesis pathway showed that these observations are consistent with the in vivo cleavage of 5,10-methylene-THF by a side-activity of PanB, with FolK-mediated recycling of the pterin cleavage product, and with regulation of folate biosynthesis by folates or their damage products. PMID:27065985

  5. Mechanistic Details of Pd(II)-Catalyzed C-H Iodination with Molecular I2: Oxidative Addition vs Electrophilic Cleavage.

    PubMed

    Haines, Brandon E; Xu, Huiying; Verma, Pritha; Wang, Xiao-Chen; Yu, Jin-Quan; Musaev, Djamaladdin G

    2015-07-22

    Transition metal-catalyzed C-H bond halogenation is an important alternative to the highly utilized directed-lithiation methods and increases the accessibility of the synthetically valuable aryl halide compounds. However, this approach often requires impractical reagents, such as IOAc, or strong co-oxidants. Therefore, the development of methodology utilizing inexpensive oxidants and catalyst containing earth-abundant transition metals under mild experimental conditions would represent a significant advance in the field. Success in this endeavor requires a full understanding of the mechanisms and reactivity governing principles of this process. Here, we report intimate mechanistic details of the Pd(II)-catalyzed C-H iodination with molecular I2 as the sole oxidant. Namely, we elucidate the impact of the: (a) Pd-directing group (DG) interaction, (b) nature of oxidant, and (c) nature of the functionalized C-H bond [C(sp(2))-H vs C(sp(3))-H] on the Pd(II)/Pd(IV) redox and Pd(II)/Pd(II) redox-neutral mechanisms of this reaction. We find that both monomeric and dimeric Pd(II) species may act as an active catalyst during the reaction, which preferentially proceeds via the Pd(II)/Pd(II) redox-neutral electrophilic cleavage (EC) pathway for all studied substrates with a functionalized C(sp(2))-H bond. In general, a strong Pd-DG interaction increases the EC iodination barrier and reduces the I-I oxidative addition (OA) barrier. However, the increase in Pd-DG interaction alone is not enough to make the mechanistic switch from EC to OA: This occurs only upon changing to substrates with a functionalized C(sp(3))-H bond. We also investigated the impact of the nature of the electrophile on the C(sp(2))-H bond halogenation. We predicted molecular bromine (Br2) to be more effective electrophile for the C(sp(2))-H halogenation than I2. Subsequent experiments on the stoichiometric C(sp(2))-H bromination by Pd(OAc)2 and Br2 confirmed this prediction.The findings of this study advance

  6. An active-site phenylalanine directs substrate binding and C-H cleavage in the alpha-ketoglutarate-dependent dioxygenase TauD.

    PubMed

    McCusker, Kevin P; Klinman, Judith P

    2010-04-14

    Enzymes that cleave C-H bonds are often found to depend on well-packed hydrophobic cores that influence the distance between the hydrogen donor and acceptor. Residue F159 in taurine alpha-ketoglutarate dioxygenase (TauD) is demonstrated to play an important role in the binding and orientation of its substrate, which undergoes a hydrogen atom transfer to the active site Fe(IV)=O. Mutation of F159 to smaller hydrophobic side chains (L, V, A) leads to substantially reduced rates for substrate binding and for C-H bond cleavage, as well as increased contribution of the chemical step to k(cat) under steady-state turnover conditions. The greater sensitivity of these substrate-dependent processes to mutation at position 159 than observed for the oxygen activation process supports a previous conclusion of modularity of function within the active site of TauD (McCusker, K. P.; Klinman, J. P. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19791-19795). Extraction of intrinsic deuterium kinetic isotope effects (KIEs) using single turnover transients shows 2- to 4-fold increase in the size of the KIE for F159V in relation to wild-type and F159L. It appears that there is a break in behavior following removal of a single methylene from the side chain of F159L to generate F159V, whereby the protein active site loses its ability to restore the internuclear distance between substrate and Fe(IV)=O that supports optimal hydrogenic wave function overlap.

  7. Late-stage diversification of biologically active pyridazinones via a direct C-H functionalization strategy.

    PubMed

    Li, Wei; Fan, Zhoulong; Geng, Kaijun; Xu, Youjun; Zhang, Ao

    2015-01-14

    Divergent C-H functionalization reactions (arylation, carboxylation, olefination, thiolation, acetoxylation, halogenation, naphthylation) using a pyridazinone moiety as an internal directing group were successfully established. This approach offers a late-stage, ortho-selective diversification of a biologically active pyridazinone scaffold. Seven series of novel pyridazinone analogues were synthesized conveniently as the synthetic precursors of potential sortase A (SrtA) inhibitors.

  8. Vibrational overtone spectroscopy and intramolecular dynamics of C-H stretches in pyrrole

    NASA Astrophysics Data System (ADS)

    Portnov, Alexander; Epshtein, Michael; Rosenwaks, Salman; Bar, Ilana

    2013-05-01

    Room-temperature photoacoustic spectra and jet-cooled action spectra of the regions of the first and second C-H stretch overtones of pyrrole were measured with the goal of gaining new insight on the vibrational patterns and the intramolecular energy flow out of the initially excited vibrational states. The rotational cooling of the action spectra helped in observing hitherto unresolved features, assisting determination of the existing multiple bands and their positions in each region. These bands were analyzed by building vibrational Hamiltonian matrices related to a simplified joint local-mode/normal-mode (LM/NM) model, accounting for two types of C-H stretches and their Fermi resonances with the CCH deformation modes. The diagonalization of the LM/NM vibrational Hamiltonians and the fitting of the eigenvalues to the band positions revealed model parameters, enabling assignment of the observed bands. The time dependences of the survival probabilities of the C-H stretches in the region of the first and second overtones, deduced from the vibrational Hamiltonian, show quantum beats due to the couplings to the deformations and decays driven by weaker interactions to the bath states. The C-H stretches, although somewhat lower in energy, show stronger coupling than the N-H stretches.

  9. Selective intermolecular amination of C-H bonds at tertiary carbon centers.

    PubMed

    Roizen, Jennifer L; Zalatan, David N; Du Bois, J

    2013-10-18

    C-H insertion: A method for intermolecular amination of tertiary CH bonds is described that uses limiting amounts of substrate and a convenient phenol-derived nitrogen source. Structure-selectivity and mechanistic studies suggest that steric interaction between the substrate and active oxidant is the principal determinant of product selectivity.

  10. Magnetic graphitic carbon nitride: its application in the C-H activation of amines.

    PubMed

    Verma, Sanny; Nasir Baig, R B; Han, Changseok; Nadagouda, Mallikarjuna N; Varma, Rajender S

    2015-11-04

    Magnetic graphitic carbon nitride, Fe@g-C3N4, has been synthesized by adorning a graphitic carbon nitride (g-C3N4) support with iron oxide via non-covalent interaction. The magnetically recyclable catalyst showed excellent reactivity for the expeditious C-H activation and cyanation of amines.

  11. The Life of a Legacy Bearer: Biographical Interview with C.H. Patterson.

    ERIC Educational Resources Information Center

    Nassar-McMillan, Sylvia C.

    This manuscript presents a chronological interview recently conducted with Dr. C.H. Patterson, a pioneer in the area of person-centered counseling and counselor education. It details many of the serendipitous events that led him from a child of poverty to a life rich in academic achievements and social rewards. This interview details many of his…

  12. Intermolecular C-H Quaternary Alkylation of Aniline Derivatives Induced by Visible-Light Photoredox Catalysis.

    PubMed

    Cheng, Jie; Deng, Xia; Wang, Guoqiang; Li, Ying; Cheng, Xu; Li, Guigen

    2016-09-16

    The intermolecular direct C-H alkylation of aniline derivatives with α-bromo ketones to build a quaternary carbon center was reported with a visible-light catalysis procedure. The reaction covers a variety of functional groups with good to excellent yields. A regioselectivity favoring the ortho position for the amine group was observed and investigated with Fukui indices and spectral methods.

  13. Direct C-H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis.

    PubMed

    Mishra, Neeraj Kumar; Choi, Miji; Jo, Hyeim; Oh, Yongguk; Sharma, Satyasheel; Han, Sang Hoon; Jeong, Taejoo; Han, Sangil; Lee, Seok-Yong; Kim, In Su

    2015-12-18

    The rhodium(III)-catalyzed direct functionalization of aniline C-H bonds with α-diazo compounds is described. These transformations provide a facile construction of ortho-alkylated anilines with diazo malonates or highly substituted indoles with diazo acetoacetates.

  14. Cobalt(III)-Catalyzed C-H Bond Amidation with Isocyanates.

    PubMed

    Hummel, Joshua R; Ellman, Jonathan A

    2015-05-15

    The first examples of cobalt(III)-catalyzed C-H bond addition to isocyanates are described, providing a convergent strategy for arene and heteroarene amidation. Using a robust air- and moisture-stable catalyst, this transformation demonstrates a broad isocyanate scope and good functional-group compatibility and has been performed on gram scale.

  15. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes

    SciTech Connect

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.; Hall, Michael B.; Bullock, R. Morris

    2016-06-07

    Unusual cleavage of P-C and C-H bonds of the P2N2 ligand in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode.

  16. Palladium-catalysed transannular C-H functionalization of alicyclic amines

    NASA Astrophysics Data System (ADS)

    Topczewski, Joseph J.; Cabrera, Pablo J.; Saper, Noam I.; Sanford, Melanie S.

    2016-03-01

    Discovering pharmaceutical candidates is a resource-intensive enterprise that frequently requires the parallel synthesis of hundreds or even thousands of molecules. C-H bonds are present in almost all pharmaceutical agents. Consequently, the development of selective, rapid and efficient methods for converting these bonds into new chemical entities has the potential to streamline pharmaceutical development. Saturated nitrogen-containing heterocycles (alicyclic amines) feature prominently in pharmaceuticals, such as treatments for depression (paroxetine, amitifadine), diabetes (gliclazide), leukaemia (alvocidib), schizophrenia (risperidone, belaperidone), malaria (mefloquine) and nicotine addiction (cytisine, varenicline). However, existing methods for the C-H functionalization of saturated nitrogen heterocycles, particularly at sites remote to nitrogen, remain extremely limited. Here we report a transannular approach to selectively manipulate the C-H bonds of alicyclic amines at sites remote to nitrogen. Our reaction uses the boat conformation of the substrates to achieve palladium-catalysed amine-directed conversion of C-H bonds to C-C bonds on various alicyclic amine scaffolds. We demonstrate this approach by synthesizing new derivatives of several bioactive molecules, including varenicline.

  17. Total Synthesis of Cryptocaryol A by Enantioselective Iridium-Catalyzed Alcohol C-H Allylation.

    PubMed

    Perez, Felix; Waldeck, Andrew R; Krische, Michael J

    2016-04-11

    The polyketide natural product cryptocaryol A is prepared in 8 steps via iridium catalyzed enantioselective diol double C-H allylation, which directly generates an acetate-based triketide stereodiad. In 4 previously reported total syntheses, 17-28 steps were required.

  18. para-C-H Borylation of Benzene Derivatives by a Bulky Iridium Catalyst.

    PubMed

    Saito, Yutaro; Segawa, Yasutomo; Itami, Kenichiro

    2015-04-22

    A highly para-selective aromatic C-H borylation has been accomplished. By a new iridium catalyst bearing a bulky diphosphine ligand, Xyl-MeO-BIPHEP, the C-H borylation of monosubstituted benzenes can be affected with para-selectivity up to 91%. This catalytic system is quite different from the usual iridium catalysts that cannot distinguish meta- and para-C-H bonds of monosubstituted benzene derivatives, resulting in the preferred formation of meta-products. The para-selectivity increases with increasing bulkiness of the substituent on the arene, indicating that the regioselectivity of the present reaction is primarily controlled by steric repulsion between substrate and catalyst. Caramiphen, an anticholinergic drug used in the treatment of Parkinson's disease, was converted into five derivatives via our para-selective borylation. The present [Ir(cod)OH]2/Xyl-MeO-BIPHEP catalyst represents a unique, sterically controlled, para-selective, aromatic C-H borylation system that should find use in streamlined, predictable chemical synthesis and in the rapid discovery and optimization of pharmaceuticals and materials.

  19. Ortho C-H Acylation of Aryl Iodides by Palladium/Norbornene Catalysis.

    PubMed

    Dong, Zhe; Wang, Jianchun; Ren, Zhi; Dong, Guangbin

    2015-10-19

    Reported herein is a palladium/norbornene-catalyzed ortho-arene acylation of aryl iodides by a Catellani-type C-H functionalization. This transformation is enabled by isopropyl carbonate anhydrides, which serve as both an acyl cation equivalent and a hydride source.

  20. Time resolved infrared studies of C-H bond activation by organometallics

    SciTech Connect

    Asplund, M.C. |

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  1. Copper-mediated stereospecific C-H oxidative sulfenylation of terminal alkenes with disulfides.

    PubMed

    Tu, Hai-Yong; Hu, Bo-Lun; Deng, Chen-Liang; Zhang, Xing-Guo

    2015-11-04

    A copper and iodine-mediated C-H oxidative sulfenylation of olefins with diaryl disulfides has been developed for the stereospecific synthesis of vinyl thioether. With the combination of Cu(OTf)2 and I2, a variety of terminal alkenes underwent oxidative coupling reaction with various diaryl disulfides successfully to afford the corresponding E-vinyl sulfides in moderate to good yields.

  2. Teaching enantioselectivity to C-H bond functionalizations: initial steps of a rather long shot.

    PubMed

    Cramer, Nicolai

    2012-01-01

    The direct functionalization of non-activated C-H bonds, especially in an enantioselective manner, requires metal catalysts equipped with ligands with specifically designed properties. Examples for asymmetric C(sp(2))-H and C(sp(3))-H functionalizations using palladium- and rhodium catalysts are shown. This work was rewarded by the 2012 Werner Prize of the Swiss Chemical Society.

  3. Enantioselective synthesis of planar-chiral benzosiloloferrocenes by Rh-catalyzed intramolecular C-H silylation.

    PubMed

    Shibata, Takanori; Shizuno, Tsubasa; Sasaki, Tomoya

    2015-05-07

    The first synthesis of planar-chiral benzosiloloferrocenes was achieved by the intramolecular reaction of 2-(dimethylhydrosilyl)arylferrocenes. The enantioselective cross dehydrogenative coupling of an sp(2) C-H bond of ferrocene with a Si-H bond proceeded efficiently with the use of a Rh-chiral diene catalyst.

  4. Ligand-based carbon-nitrogen bond forming reactions of metal dinitrosyl complexes with alkenes and their application to C-H bond functionalization.

    PubMed

    Zhao, Chen; Crimmin, Mark R; Toste, F Dean; Bergman, Robert G

    2014-02-18

    Over the past few decades, researchers have made substantial progress in the development of transition metal complexes that activate and functionalize C-H bonds. For the most part, chemists have focused on aliphatic and aromatic C-H bonds and have put less effort into complexes that activate and functionalize vinylic C-H bonds. Our groups have recently developed a novel method to functionalize vinylic C-H bonds that takes advantage of the unique ligand-based reactivity of a rare class of metal dinitrosyl complexes. In this Account, we compare and discuss the chemistry of cobalt and ruthenium dinitrosyl complexes, emphasizing alkene binding, C-H functionalization, and catalysis. Initially discovered in the early 1970s by Brunner and studied more extensively in the 1980s by the Bergman group, the cyclopentadienylcobalt dinitrosyl complex CpCo(NO)2 reacts reversibly with alkenes to give, in many cases, stable and isolable cobalt dinitrosoalkane complexes. More recently, we found that treatment with strong bases, such as lithium hexamethyldisilazide, Verkade's base, and phosphazene bases, deprotonates these complexes and renders them nucleophilic at the carbon α to the nitroso group. This conjugate anion of metal dinitrosoalkanes can participate in conjugate addition to Michael acceptors to form new carbon-carbon bonds. These functionalized cobalt complexes can further react through alkene exchange to furnish the overall vinylic C-H functionalized organic product. This stepwise sequence of alkene binding, functionalization, and retrocycloaddition represents an overall vinylic C-H functionalization reaction of simple alkenes and does not require directing groups. We have also developed an asymmetric variant of this reaction sequence and have used this method to synthesize C1- and C2-symmetric diene ligands with high enantioinduction. Building upon these stepwise reactions, we eventually developed a simple one-pot procedure that uses stoichiometric amounts of a cobalt

  5. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2015-01-29

    Many enzymes oxidize unactivated aliphatic C-H bonds selectively to form alcohols; however, biological systems do not possess enzymes that catalyse the analogous aminations of C-H bonds. The absence of such enzymes limits the discovery of potential medicinal candidates because nitrogen-containing groups are crucial to the biological activity of therapeutic agents and clinically useful natural products. In one prominent example illustrating the importance of incorporating nitrogen-based functionality, the conversion of the ketone of erythromycin to the -N(Me)CH2- group in azithromycin leads to a compound that can be dosed once daily with a shorter treatment time. For such reasons, synthetic chemists have sought catalysts that directly convert C-H bonds to C-N bonds. Most currently used catalysts for C-H bond amination are ill suited to the intermolecular functionalization of complex molecules because they require excess substrate or directing groups, harsh reaction conditions, weak or acidic C-H bonds, or reagents containing specialized groups on the nitrogen atom. Among C-H bond amination reactions, those forming a C-N bond at a tertiary alkyl group would be particularly valuable, because this linkage is difficult to form from ketones or alcohols that might be created in a biosynthetic pathway by oxidation. Here we report a mild, selective, iron-catalysed azidation of tertiary C-H bonds that occurs without excess of the valuable substrate. The reaction tolerates aqueous environments and is suitable for the functionalization of complex structures in the late stages of a multistep synthesis. Moreover, this azidation makes it possible to install a range of nitrogen-based functional groups, including those from Huisgen 'click' cycloadditions and the Staudinger ligation. We anticipate that these reactions will create opportunities to modify natural products, their precursors and their derivatives to produce analogues that contain different polarity and charge as a

  6. Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization

    NASA Astrophysics Data System (ADS)

    Sharma, Ankit; Hartwig, John F.

    2015-01-01

    Many enzymes oxidize unactivated aliphatic C-H bonds selectively to form alcohols; however, biological systems do not possess enzymes that catalyse the analogous aminations of C-H bonds. The absence of such enzymes limits the discovery of potential medicinal candidates because nitrogen-containing groups are crucial to the biological activity of therapeutic agents and clinically useful natural products. In one prominent example illustrating the importance of incorporating nitrogen-based functionality, the conversion of the ketone of erythromycin to the -N(Me)CH2- group in azithromycin leads to a compound that can be dosed once daily with a shorter treatment time. For such reasons, synthetic chemists have sought catalysts that directly convert C-H bonds to C-N bonds. Most currently used catalysts for C-H bond amination are ill suited to the intermolecular functionalization of complex molecules because they require excess substrate or directing groups, harsh reaction conditions, weak or acidic C-H bonds, or reagents containing specialized groups on the nitrogen atom. Among C-H bond amination reactions, those forming a C-N bond at a tertiary alkyl group would be particularly valuable, because this linkage is difficult to form from ketones or alcohols that might be created in a biosynthetic pathway by oxidation. Here we report a mild, selective, iron-catalysed azidation of tertiary C-H bonds that occurs without excess of the valuable substrate. The reaction tolerates aqueous environments and is suitable for the functionalization of complex structures in the late stages of a multistep synthesis. Moreover, this azidation makes it possible to install a range of nitrogen-based functional groups, including those from Huisgen `click' cycloadditions and the Staudinger ligation. We anticipate that these reactions will create opportunities to modify natural products, their precursors and their derivatives to produce analogues that contain different polarity and charge as a

  7. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.

    PubMed

    Engle, Keary M; Mei, Tian-Sheng; Wasa, Masayuki; Yu, Jin-Quan

    2012-06-19

    Reactions that convert carbon-hydrogen (C-H) bonds into carbon-carbon (C-C) or carbon-heteroatom (C-Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C-H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C-H functionalization reactions become more widely utilized in organic synthesis. Research in the area of homogeneous transition metal-catalyzed C-H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as "first functionalization". Here the substrates are nonpolar and hydrophobic and thus interact very weakly with polar metal species. To overcome this weak affinity and drive metal-mediated C-H cleavage, chemists often use hydrocarbon substrates in large excess (for example, as solvent). Because highly reactive metal species are needed in first functionalization, controlling the chemoselectivity to avoid overfunctionalization is often difficult. Additionally, because both substrates and products are comparatively low-value chemicals, developing cost-effective catalysts with exceptionally high turnover numbers that are competitive with alternatives (including heterogeneous catalysts) is challenging. Although an exciting field, first functionalization is beyond the scope of this Account. The second subfield of C-H functionalization involves substrates containing one or more pre-existing functional groups, termed "further functionalization". One advantage of this approach is that the existing functional group (or groups) can be used to chelate

  8. C+/H2 gas in star-forming clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Nordon, Raanan; Sternberg, Amiel

    2016-11-01

    We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.

  9. Synthesis of Planar Chiral Ferrocenes via Transition-Metal-Catalyzed Direct C-H Bond Functionalization.

    PubMed

    Gao, De-Wei; Gu, Qing; Zheng, Chao; You, Shu-Li

    2017-02-21

    Ferrocenes are of great interest in the fields of materials science, organic synthesis, and biomedical research. Of particular significance is the fact that ferrocenes bearing planar chirality have been demonstrated to be highly efficient ligands or catalysts in asymmetric catalysis, some of which have been employed in the industrial synthesis of pharmaceuticals and agrochemicals. So far, the main methods for the synthesis of planar chiral ferrocenes involve diastereoselective directed ortho-metalation (DoM), enantioselective DoM, and chiral resolution. Despite the fact that these approaches are well developed and widely applied, the use of chiral auxiliaries or external stoichiometric chiral bases is required in most cases. Additionally, the practicality of these processes is hampered by the requirement of sensitive organometallic reagents, the poor compatibility with functional groups, and the low atom economy in some cases. Therefore, the development of highly efficient strategies to introduce planar chirality on the backbone of ferrocene that do not possess these limitations is highly desirable. Meanwhile, transition-metal-catalyzed asymmetric C-H bond functionalization reactions have attracted much attention over the past few years owing to their emerging potential for providing a straightforward approach for the preparation of chiral molecules. In addition to the majority of the work focusing on the installation of central chirality, methods for the catalytic asymmetric synthesis of planar chiral compounds via C-H bond functionalization have also been explored. In this Account, we summarize our recent efforts aimed at the development of novel methods to synthesize planar chiral compounds via asymmetric C-H bond functionalization and also highlight related achievements by other groups. First, we briefly introduce the precedent examples of diastereoselective and enantioselective synthesis of planar chiral ferrocenes. Subsequently, asymmetric syntheses of

  10. Deposition of a-C:H films on a nanotrench pattern by bipolar PBII&D

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Nakahara, Yuya; Nagato, Keisuke; Choi, Junho

    2016-06-01

    In this study, hydrogenated amorphous carbon (a-C:H) films were deposited on a nanotrench pattern (300 nm pitch, aspect ratio: 2.0) by bipolar-type plasma based ion implantation and deposition technique (bipolar PBII&D), and the effects of bipolar pulse on the film properties were investigated. Moreover, the behaviour of ions and radicals surrounding the nanotrench was analyzed to clarify the coating mechanism and properties of the a-C:H films on the nanotrench. Further, thermal nanoimprint lithography was carried out using the nanotrench pattern coated with a-C:H films as the mold, and the mold release properties were evaluated. All nanotrench surfaces were successfully coated with the a-C:H films, but the film thickness on the top, sidewall, and bottom surfaces of the trench were not uniform. The surface roughness of the a-C:H films was found to decrease at a higher positive voltage; this happens due to the higher electron temperature around the nanotrench because of the surface migration of plasma particles arrived on the trench. The effects of the negative voltage on the behaviour of ions and radicals near the sidewall of the nanotrench are quite similar to those near the microtrench reported previously (Park et al 2014 J. Phys. D: Appl. Phys. 47 335306). However, the positive pulse voltage was also found to affect the behaviour of ions and radicals near the sidewall surface. The incident angles of ions on the sidewall surface increased with the positive pulse voltage because the energy of incoming ions on the trench decreases with increasing positive voltage. Moreover, the incident ion flux on the sidewall is affected by the positive voltage history. Further, the radical flux decreases with increasing positive voltage. It can be concluded that a higher positive voltage at a lower negative voltage condition is good to obtain better film properties and higher film thickness on the sidewall surface. Pattern transfer properties for the nanoimprint formed by

  11. Mild and Efficient Palladium-Catalyzed Direct Trifluoroethylation of Aromatic Systems by C-H Activation.

    PubMed

    Tóth, Balázs L; Kovács, Szabolcs; Sályi, Gergő; Novák, Zoltán

    2016-02-05

    The introduction of trifluoroalkyl groups into aromatic molecules is an important transformation in the field of organic and medicinal chemistry. However, the direct installation of fluoroalkyl groups onto aromatic molecules still represents a challenging and highly demanding synthetic task. Herein, a simple trifluoroethylation process that relies on the palladium-catalyzed C-H activation of aromatic compounds is described. With the utilization of a highly active trifluoroethyl(mesityl)iodonium salt, the developed catalytic method enables the first highly efficient and selective trifluoroethylation of aromatic compounds. The robust catalytic procedure provides the desired products in up to 95 % yield at 25 °C in 1.5 to 3 hours and tolerates a broad range of functional groups. The utilization of hypervalent reagents opens new synthetic possibilities for direct alkylations and fluoroalkylations in the field of transition-metal-catalyzed C-H activation.

  12. Controlling factors for C-H functionalization versus cyclopropanation of dihydronaphthalenes.

    PubMed

    Nadeau, Etienne; Ventura, Dominic L; Brekan, Jonathan A; Davies, Huw M L

    2010-03-19

    Rhodium(II)-catalyzed reactions of vinyldiazoacetates with dihydronaphthalenes were systematically studied. These substrates underwent cyclopropanantion and/or the combined C-H activation/Cope rearrangement in good overall yield and with good diastereo- and enantiocontrol. The selectivity of these reactions was profoundly influenced by the nature of the chiral catalyst, the vinyldiazoacetate, and the dihydronaphthalene. The best combinations for achieving the highest selectivity in the cyclopropanation and the combined C-H activation/Cope rearrangement of 1,2-dihydronaphthalenes are methyl 2-diazopent-3-enoate (2a)/Rh(2)(S-DOSP)(4) and methyl 3-(tert-butyldimethylsilyloxy)-2-diazopent-3-enoate (2b)/Rh(2)(S-PTAD)(4). These combinations are very effective at enantiodivergent reactions of 1-methyl-1,2-dihydronaphthalenes.

  13. Oxidative aliphatic C-H fluorination with fluoride ion catalyzed by a manganese porphyrin.

    PubMed

    Liu, Wei; Huang, Xiongyi; Cheng, Mu-Jeng; Nielsen, Robert J; Goddard, William A; Groves, John T

    2012-09-14

    Despite the growing importance of fluorinated organic compounds in drug development, there are no direct protocols for the fluorination of aliphatic C-H bonds using conveniently handled fluoride salts. We have discovered that a manganese porphyrin complex catalyzes alkyl fluorination by fluoride ion under mild conditions in conjunction with stoichiometric oxidation by iodosylbenzene. Simple alkanes, terpenoids, and even steroids were selectively fluorinated at otherwise inaccessible sites in 50 to 60% yield. Decalin was fluorinated predominantly at the C2 and C3 methylene positions. Bornyl acetate was converted to exo-5-fluoro-bornyl acetate, and 5α-androstan-17-one was fluorinated selectively in the A ring. Mechanistic analysis suggests that the regioselectivity for C-H bond cleavage is directed by an oxomanganese(V) catalytic intermediate followed by F delivery via an unusual manganese(IV) fluoride that has been isolated and structurally characterized.

  14. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  15. Metal-Free Oxidative C-C Bond Formation through C-H Bond Functionalization.

    PubMed

    Narayan, Rishikesh; Matcha, Kiran; Antonchick, Andrey P

    2015-10-12

    The formation of C-C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C-C bond-forming reactions are well-known challenges. To achieve this goal through direct functionalization of C-H bonds in both of the coupling partners represents the state-of-the-art in organic synthesis. Oxidative C-C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C-C bond-forming reactions through direct C-H bond functionalization under completely metal-free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms.

  16. Catalytic C-H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis.

    PubMed

    Reay, Alan J; Fairlamb, Ian J S

    2015-11-25

    This feature article examines the potential of heterogeneous Pd species to mediate catalytic C-H bond functionalisation processes employing suitable substrates (e.g. aromatic/heteroaromatic compounds). A focus is placed on the reactivity of supported and non-supported Pd nanoparticle (PdNPs) catalysts, in addition to the re-appropriation of well-established heterogeneous Pd catalysts such as Pd/C. Where possible, reasonable comparisons are made between PdNPs and traditional 'homogeneous' Pd precatalyst sources (which form PdNPs). The involvement of higher order Pd species in traditional cross-coupling processes, such as Mizoroki-Heck, Sonogashira and Suzuki-Miyaura reactions, allows the exemplification of potential future topics for study in the area of catalytic C-H bond functionalisation processes.

  17. Theoretical study of the C-H bond dissociation energy of C2H

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    A theoretical study of the convergence of the C-H bond dissociation energy D(0) in C2H with respect to both the one- and n-particle spaces is presented. The calculated C-H bond energies of C2H2 and C2H4, which are in excellent agreement with experiment, are used for calibration. The best estimate for D(0) of 112.4 + or - 2.0 kcal/mol is slightly below the recent experimental value of 116.3 + or - 2.6 kcal/mol, but substantially above a previous theoretical estimate of 102 kcal/mol. The remaining discrepancy with experiment may reflect primarily the uncertainty in the experimental D(0) value of C2 required in the analysis.

  18. Transition-metal-catalyzed group transfer reactions for selective C-H bond functionalization of artemisinin.

    PubMed

    Liu, Yungen; Xiao, Wenbo; Wong, Man-Kin; Che, Chi-Ming

    2007-10-11

    Three types of novel artemisinin derivatives have been synthesized through transition-metal-catalyzed intramolecular carbenoid and nitrenoid C-H bond insertion reactions. With rhodium complexes as catalysts, lactone 11 was synthesized via carbene insertion reaction at the C16 position in 90% yield; oxazolidinone 13 was synthesized via nitrene insertion reaction at the C10 position in 87% yield based on 77% conversion; and sulfamidate 14 was synthesized via nitrene insertion reaction at the C8 position in 87% yield.

  19. Late-Stage Diversification of Biologically Active Molecules via Chemoenzymatic C-H Functionalization.

    PubMed

    Durak, Landon J; Payne, James T; Lewis, Jared C

    2016-03-04

    Engineered variants of rebeccamycin halogenase were used to selectively halogenate a number of biologically active aromatic compounds. Subsequent Pd-catalyzed cross-coupling reactions on the crude extracts of these reactions were used to install aryl, amine, and ether substituents at the halogenation site. This simple, chemoenzymatic method enables non-directed functionalization of C-H bonds on a range of substrates to provide access to derivatives that would be challenging or inefficient to prepare by other means.

  20. Theoretical study of the C-H bond dissociation energy of acetylene

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    The authors present a theoretical study of the convergence of the C-H bond dissociation energy (D sub o) of acetylene with respect to both the one- and n-particle spaces. Their best estimate for D sub o of 130.1 plus or minus 1.0 kcal/mole is slightly below previous theoretical estimates, but substantially above the value determined using Stark anticrossing spectroscopy that is asserted to be an upper bound.

  1. Mild Palladium Catalyzed ortho C-H Bond Functionalizations of Aniline Derivatives.

    PubMed

    Tischler, Ms Orsolya; Tóth, Mr Balázs; Novák, Zoltán

    2017-02-01

    This account collects the developments and transformations which avoid the utilization of harsh reaction conditions in the field of palladium catalyzed, ortho-directed C-H activation of aniline derivatives from the first attempts to up-to-date results, including the results of our research laboratory. The discussed functionalizations performed under mild conditions include acylation, olefination, arylation, alkylation, alkoxylation reactions. Beside the optimization studies and the synthetic applications mechanistic investigations are also presented.

  2. Facile C-H alkylation in water: enabling defect-free materials for optoelectronic devices.

    PubMed

    Saikia, Gunin; Iyer, Parameswar K

    2010-04-16

    A facile method for the alkylation of fluorene achieved via direct C-H alkylation under aqueous conditions is reported, wherein the formation of fluorenone is inhibited, resulting in the exclusive formation of the desired dialkyl-substituted fluorene monomer. As a proof of concept, this method has also been successfully extended to perform N-alkylation of carbazole, diphenylamine, and N,N-dialkylation of aniline in high yields.

  3. Ruthenium(II)-catalyzed C-H activation with isocyanates: a versatile route to phthalimides.

    PubMed

    De Sarkar, Suman; Ackermann, Lutz

    2014-10-20

    A cationic ruthenium(II)-complex was utilized in the efficient synthesis of phthalimide derivatives by C-H activation with synthetically useful amides. The reaction proceeded through a mechanistically unique insertion of a cycloruthenated species into a C-Het multiple bond of isocyanate. The novel method also proved applicable for the synthesis of heteroaromatic unsymmetric diamides as well as a potent COX-2 enzyme inhibitor.

  4. Chelation-assisted palladium-catalyzed direct cyanation of 2-arylpyridine C-H bonds.

    PubMed

    Jia, Xiaofei; Yang, Dongpeng; Zhang, Shouhui; Cheng, Jiang

    2009-10-15

    A chelation-assisted palladium-catalyzed ortho-cyanation of the sp2 C-H bond by CuCN provided aromatic nitriles in moderate to good yields. Notably, the reaction could be conducted on a 10 mmol scale. The key intermediate of the natural product of Menispermum dauricum DC was concisely synthesized by the procedure. This new approach represents an exceedingly practical method for the synthesis of aromatic nitriles and offers an attractive alternative to the traditional Sandmeyer reaction.

  5. Rare-earth-catalyzed C-H bond addition of pyridines to olefins.

    PubMed

    Guan, Bing-Tao; Hou, Zhaomin

    2011-11-16

    An efficient and general protocol for the ortho-alkylation of pyridines via C-H addition to olefins has been developed, using cationic half-sandwich rare-earth catalysts, which provides an atom-economical method for the synthesis of alkylated pyridine derivatives. A wide range of pyridine and olefin substrates including α-olefins, styrenes, and conjugated dienes are compatible with the catalysts.

  6. Cross dehydrogenative arylation (CDA) of a benzylic C-H bond with arenes by iron catalysis.

    PubMed

    Li, Yi-Zhou; Li, Bi-Jie; Lu, Xing-Yu; Lin, Song; Shi, Zhang-Jie

    2009-01-01

    Hooking up: FeCl(2) catalyzes the efficient cross dehydrogenative arylation of substrates having benzylic C-H bonds (see scheme). High regioselectivity was observed during the cross-coupling between compounds containing aromatic C(sp(2))-H bonds and benzylic C(sp(3))-H bonds. This process is proposed to proceed by single-electron-transfer oxidation and Friedel-Crafts alkylation.

  7. Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization.

    PubMed

    Patel, Pitambar; Borah, Gongutri

    2016-12-22

    Herein we disclose the first report on the synthesis of oxindole derivatives from acetanilide via Ir(iii)-catalyzed intermolecular C-H functionalization with diazotized Meldrum's acid. A broad range of substituted anilides were found to react smoothly under the Ir(iii)-catalytic system to afford the corresponding N-protected oxindoles. The N-protecting groups, such as Ac, Bz or Piv, can be easily removed to furnish the oxindole. Various synthetic applications of the synthesized oxindole were also demonstrated.

  8. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    SciTech Connect

    Watzke, Anja; Wilson, Rebecca; O'Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  9. Visible-Light-Promoted Vinylation of Tetrahydrofuran with Alkynes through Direct C-H Bond Functionalization.

    PubMed

    Li, Jing; Zhang, Jing; Tan, Haibo; Wang, David Zhigang

    2015-05-15

    Mild and direct C-H bond functionalizations and vinylations of tetrahydrofuran with alkynes have been accomplished through visible light photocatalysis, yielding a range of vinyl tetrahydrofurans under the synergistic actions of organic dye-type photocatalyst eosin Y, tert-butyl hydroperoxide (t-BuOOH), and a 45 W household lightbulb. A significant kinetic isotope effect (KIE) was recorded, which helps shed light on the mechanistic course.

  10. Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles.

    PubMed

    Malik, Hasnain A; Taylor, Buck L H; Kerrigan, John R; Grob, Jonathan E; Houk, K N; Du Bois, J; Hamann, Lawrence G; Patterson, Andrew W

    2014-06-01

    We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of N-containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest. We pursue two approaches in parallel that allow product conversion in this representative system: Lewis acids are found to be effective in situ blocking groups for the Lewis basic site, and a pre-formed pyridine N-oxide is shown to enable high yield of allylic C-H acetoxylation. Computational studies with density functional theory (M06) of binding affinities of selected heterocycles to Pd(OAc)2 provide an inverse correlation of the computed heterocycle-Pd(OAc)2 binding affinities with the experimental conversions to products. Additionally, (1)H NMR binding studies provide experimental support for theoretical calculations.

  11. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    PubMed

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  12. Open-Shell Phenalenyl in Transition Metal-Free Catalytic C-H Functionalization.

    PubMed

    Paira, Rupankar; Singh, Bhagat; Hota, Pradip Kumar; Ahmed, Jasimuddin; Sau, Samaresh Chandra; Johnpeter, Justin P; Mandal, Swadhin K

    2016-03-18

    Open-shell phenalenyl chemistry has widely been explored in the last five decades demonstrating its potential in various applications including molecular switch, spin memory device, molecular battery, cathode material, etc. In this article, we have explored another new direction of open-shell phenalenyl chemistry toward transition metal-free catalytic C-H functionalization process. A phenalenyl ligand, namely, 9-methylamino-phenalen-1-one (4a), promoted chelation-assisted single electron transfer (SET) process, which facilitates the C-H functionalization of unactivated arenes to form the biaryl products. The present methodology offers a diverse substrate scope, which can be operated without employing any dry or inert conditions and under truly transition metal based catalyst like loading yet avoiding any expensive or toxic transition metal. This not only is the first report on the application of phenalenyl chemistry in C-H functionalization process but also provides a low-catalyst loading organocatalytic system (up to 0.5 mol % catalyst loading) as compared to the existing ones (mostly 20-40 mol %), which has taken advantage of long known phenalenyl based radical stability through the presence of its low-lying nonbonding molecular orbital.

  13. Determining the vibrational pattern via overtone cold spectra: C-H methyl stretches of propyne.

    PubMed

    Portnov, Alex; Bespechansky, Evgeny; Ganot, Yuval; Rosenwaks, Salman; Bar, Ilana

    2005-06-08

    Vibrationally mediated photodissociation and photoacoustic (PA) spectroscopy were employed for studying the intramolecular dynamics of propyne initially excited to the first through fourth overtone of methyl C-H stretching modes. Room-temperature PA and jet-cooled action spectra, monitoring the absorption of the parent and the yield of the ensuing H photofragments, respectively, were obtained. The PA spectra exhibit mainly broad features, while the action spectra, due to inhomogeneous structure reduction, expose multiple peaks of recognizable shapes in the differing overtone manifolds. Symmetric rotor simulations of the band contours of the action spectra allowed retrieving of band origins and linewidths. The linewidths of the bands in each manifold enabled estimates for energy redistribution times out of the corresponding states to the bath states, the times ranging from 18+/-6 ps for two quanta of C-H excitation to subpicosecond for five quanta. The data were also analyzed in terms of a normal-mode model and a joint local-/normal-mode model. These models enabled determination of harmonic frequencies, anharmonicities, and interaction parameters reproducing the observed data in all monitored regions and provided spectral assignments. The measured Doppler profiles were well fitted by Gaussians with widths suggesting low average translational energies for the released H photofragments. These low energies and their similarities to those for dissociation of propyne isotopomers preexcited to acetylenic C-H stretches were ascribed to an indirect dissociation process occurring after internal conversion to the ground electronic state and isomerization to allene.

  14. Thermal shock and thermal cycling behaviour of amorphous a-C:H films on molybdenum substrates

    NASA Astrophysics Data System (ADS)

    Kny, E.; Winter, J.; Littmark, U.; Friedbacher, G.; Grasserbauer, M.; Waelbroeck, F.

    1988-07-01

    The thermal behaviour of a-C: H films (a stands for amorphous) deposited by the TEXTOR carbonization technique on molybdenum substrates was investigated in high power electron beam testing device for single and multiple shot sequences. The stationary thermal behaviour was also measured. The results for single shot testing are presented in a threshold damage diagram and show that the stability of a-C: H films on molybdenum is superior to that on steel. At higher or repeated loadings the films are converted gradually to molybdenum carbide. AES and SIMS depth profiling was used to investigate the concentration profiles and interface compositions of the films after various heat treatments. Their 1-h thermal stability on molybdenum extends to approximately 700°C in a stationary test. Results show that a-C: H films on molybdenum should be effective in shielding the molybdenum substrate from the plasma in a fusion device as long as the stated loading limits are not exceeded.

  15. Enantioselective amine α-functionalization via palladium-catalysed C-H arylation of thioamides

    NASA Astrophysics Data System (ADS)

    Jain, Pankaj; Verma, Pritha; Xia, Guoqin; Yu, Jin-Quan

    2016-10-01

    Saturated aza-heterocycles are highly privileged building blocks that are commonly encountered in bioactive compounds and approved therapeutic agents. These N-heterocycles are also incorporated as chiral auxiliaries and ligands in asymmetric synthesis. As such, the development of methods to functionalize the α-methylene C-H bonds of these systems enantioselectively is of great importance, especially in drug discovery. Currently, enantioselective lithiation with (-)-sparteine followed by Pd(0) catalysed cross-coupling to prepare α-arylated amines is largely limited to pyrrolidines. Here we report a Pd(II)-catalysed enantioselective α-C-H coupling of a wide range of amines, which include ethyl amines, azetidines, pyrrolidines, piperidines, azepanes, indolines and tetrahydroisoquinolines. Chiral phosphoric acids are demonstrated as effective anionic ligands for the enantioselective coupling of methylene C-H bonds with aryl boronic acids. This catalytic reaction not only affords high enantioselectivities, but also provides exclusive regioselectivity in the presence of two methylene groups in different steric environments.

  16. Excess C/O and C/H in Outer Protoplanetary Disk Gas

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Bergin, Edwin A.

    2016-11-01

    The compositions of nascent planets depend on the compositions of their birth disks. In particular, the elemental compositions of gas giant gaseous envelopes depend on the elemental compositions of the disk gas from which the envelopes are accreted. Previous models have demonstrated that sequential freeze-out of O- and C-bearing volatiles in disks will result in supersolar C/O ratios and subsolar C/H ratios in the gas between water and CO snowlines. However, this result does not take into account the expected grain growth and radial drift of pebbles in disks, and the accompanying redistribution of volatiles from the outer to the inner disk. Using a toy model we demonstrate that when drift is considered, CO is enhanced between the water and CO snowline, resulting in both supersolar C/O and C/H ratios in the disk gas in the gas giant formation zone. This result appears to be robust for the disk model as long as there is substantial pebble drift across the CO snowline, and the efficiency of CO vapor diffusion is limited. Gas giants that accrete their gaseous envelopes exterior to the water snowline and do not experience substantial core-envelope mixing may thus feature both superstellar C/O and C/H ratios in their atmospheres. Pebble drift will also affect the nitrogen and noble gas abundances in the planet-forming zones, which may explain some of Jupiter’s peculiar abundance patterns.

  17. RIR MAPLE procedure for deposition of carbon rich Si/C/H films

    NASA Astrophysics Data System (ADS)

    Dřínek, Vladislav; Strašák, Tomáš; Novotný, Filip; Fajgar, Radek; Bastl, Zdeněk

    2014-02-01

    We applied the resonant infrared matrix assisted pulsed laser evaporation (RIR MAPLE) technique to demonstrate a new approach to a controlled deposition of carbon rich amorphous Si/C/H film. In absence of radicals and accelerated species commonly generated in PECVD and sputtering setups, the RIR MAPLE method does not decompose precursor molecules. Moreover, unlike the standard MAPLE procedure, in which solvent molecules absorb laser energy from excimer or near infrared lasers, we applied the pulsed TEA CO2 laser to excite the dendrimer precursor molecules in a frozen target. In this manner we achieved just cross-linking of the starting precursor on substrates and the deposition of carbon rich Si/C/H film. The film was analyzed by Fourier Transformed Infrared (FTIR), UV/VIS, Raman and X-ray Photoelectron (XPS) spectroscopy and Atomic Force Microscopy (AFM) technique. According to analyses the film retained the precursor elemental composition free of graphitic (sp2) clusters. In course of reaction only the peripheral allyl groups containing C=C bonds were opened to achieve cross-linking. Whereas annealing to 300 °C was necessary for the elimination of =C-H1, 2 bonds in the films prepared at 200 °C, those bonds vanished completely for the films prepared at substrate temperature 255 °C. The film posseses a smooth surface with root mean square (RMS) parameter up to 10 nm within scanned distance 2.5 μm.

  18. Rh(III)-Catalyzed C-H Bond Addition/Amine-Mediated Cyclization of Bis-Michael Acceptors.

    PubMed

    Potter, Tyler J; Ellman, Jonathan A

    2016-08-05

    A Rh(III)-catalyzed C-H bond addition/primary amine-promoted cyclization of bis-Michael acceptors is reported. The C-H bond addition step occurs with high chemoselectivity, and the subsequent intramolecular Michael addition, mediated by a primary amine catalyst, sets three contiguous stereocenters with high diastereoselectivity. A broad range of directing groups and both aromatic and alkenyl C-H bonds were shown to be effective in this transformation, affording functionalized piperidines, tetrahydropyrans, and cyclohexanes.

  19. Synthesis of new class of alkyl azarene pyridinium zwitterions via iodine mediated sp3 C-H bond activation.

    PubMed

    Kumar, Atul; Gupta, Garima; Srivastava, Suman

    2011-12-16

    An efficient and conceptually different approach toward C-H bond activation by using iodine mediated sp(3) C-H functionalization for the synthesis of alkyl azaarene pyridinium zwitterions is described. This work has the interesting distinction of being the first synthesis of a new class of alkyl azaarene pyridinium zwitterion via transition-metal-free sp(3) C-H bond activation of an alkyl azaarene.

  20. Enterovirus 71 Infection Cleaves a Negative Regulator for Viral Internal Ribosomal Entry Site-Driven Translation

    PubMed Central

    Chen, Li-Lien; Kung, Yu-An; Weng, Kuo-Feng; Lin, Jing-Yi; Horng, Jim-Tong

    2013-01-01

    Far-upstream element-binding protein 2 (FBP2) is an internal ribosomal entry site (IRES) trans-acting factor (ITAF) that negatively regulates enterovirus 71 (EV71) translation. This study shows that EV71 infection cleaved FBP2. Live EV71 and the EV71 replicon (but not UV-inactivated virus particles) induced FBP2 cleavage, suggesting that viral replication results in FBP2 cleavage. The results also showed that virus-induced proteasome, autophagy, and caspase activity co-contribute to EV71-induced FBP2 cleavage. Using FLAG-fused FBP2, we mapped the potential cleavage fragments of FBP2 in infected cells. We also found that FBP2 altered its function when its carboxyl terminus was cleaved. This study presents a mechanism for virus-induced cellular events to cleave a negative regulator for viral IRES-driven translation. PMID:23345520

  1. Microstructure characterization of advanced protective Cr/CrN+a-C:H/a-C:H:Cr multilayer coatings on carbon fibre composite (CFC).

    PubMed

    Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B

    2016-06-01

    Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools.

  2. Chemoselective hydroxylation of aliphatic sp3 C-H bonds using a ketone catalyst and aqueous H2O2.

    PubMed

    Pierce, Conor J; Hilinski, Michael K

    2014-12-19

    The first ketone-catalyzed method for the oxidation of aliphatic C-H bonds is reported. The reaction conditions employ aryl trifluoromethyl ketones in catalytic amounts and hydrogen peroxide as the terminal oxidant. Hydroxylation is stereospecific and chemoselective for tertiary over secondary C-H bonds. A catalytic cycle invoking a dioxirane as the active oxidant is proposed.

  3. Palladium-catalyzed oxidative arylalkylation of activated alkenes: dual C-H bond cleavage of an arene and acetonitrile.

    PubMed

    Wu, Tao; Mu, Xin; Liu, Guosheng

    2011-12-23

    Not one but two: The title reaction proceeds through the dual C-H bond cleavage of both aniline and acetonitrile. The reaction affords a variety of cyano-bearing indolinones in excellent yield. Mechanistic studies demonstrate that this reaction involves a fast arylation of the olefin and a rate-determining C-H activation of the acetonitrile.

  4. Transition-state metal aryl bond stability determines regioselectivity in palladium acetate mediated C-H bond activation of heteroarenes.

    PubMed

    Petit, Alban; Flygare, Josh; Miller, Alex T; Winkel, Gerrit; Ess, Daniel H

    2012-07-20

    Density functional calculations reveal that the stability of developing metal aryl bonds in Pd(II)-acetate C-H activation transition states determines regioselectivity in arene and heteroarene compounds. This kinetic-thermodynamic connection explains the general preference for activation of the strongest C-H bond and provides the possibility for regioselectivity prediction.

  5. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    PubMed

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-07

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation.

  6. A convenient synthesis of anthranilic acids by Pd-catalyzed direct intermolecular ortho-C-H amidation of benzoic acids.

    PubMed

    Ng, Ka-Ho; Ng, Fo-Ning; Yu, Wing-Yiu

    2012-12-11

    An efficient method for synthesis of anthranilic acids by Pd-catalyzed ortho-C-H amidation of benzoic acids is disclosed. The amidation is proposed to proceed by carboxylate-assisted ortho-C-H palladation to form an arylpalladium(II) complex, followed by nitrene insertion to the Pd-C bond.

  7. Hydrogen atom transfer from 1,n-alkanediamines to the cumyloxyl radical. Modulating C-H deactivation through acid-base interactions and solvent effects.

    PubMed

    Milan, Michela; Salamone, Michela; Bietti, Massimo

    2014-06-20

    A time-resolved kinetic study on the effect of trifluoroacetic acid (TFA) on the hydrogen atom transfer (HAT) reactions from 1,n-alkanediamines (R2N(CH2)nNR2, R = H, CH3; n = 1-4), piperazine, and 1,4-dimethylpiperazine to the cumyloxyl radical (CumO(•)), has been carried out in MeCN and DMSO. Very strong deactivation of the α-C-H bonds has been observed following nitrogen protonation and the results obtained have been explained in terms of substrate basicity, of the distance between the two basic centers and of the solvent hydrogen bond acceptor ability. At [substrate] ≤ 1/2 [TFA] the substrates exist in the doubly protonated form HR2N(+)(CH2)nN(+)R2H, and no reaction with CumO(•) is observed. At 1/2 [TFA] < [substrate] ≤ [TFA], HAT occurs from the C-H bonds that are α to the nonprotonated nitrogen in R2N(CH2)nN(+)R2H. At [substrate] > [TFA], HAT occurs from the α-C-H bonds of R2N(CH2)nNR2, and the mesured kH values are very close to those obtained in the absence of TFA. Comparison between MeCN and DMSO clearly shows that in the monoprotonated diamines R2N(CH2)nN(+)R2H remote C-H deactivation can be modulated through solvent hydrogen bonding.

  8. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  9. Localization of two post-proline cleaving peptidases in the midgut of Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in the midgut of Tenebrio molitor larvae with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activit...

  10. FeCl3-catalyzed self-cleaving deprotection of methoxyphenylmethyl-protected alcohols.

    PubMed

    Sawama, Yoshinari; Masuda, Masahiro; Asai, Shota; Goto, Ryota; Nagata, Saori; Nishimura, Shumma; Monguchi, Yasunari; Sajiki, Hironao

    2015-02-06

    4-Methoxyphenylmethyl ethers are widely utilized as alcohol protecting groups. FeCl3 effectively catalyzes the deprotection of methoxyphenylmethyl-type ethers in a self-cleaving manner to produce oligomeric derivatives and alcohols. Remarkably, the highly pure mother alcohols can be obtained without silica gel column chromatography by using the 2,4-dimethoxyphenylmethyl group as a protective group.

  11. Simple bioseparations using self-cleaving elastin-like polypeptide tags.

    PubMed

    Banki, Mahmoud Reza; Feng, Liang; Wood, David W

    2005-09-01

    We introduce a new method for the purification of recombinant proteins expressed in Escherichia coli using self-cleaving elastin-like polypeptide (ELP) fusion tags without the need for affinity chromatography or proteolytic tag removal. Using this method we obtained high purity, activity and reasonable yields for ten diverse target proteins.

  12. Palladium-catalyzed direct ortho C-H arylation of 2-arylpyridine derivatives with aryltrimethoxysilane.

    PubMed

    Li, Wu; Yin, Zhangwei; Jiang, Xiaoqing; Sun, Peipei

    2011-10-21

    A Pd(OAc)(2)-catalyzed cross-coupling reaction between 2-arylpyridine and aryltrimethoxysilane in the presence of AgF and BQ in 1,4-dioxane was studied. After various reaction parameters (catalyst, oxidant, additive, solvent and reaction temperature) were examined, the optimal conditions for the reaction were identified. The synthesis is compatible to aryltrimethoxysilane with both electron-withdrawing and electron-donating groups on the aryl moiety with moderate yields. The kinetic isotope effect (k(H)/k(D)) for the C-H bond activation was provided.

  13. Zinc(II)-Mediated Carbene Insertion into C-H Bonds in Alkanes.

    PubMed

    Kulkarni, Naveen V; Dash, Chandrakanta; Jayaratna, Naleen B; Ridlen, Shawn G; Karbalaei Khani, Sarah; Das, Animesh; Kou, Xiaodi; Yousufuddin, Muhammed; Cundari, Thomas R; Dias, H V Rasika

    2015-12-07

    The cationic zinc adduct {[HB(3,5-(CF3)2Pz)3]Zn(NCMe)2}ClO4 catalyzes the functionalization of tertiary, secondary, and primary C-H bonds of alkanes via carbene insertion. Ethyl diazoacetate serves as the :CHCO2Et carbene precursor. The counteranion, supporting ligand, and coordinating solvents affect the catalytic activity. An in situ generated {[HB(3,5-(CF3)2Pz)3]Zn}(+) species containing a bulkier {B[3,5-(CF3)2C6H3]4}(-) anion gives the best results among the zinc catalysts used.

  14. Study of L-ascorbic acid (vitamin C)/H 2O mixture across glass transition

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Branca, C.; Faraone, A.; Magazù, S.; Migliardo, P.

    2001-07-01

    In this paper, we report quasi elastic neutron scattering (QENS) spectra of vitamin C aqueous solutions, obtained using MIBEMOL spectrometer (LLB). The main purpose of this work is to characterize the relaxational and vibrational properties of the Vitamin C/H 2O system below and above the glass transition temperature by analysing the low-frequency neutron scattering spectra. The determination of the relative weight of vibrational over relaxational contributions allows to get information on the fragility degree of this peculiar hydrogen-bond system.

  15. Annulation of Aromatic Imines via Directed C-H BondActivation

    SciTech Connect

    Thalji, Reema K.; Ahrendt, Kateri A.; Bergman, Robert G.; Ellman,Jonathan A.

    2005-04-14

    A directed C-H bond activation approach to the synthesis of indans, tetralins, dihydrofurans, dihydroindoles, and other polycyclic aromatic compounds is presented. Cyclization of aromatic ketimines and aldimines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using (PPh{sub 3}){sub 3}RhCl (Wilkinson's catalyst). The cyclization of a range of aromatic ketimines and aldimines provides bi- and tricyclic ring systems with good regioselectivity. Different ring sizes and substitution patterns can be accessed through the coupling of monosubstituted, 1,1- or 1,2-disubstituted, and trisubstituted alkenes bearing both electron-rich and electron-deficient functionality.

  16. Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex.

    PubMed

    Frost, James R; Huber, Stefan M; Breitenlechner, Stefan; Bannwarth, Christoph; Bach, Thorsten

    2015-01-07

    Spirocyclic oxindoles undergo an enantioselective oxygenation reaction (nine examples; e.r. up to 97:3) upon catalysis by a chiral ruthenium porphyrin complex (1 mol %). The catalyst exhibits a lactam ring, which is responsible for substrate association through hydrogen bonds, and an active ruthenium center, which is in a defined spatial relationship to the oxygenation substrate. DFT calculations illustrate the perfect alignment of the active site with the reactive C-H bond and suggest--in line with the kinetic isotope effect--an oxygen rebound mechanism for the reaction.

  17. C/H ratio in Jupiter from the Voyager infrared investigation

    SciTech Connect

    Gautier, D.; Bezard, B.; Marten, A.; Baluteau, J.P.; Scott, N.; Chedin, A.; Kunde, V.; Hanel, R.

    1982-06-15

    From a selection of Voyager IRIS spectra corresponding to cloud-free areas of Jupiter, we have determined the CH/sub 4//H/sub 2/ volume ratio in the atmosphere of this planet as equal to (1.95 +- 0.22)10/sup -3/ which corresponds to 2.07 +- 0.24 times the solar value of Lambert (C/H = 4.7 x 10/sup -4/). Estimate of errors includes both instrument noise and systematic uncertainties. Implications of this result on the formation and evolution of Jupiter are discussed.

  18. Local network structure of a-SiC:H and its correlation with dielectric function

    SciTech Connect

    Kageyama, Shota; Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-12-21

    The microscopic disordered structures of hydrogenated amorphous silicon carbide (a-Si{sub 1−x}C{sub x}:H) layers with different carbon contents have been determined based on the correlations between the dielectric function in the ultraviolet/visible region and the local bonding states studied by high-sensitivity infrared attenuated total reflection spectroscopy. We find that the microscopic structure of the a-Si{sub 1−x}C{sub x}:H layers fabricated by plasma-enhanced chemical vapor deposition shows a sharp structural transition at a boundary of x = 6.3 at. %. In the regime of x ≤ 6.3 at. %, (i) the amplitude of the a-SiC:H dielectric function reduces and (ii) the SiH{sub 2} content increases drastically with x, even though most of the C atoms are introduced into the tetrahedral sites without bonding with H. In the regime of x > 6.3 at. %, on the other hand, (i) the amplitude of the dielectric function reduces further and (ii) the concentration of the sp{sup 3} CH{sub n} (n = 2,3) groups increases. Moreover, we obtained the direct evidence that the sp{sup 2} C bonding state in the a-SiC matrix exists in the configuration of C = CH{sub 2} and the generation of the graphite-like C = CH{sub 2} unit suppresses the band gap widening significantly. At high C contents of x > 6.3 at. %, the a-SiC:H layers show quite porous structures due to the formation of microvoids terminated with the SiH{sub 2}/CH{sub n} groups. By taking the SiH{sub 2}/CH{sub n} microvoid generation in the network and the high-energy shift of the dielectric function by the local bonding states into account, the a-SiC:H dielectric function model has been established. From the analysis using this model, we have confirmed that the a-SiC:H optical properties in the ultraviolet/visible region are determined almost completely by the local network structures.

  19. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  20. Diarylindenotetracenes via a selective cross-coupling/C-H functionalization: electron donors for organic photovoltaic cells.

    PubMed

    Gu, Xingxian; Luhman, Wade A; Yagodkin, Elisey; Holmes, Russell J; Douglas, Christopher J

    2012-03-16

    A direct synthesis of new donor materials for organic photovoltaic cells is reported. Diaryindenotetracenes were synthesized utilizing a Kumada-Tamao-Corriu cross-coupling of peri-substituted tetrachlorotetracene with spontaneous indene annulation via C-H activation. Vacuum deposited planar heterojunction organic photovoltaic cells incorporating these molecules as electron donors exhibit power conversion efficiencies exceeding 1.5% with open-circuit voltages ranging from 0.7 to 1.1 V when coupled with C(60) as an electron acceptor.

  1. Tribological behaviour of nanostructured Ti-C:H coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Polcar, Tomas; Vitu, Tomas; Cvrcek, Ladislav; Novak, Rudolf; Vyskocil, Jiri; Cavaleiro, Albano

    2009-10-01

    The development of a mechanically stable, functionally graded Ti-doped a-C:H interface layer in combination with a functional a-C:H coating requires a reduction of the brittle phases which induce generally problems in the transitions from Ti to TiC/a-C:H. The core objective of this study was to develop an optimum interlayer between the substrate and the functional top layer for biomedical applications, namely for tooth implants. Since the interlayer may be exposed to the sliding process, in the case of local failure of the top layer it has to fulfil the same criteria: biocompatibility, high wear resistance and low friction. The functional Ti-C:H layers with thickness in the range 2.5-3.5 μm were deposited by a magnetron sputtering/PECVD hybrid process by sputtering a Ti-target in a C 2H 2 + Ar atmosphere in dc discharge regime. The sets of coating samples were prepared by varying the C and H concentrations controlled by the C 2H 2 flow during the deposition process. The tribological properties were evaluated on a pin-on-disc tribometer at room temperature (RT) and at 100 °C using 440C balls with a diameter of 6 mm. The tests at 100 °C were performed to investigate the effect of the sterilization temperature on the tribological properties and the coating lifetime as well. The tribological performance was examined with respect to the friction coefficient, the wear rates of the coating and the counter-parts and the analysis of the wear debris. The Ti/C ratio decreased almost linearly from 4.5 to 0.1 with increasing C 2H 2 flow; the hydrogen content showed a minimum of 5 at.% at C 2H 2 flow of 30 sccm, while for lower flows it was about 10 at.%. The coatings could be divided into three groups based on the C 2H 2 flow: (i) 10-15 sccm, exhibiting severe abrasive damage during the sliding tests, (ii) 20-45 sccm, showing the highest hardness and friction values, and (iii) 52-60 sccm, with moderate hardness and minimal values of the friction coefficient and the wear rate.

  2. Photocatalytic C??H Activation of Hydrocarbons over VO@g??C3N4

    EPA Pesticide Factsheets

    A highly selective and sustainable method has been developed for the oxidation of methyl arenes and their analogues. The VO@g-C3N4 catalyst is very efficient in the C??H activation and oxygen insertion reaction resulting in formation of the corresponding carbonyl compounds and phenols.This dataset is associated with the following publication:Verma, S., R.B. Nasir Baig, M. Nadagouda , and R. Varma. Photocatalytic C−H Activation of Hydrocarbons over VO@g‑C3N4. ACS Sustainable Chemistry & Engineering. American Chemical Society, Washington, DC, USA, 4(4): 2333-2336, (2016).

  3. Rhodium(III)-catalyzed indazole synthesis by C-H bond functionalization and cyclative capture.

    PubMed

    Lian, Yajing; Bergman, Robert G; Lavis, Luke D; Ellman, Jonathan A

    2013-05-15

    An efficient, one-step, and highly functional group-compatible synthesis of substituted N-aryl-2H-indazoles is reported via the rhodium(III)-catalyzed C-H bond addition of azobenzenes to aldehydes. The regioselective coupling of unsymmetrical azobenzenes was further demonstrated and led to the development of a new removable aryl group that allows for the preparation of indazoles without N-substitution. The 2-aryl-2H-indazole products also represent a new class of readily prepared fluorophores for which initial spectroscopic characterization has been performed.

  4. Transition-metal-catalyzed π-bond-assisted C - H bond functionalization: an emerging trend in organic synthesis.

    PubMed

    Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2015-04-01

    Transition-metal-catalyzed C - H activation is considered to be an important tool in organic synthesis and has been accepted and widely used by chemists because it is straightforward, cost-effective, and environmentally friendly. A variety of functional groups have been used to direct metal complexes and achieve regioselective C - H activation. Most directing is achieved through the σ-bond coordination of functional groups to the metal catalyst, followed by ortho-selective C - H bond cleavage. However, recent work has demonstrated that π-coordinating functional groups can also assist in guiding metal complexes for site-selective C - H bond activation. This emerging approach significantly expands the scope of C - H activation reactions in organic synthesis. Herein, recent developments in this field are summarized.

  5. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C–H Functionalization Catalysis

    PubMed Central

    Topczewski, Joseph J.; Sanford, Melanie S.

    2014-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a PdII/PdIV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a PdII centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at PdIV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at PdII. This Mini Review highlights proposed examples of C-H activation at PdIV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed. PMID:25544882

  6. Comparison of flat cleaved and cylindrical diffusing fibers as treatment sources for interstitial photodynamic therapy

    SciTech Connect

    Baran, Timothy M. Foster, Thomas H.

    2014-02-15

    Purpose: For interstitial photodynamic therapy (iPDT) of bulky tumors, careful treatment planning is required in order to ensure that a therapeutic dose is delivered to the tumor, while minimizing damage to surrounding normal tissue. In clinical contexts, iPDT has typically been performed with either flat cleaved or cylindrical diffusing optical fibers as light sources. Here, the authors directly compare these two source geometries in terms of the number of fibers and duration of treatment required to deliver a prescribed light dose to a tumor volume. Methods: Treatment planning software for iPDT was developed based on graphics processing unit enhanced Monte Carlo simulations. This software was used to optimize the number of fibers, total energy delivered by each fiber, and the position of individual fibers in order to deliver a target light dose (D{sub 90}) to 90% of the tumor volume. Treatment plans were developed using both flat cleaved and cylindrical diffusing fibers, based on tissue volumes derived from CT data from a head and neck cancer patient. Plans were created for four cases: fixed energy per fiber, fixed number of fibers, and in cases where both or neither of these factors were fixed. Results: When the number of source fibers was fixed at eight, treatment plans based on flat cleaved fibers required each to deliver 7180–8080 J in order to deposit 90 J/cm{sup 2} in 90% of the tumor volume. For diffusers, each fiber was required to deliver 2270–2350 J (333–1178 J/cm) in order to achieve this same result. For the case of fibers delivering a fixed 900 J, 13 diffusers or 19 flat cleaved fibers at a spacing of 1 cm were required to deliver the desired dose. With energy per fiber fixed at 2400 J and the number of fibers fixed at eight, diffuser fibers delivered the desired dose to 93% of the tumor volume, while flat cleaved fibers delivered this dose to 79%. With both energy and number of fibers allowed to vary, six diffusers delivering 3485–3600 J

  7. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  8. C-H Bond Activation/Arylation Catalyzed by Arene-Ruthenium-Aniline Complexes in Water.

    PubMed

    Binnani, Chinky; Tyagi, Deepika; Rai, Rohit K; Mobin, Shaikh M; Singh, Sanjay K

    2016-11-07

    Water-soluble arene-ruthenium complexes coordinated with readily available aniline-based ligands were successfully employed as highly active catalysts in the C-H bond activation and arylation of 2-phenylpyridine with aryl halides in water. A variety of (hetero)aryl halides were also used for the ortho-C-H bond arylation of 2-phenylpyridine to afford the corresponding ortho- monoarylated products as major products in moderate to good yields. Our investigations, including time-scaled NMR spectroscopy and mass spectrometry studies, evidenced that the coordinating aniline-based ligands, having varying electronic and steric properties, had a significant influence on the catalytic activity of the resulting arene-ruthenium-aniline-based complexes. Moreover, mass spectrometry identification of the cycloruthenated species, {(η(6) -arene)Ru(κ(2) -C,N-phenylpyridine)}(+) , and several ligand-coordinated cycloruthenated species, such as [(η(6) -arene)Ru(4-methylaniline)(κ(2) -C,N-phenylpyridine)](+) , found during the reaction of 2-phenylpyridine with the arene-ruthenium-aniline complexes further authenticated the crucial roles of these species in the observed highly active and tuned catalyst. At last, the structures of a few of the active catalysts were also confirmed by single-crystal X-ray diffraction studies.

  9. Directing group-controlled regioselectivity in an enzymatic C-H bond oxygenation.

    PubMed

    Negretti, Solymar; Narayan, Alison R H; Chiou, Karoline C; Kells, Petrea M; Stachowski, Jessica L; Hansen, Douglas A; Podust, Larissa M; Montgomery, John; Sherman, David H

    2014-04-02

    Highly regioselective remote hydroxylation of a natural product scaffold is demonstrated by exploiting the anchoring mechanism of the biosynthetic P450 monooxygenase PikCD50N-RhFRED. Previous studies have revealed structural and biochemical evidence for the role of a salt bridge between the desosamine N,N-dimethylamino functionality of the natural substrate YC-17 and carboxylate residues within the active site of the enzyme, and selectivity in subsequent C-H bond functionalization. In the present study, a substrate-engineering approach was conducted that involves replacing desosamine with varied synthetic N,N-dimethylamino anchoring groups. We then determined their ability to mediate enzymatic total turnover numbers approaching or exceeding that of the natural sugar, while enabling ready introduction and removal of these amino anchoring groups from the substrate. The data establish that the size, stereochemistry, and rigidity of the anchoring group influence the regioselectivity of enzymatic hydroxylation. The natural anchoring group desosamine affords a 1:1 mixture of regioisomers, while synthetic anchors shift YC-17 analogue C-10/C-12 hydroxylation from 20:1 to 1:4. The work demonstrates the utility of substrate engineering as an orthogonal approach to protein engineering for modulation of regioselective C-H functionalization in biocatalysis.

  10. Laser treatment of a-SiC:H thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Ghica, D.; Mincu, Niculae E.; Stanciu, Catrinel A.; Dinescu, Gheorghe H.; Aldea, E.; Sandu, Viorel; Andrei, A.; Dinescu, Maria; Ferrari, A.; Balucani, M.; Lamedica, G.

    1998-07-01

    Amorphous and hydrogenated (a-SiC:H) as well as crystalline silicon carbide are widespread materials for optoelectronic applications. In this paper, we studied the effect of laser/RF plasma jet treatment of a-SiC:H thin films deposited by Plasma Enhanced Chemical Vapor Deposition, on Si wafers. A Nd:YAG laser ((lambda) equals 1.06 micrometers , tFWHM equals 14 ns, E0 equals 0.015 J/pulse) was used with a fluence of 4 mJ/cm2 incident on the sample, the number of pulses being varied. Plasma treatments were performed in a plasma jet generated by a capacity coupled RF discharge in N2. Different analysis techniques were used to investigate the films, before and after the irradiation: X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. We followed the modification of their structure and composition as an effect of the laser/plasma treatment. A comparison with the excimer and also with the RF treatments was performed.

  11. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Narayan, Alison R. H.; Jiménez-Osés, Gonzalo; Liu, Peng; Negretti, Solymar; Zhao, Wanxiang; Gilbert, Michael M.; Ramabhadran, Raghunath O.; Yang, Yun-Fang; Furan, Lawrence R.; Li, Zhe; Podust, Larissa M.; Montgomery, John; Houk, K. N.; Sherman, David H.

    2015-08-01

    The hallmark of enzymes from secondary metabolic pathways is the pairing of powerful reactivity with exquisite site selectivity. The application of these biocatalytic tools in organic synthesis, however, remains under-utilized due to limitations in substrate scope and scalability. Here, we report how the reactivity of a monooxygenase (PikC) from the pikromycin pathway is modified through computationally guided protein and substrate engineering, and applied to the oxidation of unactivated methylene C-H bonds. Molecular dynamics and quantum mechanical calculations were used to develop a predictive model for substrate scope, site selectivity and stereoselectivity of PikC-mediated C-H oxidation. A suite of menthol derivatives was screened computationally and evaluated through in vitro reactions, where each substrate adhered to the predicted models for selectivity and conversion to product. This platform was also expanded beyond menthol-based substrates to the selective hydroxylation of a variety of substrate cores ranging from cyclic to fused bicyclic and bridged bicyclic compounds.

  12. An alternative interpretation of the C-H bond strengths of alkanes.

    PubMed

    Gronert, Scott

    2006-02-03

    A new model based on 1,3 repulsive steric interactions (geminal repulsion) is proposed for explaining the variation in the C-H bond strengths of the alkanes. The model builds from the assumption that 1,3 repulsive interactions are the major factor in determining the stability of a C-C or C-H bond in an alkane. From this simple premise, the model successfully reproduces the effect of branching on the stability of alkanes, alkyl radicals, and alkenes. The results suggest that geminal repulsion can provide a simple, unified explanation for these fundamental stability trends. Although previous explanations have been widely accepted, it is shown that the theoretical support for them is relatively shallow and that the current hyperconjugative stabilization model is inconsistent with several experimental and computational results concerning alkyl radicals. In contrast, an explanation based on geminal repulsion provides a general conceptual framework for rationalizing each of these stability trends and is based on a physical effect that is known to play a role in the stability of alkanes and related species.

  13. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    PubMed Central

    Saleh, Gabriele; Oganov, Artem R.

    2016-01-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed. PMID:27580525

  14. C-H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs.

    PubMed

    Estes, Deven P; Siddiqi, Georges; Allouche, Florian; Kovtunov, Kirill V; Safonova, Olga V; Trigub, Alexander L; Koptyug, Igor V; Copéret, Christophe

    2016-11-16

    The activation and conversion of hydrocarbons is one of the most important challenges in chemistry. Transition-metal ions (V, Cr, Fe, Co, etc.) isolated on silica surfaces are known to catalyze such processes. The mechanisms of these processes are currently unknown but are thought to involve C-H activation as the rate-determining step. Here, we synthesize well-defined Co(II) ions on a silica surface using a metal siloxide precursor followed by thermal treatment under vacuum at 500 °C. We show that these isolated Co(II) sites are catalysts for a number of hydrocarbon conversion reactions, such as the dehydrogenation of propane, the hydrogenation of propene, and the trimerization of terminal alkynes. We then investigate the mechanisms of these processes using kinetics, kinetic isotope effects, isotopic labeling experiments, parahydrogen induced polarization (PHIP) NMR, and comparison with a molecular analog. The data are consistent with all of these reactions occurring by a common mechanism, involving heterolytic C-H or H-H activation via a 1,2 addition across a Co-O bond.

  15. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    NASA Astrophysics Data System (ADS)

    Saleh, Gabriele; Oganov, Artem R.

    2016-09-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

  16. A theoretical view on CrO2+-mediated C-H bond activation in ethane

    NASA Astrophysics Data System (ADS)

    Tong, YongChun; Zhang, XiaoYong; Wang, QingYun; Xu, XinJian; Wang, YongCheng

    2015-06-01

    The gas-phase reaction of C-H bond activation in ethane by CrO2+ has been investigated using density functional theory (DFT) at the UB3LYP/6-311G(2d,p) level. Our results reveal that the activation process is actually a spin-forbidden reaction. The involved crossing point between the doublet and quartet potential energy surfaces (PES) has been discussed by two well-known methods, i.e., intrinsic reaction coordinate (IRC) approach for crossing point (CP) and Harvey's algorithm for minimum energy crossing point (MECP). The obtained single ( P1ISC = 2.48 × 10-3) and double ( P1ISC = 4.95 × 10-3) passes estimated at MECP show that the intersystem crossing (ISC) occurs with a little probability. The C-H bond activation processes should proceed to be endothermic by 73.16 kJ/mol on the doublet surface without any spin change.

  17. Chelation-assisted Pd-catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and intramolecular Friedel-Crafts acylation: one-pot formation of fluorenones.

    PubMed

    Sun, Denan; Li, Bijin; Lan, Jingbo; Huang, Quan; You, Jingsong

    2016-03-04

    Pd-Catalysed ortho-selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes and subsequent intramolecular Friedel-Crafts acylation has been accomplished for the first time through a chelation-assisted C-H activation strategy. Starting from the readily available substrates, a variety of fluorenone derivatives are obtained in one pot. The direct use of naturally occurring carboxylic acid functionalities as directing groups avoids unnecessary steps for installation and removal of an extra directing group.

  18. Porcine Deltacoronavirus Nsp5 Antagonizes Type I Interferon Signaling by Cleaving STAT2.

    PubMed

    Zhu, Xinyu; Wang, Dang; Zhou, Junwei; Pan, Ting; Chen, Jiyao; Yang, Yuting; Lv, Mengting; Ye, Xu; Peng, Guiqing; Fang, Liurong; Xiao, Shaobo

    2017-03-01

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The first outbreak of PDCoV was announced from the United States in 2014, followed by reports in Asia. The nonstructural protein nsp5 is a 3C-like protease of coronavirus and our previous study showed that PDCoV nsp5 inhibits type I interferon (IFN) production. In this study, we found that PDCoV nsp5 significantly inhibited IFN-stimulated response element (ISRE) promoter activity and transcription of IFN-stimulated genes (ISGs), suggesting that PDCoV nsp5 also suppresses IFN signaling. Detailed analysis showed that nsp5 cleaved signal transducer and activator of transcription 2 (STAT2), but not Janus kinase 1 (JAK1), tyrosine kinase 2 (TYK2), STAT1 and interferon regulatory factor 9 (IRF9), key molecules of the JAK-STAT pathway. STAT2 cleavage was dependent on the protease activity of nsp5. Interestingly, nsp5 cleaved STAT2 at two sites, glutamine (Q) 685 and Q758, and similar cleavage was observed in PDCoV-infected cells. As expected, cleaved STAT2 impaired the ability to induce ISGs, demonstrating that STAT2 cleavage is an important mechanism utilized by PDCoV nsp5 to antagonize IFN signaling. We also discussed the substrate selection and binding mode of PDCoV nsp5 by homologous modeling of PDCoV nsp5 with the two cleaved peptide substrates. Taken together, our study demonstrates that PDCoV nsp5 antagonizes type I IFN signaling by cleaving STAT2 and provides structural insights to comprehend the cleavage mechanism of PDCoV nsp5, revealing a potential new function for PDCoV nsp5 in type I IFN signaling.IMPORTANCE The 3C-like protease encoded by nsp5 is a major protease of coronaviruses; thus it is an attractive target for development of anti-coronavirus drugs. Previous studies have revealed that the 3C-like protease of coronaviruses, including PDCoV and porcine epidemic diarrhea virus (PEDV), antagonizes type I IFN production by targeting NF-κB essential modulator (NEMO). Here

  19. The combined C-H functionalization/Cope rearrangement: discovery and applications in organic synthesis.

    PubMed

    Davies, Huw M L; Lian, Yajing

    2012-06-19

    The development of methods for the stereoselective functionalization of sp(3) C-H bonds is a challenging undertaking. This Account describes the scope of the combined C-H functionalization/Cope rearrangement (CHCR), a reaction that occurs between rhodium-stabilized vinylcarbenoids and substrates containing allylic C-H bonds. Computational studies have shown that the CHCR reaction is initiated by a hydride transfer to the carbenoid from an allyl site on the substrate, which is then rapidly followed by C-C bond formation between the developing rhodium-bound allyl anion and the allyl cation. In principle, the reaction can proceed through four distinct orientations of the vinylcarbenoid and the approaching substrate. The early examples of the CHCR reaction were all highly diastereoselective, consistent with a reaction proceeding via a chair transition state with the vinylcarbenoid adopting an s-cis conformation. Recent computational studies have revealed that other transition state orientations are energetically accessible, and these results have guided the development of highly stereoselective CHCR reactions that proceed through a boat transition state with the vinylcarbenoid in an s-cis configuration. The CHCR reaction has broad applications in organic synthesis. In some new protocols, the CHCR reaction acts as a surrogate to some of the classic synthetic strategies in organic chemistry. The CHCR reaction has served as a synthetic equivalent of the Michael reaction, the vinylogous Mukaiyama aldol reaction, the tandem Claisen rearrangement/Cope rearrangement, and the tandem aldol reaction/siloxy-Cope rearrangement. In all of these cases, the products are generated with very high diastereocontrol. With a chiral dirhodium tetracarboxylate catalyst such as Rh(2)(S-DOSP)(4) or Rh(2)(S-PTAD)(4), researchers can achieve very high levels of asymmetric induction. Applications of the CHCR reaction include the effective enantiodifferentiation of racemic dihydronaphthalenes and

  20. Synthesis of Triarylpyridines in Thiopeptide Antibiotics by Using a C-H Arylation/Ring-Transformation Strategy.

    PubMed

    Amaike, Kazuma; Itami, Kenichiro; Yamaguchi, Junichiro

    2016-03-18

    We have described a C-H arylation/ring-transformation strategy for the synthesis of triarylpyridines, which form the core structure of thiopeptide antibiotics. This synthetic method readily gave 2,3,6-triarylpyridines in a regioselective manner by a two-phase approach: C-H arylation (a nickel-catalyzed decarbonylative Suzuki-Miyaura cross-coupling and decarbonylative C-H coupling for the synthesis of 2,4-diaryloxazoles) and ring transformation ([4+2] cycloaddition of 2,4-diaryloxazoles with (hetero)arylacrylic acids). To showcase these methods, we have accomplished the formal synthesis of thiopeptide antibiotics GE2270 s and amythiamicins.

  1. Unveiling Secrets of Overcoming the "Heteroatom Problem" in Palladium-Catalyzed Aerobic C-H Functionalization of Heterocycles: A DFT Mechanistic Study.

    PubMed

    Dang, Yanfeng; Deng, Xi; Guo, Jiandong; Song, Chunyu; Hu, Wenping; Wang, Zhi-Xiang

    2016-03-02

    Directed C-H functionalization of heterocycles through an exocyclic directing group (DG) is challenging due to the interference of the endocyclic heteroatom(s). Recently, the "heteroatom problem" was circumvented with the development of the protection-free Pd-catalyzed aerobic C-H functionalization of heterocycles guided by an exocyclic CONHOMe DG. We herein provide DFT mechanistic insights to facilitate the expansion of the strategy. The transformation proceeds as follows. First, the Pd2(dba)3 precursor interacts with t-BuNC (L, one of the substrates) and O2 to form the L2Pd(II)-η(2)-O2 peroxopalladium(II) species that can selectively oxidize N-methoxy amide (e.g., PyCONHOMe) substrate, giving an active L2Pd(II)X2 (X = PyCONOMe) species and releasing H2O2. After t-BuNC ligand migratory insertion followed by a 1,3-acyl migration and association with another t-BuNC, L2Pd(II)X2 converts to a more stable C-amidinyl L2Pd(II)XX' (X' = PyCON(t-Bu)C═NOMe) species. Finally, L2Pd(II)XX' undergoes C-H activation and C-C reductive elimination, affording the product. The C-H activation is the rate-determining step. The success of the strategy has three origins: (i) the N-methoxy amide DG can be easily oxidized in situ to generate the active L2Pd(II)X2 species via the oxidase pathway, thus preventing the destructive oxygenase pathway leading to stable t-BuNCO or the O-bridged dimeric Pd(II) species. The methoxy group in this amide DG greatly facilitates the oxidase pathway, and the tautomerization of N-methoxy amide to its imidic acid tautomer makes the oxidation of the substrate even easier. (ii) The X group in L2Pd(II)X2 can serve as an internal base to promote the C-H activation via CMD (concerted metalation-deprotonation) mechanism. (iii) The strong coordination ability of t-BuNC substrate/ligand suppresses the conventional cyclopalladation pathway enabled by the coordination of an endocyclic heteroatom to the Pd-center.

  2. Heteroatom-Guided, Palladium-Catalyzed, Site-Selective C-H Arylation of 4H-Chromenes: Diastereoselective Assembly of the Core Structure of Myristinin B through Dual C-H Functionalization.

    PubMed

    Pawar, Govind Goroba; Tiwari, Virendra Kumar; Jena, Himanshu Sekhar; Kapur, Manmohan

    2015-06-26

    A highly site-selective, heteroatom-guided, palladium-catalyzed direct arylation of 4H-chromenes is reported. The C-H functionalization is driven not only by the substituents and structure of the substrate but also by the coupling partner being used. The diastereoselective assembly of the core structure of Myristinin B has been achieved by using a dual C-H functionalization strategy for regioselective direct arylation.

  3. Silver-mediated palladium-catalyzed direct C-H arylation of 3-bromoisothiazole-4-carbonitrile.

    PubMed

    Ioannidou, Heraklidia A; Koutentis, Panayiotis A

    2011-03-18

    Silver(I) fluoride-mediated Pd-catalyzed C-H direct arylation/heteroarylation of 3-bromoisothiazole-4-carbonitrile (1a) gives twenty-four 5-aryl/heteroaryl-3-bromoisothiazole-4-carbonitriles. The reaction was partially optimized with respect to catalyst, ligand, and base. During this study 3,3'-dibromo-5,5'-biisothiazole-4,4'-dicarbonitrile (3a) was isolated as a byproduct and subsequently prepared via the silver-mediated Pd-catalyzed oxidative dimerization of 3-bromoisothiazole-4-carbonitrile in 67% yield. The analogous phenylation and oxidative dimerization of 3-chloroisothiazole-4-carbonitrile (1b) gave 3-chloro-5-phenylisothiazole-4-carbonitrile (4) and 3,3'-dichloro-5,5'-biisothiazole-4,4'-dicarbonitrile (3b) in 96% and 69% yields, respectively.

  4. Understanding trends in C-H bond activation in heterogeneous catalysis.

    PubMed

    Latimer, Allegra A; Kulkarni, Ambarish R; Aljama, Hassan; Montoya, Joseph H; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K

    2017-02-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  5. Understanding trends in C-H bond activation in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan; Montoya, Joseph H.; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K.

    2016-10-01

    While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

  6. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.

    PubMed

    Archambeau, Alexis; Miege, Frédéric; Meyer, Christophe; Cossy, Janine

    2015-04-21

    Activation of unsaturated carbon-carbon bonds by means of transition metal catalysts is an exceptionally active research field in organic synthesis. In this context, due to their high ring strain, cyclopropenes constitute an interesting class of substrates that displays a versatile reactivity in the presence of transition metal catalysts. Metal complexes of vinyl carbenes are involved as key intermediates in a wide variety of transition metal-catalyzed ring-opening reactions of cyclopropenes. Most of the reported transformations rely on intermolecular or intramolecular addition of nucleophiles to these latter reactive species. This Account focuses specifically on the reactivity of carbenoids resulting from the ring-opening of cyclopropenes in cyclopropanation and C-H insertion reactions, which are arguably two of the most representative transformations of metal complexes of carbenes. Compared with the more conventional α-diazo carbonyl compounds, the use of cyclopropenes as precursors of metal carbenoids in intramolecular cyclopropanation or C-H insertion reactions has been largely underexploited. One of the challenges is to devise appropriately substituted and readily available cyclopropenes that would not only undergo regioselective ring-opening under mild conditions but also trigger the subsequent desired transformations with a high level of chemoselectivity and stereoselectivity. These goals were met by considering several substrates derived from the readily available 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines. In the case of 1,6-cyclopropene-enes, highly efficient and diastereoselective gold(I)-catalyzed ring-opening/intramolecular cyclopropanations were developed as a route to diversely substituted heterocycles and carbocycles possessing a bicyclo[4.1.0]heptane framework. The use of rhodium(II) catalysts enabled us to widen the scope of this transformation for the synthesis of medium-sized heterocyclic scaffolds

  7. Recommended Thermal Rate Coefficients for the C + H3 + Reaction and Some Astrochemical Implications

    NASA Astrophysics Data System (ADS)

    Vissapragada, S.; Buzard, C. F.; Miller, K. A.; O'Connor, A. P.; de Ruette, N.; Urbain, X.; Savin, D. W.

    2016-11-01

    We incorporate our experimentally derived thermal rate coefficients for C + {{{H}}}3+ forming CH+ and CH2 + into a commonly used astrochemical model. We find that the Arrhenius-Kooij equation typically used in chemical models does not accurately fit our data and instead we use a more versatile fitting formula. At a temperature of 10 K and a density of 104 cm-3, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. In addition, we find that the relatively small error on our thermal rate coefficients, ˜15%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty.

  8. Activation of C-H bonds in nitrones leads to iridium hydrides with antitumor activity.

    PubMed

    Song, Xiaoda; Qian, Yong; Ben, Rong; Lu, Xiang; Zhu, Hai-Liang; Chao, Hui; Zhao, Jing

    2013-08-22

    We report the design and synthesis of a series of new cyclometalated iridium hydrides derived from the C-H bond activation of aromatic nitrones and the biological evaluation of these iridium hydrides as antitumor agents. The nitrone ligands are based on the structure of a popular antioxidant, α-phenyl-N-tert-butylnitrone (PBN). Compared to cisplatin, the iridium hydrides exhibit excellent antitumor activity on HepG2 cells. The metal-coordinated compound with the most potent anticancer activity, 2f, was selected for further analysis because of its ability to induce apoptosis and interact with DNA. During in vitro studies and in vivo efficacy analysis with tumor xenograft models in Institute of Cancer Research (ICR) mice, complex 2f exhibited antitumor activity that was markedly superior to that of cisplatin. Our results suggest, for the first time, that metal hydrides could be a new type of metal-based antitumor agent.

  9. 2008 C. H. McCloy lecture. Social psychology and physical activity: back to the future.

    PubMed

    Gill, Diane L

    2009-12-01

    In the early 1970s, both my academic career and the psychology subdiscipline within kinesiology began as "social psychology and physical activity. "Since then, sport and exercise psychology research has shifted away from the social to a narrower biopsycho-(no social) approach, and professional practice has focused on the elite rather than the larger public. Psychology can contribute to an integrative and relevant professional discipline by going back to the future as social psychology and physical activity and by incorporating three of C. H. McCloy's themes (a) evidence-based practice, (b) beyond dualisms, and (c) commitment to public service. Our scholarship must move beyond dualisms to recognize complexities and connections and be truly scholarship for practice. Social psychology and physical activity can serve the public by advocating for inclusive, empowering physical activity programs that promote health and well being for all.

  10. Matching plasmon resonances to the C=C and C-H bonds in estradiol

    NASA Astrophysics Data System (ADS)

    Mbomson, Ifeoma G.; McMeekin, Scott; De La Rue, Richard; Johnson, Nigel P.

    2015-03-01

    We tune nanoantennas to resonate within mid-infrared wavelengths to match the vibrational resonances of C=C and C-H of the hormone estradiol. Modelling and fabrication of the nanoantennas produce plasmon resonances between 2 μm to 7 μm. The hormone estradiol was dissolved in ethanol and evaporated, leaving thickness of a few hundreds of nanometres on top of gold asymmetric split H-like shaped on a fused silica substrate. The reflectance was measured and a red-shift is recorded from the resonators plasmonic peaks. Fourier transform infrared spectroscopy is use to observe enhanced spectra of the stretching modes for the analyte which belongs to alkenyl biochemical group.

  11. Paper-Based Colorimetric Sensor System for High-Throughput Screening of C-H Borylation.

    PubMed

    Kim, Han-Sung; Eom, Min Sik; Han, Min Su; Lee, Sunwoo

    2017-03-22

    A paper-based colorimetric sensor system (PBCSS) was developed to detect the amount of bis(pinacolato)diboron (B2Pin2) and applied as a high-throughput screening protocol in Ir-catalyzed C-H borylation. First, 96 ligands were screened for the borylation of benzene, and then 12 of them were selected and tested for five substrates. These reaction mixtures were spotted in the PBCSS, showing a blue-violet color. The value of the gray scale of each reaction was obtained from these colored spots and converted to the extent of conversion of B2Pin2. The extents of conversion of B2Pin2 obtained from the PBCSS showed good correlation with those obtained from gas chromatography analysis. In addition, the modified conversion using blank data showed good correlation with the yield of products.

  12. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.

    PubMed

    Ye, Baihua; Cramer, Nicolai

    2015-05-19

    Transition-metal catalyzed C-H functionalizations became a complementary and efficient bond-forming strategy over the past decade. In this respect, Cp*Rh(III) complexes have emerged as powerful catalysts for a broad spectrum of reactions giving access to synthetically versatile building blocks. Despite their high potential, the corresponding catalytic enantioselective transformations largely lag behind. The targeted transformations require all the remaining three coordination sites of the central rhodium atom of the catalyst. In consequence, the chiral information on a competent catalyst can only by stored in the cyclopentadienyl unit. The lack of suitable enabling chiral cyclopentadienyl (Cp(x)) ligands is the key hurdle preventing the development of such asymmetric versions. In this respect, an efficient set of chiral Cp(x) ligands useable with a broad variety of different transition-metals can unlock substantial application potential. This Account provides a description of our developments of two complementary classes of C2-symmetric Cp(x) derivatives. We have introduced a side- and back-wall concept to enforce chirality transfer onto the central metal atom. The first generation consists of a fused cyclohexane unit having pseudo axial methyl groups as chiral selectors and a rigidifying acetal moiety. The second ligand generation derives from an atrop-chiral biaryl-backbone and which possesses adjustable substituents at its 3,3'-positions. Both ligand families can be modulated in their respective steric bulk to adjust for the specific needs of the targeted application. The cyclopentadienes can be metalated under standard conditions. The corresponding chiral rhodium(I) ethylene complexes are relatively air and moisture and represent storable stable precatalysts for the targeted asymmetric Rh(III)-catalyzed C-H functionalizations. These complexes are then conveniently oxidized in situ by dibenzoyl peroxide to give the reactive Cp(x)Rh(III)(OBz)2 species. For

  13. Stereodivergent synthesis of arylcyclopropylamines by sequential C-H borylation and Suzuki-Miyaura coupling.

    PubMed

    Miyamura, Shin; Araki, Misaho; Suzuki, Takayoshi; Yamaguchi, Junichiro; Itami, Kenichiro

    2015-01-12

    A step-economical and stereodivergent synthesis of privileged 2-arylcyclopropylamines (ACPAs) through a C(sp(3))-H borylation and Suzuki-Miyaura coupling sequence has been developed. The iridium-catalyzed C-H borylation of N-cyclopropylpivalamide proceeds with cis selectivity. The subsequent B-cyclopropyl Suzuki-Miyaura coupling catalyzed by [PdCl2(dppf)]/Ag2O proceeds with retention of configuration at the carbon center bearing the Bpin group, while epimerization at the nitrogen-bound carbon atoms of both the starting materials and products is observed under the reaction conditions. This epimerization is, however, suppressed in the presence of O2. The present new ACPA synthesis results in not only a significant reduction in the steps required for making ACPA derivatives, but also the ability to access either isomer (cis or trans) by simply changing the atmosphere (N2 or O2) in the coupling stage.

  14. Electrostatic and Charge-Induced Methane Activation by a Concerted Double C-H Bond Insertion.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schlangen, Maria; Shaik, Sason; Schwarz, Helmut

    2017-02-01

    A mechanistically unique, simultaneous activation of two C-H bonds of methane has been identified during the course of its reaction with the cationic copper carbide, [Cu-C](+). Detailed high-level quantum chemical calculations support the experimental findings obtained in the highly diluted gas phase using FT-ICR mass spectrometry. The behavior of [Cu-C](+)/CH4 contrasts that of [Au-C](+)/CH4, for which a stepwise bond-activation scenario prevails. An explanation for the distinct mechanistic differences of the two coinage metal complexes is given. It is demonstrated that the coupling of [Cu-C](+) with methane to form ethylene and Cu(+) is modeled very well by the reaction of a carbon atom with methane mediated by an oriented external electric field of a positive point charge.

  15. R.E.A.C.H. to Teach: Making Patient and Family Education "Stick".

    PubMed

    Cutilli, Carolyn Crane

    2016-01-01

    Healthcare professionals teach patients and families about their health every day. Regulatory and accreditation organizations mandate patient and family education to promote better health outcomes. And recently, financial rewards for healthcare organizations are being tied to patient satisfaction (Hospital Consumer Assessment of Healthcare Providers and Systems-HCAHPS). A University of Pennsylvania Health System group of staff and patients, devoted to excellence in patient and family education, developed the graphic "R.E.A.C.H. to Teach." The purpose of the graphic is to make evidence-based practice (EBP) for patient and family education "stick" with staff. The group used concepts from the marketing book, Made to Stick, to demonstrate how to develop effective staff and patient and family education. Ideas (education) that survive ("stick") have the following attributes: simple, unexpected, concrete, credible, emotional, and narrative (story). This article demonstrates how to apply these principles and EBP to patient and family education.

  16. Mild Aliphatic and Benzylic Hydrocarbon C-H Bond Chlorination Using Trichloroisocyanuric Acid.

    PubMed

    Combe, Sascha H; Hosseini, Abolfazl; Parra, Alejandro; Schreiner, Peter R

    2017-03-03

    We present the controlled monochlorination of aliphatic and benzylic hydrocarbons with only 1 equiv of substrate at 25-30 °C using N-hydroxyphthalimide (NHPI) as radical initiator and commercially available trichloroisocyanuric acid (TCCA) as the chlorine source. Catalytic amounts of CBr4 reduced the reaction times considerably due to the formation of chain-carrying ·CBr3 radicals. Benzylic C-H chlorination affords moderate to good yields for arenes carrying electron-withdrawing (50-85%) or weakly electron-donating groups (31-73%); cyclic aliphatic substrates provide low yields (24-38%). The products could be synthesized on a gram scale followed by simple purification via distillation. We report the first direct side-chain chlorination of 3-methylbenzoate affording methyl 3-(chloromethyl)benzoate, which is an important building block for the synthesis of vasodilator taprostene.

  17. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  18. Friction imprint effect in mechanically cleaved BaTiO{sub 3} (001)

    SciTech Connect

    Long, Christian J.; Ebeling, Daniel; Solares, Santiago D.; Cannara, Rachel J.

    2014-09-28

    Adsorption, chemisorption, and reconstruction at the surfaces of ferroelectric materials can all contribute toward the pinning of ferroelectric polarization, which is called the electrical imprint effect. Here, we show that the opposite is also true: freshly cleaved, atomically flat surfaces of (001) oriented BaTiO{sub 3} exhibit a persistent change in surface chemistry that is driven by ferroelectric polarization. This surface modification is explored using lateral force microscopy (LFM), while the ferroelectric polarization is probed using piezoresponse force microscopy. We find that immediately after cleaving BaTiO{sub 3}, LFM reveals friction contrast between ferroelectric domains. We also find that this surface modification remains after the ferroelectric domain distribution is modified, resulting in an imprint of the original ferroelectric domain distribution on the sample surface. This friction imprint effect has implications for surface patterning as well as ferroelectric device operation and failure.

  19. Immune evasion by pathogenic Leptospira strains: the secretion of proteases that directly cleave complement proteins.

    PubMed

    Fraga, Tatiana Rodrigues; Courrol, Daniella Dos Santos; Castiblanco-Valencia, Mónica Marcela; Hirata, Izaura Yoshico; Vasconcellos, Sílvio Arruda; Juliano, Luiz; Barbosa, Angela Silva; Isaac, Lourdes

    2014-03-01

    Leptospirosis is an infectious disease of public health importance. To successfully colonize the host, pathogens have evolved multiple strategies to escape the complement system. Here we demonstrate that the culture supernatant of pathogenic but not saprophytic Leptospira inhibit the three complement pathways. We showed that the proteolytic activity in the supernatants of pathogenic strains targets the central complement molecule C3 and specific proteins from each pathway, such as factor B, C2, and C4b. The proteases cleaved α and β chains of C3 and work in synergy with host regulators to inactivate C3b. Proteolytic activity was inhibited by 1,10-phenanthroline, suggesting the participation of metalloproteases. A recombinant leptospiral metalloprotease from the thermolysin family cleaved C3 in serum and could be one of the proteases responsible for the supernatant activity. We conclude that pathogenic leptospiral proteases can deactivate immune effector molecules and represent potential targets to the development of new therapies in leptospirosis.

  20. A widespread self-cleaving ribozyme class is revealed by bioinformatics

    PubMed Central

    Roth, Adam; Weinberg, Zasha; Chen, Andy G. Y.; Kim, Peter B.; Ames, Tyler D.; Breaker, Ronald R.

    2013-01-01

    Ribozymes are noncoding RNAs that promote chemical transformations with rate enhancements approaching those of protein enzymes. Although ribozymes are likely to have been abundant during the RNA world era, only ten classes are known to exist among contemporary organisms. We report the discovery and analysis of an additional self-cleaving ribozyme class, called twister, which is present in many species of bacteria and eukarya. Nearly 2700 twister ribozymes were identified that conform to a secondary structure consensus that is small yet complex, with three stems conjoined by internal and terminal loops. Two pseudoknots provide tertiary structure contacts that are critical for catalytic activity. The twister ribozyme motif provides another example of a natural RNA catalyst and calls attention to the potentially varied biological roles of this and other classes of widely distributed self-cleaving RNAs. PMID:24240507

  1. Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins.

    PubMed

    Barsun, Marina; Jajcanin, Nina; Vukelić, Bojana; Spoljarić, Jasminka; Abramić, Marija

    2007-03-01

    Dipeptidyl peptidase III (DPP III) is a zinc exopeptidase with an implied role in the mammalian pain-modulatory system owing to its high affinity for enkephalins and localisation in the superficial laminae of the spinal cord dorsal horn. Our study revealed that this human enzyme hydrolyses opioid peptides belonging to three new groups, endomorphins, hemorphins and exorphins. The enzymatic hydrolysis products of endomorphin-1 were separated and quantified by capillary electrophoresis and the kinetic parameters were determined for human DPP III and rat DPP IV. Both peptidases cleave endomorphin-1 at comparable rates, with liberation of the N-terminal Tyr-Pro. This is the first evidence of DPP III acting as an endomorphin-cleaving enzyme.

  2. Recess integration of micro-cleaved laser diode platelets with dielectric waveguides on silicon

    NASA Astrophysics Data System (ADS)

    Fonstad, Clifton G., Jr.; Rumpler, Joseph J.; Barkley, Edward R.; Perkins, James M.; Famenini, Shaya

    2008-02-01

    Ongoing research directed at integrating 1.55 μm III-V ridge waveguide gain elements (i.e. diode lasers and semiconductor optical amplifiers) co-axially aligned with, and coupled to, silicon oxy-nitride waveguides on silicon substrates is presented. The integration techniques used are highly modular and consistent with fabricating waveguides on Si-CMOS wafers and doing the integration of the III-V gain elements after all standard front- and back-end Si processing has been completed. A novel micro-cleaving technique is used to produce active ridge waveguide platelets on the order of 6 µm thick and 100 μm wide, with precisely controlled lengths, in the current work 300 +/- 1 μm, and cleaved end facets. Typical ridge guide micro-cleaved platelet lasers have thresholds under 30 mA. Micro-cleaved platelets are bonded within dielectric recesses etched through the oxy-nitride (SiO xN y) waveguides on a wafer so the ridge and SiO xN y waveguides are co-axially aligned. Transmission measurements indicate coupling losses are as low as 5 db with air filling the gaps between the waveguide ends, and measurements made through filled gaps indicate that the coupling losses can be reduced to below 1.5 dB with a high index (n = 2.2) dielectric fill. Simulations indicate that with further optimization of the mode profile in the III-V waveguide the loss can be reduced to below 1 dB. The paper concludes with a discussion of device design and optimization for co-axial recess integration, and with a comparison of co-axial coupling with the hybrid evanescent vertical coupling III-V/Si integration approach recently introduced by researchers at UCSB and Intel.

  3. Mechanistic Insight into the Rh(III)-Catalyzed C-H Activation of 2-Acetyl-1-Arythydrazines in Water.

    PubMed

    Wu, Weirong; Liu, Tao; Huang, Caiyun; Zhang, Jing; Man, Xiaoping

    2017-03-02

    A mechanistic study of the Cp*Rh(III)-catalyzed C-H functionalization of 2-acetyl-1-arythydrazines with diazo compounds in water was carried out by using density functional theory calculations. The results reveal that the acetyl-bonded N-H deprotonation is prior to the phenyl C-H activation. The mechanisms from protonation by acetic acid disagree with the proposal by the Wang group. Different from the Rh(III)-catalyzed C-H activation reported by experimental literature, the rate-determining step of the whole catalytic cycle with an overall barrier of 31.7 kcal mol(-1) (IV → TS12-P') is the protonation process of hydroxy O rather than the C-H bond cleavage step. The present theoretical study rationalizes the experimental observation at the molecular level.

  4. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.

    PubMed

    Sun, XiaoYing; Li, Bo; Su, Dangsheng

    2014-09-28

    A reactivity descriptor for the C-H bond activation on the nanostructured carbon catalyst is proposed. Furthermore the calculations reveal that the single ketone group can be an active site in ODH reaction.

  5. Iron(II) triflate as a catalyst for the synthesis of indoles by intramolecular C-H amination.

    PubMed

    Bonnamour, Julien; Bolm, Carsten

    2011-04-15

    A practical iron-catalyzed intramolecular C-H amination reaction and its application in the synthesis of indole derivatives are presented. As a catalyst, commercially available iron(II) triflate is used.

  6. Enantioselective cis-β-lactam synthesis by intramolecular C-H functionalization from enoldiazoacetamides and derivative donor-acceptor cyclopropenes

    PubMed Central

    Deng, Yongming; Yim, David N.; Zavalij, Peter Y.

    2015-01-01

    β-Lactam derivatives are produced through intermediate donor-acceptor cyclopropene intermediates in high yield, exclusive cis-diastereoselectivity, and high enantiocontrol in a chiral dirhodium carboxylate catalyzed intramolecular C-H functionalization reaction of enoldiazoacetamides. PMID:26029355

  7. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group.

    PubMed

    Qi, Zisong; Wang, Mei; Li, Xingwei

    2014-09-04

    A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.

  8. Lewis Acid-Base Interaction-Controlled ortho-Selective C-H Borylation of Aryl Sulfides.

    PubMed

    Li, Hong Liang; Kuninobu, Yoichiro; Kanai, Motomu

    2017-02-01

    An iridium/bipyridine-catalyzed ortho-selective C-H borylation of aryl sulfides was developed. High ortho-selectivity was achieved by a Lewis acid-base interaction between a boryl group of the ligand and a sulfur atom of the substrate. This is the first example of a catalytic and regioselective C-H transformation controlled by a Lewis acid-base interaction between a ligand and a substrate. The C-H borylation reaction could be conducted on a gram scale, and with a bioactive molecule as a substrate, demonstrating its applicability to late-stage regioselective C-H borylation. A bioactive molecule was synthesized from an ortho-borylated product by converting the boryl and methylthio groups of the product.

  9. Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C-H oxidation.

    PubMed

    Suess, Alison M; Ertem, Mehmed Z; Cramer, Christopher J; Stahl, Shannon S

    2013-07-03

    Copper(II)-mediated C-H oxidation is the subject of extensive interest in synthetic chemistry, but the mechanisms of many of these reactions are poorly understood. Here, we observe different products from Cu(II)-mediated oxidation of N-(8-quinolinyl)benzamide, depending on the reaction conditions. Under basic conditions, the benzamide group undergoes directed C-H methoxylation or chlorination. Under acidic conditions, the quinoline group undergoes nondirected chlorination. Experimental and computational mechanistic studies implicate an organometallic C-H activation/functionalization mechanism under the former conditions and a single-electron-transfer mechanism under the latter conditions. This rare observation of divergent, condition-dependent mechanisms for oxidation of a single substrate provides a valuable foundation for understanding Cu(II)-mediated C-H oxidation reactions.

  10. Asymmetric synthesis of planar chiral ferrocenes by enantioselective intramolecular C-H arylation of N-(2-haloaryl)ferrocenecarboxamides.

    PubMed

    Liu, Lantao; Zhang, An-An; Zhao, Rui-Juan; Li, Feng; Meng, Tuan-Jie; Ishida, Naoki; Murakami, Masahiro; Zhao, Wen-Xian

    2014-10-17

    The palladium-catalyzed intramolecular C-H arylation reaction of N-(2-bromoaryl)ferrocenecarboxamides furnishes planar chiral ferrocene derivatives. TADDOL-derived phosphoramide ligands induce enantioselectivities ranging from 91:9 to 98:2 er.

  11. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy.

    PubMed

    Burkart, Anna D; Xiong, Bo; Baibakov, Boris; Jiménez-Movilla, Maria; Dean, Jurrien

    2012-04-02

    The mouse zona pellucida is composed of three glycoproteins (ZP1, ZP2, and ZP3), of which ZP2 is proteolytically cleaved after gamete fusion to prevent polyspermy. This cleavage is associated with exocytosis of cortical granules that are peripherally located subcellular organelles unique to ovulated eggs. Based on the cleavage site of ZP2, ovastacin was selected as a candidate protease. Encoded by the single-copy Astl gene, ovastacin is an oocyte-specific member of the astacin family of metalloendoproteases. Using specific antiserum, ovastacin was detected in cortical granules before, but not after, fertilization. Recombinant ovastacin cleaved ZP2 in native zonae pellucidae, documenting that ZP2 was a direct substrate of this metalloendoprotease. Female mice lacking ovastacin did not cleave ZP2 after fertilization, and mouse sperm bound as well to Astl-null two-cell embryos as they did to normal eggs. Ovastacin is a pioneer component of mouse cortical granules and plays a definitive role in the postfertilization block to sperm binding that ensures monospermic fertilization and successful development.

  12. Chloridazon-catechol dioxygenases, a distinct group of meta-cleaving enzymes.

    PubMed

    Schmitt, S; Müller, R; Wegst, W; Lingens, F

    1984-02-01

    We previously described a new meta-cleaving enzyme, termed chloridazon-catechol dioxygenase. The present paper describes the comparison of this enzyme with the meta-cleaving enzymes of eighteen strains of soil bacteria isolated with various aromatic compounds. Four of these strains were isolated with the herbicide chloridazon, six with the analgeticum aminopyrine and one with the analgeticum antipyrine as sole carbon source. These strains all belonged to a new type of bacteria, called Phenylobacteria. The seven other strains were isolated with aromatic compounds such as toluene, 3-phenylpropionate, benzoate, papaverine and 4-chlorobenzoate, and belonged to various species including Pseudomonas, Acinetobacter and Nocardia. In double diffusion experiments with antibodies, prepared against chloridazon-catechol dioxygenase, extracts from the eleven strains of Phenylobacteria gave a cross reaction, whereas the extracts of the seven other strains showed no reaction. The enzymes of the eleven positive strains showed the same characteristic kinetic behaviour as the previously described enzyme. In contrast to catechol 2, 3-dioxygenase they needed the addition of exogenous Fe2+ ions for activity. On ion-exchange chromatography they emerged at the same buffer concentration as chloridazon-catechol dioxygenase. In polyacrylamide electrophoresis they migrated identically. The linkage map derived from the activities of the various enzymes with 10 different substrates revealed an identity of more than 80% for these eleven enzymes. So the meta-cleaving enzymes of the Phenylobacteria seem to form a distinct group among the non-heme iron-containing dioxygenases.

  13. Cp*Rh(III)-Catalyzed Low Temperature C-H Allylation of N-Aryl-trichloro Acetimidamide.

    PubMed

    Debbarma, Suvankar; Bera, Sourav Sekhar; Maji, Modhu Sudan

    2016-12-02

    The readily synthesized trichloro acetimidamide was found to be an excellent directing group for the directed C-H-allylation reactions. Depending on the allylating agent used, selectively either mono- or diallylated products were readily synthesized. Moreover, the trichloro acetimidamide directing group was found to be highly efficient even at lower temperature for the C-H-allylation reaction. Due to mildness of the reaction conditions, double bond isomerization or cyclization to indole side product was not observed.

  14. Functionalization of non-activated C-H bonds in the synthesis of vitamin D metabolites and analogs.

    PubMed

    Moman, Edelmiro

    2014-01-01

    The development of non-microbial methods for the selective functionalization of non-activated C-H bonds has constituted a challenge, with important economical and environmental implications, for chemists for over a century. The present review provides a comprehensive and current compendium that illustrates the power of C-H functionalization and, namely, of remote functionalization strategies, to expeditiously access vitamin D analogs with intricate structures.

  15. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    PubMed

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method.

  16. Synthesis of antiviral tetrahydrocarbazole derivatives by photochemical and acid-catalyzed C-H functionalization via intermediate peroxides (CHIPS).

    PubMed

    Gulzar, Naeem; Klussmann, Martin

    2014-06-20

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.

  17. Mesotrypsin has evolved four unique residues to cleave trypsin inhibitors as substrates [Mesotrypsin has evolved to cleave trypsin inhibitors as substrates using four unique residues

    SciTech Connect

    Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying; Hockla, Alexandra; Soares, Alexei S.; Radisky, Evette S.

    2015-07-14

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursor protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.

  18. Mesotrypsin has evolved four unique residues to cleave trypsin inhibitors as substrates [Mesotrypsin has evolved to cleave trypsin inhibitors as substrates using four unique residues

    DOE PAGES

    Alloy, Alexandre P.; Kayode, Olumide; Wang, Ruiying; ...

    2015-07-14

    Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursormore » protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. As a result, these findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.« less

  19. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO

    PubMed Central

    Wang, Dang; Fang, Liurong; Shi, Yanling; Zhang, Huan; Gao, Li; Peng, Guiqing; Chen, Huanchun; Li, Kui

    2015-01-01

    ABSTRACT Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus causing lethal watery diarrhea in piglets. Since 2010, a PEDV variant has spread rapidly in China, and it emerged in the United States in 2013, posing significant economic and public health concerns. The ability to circumvent the interferon (IFN) antiviral response, as suggested for PEDV, promotes viral survival and regulates pathogenesis of PEDV infections, but the underlying mechanisms remain obscure. Here, we show that PEDV-encoded 3C-like protease, nsp5, is an IFN antagonist that proteolytically cleaves the nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), an essential adaptor bridging interferon-regulatory factor and NF-κB activation. NEMO is cleaved at glutamine 231 (Q231) by PEDV, and this cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of PEDV nsp5 abrogated NEMO cleavage and the inhibition of IFN induction. Structural analysis suggests that several key residues outside the catalytic sites of PEDV nsp5 probably impact NEMO cleavage by modulating potential interactions of nsp5 with their substrates. These data show that PEDV nsp5 disrupts type I IFN signaling by cleaving NEMO. Previously, we and others demonstrated that NEMO is also cleaved by 3C or 3C-like proteinases of picornavirus and artertivirus. Thus, NEMO probably represents a prime target for 3C or 3C-like proteinases of different viruses. IMPORTANCE The continued emergence and reemergence of porcine epidemic diarrhea virus (PEDV) underscore the importance of studying how this virus manipulates the immune responses of its hosts. During coevolution with its hosts, PEDV has acquired mechanisms to subvert host innate immune responses for its survival advantage. At least two proteins encoded by PEDV have been identified as interferon (IFN

  20. Plasma thrombin-cleaved osteopontin as a potential biomarker of acute atherothrombotic ischemic stroke.

    PubMed

    Ozaki, Saya; Kurata, Mie; Kumon, Yoshiaki; Matsumoto, Shirabe; Tagawa, Masahiko; Watanabe, Hideaki; Ohue, Shiro; Higaki, Jitsuo; Ohnishi, Takanori

    2017-01-01

    We investigated whether thrombin-cleaved osteopontin N-terminal is useful as a blood biomarker of acute atherothrombotic ischemic stroke. Acute ischemic stroke patients were prospectively evaluated with brain magnetic resonance imaging and cardiac evaluations for etiological diagnosis according to the Trial of Org 10172 in Acute Stroke Treatment classification. They were divided into the atherothrombotic and non-atherothrombotic groups. Thrombin-cleaved osteopontin N-terminal, osteopontin, matrix metalloproteinase-9, S100B, C-reactive protein and D-dimer levels were measured from blood samples collected at admission. After excluding patients who met the exclusion criteria or had stroke of other/undetermined etiology, 60 of the 100 patients initially enrolled were included in the final analysis. The ischemic stroke subtypes were atherothrombotic (n=28, 46.7%), cardioembolic (n=19, 31.7%) and lacunar (n=13, 21.7%). Thrombin-cleaved osteopontin N-terminal and matrix metalloproteinase-9 levels were significantly higher in the atherothrombotic than in the non-atherothrombotic group (median (interquartile range): 5.83  (0.0-8.6 ) vs. 0.0  (0.0-3.3) pmol l(-1), P=0.03 and 544   (322-749 ) vs. 343   (254-485) ng ml(-1), P=0.01, respectively). After adjustment for the prevalence of hypertension, diabetes and dyslipidemia, thrombin-cleaved osteopontin N-terminal levels of >5.47 pmol l(-1) (odds ratio, 16.81; 95% confidence interval, 3.53-80.10) and matrix metalloproteinase-9 levels of >605.5 ng ml(-1) (6.59; 1.77-24.60) were identified as independent predictors of atherothrombosis. Within 3 h from stroke onset, only thrombin-cleaved osteopontin N-terminal independently predicted atherothrombosis and thus may add valuable, time-sensitive diagnostic information in the early evaluation of ischemic stroke, especially the atherothrombotic subtype.

  1. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    SciTech Connect

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  2. Dimethylphosphinate bridged binuclear Rh(i) catalysts for the alkoxycarbonylation of aromatic C-H bonds.

    PubMed

    Iturmendi, Amaia; Sanz Miguel, Pablo J; Popoola, Saheed A; Al-Saadi, Abdulaziz A; Iglesias, Manuel; Oro, Luis A

    2016-11-14

    A variety of binuclear rhodium(i) complexes featuring two bridging dimethylphosphinate ligands ((CH3)2PO2(-)) have been prepared and tested in the alkoxycarbonylation of aromatic C-H bonds. The complex [Rh(μ-κO,O'-(CH3)2PO2)(cod)]2 has been prepared by a reaction of [Rh(μ-MeO)(cod)]2 with 2 equivalents of dimethylphosphinic acid. Binuclear complexes [Rh(μ-κO,O'-(CH3)2PO2)(CO)L]2 (L = PPh3, P(OMe)Ph2 and P(OPh)3) were obtained by carbonylation of the related mononuclear complexes [Rh(κO-(CH3)2PO2)(cod)(L)], which were prepared in situ by the reaction of [Rh(μ-κO,O'-(CH3)2PO2)(cod)]2 with 2 equivalents of L. Conversely, if L = IPr, the reaction of [Rh(μ-κO,O'-(CH3)2PO2)(CO)L]2 with carbon monoxide affords the mononuclear complex [Rh(κO-(CH3)2PO2)(CO)2IPr]. The subsequent reaction with trimethylamine N-oxide gives the corresponding binuclear complex [Rh(μ-κO,O'-(CH3)2PO2)(CO)(IPr)]2 by abstraction of one of the carbonyl ligands. Complexes [Rh(μ-κO,O'-(CH3)2PO2)(cod)]2 and [Rh(κO-(CH3)2PO2)(cod)(L)] (L = IPr, PPh3, P(OMe)Ph2, P(OPh)3) are active precatalysts in the alkoxycarbonylation of C-H bonds, with the ligand system playing a key role in the catalytic activity. The complexes that feature more labile Rh-L bonds give rise to better catalysts, probably due to the more straightforward substitution of L by a second carbonyl ligand, since a more electrophilic carbonyl carbon atom is more susceptible toward aryl migration. In fact, complexes [Rh(μ-κO,O'-(CH3)2PO2)(CO)2]2 and [Rh(μ-Cl)(CO)2]2, generated in situ from [Rh(μ-κO,O'-(CH3)2PO2)(cod)]2 and [Rh(μ-Cl)(cod)2]2, respectively, are the most active catalysts tested in this work.

  3. Protein turnover in 3T3 cells transformed with the oncogene c-H-ras1.

    PubMed Central

    Gunn, J M; James, G

    1992-01-01

    We have examined protein turnover, growth, DNA synthesis and proliferation in three independent clones of 3T3-NR6 cells transformed with the oncogene c-H-ras1. We find that, firstly, the half-maximum concentration of serum and insulin regulating protein turnover in ras-transformed cells is significantly reduced from 0.5 to 0.3% for serum and from 4 nM to 0.5 nM for insulin, and, secondly, ras-transformed cells consistently have lower rates of protein degradation. The catabolic effect of conditioned medium or serum withdrawal is attenuated in transformed lines by maintaining lower basal rates of protein breakdown and higher basal rates of DNA and protein synthesis. Serum stimulation of growth in transformed cells is achieved in the short term by lower rates of protein breakdown rather than higher rates of protein synthesis: rates of protein synthesis become significantly higher 24 h after serum stimulation. Therefore transformed cells have higher rates of proliferation and grow to higher densities, but display characteristics common to normal cells because rates of protein synthesis decrease and protein degradation increase as a function of cell density. We conclude that higher basal rates of protein synthesis and growth with retention of the normal proliferative response to serum result from the pleiotropic nature of ras transformation, whereas lower rates of protein degradation and increased sensitivity to serum and insulin imply a direct regulatory role for ras. PMID:1575687

  4. Graphene Oxide Catalyzed C-H Bond Activation: The Importance Oxygen Functional Groups for Biaryl Construction

    SciTech Connect

    Gao, Yongjun; Tang, Pei; Zhou, Hu; Zhang, Wei; Yang, Hanjun; Yan, Ning; Hu, Gang; Mei, Donghai; Wang, Jianguo; Ma, Ding

    2016-02-24

    A heterogeneous, inexpensive and environment-friendly carbon catalytic system was developed for the C-H bond arylation of benzene resulting in the subsequent formation of biaryl compounds. The oxygen-containing groups on these graphene oxide sheets play an essential role in the observed catalytic activity. The catalytic results of model compounds and DFT calculations show that these functional groups promote this reaction by stabilization and activation of K ions at the same time of facilitating the leaving of I. And further mechanisms studies show that it is the charge induced capabilities of oxygen groups connected to specific carbon skeleton together with the giant π-reaction platform provided by the π-domain of graphene that played the vital roles in the observed excellent catalytic activity. D. Mei acknowledges the support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory.

  5. Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers.

    PubMed

    Dudnik, Alexander S; Aldrich, Thomas J; Eastham, Nicholas D; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2016-12-07

    A new and highly regioselective direct C-H arylation polymerization (DARP) methodology enables the reproducible and sustainable synthesis of high-performance π-conjugated photovoltaic copolymers. Unlike traditional Stille polycondensation methods for producing photovoltaic copolymers, this DARP protocol eliminates the need for environmentally harmful, toxic organotin compounds. This DARP protocol employs low loadings of commercially available catalyst components, Pd2(dba)3·CHCl3 (0.5 mol%) and P(2-MeOPh)3 (2 mol%), sterically tuned carboxylic acid additives, and an environmentally friendly solvent, 2-methyltetrahydrofuran. Using this DARP protocol, several representative copolymers are synthesized in excellent yields and high molecular masses. The DARP-derived copolymers are benchmarked versus Stille-derived counterparts by close comparison of optical, NMR spectroscopic, and electrochemical properties, all of which indicate great chemical similarity and no significant detectable structural defects in the DARP copolymers. The DARP- and Stille-derived copolymer and fullerene blend microstructural properties and morphologies are characterized with AFM, TEM, and XRD and are found to be virtually indistinguishable. Likewise, the charge generation, recombination, and transport characteristics of the fullerene blend films are found to be identical. For the first time, polymer solar cells fabricated using DARP-derived copolymers exhibit solar cell performances rivalling or exceeding those achieved with Stille-derived materials. For the DARP copolymer PBDTT-FTTE, the power conversion efficiency of 8.4% is a record for a DARP copolymer.

  6. Unexpected C-H activation of Ru(II)-dithiomaltol complexes upon oxidation.

    PubMed

    Backlund, Malin; Ziller, Joseph; Farmer, Patrick J

    2008-04-07

    Thione-substituted derivatives of maltol are of interest in several applications of metal-based drugs. In order to investigate the effect of the oxygenation on such thione chelates, Ru complexes of 3-hydroxy-2-methyl-4-thiopyrone (thiomaltol or Htma) and 3-hydroxy-2-methyl-4H-thiopyran-4-thione (dithiomaltol or Httma), [Ru(bpy)2(tma)](+), 1, and [Ru(bpy) 2(ttma)] (+), 2, were synthesized as diamagnetic PF6(-) salts. Peroxidation of 2 unexpectedly generated products of C-H activation at its pendant methyl group; an air-stable aldehyde [Ru(bpy)2(ttma-aldehyde)](+), 4, was the major product. In addition, an intermediate oxidation product [Ru(bpy) 2(ttma-alcohol)](PF6), 3, was characterized. Both 3 and 4 are also formed by reaction of 2 with outersphere oxidants (e.g., Na2IrCl6) and by bulk electrolysis under anaerobic conditions. Similar oxidations of the analogous [Ru(bpy)2(ettma)](+), 2' , complex (3-hydroxy-2-ethyl-4H-thiopyran-4-thione; ethyl dithiomaltol or Hettma) formed the corresponding ketone, [Ru(bpy)2(ettma-ketone)](PF6), 4', by oxidation at the same position adjacent to the conjugated ring. The structures of the aldehyde 4 and starting materials 1 and 2 have been confirmed by X-ray crystallography, and all complexes have been characterized by UV-vis, (1)H NMR, and IR spectroscopies. Initial mechanistic investigations are discussed.

  7. Evidence for size effect on insulator-metal transition in C: (H; S)

    NASA Astrophysics Data System (ADS)

    Sreedhar, K.; Joy, P. A.

    1996-08-01

    Temperature dependent electrical resistivity, ϱ( T), measurements have been carried out on nano-crystalline C : (H; S) obtained by the pyrolysis of p-polyphenylene sulfide (PPS) between 600-1100°C. At low heat treatment temperatures (HTT 600-700°C) X-ray diffraction and EPR spectroscopy give evidence for the formation of condensed polycyclic benzenoid units of ˜1 nm dimension having a charge carrier density ˜10 19 cm -3. In this regime, where n c{1}/{3}a H∗ < 0.26 ( nc is the critical number of free carriers per unit volume and a H∗ is the effective Bohr radius) the samples are insulating. When the HTT is increased to 800-1100°C an increase in the effective length scale of the system from 1 nm to 5-15 nm occurs with a concomitant increase in conductivity σ300 by five orders of magnitude. This suggests that the transition is primarily due to an increase in the effective length scale or a H∗, and the change in carrier density as well as disorder play a minor role, which gives compelling evidence for quantum size effect on Mott-Anderson type transition in this system.

  8. Radical-Mediated C-H Functionalization: A Strategy for Access to Modified Cyclodextrins.

    PubMed

    Alvarez-Dorta, Dimitri; León, Elisa I; Kennedy, Alan R; Martín, Angeles; Pérez-Martín, Inés; Suárez, Ernesto

    2016-12-02

    A simple and efficient radical C-H functionalization to access modified cyclodextrins (CDs) has been developed. The well-defined conformation of glycosidic and aglyconic bonds in α-, β-, and γ-CDs favors the intramolecular 1,8-hydrogen atom transfer (HAT) promoted by the 6(I)-O-yl radical, which abstracts regioselectively the hydrogen at C5(II) of the contiguous pyranose. The C5(II)-radical evolves by a polar crossover mechanism to a stable 1,3,5-trioxocane ring between two adjacent glucoses or alternatively triggers the inversion of one α-d-glucose into a 5-C-acetoxy-β-l-idose unit possessing a (1)C4 conformation. The 6(I,IV)- and 6(I,III)-diols of α- and β-CDs behave similarly to the monoalcohols, forming mostly compounds originating from two 1,8-HAT consecutive processes. In the case of 6(I,II)-diols the proximity of the two 6-O-yl radicals in adjacent sugar units allows the formation of unique lactone rings within the CD framework via a 1,8-HAT-β-scission tandem mechanism. X-ray diffraction carried out on the crystalline 1,4-bis(trioxocane)-α-CD derivative shows a severe distortion toward a narrower elliptical shape for the primary face.

  9. Properties of a-C:H:Si thin films deposited by middle-frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; Wang, Yubao; Du, Jinfang; Yang, Hua; Hao, Junying

    2016-08-01

    The silicon doped hydrogenated amorphous carbon (a-C:H:Si) films were prepared on silicon substrates by middle-frequency magnetron sputtering silicon target in an argon and methane gas mixture atmosphere. The deposition rate, chemical composition, structure, surface properties, stress, hardness and tribological properties in the ambient air of the films were systemically investigated using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), nanoindentation and tribological tester. The results show that doped silicon content in the films is controlled in the wide range from 39.7 at.% to 0.2 at.% by various methane gas flow rate, and methane flow rate affects not only the silicon content but also its chemical bonding structure in the films due to the transformation of sputtering modes. Meanwhile, the sp3 carbon component in the films linearly increases with increasing of methane flow rate. The film deposited at moderate methane flow rate of 40-60 sccm exhibits the very smooth surface (RMS roughness 0.4 nm), low stress (0.42 GPa), high hardness (21.1 GPa), as well as low friction coefficient (0.038) and wear rate (1.6 × 10-7 mm3/Nm). The superior tribological performance of the films could be attributed to the formation and integral covering of the transfer materials on the sliding surface and their high hardness.

  10. General synthesis of 2,1-benzisoxazoles (anthranils) from nitroarenes and benzylic C-H acids in aprotic media promoted by combination of strong bases and silylating agents.

    PubMed

    Wiȩcław, Michał; Bobin, Mariusz; Kwast, Andrzej; Bujok, Robert; Wróbel, Zbigniew; Wojciechowski, Krzysztof

    2015-11-01

    Carbanions of phenylacetonitriles, benzyl sulfones, and dialkyl benzylphosphonates add nitroarenes at the ortho-position to the nitro group to form [Formula: see text]-adducts that, upon treatment with trialkylchlorosilane and additional base (t-BuOK or DBU), transform into 3-aryl-2,1-benzisoxazoles in moderate-to-good yields.

  11. Computational study on C-H...π interactions of acetylene with benzene, 1,3,5-trifluorobenzene and coronene.

    PubMed

    Dinadayalane, Tandabany C; Paytakov, Guvanchmyrat; Leszczynski, Jerzy

    2013-07-01

    Meta-hybrid density functional theory calculations using M06-2X/6-31+G(d,p) and M06-2X/6-311+G(d,p) levels of theory have been performed to understand the strength of C-H(…)π interactions of two possible types for benzene-acetylene, 1,3,5-trifluorobenzene-acetylene and coronene-acetylene complexes. Our study reveals that the C-H(...)π interaction complex where acetylene located above to the center of benzene ring (classical T-shaped) is the lowest energy structure. This structure is twice more stable than the configuration characterized by H atom of benzene interacting with the π-cloud of acetylene. The binding energy of 2.91 kcal/mol calculated at the M06-2X/6-311+G(d,p) level for the lowest energy configuration (1A) is in very good agreement with the experimental binding energy of 2.7 ± 0.2 kcal/mol for benzene-acetylene complex. Interestingly, the C-H(...)π interaction of acetylene above to the center of the aromatic ring is not the lowest energy configuration for 1,3,5-trifluorobenzene-acetylene and coronene-acetylene complexes. The lowest energy configuration (2A) for the former complex possesses both C-H(...)π interaction and C-H(...)F hydrogen bond, while the lowest energy structure for the coronene-acetylene complex involves both π-π and C-H(...)π interactions. C-H stretching vibrational frequencies and the frequency shifts are reported and analyzed for all of the configurations. We observed red-shift of the vibrational frequency for the stretching mode of the C-H bond that interacts with the π-cloud. Acetylene in the lowest-energy structures of the complexes exhibits significant red-shift of the C-H stretching frequency and change in intensity of the corresponding vibrational frequency, compared to bare acetylene. We have examined the molecular electrostatic potential on the surfaces of benzene, 1,3,5-trifluorobenzene, coronene and acetylene to explain the binding strengths of various complexes studied here.

  12. Optical emission diagnostics of electron cyclotron resonance and glow discharge plasmas for a-Si:H and a-SiC:H film depositions

    NASA Technical Reports Server (NTRS)

    Yang, C. L.; Shing, Y. H.; Allevato, C. E.

    1988-01-01

    It is demonstrated that the steady-state and kinetic characteristics of ECR (electron cyclotron resonance) and RF glow discharge plasmas can be readily monitored by OES (optical emission spectroscopy) in real time during a-Si:H and a-SiC:H film depositions using an OMA detection system. The ECR and RF glow discharge plasmas used for a-Si:H and a-SiC:H film depositions were studied by monitoring the emission of SiH(asterisk), H(asterisk), H(asterisk)2, and CH(asterisk) excited states. The OES of the ECR plasma shows a strong emission at 434 nm from H(asterisk), which is not detectable in the glow discharge plasma. Steady-state OES studies have established preliminary correlations between SiH(asterisk) and CH(asterisk) emission intensities and the film deposition rate. Transient OES spectra of SiH4 and CH4 plasmas have shown different kinetics in SiH(asterisk) and CH(asterisk) emission intensities. Transient studies of the SiH(asterisk) emission intensity have indicated that additional mechanisms for producing the SiH(asterisk) species become evident in hydrogen-diluted silane plasmas.

  13. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  14. Acid-catalyzed oxidative addition of a C-H bond to a square planar d⁸ iridium complex.

    PubMed

    Hackenberg, Jason D; Kundu, Sabuj; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-06-25

    While the addition of C-H bonds to three-coordinate Ir(I) fragments is a central theme in the field of C-H bond activation, addition to square planar four-coordinate complexes is far less precedented. The dearth of such reactions may be attributed, at least in part, to kinetic factors elucidated in seminal work by Hoffmann. C-H additions to square planar carbonyl complexes in particular are unprecedented, in contrast to the extensive chemistry of oxidative addition of other substrates (e.g., H2, HX) to Vaska's Complex and related species. We report that Bronsted acids will catalyze the addition of the alkynyl C-H bond of phenylacetylene to the pincer complex (PCP)Ir(CO). The reaction occurs to give exclusively the trans-C-H addition product. Our proposed mechanism, based on kinetics and DFT calculations, involves initial protonation of (PCP)Ir(CO) to generate a highly active five-coordinate cationic intermediate, which forms a phenylacetylene adduct that is then deprotonated to give product.

  15. Site-Selective Aliphatic C-H Chlorination Using N-Chloroamides Enables a Synthesis of Chlorolissoclimide.

    PubMed

    Quinn, Ryan K; Könst, Zef A; Michalak, Sharon E; Schmidt, Yvonne; Szklarski, Anne R; Flores, Alex R; Nam, Sangkil; Horne, David A; Vanderwal, Christopher D; Alexanian, Erik J

    2016-01-20

    Methods for the practical, intermolecular functionalization of aliphatic C-H bonds remain a paramount goal of organic synthesis. Free radical alkane chlorination is an important industrial process for the production of small molecule chloroalkanes from simple hydrocarbons, yet applications to fine chemical synthesis are rare. Herein, we report a site-selective chlorination of aliphatic C-H bonds using readily available N-chloroamides and apply this transformation to a synthesis of chlorolissoclimide, a potently cytotoxic labdane diterpenoid. These reactions deliver alkyl chlorides in useful chemical yields with substrate as the limiting reagent. Notably, this approach tolerates substrate unsaturation that normally poses major challenges in chemoselective, aliphatic C-H functionalization. The sterically and electronically dictated site selectivities of the C-H chlorination are among the most selective alkane functionalizations known, providing a unique tool for chemical synthesis. The short synthesis of chlorolissoclimide features a high yielding, gram-scale radical C-H chlorination of sclareolide and a three-step/two-pot process for the introduction of the β-hydroxysuccinimide that is salient to all the lissoclimides and haterumaimides. Preliminary assays indicate that chlorolissoclimide and analogues are moderately active against aggressive melanoma and prostate cancer cell lines.

  16. Hydrogen-bond-assisted controlled C-H functionalization via adaptive recognition of a purine directing group.

    PubMed

    Kim, Hyun Jin; Ajitha, Manjaly J; Lee, Yongjae; Ryu, Jaeyune; Kim, Jin; Lee, Yunho; Jung, Yousung; Chang, Sukbok

    2014-01-22

    We have developed the Rh-catalyzed selective C-H functionalization of 6-arylpurines, in which the purine moiety directs the C-H bond activation of the aryl pendant. While the first C-H amination proceeds via the N1-chelation assistance, the subsequent second C-H bond activation takes advantage of an intramolecular hydrogen-bonding interaction between the initially formed amino group and one nitrogen atom, either N1 or N7, of the purinyl part. Isolation of a rhodacycle intermediate and the substrate variation studies suggest that N1 is the main active site for the C-H functionalization of both the first and second amination in 6-arylpurines, while N7 plays an essential role in controlling the degree of functionalization serving as an intramolecular hydrogen-bonding site in the second amination process. This pseudo-Curtin-Hammett situation was supported by density functional calculations, which suggest that the intramolecular hydrogen-bonding capability helps second amination by reducing the steric repulsion between the first installed ArNH and the directing group.

  17. Electronic structure and stability of the C H3N H3PbB r3 (001) surface

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Paudel, Tula R.; Dowben, Peter A.; Dong, Shuai; Tsymbal, Evgeny Y.

    2016-11-01

    The energetics and the electronic structure of methylammonium lead bromine (C H3N H3PbB r3 ) perovskite (001) surfaces are studied based on density functional theory. By examining the surface grand potential, we predict that the C H3N H3Br -terminated (001) surface is energetically more favorable than the PbB r2 -terminated (001) surface, under thermodynamic equilibrium conditions of bulk C H3N H3PbB r3 . The electronic structure of each of these two different surface terminations retains some of the characteristics of the bulk, while new surface states are found near band edges which may affect the photovoltaic performance in the solar cells based on C H3N H3PbB r3 . The calculated electron affinity of C H3N H3PbB r3 reveals a sizable difference for the two surface terminations, indicating a possibility of tuning the band offset between the halide perovskite and adjacent electrode with proper interface engineering.

  18. Probing C-H⋯N interaction in acetylene-benzonitrile complex using matrix isolation infrared spectroscopy and DFT computations

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2017-04-01

    Hydrogen-bonded complexes of acetylene (C2H2) and the benzonitrile (C6H5CN) have been investigated using matrix isolation infrared spectroscopy and DFT computations. The structure of the complexes and the energies were computed at B3LYP and B3LYP+D3 levels of theory using 6-311++G (d, p) and aug-cc-pVDZ basis sets. DFT computations indicated two minima corresponding to the C-H⋯N (global) and C-H⋯π interactions (local) of 1:1 C2H2-C6H5CN complexes, where C2H2 is the proton donor in both complexes. Experimentally, the 1:1 C-H⋯N complex identified from the shifts in the C-H and Ctbnd N stretching modes corresponding to the C2H2 and C6H5CN sub-molecules in N2 and Ar matrices. Atoms in Molecules and Natural Bond Orbital analyses were performed to understand the nature of interaction and to unravel the reasons for red-shifting of the C-H stretching frequency in these complexes. Energy decomposition analysis was carried out to discern the various stabilizing and destabilizing components as a result of hydrogen bonding in the C2H2-C6H5CN complexes.

  19. Structure and mechanical properties of a-C:H films deposited on a 3D target: comparative study on target scale and aspect ratio

    NASA Astrophysics Data System (ADS)

    Hirata, Y.; Choi, J.

    2017-04-01

    properties were strongly related to the non-uniform behavior of the plasma particle incident to the sidewall depending on the scale and aspect ratio of the target. Moreover, with regard to the a-C:H films on a nanotrench, their film properties were predicted by presenting comparative discussions of the experimental measurement and plasma simulation analysis for the macrotrench, microchannel, and microtrench.

  20. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function

    PubMed Central

    Szklarczyk, Arek; Ewaleifoh, Osefame; Beique, Jean-Claude; Wang, Yue; Knorr, David; Haughey, Norman; Malpica, Tanya; Mattson, Mark P.; Huganir, Richard; Conant, Katherine

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of ∼65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.—Szklarczyk, A., Ewaleifoh, O., Beique, J.-C., Wang, Y., Knorr, D., Haughey, N., Malpica, T., Mattson, M. P., Huganir, R., Conant, K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. PMID:18644839

  1. Mathematical modeling of bacterial track-altering motors: Track cleaving through burnt-bridge ratchets

    NASA Astrophysics Data System (ADS)

    Shtylla, Blerta; Keener, James P.

    2015-04-01

    The generation of directed movement of cellular components frequently requires the rectification of Brownian motion. Molecular motor enzymes that use ATP to walk on filamentous tracks are typically involved in cell transport, however, a track-altering motor can arise when an enzyme interacts with and alters its track. In Caulobacter crescentus and other bacteria, an active DNA partitioning (Par) apparatus is employed to segregate replicated chromosome regions to specific locations in dividing cells. The Par apparatus is composed of two proteins: ParA, an ATPase that can form polymeric structures on the nucleoid, and ParB, a protein that can bind and destabilize ParA structures. It has been proposed that the ParB-mediated alteration of ParA structures could be responsible for generating the directed movement of DNA during bacterial division. How precisely these actions are coordinated and translated into directed movement is not clear. In this paper we consider the C. crescentus segregation apparatus as an example of a track altering motor that operates using a so-called burnt-bridge mechanism. We develop and analyze mathematical models that examine how diffusion and ATP-hydrolysis-mediated monomer removal (or cleaving) can be combined to generate directed movement. Using a mean first passage approach, we analytically calculate the effective ParA track-cleaving velocities, effective diffusion coefficient, and other higher moments for the movement a ParB protein cluster that breaks monomers away at random locations on a single ParA track. Our model results indicate that cleaving velocities and effective diffusion constants are sensitive to ParB-induced ATP hydrolysis rates. Our analytical results are in excellent agreement with stochastic simulation results.

  2. Mathematical modeling of bacterial track-altering motors: Track cleaving through burnt-bridge ratchets.

    PubMed

    Shtylla, Blerta; Keener, James P

    2015-04-01

    The generation of directed movement of cellular components frequently requires the rectification of Brownian motion. Molecular motor enzymes that use ATP to walk on filamentous tracks are typically involved in cell transport, however, a track-altering motor can arise when an enzyme interacts with and alters its track. In Caulobacter crescentus and other bacteria, an active DNA partitioning (Par) apparatus is employed to segregate replicated chromosome regions to specific locations in dividing cells. The Par apparatus is composed of two proteins: ParA, an ATPase that can form polymeric structures on the nucleoid, and ParB, a protein that can bind and destabilize ParA structures. It has been proposed that the ParB-mediated alteration of ParA structures could be responsible for generating the directed movement of DNA during bacterial division. How precisely these actions are coordinated and translated into directed movement is not clear. In this paper we consider the C. crescentus segregation apparatus as an example of a track altering motor that operates using a so-called burnt-bridge mechanism. We develop and analyze mathematical models that examine how diffusion and ATP-hydrolysis-mediated monomer removal (or cleaving) can be combined to generate directed movement. Using a mean first passage approach, we analytically calculate the effective ParA track-cleaving velocities, effective diffusion coefficient, and other higher moments for the movement a ParB protein cluster that breaks monomers away at random locations on a single ParA track. Our model results indicate that cleaving velocities and effective diffusion constants are sensitive to ParB-induced ATP hydrolysis rates. Our analytical results are in excellent agreement with stochastic simulation results.

  3. Laser-damage processes in cleaved and polished CaF{sub 2} at 248nm

    SciTech Connect

    Reichling, M.; Gogoll, S.; Stenzel, S.

    1996-12-31

    Single-shot irradiation of single crystal CaF{sub 2} with 248nm/14ns laser light results in various degrees of degradation and damage depending on the applied laser fluence. Phenomena range from subtle, non-topographic surface modification only detectable by secondary electrons of scanning electron microscopy (SE-SEM) over cracking along crystallographic directions to the ablation of crystalline material. Significant differences are found for cleaved and polished surfaces. Findings from SEM investigations, in-situ photoacoustic mirage measurements and visual inspection of irradiated samples form a comprehensive picture of the stages of laser-induced damage.

  4. 1Surface structure of cleaved (001) USB2 single crystal surface

    SciTech Connect

    Chen, Shao-ping

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound USb2 taken at room temperature. The a, b, and c lattice parameters in the images confirm that the tetragonal USb2crystals cleave on the (00 I) basal plane as expected. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most ofthe density of states measured by STM. Since the spacing between Sb atoms and between U atoms is the same, STM topography only cannot unambiguously identify the surface atom species.

  5. In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces

    NASA Technical Reports Server (NTRS)

    Metois, J. J.; Heinemann, K.; Poppa, H.

    1976-01-01

    The mobility of small clusters of gold (about 10 A in diameter) on electron-beam-cleaved MgO surfaces was studied by in situ transmission electron microscopy under controlled vacuum and temperature conditions. During the first 10 min following a deposition at room temperature, over 10 per cent of the crystallites moved over short distances (about 20 A) discontinuously, with a velocity greater than 150 A/sec. Eighty per cent of the mobility events were characterized by the avoidance of proximity of other crystallites, and this was tentatively explained as the result of repulsive elastic forces between the interacting crystallites.

  6. Study of the effects of polishing, etching, cleaving, and water leaching on the UV laser damage of fused silica

    SciTech Connect

    Yoshiyama, J.; Genin, F.Y.; Salleo, A.; Thomas, I.; Kozlowski, M.R.; Sheehan, L.M.; Hutcheon, I.D.; Camp, D.W.

    1997-12-23

    A damage morphology study was performed with a 355 nm Nd:YAG laser on synthetic UV-grade fused silica to determine the effects of post- polish chemical etching on laser-induced damage, compare damage morphologies of cleaved and polished surfaces, and understand the effects of the hydrolyzed surface layer and waste-crack interactions. The samples were polished , then chemically etched in buffered HF solution to remove 45,90,135, and 180 nm of surface material. Another set of samples was cleaved and soaked in boiling distilled water for 1 second and 1 hour. All the samples were irradiated at damaging fluencies and characterized by Normarski optical microscopy and scanning electron microscopy. Damage was initiated as micro-pits on both input and output surfaces of the polished fused silica sample. At higher fluencies, the micro-pits generated cracks on the surface. Laser damage of the polished surface showed significant trace contamination levels within a 50 nm surface layer. Micro-pit formation also appeared after irradiating cleaved fused silica surfaces at damaging fluences. Linear damage tracks corresponding cleaving tracks were often observed on cleaved surfaces. Soaking cleaved samples in water produced wide laser damage tracks.

  7. The effect of the reactant internal excitation on the dynamics of the C(+) + H2 reaction.

    PubMed

    Herráez-Aguilar, D; Jambrina, P G; Menéndez, M; Aldegunde, J; Warmbier, R; Aoiz, F J

    2014-12-07

    We have performed a dynamical study of the endothermic and barrierless C(+) + H2((1)Σg(+)) → CH(+)((1)Σg(+)) + H reaction for different initial rotational states of the H2(v = 0) and H2(v = 1) manifolds. The calculations have been carried out using quasiclassical trajectories and the Gaussian binning methodology on a recent potential energy surface [R. Warmbier and R. Schneider, Phys. Chem. Chem. Phys., 2011, 13, 10285]. Both state-selected integral cross sections as a function of the collision energy and rate coefficients, kv,j(T), have been determined. We show that rotational excitation of the reactants is as effective as vibrational excitation when it comes to increasing the reactivity, and that both types of excitation could contribute to explain the unexpectedly high abundance of CH(+) in the interstellar media. Such an increase in reactivity takes place by suppressing the reaction threshold when the internal energy is sufficient to overcome the endothermicity. Whenever this is the case, the excitation functions at collision energies Ecoll ≤ 0.1 eV display a ∝E(-1/2)coll dependence. However, the absolute values of the state selected kv=1(T) are one order of magnitude below the Langevin model predictions. The disagreement between the approximately derived experimental rate coefficients for v = 1 and those calculated by this and previous theoretical treatments is due to the neglect of the effect of the rotational excitation in the derivation of the former. In spite of the deep well present in the potential energy surface, the reaction does not show a statistical behaviour.

  8. The strands of both polarities of a small circular RNA from carnation self-cleave in vitro through alternative double- and single-hammerhead structures.

    PubMed Central

    Hernández, C; Daròs, J A; Elena, S F; Moya, A; Flores, R

    1992-01-01

    The sequence of a circular RNA from carnation has been determined and found to consist of 275 nucleotide residues adopting a branched secondary structure of minimum free energy. Both plus and minus strands of this RNA can form the hammerhead structures proposed to mediate the in vitro self-cleavage of a number of small infectious plant RNAs and the transcript of satellite 2 DNA from the newt. Minus full- and partial-length transcripts of the carnation circular RNA including the hammerhead structure showed self-cleavage during transcription and after purification, indicating the involvement of a single-hammerhead structure in the self-cleavage reaction. In the case of the plus transcripts only a dimeric RNA, but not a monomeric one, self-cleaved efficiently during transcription and after purification, strongly supporting the implication in this process of a double-hammerhead structure theoretically more stable than the corresponding single cleavage domain. However, a plus monomeric transcript self-cleaved after purification at a slow rate in a concentration-independent reaction which most probably occurs through an intramolecular mechanism. Comparative sequence analysis has revealed that the circular RNA from carnation shares similarities with some representative members of the viroid and viroid-like satellites RNAs from plants, suggesting that it is a new member of either these two groups of small pathogenic RNAs. Images PMID:1282239

  9. Advancements in the Synthesis and Applications of Cationic N-Heterocycles through Transition Metal-Catalyzed C-H Activation.

    PubMed

    Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2016-02-18

    Cationic N-heterocycles are an important class of organic compounds largely present in natural and bioactive molecules. They are widely used as fluorescent dyes for biological studies, as well as in spectroscopic and microscopic methods. These compounds are key intermediates in many natural and pharmaceutical syntheses. They are also a potential candidate for organic light-emitting diodes (OLEDs). Because of these useful applications, the development of new methods for the synthesis of cationic N-heterocycles has received a lot of attention. In particular, many C-H activation methodologies that realize high step- and atom-economies toward these compounds have been developed. In this review, recent advancements in the synthesis and applications of cationic N-heterocycles through C-H activation reactions are summarized. The new C-H activation reactions described in this review are preferred over their classical analogs.

  10. The Effect of Nano Confinement on the C-H Activation and its Corresponding Structure-Activity Relationship

    NASA Astrophysics Data System (ADS)

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-01

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  11. The effect of nano confinement on the C-h activation and its corresponding structure-activity relationship.

    PubMed

    Shao, Jing; Yuan, Linghua; Hu, Xingbang; Wu, Youting; Zhang, Zhibing

    2014-11-27

    The C-H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C-H activation occurring both on the inner and outer surfaces of the nano channel. The C-O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C-H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.

  12. Asymmetric Lewis acid organocatalysis of the Diels-Alder reaction by a silylated C-H acid.

    PubMed

    Gatzenmeier, Tim; van Gemmeren, Manuel; Xie, Youwei; Höfler, Denis; Leutzsch, Markus; List, Benjamin

    2016-02-26

    Silylium ion equivalents have shown promise as Lewis acid catalysts for a range of important C-C bond-forming reactions. Here we describe chiral C-H acids that upon in situ silylation, generate silylium-carbanion pairs, which are extremely active Lewis acid catalysts for enantioselective Diels-Alder reactions of cinnamates with cyclopentadiene. Enantiomeric ratios of up to 97:3 and diastereomeric ratios of more than 20:1 are observed across a diverse set of substitution patterns with 1 mole percent (mol %) of C-H acid catalyst and 10 mol % of a silylating reagent. The results show promise for broad applications of such C-H acid-derived silylium ion equivalents in asymmetric Lewis acid catalysis.

  13. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  14. On blue shifts of C--H stretching modes of dimethyl ether in hydrogen- and halogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Karpfen, Alfred; Kryachko, Eugene S.

    2006-11-01

    A systematic investigation of a representative series of intermolecular complexes formed between dimethyl ether (DME) and various interacting partners such as H 2O, hydrogen halides, dihalogens, halomethanes, DME, and the ions Li + and H + was performed at the MP2/6-311++G(2d,2p) computational level. Although, except (DME) 2, DME-HCF 3, DME-HCClF 2, and DME-HCCl 2F, the C-H bonds of DME are not involved in the hydrogen bonding of these complexes, their C-H stretching frequencies are all blue-shifted. It is shown that the mechanism of these blue shifts originates from the existence of a negative intramolecular coupling between the C-O and C-H bonds inherent to the DME molecule.

  15. Conversion of 1-alkenes into 1,4-diols through an auxiliary-mediated formal homoallylic C-H oxidation.

    PubMed

    Ghavtadze, Nugzar; Melkonyan, Ferdinand S; Gulevich, Anton V; Huang, Chunhui; Gevorgyan, Vladimir

    2014-02-01

    The ubiquitous nature of C-H bonds in organic molecules makes them attractive as a target for rapid complexity generation, but brings with it the problem of achieving selective reactions. In developing new methodologies for C-H functionalization, alkenes are an attractive starting material because of their abundance and low cost. Here we describe the conversion of 1-alkenes into 1,4-diols. The method involves the installation of a new Si,N-type chelating auxiliary group on the alkene followed by iridium-catalysed C-H silylation of an unactivated δ-C(sp(3))-H bond to produce a silolane intermediate. Oxidation of the C-Si bonds affords a 1,4-diol. The method is demonstrated to have broad scope and good functional group compatibility by application to the selective 1,4-oxygenation of several natural products and derivatives.

  16. Transition-Metal-Catalyzed C-H Bond Addition to Carbonyls, Imines, and Related Polarized π Bonds.

    PubMed

    Hummel, Joshua R; Boerth, Jeffrey A; Ellman, Jonathan A

    2016-12-12

    The transition-metal-catalyzed addition of C-H bonds to carbonyls, imines, and related polarized π bonds has emerged as a particularly efficient and powerful approach for the construction of an incredibly diverse array of heteroatom-substituted products. Readily available and stable inputs are typically employed, and reactions often proceed with very high functional group compatibility and without the production of waste byproducts. Additionally, many transition-metal-catalyzed C-H bond additions to polarized π bonds occur within cascade reaction sequences to provide rapid access to a diverse array of different heterocyclic as well as carbocyclic products. This review highlights the diversity of transformations that have been achieved, catalysts that have been used, and types of products that have been prepared through the transition-metal-catalyzed addition of C-H bonds to carbonyls, imines, and related polarized π bonds.

  17. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    PubMed

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  18. At least 10% shorter C-H bonds in cryogenic protein crystal structures than in current AMBER forcefields.

    PubMed

    Pang, Yuan-Ping

    2015-03-06

    High resolution protein crystal structures resolved with X-ray diffraction data at cryogenic temperature are commonly used as experimental data to refine forcefields and evaluate protein folding simulations. However, it has been unclear hitherto whether the C-H bond lengths in cryogenic protein structures are significantly different from those defined in forcefields to affect protein folding simulations. This article reports the finding that the C-H bonds in high resolution cryogenic protein structures are 10-14% shorter than those defined in current AMBER forcefields, according to 3709 C-H bonds in the cryogenic protein structures with resolutions of 0.62-0.79 Å. Also, 20 all-atom, isothermal-isobaric, 0.5-μs molecular dynamics simulations showed that chignolin folded from a fully-extended backbone formation to the native β-hairpin conformation in the simulations using AMBER forcefield FF12SB at 300 K with an aggregated native state population including standard error of 10 ± 4%. However, the aggregated native state population with standard error reduced to 3 ± 2% in the same simulations except that C-H bonds were shortened by 10-14%. Furthermore, the aggregated native state populations with standard errors increased to 35 ± 3% and 26 ± 3% when using FF12MC, which is based on AMBER forcefield FF99, with and without the shortened C-H bonds, respectively. These results show that the 10-14% bond length differences can significantly affect protein folding simulations and suggest that re-parameterization of C-H bonds according to the cryogenic structures could improve the ability of a forcefield to fold proteins in molecular dynamics simulations.

  19. Highly Active Nickel Catalysts for C-H Functionalization Identified through Analysis of Off-Cycle Intermediates.

    PubMed

    Nett, Alex J; Zhao, Wanxiang; Zimmerman, Paul M; Montgomery, John

    2015-06-24

    An inhibitory role of 1,5-cyclooctadiene (COD) in nickel-catalyzed C-H functionalization processes was identified and studied. The bound COD participates in C-H activation by capturing the hydride, leading to a stable off-cycle π-allyl complex that greatly diminished overall catalytic efficiency. Computational studies elucidated the origin of the effect and enabled identification of a 1,5-hexadiene-derived pre-catalyst that avoids the off-cycle intermediate and provides catalytic efficiencies that are superior to those of catalysts derived from Ni(COD)2.

  20. Electron cyclotron resonance microwave plasma deposition of a-Si:H and a-SiC:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1991-01-01

    The paper reports electron cyclotron resonance (ECR) deposition of a-Si:H and a-SiC:H thin films using SiH4, CH4, and hydrogen mixed gas plasmas. The ECR deposition conditions were investigated in the pressure region of 0.1 to 100 mtorr, and the film properties were characterized by light and dark conductivity measurements, XRD, Raman spectroscopy, optical transmission, and IR spectroscopy. In addition, the hydrogen dilution effect on ECR-deposited a-SiC:H was investigated.

  1. C-H functionalization directed by transformable nitrogen heterocycles: synthesis of ortho-oxygenated arylnaphthalenes from arylphthalazines.

    PubMed

    Rastogi, Shiva K; Medellin, Derek C; Kornienko, Alexander

    2014-01-21

    Two protocols for oxygenation of aromatic C-H bonds ortho-positioned to the phthalazine ring were developed. The transannulation of the phthalazine ring to a naphthalene moiety by an Inverse Electron Demand Diels-Alder (IEDDA) reaction led to the synthesis of naphtho[2,1-c]chromenes, 1-(ortho-hydroxyaryl)naphthalenes and 6,7-dihydrobenzo[b]naphtho[1,2-d]oxepine. This new strategy based on the utilization of transformable nitrogen heterocycles in C-H functionalization chemistry can be potentially applicable to the synthesis of a broad range of biaryl compounds.

  2. Copper/silver-mediated direct ortho-ethynylation of unactivated (hetero)aryl C-H bonds with terminal alkyne.

    PubMed

    Liu, Yue-Jin; Liu, Yan-Hua; Yin, Xue-Song; Gu, Wen-Jia; Shi, Bing-Feng

    2015-01-02

    A copper/silver-mediated oxidative ortho-ethynylation of unactivated aryl C-H bonds with terminal alkyne has been developed. The reaction uses the removable PIP directing group and features broad substrate scope, high functional-group tolerance, and compatibility with a wide range of heterocycles, providing an efficient synthesis of aryl alkynes. This procedure highlights the potential of copper catalysts to promote unique, synthetically enabling C-H functionalization reactions that lie outside of the current scope of precious metal catalysis.

  3. Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zehnder, T.; Schwaller, P.; Munnik, F.; Mikhailov, S.; Patscheider, J.

    2004-04-01

    Thin films of nc-TiC/a-C:H nanocomposite have been deposited by reactive magnetron sputtering at substrate bias values of -240 and -91 V. The grain size and grain separation, which together define the nanostructure, are correlated to the amount of the amorphous phase. From the size of the TiC grains measured by x-ray diffraction and the amorphous hydrogenated carbon (a-C:H) phase content determined by x-ray photoelectron spectroscopy, the mean grain separation is estimated using a simple model for the nanostructure. Films deposited at -240 V show a hardness enhancement for a-C:H phase contents in the range 10% to 30% with TiC grain sizes around 5 nm. The mean grain separation for such films was estimated to be 0.3 nm. Films with higher a-C:H phase contents still have 5 nm small grains, but their mean grain separation is larger than 0.5 nm; their hardness is thus determined by the properties of the amorphous matrix. A less pronounced hardness enhancement is observed for films deposited at -91 V. They have larger grains and larger mean gain separations and show smaller hardness values. The hardness of the films, among other mechanical properties, is controlled by the nanostructure. Raman measurements have shown that a-C:H is present in films with mean grain separation down to 0.2 nm. Coefficients of friction against steel lower than 0.3, independent of the substrate bias, are found for films with mean grain separations as low as 0.15 nm. Self-lubrication due to a-C:H can explain the observed friction behavior, although the presence of a-C:H cannot be proved by Raman spectroscopy for films with mean grain separations smaller than 0.2 nm. It is shown that the substrate bias is crucial in obtaining increased hardness of nc-TiC/a-C:H nanocomposite thin films. In contrast to the hardness of the coatings, their friction behavior is not affected by the substrate bias.

  4. Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation.

    PubMed

    Turner, Zoë R

    2016-08-01

    A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes.

  5. Single-Component Phosphinous Acid Ruthenium(II) Catalysts for Versatile C-H Activation by Metal-Ligand Cooperation.

    PubMed

    Zell, Daniel; Warratz, Svenja; Gelman, Dmitri; Garden, Simon J; Ackermann, Lutz

    2016-01-22

    Well-defined ruthenium(II) phosphinous acid (PA) complexes enabled chemo-, site-, and diastereoselective C-H functionalization of arenes and alkenes with ample scope. The outstanding catalytic activity was reflected by catalyst loadings as low as 0.75 mol %, and the most step-economical access reported to date to angiotensin II receptor antagonist blockbuster drugs. Mechanistic studies indicated a kinetically relevant C-X cleavage by a single-electron transfer (SET)-type elementary process, and provided evidence for a PA-assisted C-H ruthenation step.

  6. Ruthenium-Catalyzed Ortho C-H Arylation of Aromatic Nitriles with Arylboronates and Observation of Partial Para Arylation.

    PubMed

    Koseki, Yuta; Kitazawa, Kentaroh; Miyake, Masashi; Kochi, Takuya; Kakiuchi, Fumitoshi

    2016-12-29

    Ruthenium-catalyzed C-H arylation of aromatic nitriles with arylboronates is described. The use of RuH2(CO){P(4-MeC6H4)3}3 as a catalyst provided higher yields of the ortho arylation products than the conventional RuH2(CO)(PPh3)3 catalyst. The arylation takes place mostly at the ortho positions, but unprecedented para arylation was also partially observed to give ortho,para diarylation products. In addition to C-H bond cleavage, the cyano group was also found to function as a directing group for cleavage of C-O bonds in aryl ethers.

  7. Palladium(II)-catalyzed ortho-C-H arylation/alkylation of N-benzoyl α-amino ester derivatives.

    PubMed

    Misal Castro, Luis C; Chatani, Naoto

    2014-04-14

    The palladium-catalyzed arylation/alkylation of ortho-C-H bonds in N-benzoyl α-amino ester derivatives is described. In such a system both the NH-amido and the CO2R groups in the α-amino ester moieties play a role in successful C-H activation/C-C bond formation using iodoaryl coupling partners. A wide variety of functional groups and electron-rich/deficient iodoarenes are tolerated. The yields obtained range from 20 to 95%.

  8. On the Importance of C-H/π and C-H⋅⋅⋅H-C Interactions in the Solid State Structure of 15-Lipoxygenase Inhibitors Based on Eugenol Derivatives.

    PubMed

    Mirzaei, Masoud; Nikpour, Mohsen; Bauzá, Antonio; Frontera, Antonio

    2015-07-20

    In this manuscript the X-ray structures of two potent and known inhibitors of 15-lipoxygenase, that is, 4-allyl-2-methoxyphenyl-1-admantanecarboxylate (1) and allyl-2-methoxyphenyl-1-cyclohexanecarboxylate (2), are reported. Their solid-state architectures show that they have a strong ability to establish C-H/π and C-H⋅⋅⋅H-C interactions. For the former interaction, the adamantane or cyclohexane moieties are the C-H donors and the electron-rich methoxyphenyl ring is the π system. For the latter, the C-H bonds belong to the aliphatic rings of the inhibitors. Interestingly, the active site of lipoxygenase enzyme family is rich in isoleucine and leucine amino acids that participate in the binding of the unsaturated fatty acid substrate by means of multiple hydrophobic C-H⋅⋅⋅H-C interactions. By means of theoretical calculations, we analyze the ability of compounds 1 and 2 to establish C-H/π and C-H⋅⋅⋅H-C interactions in the solid state.

  9. Effect of Si and C concentration on the microstructure, and the mechanical, tribological and electrochemical properties of nanocomposite TiC/a-SiC:H/a-C:H coatings prepared by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Duanjie; Hassani, Salim; Poulin, Suzie; Szpunar, Jerzy A.; Martinu, Ludvik; Klemberg-Sapieha, Jolanta E.

    2012-02-01

    The nanocomposite TiC/a-SiC:H/a-C:H (presented as Ti-Si-C) coatings attract considerable interest due to their possible applications such as wear protective coatings, diffusion barriers, and materials for solar cells and electrical contacts. In order to explore new film properties and open new opportunities, in the present work, we prepare a series of C-rich Ti-Si-C coatings with different Si and C concentrations using plasma enhanced chemical vapor deposition, and we systematically investigate the effect of elemental composition on the microstructure, and on the mechanical, tribological and electrochemical properties. XRD and XPS analyses demonstrate that the Ti-Si-C coatings mainly consist of nanocrystalline (nc-) TiC embedded in amorphous (a-) SiC:H and a-C:H matrices. Ti-Si-C coatings with a high Si concentration possess enhanced mechanical properties (high hardness), while those with additional C exhibit superior tribological behaviors. The increase of Si and/or C concentrations leads to a grain size refinement of the TiC nanocrystals and to an expansion of the amorphous phase. This in turn substantially enhances their corrosion resistance. Ti-Si-C coatings with the highest Si or C contents exhibit the best corrosion performance among the tested samples by improving the corrosion resistance of the SS410 substrate by a factor of ˜400.

  10. Density-dependent dynamical coexistence of excitons and free carriers in the organolead perovskite C H3N H3Pb I3

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yu; Wang, Xiangyuan; Lv, Yanping; Wang, Shufeng; Wang, Kai; Shi, Yantao; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang

    2016-10-01

    The high efficiency of perovskite solar cells benefits from the high density of photoinduced free carriers. We studied how exciton and free carriers, as the two major photoproducts, coexist inside the C H3N H3Pb I3 perovskite. A new density-resolved spectroscopic method was developed for this purpose. The density-dependent coexistence of excitons and free carriers over a wide density range was experimentally observed. The quantitative analysis on the density-resolved spectra revealed a moderate exciton binding energy of 24 ± 2 meV. The results effectively proved that the strong ionic polarization inside the perovskite has a negligible contribution to exciton formation. The spectra also efficiently uncovered the effective mass of electron-hole pairs. Our spectroscopic method and the results profoundly enrich the understanding of the photophysics in perovskite materials for photovoltaic applications.

  11. Group A Streptococcal Cysteine Protease Cleaves Epithelial Junctions and Contributes to Bacterial Translocation*

    PubMed Central

    Sumitomo, Tomoko; Nakata, Masanobu; Higashino, Miharu; Terao, Yutaka; Kawabata, Shigetada

    2013-01-01

    Group A Streptococcus (GAS) is an important human pathogen that possesses an ability to translocate across the epithelial barrier. In this study, culture supernatants of tested GAS strains showed proteolytic activity against human occludin and E-cadherin. Utilizing various types of protease inhibitors and amino acid sequence analysis, we identified SpeB (streptococcal pyrogenic exotoxin B) as the proteolytic factor that cleaves E-cadherin in the region neighboring the calcium-binding sites within the extracellular domain. The cleaving activities of culture supernatants from several GAS isolates were correlated with the amount of active SpeB, whereas culture supernatants from an speB mutant showed no such activities. Of note, the wild type strain efficiently translocated across the epithelial monolayer along with cleavage of occludin and E-cadherin, whereas deletion of the speB gene compromised those activities. Moreover, destabilization of the junctional proteins was apparently relieved in cells infected with the speB mutant, as compared with those infected with the wild type. Taken together, our findings indicate that the proteolytic efficacy of SpeB in junctional degradation allows GAS to invade deeper into tissues. PMID:23532847

  12. Foot-and-Mouth Disease Virus 3C Protease Cleaves NEMO To Impair Innate Immune Signaling

    PubMed Central

    Wang, Dang; Fang, Liurong; Li, Kui; Zhong, Huijuan; Fan, Jinxiu; Ouyang, Chao; Zhang, Huan; Duan, Erzhen; Luo, Rui; Zhang, Zhongming; Liu, Xiangtao; Chen, Huanchun

    2012-01-01

    Foot-and-mouth disease is a highly contagious viral illness of wild and domestic cloven-hoofed animals. The causative agent, foot-and-mouth disease virus (FMDV), replicates rapidly, efficiently disseminating within the infected host and being passed on to susceptible animals via direct contact or the aerosol route. To survive in the host, FMDV has evolved to block the host interferon (IFN) response. Previously, we and others demonstrated that the leader proteinase (Lpro) of FMDV is an IFN antagonist. Here, we report that another FMDV-encoded proteinase, 3Cpro, also inhibits IFN-α/β response and the expression of IFN-stimulated genes. Acting in a proteasome- and caspase-independent manner, the 3Cpro of FMDV proteolytically cleaved nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), a bridging adaptor protein essential for activating both NF-κB and interferon-regulatory factor signaling pathways. 3Cpro specifically targeted NEMO at the Gln 383 residue, cleaving off the C-terminal zinc finger domain from the protein. This cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of 3Cpro abrogated NEMO cleavage and the inhibition of IFN induction. Collectively, our data identify NEMO as a substrate for FMDV 3Cpro and reveal a novel mechanism evolved by a picornavirus to counteract innate immune signaling. PMID:22718831

  13. Gelatinase B is diabetogenic in acute and chronic pancreatitis by cleaving insulin.

    PubMed

    Descamps, Francis J; Van den Steen, Philippe E; Martens, Erik; Ballaux, Florence; Geboes, Karel; Opdenakker, Ghislain

    2003-05-01

    Genetic, endocrine, and environmental factors contribute to the development of diabetes. Much information has been gathered on the homeostasis mechanisms of glucose regulation by insulin-producing pancreatic beta cells. Here we demonstrate high expression levels of gelatinase B (matrix metalloproteinase-9, MMP-9) by neutrophils in acute pancreatitis and by ductular epithelial cells in chronic pancreatitis. Because gelatinase B processes cytokines and chemokines, we investigated whether and how gelatinase B cleaves insulin. Pure human neutrophil gelatinase B was found to destroy insulin by cleavage at 10 sites. Pancreatic islet and ductular cells are relatively spared in comparison with the complete destruction of acinar cells of the exocrine pancreas in chronic pancreatitis. High expression levels of gelatinase B are maintained in the immediate proximity of insulin-secreting beta cells. Consequently, diabetes may be worsened by enzymatic degradation of insulin by gelatinase B and by the consequent enhancement of the autoimmune process. Gelatinase B is diabetogenic in acute and chronic pancreatitis by cleaving insulin.

  14. Crystal structure of Pistol, a class of self-cleaving ribozyme.

    PubMed

    Nguyen, Laura A; Wang, Jimin; Steitz, Thomas A

    2017-01-31

    Small self-cleaving ribozymes have been discovered in all evolutionary domains of life. They can catalyze site-specific RNA cleavage, and as a result, they have relevance in gene regulation. Comparative genomic analysis has led to the discovery of a new class of small self-cleaving ribozymes named Pistol. We report the crystal structure of Pistol at 2.97-Å resolution. Our results suggest that the Pistol ribozyme self-cleavage mechanism likely uses a guanine base in the active site pocket to carry out the phosphoester transfer reaction. The guanine G40 is in close proximity to serve as the general base for activating the nucleophile by deprotonating the 2'-hydroxyl to initiate the reaction (phosphoester transfer). Furthermore, G40 can also establish hydrogen bonding interactions with the nonbridging oxygen of the scissile phosphate. The proximity of G32 to the O5' leaving group suggests that G32 may putatively serve as the general acid. The RNA structure of Pistol also contains A-minor interactions, which seem to be important to maintain its tertiary structure and compact fold. Our findings expand the repertoire of ribozyme structures and highlight the conserved evolutionary mechanism used by ribozymes for catalysis.

  15. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Eguchi, Ritsuko; Nishiyama, Saki; Izumi, Masanari; Uesugi, Eri; Goto, Hidenori; Matsushita, Tomohiro; Sugita, Kenji; Daimon, Hiroshi; Hamamoto, Yuji; Hamada, Ikutaro; Morikawa, Yoshitada; Kubozono, Yoshihiro

    2016-11-01

    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms.

  16. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored-product pests.

    PubMed

    Goptar, I A; Semashko, T A; Danilenko, S A; Lysogorskaya, E N; Oksenoit, E S; Zhuzhikov, D P; Belozersky, M A; Dunaevsky, Y E; Oppert, B; Filippova, I Yu; Elpidina, E N

    2012-02-01

    The major storage proteins in cereals, prolamins, have an abundance of the amino acids glutamine and proline. Storage pests need specific digestive enzymes to efficiently hydrolyze these storage proteins. Therefore, post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored-product pest, Tenebrio molitor (yellow mealworm). Three distinct PGP activities were found in the anterior and posterior midgut using the highly-specific chromogenic peptide substrate N-benzyloxycarbonyl-L-Ala-L-Ala-L-Gln p-nitroanilide. PGP peptidases were characterized according to gel elution times, activity profiles in buffers of different pH, electrophoretic mobility under native conditions, and inhibitor sensitivity. The results indicate that PGP activity is due to cysteine and not serine chymotrypsin-like peptidases from the T. molitor larvae midgut. We propose that the evolutionary conservation of cysteine peptidases in the complement of digestive peptidases of tenebrionid stored-product beetles is due not only to the adaptation of insects to plants rich in serine peptidase inhibitors, but also to accommodate the need to efficiently cleave major dietary proteins rich in glutamine.

  17. Specialization of the DNA-Cleaving Activity of a Group I Ribozyme Through In Vitro Evolution

    NASA Technical Reports Server (NTRS)

    Tsang, Joyce; Joyce, Gerald F.

    1996-01-01

    In an earlier study, an in vitro evolution procedure was applied to a large population of variants of the Tetrahymena group 1 ribozyme to obtain individuals with a 10(exp 5)-fold improved ability to cleave a target single-stranded DNA substrate under simulated physiological conditions. The evolved ribozymes also showed a twofold improvement, compared to the wild-type, in their ability to cleave a single-stranded RNA substrate. Here, we report continuation of the in vitro evolution process using a new selection strategy to achieve both enhanced DNA and diminished RNA-cleavage activity. Our strategy combines a positive selection for DNA cleavage with a negative selection against RNA binding. After 36 "generations" of in vitro evolution, the evolved population showed an approx. 100-fold increase in the ratio of DNA to RNA-cleavage activity. Site-directed mutagenesis experiment confirmed the selective advantage of two covarying mutations within the catalytic core of ribozyme that are largely responsible for this modified behavior. The population of ribozymes has now undergone a total of 63 successive generations of evolution, resulting in an average 28 mutations relative to the wild-type that are responsible for the altered phenotype.

  18. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences

    PubMed Central

    Smith, Julianne; Grizot, Sylvestre; Arnould, Sylvain; Duclert, Aymeric; Epinat, Jean-Charles; Chames, Patrick; Prieto, Jesús; Redondo, Pilar; Blanco, Francisco J.; Bravo, Jerónimo; Montoya, Guillermo; Pâques, Frédéric; Duchateau, Philippe

    2006-01-01

    Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities. PMID:17130168

  19. Precision UV laser scribing for cleaving mirror facets of GaN-based laser diodes

    NASA Astrophysics Data System (ADS)

    Krüger, O.; Kang, J.-H.; Spevak, M.; Zeimer, U.; Einfeldt, S.

    2016-04-01

    Laser scribing with a nanosecond-pulsed UV laser operating at 355 nm was used to create precise perforation for die separation of GaN-based laser diodes. Machining depth of single- and multiple-pass scribing was investigated. For pulse energies between 1 and 45 µJ at a pulse repetition frequency of 20 kHz and single scan at 100 mm/min, scribe depths from 15 to 180 µm were obtained. Processing parameters were adjusted to minimize the formation of microcracks due to laser-induced local heating. By using the laser skip-and-scribe technique, the propagation of the cleavage plane could be controlled, irregular breaking could be minimized, and die yield could be improved. Smooth mirror facets with low density of terraces were formed by cleaving. In the vicinity of the laser-treated zone, no detrimental effects on the crystal quality of the multi-quantum wells could be detected by cathodoluminescence. The electro-optical characteristics of broad-area laser diodes fabricated by the laser-assisted process were similar to the ones fabricated using the conventional diamond-tip edge-scribing technique that suffers from low die yield. Our results demonstrate that nanosecond-pulsed UV laser scribing followed by cleaving is a powerful technique for the formation of mirror facets of GaN-based laser diodes.

  20. Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    PubMed Central

    Matsui, Fumihiko; Eguchi, Ritsuko; Nishiyama, Saki; Izumi, Masanari; Uesugi, Eri; Goto, Hidenori; Matsushita, Tomohiro; Sugita, Kenji; Daimon, Hiroshi; Hamamoto, Yuji; Hamada, Ikutaro; Morikawa, Yoshitada; Kubozono, Yoshihiro

    2016-01-01

    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms. PMID:27811975

  1. The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling.

    PubMed

    Douanne, Tiphaine; Gavard, Julie; Bidère, Nicolas

    2016-05-01

    Antigen-receptor-mediated activation of lymphocytes relies on a signalosome comprising CARMA1 (also known as CARD11), BCL10 and MALT1 (the CBM complex). The CBM activates nuclear factor κB (NF-κB) transcription factors by recruiting the 'linear ubiquitin assembly complex' (LUBAC), and unleashes MALT1 paracaspase activity. Although MALT1 enzyme shapes NF-κB signaling, lymphocyte activation and contributes to lymphoma growth, the identity of its substrates continues to be elucidated. Here, we report that the LUBAC subunit HOIL1 (also known as RBCK1) is cleaved by MALT1 following antigen receptor engagement. HOIL1 is also constitutively processed in the 'activated B-cell-like' (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), which exhibits aberrant MALT1 activity. We further show that the overexpression of MALT1-insensitive HOIL1 mitigates T-cell-receptor-mediated NF-κB activation and subsequent cytokine production in lymphocytes. Thus, our results unveil HOIL1 as a negative regulator of lymphocyte activation cleaved by MALT1. This cleavage could therefore constitute an appealing therapeutic target for modulating immune responses.

  2. Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli.

    PubMed

    Luan, Chao; Xie, Yong Gang; Pu, Yu Tian; Zhang, Hai Wen; Han, Fei Fei; Feng, Jie; Wang, Yi Zhen

    2014-03-01

    Antimicrobial peptides (AMPs) are part of the innate immune system of complex multicellular organisms. Despite the fact that AMPs show great potential as a novel class of antibiotics, the lack of a cost-effective means for their mass production limits both basic research and clinical use. In this work, we describe a novel expression system for the production of antimicrobial peptides in Escherichia coli by combining ΔI-CM mini-intein with the self-assembling amphipathic peptide 18A to drive the formation of active aggregates. Two AMPs, human β-defensin 2 and LL-37, were fused to the self-cleaving tag and expressed as active protein aggregates. The active aggregates were recovered by centrifugation and the intact antimicrobial peptides were released into solution by an intein-mediated cleavage reaction in cleaving buffer (phosphate-buffered saline supplemented with 40 mmol/L Bis-Tris, 2 mmol/L EDTA, pH 6.2). The peptides were further purified by cation-exchange chromatography. Peptides yields of 0.82 ± 0.24 and 0.59 ± 0.11 mg/L were achieved for human β-defensin 2 and LL-37, respectively, with demonstrated antimicrobial activity. Using our expression system, intact antimicrobial peptides were recovered by simple centrifugation from active protein aggregates after the intein-mediated cleavage reaction. Thus, we provide an economical and efficient way to produce intact antimicrobial peptides in E. coli.

  3. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation

    PubMed Central

    Winther, Kristoffer; Tree, Jai J.; Tollervey, David; Gerdes, Kenn

    2016-01-01

    The major human pathogen Mycobacterium tuberculosis can survive in the host organism for decades without causing symptoms. A large cohort of Toxin–Antitoxin (TA) modules contribute to this persistence. Of these, 48 TA modules belong to the vapBC (virulence associated protein) gene family. VapC toxins are PIN domain endonucleases that, in enterobacteria, inhibit translation by site-specific cleavage of initiator tRNA. In contrast, VapC20 of M. tuberculosis inhibits translation by site-specific cleavage of the universally conserved Sarcin-Ricin loop (SRL) in 23S rRNA. Here we identify the cellular targets of 12 VapCs from M. tuberculosis by applying UV-crosslinking and deep sequencing. Remarkably, these VapCs are all endoribonucleases that cleave RNAs essential for decoding at the ribosomal A-site. Eleven VapCs cleave specific tRNAs while one exhibits SRL cleavage activity. These findings suggest that multiple vapBC modules contribute to the survival of M. tuberculosis in its human host by reducing the level of translation. PMID:27599842

  4. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain

    PubMed Central

    Zornetta, Irene; Azarnia Tehran, Domenico; Arrigoni, Giorgio; Anniballi, Fabrizio; Bano, Luca; Leka, Oneda; Zanotti, Giuseppe; Binz, Thomas; Montecucco, Cesare

    2016-01-01

    The genome of Weissella oryzae SG25T was recently sequenced and a botulinum neurotoxin (BoNT) like gene was identified by bioinformatics methods. The typical three-domains organization of BoNTs with a N-terminal metalloprotease domain, a translocation and a cell binding domains could be identified. The BoNT family of neurotoxins is rapidly growing, but this was the first indication of the possible expression of a BoNT toxin outside the Clostridium genus. We performed molecular modeling and dynamics simulations showing that the 50 kDa N-terminal domain folds very similarly to the metalloprotease domain of BoNT/B, whilst the binding part is different. However, neither the recombinant metalloprotease nor the binding domains showed cross-reactivity with the standard antisera that define the seven serotypes of BoNTs. We found that the purified Weissella metalloprotease cleaves VAMP at a single site untouched by the other VAMP-specific BoNTs. This site is a unique Trp-Trp peptide bond located within the juxtamembrane segment of VAMP which is essential for neurotransmitter release. Therefore, the present study identifies the first non-Clostridial BoNT-like metalloprotease that cleaves VAMP at a novel and relevant site and we propose to label it BoNT/Wo. PMID:27443638

  5. Botulinum protease-cleaved SNARE fragments induce cytotoxicity in neuroblastoma cells

    PubMed Central

    Arsenault, Jason; Cuijpers, Sabine A G; Ferrari, Enrico; Niranjan, Dhevahi; Rust, Aleksander; Leese, Charlotte; O'Brien, John A; Binz, Thomas; Davletov, Bazbek

    2014-01-01

    Soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) are crucial for exocytosis, trafficking, and neurite outgrowth, where vesicular SNAREs are directed toward their partner target SNAREs: synaptosomal-associated protein of 25 kDa and syntaxin. SNARE proteins are normally membrane bound, but can be cleaved and released by botulinum neurotoxins. We found that botulinum proteases types C and D can easily be transduced into endocrine cells using DNA-transfection reagents. Following administration of the C and D proteases into normally refractory Neuro2A neuroblastoma cells, the SNARE proteins were cleaved with high efficiency within hours. Remarkably, botulinum protease exposures led to cytotoxicity evidenced by spectrophotometric assays and propidium iodide penetration into the nuclei. Direct delivery of SNARE fragments into the neuroblastoma cells reduced viability similar to botulinum proteases' application. We observed synergistic cytotoxic effects of the botulinum proteases, which may be explained by the release and interaction of soluble SNARE fragments. We show for the first time that previously observed cytotoxicity of botulinum neurotoxins/C in neurons could be achieved in cells of neuroendocrine origin with implications for medical uses of botulinum preparations. PMID:24372287

  6. Cleaved DNAzyme substrate induced enzymatic cascade for the exponential amplified analysis of L-histidine.

    PubMed

    He, Jing-Lin; Wu, Ping; Zhu, Shuang-Li; Li, Ting; Li, Pan-Pan; Xiang, Jian-Nan; Cao, Zhong

    2015-01-01

    A novel strategy of cleaved DNAzyme substrate induced enzymatic cascade has been devised for the exponential amplified detection of L-histidine. The enzyme strand carries out hydrolytic cleavage of the substrate strand in the presence of L-histidine. The cleaved DNAzyme substrates introduce the polymerase/endonuclease reaction cycles as primers. The L-histidine acts as the activator for enzymatic cascade amplification generating a distinguishable fluorescence enhancement. A good nonlinear correlation (R=0.9994) between fluorescence intensity and the logarithm of the L-histidine concentration is obtained over the range from 50 nM to 1.0 mM. The detection limit was estimated as 30 nM. This efficient amplification of the fluorescence signal is attributed to the L-histidine induced cooperation of Klenow Fragment polymerase (exo(-)) and Nb.BbvCI endonuclease reaction. The activation of such enzymatic cascades through analyte-DNAzyme interactions has a substantial impact on the development of exponential amplified DNAzyme sensors.

  7. Axonal Cleaved Caspase-3 Regulates Axon Targeting and Morphogenesis in the Developing Auditory Brainstem

    PubMed Central

    Rotschafer, Sarah E.; Allen-Sharpley, Michelle R.; Cramer, Karina S.

    2016-01-01

    Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6–13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. The expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM), then later in NM axons projecting to nucleus laminaris (NL), and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets. PMID:27822180

  8. CORTICAL CYTOPLASMIC FILAMENTS OF CLEAVING EGGS: A STRUCTURAL ELEMENT CORRESPONDING TO THE CONTRACTILE RING

    PubMed Central

    Szollosi, Daniel

    1970-01-01

    A sheath consisting of filaments 50–70 A in diameter has been demonstrated in association with the expanded, leading margins of the cleavage furrow in unilaterally and symmetrically cleaving eggs of a jellyfish and a polychaete worm, respectively. The observations suggest that the filament system might provide a structural basis for the existence of the contractile gel that, according to a hypothesis by Marsland and Landau, accomplishes cleavage. The filamentous sheath is present only in the furrow region and is arranged in an arcuate manner in unilaterally cleaving eggs and circumferentially in symmetrical cleavage. The filaments appear to be of finite length, and a number of them must overlap to span the length of the furrow. Contraction may be accomplished if the filaments slide relative to each other. However, contraction per se was experimentally not demonstrated in the studied systems. The disappearance of microvilli and the merocrine type secretion of mucoid droplets at the interdigitating or "spinning" membrane region of unilateral cleavage suggest that the unfolding of a pleated membrane and the insertion of intracytoplasmic membranes might contribute, at least in part, to the necessary extra cell membrane. PMID:4390970

  9. Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase.

    PubMed

    McAndrew, Ryan P; Sathitsuksanoh, Noppadon; Mbughuni, Michael M; Heins, Richard A; Pereira, Jose H; George, Anthe; Sale, Kenneth L; Fox, Brian G; Simmons, Blake A; Adams, Paul D

    2016-12-13

    Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes. Here, we report the structure of an SCO. The X-ray structure of NOV1 from Novosphingobium aromaticivorans was determined in complex with its substrate resveratrol (1.89 Å), its product vanillin (1.75 Å), and without any bound ligand (1.61 Å). The enzyme is a seven-bladed β-propeller with an iron cofactor coordinated by four histidines. In all three structures, dioxygen is observed bound to the iron in a side-on fashion. These structures, along with EPR analysis, allow us to propose a mechanism in which a ferric-superoxide reacts with substrate activated by deprotonation of a phenol group at position 4 of the substrate, which allows movement of electron density toward the central double bond and thus facilitates reaction with the ferric superoxide electrophile. Correspondingly, NOV1 cleaves a wide range of other stilbene-like compounds with a 4'-OH group, offering potential in processing some solubilized fragments of lignin into monomer aromatic compounds.

  10. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    SciTech Connect

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has

  11. Cationic Pd(II)-catalyzed C-H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies.

    PubMed

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin; Lipshutz, Bruce H

    2016-01-01

    Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C-H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C-H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C-H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C-H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  12. Mechanism and Site Selectivity in Visible-Light Photocatalyzed C-H Functionalization: Insights from DFT Calculations.

    PubMed

    Demissie, Taye B; Hansen, Jørn H

    2016-08-19

    Visible-light photocatalyzed (VLPC) late-stage C-H functionalization is a powerful addition to the chemical synthesis toolkit. VLPC has a demonstrated potential for discovery of elusive and valuable transformations, particularly in functionalization of bioactive heterocycles. In order to fully harvest the potential of VLPC in the context of complex molecule synthesis, a thorough understanding of the elementary processes involved is crucial. This would enable more rational design of suitable reagents and catalysts, as well as prediction of activated C-H sites for functionalization. Such knowledge is essential when VLPC is to be employed in retrosynthetic analysis of complex molecules. Herein, we present a density functional theory (DFT) study of mechanistic details in the C-H functionalization of bioactive heterocycles exemplified by the methylation of the antifungal agent voriconazole. Moreover, we show that readily computed atomic charges can predict major site-selectivity in good agreement with experimental studies and thus be informative tools for the identification of active C-H functionalization sites in synthetic planning.

  13. Synthesis of Acyl Terphenyls and Higher Polyaromatics via Base-Promoted C-H Functionalization of Acetylarenes with Arylacetylenes.

    PubMed

    Schmidt, Elena Yu; Ivanova, Elena V; Tatarinova, Inna V; Ushakov, Igor' A; Semenova, Nadezhda V; Vashchenko, Alexander V; Trofimov, Boris A

    2016-05-06

    KO(t)Bu/DMSO-promoted C-H functionalization of acetylarenes with arylacetylenes (100 °C, 30 min), generating β,γ-ethylenic ketones, triggers upon further heating (100 °C, 4 h, with or without acidifying additive) the cascade assembly of acyl terphenyls and higher polyaromatics in good yields.

  14. Utilization of amorphous silicon carbide (a-Si:C:H) as a resistive layer in gas microstrip detectors

    SciTech Connect

    Hong, W.S.; Cho, H.S.; Perez-Mendez, V.; Gong, W.G.

    1995-04-01

    Thin semiconducting films of hydrogenated amorphous silicon (a-Si:H) and its carbon alloy (a-Si:C:H) were applied to gas microstrip detectors in order to control gain instabilities due to charges on the substrate. Thin ({approximately}100nm) layers of a-Si:H or p-doped a-Si:C:H were placed either over or under the electrodes using the plasma enhanced chemical vapor deposition (PECVD) technique to provide the substrate with a suitable surface conductivity. By changing the carbon content and boron doping density, the sheet resistance of the a-Si:C:H coating could be successfully controlled in the range of 10{sup 12} {approximately} 10{sup 17} {Omega}/{four_gradient}, and the light sensitivity, which causes the resistivity to vary with ambient light conditions, was minimized. An avalanche gain of 5000 and energy resolution of 20% FWHM were achieved and the gain remained constant over a week of operation. A-Si:C:H film is an attractive alternative to ion-implanted or semiconducting glass due to the wide range of resistivities possible and the feasibility of making deposits over a large area at low cost.

  15. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  16. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    SciTech Connect

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  17. Metal-free oxidative hydroxyalkylarylation of activated alkenes by direct sp3 C-H functionalization of alcohols.

    PubMed

    Meng, Yuan; Guo, Li-Na; Wang, Hua; Duan, Xin-Hua

    2013-09-04

    A metal-free tandem radical addition/cyclization reaction of activated alkenes and alcohols has been developed. The process provides an efficient and atom economical access to various valuable hydroxyl-containing oxindoles through the direct sp(3) C-H functionalization of alcohols.

  18. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp(3) C-H bonds.

    PubMed

    Chu, John C K; Rovis, Tomislav

    2016-11-10

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp(3) C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  19. Direct access to pyrazolo(benzo)thienoquinolines. Highly effective palladium catalysts for the intramolecular C-H heteroarylation of arenes.

    PubMed

    Churruca, Fátima; Hernández, Susana; Perea, María; SanMartin, Raul; Domínguez, Esther

    2013-02-18

    A short and atom-efficient strategy to obtain a series of pyrazolo(benzo)thienoquinolines is developed. Alternative catalytic systems for the key intramolecular direct heteroarylation of arenes are presented and include the first example of C-H (hetero)arylation of (hetero)arenes catalyzed by very low catalyst loadings of a palladium source.

  20. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method.

  1. Activation of Propane C-H and C-C Bonds by Gas-Phase Pt Atom: A Theoretical Study

    PubMed Central

    Li, Fang-Ming; Yang, Hua-Qing; Ju, Ting-Yong; Li, Xiang-Yuan; Hu, Chang-Wei

    2012-01-01

    The reaction mechanism of the gas-phase Pt atom with C3H8 has been systematically investigated on the singlet and triplet potential energy surfaces at CCSD(T)//BPW91/6-311++G(d, p), Lanl2dz level. Pt atom prefers the attack of primary over secondary C-H bonds in propane. For the Pt + C3H8 reaction, the major and minor reaction channels lead to PtC3H6 + H2 and PtCH2 + C2H6, respectively, whereas the possibility to form products PtC2H4 + CH4 is so small that it can be neglected. The minimal energy reaction pathway for the formation of PtC3H6 + H2, involving one spin inversion, prefers to start at the triplet state and afterward proceed along the singlet state. The optimal C-C bond cleavages are assigned to C-H bond activation as the first step, followed by cleavage of a C-C bond. The C-H insertion intermediates are kinetically favored over the C-C insertion intermediates. From C-C to C-H oxidative insertion, the lowering of activation barrier is mainly caused by the more stabilizing transition state interaction ΔE≠int, which is the actual interaction energy between the deformed reactants in the transition state. PMID:22942766

  2. Rhodium-Catalyzed β-Selective Oxidative Heck-Type Coupling of Vinyl Acetate via C-H Activation.

    PubMed

    Zhang, Hui-Jun; Lin, Weidong; Su, Feng; Wen, Ting-Bin

    2016-12-16

    An efficient Rh(III)-catalyzed direct ortho-C-H olefination of acetanilides with vinyl acetate was developed. This protocol provides a straightforward pathway to a series of (E)-2-acetamidostyryl acetates, giving access to indole derivatives following a simple hydrolysis/cyclization process.

  3. Rhodium(III)-catalyzed C-H activation/annulation with vinyl esters as an acetylene equivalent.

    PubMed

    Webb, Nicola J; Marsden, Stephen P; Raw, Steven A

    2014-09-19

    The behavior of electron-rich alkenes in rhodium-catalyzed C-H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed.

  4. Enantioselective C-H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes.

    PubMed

    Song, Guoyong; O, Wylie W N; Hou, Zhaomin

    2014-09-03

    Cationic half-sandwich scandium alkyl complexes bearing monocyclopentadienyl ligands embedded in chiral binaphthyl backbones act as excellent catalysts for the enantioselective C-H bond addition of pyridines to various 1-alkenes, leading to formation of a variety of enantioenriched alkylated pyridine derivatives in high yields and excellent enantioselectivity (up to 98:2 er).

  5. Fujiwara-Moritani Reaction of Weinreb Amides using a Ruthenium-Catalyzed C-H Functionalization Reaction.

    PubMed

    Das, Riki; Kapur, Manmohan

    2015-07-01

    The ruthenium-catalyzed Fujiwara-Moritani reaction (oxidative-Heck reaction) of Weinreb amides is reported herein. The reaction affords exclusively ortho-C-H olefination products, has excellent substrate scope and tolerates halogen functionalities, which increase the synthetic utility of the method. A variety of activated olefins as well as styrenes can be employed as coupling partners.

  6. Palladium-Catalyzed Enantioselective C-H Activation of Aliphatic Amines Using Chiral Anionic BINOL-Phosphoric Acid Ligands.

    PubMed

    Smalley, Adam P; Cuthbertson, James D; Gaunt, Matthew J

    2017-02-01

    The design of an enantioselective Pd(II)-catalyzed C-H amination reaction is described. The use of a chiral BINOL phosphoric acid ligand enables the conversion of readily available amines into synthetically valuable aziridines in high enantiomeric ratios. The aziridines can be derivatized to afford a range of chiral amine building blocks incorporating motifs readily encountered in pharmaceutically relevant molecules.

  7. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules

    NASA Astrophysics Data System (ADS)

    Wencel-Delord, Joanna; Glorius, Frank

    2013-05-01

    The beginning of the twenty-first century has witnessed significant advances in the field of C-H bond activation, and this transformation is now an established piece in the synthetic chemists' toolbox. This methodology has the potential to be used in many different areas of chemistry, for example it provides a perfect opportunity for the late-stage diversification of various kinds of organic scaffolds, ranging from relatively small molecules like drug candidates, to complex polydisperse organic compounds such as polymers. In this way, C-H activation approaches enable relatively straightforward access to a plethora of analogues or can help to streamline the lead-optimization phase. Furthermore, synthetic pathways for the construction of complex organic materials can now be designed that are more atom- and step-economical than previous methods and, in some cases, can be based on synthetic disconnections that are just not possible without C-H activation. This Perspective highlights the potential of metal-catalysed C-H bond activation reactions, which now extend beyond the field of traditional synthetic organic chemistry.

  8. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.

    PubMed

    Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing

    2014-04-07

    Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).

  9. Hydrogen vibrational modes on graphene and relaxation of the C-H stretch excitation from first-principles calculations.

    PubMed

    Sakong, Sung; Kratzer, Peter

    2010-08-07

    Density functional theory (DFT) calculations are used to determine the vibrational modes of hydrogen adsorbed on graphene in the low-coverage limit. Both the calculated adsorption energy of a H atom of 0.8 eV and calculated C-H stretch vibrational frequency of 2552 cm(-1) are unusually low for hydrocarbons, but in agreement with data from electron energy loss spectroscopy on hydrogenated graphite. The clustering of two adsorbed H atoms observed in scanning tunneling microscopy images shows its fingerprint also in our calculated spectra. The energetically preferred adsorption on different sublattices correlates with a blueshift of the C-H stretch vibrational modes in H adatom clusters. The C-H bending modes are calculated to be in the 1100 cm(-1) range, resonant with the graphene phonons. Moreover, we use our previously developed methods to calculate the relaxation of the C-H stretch mode via vibration-phonon interaction, using the Born-Oppenheimer surface for all local modes as obtained from the DFT calculations. The total decay rate of the H stretch into other H vibrations, thereby creating or annihilating one graphene phonon, is determined from Fermi's golden rule. Our calculations using the matrix elements derived from DFT calculations show that the lifetime of the H stretch mode on graphene is only several picoseconds, much shorter than on other semiconductor surfaces such as Ge(001) and Si(001).

  10. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Chu, John C. K.; Rovis, Tomislav

    2016-11-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  11. Anisotropic surface properties of micro/nanostructured a-C:H:F thin films with self-assembly applications

    NASA Astrophysics Data System (ADS)

    Freire, V.-M.; Corbella, C.; Bertran, E.; Portal-Marco, S.; Rubio-Roy, M.; Andújar, J.-L.

    2012-06-01

    The singular properties of hydrogenated amorphous carbon (a-C:H) thin films deposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithography patterns (in-plane anisotropy). Finally, self-assembly properties were tested with silica nanoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.

  12. Synthesis of ferrocene derivatives with planar chirality via palladium-catalyzed enantioselective C-H bond activation.

    PubMed

    Pi, Chao; Cui, Xiuling; Liu, Xiuyan; Guo, Mengxing; Zhang, Hanyu; Wu, Yangjie

    2014-10-03

    The first catalytic and enantioselective C-H direct acylation of ferrocene derivatives has been developed. A series of 2-acyl-1-dimethylaminomethylferrocenes with planar chirality were provided under highly efficient and concise one-pot conditions with up to 85% yield and 98% ee. The products obtained could be easily converted to various chiral ligands via diverse transformations.

  13. Enantioselective synthesis of planar chiral ferrocenes via Pd(0)-catalyzed intramolecular direct C-H bond arylation.

    PubMed

    Gao, De-Wei; Yin, Qin; Gu, Qing; You, Shu-Li

    2014-04-02

    A highly efficient synthesis of planar chiral ferrocenes by enantioselective Pd(0)-catalyzed direct C-H arylation from readily available starting materials under mild reaction conditions was developed (up to 99% yield, 99% ee). The products can be easily transformed to the highly efficient planar ferrocene ligands, which have demonstrated high efficiency in Pd-catalyzed asymmetric allylic alkylation and amination reactions.

  14. Ruthenium-catalyzed heteroatom-directed regioselective C-H arylation of indoles using a removable tether.

    PubMed

    Tiwari, Virendra Kumar; Kamal, Neha; Kapur, Manmohan

    2015-04-03

    A new approach to C-2 arylated indoles has been developed by utilizing a ruthenium-catalyzed, heteroatom-directed regioselective C-H arylation. The reaction is highly site-selective and results in very good yields. The highlight of the work is the use of a removable directing group and compatibility of the catalytic system with halogen functional groups in the substrates.

  15. Synthesis of spiro-oxoindoles through Pd-catalyzed remote C-H alkylation using α-diazocarbonyl compounds.

    PubMed

    Pérez-Gómez, Marta; Hernández-Ponte, Sergio; Bautista, Delia; García-López, José-Antonio

    2017-03-02

    In this communication we describe a new route to spiro-oxoindole derivatives through a novel Pd-catalyzed cascade process. This reaction is based on the remote C-H activation performed by σ-alkyl Pd(ii) species generated in situ via intramolecular carbopalladation of alkenes, followed by insertion of a carbenoid coupling partner.

  16. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  17. Iridium-catalyzed C-H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism.

    PubMed

    Larsen, Matthew A; Hartwig, John F

    2014-03-19

    A study on the iridium-catalyzed C-H borylation of heteroarenes is reported. Several heteroarenes containing multiple heteroatoms were found to be amenable to C-H borylation catalyzed by the combination of an iridium(I) precursor and tetramethylphenanthroline. The investigations of the scope of the reaction led to the development of powerful rules for predicting the regioselectivity of borylation, foremost of which is that borylation occurs distal to nitrogen atoms. One-pot functionalizations are reported of the heteroaryl boronate esters formed in situ, demonstrating the usefulness of the reported methodology for the synthesis of complex heteroaryl structures. Application of this methodology to the synthesis and late-stage functionalization of biologically active compounds is also demonstrated. Mechanistic studies show that basic heteroarenes can bind to the catalyst and alter the resting state from the olefin-bound complex observed during arene borylation to a species containing a bound heteroarene, leading to catalyst deactivation. Studies on the origins of the observed regioselectivity show that borylation occurs distal to N-H bonds due to rapid N-H borylation, creating an unfavorable steric environment for borylation adjacent to these bonds. Computational studies and mechanistic studies show that the lack of observable borylation of C-H bonds adjacent to basic nitrogen is not the result of coordination to a bulky Lewis acid prior to C-H activation, but the combination of a higher-energy pathway for the borylation of these bonds relative to other C-H bonds and the instability of the products formed from borylation adjacent to basic nitrogen.

  18. The HCClF_2-HCCH Complex: Microwave Spectrum, Structure and C-H\\cdotsπ Interactions

    NASA Astrophysics Data System (ADS)

    Peebles, Rebecca A.; Sexton, John M.; Elliott, Ashley A.; Steber, Amanda L.; Peebles, Sean A.; Neill, Justin L.; Muckle, Matt T.; Pate, Brooks H.

    2010-06-01

    The HCF_3-HCCH complex was recently found to have a weak C-H\\cdotsπ interaction between the fluoroform and acetylene, as well as having a secondary interaction between the fluorine atoms and one of the acetylene hydrogen atoms; however, extensive splittings due to large amplitude motions within the complex have complicated our efforts at making a full assignment of the HCF_3-HCCH spectrum. In an attempt to remove some of the ambiguity in the HCF_3-HCCH study, we have substituted a chlorine atom for one fluorine atom and undertaken an investigation of the HCClF_2-HCCH complex. This eliminates the possibility of internal rotation of the methane subunit, while still maintaining a C-H\\cdotsπ interaction. Using the chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer at the University of Virginia and the Balle-Flygare FTMW spectrometer at Eastern Illinois University, the spectra of four isotopologues of HCClF_2-HCCH have been assigned, with no indication of internal motions within the complex. The structure has been determined from the experimental moments of inertia, confirming that this dimer has the expected weak C-H\\cdotsπ interaction. In addition, the off-diagonal χab quadrupole coupling constant has been used to determine the angle between the C-Cl bond and the a-axis of the complex. This, and Kraitchman coordinates for the chlorine atom, help confirm the structural details from the inertial fit. The structural results will be compared with other complexes showing C-H\\cdotsπ and C-H\\cdotsO interactions. S. A. Peebles, M. M. Serafin, R. A. Peebles, 61st International Symposium on Molecular Spectroscopy, Talk MH13, June 19, 2006.

  19. Origin of superlubricity in a-C:H:Si films: a relation to film bonding structure and environmental molecular characteristic.

    PubMed

    Chen, Xinchun; Kato, Takahisa; Nosaka, Masataka

    2014-08-27

    Superlubricity of Si-containing hydrogenated amorphous carbon (a-C:H:Si) films has been systematically investigated in relation to the film bonding structure and the environmental atmosphere. Structural diversity induced by hydrogen incorporation (i.e., 17.3-36.7 at. % H), namely sp(2)-bonded a-C, diamond-like or polymer-like, and tribointeractions activated by the participation of environmental gaseous molecules mainly determine the frictional behaviors of a-C:H:Si films. A suitable control of hydrogen content in the film (i.e., the inherent hydrogen coverage) is obligate to obtain durable superlubricity in a distinct gaseous atmosphere such as dry N2, reactive H2 or humid air. Rapid buildup of running-in-induced antifriction tribolayers at the contact interface, which is more feasible in self-mated sliding, is crucial for achieving a superlubric state. Superior tribological performances have been observed for the polymer-like a-C:H:Si (31.9 at. % H) film, as this hydrogen-rich sample can exhibit superlow friction in various atmospheres including dry inert N2 (μ ∼ 0.001), Ar (μ ∼ 0.012), reactive H2 (μ ∼ 0.003) and humid air (μ ∼ 0.004), and can maintain ultralow friction in corrosive O2 (μ ∼ 0.084). Hydrogen is highlighted for its decisive role in obtaining superlow friction. The occurrence of superlubricity in a-C:H:Si films is generally attributed to a synergistic effect of phase transformation, surface passivation and shear localization, for instance, the near-frictionless state occurred in dry N2. The contribution of each mechanism to the friction reduction depends on the specific intrafilm and interfilm interactions along with the atmospheric effects. These antifriction a-C:H:Si films are promising for industrial applications as lubricants.

  20. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes.

    PubMed

    Neelakantan, M A; Rusalraj, F; Dharmaraja, J; Johnsonraja, S; Jeyakumar, T; Sankaranarayana Pillai, M

    2008-12-15

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) l-alanine (ala), l-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N(2)O(2) donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, (1)H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300K and in frozen DMSO (77K) indicate the presence of the unpaired electron in the dx2-y2 orbital. The evaluated metal-ligand bonding parameters showed strong in-plane sigma- and pi-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  1. The Ether-Cleaving Methyltransferase System of the Strict Anaerobe Acetobacterium dehalogenans: Analysis and Expression of the Encoding Genes▿

    PubMed Central

    Schilhabel, Anke; Studenik, Sandra; Vödisch, Martin; Kreher, Sandra; Schlott, Bernhard; Pierik, Antonio Y.; Diekert, Gabriele

    2009-01-01

    Anaerobic O-demethylases are inducible multicomponent enzymes which mediate the cleavage of the ether bond of phenyl methyl ethers and the transfer of the methyl group to tetrahydrofolate. The genes of all components (methyltransferases I and II, CP, and activating enzyme [AE]) of the vanillate- and veratrol-O-demethylases of Acetobacterium dehalogenans were sequenced and analyzed. In A. dehalogenans, the genes for methyltransferase I, CP, and methyltransferase II of both O-demethylases are clustered. The single-copy gene for AE is not included in the O-demethylase gene clusters. It was found that AE grouped with COG3894 proteins, the function of which was unknown so far. Genes encoding COG3894 proteins with 20 to 41% amino acid sequence identity with AE are present in numerous genomes of anaerobic microorganisms. Inspection of the domain structure and genetic context of these orthologs predicts that these are also reductive activases for corrinoid enzymes (RACEs), such as carbon monoxide dehydrogenase/acetyl coenzyme A synthases or anaerobic methyltransferases. The genes encoding the O-demethylase components were heterologously expressed with a C-terminal Strep-tag in Escherichia coli, and the recombinant proteins methyltransferase I, CP, and AE were characterized. Gel shift experiments showed that the AE comigrated with the CP. The formation of other protein complexes with the O-demethylase components was not observed under the conditions used. The results point to a strong interaction of the AE with the CP. This is the first report on the functional heterologous expression of acetogenic phenyl methyl ether-cleaving O-demethylases. PMID:19011025

  2. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.

    2008-12-01

    Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.

  3. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells

    PubMed Central

    Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe

    2014-01-01

    Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-3395–270, IL-33107–270, and IL-33109–270, were 30-fold more potent than full-length human IL-331–270 for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33–dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66–111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33–mediated responses in allergic asthma and other inflammatory diseases. PMID:25313073

  4. Immunoexpression of cleaved caspase-3 shows lower apoptotic area indices in lip carcinomas than in intraoral cancer

    PubMed Central

    LEITE, Ana Flávia Schueler de Assumpção; BERNARDO, Vagner Gonçalves; BUEXM, Luisa Aguirre; da FONSECA, Eliene Carvalho; da SILVA, Licínio Esmeraldo; BARROSO, Danielle Resende Camisasca; LOURENÇO, Simone de Queiroz Chaves

    2016-01-01

    ABSTRACT Objective This study aimed to evaluate apoptosis by assessing cleaved caspase-3 immunoexpression in hyperplastic, potentially malignant disorder (PMD), and malignant tumors in intraoral and lower lip sites. Material and Methods A retrospective study using paraffin blocks with tissues from patients with inflammatory fibrous hyperplasia (IFH), actinic cheilitis, oral leukoplakia, lower lip and intraoral squamous cell carcinoma (SCC) was performed. The tissues were evaluated by immunohistochemical analysis with anti-cleaved caspase-3 antibody. Apoptotic area index was then correlated with lesion type. Results From 120 lesions assessed, 55 (46%) were cleaved caspase-3-positive. The SCC samples (n=40) had the highest apoptotic area indices (n=35; 87.5%). Significant differences were detected between SCCs and PMDs (p=0.0003), as well as SCCs and IFHs (p=0.001), regarding caspase-3 immunopositivity. Carcinomas of the lower lip had lower apoptotic area indices than intraoral cancer (p=0.0015). Conclusions Cleaved caspase-3 immunoexpression showed differences in oral SCCs and PMDs and demonstrated a distinct role of apoptosis in carcinogenesis of intraoral and lower lip cancer. In future, the expression of cleaved caspase-3 with other target molecules in oral cancer may be helpful in delineating the prognosis and treatment of these tumors. PMID:27556207

  5. A two-electron shell game: Intermediates of the extradiol-cleaving catechol dioxygenases

    PubMed Central

    Fielding, Andrew J.

    2014-01-01

    Extradiol catechol ring-cleaving dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase (HPCD) are summarized with the objective of showing how Nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active site metals, introducing active site amino acid substituted variants, and using substrates with different electron donating capacities. While each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic and computational analysis of the various intermediates shed light on how catalytic efficiency can be achieved. PMID:24615282

  6. Oxidation effects on cleaved multiple quantum well surfaces in air observed by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Howells, S.; Gallagher, M. J.; Chen, T.; Pax, P.; Sarid, D.

    1992-08-01

    The paper presents the first atomic force microscopy (AFM) images of cleaved InGaAs/InP multiple quantum wells and compares them with scanning tunneling microscopy (STM) images taken of the same heterostructure. The images were stable in air for over a day. Based on these results, it is proposed that the mechanism for contrast in the images is due to an oxide layer that grows primarily on the InGaAs wells and not on the InP barriers. Both STM and AFM clearly resolve the individual wells of the heterostructure, although STM measured a larger corrugation than an AFM. STM also exhibited superior lateral resolution of about 2 nm, while AFM had a lateral resolution of approximately 6 nm.

  7. Diketone cleaving enzyme Dke1 production by Acinetobacter johnsonii--optimization of fermentation conditions.

    PubMed

    Hofer, Hannes; Mandl, Thomas; Steiner, Walter

    2004-01-08

    The main objective of this work was the optimization of the production of the novel dioxygenase diketone cleaving enzyme (Dke1) from Acinetobacter johnsonii. Acetylacetone was used as an inducer for enzyme production. In the first step, the growth medium was optimized by using screening designs for finding the optimal carbon and nitrogen source. In the second step, a genetic algorithm was used to optimize the concentrations of all medium components. After six generations the stopping criterion was reached and a growth medium was obtained which produced sixteen times more enzyme than the starting medium. In the next step, an addition profile for the inducer acetylacetone was developed to further increase enzyme production by using a genetic algorithm. In this case, after four generations the stopping criterion was fulfilled. By using the obtained optimal addition profile Dke1 activity was enhanced from 826 to 2584Ul(-1). In comparison to the starting conditions activity could even be increased by a factor of 50.

  8. Drosha controls dendritic cell development by cleaving messenger RNAs encoding inhibitors of myelopoiesis.

    PubMed

    Johanson, Timothy M; Keown, Ashleigh A; Cmero, Marek; Yeo, Janet H C; Kumar, Amit; Lew, Andrew M; Zhan, Yifan; Chong, Mark M W

    2015-11-01

    To investigate if the microRNA (miRNA) pathway is required for dendritic cell (DC) development, we assessed the effect of ablating Drosha and Dicer, the two enzymes central to miRNA biogenesis. We found that while Dicer deficiency had some effect, Drosha deficiency completely halted DC development and halted myelopoiesis more generally. This indicated that while the miRNA pathway did have a role, it was a non-miRNA function of Drosha that was particularly critical. Drosha repressed the expression of two mRNAs encoding inhibitors of myelopoiesis in early hematopoietic progenitors. We found that Drosha directly cleaved stem-loop structure within these mRNAs and that this mRNA degradation was necessary for myelopoiesis. We have therefore identified a mechanism that regulates the development of DCs and other myeloid cells.

  9. Restoration by T4 ligase of DNA sequences sensitive to "flush" cleaving restriction enzyme.

    PubMed

    Mottes, M; Morandi, C; Cremaschi, S; Sgaramella, V

    1977-07-01

    Fouteen "flush"-ended segments originate from the action of the restriction endonuclease Hae III of Haemophilus aegiptius on the DNA of the colicinogenic factor ColE 1 (A. Oka and M. Takanami, Nature, 264, 191, 1976). They are joined by the T4 polynucleotide ligase. The reaction can be monitored by gel electrophoresis, electron microscopy and resistance to phosphatase of the 5'-32P labelled ends. The joined products are a random recombination of the original segments, and can be cleaved by the same Hae III endonuclease to restore the exact electrophoretic pattern of the Hae III-cut ColE 1 DNA. In a properly diluted mixture of 5'-32P segments treated with T4 ligase, the level of phosphatase resistance is very close to the frequency of circle-formation as determined by electron microscopy: thus, the joining of the "flush"-ends involves the formation of circular structures covalently closed in both strands.

  10. Fermi-level pinning and intrinsic surface states in cleaved GaP

    NASA Astrophysics Data System (ADS)

    Chiaradia, P.; Fanfoni, M.; Nataletti, P.; de Padova, P.; Brillson, L. J.; Slade, M. L.; Viturro, R. E.; Kilday, D.; Margaritondo, G.

    1989-03-01

    We have performed photoelectron spectroscopy of the clean GaP(110) surface, obtained by cleaving n-type specimens. The results show that Fermi-level stabilization occurs in a wide range of positions. In some cases nearly flat bands were obtained. The surface Fermi-level position in n-type GaP(110) is then due to extrinsic surface states, probably cleavage defects, as in the case of p-type samples. The density of these extrinsic states depends upon the quality of the cleave. Previously the Fermi-level pinning in n-type GaP(110) surfaces instead was attributed to (empty) intrinsic surface states located at 1.6+/-0.1 eV above the valence band. GaP(110) was considered an exception among III-V compounds, since in general atomic relaxation removes intrinsic surface states from the fundamental gap. The present results set a lower bound for the energetic position of the empty surface states slightly below the bottom of the conduction band. Therefore GaP(110) exhibits a gap practically free from intrinsic surface states, like the other III-V compounds so far investigated. We have also performed a spectroscopic study of the empty (intrinsic) surface states on the same surface by measuring the absorption edge of the P 2p core level. The result shows that the wave functions of the empty dangling-bond states, mainly cationic in origin, have a sizable localization on the anion site as well.

  11. Calpain 1 cleaves and inactivates prostacyclin synthase in mesenteric arteries from diabetic mice.

    PubMed

    Randriamboavonjy, Voahanginirina; Kyselova, Anastasia; Elgheznawy, Amro; Zukunft, Sven; Wittig, Ilka; Fleming, Ingrid

    2017-01-01

    Diabetes is associated with a number of co-morbidities including an increased risk of developing cardiovascular diseases. The activation of Ca(2+)-activated proteases of the calpain family has been implicated in platelet activation associated with diabetes and this study aimed to determine the role of calpain activation in the development of endothelial dysfunction. Diabetes induction in mice attenuated acetylcholine-induced relaxation of mesenteric artery rings, an effect prevented in mice receiving a calpain inhibitor. A nitric oxide-independent but diclofenac-sensitive component of the relaxation-response was altered and correlated with a loss of prostacyclin (PGI2) generation and reduced vascular levels of PGI2 synthase. Calpain inhibition was also able to restore PGI2 synthase levels and PGI2 generation in arteries from diabetic animals. The effects of diabetes were reproduced in vitro by a combination of high glucose and palmitate, which elicited calpain activation, PGI2 synthase cleavage and inactivation as well as endothelial dysfunction in mesenteric arteries from wild-type mice. PGI2 cleavage was not observed in arteries from calpain 1(-/-) mice or mice overexpressing the endogenous calpain inhibitor calpastatin. Finally, proteomic analyses revealed that calpain 1 cleaved the C-terminal domain of PGI2 synthase close to the catalytic site of the enzyme. These data demonstrate that diabetes leads to the activation of calpain 1 in mesenteric arteries and can initiate endothelial dysfunction by cleaving and inactivating the PGI2 synthase. Given that calpain inhibition prevented diabetes-induced endothelial dysfunction in mesenteric arteries, calpains represent an interesting therapeutic target for the prevention of cardiovascular complication of diabetes.

  12. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.

    PubMed Central

    Powers, V. M.; Yang, Y. R.; Fogli, M. J.; Schachman, H. K.

    1993-01-01

    Treatment of the catalytic (C) trimer of Escherichia coli aspartate transcarbamoylase (ATCase) with alpha-chymotrypsin by a procedure similar to that used by Chan and Enns (1978, Can. J. Biochem. 56, 654-658) has been shown to yield an intact, active, proteolytically cleaved trimer containing polypeptide fragments of 26,000 and 8,000 MW. Vmax of the proteolytically cleaved trimer (CPC) is 75% that of the wild-type C trimer, whereas Km for aspartate and Kd for the bisubstrate analog, N-(phosphonacetyl)-L-aspartate, are increased about 7- and 15-fold, respectively. CPC trimer is very stable to heat denaturation as shown by differential scanning microcalorimetry. Amino-terminal sequence analyses as well as results from electrospray ionization mass spectrometry indicate that the limited chymotryptic digestion involves the rupture of only a single peptide bond leading to the production of two fragments corresponding to residues 1-240 and 241-310. This cleavage site involving the bond between Tyr 240 and Ala 241 is in a surface loop known to be involved in intersubunit contacts between the upper and lower C trimers in ATCase when it is in the T conformation. Reconstituted holoenzyme comprising two CPC trimers and three wild-type regulatory (R) dimers was shown by enzyme assays to be devoid of the homotropic and heterotropic allosteric properties characteristic of wild-type ATCase. Moreover, sedimentation velocity experiments demonstrate that the holoenzyme reconstituted from CPC trimers is in the R conformation. These results indicate that the intact flexible loop containing Tyr 240 is essential for stabilizing the T conformation of ATCase. Following denaturation of the CPC trimer in 4.7 M urea and dilution of the solution, the separate proteolytic fragments re-associate to form active trimers in about 60% yield. How this refolding of the fragments, docking, and association to form trimers are achieved is not known. PMID:8318885

  13. Complement 1s is the Serine Protease that Cleaves IGFBP-5 in Human Osteoarthritic Joint Fluid

    PubMed Central

    Busby, Walker H.; Yocum, Sue A.; Rowland, Michael; Kellner, Debra; Lazerwith, Scott; Sverdrup, Francis; Yates, Matthew; Radabaugh, Melissa; Clemmons, David R.

    2010-01-01

    Insulin-like growth factor-I (IGF-I) and IGF binding proteins (IGFBPs) are trophic factors for cartilage and have been shown to be chondroprotective in animal models of osteoarthritis. IGFBP-5 is degraded in joint fluid and inhibition of IGFBP-5 degradation has been shown to enhance the trophic effects of IGF-I. Objective To determine the identity of IGFBP-5 protease activity in human osteoarthritic (OA) joint fluid. Method OA joint fluid was purified and the purified material analyzed by IGFBP-5 zymography. Results Both crude joint fluid and purified material contained a single band of proteolytic activity that cleaved IGFBP-5. Immunoblotting of joint fluid for complement 1s (C1s) showed a band that had the same Mr estimate, e.g. 88 kDa. In gel tryptic digestion and subsequent peptide analysis by LC-MS/MS showed that the band contained human complement 1s. A panel of protease inhibitors was tested for their ability to inhibit IGFBP-5 cleavage by the purified protease. Three serine protease inhibitors, FUT175 and CP 143217 and CB-349547 had IC50’s between 1and 6 uM. Two other serine protease inhibitors had intermediate activity (e.g. IC50’s 20–40 uM) and MMP inhibitors had no detectible activity at concentrations up to 300 uM. Conclusion Human OA fluid contains a serine protease that cleaves IGFBP-5. Zymography, immunoblotting and LCMS/MS analysis indicate that complement 1s is the protease that accounts for this activity. PMID:18930415

  14. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    SciTech Connect

    Hirata, Yuki; Choi, Junho

    2015-08-28

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from −1.0 to −15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a

  15. Microstructure of a-C:H films prepared on a microtrench and analysis of ions and radicals behavior

    NASA Astrophysics Data System (ADS)

    Hirata, Yuki; Choi, Junho

    2015-08-01

    Amorphous carbon films (a-C:H) were prepared on a microtrench (4-μm pitch and 4-μm depth), and the uniformity of film thickness and microstructure of the films on the top, sidewall, and bottom surfaces of the microtrench were evaluated by scanning electron microscopy and Raman spectroscopy. The a-C:H films were prepared by bipolar-type plasma based ion implantation and deposition (bipolar PBII&D), and the negative pulse voltage, which is the main parameter dominating the film structure, was changed from -1.0 to -15 kV. Moreover, the behavior of ions and radicals was analyzed simultaneously by combining the calculation methods of Particle-In-Cell/Monte Carlo Collision (PIC-MCC) and Direct Simulation Monte Carlo (DSMC) to investigate the coating mechanism for the microtrench. The results reveal that the thickness uniformity of a-C:H films improves with decreasing negative pulse voltage due to the decreasing inertia of incoming ions from the trench mouth, although the film thickness on the sidewall tends to be much smaller than that on the top and bottom surfaces of the trench. The normalized flux and the film thickness show similar behavior, i.e., the normalized flux or thickness at the bottom surface increases at low negative pulse voltages and then saturates at a certain value, whereas at the sidewall it monotonically decreases with increasing negative voltage. The microstructure of a-C:H films on the sidewall surface is very different from that on the top and bottom surfaces. The film structure at a low negative pulse voltage shifts to more of a polymer-like carbon (PLC) structure due to the lower incident energy of ions. Although the radical flux on the sidewall increases slightly, the overall film structure is not significantly changed because this film formation at a low negative voltage is originally dominated by radicals. On the other hand, the flux of radicals is dominant on the sidewall in the case of high negative pulse voltage, resulting in a deviation

  16. A functional model of extradiol-cleaving catechol dioxygenases: mimicking the 2-his-1-carboxylate facial triad.

    PubMed

    Paria, Sayantan; Halder, Partha; Paine, Tapan Kanti

    2010-05-17

    The synthesis and characterization of an iron-catecholate model complex of a tridentate 2-N-1-carboxylate ligand derived from L-proline are reported. The X-ray crystal structure of the complex [(L)(3)Fe(3)(DBC)(3)] (1) (where L is 1-(2-pyridylmethyl)pyrrolidine-2-carboxylate and DBC is the dianion of 3,5-di-tert-butyl catechol) reveals that the tridentate ligand binds to the iron center in a facial manner and mimics the 2-his-1-carboxylate facial triad motif observed in extradiol-cleaving catechol dioxygenases. The iron(III)-catecholate complex (1) reacts with dioxygen in acetonitrile in ambient conditions to cleave the C-C bond of catecholate. In the reaction, an equal amount of extra- and intradiol cleavage products are formed without any auto-oxidation product. The iron-catecholate complex is a potential functional model of extradiol-cleaving catechol dioxygenases.

  17. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family.

    PubMed

    Fujikawa, K; Suzuki, H; McMullen, B; Chung, D

    2001-09-15

    von Willebrand factor (vWF) is synthesized in megakaryocytes and endothelial cells as a very large multimer, but circulates in plasma as a group of multimers ranging from 500 to 10 000 kd. An important mechanism for depolymerization of the large multimers is the limited proteolysis by a vWF-cleaving protease present in plasma. The absence or inactivation of the vWF-cleaving protease results in the accumulation of large multimers, which may cause thrombotic thrombocytopenic purpura. The vWF-cleaving protease was first described as a Ca(++)-dependent proteinase with an apparent molecular weight of approximately 300 kd. Thus far, however, it has not been isolated and characterized. In this study, the purification of human vWF-cleaving protease from a commercial preparation of factor VIII/vWF concentrate by means of several column chromatographic steps, including 2 steps of heparin-Sepharose column, is reported. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the anion exchange and gel filtration column fractions showed that the vWF-cleaving protease activity corresponded to a protein band of 150 kd. After reduction, it migrated with an apparent weight of 190 kd. The amino terminal sequence of the 150-kd band was AAGGIL(H)LE(L)L(D)AXG(P)X(V)XQ (single-letter amino acid codes), with the tentative residues shown in parentheses. A search of the human genome sequence identified the vWF-cleaving protease as a new member of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin type I motif) family of metalloproteinase. An active site sequence of HEIGHSFGLEHE (single-letter amino acid codes) was located at 150 residues from the N terminus of the protein.

  18. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation.

    PubMed

    Manna, Kuntal; Zhang, Teng; Greene, Francis X; Lin, Wenbin

    2015-02-25

    We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal-organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)]2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as well as C-H borylation of arenes using B2pin2. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17,000 for C-H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.

  19. Tandem C-H activation/arylation catalyzed by low-valent iron complexes with bisiminopyridine ligands.

    PubMed

    Salanouve, Elise; Bouzemame, Ghania; Blanchard, Sébastien; Derat, Etienne; Desage-El Murr, Marine; Fensterbank, Louis

    2014-04-14

    Tandem C-H activation/arylation between unactivated arenes and aryl halides catalyzed by iron complexes that bear redox-active non-innocent bisiminopyridine ligands is reported. Similar reactions catalyzed by first-row transition metals have been shown to involve substrate-based aryl radicals, whereas our catalytic system likely involves ligand-centered radicals. Preliminary mechanistic investigations based on spectroscopic and reactivity studies, in conjunction with DFT calculations, led us to propose that the reaction could proceed through an inner-sphere C-H activation pathway, which is rarely observed in the case of iron complexes. This bielectronic noble-metal-like behavior could be sustained by the redox-active non-innocent bisiminopyridine ligands.

  20. Late-Stage C-H Coupling Enables Rapid Identification of HDAC Inhibitors: Synthesis and Evaluation of NCH-31 Analogues.

    PubMed

    Sekizawa, Hiromi; Amaike, Kazuma; Itoh, Yukihiro; Suzuki, Takayoshi; Itami, Kenichiro; Yamaguchi, Junichiro

    2014-05-08

    We previously reported the discovery of NCH-31, a potent histone deacetylase (HDAC) inhibitor. By utilizing our C-H coupling reaction, we rapidly synthesized 16 analogues (IYS-1 through IYS-15 and IYS-Me) of NCH-31 with different aryl groups at the C4-position of 2-aminothiazole core of NCH-31. Subsequent biological testing of these derivatives revealed that 3-fluorophenyl (IYS-10) and 4-fluorophenyl (IYS-15) derivatives act as potent pan-HDAC inhibitor. Additionally, 4-methylphenyl (IYS-1) and 3-fluoro-4-methylphenyl (IYS-14) derivatives acted as HDAC6-insensitive inhibitors. The present work clearly shows the power of the late-stage C-H coupling approach to rapidly identify novel and highly active/selective biofunctional molecules.

  1. Carboxylic acids as traceless directing groups for the rhodium(III)-catalyzed decarboxylative C-H arylation of thiophenes.

    PubMed

    Zhang, Yuanfei; Zhao, Huaiqing; Zhang, Min; Su, Weiping

    2015-03-16

    A rhodium(III)-catalyzed carboxylic acid directed decarboxylative C-H/C-H cross-coupling of carboxylic acids with thiophenes has been developed. With a slight adjustment of the reaction conditions based on the nature of the substrates, aryl carboxylic acids with a variety of substituents could serve as suitable coupling partners, and a broad variety of functional groups were tolerated. This method provides straightforward access to biaryl scaffolds with diverse substitution patterns, many of which have conventionally been synthesized through lengthy synthetic sequences. An illustrative example is the one-step gram-scale synthesis of a biologically active 3,5-substituted 2-arylthiophene by way of the current method.

  2. Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition

    NASA Astrophysics Data System (ADS)

    Yang, P.; Kwok, S. C. H.; Chu, P. K.; Leng, Y. X.; Chen, J. Y.; Wang, J.; Huang, N.

    2003-05-01

    Diamond-like-carbon has attracted much attention recently as a potential biomaterial in blood contacting biomedical devices. However, previous reports in this area have not adequately addressed the biocompatibility and acceptability of the materials in blood contacting applications. In this study, hydrogenated amorphous carbon (a-C:H) films were fabricated on silicon wafers (1 0 0) using plasma immersion ion implantation-deposition. A series of a-C:H films with different structures and chemical bonds were fabricated under different substrate voltages. The results indicate that film graphitization is promoted at higher substrate bias. The film deposited at a lower substrate bias of -75 V possesses better blood compatibility than the films at higher bias and stainless steel. Our results suggest two possible paths to improve the blood compatibility, suppression of the endogenic clotting system and reduction of platelet activation.

  3. Material properties and device evaluations of ECR-deposited a-Si:H and a-SiC:H films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Essick, J. M.

    1991-01-01

    Device-quality a-Si:H and a-SiC:H films have been deposited using electron cyclotron resonance (ECR) microwave plasmas of SiH4, CH4, and H2 mixtures. Typical material properties of ECR-deposited, photosensitive a-Si:H films are: (1) high photosensitivity up to 2 x 106 with a photoconductivity of 10 exp -5 to 10 exp -4/(Ohm-cm), (2) a Tauc gap of 1.75 to 1.85 eV, (3) an Urbach slope of 50-60 meV determined by the constant photocurrent method, and (4) an integrated defect density of 1-2 x 10 exp 16/cu cm determined by junction capacitance measurements. Highly conductive, p-type a-SiC:H films have been produced by ECR plasmas with a conductivity of 0.2/(Ohm-cm).

  4. The design, construction and testing of a microcombustion calorimeter suitable for organic compounds containing C, H and O

    NASA Astrophysics Data System (ADS)

    Dávalos, Juan Z.; Roux, M. Victoria; Dávalos, Juan Z.

    2000-10-01

    To obtain reliable standard energies of combustion with small amounts of C, H, O compounds, a new microcombustion calorimetry system has been set up. The design, construction, calibration and measurement experiments are described. The system includes a commercial combustion bomb with an internal volume of 22 cm3. Samples of around 80 mg are suitable if one wants to retain the same levels of accuracy and reproducibility as those in macrocombustion experiments. Calibration of the calorimeter was performed using benzoic acid. ɛ(calorimeter) = 2083.74±0.48JK-1 was obtained. Combustion measurements using m-methoxybenzoic acid were made in order to verify the chemistry of the combustion process involved in the corresponding analysis of results and the accuracy of the measurement of combustion energy. The uncertainty of the results shows that the instrument described and the experimental procedure used for the determination of enthalpies of formation of compounds containing C, H and O provide a high reliability.

  5. C-H bond activation of benzene by unsaturated η2-cyclopropene and η2-benzyne complexes of niobium.

    PubMed

    Boulho, Cédric; Oulié, Pascal; Vendier, Laure; Etienne, Michel; Pimienta, Véronique; Locati, Abel; Bessac, Fabienne; Maseras, Feliu; Pantazis, Dimitrios A; McGrady, John E

    2010-10-13

    We report the synthesis of a niobium cyclopropyl complex, Tp(Me2)NbMe(c-C(3)H(5))(MeCCMe), and show that thermal loss of methane from this compound generates an intermediate that is capable of activating both aliphatic and aromatic C-H bonds. Isotopic labeling, trapping studies, a detailed kinetic analysis, and density functional theory all suggest that the active intermediate is an η(2)-cyclopropene complex formed via β-hydrogen abstraction rather than an isomeric cyclopropylidene species. C-H activation chemistry of this type represents a rather unusual reactivity pattern for η(2)-alkene complexes but is favored in this case by the strain in the C(3) ring which prevents the decomposition of the key intermediate via loss of cyclopropene.

  6. Ortho-Functionalized Aryltetrazines by Direct Palladium-Catalyzed C-H Halogenation: Application to Fast Electrophilic Fluorination Reactions.

    PubMed

    Testa, Christelle; Gigot, Élodie; Genc, Semra; Decréau, Richard; Roger, Julien; Hierso, Jean-Cyrille

    2016-04-25

    A general catalyzed direct C-H functionalization of s-tetrazines is reported. Under mild reaction conditions, N-directed ortho-C-H activation of tetrazines allows the introduction of various functional groups, thus forming carbon-heteroatom bonds: C-X (X=I, Br, Cl) and C-O. Based on this methodology, we developed electrophilic mono- and poly-ortho-fluorination of tetrazines. Microwave irradiation was optimized to afford fluorinated s-aryltetrazines, with satisfactory selectivity, within only ten minutes. This work provides an efficient and practical entry for further accessing highly substituted tetrazine derivatives (iodo, bromo, chloro, fluoro, and acetate precursors). It gives access to ortho-functionalized aryltetrazines which are difficult to obtain by classical Pinner-like syntheses.

  7. The Breathing Orbital Valence Bond Method in Diffusion Monte Carlo: C-H Bond Dissociation ofAcetylene

    SciTech Connect

    Domin, D.; Braida, Benoit; Lester Jr., William A.

    2008-05-30

    This study explores the use of breathing orbital valence bond (BOVB) trial wave functions for diffusion Monte Carlo (DMC). The approach is applied to the computation of the carbon-hydrogen (C-H) bond dissociation energy (BDE) of acetylene. DMC with BOVB trial wave functions yields a C-H BDE of 132.4 {+-} 0.9 kcal/mol, which is in excellent accord with the recommended experimental value of 132.8 {+-} 0.7 kcal/mol. These values are to be compared with DMC results obtained with single determinant trial wave functions, using Hartree-Fock orbitals (137.5 {+-} 0.5 kcal/mol) and local spin density (LDA) Kohn-Sham orbitals (135.6 {+-} 0.5 kcal/mol).

  8. Catalytic Friedel-Crafts C-H Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by Added Alkenes.

    PubMed

    Yin, Qin; Klare, Hendrik F T; Oestreich, Martin

    2017-03-20

    In the electrophilic C-H borylation of electron-rich aromatic compounds with catecholborane, the catalytic generation of the boron electrophile is initiated by heterolysis of the B-H bond by various Lewis and Brønsted acids, with a boronium ion formed exclusively. After ligand dissociation, the corresponding borenium ion undergoes regioselective electrophilic aromatic substitution on aniline derivatives as well as nitrogen-containing heterocycles. The catalysis is optimized using B(C6 F5 )3 as the initiator and proceeds without the addition of an external base or dihydrogen acceptor. Temperatures above 80 °C are generally required to secure efficient turnover in these Friedel-Crafts-type reactions. Mechanistic experiments reveal that regeneration of the boronium/borenium ion with dihydrogen release is rate-determining. This finding finally led to the discovery that, with added alkenes, catalytic C-H borylations can, for the first time, be carried out at room temperature.

  9. Reactivity of oxygen radical anions bound to scandia nanoparticles in the gas phase: C-H bond activation.

    PubMed

    Tian, Li-Hua; Meng, Jing-Heng; Wu, Xiao-Nan; Zhao, Yan-Xia; Ding, Xun-Lei; He, Sheng-Gui; Ma, Tong-Mei

    2014-01-20

    The activation of C-H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O(-·)) is an important species in C-H activation. The mechanistic details of C-H activation by O(-·) radicals can be well understood by studying the reactions between O(-·) containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n-butane was studied by using a high-resolution time-of-flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n-butane by (Sc2O3)(N)O(-) (N=1-18) clusters was observed. The reactivity of (Sc2O3)(N)O(-) (N=1-18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13(-)) and 12 (Sc24O37(-)). Larger (Sc2O3)(N)O(-) clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)(N)O(-) (N=1-5) clusters, which were found to contain the O(-·) radicals as the active sites. The local charge environment around the O(-·) radicals was demonstrated to control the experimentally observed size-dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O(-·) containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C-H bond activation.

  10. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation.

    PubMed

    Huang, Xiongyi; Groves, John T

    2017-04-01

    Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C-H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R-H) by high-valent iron-oxo species (Fe(n)=O) generates a substrate radical and a reduced iron hydroxide, [Fe(n-1)-OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R-OH, rebound to a non-oxygen atom affording R-X, electron transfer of the incipient radical to yield a carbocation, R(+), desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C-H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C-H transformations are selected to illustrate how the behaviors of the radical pair [Fe(n-1)-OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of "radical rebound" processes as a general paradigm for developing novel C-H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic "radical rebound" with synthetic organic chemistry.

  11. Ru(ii)-Catalyzed C-H activation and annulation of salicylaldehydes with monosubstituted and disubstituted alkynes.

    PubMed

    Baruah, Swagata; Kaishap, Partha Pratim; Gogoi, Sanjib

    2016-10-27

    The Ru(ii)-catalyzed C-H activation and annulation reaction of salicylaldehydes and disubstituted alkynes affords chromones in high yields. This reaction also works with terminal alkynes and tolerates a wide range of sensitive functional groups. The selectivity pattern of this Ru(ii)-catalyzed annulation reaction is different from the known Au(i), Rh(iii)-catalyzed annulation reactions of salicylaldehydes and terminal alkynes.

  12. Direct C-H difluoromethylenephosphonation of arenes and heteroarenes with bromodifluoromethyl phosphonate via visible-light photocatalysis.

    PubMed

    Wang, Lin; Wei, Xiao-Jing; Lei, Wen-Long; Chen, Han; Wu, Li-Zhu; Liu, Qiang

    2014-12-28

    This communication reports a room temperature visible-light-driven protocol for the C-H difluoromethylenephosphonation of arenes and heteroarenes. Using commercially available diethyl bromodifluoromethyl phosphonate as a precursor of difluoromethyl radical, fac-Ir(ppy)3 as a photosensitizer and a 3 W blue LED as a light source, an array of aromatic compounds containing difluoromethylenephosphonyl groups were prepared directly from the corresponding arenes and heteroarenes in excellent to moderate yields.

  13. Carboxylate-Assisted Iridium-Catalyzed C-H Amination of Arenes with Biologically Relevant Alkyl Azides.

    PubMed

    Zhang, Tao; Hu, Xuejiao; Wang, Zhen; Yang, Tiantian; Sun, Hao; Li, Guigen; Lu, Hongjian

    2016-02-24

    An iridium-catalyzed C-H amination of arenes with a wide substrate scope is reported. Benzamides with electron-donating and -withdrawing groups and linear, branched, and cyclic alkyl azides are all applicable. Cesium carboxylate is crucial for both reactivity and regioselectivity of the reactions. Many biologically relevant molecules, such as amino acid, peptide, steroid, sugar, and thymidine derivatives can be introduced to arenes with high yields and 100 % chiral retention.

  14. Palladium-catalyzed regioselective carbonylation of C-H bonds of N-alkyl anilines for synthesis of isatoic anhydrides.

    PubMed

    Guan, Zheng-Hui; Chen, Ming; Ren, Zhi-Hui

    2012-10-24

    A Pd-catalyzed regioselective C-H bond carbonylation of N-alkyl anilines for the synthesis of isatoic anhydrides has been developed. The key Pd-catalyst intermediate has been isolated and characterized. This novel Pd-catalyzed carbonylation reaction tolerates a wide range of functional groups and is a reliable method for the rapid elaboration of readily available N-alkyl anilines into a variety of substituted isatoic anhydrides under mild conditions.

  15. Metal-free synthesis of N-fused heterocyclic iodides via C-H functionalization mediated by tert-butylhydroperoxide.

    PubMed

    Sharma, Krishna K; Patel, Dhananjay I; Jain, Rahul

    2015-10-21

    Direct, regioselective and metal-free synthesis of fused N-heterocyclic iodides is reported. This regioselective C-H functionalization is mediated by tert-butylhydroperoxide (TBHP), via dual activation of molecular iodine and a heterocyclic substrate, resulting in the in situ generation of electrophilic iodine species (I(+)), and free radical(s) (t)BuO˙ or (t)BuOO˙, driving the iodination reaction.

  16. Palladium-Catalyzed C-2 C-H Heteroarylation of Chiral Oxazolines: Diverse Synthesis of Chiral Oxazoline Ligands.

    PubMed

    Xi, Tuo; Mei, Yuncai; Lu, Zhan

    2015-12-18

    A direct, efficient, and practical protocol to install a chiral oxazoline unit onto aryl/heteroaryl rings via palladium-catalyzed C-H functionalization of 2-positions of oxazolines with a variety of halides using dppe as the ligand has been developed. Various chiral oxazoline ligands could be synthesized, even in a 10-g scale process. This protocol is a good supplement to traditional methods and for diverse synthesis of chiral oxazoline ligands.

  17. C-H bond activation of methane in aqueous solution: a hybrid quantum mechanical/effective fragment potential study.

    PubMed

    Da Silva, Júlio C S; Rocha, Willian R

    2011-12-01

    In this study, we investigated the C-H bond activation of methane catalyzed by the complex [PtCl(4)](2-), using the hybrid quantum mechanical/effective fragment potential (EFP) approach. We analyzed the structures, energetic properties, and reaction mechanism involved in the elementary steps that compose the catalytic cycle of the Shilov reaction. Our B3LYP/SBKJC/cc-pVDZ/EFP results show that the methane activation may proceed through two pathways: (i) electrophilic addition or (ii) direct oxidative addition of the C-H bond of the alkane. The electrophilic addition pathway proceeds in two steps with formation of a σ-methane complex, with a Gibbs free energy barrier of 24.6 kcal mol(-1), followed by the cleavage of the C-H bond, with an energy barrier of 4.3 kcal mol(-1) . The activation Gibbs free energy, calculated for the methane uptake step was 24.6 kcal mol(-1), which is in good agreement with experimental value of 23.1 kcal mol(-1) obtained for a related system. The results shows that the activation of the C-H bond promoted by the [PtCl(4)](2-) catalyst in aqueous solution occurs through a direct oxidative addition of the C-H bond, in a single step, with an activation free energy of 25.2 kcal mol(-1), as the electrophilic addition pathway leads to the formation of a σ-methane intermediate that rapidly undergoes decomposition. The inclusion of long-range solvent effects with polarizable continuum model does not change the activation energies computed at the B3LYP/SBKJC/cc-pVDZ/EFP level of theory significantly, indicating that the large EFP water cluster used, obtained from Monte Carlo simulations and analysis of the center-of-mass radial pair distribution function, captures the most important solvent effects.

  18. Easy activation of two C-H bonds of an N-heterocyclic carbene N-methyl group.

    PubMed

    Cabeza, Javier A; del Río, Ignacio; Miguel, Daniel; Sánchez-Vega, M Gabriela

    2005-08-21

    The first trinuclear clusters containing NHC ligands are described; the compound [Ru3(Me2Im)(CO)11](Me2Im=1,3-dimethylimidazol-2-ylidene) is easily converted into [Ru3(mu-H)2(mu3-MeImCH)(CO)9] by a process involving the activation of two C-H bonds of a methyl group that is an example of degradation of a metal-coordinated NHC ligand under mild conditions.

  19. I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization.

    PubMed

    Yi, Xiangli; Jiao, Lei; Xi, Chanjuan

    2016-10-18

    I2-Mediated benzyl C-H functionalization has been developed for the synthesis of 2H-indazoles, which features high efficiency, simple conditions and no need for metals. Mechanistic experiments and DFT calculations have revealed halogen bond assistance and a radical chain process for this reaction. The azo group and the bound iodine cooperate in the hydrogen abstraction step, which circumvents the thermodynamic disfavor of direct hydrogen abstraction by a simple iodine radical.

  20. Palladium-catalyzed C-H activation/intramolecular amination reaction: a new route to 3-aryl/alkylindazoles.

    PubMed

    Inamoto, Kiyofumi; Saito, Tadataka; Katsuno, Mika; Sakamoto, Takao; Hiroya, Kou

    2007-07-19

    A method for the catalytic C-H activation of hydrazone compounds followed by intramolecular amination is described. It requires the use of a catalytic amount of Pd(OAc)2 in the presence of Cu(OAc)2 and AgOCOCF3, which efficiently effects the cyclization to afford variously substituted indazoles. The reactions proceed under relatively mild conditions and thus tolerate a variety of functional groups, including alkoxycarbonyl and cyano groups and halogen atoms.

  1. Vapour-induced solid-state C-H bond activation for the clean synthesis of an organopalladium biothiol sensor.

    PubMed

    Monas, Andrea; Užarević, Krunoslav; Halasz, Ivan; Kulcsár, Marina Juribašić; Ćurić, Manda

    2016-10-27

    Room-temperature accelerated aging in the solid state has been applied for atom- and energy-efficient activation of either one or two C-H bonds of azobenzene and methyl orange by palladium(ii) acetate. Organopalladium complexes are prepared in quantitative reactions without potentially harmful side products. Dicyclopalladated methyl orange is water-soluble and is a selective chromogenic biothiol sensor at physiologically-relevant micromolar concentrations in buffered aqueous media.

  2. Raman Spectroscopy of a-C:H Films Deposited Using Ar + H2 + C7H8 Plasma CVD

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Koga, Kazunori; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Shiratani, Masaharu; Setsuhara, Yuichi; Sekine, Makoto; Hori, Masaru

    2015-09-01

    We investigated the effects of ion energy on Raman spectra of a-C:H films prepared by Ar + H2 + C7H8 plasma CVD. Raman spectra were measured with a laser Raman spectrometer (JASCO NRS-3100). Both the D-peak position and G-peak position shift toward higher wavenumbers as ion energy increases. The intensity ratio of the D-peak and G-peak, ID/IG increases with increasing the ion energy, indicating that the amount of ring-like sp2 clusters increases. The H content in a-C:H derived from photoluminescence (PL) background decreases with increasing the ion energy. The full width at half maximum of the G-peak, FWHMG related to the C-C sp3 content and H content increases with increasing the ion energy to 100 eV, whereas it decreases with increasing further the ion energy to 105 eV. The variation of FWHMG is consistent with that of mass density. There results indicate that the structure of a-C:H films transforms from polymer-like carbon to diamond-like one with increasing the ion energy above the threshold value of ~ 100 eV.

  3. C-H bond strengths and acidities in aromatic systems: effects of nitrogen incorporation in mono-, di-, and triazines.

    PubMed

    Wren, Scott W; Vogelhuber, Kristen M; Garver, John M; Kato, Shuji; Sheps, Leonid; Bierbaum, Veronica M; Lineberger, W Carl

    2012-04-18

    The negative ion chemistry of five azine molecules has been investigated using the combined experimental techniques of negative ion photoelectron spectroscopy to obtain electron affinities (EA) and tandem flowing afterglow-selected ion tube (FA-SIFT) mass spectrometry to obtain deprotonation enthalpies (Δ(acid)H(298)). The measured Δ(acid)H(298) for the most acidic site of each azine species is combined with the EA of the corresponding radical in a thermochemical cycle to determine the corresponding C-H bond dissociation energy (BDE). The site-specific C-H BDE values of pyridine, 1,2-diazine, 1,3-diazine, 1,4-diazine, and 1,3,5-triazine are 110.4 ± 2.0, 111.3 ± 0.7, 113.4 ± 0.7, 107.5 ± 0.4, and 107.8 ± 0.7 kcal mol(-1), respectively. The application of complementary experimental methods, along with quantum chemical calculations, to a series of nitrogen-substituted azines sheds light on the influence of nitrogen atom substitution on the strength of C-H bonds in six-membered rings.

  4. Intramolecular C-H oxidative addition to iridium(I) triggered by trimethyl phosphite in N,N'-diphosphanesilanediamine complexes.

    PubMed

    Passarelli, Vincenzo; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-11-14

    The reaction of [Ir(SiNP)(cod)][PF6] ([1][PF6]) and of IrCl(SiNP)(cod) (5) (SiNP = SiMe2{N(4-C6H4CH3)PPh2}2) with trimethyl phosphite affords the iridium(iii) derivatives of the formula [IrHClx(SiNP-H){P(OMe)3}2-x]((1-x)+) (x = 0, 3(+); x = 1, 6) containing the κ(3)C,P,P'-coordinated SiNP-H ligand (SiNP-H = Si(CH2)(CH3){N(4-C6H4CH3)PPh2}2). The thermally unstable pentacoordinated cation [Ir(SiNP){P(OMe)3}(cod)](+) (2(+)) has been detected as an intermediate of the reaction and has been fully characterised in solution. Also, the mechanism of the C-H oxidative addition has been elucidated by DFT calculations showing that the square planar iridium(i) complexes of the formula [IrClx(SiNP){P(OMe)3}2-x]((1-x)+) (x = 0, 4(+); x = 1, 7) should be firstly obtained from 2(+) and finally should undergo the C-H oxidative addition to iridium(i) via a concerted intramolecular mechanism. The influence of the counterion of 2(+) on the outcome of the C-H oxidative addition reaction has also been investigated.

  5. Site-selective C-H arylation of primary aliphatic amines enabled by a catalytic transient directing group

    NASA Astrophysics Data System (ADS)

    Liu, Yongbing; Ge, Haibo

    2017-01-01

    Transition-metal-catalysed direct C-H bond functionalization of aliphatic amines is of great importance in organic and medicinal chemistry research. Several methods have been developed for the direct sp3 C-H functionalization of secondary and tertiary aliphatic amines, but site-selective functionalization of primary aliphatic amines in remote positions remains a challenge. Here, we report the direct, highly site-selective γ-arylation of primary alkylamines via a palladium-catalysed C-H bond functionalization process on unactivated sp3 carbons. Using glyoxylic acid as an inexpensive, catalytic and transient directing group, a wide array of γ-arylated primary alkylamines were prepared without any protection or deprotection steps. This approach provides straightforward access to important structural motifs in organic and medicinal chemistry without the need for pre-functionalized substrates or stoichiometric directing groups and is demonstrated here in the synthesis of analogues of the immunomodulatory drug fingolimod directly from commercially available 2-amino-2-propylpropane-1,3-diol.

  6. Polymer- and silica-supported iron BPMEN-inspired catalysts for C-H bond functionalization reactions.

    PubMed

    Feng, Yan; Moschetta, Eric G; Jones, Christopher W

    2014-11-01

    Direct catalytic C-H bond functionalization is a key challenge in synthetic chemistry, with many popular C-H activation methodologies involving precious-metal catalysts. In recent years, iron catalysts have emerged as a possible alternative to the more common precious-metal catalysts, owing to its high abundance, low cost, and low toxicity. However, iron catalysts are plagued by two key factors: the ligand cost and the low turnover numbers (TONs) typically achieved. In this work, two approaches are presented to functionalize the popular N(1),N(2)-dimethyl-N(1),N(2)-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (BPMEN) ligand, so that it can be supported on porous silica or polymer resin supports. Four new catalysts are prepared and evaluated in an array of catalytic C-H functionalization reactions by using cyclohexane, cyclohexene, cyclooctane, adamantane, benzyl alcohol, and cumene with aqueous hydrogen peroxide. Catalyst recovery and recycling is demonstrated by using supported catalysts, which allows for a modest increase in the TON achieved with these catalysts.

  7. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    SciTech Connect

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  8. Cobalt(III)-catalyzed synthesis of indazoles and furans by C-H bond functionalization/addition/cyclization cascades.

    PubMed

    Hummel, Joshua R; Ellman, Jonathan A

    2015-01-14

    The development of operationally straightforward and cost-effective routes for the assembly of heterocycles from simple inputs is important for many scientific endeavors, including pharmaceutical, agrochemical, and materials research. In this article we describe the development of a new air-stable cationic Co(III) catalyst for convergent, one-step benchtop syntheses of N-aryl-2H-indazoles and furans by C-H bond additions to aldehydes followed by in situ cyclization and aromatization. Only a substoichiometric amount of AcOH is required as an additive that is both low-cost and convenient to handle. The syntheses of these heterocycles are the first examples of Co(III)-catalyzed additions to aldehydes, and reactions are demonstrated for a variety of aromatic, heteroaromatic, and aliphatic derivatives. The syntheses of both N-aryl-2H-indazoles and furans have been performed on 20 mmol scales and should be readily applicable to larger scales. The reported heterocycle syntheses also demonstrate the use of directing groups that have not previously been applied to Co(III)-catalyzed C-H bond functionalizations. Additionally, the synthesis of furans demonstrates the first example of Co(III)-catalyzed functionalization of alkenyl C-H bonds.

  9. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-06-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  10. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage.

    PubMed

    Wang, Teng; Jiao, Ning

    2014-04-15

    Because of the importance of nitrogen-containing compounds in chemistry and biology, organic chemists have long focused on the development of novel methodologies for their synthesis. For example, nitrogen-containing compounds show up within functional materials, as top-selling drugs, and as bioactive molecules. To synthesize these compounds in a green and sustainable way, researchers have focused on the direct functionalization of hydrocarbons via C-H or C-C bond cleavage. Although researchers have made significant progress in the direct functionalization of simple hydrocarbons, direct C-N bond formation via C-H or C-C bond cleavage remains challenging, in part because of the unstable character of some N-nucleophiles under oxidative conditions. The nitriles are versatile building blocks and precursors in organic synthesis. Recently, chemists have achieved the direct C-H cyanation with toxic cyanide salts in the presence of stoichiometric metal oxidants. In this Account, we describe recent progress made by our group in nitrile synthesis. C-H or C-C bond cleavage is a key process in our strategy, and azides or DMF serve as the nitrogen source. In these reactions, we successfully realized direct nitrile synthesis using a variety of hydrocarbon groups as nitrile precursors, including methyl, alkenyl, and alkynyl groups. We could carry out C(sp(3))-H functionalization on benzylic, allylic, and propargylic C-H bonds to produce diverse valuable synthetic nitriles. Mild oxidation of C═C double-bonds and C≡C triple-bonds also produced nitriles. The incorporation of nitrogen within the carbon skeleton typically involved the participation of azide reagents. Although some mechanistic details remain unclear, studies of these nitrogenation reactions implicate the involvement of a cation or radical intermediate, and an oxidative rearrangement of azide intermediate produced the nitrile. We also explored environmentally friendly oxidants, such as molecular oxygen, to make our

  11. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis.

    PubMed

    Atkinson, Colin; Martineau, Philip M; Khan, Rizwan U A; Field, John E; Fisher, David; Davies, Nick M; Samartseva, Julia V; Putterman, Seth J; Hird, Jonathan R

    2015-03-28

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307-310 (doi:10.1038/nature04408)). The elastic wave speeds (c(l)≈18 000 m s(-1), c(s)≈11 750 m s(-1)) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305-4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond-a routine operation in the fashioning of diamonds for gemstone purposes--as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1-31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074-1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The nature

  12. Determination of surface structure of cleaved (001) USb2 single crystal

    SciTech Connect

    Chen, Shao-ping; Hawley, Marilyn; Bauer, Eric D; Stockum, Phil B; Manoharan, Hari C

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features associated with vacancies were observed in the STM win be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites

  13. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis

    PubMed Central

    Atkinson, Colin; Martineau, Philip M.; Khan, Rizwan U. A.; Field, John E.; Fisher, David; Davies, Nick M.; Samartseva, Julia V.; Putterman, Seth J.; Hird, Jonathan R.

    2015-01-01

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307–310 (doi:10.1038/nature04408)). The elastic wave speeds (cl≈18 000 m s−1, cs≈11 750 m s−1) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305–4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond—a routine operation in the fashioning of diamonds for gemstone purposes—as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1–31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074–1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The

  14. Porphyromonas gingivalis Type IX Secretion Substrates Are Cleaved and Modified by a Sortase-Like Mechanism

    PubMed Central

    Chen, Dina; Seers, Christine A.; Mitchell, Helen A.; Chen, Yu-Yen; Glew, Michelle D.; Dashper, Stuart G.; Reynolds, Eric C.

    2015-01-01

    The type IX secretion system (T9SS) of Porphyromonas gingivalis secretes proteins possessing a conserved C-terminal domain (CTD) to the cell surface. The C-terminal signal is essential for these proteins to translocate across the outer membrane via the T9SS. On the surface the CTD of these proteins is cleaved prior to extensive glycosylation. It is believed that the modification on these CTD proteins is anionic lipopolysaccharide (A-LPS), which enables the attachment of CTD proteins to the cell surface. However, the exact site of modification and the mechanism of attachment of CTD proteins to the cell surface are unknown. In this study we characterized two wbaP (PG1964) mutants that did not synthesise A-LPS and accumulated CTD proteins in the clarified culture fluid (CCF). The CTDs of the CTD proteins in the CCF were cleaved suggesting normal secretion, however, the CTD proteins were not glycosylated. Mass spectrometric analysis of CTD proteins purified from the CCF of the wbaP mutants revealed the presence of various peptide/amino acid modifications from the growth medium at the C-terminus of the mature CTD proteins. This suggested that modification occurs at the C-terminus of T9SS substrates in the wild type P. gingivalis. This was confirmed by analysis of CTD proteins from wild type, where a 648 Da linker was identified to be attached at the C-terminus of mature CTD proteins. Importantly, treatment with proteinase K released the 648 Da linker from the CTD proteins demonstrating a peptide bond between the C-terminus and the modification. Together, this is suggestive of a mechanism similar to sortase A for the cleavage and modification/attachment of CTD proteins in P. gingivalis. PG0026 has been recognized as the CTD signal peptidase and is now proposed to be the sortase-like protein in P. gingivalis. To our knowledge, this is the first biochemical evidence suggesting a sortase-like mechanism in Gram-negative bacteria. PMID:26340749

  15. Polyglycine hydrolases: fungal b-lactamase-like endoproteases that cleave polyglycine regions within plant class IV chitinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyglycine hydrolases are secreted fungal proteases that cleave glycine-glycine peptide bonds in the inter-domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es-cmp) and Cochli...

  16. Design and kinetic analysis of hammerhead ribozyme and DNAzyme that specifically cleave TEL-AML1 chimeric mRNA

    SciTech Connect

    Choi, Woo-Hyung; Choi, Bo-Ra; Kim, Jae Hyun; Yeo, Woon-Seok; Oh, Sangtaek; Kim, Dong-Eun

    2008-09-12

    In order to develop the oligonucleotides to abolish an expression of TEL-AML1 chimeric RNA, which is a genetic aberration that causes the acute lymphoblastic leukemia (ALL), hammerhead ribozymes and deoxyoligoribozymes that can specifically cleave TEL-AML1 fusion RNA were designed. Constructs of the deoxyribozyme with an asymmetric substrate binding arm (Dz26) and the hammerhead ribozyme with a 4 nt-bulged substrate binding arm in the stem III (buRz28) were able to cleave TEL-AML1 chimeric RNA specifically at sites close to the junction in vitro, without cleaving the normal TEL and AML1 RNA. Single-turnover kinetic analysis under enzyme-excess condition revealed that the buRz28 is superior to the Dz26 in terms of substrate binding and RNA-cleavage. In conjunction with current progress in a gene-delivery technology, the designed oligonucleotides that specifically cleave the TEL-AML1 chimeric mRNA are hoped to be applicable for the treatment of ALL in vivo.

  17. Cleaved Form of Osteopontin in Urine as a Clinical Marker of Lupus Nephritis

    PubMed Central

    Kitagori, Koji; Yoshifuji, Hajime; Oku, Takuma; Sasaki, Chiyomi; Miyata, Hitomi; Mori, Keita P.; Nakajima, Toshiki; Ohmura, Koichiro; Kawabata, Daisuke; Yukawa, Naoichiro; Imura, Yoshitaka; Murakami, Kosaku; Nakashima, Ran; Usui, Takashi; Fujii, Takao; Sakai, Kaoru; Yanagita, Motoko; Hirayama, Yoshitaka; Mimori, Tsuneyo

    2016-01-01

    We assessed the utility of two forms of osteopontin (OPN), OPN full and its cleaved form (OPN N-half), in plasma and urine as markers of disease activity in lupus nephritis (LN). Samples were collected from patients with systemic lupus erythematosus (SLE) (LN: N = 29, non-LN: N = 27), IgA nephropathy (IgAN) (N = 14), minimal change nephrotic syndrome (MCNS) (N = 5), diabetic nephropathy (DN) (N = 14) and healthy volunteers (HC) (N = 17). While there was no significant difference in urine OPN full concentration between groups, urine OPN N-half concentration was significantly higher in patients with LN than HC (p < 0.05). Moreover, urine OPN N-half was higher in LN patients with overt proteinuria (urine protein/creatinine ratio: P/C > 0.5) than LN patients with minimal proteinuria (P/C < 0.5, p < 0.0001), and also higher than in DN patients with overt proteinuria (P/C > 0.5, p < 0.01). Urine thrombin activity correlated with urine OPN N-half concentration (p < 0.0001), but not with urine OPN full concentration. These results suggest that urine OPN N-half concentration reflects renal inflammation. Thus, urine OPN N-half may be a novel disease activity marker for LN. PMID:27992535

  18. ASP1 (BACE2) cleaves the amyloid precursor protein at the beta-secretase site.

    PubMed

    Hussain, I; Powell, D J; Howlett, D R; Chapman, G A; Gilmour, L; Murdock, P R; Tew, D G; Meek, T D; Chapman, C; Schneider, K; Ratcliffe, S J; Tattersall, D; Testa, T T; Southan, C; Ryan, D M; Simmons, D L; Walsh, F S; Dingwall, C; Christie, G

    2000-11-01

    Sequential proteolytic processing of the Amyloid Precursor Protein (APP) by beta- and gamma-secretases generates the 4-kDa amyloid (A beta) peptide, a key component of the amyloid plaques seen in Alzheimer's disease (AD). We and others have recently reported the identification and characterisation of an aspartic proteinase, Asp2 (BACE), as beta-secretase. Here we describe the characterization of a second highly related aspartic proteinase, Asp1 as a second beta-secretase candidate. Asp1 is expressed in brain as detected at the mRNA level and at the protein level. Transient expression of Asp1 in APP-expressing cells results in an increase in the level of beta-secretase-derived soluble APP and the corresponding carboxy-terminal fragment. Paradoxically there is a decrease in the level of soluble A beta secreted from the cells. Asp1 colocalizes with APP in the Golgi/endoplasmic reticulum compartments of cultured cells. Asp1, when expressed as an Fc fusion protein (Asp1-Fc), has the N-terminal sequence ALEP..., indicating that it has lost the prodomain. Asp1-Fc exhibits beta-secretase activity by cleaving both wild-type and Swedish variant (KM/NL) APP peptides at the beta-secretase site.

  19. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Promotes Neuritogenesis and Cell Survival*

    PubMed Central

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-01-01

    The cell adhesion molecule L1 is a Lewisx-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewisx-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg687 yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  20. Structural and Immunogenicity Studies of a Cleaved, Stabilized Envelope Trimer Derived from Subtype A HIV-1

    PubMed Central

    Kang, Yun (Kenneth); Andjelic, Sofija; Binley, James M.; Crooks, Emma T.; Franti, Michael; Iyer, Sai Prasad N.; Donovan, Gerald P.; Dey, Antu K.; Zhu, Ping; Roux, Kenneth H.; Durso, Robert J.; Parsons, Thomas F.; Maddon, Paul J.; Moore, John P.; Olson, William C.

    2015-01-01

    SOSIP gp140 trimers represent a soluble, stabilized, proteolytically cleaved form of the HIV-1 envelope (Env) glycoproteins. SOSIP gp140 derived from a subtype A HIV-1 isolate, KNH1144, forms exceptionally stable trimers that resemble virion-associated Env in antigenicity and topology. Here, we used electron microscopy to demonstrate that KNH1144 SOSIP gp140 trimers bound three soluble CD4 molecules in a symmetrical orientation similar to that seen for native Env. We compared the immunogenicities of KNH1144 SOSIP gp140 trimers and gp120 monomers in rabbits and found that the trimers were superior at eliciting neutralizing antibodies (NAbs) to homologous virus as well as neutralization-sensitive subtype B and C viruses. The NAb specificities for SOSIP antisera mapped in part to the CD4 binding site on gp120. We also observed adjuvant-dependent induction of antibodies to the residual levels of host cell proteins (HCPs) contained in the purified Env preparations. When present, HCP antibodies enhanced pseudovirus infection. Our findings are relevant for the further development of Env-based vaccines for HIV-1. PMID:19567243

  1. Structural and immunogenicity studies of a cleaved, stabilized envelope trimer derived from subtype A HIV-1.

    PubMed

    Kang, Yun Kenneth; Andjelic, Sofija; Binley, James M; Crooks, Emma T; Franti, Michael; Iyer, Sai Prasad N; Donovan, Gerald P; Dey, Antu K; Zhu, Ping; Roux, Kenneth H; Durso, Robert J; Parsons, Thomas F; Maddon, Paul J; Moore, John P; Olson, William C

    2009-08-13

    SOSIP gp140 trimers represent a soluble, stabilized, proteolytically cleaved form of the HIV-1 envelope (Env) glycoproteins. SOSIP gp140 derived from a subtype A HIV-1 isolate, KNH1144, forms exceptionally stable trimers that resemble virion-associated Env in antigenicity and topology. Here, we used electron microscopy to demonstrate that KNH1144 SOSIP gp140 trimers bound three soluble CD4 molecules in a symmetrical orientation similar to that seen for native Env. We compared the immunogenicities of KNH1144 SOSIP gp140 trimers and gp120 monomers in rabbits and found that the trimers were superior at eliciting neutralizing antibodies (NAbs) to homologous virus as well as neutralization-sensitive subtype B and C viruses. The NAb specificities for SOSIP antisera mapped in part to the CD4 binding site on gp120. We also observed adjuvant-dependent induction of antibodies to the residual levels of host cell proteins (HCPs) contained in the purified Env preparations. When present, HCP antibodies enhanced pseudovirus infection. Our findings are relevant for the further development of Env-based vaccines for HIV-1.

  2. ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils

    PubMed Central

    Wang, Yue; Wu, Jianming; Newton, Robert; Bahaie, Nooshin S.; Long, Chunmei; Walcheck, Bruce

    2012-01-01

    CD16b (FcγRIIIb) is exclusively expressed by human neutrophils and binds IgG in immune complexes. Cell surface CD16b undergoes efficient ectodomain shedding upon neutrophil activation and apoptosis. Indeed, soluble CD16b is present at high levels in the plasma of healthy individuals, which appears to be maintained by the daily turnover of apoptotic neutrophils. At this time, the principal protease responsible for CD16b shedding is not known. We show that CD16b plasma levels were significantly decreased in patients administered a selective inhibitor targeting the metalloproteases ADAM10 and ADAM17. Additional analysis with inhibitors selective for ADAM10 or ADAM17 revealed that only inhibition of ADAM17 significantly blocked the cleavage of CD16b following neutrophil activation and apoptosis. CD16b shedding by ADAM17 was further demonstrated using a unique ADAM17 function-blocking mAb and a cell-based ADAM17 reconstitution assay. Unlike human CD16, however, mouse CD16 did not undergo efficient ectodomain shedding upon neutrophil stimulation or apoptosis, indicating that this mechanism cannot be modeled in normal mice. Taken together, our findings are the first to directly demonstrate that ADAM17 cleaves CD16 in human leukocytes. PMID:23228566

  3. In vitro evolution of distinct self-cleaving ribozymes in diverse environments

    PubMed Central

    Popović, Milena; Fliss, Palmer S.; Ditzler, Mark A.

    2015-01-01

    In vitro evolution experiments have long been used to evaluate the roles of RNA in both modern and ancient biology, and as a tool for biotechnology applications. The conditions under which these experiments have been conducted, however, do not reflect the range of cellular environments in modern biology or our understanding of chemical environments on the early earth, when the atmosphere and oceans were largely anoxic and soluble Fe2+ was abundant. To test the impact of environmental factors relevant to RNA's potential role in the earliest forms of life, we evolved populations of self-cleaving ribozymes in an anoxic atmosphere with varying pH in the presence of either Fe2+ or Mg2+. Populations evolved under these different conditions are dominated by different sequences and secondary structures, demonstrating global differences in the underlying fitness landscapes. Comparisons between evolutionary outcomes and catalytic activities also indicate that Mg2+ can readily take the place of Fe2+ in supporting the catalysis of RNA cleavage at neutral pH, but not at lower pH. These results highlight the importance of considering the specific environments in which functional biopolymers evolve when evaluating their potential roles in the origin of life, extant biology, or biotechnology. PMID:26130717

  4. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway.

    PubMed

    Saito, Yuichiro; Takeda, Jun; Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNA(Ser-Met). To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNA(Ser-Met), suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry-based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute "Domain 1" in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.

  5. Identification of an RNase that preferentially cleaves A/G nucleotides

    PubMed Central

    Xie, Jumin; Chen, Zhen; Zhang, Xueyan; Chen, Honghe; Guan, Wuxiang

    2017-01-01

    Ribonucleases play an important role in the RNA metabolism which is critical for the localization, stability and function of mature RNA transcripts. More and more ribonucleases were discovered in recent years with the progress of technology. In the present study, we found that the uncharacterized C19orf43, a novel interacting protein of human telomerase RNA (hTR), digested T7 transcribed RNA, total cellular RNA and RNA oligos but not DNA. Thus we named this new RNase as hTRIR (human telomerase RNA interacting RNase). Genetic analysis showed that hTRIR is conserved among eukaryotic species and widely expressed in different cell lines. The RNase activity of hTRIR works in a broad temperature and pH range while divalent cations are not required. The conserved C-terminus of C19orf43 is necessary for its activity. Finally, we found that hTRIR cleaves all four unpaired RNA nucleotides from 5′ end or 3′ end with higher efficiency for purine bases, which suggested that hTRIR is an exoribonuclease. Taken together, our study showed the first evidence of the novel function of hTRIR in vitro, which provides clue to study the regulatory mechanism of hTR homeostasis in vivo. PMID:28322335

  6. Effects of peptides cleaved from human fibrinogen by plasmin on rabbit kidney cells in culture

    SciTech Connect

    Stachurska, J.; Janik, M.; Kobus, M.; Luczak, M.; Szmigielski, S.; Roszkowski, M.; Gerdin, B.; Saldeen, T.; Kopec, M.

    1983-02-15

    Low molecular weight fibrinogen degradation products (LMW-FDP) containing a mixture of dialysable peptides cleaved from human fibrinogen by plasmin are cytotoxic to an established line of rabbit kidney cells and to primary cultures of rabbit kidney cells. The presence of LMW-FDP in a concentration of 50 micrograms/ml during the cell cultivation caused a considerable release of /sup 51/Cr from prelabelled cells and inhibited /sup 3/H-thymidine and /sup 86/Rb uptake. Among three isolated peptides of established primary structure only one, 6D: Ser-Gln-Leu-Gln-Lys-Val-Pro-Pro-Glu-Trp-Lys, induced a significant effect, i.e. it enhanced /sup 3/H-thymidine incorporation. Two others, 6A: Ala-Arg-Pro-Ala-Lys and 6E: Thr-Ser-Glu-Val-Lys, did not influence the examined parameters. Hence other components of LMW-FDP must be assumed to be responsible for the cytotoxic effect on kidney cell cultures.

  7. Purification of the trypanosome phospholipase C which cleaves the variant surface glycoprotein

    SciTech Connect

    Hereld, D.; Hart, G.W.; Englund, P.T.

    1986-05-01

    The surface coat of Trypanosoma brucei is composed of many copies of the Variant Surface Glycoprotein (VSG). This protein is tethered to the cell membrane by a glycolipid moiety which contains dimyristylphosphatidylinositol. Following cell lysis, an endogenous, membrane-bound phospholipase C cleaves the glycolipid and releases the VSG in soluble form. The authors have purified a lipase which they believe is responsible for VSG release. This enzyme, designated VSG lipase, is assayed by measuring release of butanol-soluble /sup 3/H from VSG labeled with (/sup 3/H)myristate. The purification involves detergent extraction of trypanosome membranes, ammonium sulfate fractionation, hydrophobic chromatography, and cation exchange chromatography. The enzyme is purified roughly 2500 fold and is nearly homogeneous. Based on SDS-PAGE, it has an apparent subunit molecular weight of 37,000 daltons. This polypeptide co-fractionates with the activity during several fractionation procedures. The enzyme has an apparent s/sub 20,w/ of 3.8 S. The purified VSG lipase is active in the presence of EDTA; its activity is inhibited by organomercurials and stimulated by dithiothreitol. The purified enzyme releases dimyristylglycerol from VSG.

  8. Substrate-Induced Conformational Changes Occur in All Cleaved Forms of Caspase-6

    SciTech Connect

    S Vaidya; E Velazquez-Delgado; G Abbruzzese; J Hardy

    2011-12-31

    Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.

  9. Human Immunodeficiency Virus Integration Protein Expressed in Escherichia Coli Possesses Selective DNA Cleaving Activity

    NASA Astrophysics Data System (ADS)

    Sherman, Paula A.; Fyfe, James A.

    1990-07-01

    The human immunodeficiency virus (HIV) integration protein, a potential target for selective antiviral therapy, was expressed in Escherichia coli. The purified protein, free of detectable contaminating endonucleases, selectively cleaved double-stranded DNA oligonucleotides that mimic the U3 and the U5 termini of linear HIV DNA. Two nucleotides were removed from the 3' ends of both the U5 plus strand and the U3 minus strand; in both cases, cleavage was adjacent to a conserved CA dinucleotide. The reaction was metal-ion dependent, with a preference for Mn2+ over Mg2+. Reaction selectivity was further demonstrated by the lack of cleavage of an HIV U5 substrate on the complementary (minus) strand, an analogous substrate that mimics the U3 terminus of an avian retrovirus, and an HIV U5 substrate in which the conserved CA dinucleotide was replaced with a TA dinucleotide. Such an integration protein-mediated cleavage reaction is expected to occur as part of the integration event in the retroviral life cycle, in which a double-stranded DNA copy of the viral RNA genome is inserted into the host cell DNA.

  10. Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA.

    PubMed

    Haurwitz, Rachel E; Sternberg, Samuel H; Doudna, Jennifer A

    2012-06-13

    CRISPR-Cas adaptive immune systems protect prokaryotes against foreign genetic elements. crRNAs derived from CRISPR loci base pair with complementary nucleic acids, leading to their destruction. In Pseudomonas aeruginosa, crRNA biogenesis requires the endoribonuclease Csy4, which binds and cleaves the repetitive sequence of the CRISPR transcript. Biochemical assays and three co-crystal structures of wild-type and mutant Csy4/RNA complexes reveal a substrate positioning and cleavage mechanism in which a histidine deprotonates the ribosyl 2'-hydroxyl pinned in place by a serine, leading to nucleophilic attack on the scissile phosphate. The active site catalytic dyad lacks a general acid to protonate the leaving group and positively charged residues to stabilize the transition state, explaining why the observed catalytic rate constant is ∼10(4)-fold slower than that of RNase A. We show that this RNA cleavage step is essential for assembly of the Csy protein-crRNA complex that facilitates target recognition. Considering that Csy4 recognizes a single cellular substrate and sequesters the cleavage product, evolutionary pressure has likely selected for substrate specificity and high-affinity crRNA interactions at the expense of rapid cleavage kinetics.

  11. A versatile tripodal Cu(I) reagent for C-N bond construction via nitrene-transfer chemistry: catalytic perspectives and mechanistic insights on C-H aminations/amidinations and olefin aziridinations.

    PubMed

    Bagchi, Vivek; Paraskevopoulou, Patrina; Das, Purak; Chi, Lingyu; Wang, Qiuwen; Choudhury, Amitava; Mathieson, Jennifer S; Cronin, Leroy; Pardue, Daniel B; Cundari, Thomas R; Mitrikas, George; Sanakis, Yiannis; Stavropoulos, Pericles

    2014-08-13

    A Cu(I) catalyst (1), supported by a framework of strongly basic guanidinato moieties, mediates nitrene-transfer from PhI═NR sources to a wide variety of aliphatic hydrocarbons (C-H amination or amidination in the presence of nitriles) and olefins (aziridination). Product profiles are consistent with a stepwise rather than concerted C-N bond formation. Mechanistic investigations with the aid of Hammett plots, kinetic isotope effects, labeled stereochemical probes, and radical traps and clocks allow us to conclude that carboradical intermediates play a major role and are generated by hydrogen-atom abstraction from substrate C-H bonds or initial nitrene-addition to one of the olefinic carbons. Subsequent processes include solvent-caged radical recombination to afford the major amination and aziridination products but also one-electron oxidation of diffusively free carboradicals to generate amidination products due to carbocation participation. Analyses of metal- and ligand-centered events by variable temperature electrospray mass spectrometry, cyclic voltammetry, and electron paramagnetic resonance spectroscopy, coupled with computational studies, indicate that an active, but still elusive, copper-nitrene (S = 1) intermediate initially abstracts a hydrogen atom from, or adds nitrene to, C-H and C═C bonds, respectively, followed by a spin flip and radical rebound to afford intra- and intermolecular C-N containing products.

  12. Synthesis, photochemical properties and DNA binding studies of dna cleaving agents based on chiral dipyridine dihydrodioxins salts

    NASA Astrophysics Data System (ADS)

    Shamaev, Alexei

    activated by UV-light. The mechanism of o-quinone release and intramolecular ET was studied in detail by methods of Ultrafast Transient Absortion Spectroscopy and supported by high-level quantum mechanical calculations. The binding properties of chiral intercalators based on PDHD to various DNA oligonucleotides were studied by various methods and DNA cleavage properties indicating strong binding and cleaving ability of the synthesized PDHDs. Also, a new method for synthesis of cyclohexa[e]pyrenes which possibly capable of intramolecular ET and electron transfer-oxidative stress (ET-OS) DNA cleavage was developed and partially accomplished.

  13. Partially strong WW scattering

    SciTech Connect

    Cheung Kingman; Chiang Chengwei; Yuan Tzuchiang

    2008-09-01

    What if only a light Higgs boson is discovered at the CERN LHC? Conventional wisdom tells us that the scattering of longitudinal weak gauge bosons would not grow strong at high energies. However, this is generally not true. In some composite models or general two-Higgs-doublet models, the presence of a light Higgs boson does not guarantee complete unitarization of the WW scattering. After partial unitarization by the light Higgs boson, the WW scattering becomes strongly interacting until it hits one or more heavier Higgs bosons or other strong dynamics. We analyze how LHC experiments can reveal this interesting possibility of partially strong WW scattering.

  14. Cp*Rh(III) and Cp*Ir(III)-catalysed redox-neutral C-H arylation with quinone diazides: quick and facile synthesis of arylated phenols.

    PubMed

    Zhang, Shang-Shi; Jiang, Chun-Yong; Wu, Jia-Qiang; Liu, Xu-Ge; Li, Qingjiang; Huang, Zhi-Shu; Li, Ding; Wang, Honggen

    2015-06-25

    Cp*Rh(III)- and Cp*Ir(III)-catalysed direct C-H arylation with quinone diazides as efficient coupling partners is disclosed. This redox-neutral protocol offers a facile, operationally simple and environmentally benign access to arylated phenols. The reaction represents the first example of Cp*Ir(III)-catalysed C-H direct arylation reaction.

  15. Catalytic oxygenation of sp3 "C-H" bonds with Ir(III) complexes of chelating triazoles and mesoionic carbenes.

    PubMed

    Hohloch, Stephan; Kaiser, Selina; Duecker, Fenja Leena; Bolje, Aljoša; Maity, Ramananda; Košmrlj, Janez; Sarkar, Biprajit

    2015-01-14

    Cp*-Ir(III) complexes with additional chelating ligands are known active pre-catalysts for the oxygenation of C-H bonds. We present here eight examples of such complexes where the denticity of the chelating ligands has been varied from the well-known 2,2'-bpy through pyridyl-triazole, bi-triazole to ligands containing pyridyl-triazolylidene, triazolyl-triazolylidene and bi-triazolylidenes. Additionally, we also compare the catalytic results to complexes containing chelating cyclometallated ligands with additional triazole or triazolylidene donors. Single crystal X-ray structural data are presented for all the new complexes that contain one or more triazolylidene donors of the mesoionic carbene type. We present the first example of a metal complex containing a chelating triazole-triazolylidene ligand. The results of the catalytic screening show that complexes containing unsymmetrical donors of the pyridyl-triazole or pyridyl-triazolylidene types are the most potent pre-catalysts for the C-H oxygenation of cyclooctane in the presence of either m-CPBA or NaIO4 as a sacrificial oxidant. These pre-catalysts can also be used to oxygenate C-H bonds in other substrates such as fluorene and ethyl benzene. The most potent pre-catalysts presented here work with a lower catalyst loading and under milder conditions while delivering better product yields in comparison with related literature known Ir(III) pre-catalysts. These results thus point to the potential of ligands with unsymmetrical donors obtained through the click reaction in oxidation catalysis.

  16. Design and development of POCN-pincer palladium catalysts for C-H bond arylation of azoles with aryl iodides.

    PubMed

    Khake, Shrikant M; Soni, Vineeta; Gonnade, Rajesh G; Punji, Benudhar

    2014-11-14

    Well-defined and efficient POCN-ligated palladium complexes have been developed for the direct C-H bond arylation of azoles with aryl iodides. The phosphinite-amine pincer ligands 1-(R2PO)-C6H4-3-(CH2N(i)Pr2) [(R2)POCN(iPr2)-H; R = (i)Pr (), R = (t)Bu ()] and corresponding palladium complexes {2-(R2PO)-C6H3-6-(CH2N(i)Pr2)}PdCl [((R2)POCN(iPr2))PdCl; R = (i)Pr (), R = (t)Bu ()] were synthesized in good yields. Treatment of palladium complex with KI and AgOAc afforded the complexes ((iPr2)POCN(iPr2))PdI () and ((iPr2)POCN(iPr2))Pd(OAc) (), respectively. Similarly, the reaction of with benzothiazolyl-lithium produces the ((iPr2)POCN(iPr2))Pd(benzothiazolyl) () complex in a quantitative yield. The pincer palladium complex efficiently catalyzes the C-H bond arylation of benzothiazole, substituted-benzoxazoles and 5-aryl oxazoles with diverse aryl iodides in the presence of CuI as a co-catalyst under mild reaction conditions. This represents the first example of a pincer palladium complex being applied for the direct C-H bond arylation of any heterocycle with low catalyst loading. A preliminary mechanistic investigation reveals that palladium nanoparticles are presumably not the catalytically active form of and supports the direct involvement of the catalyst , with complex being a probable key intermediate in the catalytic reaction.

  17. Molecular Recognition in Mn-Catalyzed C-H Oxidation. Reaction Mechanism and Origin of Selectivity from a DFT Perspective

    PubMed Central

    Balcells, David; Moles, Pamela; Blakemore, James; Raynaud, Christophe; Brudvig, Gary W.; Crabtree, Robert H.

    2010-01-01

    Experimental studies have shown that the C-H oxidation of ibuprofen and methylcyclohexane acetic acid can be carried out with high selectivies using [(terpy’)Mn(OH2)(μ-O)2Mn(OH2)(terpy’)]3+ as catalyst, where terpy’ is a terpyridine ligand functionalized with a phenylene linker and a Kemp’s triacid serving to recognize the reactant via H-bonding. Experiments, described here, suggest that the sulfate counter anion, present in stochiometric amounts, coordinates to manganese in place of water. DFT calculations have been carried out using [(terpy’)Mn(O)(μ-O)2Mn(SO4)(terpy’)]+ as model catalyst, to analyze the origin of selectivity and its relation to molecular recognition, as well as the mechanism of catalyst inhibition by tert-butyl benzoic acid. The calculations show that a number of spin states, all having radical oxygen character, are energetically accessible. All these spin states promote C-H oxidation via a rebound mechanism. The catalyst recognizes the substrate by a double H bond. This interaction orients the substrate inducing highly selective C-H oxidation. The double hydrogen bond stabilizes the reactant, the transition state and the product to the same extent. Consequently, the reaction occurs at lower energy than without molecular recognition. The association of the catalyst with tert-butyl benzoic acid is shown to shield the access of unbound substrate to the reactive oxo site, hence preventing non-selective hydroxylation. It is shown that the two recognition sites of the catalyst can be used in a cooperative manner to control the access to the reactive centre. PMID:19623399

  18. Visible-Light Photoredox-Catalyzed C-H Difluoroalkylation of Hydrazones through an Aminyl Radical/Polar Mechanism.

    PubMed

    Xu, Pan; Wang, Guoqiang; Zhu, Yuchen; Li, Weipeng; Cheng, Yixiang; Li, Shuhua; Zhu, Chengjian

    2016-02-18

    An unprecedented visible-light-induced direct C-H bond difluoroalkylation of aldehyde-derived hydrazones was developed. This reaction represents a new way to synthesize substituted hydrazones. The salient features of this reaction include difluorinated hydrazone synthesis rather than classical amine synthesis, extremely mild reaction conditions, high efficiency, wide substrate scope, ease in further transformations of the products, and one-pot syntheses. Mechanistic analyses and theoretical calculations indicate that this reaction is enabled by a novel aminyl radical/polar crossover mechanism, with the aminyl radical being oxidized into the corresponding aminyl cation through a single electron transfer (SET) process.

  19. Rh-Catalyzed, Regioselective, C-H Bond Functionalization: Access to Quinoline-Branched Amines and Dimers.

    PubMed

    Reddy, M Damoder; Fronczek, Frank R; Watkins, E Blake

    2016-11-04

    Rh-catalyzed, chelation-induced, C-5 regioselective C-H functionalization of 8-amidoquinolines with a range of N-Boc aminals is reported for the first time. The addition of in situ generated imines to C(sp(2))-H bonds afforded branched amines in good to excellent yields. Moreover, this transformation features good functional group compatibility, broad substrate scope, and mild reaction conditions and is suitable for gram-scale synthesis. In addition, an unprecedented, chelation-induced, site-selective, remote dimerization of quinolines led to the formation of dimer frameworks in moderate yields under Rh-catalyzed conditions.

  20. Application of the invariant line model for B. C. C. /H. C. P. couples: A criterion based on surface variations

    SciTech Connect

    Duly, D. )

    1993-05-01

    The problem of the physical meaning of the invariant line, which is generally encountered during precipitation reactions involving b.c.c/h.c.p. couples, is reconsidered. The applicability of various criterions for the selection of a specific invariant line and for the precipitate morphology in these systems is tested in view of the experimental data available. It is shown that energetic considerations are not sufficient to account for the experimental results whereas criterions based on consideration of surface variations are in good agreement with observations.

  1. Double N,B-Type Bidentate Boryl Ligands Enabling a Highly Active Iridium Catalyst for C-H Borylation.

    PubMed

    Wang, Guanghui; Xu, Liang; Li, Pengfei

    2015-07-01

    Boryl ligands hold promise in catalysis due to their very high electron-donating property. In this communication double N,B-type boryl anions were designed as bidentate ligands to promote an sp(2) C-H borylation reaction. A symmetric pyridine-containing tetraaminodiborane(4) compound (1) was readily prepared as the ligand precursor that could be used, in combination with [Ir(OMe)(COD)]2, to in situ generate a highly active catalyst for a broad range of (hetero)arene substrates including highly electron-rich and/or sterically hindered ones. This work provides the first example of a bidentate boryl ligand in supporting homogeneous organometallic catalysis.

  2. Synthesis of Active Hexafluoroisopropyl Benzoates through a Hydrogen-Bond-Enabled Palladium(II)-Catalyzed C-H Alkoxycarbonylation Reaction.

    PubMed

    Wang, Yang; Gevorgyan, Vladimir

    2017-03-13

    A Pd(II) -catalyzed ortho C-H alkoxycarbonylation reaction of aryl silanes toward active hexafluoroisopropyl (HFIP) benzoate esters has been developed. This efficient reaction features high selectivity and good functional-group tolerance. Notably, given the general nature of the silyl-tethered directing group, this method delivers products bearing two independently modifiable sites. NMR studies reveal the presence of hydrogen bonding between HFIP and a pyrimidine nitrogen atom of the directing group, and it is thought to be crucial for the success of this alkoxycarbonylation reaction.

  3. Exploring the plasma chemistry in microwave chemical vapor deposition of diamond from C/H/O gas mixtures.

    PubMed

    Kelly, Mark W; Richley, James C; Western, Colin M; Ashfold, Michael N R; Mankelevich, Yuri A

    2012-09-27

    Microwave (MW)-activated CH(4)/CO(2)/H(2) gas mixtures operating under conditions relevant to diamond chemical vapor deposition (i.e., X(C/Σ) = X(elem)(C)/(X(elem)(C) + X(elem)(O)) ≈ 0.5, H(2) mole fraction = 0.3, pressure, p = 150 Torr, and input power, P = 1 kW) have been explored in detail by a combination of spatially resolved absorption measurements (of CH, C(2)(a), and OH radicals and H(n = 2) atoms) within the hot plasma region and companion 2-dimensional modeling of the plasma. CO and H(2) are identified as the dominant species in the plasma core. The lower thermal conductivity of such a mixture (cf. the H(2)-rich plasmas used in most diamond chemical vapor deposition) accounts for the finding that CH(4)/CO(2)/H(2) plasmas can yield similar maximal gas temperatures and diamond growth rates at lower input powers than traditional CH(4)/H(2) plasmas. The plasma chemistry and composition is seen to switch upon changing from oxygen-rich (X(C/Σ) < 0.5) to carbon-rich (X(C/Σ) > 0.5) source gas mixtures and, by comparing CH(4)/CO(2)/H(2) (X(C/Σ) = 0.5) and CO/H(2) plasmas, to be sensitive to the choice of source gas (by virtue of the different prevailing gas activation mechanisms), in contrast to C/H process gas mixtures. CH(3) radicals are identified as the most abundant C(1)H(x) [x = 0-3] species near the growing diamond surface within the process window for successful diamond growth (X(C/Σ) ≈ 0.5-0.54) identified by Bachmann et al. (Diamond Relat. Mater.1991, 1, 1). This, and the findings of similar maximal gas temperatures (T(gas) ~2800-3000 K) and H atom mole fractions (X(H)~5-10%) to those found in MW-activated C/H plasmas, points to the prevalence of similar CH(3) radical based diamond growth mechanisms in both C/H and C/H/O plasmas.

  4. Mechanochemical Rhodium(III)-Catalyzed C-H Bond Functionalization of Acetanilides under Solventless Conditions in a Ball Mill.

    PubMed

    Hermann, Gary N; Becker, Peter; Bolm, Carsten

    2015-06-15

    In a proof-of-principle study, a planetary ball mill was applied to rhodium(III)-catalyzed C-H bond functionalization. Under solventless conditions and in the presence of a minute amount of Cu(OAc)2, the mechanochemical activation led to the formation of an active rhodium species, thus enabling an oxidative Heck-type cross-coupling reaction with dioxygen as the terminal oxidant. The absence of an organic solvent, the avoidance of a high reaction temperature, the possibility of minimizing the amount of the metallic mediator, and the simplicity of the protocol result in a powerful and environmentally benign alternative to the common solution-based standard protocol.

  5. Discovery of an α-amino C-H arylation reaction using the strategy of accelerated serendipity.

    PubMed

    McNally, Andrew; Prier, Christopher K; MacMillan, David W C

    2011-11-25

    Serendipity has long been a welcome yet elusive phenomenon in the advancement of chemistry. We sought to exploit serendipity as a means of rapidly identifying unanticipated chemical transformations. By using a high-throughput, automated workflow and evaluating a large number of random reactions, we have discovered a photoredox-catalyzed C-H arylation reaction for the construction of benzylic amines, an important structural motif within pharmaceutical compounds that is not readily accessed via simple substrates. The mechanism directly couples tertiary amines with cyanoaromatics by using mild and operationally trivial conditions.

  6. Mechanism of cooperative catalysis in a Lewis acid promoted nickel-catalyzed dual C-H activation reaction.

    PubMed

    Anand, Megha; Sunoj, Raghavan B

    2012-09-07

    The mechanism of cooperativity offered by AlMe(3) in a Ni-catalyzed dehydrogenative cycloaddition between substituted formamides and an alkyne is investigated by using DFT(SMD(toluene)/M06/6-31G**) methods. The preferred pathway is identified to involve dual C-H activation, with first a higher barrier formyl C(sp(2))-H oxidative insertion followed by benzylic methyl C(sp(3))-H activation. The cooperativity is traced to be of kinetic origin as evidenced by stabilized transition states when AlMe(3) is bound to the formyl group, particularly in the oxidative insertion step.

  7. Lactamization of sp(2) C-H Bonds with CO2 : Transition-Metal-Free and Redox-Neutral.

    PubMed

    Zhang, Zhen; Liao, Li-Li; Yan, Si-Shun; Wang, Lei; He, Yun-Qi; Ye, Jian-Heng; Li, Jing; Zhi, Yong-Gang; Yu, Da-Gang

    2016-06-13

    The first direct use of carbon dioxide in the lactamization of alkenyl and heteroaryl C-H bonds to synthesize important 2-quinolinones and polyheterocycles in moderate to excellent yields is reported. Carbon dioxide, a nontoxic, inexpensive, and readily available greenhouse gas, acts as an ideal carbonyl source. Importantly, this transition-metal-free and redox-neutral process is eco-friendly and desirable for the pharmaceutical industry. Moreover, these reactions feature a broad substrate scope, good functional group tolerance, facile scalability, and easy product derivatization.

  8. Rhodium(III)-Catalyzed Enantiotopic C-H Activation Enables Access to P-Chiral Cyclic Phosphinamides.

    PubMed

    Sun, Yang; Cramer, Nicolai

    2017-01-02

    Compounds with stereogenic phosphorus atoms are frequently used as ligands for transition-metal as well as organocatalysts. A direct catalytic enantioselective method for the synthesis of P-chiral compounds from easily accessible diaryl phosphinamides is presented. The use of rhodium(III) complexes equipped with a suitable atropochiral cyclopentadienyl ligand is shown to enable an enantiodetermining C-H activation step. Upon trapping with alkynes, a broad variety of cyclic phosphinamides with a stereogenic phosphorus(V) atom are formed in high yields and enantioselectivities. Moreover, these can be reduced enantiospecifically to P-chiral phosphorus(III) compounds.

  9. Reactivity of mononuclear alkylperoxo copper(II) complex. O-O bond cleavage and C-H bond activation.

    PubMed

    Kunishita, Atsushi; Ishimaru, Hirohito; Nakashima, Satoru; Ogura, Takashi; Itoh, Shinobu

    2008-04-02

    A detailed reactivity study has been carried out for the first time on a new mononuclear alkylperoxo copper(II) complex, which is generated by the reaction of copper(II) complex supported by the bis(pyridylmethyl)amine tridentate ligand containing a phenyl group at the 6-position of the pyridine donor groups and cumene hydroperoxide (CmOOH) in CH3CN. The cumylperoxo copper(II) complex thus obtained has been found to undergo homolytic cleavage of the O-O bond and induce C-H bond activation of exogenous substrates, providing important insights into the catalytic mechanism of copper monooxygenases.

  10. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    PubMed

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant.

  11. Kinetic Model of C/H/N/O Emissions in Laser-Induced Breakdown Spectroscopy of Organic Compounds

    DTIC Science & Technology

    2010-05-01

    the excited, emitting C/H/N/O atomic levels. In previous work, we carried out similar studies of LIBS of metallic lead in air and argon atmospheres...assumption of local thermodynamic equilibrium to derive the tem- perature as a function of time. In this analysis, the line intensities were computed as areas...induced breakdown spectroscopy plume from metallic lead,” Appl. Opt. 42, 5947–5962 (2003). 7. V. I. Babushok, F. C. DeLucia, Jr., P. J. Dagdigian

  12. Transition Metal-Free Selective Double sp(3) C-H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams.

    PubMed

    Osorio-Nieto, Urbano; Chamorro-Arenas, Delfino; Quintero, Leticia; Höpfl, Herbert; Sartillo-Piscil, Fernando

    2016-09-16

    The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.

  13. Computational study on the mechanism and selectivity of C-H bond activation and dehydrogenative functionalization in the synthesis of rhazinilam.

    PubMed

    Ellis, Corey S; Ess, Daniel H

    2011-09-02

    The key platinum mediated C-H bond activation and functionalization steps in the synthesis of (-)-rhazinilam (Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900) were investigated using the M06 and B3LYP density functional approximation methods. This computational study reveals that ethyl group dehydrogenation begins with activation of a primary C-H bond in preference to a secondary C-H bond in an insertion/methane elimination pathway. The C-H activation step is found to be reversible while the methane elimination (reductive elimination) transition state controls rate and diastereoselectivity. The chiral oxazolinyl ligand induces ethyl group selectivity through stabilizing weak interactions between its phenyl group (or cyclohexyl group) and the carboxylate group. After C-H activation and methane elimination steps, Pt-C bond functionalization occurs through β-hydride elimination to give the alkene platinum hydride complex.

  14. Strong Navajo Marriages

    ERIC Educational Resources Information Center

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…

  15. Use of cleaved amplified polymorphic sequences to distinguish strains of Staphylococcus epidermidis.

    PubMed

    Calderwood, S B; Baker, M A; Carroll, P A; Michel, J L; Arbeit, R D; Ausubel, F M

    1996-11-01

    We examined the utility of a PCR-based method termed cleaved amplified polymorphic sequences (CAPS) to type 35 well-characterized isolates of Staphylococcus epidermidis. The results were compared with detailed epidemiologic information and typing obtained by using pulsed-field gel electrophoresis (PFGE). To identify CAPS markers for this study, eight pairs of oligonucleotide primers corresponding to five previously sequenced S. epidermidis genes were synthesized and then used to amplify DNA sequences from the S. epidermidis strains by using PCR. Amplified products were reproducibly obtained for seven of eight primer pairs from chromosomal DNA of 33 of the 35 isolates. Seven restriction site polymorphisms were found in five of the amplified products when they were subjected to digestion with a panel of restriction endonucleases. Each fragment-enzyme combination that was polymorphic demonstrated only two alleles in the 33 S. epidermidis isolates analyzed, corresponding to the presence or absence of a single restriction site. Overall, five distinct combinations of alleles were detected and were designated CAPS types A through E. There was a close correlation between the CAPS grouping, the epidemiologic information for the strains, and grouping by PFGE following SmaI digestion of chromosomal DNA. Although PFGE analysis was more discriminatory than typing based on the limited number of CAPS markers used in this study (isolates from the same CAPS group were sometimes distributed into more than one PFGE group), no isolates from the same PFGE group were found in more than one CAPS group. The CAPS procedure was highly reproducible, in contrast to published experience with arbitrarily primed PCR. These preliminary data suggest that CAPS represents a PCR-based technique for strain typing that is highly reproducible, rapid, utilizes widely available technologies, and provides results that are relatively easy to interpret and express.

  16. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase

    SciTech Connect

    Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.

    2014-12-29

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe3+ to activate O2 and catecholic substrates for reaction. The inability of Fe3+ to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated in this paper using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe3+ species, and the anhydride-Fe3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe2+ intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Finally, structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.

  17. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase

    DOE PAGES

    Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.

    2014-12-29

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe3+ to activate O2 and catecholic substrates for reaction. The inability of Fe3+ to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated in this paper using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystalmore » structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe3+ species, and the anhydride-Fe3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe2+ intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Finally, structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.« less

  18. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    SciTech Connect

    Baldwin, Michael; Russo, Crystal; Li, Xuerong; Chishti, Athar H.

    2014-08-08

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulum of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.

  19. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase

    PubMed Central

    Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.

    2015-01-01

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe3+ to activate O2 and catecholic substrates for reaction. The inability of Fe3+ to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated here using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe3+ species, and the anhydride-Fe3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe2+ intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage. PMID:25548185

  20. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase.

    PubMed

    Knoot, Cory J; Purpero, Vincent M; Lipscomb, John D

    2015-01-13

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe(3+) to activate O2 and catecholic substrates for reaction. The inability of Fe(3+) to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated here using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe(3+) species, and the anhydride-Fe(3+) intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe(2+)-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe(2+) intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.