Sample records for clic compact linear

  1. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    NASA Astrophysics Data System (ADS)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  2. Design and system integration of the superconducting wiggler magnets for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin

    2012-04-01

    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.

  3. Overview of the CLIC detector and its physics potential

    NASA Astrophysics Data System (ADS)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  4. Development and testing of a double length pets for the CLIC experimental area

    NASA Astrophysics Data System (ADS)

    Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.

    2014-05-01

    CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.

  5. RF pulse shape control in the compact linear collider test facility

    NASA Astrophysics Data System (ADS)

    Kononenko, Oleksiy; Corsini, Roberto

    2018-07-01

    The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.

  6. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aicheler, M; Burrows, P.; Draper, M.

    This report describes the accelerator studies for a future multi-TeV e +e - collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studiesmore » are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.« less

  7. Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Han, Y.; Latina, A.; Ma, L.; Schulte, D.

    2017-06-01

    The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.

  8. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  9. Beam-based measurements of long-range transverse wakefields in the Compact Linear Collider main-linac accelerating structure

    DOE PAGES

    Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...

    2016-01-20

    The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less

  10. Drive beam stabilisation in the CLIC Test Facility 3

    NASA Astrophysics Data System (ADS)

    Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.

    2018-06-01

    The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.

  11. Higgs physics at the CLIC electron-positron linear collider.

    PubMed

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  12. Conceptual Design for CLIC Gun Pulser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Tao

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  13. Beam dynamic simulations of the CLIC crab cavity and implications on the BDS

    NASA Astrophysics Data System (ADS)

    Shinton, I. R. R.; Burt, G.; Glasman, C. J.; Jones, R. M.; Wolski, A.

    2011-11-01

    The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as "Crab cavities", are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.

  14. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  15. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretched-wire RF measurements

    NASA Astrophysics Data System (ADS)

    Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred

    2015-09-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  16. Silicon pixel R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Munker, M.

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e- Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1-2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm-500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  17. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.

    2015-11-19

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the referencemore » cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Lastly, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.« less

  18. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  19. CLIC CDR - physics and detectors: CLIC conceptual design report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, E.; Demarteau, M.; Repond, J.

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximizemore » the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but considered feasible following a realistic future R&D program.« less

  20. Development and validation of a multilateration test bench for particle accelerator pre-alignment

    NASA Astrophysics Data System (ADS)

    Kamugasa, Solomon William; Rothacher, Markus; Gayde, Jean-Christophe; Mainaud Durand, Helene

    2018-03-01

    The development and validation of a portable coordinate measurement solution for fiducialization of compact linear collider (CLIC) components is presented. This new solution addresses two limitations of high-accuracy state-of-the-art coordinate measuring machines, i.e. lack of portability and limited measurement volume. The solution is based on frequency scanning interferometry (FSI) distances and the multilateration coordinate measurement technique. The developments include a reference sphere for localizing the FSI optical fiber tip and a kinematic mount for repositioning the reference sphere with sub-micrometric repeatability. This design enables absolute distance measurements in different directions from the same point, which is essential for multilateration. A multilateration test bench built using these prototypes has been used to fiducialize a CLIC cavity beam position monitor and 420 mm-long main beam quadrupole magnet. The combined fiducialization uncertainty achieved is 3.5 μm (k  =  1), which is better than the CLIC 5 μm (k  =  1) uncertainty specification.

  1. LCFIPlus: A framework for jet analysis in linear collider studies

    NASA Astrophysics Data System (ADS)

    Suehara, Taikan; Tanabe, Tomohiko

    2016-02-01

    We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  2. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Li, Z.; Ng, C.

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less

  4. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  5. Polarized γ source based on Compton backscattering in a laser cavity

    NASA Astrophysics Data System (ADS)

    Yakimenko, V.; Pogorelsky, I. V.

    2006-09-01

    We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC), and the Compact Linear Collider (CLIC). This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO2 laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.

  6. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  7. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  8. Crab cavities: Past, present, and future of a challenging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.

    2015-05-03

    In two-ring facilities operating with a crossing-angle collision scheme, luminosity can be limited due to an incomplete overlapping of the colliding bunches. Crab cavities then are introduced to restore head-on collisions by providing the destined opposite deflection to the head and tail of the bunch. An increase in luminosity was demonstrated at KEKB with global crab-crossing, while the Large Hardron Collider (LHC) at CERN currently is designing local crab crossing for the Hi-Lumi upgrade. Future colliders may investigate both approaches. In this paper, we review the challenges in the technology, and the implementation of crab cavities, while discussing experience inmore » earlier colliders, ongoing R&D, and proposed implementations for future facilities, such as HiLumi-LHC, CERN’s compact linear collider (CLIC), the international linear collider (ILC), and the electron-ion collider under design at BNL (eRHIC).« less

  9. Working Group Report: Higgs Boson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Sally; Gritsan, Andrei; Logan, Heather

    2013-10-30

    This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Our report includes projections of measurement capabilities frommore » detailed studies of the Compact Linear Collider (CLIC), a Gamma-Gamma Collider, the International Linear Collider (ILC), the Large Hadron Collider High-Luminosity Upgrade (HL-LHC), Very Large Hadron Colliders up to 100 TeV (VLHC), a Muon Collider, and a Triple-Large Electron Positron Collider (TLEP).« less

  10. Femto-second synchronisation with a waveguide interferometer

    NASA Astrophysics Data System (ADS)

    Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.

    2018-03-01

    CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.

  11. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    Purpose: Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. Methods: T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left–right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. Results: The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left–right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left–right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536

  12. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.

  13. Potential and challenges of the physics measurements with very forward detectors at linear colliders

    NASA Astrophysics Data System (ADS)

    Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration

    2016-04-01

    The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.

  14. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-06-15

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  15. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Stapnes, Steinar

    2017-12-18

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  16. Signals for Extra Dimensions at CLIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Thomas G.

    A brief overview is presented of the signatures for several different models with extra dimensions at CLIC, an e{sup +}e{sup -} linear collider with a center of mass energy of 3-5 TeV and an integrated luminosity of order 1 ab{sup -1}. In all cases the search reach for the resulting new physic signatures is found to be in the range of {approx} 15-80 TeV.

  17. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  18. Submicron multi-bunch BPM for CLIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmickler, H.; Soby, L.; /CERN

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied tomore » measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.« less

  19. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    ScienceCinema

    Thomson, Mark

    2018-05-21

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  20. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.

    PubMed

    Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet

    2016-03-01

    Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. Transcriptional over-expression of chloride intracellular channels 3 and 4 in malignant pleural mesothelioma.

    PubMed

    Tasiopoulou, Vasiliki; Magouliotis, Dimitrios; Solenov, Evgeniy I; Vavougios, Georgios; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G

    2015-12-01

    Chloride Intracellular Channels (CLICs) are contributing to the regulation of multiple cellular functions. CLICs have been found over-expressed in several malignancies, and therefore they are currently considered as potential drug targets. The goal of our study was to assess the gene expression levels of the CLIC's 1-6 in malignant pleural mesothelioma (MPM) as compared to controls. We used gene expression data from a publicly available microarray dataset comparing MPM versus healthy tissue in order to investigate the differential expression profile of CLIC 1-6. False discovery rates were calculated and the interactome of the significantly differentially expressed CLICs was constructed and Functional Enrichment Analysis for Gene Ontologies (FEAGO) was performed. In MPM, the gene expressions of CLIC3 and CLIC4 were significantly increased compared to controls (p=0.001 and p<0.001 respectively). A significant positive correlation between the gene expressions of CLIC3 and CLIC4 (p=0.0008 and Pearson's r=0.51) was found. Deming regression analysis provided an association equation between the CLIC3 and CLIC4 gene expressions: CLIC3=4.42CLIC4-10.07. Our results indicate that CLIC3 and CLIC4 are over-expressed in human MPM. Moreover, their expressions correlate suggesting that they either share common gene expression inducers or that their products act synergistically. FAEGO showed that CLIC interactome might contribute to TGF beta signaling and water transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Functional Role of CLIC1 Ion Channel in Glioblastoma-Derived Stem/Progenitor Cells

    PubMed Central

    2013-01-01

    Background Chloride channels are physiologically involved in cell division and motility. Chloride intracellular channel 1 (CLIC1) is overexpressed in a variety of human solid tumors compared with normal tissues, suggesting a potential involvement of CLIC1 in the regulation of tumorigenesis. This led us to investigate the role of CLIC1 in gliomagenesis. Methods We used the neurosphere system to isolate stem/progenitor cells from human glioblastomas (GBMs). CLIC1 targeting in GBM neurospheres was achieved by both lentiviral-mediated short-hairpin RNA transduction and CLIC1 antibody treatment, and its effect on stem-like properties was analyzed in vitro by proliferation and clonogenic assays and in vivo by orthotopic injection in immunocompromised mice. Channel activity was studied by perforated patch clamp technique. Differences in expression were analyzed by analysis of variance with Tamhane’s multiple comparison test. Kaplan–Meier analyses and log-rank test were used to assess survival. All statistical tests were two-sided. Results CLIC1 was statistically significantly overexpressed in GBMs compared with normal brain tissues (P < .001) with a better survival of patients with CLIC1 low-expressing tumors (CLIC1low vs CLIC1high survival: χ2 = 74.35; degrees of freedom = 1; log-rank P < .001). CLIC1 was variably expressed in patient-derived GBM neurospheres and was found enriched in the stem/progenitor compartment. CLIC1 silencing reduced proliferative (P < .01), clonogenic (P < .01), and tumorigenic capacity (P < .05) of stem/progenitor cells. The reduction of CLIC1 chloride currents with a specific CLIC1 antibody mirrored the biological effects of CLIC1 silencing in GBM patient–derived neurospheres. Conclusions Reduced gliomagenesis after CLIC1 targeting in tumoral stem/progenitor cells and the finding that CLIC1 expression is inversely associated with patient survival suggest CLIC1 as a potential target and prognostic biomarker. PMID:24115360

  3. Design, fabrication, and high-gradient testing of an X -band, traveling-wave accelerating structure milled from copper halves

    NASA Astrophysics Data System (ADS)

    Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao; Dolgashev, Valery; Bowden, Gorden; Haase, Andrew; Lucas, Thomas Geoffrey; Volpi, Matteo; Esperante-Pereira, Daniel; Rajamäki, Robin

    2018-06-01

    A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV /m at a rf breakdown rate of less than 1.5 ×10-5 breakdowns /pulse /m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.

  4. Tilapia and human CLIC2 structures are highly conserved.

    PubMed

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Inherent flexibility of CLIC6 revealed by crystallographic and solution studies.

    PubMed

    Ferofontov, Alisa; Strulovich, Roi; Marom, Milit; Giladi, Moshe; Haitin, Yoni

    2018-05-02

    Chloride intracellular channels (CLICs) are a family of unique proteins, that were suggested to adopt both soluble and membrane-associated forms. Moreover, following this unusual metamorphic change, CLICs were shown to incorporate into membranes and mediate ion conduction in vitro, suggesting multimerization upon membrane insertion. Here, we present a 1.8 Å resolution crystal structure of the CLIC domain of mouse CLIC6 (mCLIC6). The structure reveals a monomeric arrangement and shows a high degree of structural conservation with other CLICs. Small-angle X-ray scattering (SAXS) analysis of mCLIC6 demonstrated that the overall solution structure is similar to the crystallographic conformation. Strikingly, further analysis of the SAXS data using ensemble optimization method unveiled additional elongated conformations, elucidating high structural plasticity as an inherent property of the protein. Moreover, structure-guided perturbation of the inter-domain interface by mutagenesis resulted in a population shift towards elongated conformations of mCLIC6. Additionally, we demonstrate that oxidative conditions induce an increase in mCLIC6 hydrophobicity along with mild oligomerization, which was enhanced by the presence of membrane mimetics. Together, these results provide mechanistic insights into the metamorphic nature of mCLIC6.

  6. Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane.

    PubMed

    Goodchild, Sophia C; Howell, Michael W; Cordina, Nicole M; Littler, Dene R; Breit, Samuel N; Curmi, Paul M G; Brown, Louise Jennifer

    2009-12-01

    Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.

  7. CLIC4 regulates cell adhesion and β1 integrin trafficking.

    PubMed

    Argenzio, Elisabetta; Margadant, Coert; Leyton-Puig, Daniela; Janssen, Hans; Jalink, Kees; Sonnenberg, Arnoud; Moolenaar, Wouter H

    2014-12-15

    Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of β1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking. © 2014. Published by The Company of Biologists Ltd.

  8. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery

    PubMed Central

    2014-01-01

    Background CLIC4, a member of the CLIC family of proteins, was recently demonstrated to translocate to the nucleus in differentiating keratinocytes where it potentiates TGFβ-driven gene regulation. Since TGFβ signaling is known to play important roles in the fibrotic response to acute kidney injury, and since CLIC4 is abundantly expressed in kidney, we hypothesized that CLIC4 may play a role in the response to acute kidney injury. Methods Previously described Clic4 null mice were analyzed for the effect of absence of CLIC4 on growth, development and response to kidney injury. Kidney size, glomerular counts and density of peritubular capillaries of matched WT and Clic4 null mice were determined. Cohorts of WT and Clic4 null mice were subjected to the folic acid model of acute kidney injury. Extent of acute injury and long term functional recovery were assessed by plasma blood urea nitrogen (BUN); long term fibrosis/scarring was determined by histochemical assessment of kidney sections and by residual renal mass. Activation of the TGFβ signaling pathway was assessed by semi-quantitative western blots of phosphorylated SMADs 2 and 3. Results CLIC4 is abundantly expressed in the apical pole of renal proximal tubule cells, and in endothelial cells of glomerular and peritubular capillaries. CLIC4 null mice are small, have smaller kidneys with fewer glomeruli and less dense peritubular capillary networks, and have increased proteinuria. The Clic4 null mice show increased susceptibility to folic acid-induced acute kidney injury but no difference in recovery from acute injury, no nuclear redistribution of CLIC4 following injury, and no significant difference in activation of the TGFβ-signaling pathway as reflected in the level of phosphorylation of SMADs 2 and 3. Conclusions Absence of CLIC4 results in morphologic changes consistent with its known role in angiogenesis. These changes may be at least partially responsible for the increased susceptibility to acute kidney injury. However, the absence of CLIC4 has no significant impact on the extent of functional recovery or fibrosis following acute injury, indicating that CLIC4 does not play a major non-redundant role in the TGFβ signaling involved in response to acute kidney injury. PMID:24708746

  9. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets

    PubMed Central

    Li, Yang; Liu, Jun S.; Mootha, Vamsi K.

    2017-01-01

    In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active. PMID:28719601

  10. Silicon technologies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  11. CLIC Project Overview

    ScienceCinema

    Latina, Andrea

    2017-12-11

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  12. Gravitational mass of relativistic matter and antimatter

    DOE PAGES

    Kalaydzhyan, Tigran

    2015-10-13

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, m g, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits -65 < m g/m <110 not excluding the so-calledmore » antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 < m g/m < 1.04 on the gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 -4 ×10 -7 < m g/m <1 +2 ×10 -7 for an electron and positron. Lastly, we comment on a possibility of performing complementary tests at the future International Linear Collider (ILC) and Compact Linear Collider (CLIC).« less

  13. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65

  14. Proteome Analysis for Downstream Targets of Oncogenic KRAS - the Potential Participation of CLIC4 in Carcinogenesis in the Lung

    PubMed Central

    Okudela, Koji; Katayama, Akira; Woo, Tetsukan; Mitsui, Hideaki; Suzuki, Takehisa; Tateishi, Yoko; Umeda, Shigeaki; Tajiri, Michihiko; Masuda, Munetaka; Nagahara, Noriyuki; Kitamura, Hitoshi; Ohashi, Kenichi

    2014-01-01

    This study investigated the proteome modulated by oncogenic KRAS in immortalized airway epithelial cells. Chloride intracellular channel protein 4 (CLIC4), S100 proteins (S100A2 and S100A11), tropomyosin 2, cathepsin L1, integrinsα3, eukaryotic elongation factor 1, vimentin, and others were discriminated. We here focused on CLIC4 to investigate its potential involvement in carcinogenesis in the lung because previous studies suggested that some chloride channels and chloride channel regulators could function as tumor suppressors. CILC4 protein levels were reduced in some lung cancer cell lines. The restoration of CLIC4 in lung cancer cell lines in which CLIC4 expression was reduced attenuated their growth activity. The immunohistochemical expression of the CLIC4 protein was weaker in primary lung cancer cells than in non-tumorous airway epithelial cells and was occasionally undetectable in some tumors. CLIC4 protein levels were significantly lower in a subtype of mucinous ADC than in others, and were also significantly lower in KRAS-mutated ADC than in EGFR-mutated ADC. These results suggest that the alteration in CLIC4 could be involved in restrictedly the development of a specific fraction of lung adenocarcinomas. The potential benefit of the proteome modulated by oncogenic KRAS to lung cancer research has been demonstrated. PMID:24503901

  15. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current

    PubMed Central

    Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M.G.; Mazzanti, Michele; Florio, Tullio

    2014-01-01

    Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment. PMID:25361004

  16. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current.

    PubMed

    Gritti, Marta; Würth, Roberto; Angelini, Marina; Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M G; Mazzanti, Michele; Florio, Tullio

    2014-11-30

    Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment.

  17. Ancient genomic architecture for mammalian olfactory receptor clusters

    PubMed Central

    Aloni, Ronny; Olender, Tsviya; Lancet, Doron

    2006-01-01

    Background Mammalian olfactory receptor (OR) genes reside in numerous genomic clusters of up to several dozen genes. Whole-genome sequence alignment nets of five mammals allow their comprehensive comparison, aimed at reconstructing the ancestral olfactory subgenome. Results We developed a new and general tool for genome-wide definition of genomic gene clusters conserved in multiple species. Syntenic orthologs, defined as gene pairs showing conservation of both genomic location and coding sequence, were subjected to a graph theory algorithm for discovering CLICs (clusters in conservation). When applied to ORs in five mammals, including the marsupial opossum, more than 90% of the OR genes were found within a framework of 48 multi-species CLICs, invoking a general conservation of gene order and composition. A detailed analysis of individual CLICs revealed multiple differences among species, interpretable through species-specific genomic rearrangements and reflecting complex mammalian evolutionary dynamics. One significant instance involves CLIC #1, which lacks a human member, implying the human-specific deletion of an OR cluster, whose mouse counterpart has been tentatively associated with isovaleric acid odorant detection. Conclusion The identified multi-species CLICs demonstrate that most of the mammalian OR clusters have a common ancestry, preceding the split between marsupials and placental mammals. However, only two of these CLICs were capable of incorporating chicken OR genes, parsimoniously implying that all other CLICs emerged subsequent to the avian-mammalian divergence. PMID:17010214

  18. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  19. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity

    PubMed Central

    Hernandez-Fernaud, Juan R.; Ruengeler, Elena; Casazza, Andrea; Neilson, Lisa J.; Pulleine, Ellie; Santi, Alice; Ismail, Shehab; Lilla, Sergio; Dhayade, Sandeep; MacPherson, Iain R.; McNeish, Iain; Ennis, Darren; Ali, Hala; Kugeratski, Fernanda G.; Al Khamici, Heba; van den Biggelaar, Maartje; van den Berghe, Peter V.E.; Cloix, Catherine; McDonald, Laura; Millan, David; Hoyle, Aoisha; Kuchnio, Anna; Carmeliet, Peter; Valenzuela, Stella M.; Blyth, Karen; Yin, Huabing; Mazzone, Massimiliano; Norman, Jim C.; Zanivan, Sara

    2017-01-01

    The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion. PMID:28198360

  20. A high resolution cavity BPM for the CLIC Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chritin, N.; Schmickler, H.; Soby, L.

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  1. Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis

    PubMed Central

    Chaudhary, Natasha; Gomez, Guillermo A.; Howes, Mark T.; Lo, Harriet P.; McMahon, Kerrie-Ann; Rae, James A.; Schieber, Nicole L.; Hill, Michelle M.; Gaus, Katharina; Yap, Alpha S.; Parton, Robert G.

    2014-01-01

    Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin. PMID:24714042

  2. SiRNA-Mediated Down-Regulation of CLIC4 Gene Inhibits Cell Proliferation and Accelerates Cell Apoptosis of Mouse Liver Cancer Hca-F and Hca-P Cells.

    PubMed

    Yu, Qiu-Yun; Zhou, Xin-Feng; Xia, Qing; Shen, Jia; Yan, Jia; Zhu, Jiu-Ting; Li, Xiang; Shu, Ming

    2018-01-01

    This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca-F and Hca-P cells. A CLIC4-target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca-F and Hca-P cells. Quantitative real-time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide-induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca-F and Hca-P cells transfected by pSilencer-CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca-F and Hca-P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer-CLIC4 siRNA-2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca-F and Hca-P cells. The results demonstrated that siRNA-induced down-regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca-F and Hca-P cells. J. Cell. Biochem. 119: 659-668, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

    PubMed

    Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin

    2017-08-04

    The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.

  4. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Tanyi, Janos L; Zhang, Rugang; Liu, Qin; Speicher, David W

    2013-08-26

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. This manuscript addresses the importance of distinguishing between protein homologs and isoforms when identifying and validating cancer biomarkers in plasma or serum. Specifically, it describes the use of targeted in-depth LC-MS/MS analysis to determine the members of two protein families, chloride intracellular channel (CLIC) and tropomyosin (TPM) proteins that are detectable in sera of ovarian cancer patients. It then establishes a multiplexed isoform- and homology-specific MRM assay to quantify all observed gene products in these two protein families as well as many of the closely related tropomyosin isoforms. Using this assay, levels of all detected CLICs and TPMs were quantified in ovarian cancer patient and control subject sera. These results demonstrate that in addition to the previously known CLIC1, multiple tropomyosins and CLIC4 are promising new ovarian cancer biomarkers. Based on these initial validation studies, these new ovarian cancer biomarkers appear to be superior to most previously known ovarian cancer biomarkers. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Pair Production of the Doubly Charged Leptons Associated with a Gauge Boson γ or Z in e+e- and γγ Collisions at Future Linear Colliders

    NASA Astrophysics Data System (ADS)

    Zeng, Qing-Guo; Ji, Li; Yang, Shuo

    2015-03-01

    In this paper, we investigate the production of a pair of doubly charged leptons associated with a gauge boson V(γ or Z) at future linear colliders via e+e- and γγ collisions. The numerical results show that the possible signals of the doubly charged leptons may be detected via the processes e+e- → VX++X-- and γγ → VX++X-- at future ILC or CLIC experiments. Supported in part by the National Natural Science Foundation of China under Grants Nos. 11275088, 11205023, 11375248 and the Program for Liaoning Excellent Talents in University under Grant No. LJQ2014135

  6. Discovery of multiple interacting partners of gankyrin, a proteasomal chaperone and an oncoprotein--evidence for a common hot spot site at the interface and its functional relevance.

    PubMed

    Nanaware, Padma P; Ramteke, Manoj P; Somavarapu, Arun K; Venkatraman, Prasanna

    2014-07-01

    Gankyrin, a non-ATPase component of the proteasome and a chaperone of proteasome assembly, is also an oncoprotein. Gankyrin regulates a variety of oncogenic signaling pathways in cancer cells and accelerates degradation of tumor suppressor proteins p53 and Rb. Therefore gankyrin may be a unique hub integrating signaling networks with the degradation pathway. To identify new interactions that may be crucial in consolidating its role as an oncogenic hub, crystal structure of gankyrin-proteasome ATPase complex was used to predict novel interacting partners. EEVD, a four amino acid linear sequence seems a hot spot site at this interface. By searching for EEVD in exposed regions of human proteins in PDB database, we predicted 34 novel interactions. Eight proteins were tested and seven of them were found to interact with gankyrin. Affinity of four interactions is high enough for endogenous detection. Others require gankyrin overexpression in HEK 293 cells or occur endogenously in breast cancer cell line- MDA-MB-435, reflecting lower affinity or presence of a deregulated network. Mutagenesis and peptide inhibition confirm that EEVD is the common hot spot site at these interfaces and therefore a potential polypharmacological drug target. In MDA-MB-231 cells in which the endogenous CLIC1 is silenced, trans-expression of Wt protein (CLIC1_EEVD) and not the hot spot site mutant (CLIC1_AAVA) resulted in significant rescue of the migratory potential. Our approach can be extended to identify novel functionally relevant protein-protein interactions, in expansion of oncogenic networks and in identifying potential therapeutic targets. © 2013 Wiley Periodicals, Inc.

  7. 35th International Conference of High Energy Physics

    NASA Astrophysics Data System (ADS)

    The French particle physics community is particularly proud to have been selected to host the 35th ICHEP conference in 2010 in Paris. This conference is the focal point of all our field since more than fifty years and is the reference event where all important results in particle physics cosmology and astroparticles are presented and discussed. This alone suffices to make this event very important. But in 2010, a coincidence of exceptional events will make this conference even more attractive! What is then so special about ICHEP 2010 conference? It will be the first ICHEP conference where physics results obtained at the LHC will be presented! New results about the elusive Higgs boson, or signals of physics beyond the standard model might therefore be announced at this conference! Major discoveries in other domains such as gravitational waves, neutrino telescopes, neutrino oscillations, dark matter or in the flavour sector are also possible, just to name a few. In addition , 2010 will be an important date to shape up the future of our field. Several major projects will present the status of their Conceptual or Engineering Design Reports during the conference. The International Linear Collider (ILC) Global Design Effort team will present the report corresponding to the end of their Technical Design Phase 1. The Compact Linear Collider (CLIC) will also report on its Conceptual Design Report. Other major projects such as Super B factories will also be presented. These reports together with LHC physics results will form the basis for key political decisions needed to be taken in the years to come. In summary, there can be no doubt that Paris is the place to be in summer 2010 for anyone interested in High Energy Physics and we will make every effort to make your stay as interesting and enjoyable as possible.

  8. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells

    PubMed Central

    Howes, Mark T.; Kirkham, Matthew; Riches, James; Cortese, Katia; Walser, Piers J.; Simpson, Fiona; Hill, Michelle M.; Jones, Alun; Lundmark, Richard; Lindsay, Margaret R.; Hernandez-Deviez, Delia J.; Hadzic, Gordana; McCluskey, Adam; Bashir, Rumasia; Liu, Libin; Pilch, Paul; McMahon, Harvey; Robinson, Phillip J.; Hancock, John F.; Mayor, Satyajit

    2010-01-01

    Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells. PMID:20713605

  9. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    PubMed Central

    Wan, Minghui; Liao, Dongjiang; Peng, Guilin; Xu, Xin; Yin, Weiqiang; Guo, Guixin; Jiang, Funeng; Zhong, Weide

    2017-01-01

    Chloride intracellular channel 1 (CLIC1) is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM) database using structure-based virtual screening and molecular dynamics (MD) simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition. PMID:29147652

  10. Establishing Community Learning and Information Centers (CLICs) in Underserved Malian Communities. Final Report

    ERIC Educational Resources Information Center

    Academy for Educational Development, 2005

    2005-01-01

    The purpose of the Community Learning and Information Center (CLIC) project was "to accelerate economic, social and political growth by providing residents in twelve underserved Malian communities with access to easily accessible development information and affordable access to information and communication technology (ICT), high-value…

  11. Online Resources for High School Teachers--A CLIC Away

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    2000-04-01

    "I'm a high school teacher. I don't have time to sift through all of JCE to find what I need. I don't have enough time as it is!" If you need to find things in a hurry, go to JCE HS CLIC, the JCE High School Chemed Learning Information Center, http://JChemEd.chem.wisc.edu/HS/. You will find good solid, reliable information, and you will find it fast. CLIC is open 24 hours every day, all over the world. What You Will Find at JCE CLIC We know teachers are pressed for time. During the few minutes between classes or at the end of the day, information needs to be found very quickly. Perhaps you are looking for a demo that illustrates electrochemistry using Cu, Mg, orange juice, and a clock; or a student activity on chromatography that is ready to copy and hand out; or a video to illustrate the action of aqua regia on gold, because you can't use aqua regia and can't afford gold. You can find each of these quickly at CLIC. The Journal has always provided lots of articles designed with high school teachers in mind. What the new JCE HS CLIC does is collect the recent materials at one address on JCE Online, making it quicker and easier for you to find them. Information has been gathered from both print and online versions of the Journal, from JCE Software, and from JCE Internet. It is organized as shown at the bottom of the page. Getting Access to Information You have located something that interests you, perhaps a list of tested demonstrations that pertain to consumer chemistry. Now it is time to get it. JCE subscribers (individuals and libraries) can read, download, and print the full versions of the articles as well as all supplemental materials, including student handouts and instructor's notes. You will need the username and password that are on the mailing label that comes with your Journaleach month. JCE HS CLIC home page: http://JChemEd.chem.wisc.edu/HS/ Your Suggestions, Please Our plans for JCE HS CLIC do not end with what you find now. Other resources and features will be added that will facilitate sharing ideas with other high school teachers. We also expect to develop additional ways of finding, categorizing, and bringing to your attention the wealth of information that is JCE. If you have suggestions for making CLIC more useful, just send them to jceonline@chem.wisc.edu and put "CLIC" in the subject field. Visit CLIC and See... Especially for High School Teachers. The high school editor's monthly columns highlight articles in each issue of JCE and also report news and announcements. Classroom Activities. Student activities use readily available, inexpensive materials. Activities are arranged by title and by topic; you can copy them for your class to use. Tested Demonstrations. If you are looking for a cool demonstration, one that has been tested and works, we have a wide variety to choose from. They are arranged by topic on a pull-down list. Features. Several of our feature columns are tailored for high school teachers (Applications and Analogies, Second Year and AP Chemistry, and others). Laboratory Activities. We have collected, by topic, those that we think are of interest. JCE Software. Here is a shortcut to our peer-reviewed instructional software and video that is best suited for the high school classroom. Periodic Table Live!, General Chemistry Collection, and the Chemistry Comes Alive! series will be especially useful. JCE Internet. Another direct linethis time to animations, video, online features (Conceptual Questions and Challenge Problems, Book and Equipment Guides), and useful Web sites. Articles of Interest. General articles relevant to high school chemistry are grouped here, by topic. JCE Index. If you are still looking, then click here. You can search the index to the entire Journal (since 1924).

  12. Civic Engagement in the Community: Undergraduate Clinical Legal Education

    ERIC Educational Resources Information Center

    Allen, Mahalley D.; Parker, Sally A.; DeLorenzo, Teodora C.

    2012-01-01

    The Community Legal Information Center (CLIC) of California State University, Chico, provides a unique civic engagement program designed to serve the legal service needs of Northern California. Founded in 1969, CLIC is now a 12-program, on-campus law clinic staffed by up to 125 undergraduate students each semester and is the most extensive…

  13. Collaborating at a Regional Scale for Climate Literacy and Action

    NASA Astrophysics Data System (ADS)

    Carlton, C.; Shcherba, O.

    2016-12-01

    Since 2014, the Bay Area Climate Literacy Impact Collaborative (Bay-CLIC) has been the leading regional consortium dedicated to improving climate education and action. Collectively, Bay-CLIC members reach over 3 million individuals through their educational programming, serve counties all throughout the Bay Area, offer multiple methods of climate communication like place-based school programs and visitor centers, and serve audiences representing all age groups. With over 30 organizations ranging from park agencies to science museums and nonprofits promoting energy efficiency, Bay-CLIC is preparing to push out climate change messaging through a suite of projects. Currently, Bay-CLIC's work is centered on building connections between educators and local scientists and region-specific climate data, implementing joint campaigns to promote the social norming of sustainable behavior change, and developing a toolkit and trainings targeted to the needs of Bay Area environmental educators. Meeting the needs of this diverse group offers many opportunities for increasing impact, growing new, strategic partnerships, as well as overcoming a few challenges along the way. Come learn more about what we've accomplished so far and what new, exciting projects are coming down the pike.

  14. Demonstration of the High RF Power Production Feasibility in the CLIC Power Extraction and Transfer Structure (PETS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappelletti, A.; /CERN; Dolgashev, V.

    A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less

  15. Preparing Informal Bay Area Educators for Climate Education Success

    NASA Astrophysics Data System (ADS)

    Romero, M.

    2016-12-01

    The Bay Area Climate Literacy Impact Collaborative (Bay-CLIC) joins informal science educators from over 30 environmental education organizations with the common goal of increasing climate literacy and action. Over this past year, the collaborative has been gathering existing tools and resources that will allow informal educators in the Bay Area to communicate on climate change with confidence. Bay-CLIC's work plans to bring climate science to life by equipping educators with climate data that resonates best with local audiences, which is data that is place-based and personal. Bay-CLIC is also researching effective sustainability campaigns focused on behavior change that can be crafted to fit our unique regional context and rolled out across multiple Bay-CLIC member organizations. This session will focus on sharing our findings from our six month information gathering phase. The overarching discussion will focus on the needs that Bay Area educators identified as necessary to address in order for them to provide the best quality climate education programming. We will also discuss the data we gathered on what local educators are already using in their work and share out on how this diverse array of informal educators will be implementing our research into their programs.

  16. Role of individual histidines in the pH-dependent global stability of human chloride intracellular channel 1.

    PubMed

    Achilonu, Ikechukwu; Fanucchi, Sylvia; Cross, Megan; Fernandes, Manuel; Dirr, Heini W

    2012-02-07

    Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.

  17. Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets.

    PubMed

    Peretti, Marta; Angelini, Marina; Savalli, Nicoletta; Florio, Tullio; Yuspa, Stuart H; Mazzanti, Michele

    2015-10-01

    In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers." Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Development of semiconductor tracking: The future linear collider case

    NASA Astrophysics Data System (ADS)

    Savoy-Navarro, Aurore

    2011-04-01

    An active R&D on silicon tracking for the linear collider, SiLC, is pursued since several years to develop the new generation of large area silicon trackers for the future linear collider(s). The R&D objectives on new sensors, new front end processing of the signal, and the related mechanical and integration challenges for building such large detectors within the proposed detector concepts are described. Synergies and differences with the LHC construction and upgrades are explained. The differences between the linear collider projects, namely the international linear collider, ILC, and the compact linear collider, CLIC, are discussed as well. Two final objectives are presented for the construction of this important sub-detector for the future linear collider experiments: a relatively short term design based on micro-strips combined or not with a gaseous central tracker and a longer term design based on an all-pixel tracker.The R&D objectives on sensors include single sided micro-strips as baseline for the shorter term with the strips from large wafers (at least 6 in), 200 μm thick, 50 μm pitch and the edgeless and alignment friendly options. This work is conducted by SiLC in collaboration with three technical research centers in Italy, Finland, and Spain and HPK. SiLC is studied as well, using advanced Si sensor technologies for higher granularity trackers especially short strips and pixels all based on 3D technology. New Deep Sub-Micron CMOS mix mode (analog and digital) FE and readout electronics are developed to fully process the detector signals currently adapted to the ILC cycle. It is a high-level processing and a fully programmable ASIC; highly fault tolerant. In its latest version, handling 128 channels will equip these next coming years larger size silicon tracking prototypes at test beams. Connection of the FEE chip on the silicon detector especially in the strip case is a major issue. Very preliminary results with inline pitch adapter based on wiring were just achieved. Bump-bonding or 3D vertical interconnect is the other SiLC R&D objective. The goal is to simplify the overall architecture and decrease the material budget of these devices. Three tracking concepts are briefly discussed, two of which are part of the ILC Letter of Intent of the ILD and SiD detector concepts. These last years, SiLC successfully performed beam tests to experience and test these R&D lines.

  19. Protein isoform-specific validation defines multiple chloride intracellular channel and tropomyosin isoforms as serological biomarkers of ovarian cancer

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Tanyi, Janos L.; Zhang, Rugang; Liu, Qin; Speicher, David W.

    2013-01-01

    New serological biomarkers for early detection and clinical management of ovarian cancer are urgently needed, and many candidates have been reported. A major challenge frequently encountered when validating candidates in patients is establishing quantitative assays that distinguish between highly homologous proteins. The current study tested whether multiple members of two recently discovered ovarian cancer biomarker protein families, chloride intracellular channel (CLIC) proteins and tropomyosins (TPM), were detectable in ovarian cancer patient sera. A multiplexed, label-free multiple reaction monitoring (MRM) assay was established to target peptides specific to all detected CLIC and TPM family members, and their serum levels were quantitated for ovarian cancer patients and non-cancer controls. In addition to CLIC1 and TPM1, which were the proteins initially discovered in a xenograft mouse model, CLIC4, TPM2, TPM3, and TPM4 were present in ovarian cancer patient sera at significantly elevated levels compared with controls. Some of the additional biomarkers identified in this homolog-centric verification and validation approach may be superior to the previously identified biomarkers at discriminating between ovarian cancer and non-cancer patients. This demonstrates the importance of considering all potential protein homologs and using quantitative assays for cancer biomarker validation with well-defined isoform specificity. PMID:23792823

  20. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  1. Clinical Computer Systems Survey (CLICS): learning about health information technology (HIT) in its context of use.

    PubMed

    Lichtner, Valentina; Cornford, Tony; Klecun, Ela

    2013-01-01

    Successful health information technology (HIT) implementations need to be informed on the context of use and on users' attitudes. To this end, we developed the CLinical Computer Systems Survey (CLICS) instrument. CLICS reflects a socio-technical view of HIT adoption, and is designed to encompass all members of the clinical team. We used the survey in a large English hospital as part of its internal evaluation of the implementation of an electronic patient record system (EPR). The survey revealed extent and type of use of the EPR; how it related to and integrated with other existing systems; and people's views on its use, usability and emergent safety issues. Significantly, participants really appreciated 'being asked'. They also reminded us of the wider range of administrative roles engaged with EPR. This observation reveals pertinent questions as to our understanding of the boundaries between administrative tasks and clinical medicine - what we propose as the field of 'administrative medicine'.

  2. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    NASA Astrophysics Data System (ADS)

    Lukić, S.; Božović-Jelisavčić, I.; Pandurović, M.; Smiljanić, I.

    2013-05-01

    Procedures for correcting the beam-beam effects in luminosity measurements at CLIC at 3 TeV center-of-mass energy are described and tested using Monte Carlo simulations. The angular counting loss due to the combined Beamstrahlung and initial-state radiation effects is corrected based on the reconstructed velocity of the collision frame of the Bhabha scattering. The distortion of the luminosity spectrum due to the initial-state radiation is corrected by deconvolution. At the end, the counting bias due to the finite calorimeter energy resolution is numerically corrected. To test the procedures, BHLUMI Bhabha event generator, and Guinea-Pig beam-beam simulation were used to generate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. The systematic effects of the beam-beam interaction on the luminosity measurement are corrected with precision of 1.4 permille in the upper 5% of the energy, and 2.7 permille in the range between 80 and 90% of the nominal center-of-mass energy.

  3. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  4. Linearization instability for generic gravity in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  5. CP-violating top quark couplings at future linear e^+e^- colliders

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Chen, L.; García, I.; Perelló, M.; Poeschl, R.; Richard, F.; Ros, E.; Vos, M.

    2018-02-01

    We study the potential of future lepton colliders to probe violation of the CP symmetry in the top quark sector. In certain extensions of the Standard Model, such as the two-Higgs-doublet model (2HDM), sizeable anomalous top quark dipole moments can arise, which may be revealed by a precise measurement of top quark pair production. We present results from detailed Monte Carlo studies for the ILC at 500 GeV and CLIC at 380 GeV and use parton-level simulations to explore the potential of high-energy operation. We find that precise measurements in e^+e^- → t\\bar{t} production with subsequent decay to lepton plus jets final states can provide sufficient sensitivity to detect Higgs-boson-induced CP violation in a viable two-Higgs-doublet model. The potential of a linear e^+e^- collider to detect CP-violating electric and weak dipole form factors of the top quark exceeds the prospects of the HL-LHC by over an order of magnitude.

  6. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  7. Only@JCE Online

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    2001-08-01

    The JCE High School ChemEd Learning Information Center (CLIC) and Buyers Guide continue to be updated with each issue of the print Journal. Every month, links to articles of interest to high school teachers are added to CLIC. Links to all new book and media reviews are added to the Buyers Guide. Additions to the Biographical Snapshots of Famous Women and Minority Chemists (March 2001) and the updated WWW Site Review feature (July 2001) have been previously noted in this column. The Conceptual Questions and Challenge Problems feature has a useful, new tool, Chemical Concepts Inventory, that can be used to assess the level of chemistry misconceptions held by students.

  8. Computer language for identifying chemicals with comprehensive two-dimensional gas chromatography and mass spectrometry.

    PubMed

    Reichenbach, Stephen E; Kottapalli, Visweswara; Ni, Mingtian; Visvanathan, Arvind

    2005-04-15

    This paper describes a language for expressing criteria for chemical identification with comprehensive two-dimensional gas chromatography paired with mass spectrometry (GC x GC-MS) and presents computer-based tools implementing the language. The Computer Language for Indentifying Chemicals (CLIC) allows expressions that describe rules (or constraints) for selecting chemical peaks or data points based on multi-dimensional chromatographic properties and mass spectral characteristics. CLIC offers chromatographic functions of retention times, functions of mass spectra, numbers for quantitative and relational evaluation, and logical and arithmetic operators. The language is demonstrated with the compound-class selection rules described by Welthagen et al. [W. Welthagen, J. Schnelle-Kreis, R. Zimmermann, J. Chromatogr. A 1019 (2003) 233-249]. A software implementation of CLIC provides a calculator-like graphical user-interface (GUI) for building and applying selection expressions. From the selection calculator, expressions can be used to select chromatographic peaks that meet the criteria or create selection chromatograms that mask data points inconsistent with the criteria. Selection expressions can be combined with graphical, geometric constraints in the retention-time plane as a powerful component for chemical identification with template matching or used to speed and improve mass spectrum library searches.

  9. [Study on physical properties of titanium alloy sample fabricated with vacuum-sintered powder metallurgy].

    PubMed

    Ding, X; Liang, X; Chao, Y; Han, X

    2000-06-01

    To investigate the physical properties of titanium alloy fabricated with vacuum-sintered powder metallurgy. The titanium powders of three different particle sizes(-160mesh, -200 - +300mesh, -300mesh) were selected, and mixed with copper and aluminum powder in different proportions. Two other groups were made up of titanium powder(-200 - +300mesh) plated with copper and tin. The build-up and, condensation method and a double-direction press with a metal mold were used. The green compacts were sintered at 1000 degrees C for 15 minutes in a vacuum furnace at 0.025 Pa. In the double-direction press, the specimens were compacted at the pressure of 100 MPa, 200 MPa and 300 MPa respectively. Then the linear shrinkage ratio and the opening porosity of the sintered compacts were evaluated respectively. 1. The linear shrinkage ratio of specimens decreased with the increased compacted pressure(P < 0.05). There was no significant difference among the linear shrinkage ratios of three different titanium powders at the same compacted pressure(P > 0.05), but that of titanium powder plated with copper and tin was higher than those of other specimens without plating(P < 0.05). 2. The opening porosity of specimens decreased with the increased compacted pressure(P < 0.05). Three different sized particle of titanium powder did not affect the opening porosity at the same compacted pressure(P > 0.05). The composition of titanium-based metal powder mixtures and the compacted pressures affect the physical properties of sintered compacts. Titanium powder plated with copper and tin is compacted and sintered easily, and the physical properties of sintered compacts are greatly improved.

  10. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    PubMed

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  11. CLIC RF High Power Production Testing Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syratchev, I.; Riddone, G.; /CERN

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and generate RF power for the main linac accelerating structure. The demands on the high power production ({approx} 150 MW) and the needs to transport the 100 A drive beam for about 1 km without losses, makes the PETS design rather unique and the operation very challenging. In the coming year, an intense PETS testing program will be implemented. The target is to demonstrate the full performance of the PETS operation.more » The testing program overview and test results available to date are presented.« less

  12. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms

    PubMed Central

    Yan, Haijing; Zhang, Xiangnan; Hu, Weiwei; Ma, Jing; Hou, Weiwei; Zhang, Xingzhou; Wang, Xiaofen; Gao, Jieqiong; Shen, Yao; Lv, Jianxin; Ohtsu, Hiroshi; Han, Feng; Wang, Guanghui; Chen, Zhong

    2014-01-01

    The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. PMID:24566390

  13. Measuring cognitive load during procedural skills training with colonoscopy as an exemplar.

    PubMed

    Sewell, Justin L; Boscardin, Christy K; Young, John Q; Ten Cate, Olle; O'Sullivan, Patricia S

    2016-06-01

    Few studies have investigated cognitive factors affecting learning of procedural skills in medical education. Cognitive load theory, which focuses on working memory, is highly relevant, but methods for measuring cognitive load during procedural training are not well understood. Using colonoscopy as an exemplar, we used cognitive load theory to develop a self-report instrument to measure three types of cognitive load (intrinsic, extraneous and germane load) and to provide evidence for instrument validity. We developed the instrument (the Cognitive Load Inventory for Colonoscopy [CLIC]) using a multi-step process. It included 19 items measuring three types of cognitive load, three global rating items and demographics. We then conducted a cross-sectional survey that was administered electronically to 1061 gastroenterology trainees in the USA. Participants completed the CLIC following a colonoscopy. The two study phases (exploratory and confirmatory) each lasted for 10 weeks during the 2014-2015 academic year. Exploratory factor analysis determined the most parsimonious factor structure; confirmatory factor analysis assessed model fit. Composite measures of intrinsic, extraneous and germane load were compared across years of training and with global rating items. A total of 477 (45.0%) invitees participated (116 in the exploratory study and 361 in the confirmatory study) in 154 (95.1%) training programmes. Demographics were similar to national data from the USA. The most parsimonious factor structure included three factors reflecting the three types of cognitive load. Confirmatory factor analysis verified that a three-factor model was the best fit. Intrinsic, extraneous and germane load items had high internal consistency (Cronbach's alpha 0.90, 0.87 and 0.96, respectively) and correlated as expected with year in training and global assessment of cognitive load. The CLIC measures three types of cognitive load during colonoscopy training. Evidence of validity is provided. Although CLIC items relate to colonoscopy, the development process we detail can be used to adapt the instrument for use in other learning settings in medical education. © 2016 John Wiley & Sons Ltd.

  14. Teen pregnancy prevention: a rural model using school and community collaboration.

    PubMed

    Barnes, N D; Harrod, S E

    1993-11-01

    From 1980 to 1989 there were 2069 babies born to teenage mothers in northeastern Connecticut, accounting for more than 10% of all births in this region. A Connecticut model program that combats teen pregnancy and emphasizes a collaborative venture between a state-funded community-based pregnancy prevention program and a regional vocational-technical high school located in a rural setting is described. Beginning in the fall of 1987, a group of local providers and concerned citizens formed a steering committee which was given funding to initiate services in early 1988. The objectives of the Northeast Connecticut Teen Pregnancy Prevention Program were (a) to enhance the capacity of parents to prevent teen pregnancy, (b) to increase public education concerning the prevention of teenage pregnancy, (c) to increase the coordinated planning of teen pregnancy prevention resources, and (d) to mobilize additional teen pregnancy prevention resources. At the regional vocational-technical high school in rural north eastern Connecticut a pregnancy prevention program for students in grades 9 through 12 was designed called Contemporary Life Issues Clinic (CLIC). This voluntary experiential program lasted 8 weeks for male and female students. Each week, one session operated during regular school hours. Students preregistered for each week's activity or clinic in the guidance office. CLIC's consisted of eight topics with accompanying activities aimed at improving sexual responsibility; increasing the decision-making skills of students; encouraging the development of coping skills; fostering emotional growth; cultivating success-oriented attitudes; providing information in pregnancy prevention, sexually transmitted disease including AIDS; and providing information regarding the financial and legal implications of parenthood. During the fall of 1990, CLIC had 98 participants. The majority of the students were young women. The most heavily attended session dealt with contraception; the fewest participants attended the session devoted to sexually transmitted diseases. CLIC has the potential for expansion and improvement.

  15. Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research

    NASA Astrophysics Data System (ADS)

    Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.

    2009-12-01

    The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent developments of cold region hydrometeorology research activities and future challenges in arctic hydrology and climate change investigations.

  16. Silicon pixel-detector R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  17. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  18. Visualizing Chemical Interaction Dynamics of Confined DNA Molecules

    NASA Astrophysics Data System (ADS)

    Henkin, Gilead; Berard, Daniel; Stabile, Frank; Leslie, Sabrina

    We present a novel nanofluidic approach to controllably introducing reagent molecules to interact with confined biopolymers and visualizing the reaction dynamics in real time. By dynamically deforming a flow cell using CLiC (Convex Lens-induced Confinement) microscopy, we are able to tune reaction chamber dimensions from micrometer to nanometer scales. We apply this gentle deformation to load and extend DNA polymers within embedded nanotopographies and visualize their interactions with other molecules in solution. Quantifying the change in configuration of polymers within embedded nanotopographies in response to binding/unbinding of reagent molecules provides new insights into their consequent change in physical properties. CLiC technology enables an ultra sensitive, massively parallel biochemical analysis platform which can acces a broader range of interaction parameters than existing devices.

  19. Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benini, Marco, E-mail: mbenini87@gmail.com, E-mail: mbenini@uni-potsdam.de

    Being motivated by open questions in gauge field theories, we consider non-standard de Rham cohomology groups for timelike compact and spacelike compact support systems. These cohomology groups are shown to be isomorphic respectively to the usual de Rham cohomology of a spacelike Cauchy surface and its counterpart with compact support. Furthermore, an analog of the usual Poincaré duality for de Rham cohomology is shown to hold for the case with non-standard supports as well. We apply these results to find optimal spaces of linear observables for analogs of arbitrary degree k of both the vector potential and the Faraday tensor.more » The term optimal has to be intended in the following sense: The spaces of linear observables we consider distinguish between different configurations; in addition to that, there are no redundant observables. This last point in particular heavily relies on the analog of Poincaré duality for the new cohomology groups.« less

  20. On spectral synthesis on element-wise compact Abelian groups

    NASA Astrophysics Data System (ADS)

    Platonov, S. S.

    2015-08-01

    Let G be an arbitrary locally compact Abelian group and let C(G) be the space of all continuous complex-valued functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is referred to as an invariant subspace if it is invariant with respect to the shifts τ_y\\colon f(x)\\mapsto f(xy), y\\in G. By definition, an invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis if \\mathscr H coincides with the closure in C(G) of the linear span of all characters of G belonging to \\mathscr H. We say that strict spectral synthesis holds in the space C(G) on G if every invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis. An element x of a topological group G is said to be compact if x is contained in some compact subgroup of G. A group G is said to be element-wise compact if all elements of G are compact. The main result of the paper is the proof of the fact that strict spectral synthesis holds in C(G) for a locally compact Abelian group G if and only if G is element-wise compact. Bibliography: 14 titles.

  1. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE PAGES

    Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...

    2018-02-09

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  2. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, A.; Bonomi, R.; Garlasche, M.

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  3. A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range

    NASA Astrophysics Data System (ADS)

    Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.

    2017-05-01

    We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.

  4. Beam dynamic simulation and optimization of the CLIC positron source and the capture linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; CERN, Geneva; Doebert, S., E-mail: Steffen.Doebert@cern.ch

    2016-03-25

    The CLIC Positron Source is based on the hybrid target composed of a crystal and an amorphous target. Simulations have been performed from the exit of the amorphous target to the end of pre-injector linac which captures and accelerates the positrons to an energy of 200 MeV. Simulations are performed by the particle tracking code PARMELA. The magnetic field of the AMD is represented in PARMELA by simple coils. Two modes are applied in this study. The first one is accelerating mode based on acceleration after the AMD. The second one is decelerating mode based on deceleration in the first acceleratingmore » structure. It is shown that the decelerating mode gives a higher yield for the e{sup +} beam in the end of the Pre-Injector Linac.« less

  5. Beam parameter optimization at CLIC using the process e+e- → HZ → Hq q bar at 380 GeV

    NASA Astrophysics Data System (ADS)

    Andrianala, F.; Raboanary, R.; Roloff, P.; Schulte, D.

    2017-01-01

    At CLIC and the ILC beam-beam forces lead to the emission of beamstrahlung photons and a reduction of the effective center-of-mass energy. This degradation is controlled by the choice of the horizontal beam size. A reduction of this parameter would increase the luminosity but also the beamstrahlung. In this paper the optimum choice for the horizontal beam size is investigated for one of the most important physics processes. The Higgsstrahlung process e+e- → HZ is identified in a model-independent manner by observing the Z boson and determining the mass against which it is recoiling. The physics analysis for this process is performed for constant running times, assuming different beam size and taking into account the resulting levels of integrated luminosity and the associated luminosity spectra.

  6. A novel cause of rebreathing carbon dioxide related to removed CLIC-seal on the Dräger Apollo© anesthesia machine.

    PubMed

    Niknam, B; Bebic, Z; Roseman, A

    2018-05-26

    We present a case report involving two sequential, surgically uneventful, laparoscopic cholecystectomies using the same anesthesia machine (Drager Apollo©) for which the level of inspired carbon dioxide was noted to be elevated following various diagnostic interventions including replacing the sodalime, increasing fresh gas flows, and a full inspection of equipment for malfunction. Eventually it was discovered that a rubber ring seal connecting the Dragersorb CLIC system© to the sodalime canister was inadvertently removed during the initial canister exchange resulting in an apparent bypassing of the absorbent and thus an inability of the exhaled gas to contact the sodalime. To our knowledge this is the first such description of this potential cause of elevated inspired carbon dioxide and should warrant consideration when other conventional interventions have failed.

  7. A compact finite element method for elastic bodies

    NASA Technical Reports Server (NTRS)

    Rose, M. E.

    1984-01-01

    A nonconforming finite method is described for treating linear equilibrium problems, and a convergence proof showing second order accuracy is given. The close relationship to a related compact finite difference scheme due to Phillips and Rose is examined. A condensation technique is shown to preserve the compactness property and suggests an approach to a certain type of homogenization.

  8. Evaluation of the Washington nighttime seat belt enforcement program.

    DOT National Transportation Integrated Search

    2017-04-01

    The Washington Traffic Safety Commission (WTSC) and the National Highway Traffic Safety Administration (NHTSA) : conducted a high-visibility Nighttime Seat Belt Enforcement (NTSBE) program in Washington. The two-year program : followed the basic Clic...

  9. Variability aware compact model characterization for statistical circuit design optimization

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  10. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  11. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  12. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assmann, R

    2004-06-08

    The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takesmore » into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey and the fiducials. Beam-based alignment methods ideally only depend upon the BPM resolution and generally provide much better precision. Many of those techniques are described in other contributions to this workshop. In this paper we describe our experiences with a dispersion-free steering algorithm for linacs. This algorithm was first suggested by Raubenheimer and Ruth in 1990 [5]. It h as been studied in simulations for NLC [5], TESLA [6], the S-BAND proposal [7] and CLIC [8]. The dispersion-free steering technique can be applied to the whole linac at once and returns the alignment (or trajectory) that minimizes the dispersive emittance growth of the beam. Thus it allows an extremely fast alignment of the beam-line. As we will show dispersion-free steering is only sensitive to quadrupole misalignments. Wakefield-free steering [3] as mentioned before is a closely related technique that minimizes the emittance growth caused by both dispersion and wakefields. Due to hardware limitations (i.e. insufficient relative range of power supplies) we could not study this method experimentally in the SLC. However, its systematics are very similar to those of dispersion-free steering. The studies of dispersion-free steering which are presented made extensive use of the unique potential of the SLC as the only operating linear collider. We used it to study the performance and problems of advanced beam-based optimization tools in a real beam-line environment and on a large scale. We should mention that the SLC has utilized beam-based alignment for years [9], using the difference of electron and positron trajectories. This method, however, cannot be used in future linear colliders. The goal of our work is to demonstrate the performance of advanced beam-based alignment techniques in linear colliders and to anticipate possible reality-related problems. Those can then be solved in the design state for the next generation of linear colliders.« less

  13. Nonlinear Analysis of Airfoil High-Intensity Gust Response Using a High-Order Prefactored Compact Code

    NASA Technical Reports Server (NTRS)

    Crivellini, A.; Golubev, V.; Mankbadi, R.; Scott, J. R.; Hixon, R.; Povinelli, L.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    The nonlinear response of symmetric and loaded airfoils to an impinging vortical gust is investigated in the parametric space of gust dimension, intensity, and frequency. The study, which was designed to investigate the validity limits for a linear analysis, is implemented by applying a nonlinear high-order prefactored compact code and comparing results with linear solutions from the GUST3D frequency-domain solver. Both the unsteady aerodynamic and acoustic gust responses are examined.

  14. A new stylolite classification scheme to estimate compaction and local permeability variations

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Rood, M. P.; Beaudoin, N.; Chung, P.; Bons, P. D.; Gomez-Rivas, E.

    2016-12-01

    We modeled the geometrical roughening of bedding-parallel, mainly layer-dominated stylolites in order to understand their structural evolution, to present an advanced classification of stylolite shapes and to relate this classification to chemical compaction and permeability variations at stylolites. Stylolites are rough dissolution seams that develop in sedimentary basins during chemical compaction. In the Zechstein 2 carbonate units, an important lean gas reservoir in the southern Permian Zechstein basin in Germany, stylolites influence local fluid flow, mineral replacement reactions and hence the permeability of the reservoir. Our simulations demonstrate that layer-dominated stylolites can grow in three distinct stages: an initial slow nucleation phase, a fast layer-pinning phase and a final freezing phase if the layer is completely dissolved during growth. Dissolution of the pinning layer and thus destruction of the stylolite's compaction tracking capabilities is a function of the background noise in the rock and the dissolution rate of the layer itself. Low background noise needs a slower dissolving layer for pinning to be successful but produces flatter teeth than higher background noise. We present an advanced classification based on our simulations and separate stylolites into four classes: (1) rectangular layer type, (2) seismogram pinning type, (3) suture/sharp peak type and (4) simple wave-like type. Rectangular layer type stylolites are the most appropriate for chemical compaction estimates because they grow linearly and record most of the actual compaction (up to 40 mm in the Zechstein example). Seismogram pinning type stylolites also provide good tracking capabilities, with the largest teeth tracking most of the compaction. Suture/sharp peak type stylolites grow in a non-linear fashion and thus do not record most of the actual compaction. However, when a non-linear growth law is used, the compaction estimates are similar to those making use of the rectangular layer type stylolites. Simple wave-like stylolites are not useful for compaction estimates, since their growth is highly non-linear with a very low growth exponent. In the case where sealing material is collected at the tooth during dissolution, stylolites can act as barriers for local fluid flow as they intensify sealing capabilities of pinning layers. However, the development of teeth and spikes offsets and thus destroys continuous stylolite seams so that the permeability across the stylolite becomes very heterogeneous and they are no continuous barriers. This behavior is best shown in rectangular layer and seismogram pinning type stylolites that develop efficient fluid barriers at teeth tips but destroy sealing capabilities of layers by offsetting them at the flank, leading to a permeability anisotropy along 2-D stylolite planes. Suture/sharp peak stylolites can create fluid barriers if they collect enough sealing material. However, if the collecting material does not seal or if spikes offset the sealing material the stylolite leaks. We propose that our classification can be used to realistically estimate chemical compaction in reservoirs and gives an indication on how heterogeneous the permeability of stylolites can be.

  15. Recovery of compacted soils in Mojave Desert ghost towns.

    USGS Publications Warehouse

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.

    1986-01-01

    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  16. MICROROC: MICRO-mesh gaseous structure Read-Out Chip

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Chefdeville, M.; Dalmaz, A.; Drancourt, C.; Dulucq, F.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Jacquemier, J.; Karyotakis, Y.; Martin-Chassard, G.; Prast, J.; Seguin-Moreau, N.; de La Taille, Ch; Vouters, G.

    2012-01-01

    MICRO MEsh GAseous Structure (MICROMEGAS) and Gas Electron Multipliers (GEM) detectors are two candidates for the active medium of a Digital Hadronic CALorimeter (DHCAL) as part of a high energy physics experiment at a future linear collider (ILC/CLIC). Physics requirements lead to a highly granular hadronic calorimeter with up to thirty million channels with probably only hit information (digital readout calorimeter). To validate the concept of digital hadronic calorimetry with such small cell size, the construction and test of a cubic meter technological prototype, made of 40 planes of one square meter each, is necessary. This technological prototype would contain about 400 000 electronic channels, thus requiring the development of front-end ASIC. Based on the experience gained with previous ASIC that were mounted on detectors and tested in particle beams, a new ASIC called MICROROC has been developped. This paper summarizes the caracterisation campaign that was conducted on this new chip as well as its integration into a large area Micromegas chamber of one square meter.

  17. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  18. The Childhood Leukemia International Consortium

    PubMed Central

    Metayer, Catherine; Milne, Elizabeth; Clavel, Jacqueline; Infante-Rivard, Claire; Petridou, Eleni; Taylor, Malcolm; Schüz, Joachim; Spector, Logan G.; Dockerty, John D.; Magnani, Corrado; Pombo-de-Oliveira, Maria S.; Sinnett, Daniel; Murphy, Michael; Roman, Eve; Monge, Patricia; Ezzat, Sameera; Mueller, Beth A.; Scheurer, Michael E.; Armstrong, Bruce K.; Birch, Jill; Kaatsch, Peter; Koifman, Sergio; Lightfoot, Tracy; Bhatti, Parveen; Bondy, Melissa L.; Rudant, Jérémie; O’Neill, Kate; Miligi, Lucia; Dessypris, Nick; Kang, Alice Y.; Buffler, Patricia A.

    2013-01-01

    Background Acute leukemia is the most common cancer in children under 15 years of age; 80% are acute lymphoblastic leukemia (ALL) and 17% are acute myeloid leukemia (AML). Childhood leukemia shows further diversity based on cytogenetic and molecular characteristics, which may relate to distinct etiologies. Case–control studies conducted worldwide, particularly of ALL, have collected a wealth of data on potential risk factors and in some studies, biospecimens. There is growing evidence for the role of infectious/immunologic factors, fetal growth, and several environmental factors in the etiology of childhood ALL. The risk of childhood leukemia, like other complex diseases, is likely to be influenced both by independent and interactive effects of genes and environmental exposures. While some studies have analyzed the role of genetic variants, few have been sufficiently powered to investigate gene–environment interactions. Objectives The Childhood Leukemia International Consortium (CLIC) was established in 2007 to promote investigations of rarer exposures, gene–environment interactions and subtype-specific associations through the pooling of data from independent studies. Methods By September 2012, CLIC included 22 studies (recruitment period: 1962–present) from 12 countries, totaling approximately 31 000 cases and 50 000 controls. Of these, 19 case–control studies have collected detailed epidemiologic data, and DNA samples have been collected from children and child–parent trios in 15 and 13 of these studies, respectively. Two registry-based studies and one study comprising hospital records routinely obtained at birth and/or diagnosis have limited interview data or biospecimens. Conclusions CLIC provides a unique opportunity to fill gaps in knowledge about the role of environmental and genetic risk factors, critical windows of exposure, the effects of gene–environment interactions and associations among specific leukemia subtypes in different ethnic groups. PMID:23403126

  19. R&D for the Future

    NASA Astrophysics Data System (ADS)

    Hübner, Kurt; Treille, Daniel; Schulte, Daniel

    The following sections are included: * The LHC and Beyond * Accelerator Magnets with Ever-Higher Fields * Teasing Performance from Superconductors Old and New * RF Power for CLIC: Acceleration by Deceleration * The Next Energy Frontier e+e- Collider: Innovation in Detectors * Hadron Collider Detectors: A Bright and Energetic Future * References

  20. Stationary bound-state massive scalar field configurations supported by spherically symmetric compact reflecting stars

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-12-01

    It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R_{ {s}}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1-2M/R_{ {s}}<(ω /μ )^2<1. Interestingly, in the regime M/R_{ {s}}≪ 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω (M,R_{ {s}},μ )}^{n=∞}_{n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations.

  1. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  2. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  3. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  4. SOFIA: an R package for enhancing genetic visualization with Circos

    USDA-ARS?s Scientific Manuscript database

    Visualization of data from any stage of genetic and genomic research is one of the most useful approaches for detecting potential errors, ensuring accuracy and reproducibility, and presentation of the resulting data. Currently software such as Circos, ClicO FS, and RCircos, among others, provide too...

  5. Cryocoolers developments at Thales Cryogenics enabling compact remote sensing

    NASA Astrophysics Data System (ADS)

    Benschop, A.; van de Groep, W.; Mullié, J.; Willems, D.; Clesca, O.; Griot, R.; Martin, J.-Y.

    2010-10-01

    Thales Cryogenics (TCBV) has an extensive background in developing and delivering long-life cryogenic coolers for military, civil and space programs. This cooler range is based on three main compressor concepts: rotary compressors (RM), linear close tolerance contact seals (UP), and linear flexure bearing (LSF/LPT) compressors. The main differences - next to the different conceptual designs - between these products are their masses and Mean Time To Failure (MTTF) and the availability prediction of a single unit. New developments at Thales Cryogenics enabling compact long lifetime coolers - with an MTTF up to 50.000 hrs - will be outlined. In addition new developments for miniature cooler drive electronics with high temperature stability and power density will be described. These new cooler developments could be of particular interest for space missions where lower costs and mass are identified as important selection criteria. The developed compressors are originally connected to Stirling cold fingers that can directly be interfaced to different sizes of available dewars. Next to linear coolers, Thales Cryogenics has compact rotary coolers in its product portfolio. Though having a higher exported vibration level and a more limited MTTF of around 8.000 to 10.000 hours, their compactness and high efficiency could provide a good alternative for compact cooling of sensors in specific space missions. In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Tests results from both the installed base and the Thales Cryogenics test lab will be presented as well. Next to this differences in operational use for the different types of coolers as well as the outlook for further developments will be discussed.

  6. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  7. Linear micromechanical stepping drive for pinhole array positioning

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Hoffmann, Martin

    2015-05-01

    A compact linear micromechanical stepping drive for positioning a 7 × 5.5 mm2 optical pinhole array is presented. The system features a step size of 13.2 µm and a full displacement range of 200 µm. The electrostatic inch-worm stepping mechanism shows a compact design capable of positioning a payload 50% of its own weight. The stepping drive movement, step sizes and position accuracy are characterized. The actuated pinhole array is integrated in a confocal chromatic hyperspectral imaging system, where coverage of the object plane, and therefore the useful picture data, can be multiplied by 14 in contrast to a non-actuated array.

  8. On spectral synthesis on zero-dimensional Abelian groups

    NASA Astrophysics Data System (ADS)

    Platonov, S. S.

    2013-09-01

    Let G be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let C(G) be the space of all complex-valued continuous functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is said to be an invariant subspace if it is invariant with respect to the translations \\tau_y\\colon f(x)\\mapsto f(x+y), y\\in G. In the paper, it is proved that any invariant subspace \\mathscr H admits spectral synthesis, that is, \\mathscr H coincides with the closed linear span of the characters of G belonging to \\mathscr H. Bibliography: 25 titles.

  9. KLYNAC: Compact linear accelerator with integrated power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less

  10. Klynac: Compact Linear Accelerator with Integrated Power Supply

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, A. V.

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  11. Evaluation of the deformation behavior of binary systems of methacrylic acid copolymers and hydroxypropyl methylcellulose using a compaction simulator.

    PubMed

    Tatavarti, Aditya S; Muller, Francis X; Hoag, Stephen W

    2008-02-04

    Methacrylic acid copolymers have been shown to enhance release of weakly basic drugs from rate controlling polymer matrices through the mechanism of microenvironmental pH modulation. Since these matrices are typically formed through a compaction process, an understanding of the deformation behavior of these polymers in there neat form and in combination with rate controlling polymers such as HPMC is critical to their successful formulation. Binary mixes of two methacrylic acid copolymers, Eudragit L100 and L100-55 in combination with HPMC K4M were subjected to compaction studies on a compaction simulator. The deformation behavior of the powder mixes was analyzed based on pressure-porosity relationships, strain rate sensitivity (SRS), residual die wall force data and work of compaction. Methacrylic acid copolymers, L100-55 and L-100 and the hydrophilic polymer, HPMC K4M exhibited Heckel plots representative of plastic deformation although L-100 exhibited significantly greater resistance to densification as evident from the high yield pressure values ( approximately 120MPa). The yield pressures for the binary mixes were linearly related to the weight fractions of the components. All powder mixes exhibited significant speed sensitivity with SRS values ranging from 21.7% to 42.4%. The residual die-wall pressures indicated that at slow speeds (1mm/s) and at lower pressures (<150MPa), HPMC possesses significant elastic behavior. However, the good compacts formed at this punch speed indicate significant plastic deformation and bond formation which is able to predominate over the elastic recovery component. The apparent mean yield pressure values, the residual die-wall forces and the net work of compaction exhibited a linear relationship with mixture composition, thereby indicating predictability of these parameters based on the behavior of the neat materials.

  12. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.

    2010-04-01

    Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.

  13. Liberation Theology in Central America. Liberation Theology and the Marxist Sociology of Religion. CLIC Papers

    DTIC Science & Technology

    1989-06-01

    Roman stoic philosopher Seneca . He deduced that because Philon had made the fusion between the Hebrew tradition and the rationalist Greek philosophy...the Third World or in the industrial capitalist societies. The ultimate tragedy of the social movement that follows liberation theology has been the

  14. 75 FR 63833 - Proposed Collection; Comment Request; the NIH-American Association for Retired Persons (AARP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... information technology. FOR FURTHER INFORMATION CONTACT: To request more information on the proposed project... Interview by Computer Study (iCLIC) (NCI) SUMMARY: In compliance with the requirement of Section 3506(c)(2... collection projects, the National Cancer Institute (NCI), the National Institutes of Health (NIH) will...

  15. Rural Legal Research, Creighton Legal Information Center (Omaha, Nebraska, March 1977). An Exemplary Project.

    ERIC Educational Resources Information Center

    Stuart, Lorrie; Wise, H. Lake

    Established to help solve the problems of rural attorneys in Nebraska via mail and telephone research services, the Creighton Legal Information Center (CLIC) is described in this manual in terms of project development and organization; project operations; replication and policy issues; costs and project budgeting; and program results.…

  16. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  17. Constraints from triple gauge couplings on vectorlike leptons

    DOE PAGES

    Bertuzzo, Enrico; Machado, Pedro A. N.; Perez-Gonzalez, Yuber F.; ...

    2017-08-30

    Here, we study the contributions of colorless vectorlike fermions to the triple gauge couplings W +W -γ and W +W -Z 0. We consider models in which their coupling to the Standard Model Higgs boson is allowed or forbidden by quantum numbers. We assess the sensitivity of the future accelerators FCC-ee, ILC, and CLIC to the parameters of these models, assuming they will be able to constrain the anomalous triple gauge couplings with precision δ κV~O(10 -4), V = γ,Z 0. We show that the combination of measurements at different center-of-mass energies helps to improve the sensitivity to the contributionmore » of vectorlike fermions, in particular when they couple to the Higgs. In fact, the measurements at the FCC-ee and, especially, the ILC and the CLIC, may turn the triple gauge couplings into a new set of precision parameters able to constrain the models better than the oblique parameters or the H → γγ decay, even assuming the considerable improvement of the latter measurements achievable at the new machines.« less

  18. Constraints from triple gauge couplings on vectorlike leptons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertuzzo, Enrico; Machado, Pedro A. N.; Perez-Gonzalez, Yuber F.

    Here, we study the contributions of colorless vectorlike fermions to the triple gauge couplings W +W -γ and W +W -Z 0. We consider models in which their coupling to the Standard Model Higgs boson is allowed or forbidden by quantum numbers. We assess the sensitivity of the future accelerators FCC-ee, ILC, and CLIC to the parameters of these models, assuming they will be able to constrain the anomalous triple gauge couplings with precision δ κV~O(10 -4), V = γ,Z 0. We show that the combination of measurements at different center-of-mass energies helps to improve the sensitivity to the contributionmore » of vectorlike fermions, in particular when they couple to the Higgs. In fact, the measurements at the FCC-ee and, especially, the ILC and the CLIC, may turn the triple gauge couplings into a new set of precision parameters able to constrain the models better than the oblique parameters or the H → γγ decay, even assuming the considerable improvement of the latter measurements achievable at the new machines.« less

  19. Manipulating and Visualizing Molecular Interactions in Customized Nanoscale Spaces

    NASA Astrophysics Data System (ADS)

    Stabile, Francis; Henkin, Gil; Berard, Daniel; Shayegan, Marjan; Leith, Jason; Leslie, Sabrina

    We present a dynamically adjustable nanofluidic platform for formatting the conformations of and visualizing the interaction kinetics between biomolecules in solution, offering new time resolution and control of the reaction processes. This platform extends convex lens-induced confinement (CLiC), a technique for imaging molecules under confinement, by introducing a system for in situ modification of the chemical environment; this system uses a deep microchannel to diffusively exchange reagents within the nanoscale imaging region, whose height is fixed by a nanopost array. To illustrate, we visualize and manipulate salt-induced, surfactant-induced, and enzyme-induced reactions between small-molecule reagents and DNA molecules, where the conformations of the DNA molecules are formatted by the imposed nanoscale confinement. By using nanofabricated, nonabsorbing, low-background glass walls to confine biomolecules, our nanofluidic platform facilitates quantitative exploration of physiologically and biotechnologically relevant processes at the nanoscale. This device provides new kinetic information about dynamic chemical processes at the single-molecule level, using advancements in the CLiC design including a microchannel-based diffuser and postarray-based dialysis slit.

  20. Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer

    NASA Astrophysics Data System (ADS)

    Mahmoud, Khaled; Park, Seongchong; Lee, Dong-Hoon

    2018-02-01

    This paper presents the development of a compact charge-coupled detector (CCD) spectrometer. We describe the design, concept and characterization of VNIR linear variable edge filter (LVEF)- based mini-spectrometer. The new instrument has been realized for operation in the 300 nm to 850 nm wavelength range. The instrument consists of a linear variable edge filter in front of CCD array. Low-size, light-weight and low-cost could be achieved using the linearly variable filters with no need to use any moving parts for wavelength selection as in the case of commercial spectrometers available in the market. This overview discusses the main components characteristics, the main concept with the main advantages and limitations reported. Experimental characteristics of the LVEFs are described. The mathematical approach to get the position-dependent slit function of the presented prototype spectrometer and its numerical de-convolution solution for a spectrum reconstruction is described. The performance of our prototype instrument is demonstrated by measuring the spectrum of a reference light source.

  1. Soft x-ray spectromicroscopy using compact scanning transmission x-ray microscope at the photon factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta

    We report the stability and recent performances of a new type of scanning transmission X-ray microscopy. The optics and compact design of the microscope realized mobility and robust performance. Detailed consideration to the vibration control will be described. The insertion device upgraded to elliptical polarization undulator enabled linear dichroism and circular dichroism experiments.

  2. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  3. Estimation of Compaction Parameters Based on Soil Classification

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Hastuty, I. P.; Siregar, I. M.

    2018-02-01

    Factors that must be considered in compaction of the soil works were the type of soil material, field control, maintenance and availability of funds. Those problems then raised the idea of how to estimate the density of the soil with a proper implementation system, fast, and economical. This study aims to estimate the compaction parameter i.e. the maximum dry unit weight (γ dmax) and optimum water content (Wopt) based on soil classification. Each of 30 samples were being tested for its properties index and compaction test. All of the data’s from the laboratory test results, were used to estimate the compaction parameter values by using linear regression and Goswami Model. From the research result, the soil types were A4, A-6, and A-7 according to AASHTO and SC, SC-SM, and CL based on USCS. By linear regression, the equation for estimation of the maximum dry unit weight (γdmax *)=1,862-0,005*FINES- 0,003*LL and estimation of the optimum water content (wopt *)=- 0,607+0,362*FINES+0,161*LL. By Goswami Model (with equation Y=mLogG+k), for estimation of the maximum dry unit weight (γdmax *) with m=-0,376 and k=2,482, for estimation of the optimum water content (wopt *) with m=21,265 and k=-32,421. For both of these equations a 95% confidence interval was obtained.

  4. Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Baeder, James D.

    2014-01-21

    A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less

  5. Interaction of the Bored Sand and Gravel Drain Pile with the Surrounding Compacted Loam Soil and Foundation Raft Taking into Account Rheological Properties of the Loam Soil and Non-Linear Properties of the Drain Pile

    NASA Astrophysics Data System (ADS)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Anzhelo, G. O.; Buslov, A. S.

    2018-01-01

    The task of the interaction of the sand and gravel drain pile with the surrounding loam soil after its preliminary deep compaction and formation of the composite ground cylinder from the drain pile and surrounding compacted loam soil (cells) is considered in the article. It is seen that the subsidence and carrying capacity of such cell considerably depends on physical and mechanical properties of the compacted drain piles and surrounding loam soil as well as their diameter and intercellular distance. The strain-stress state of the cell is considered not taking into account its component elements, but taking into account linear and elastic-plastic properties of the drain pile and creep flow of the surrounding loam soil. It is stated that depending on these properties the distribution and redistribution of the load on a cell takes place from the foundation raft between the drain pile and surrounding soil. Based on the results of task solving the formulas and charts are given demonstrating the ratio of the load between the drain pile and surrounding loam soil in time.

  6. On squares of representations of compact Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com

    We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less

  7. Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia.

    PubMed

    Dehghan-Nayeri, Nasrin; Eshghi, Peyman; Pour, Kourosh Goudarzi; Rezaei-Tavirani, Mostafa; Omrani, Mir Davood; Gharehbaghian, Ahmad

    2017-07-01

    Dexamethasone is considered as a direct chemotherapeutic agent in the treatment of pediatric acute lymphoblastic leukemia (ALL). Beside the advantages of the drug, some problems arising from the dose-related side effects are challenging issues during the treatment. Accordingly, the classification of patients to dexamethasone sensitive and resistance groups can help to select optimizing the therapeutic dose with the lowest adverse effects particularly in sensitive cases. For this purpose, we investigated inhibited proliferation and induced cytotoxicity in NALM-6 cells, as sensitive cells, after dexamethasone treatment. In addition, comparative protein expression analysis using the 2DE-MALDI-TOF MS technique was performed to identify the specific altered proteins. In addition, we evaluated mRNA expression levels of the identified proteins in bone-marrow samples from pediatric ALL patients using the real-time q-PCR method. Eventually, proteomic analysis revealed a combination of biomarkers, including capping proteins (CAPZA1 and CAPZB), chloride channel (CLIC1), purine nucleoside phosphorylase (PNP), and proteasome activator (PSME1), in response to the dexamethasone treatment. In addition, our results indicated low expression of identified proteins at both the mRNA and protein expression levels after drug treatment. Moreover, quantitative real-time PCR data analysis indicated that independent of the molecular subtypes of the leukemia, CAPZA1, CAPZB, CLIC1, and PNP expression levels were lower in ALL samples than normal samples, although PSME1 expression level was higher in ALL samples than normal samples. Furthermore, the expression level of all proteins (except PSME1) was different between high-risk and standard-risk patients that suggesting the prognostic value of them. In conclusion, our study suggests a panel of biomarkers comprising CAPZA1, CAPZB, CLIC1, PNP, and PSME1 as early diagnosis and treatment evaluation markers that may differentiate cancer cells which are presumably to benefit from dexamethasone-based chemotherapy and may facilitate the prediction of clinical outcome.

  8. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways*

    PubMed Central

    Lecat, Sandra; Matthes, Hans W.D.; Pepperkok, Rainer; Simpson, Jeremy C.; Galzi, Jean-Luc

    2015-01-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  9. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiangzhi, E-mail: xiangzhi.yu@rochester.edu; Gillmer, Steven R.; Woody, Shane C.

    2016-06-15

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted tomore » investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.« less

  11. Linear Polarization Properties of Parsec-Scale AGN Jets

    NASA Astrophysics Data System (ADS)

    Pushkarev, Alexander; Kovalev, Yuri; Lister, Matthew; Savolainen, Tuomas; Aller, Margo; Aller, Hugh; Hodge, Mary

    2017-12-01

    We used 15 GHz multi-epoch Very Long Baseline Array (VLBA) polarization sensitive observations of 484 sources within a time interval 1996--2016 from the MOJAVE program, and also from the NRAO data archive. We have analyzed the linear polarization characteristics of the compact core features and regions downstream, and their changes along and across the parsec-scale active galactic nuclei (AGN) jets. We detected a significant increase of fractional polarization with distance from the radio core along the jet as well as towards the jet edges. Compared to quasars, BL Lacs have a higher degree of polarization and exhibit more stable electric vector position angles (EVPAs) in their core features and a better alignment of the EVPAs with the local jet direction. The latter is accompanied by a higher degree of linear polarization, suggesting that compact bright jet features might be strong transverse shocks, which enhance magnetic field regularity by compression.

  12. Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM00 mode output.

    PubMed

    Xu, Yi-Ting; Xu, Jia-Lin; Guo, Ya-Ding; Yang, Feng-Tu; Chen, Yan-Zhong; Xu, Jian; Xie, Shi-Yong; Bo, Yong; Peng, Qin-Jun; Cui, Dafu; Xu, Zu-Yan

    2010-08-20

    We present a compact high-efficiency and high-average-power diode-side-pumped Nd:YAG rod laser oscillator operated with a linearly polarized fundamental mode. The oscillator resonator is based on an L-shaped convex-convex cavity with an improved module and a dual-rod configuration for birefringence compensation. Under a pump power of 344 W, a linearly polarized average output power of 101.4 W at 1064 nm is obtained, which corresponds to an optical-to-optical conversion efficiency of 29.4%. The laser is operated at a repetition rate of 400 Hz with a beam quality factor of M(2)=1.14. To the best of our knowledge, this is the highest optical-to-optical efficiency for a side-pumped TEM(00) Nd:YAG rod laser oscillator with a 100-W-level output ever reported.

  13. On orthogonal projectors induced by compact groups and Haar measures

    NASA Astrophysics Data System (ADS)

    Niezgoda, Marek

    2008-02-01

    We study the difference of two orthogonal projectors induced by compact groups of linear operators acting on a vector space. An upper bound for the difference is derived using the Haar measures of the groups. A particular attention is paid to finite groups. Some applications are given for complex matrices and unitarily invariant norms. Majorization inequalities of Fan and Hoffmann and of Causey are rediscovered.

  14. Inverse compton light source: a compact design proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitrick, Kirsten Elizabeth

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less

  15. Computation of non-monotonic Lyapunov functions for continuous-time systems

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Liu, AnPing

    2017-09-01

    In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1

  16. Especially for High School Teachers

    NASA Astrophysics Data System (ADS)

    Howell, J. Emory

    2001-05-01

    Literature Cited

    1. National Science Education Standards; National Academy Press: Washington, DC, 1996; http://www. nap.edu/readingroom/books/nses/.
    2. Principles and Standards for School Mathematics; National Council of Teachers of Mathematics: Washington, DC, 2000; http://standards.nctm.org/.
    Visit CLIC, an Online Resource for High School Teachers at http://jchemed.chem.wisc.edu/HS/

  17. Evolution of histone 2A for chromatin compaction in eukaryotes

    PubMed Central

    Macadangdang, Benjamin R; Oberai, Amit; Spektor, Tanya; Campos, Oscar A; Sheng, Fang; Carey, Michael F; Vogelauer, Maria; Kurdistani, Siavash K

    2014-01-01

    During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine–DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer. DOI: http://dx.doi.org/10.7554/eLife.02792.001 PMID:24939988

  18. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-07-08

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  19. Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press.

    PubMed

    Gamlen, Michael John Desmond; Martini, Luigi G; Al Obaidy, Kais G

    2015-01-01

    The repeated compaction of Avicel PH101, dicalcium phosphate dihydrate (DCP) powder, 50:50 DCP/Avicel PH101 and Starch 1500 was studied using an instrumented laboratory tablet press which measures upper punch force, punch displacement and ejection force and operates using a V-shaped compression profile. The measurement of work compaction was demonstrated, and the test materials were ranked in order of compaction behaviour Avicel PH101 > DCP/Avicel PH101 > Starch > DCP. The behaviour of the DCP/Avicel PH101 mixture was distinctly non-linear compared with the pure components. Repeated compaction and precompression had no effect on the tensile fracture strength of Avicel PH101 tablets, although small effects on friability and disintegration time were seen. Repeated compaction and precompression reduced the tensile strength and the increased disintegration time of the DCP tablets, but improved the strength and friability of Starch 1500 tablets. Based on the data reported, routine laboratory measurement of tablet work of compaction may have potential as a critical quality attribute of a powder blend for compression. The instrumented press was suitable for student use with minimal supervisor input.

  20. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  1. High-resolution compact spectrometer based on a custom-printed varied-line-spacing concave blazed grating.

    PubMed

    Chen, Jianwei; Chen, Wang; Zhang, Guodong; Lin, Hui; Chen, Shih-Chi

    2017-05-29

    We present the modeling, design and characterization of a compact spectrometer, achieving a resolution better than 1.5 nm throughout the visible spectrum (360-825 nm). The key component in the spectrometer is a custom-printed varied-line-space (VLS) concave blazed grating, where the groove density linearly decreases from the center of the grating (530 g/mm) at a rate of 0.58 nm/mm to the edge (528 g/mm). Parametric models have been established to deterministically link the system performance with the VLS grating design parameters, e.g., groove density, line-space varying rate, and to minimize the system footprint. Simulations have been performed in ZEMAX to confirm the results, indicating a 15% enhancement in system resolution versus common constant line-space (CLS) gratings. Next, the VLS concave blazed grating is fabricated via our vacuum nanoimprinting system, where a polydimethylsiloxane (PDMS) stamp is non-uniformly expanded to form the varied-line-spacing pattern from a planar commercial grating master (600 g/mm) for precision imprinting. The concave blazed grating is measured to have an absolute diffraction efficiency of 43%, higher than typical holographic gratings (~30%) used in the commercial compact spectrometers. The completed compact spectrometer contains only one optical component, i.e., the VLS concave grating, as well as an entrance slit and linear photodetector array, achieving a footprint of 11 × 11 × 3 cm 3 , which makes it the most compact and resolving (1.46 nm) spectrometer of its kind.

  2. Three-dimensional earthquake analysis of roller-compacted concrete dams

    NASA Astrophysics Data System (ADS)

    Kartal, M. E.

    2012-07-01

    Ground motion effect on a roller-compacted concrete (RCC) dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam-foundation-reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.

  3. How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction

    NASA Astrophysics Data System (ADS)

    Liu, W.; Hinnov, L.; Wu, H.; Pas, D.

    2017-12-01

    Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity

  4. Channeled polarimetric technique for the measurement of spectral dependence of linearly Stokes parameters

    NASA Astrophysics Data System (ADS)

    Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui; Li, Qiwei

    2018-05-01

    The principle and experimental demonstration of a method based on channeled polarimetric technique (CPT) to measure spectrally resolved linearly Stokes parameters (SRLS) is presented. By replacing front retarder with an achromatic quarter wave-plate of CPT, the linearly SRLS can be measured simultaneously. It also retains the advantages of static and compact of CPT. Besides, comparing with CPT, it can reduce the RMS error by nearly a factor of 2-5 for the individual linear Stokes parameters.

  5. Ceramic Electron Multiplier

    DOE PAGES

    Comby, G.

    1996-10-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  6. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  7. Age and Type of Instruction (CLIC vs. Traditional EFL) in Lexical Development

    ERIC Educational Resources Information Center

    Augustín-Llach, María Pilar

    2016-01-01

    The present paper compares the vocabulary development of a group of CLIL and of traditional EFL learners along three years. The observation that a CLIL approach might provide with larger benefits in the long-run vocabulary is the starting point of this study. We had learners in the two groups complete a letter-writing task. These writings were…

  8. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  9. Compact scanning transmission x-ray microscope at the photon factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  10. New Ultra-High Sensitivity, Absolute, Linear, and Rotary Encoders

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1998-01-01

    Several new types of absolute optical encoders of both rotary and linear function are discussed. The means for encoding are complete departures from conventional optical encoders and offer advantages of compact form, immunity to damage-induced dropouts of position information, and about an order of magnitude higher sensitivity over what is commercially available. Rotary versions have sensitivity from 0.02 arcseconds down to 0.003 arcsecond while linear models have sensitivity of 10 nm.

  11. Hydrologic and geologic factors affecting land subsidence near Eloy, Arizona

    USGS Publications Warehouse

    Epstein, V.J.

    1987-01-01

    At an extensometer site near Eloy, Arizona, 1.09 m of land subsidence caused by groundwater withdrawal were measured by leveling in 1965-83. The extensometer, which partially penetrates the compressible sediments, recorded 0.82 m of compaction during the same period. By use of a one-dimensional model, cumulative daily compaction values were simulated to within an average of 0.0038 m of the actual values. Land subsidence was simulated to within an average of 0.011 m using the same model in conjunction with geohydrologic data of the sediments below the extensometer. A highly compressible clay layer that is 24.38 m thick was partially penetrated by the extensometer. The simulation indicated that the layer was driving compaction and land subsidence linearly with respect to time, despite the presence of other compacting layers. Because of its thickness and compressibility, this layer can be expected to continue to compact after applied vertical stresses have stopped increasing and other layers have stopped compacting. Sensitivity analysis indicated that the compressibility of fine-grained sediments (expressed as specific storage) is one of the factors to which compact is most sensitive. Preconsolidation stress and hydraulic conductivity also affect land subsidence near Eloy, Arizona. (Author 's abstract)

  12. Optimized nonorthogonal transforms for image compression.

    PubMed

    Guleryuz, O G; Orchard, M T

    1997-01-01

    The transform coding of images is analyzed from a common standpoint in order to generate a framework for the design of optimal transforms. It is argued that all transform coders are alike in the way they manipulate the data structure formed by transform coefficients. A general energy compaction measure is proposed to generate optimized transforms with desirable characteristics particularly suited to the simple transform coding operation of scalar quantization and entropy coding. It is shown that the optimal linear decoder (inverse transform) must be an optimal linear estimator, independent of the structure of the transform generating the coefficients. A formulation that sequentially optimizes the transforms is presented, and design equations and algorithms for its computation provided. The properties of the resulting transform systems are investigated. In particular, it is shown that the resulting basis are nonorthogonal and complete, producing energy compaction optimized, decorrelated transform coefficients. Quantization issues related to nonorthogonal expansion coefficients are addressed with a simple, efficient algorithm. Two implementations are discussed, and image coding examples are given. It is shown that the proposed design framework results in systems with superior energy compaction properties and excellent coding results.

  13. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  14. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  15. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  16. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.

    PubMed

    Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H

    2010-11-22

    Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.

  17. Recovery of severely compacted soils in the Mojave Desert, California, USA

    USGS Publications Warehouse

    Webb, R.H.

    2002-01-01

    Often as a result of large-scale military maneuvers in the past, many soils in the Mojave Desert are highly vulnerable to soil compaction, particularly when wet. Previous studies indicate that natural recovery of severely compacted desert soils is extremely slow, and some researchers have suggested that subsurface compaction may not recover. Poorly sorted soils, particularly those with a loamy sand texture, are most vulnerable to soil compaction, and these soils are the most common in alluvial fans of the Mojave Desert. Recovery of compacted soil is expected to vary as a function of precipitation amounts, wetting-and-drying cycles, freeze-thaw cycles, and bioturbation, particularly root growth. Compaction recovery, as estimated using penetration depth and bulk density, was measured at 19 sites with 32 site-time combinations, including the former World War II Army sites of Camps Ibis, Granite, Iron Mountain, Clipper, and Essex. Although compaction at these sites was caused by a wide variety of forces, ranging from human trampling to tank traffic, the data do not allow segregation of differences in recovery rates for different compaction forces. The recovery rate appears to be logarithmic, with the highest rate of change occurring in the first few decades following abandonment. Some higher-elevation sites have completely recovered from soil compaction after 70 years. Using a linear model of recovery, the full recovery time ranges from 92 to 100 years; using a logarithmic model, which asymptotically approaches full recovery, the time required for 85% recovery ranges from 105-124 years.

  18. CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research

    Cancer.gov

    In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve uncontrolled growth.

  19. CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research

    Cancer.gov

    In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve

  20. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  1. Charge-based MOSFET model based on the Hermite interpolation polynomial

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt

    2017-04-01

    An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.

  2. Design and indoor testing of a compact optical concentrator

    NASA Astrophysics Data System (ADS)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A.

    2017-01-01

    We propose and analyze designs for stationary and compact optical concentrators. The designs are based on a catadioptric assembly with a linear focus line. They have a focal distance of around 10 to 15 cm with a concentration ratio (4.5 to 5.9 times). The concentrator employs an internal linear-tracking mechanism, making it suitable for rooftop solar applications. The optical performance of the collector has been simulated with ray tracing software (Zemax), and laser-based indoor experiments were carried out to validate this model. The results show that the system is capable of achieving an average optical efficiency of around 66% to 69% during the middle 6 (sunniest) h of the day. The design process and principles described in this work will help enable a new class of rooftop solar thermal concentrators.

  3. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  4. Approximations and Solution Estimates in Optimization

    DTIC Science & Technology

    2016-04-06

    comprehensive descriptions of epi-convergence and its connections to variational analysis broadly. Our motivation for going beyond normed linear spaces , which...proper, every closed ball in this metric space is compact and the existence of solutions of such optimal fitting problems is more easily established...lsc-fcns(X), dl(fν , f) → 0 implies that fν epi-converges to f. We recall that a metric space is proper if every closed ball in that space is compact

  5. Three dimensional, non-linear, finite element analysis of compactable soil interaction with a hyperelastic wheel

    NASA Astrophysics Data System (ADS)

    Chiroux, Robert Charles

    The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.

  6. On the linear programming bound for linear Lee codes.

    PubMed

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  7. Accurate lithography simulation model based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki

    2017-07-01

    Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.

  8. Micro-structure and Swelling Behaviour of Compacted Clayey Soils: A Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Ferber, Valéry; Auriol, Jean-Claude; David, Jean-Pierre

    In this paper, the clay aggregate volume and inter-aggregate volume in compacted clayey soils are quantified, on the basis of simple hypothesis, using only their water content and dry density. Swelling tests on a highly plastic clay are then interpreted by describing the influence of the inter-aggregate volume before swelling on the total volume of samples after swelling. This approach leads to a linear relation between these latter parameters. Based on these results, a description of the evolution of the microstructure due to imbibition can be proposed. Moreover, this approach enables a general quantification of the influence of initial water content and dry density on the swelling behaviour of compacted clayey soils.

  9. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  10. Note: Self-biased voltage to suppress secondary electrons by a ZnO varistor in a compact pulsed neutron generator

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.

    2017-03-01

    A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.

  11. Comb-referenced ultra-high sensitivity spectroscopic molecular detection by compact non-linear sources

    NASA Astrophysics Data System (ADS)

    Cancio, P.; Gagliardi, G.; Galli, I.; Giusfredi, G.; Maddaloni, P.; Malara, P.; Mazzotti, D.; De Natale, P.

    2017-11-01

    We present a new generation of compact and rugged mid-infrared (MIR) difference-frequency coherent radiation sources referenced to fiber-based optical frequency comb synthesizers (OFCSs). By coupling the MIR radiation to high-finesse optical cavities, high-resolution and high-sensitivity spectroscopy is demonstrated for CH4 and CO2 around 3.3 and 4.5 μm respectively. Finally, the most effective detection schemes for space-craft trace-gas monitoring applications are singled out.

  12. Cinetica de oxidacion de polimeros conductores: poli-3,4- etilendioxitiofeno

    NASA Astrophysics Data System (ADS)

    Caballero Romero, Maria

    Films of poly-3,4-ethylenedioxythiophene (PEDOT) perchlorate used as electrodes in liquid electrolytes incorporate anions and solvent during oxidation for charge and osmotic balance: the film swells. During reduction the film shrinks, closes its structure trapping counterions getting then rising conformational packed states by expulsion of counterions and solvent. Here by potential step from the same reduced initial state to the same oxidized final state the rate coefficient, the activation energy and reaction orders related to the counterion concentration in solution and to the concentration of active centers in the polymer film, were attained following the usual methodology used for chemical and electrochemical kinetics. Now the full methodology was repeated using different reduced-shrunk or reduced-conformational compacted initial states every time. Those initial states were attained by reduction of the oxidized film at rising cathodic potentials for the same reduction time each. Rising reduced and conformational compacted states give slower subsequent oxidation rates by potential step to the same anodic potential every time. The activation energy, the reaction coefficient and reaction orders change for rising conformational compacted initial states. Decreasing rate constants and increasing activation energies are obtained for the PEDOT oxidation from increasing conformational compacted initial states. The experimental activation energy presents two linear ranges as a function of the initial reduced-compacted state. Using as initial states for the oxidation open structures attained by reduction at low cathodic potentials, activation energies attained were constant: namely the chemical activation energy. Using as initial states for the oxidation deeper reduced, closed and packed conformational structures, the activation energy includes two components: the constant chemical energy plus the conformational energy required to relax the conformational structure generating free volume which allows the entrance of the balancing counterions required for the reaction. The conformational energy increases linearly as a function of the reduction-compaction potential. The kinetic magnitudes include conformational and structural information. The Chemical Kinetics becomes Structural (or conformational) Chemical Kinetics.

  13. Evaluation of canal filling after using two warm vertical gutta-percha compaction techniques in vivo: a preliminary study.

    PubMed

    Venturi, M

    2006-07-01

    To evaluate the quality of root canal filling when comparing two warm gutta-percha filling techniques in vivo. Human teeth were randomly divided into two equal groups, with 30 canals each. The root canals were shaped by hand and ProFile 0.04 rotary instruments to size 20-40 at the end-point and then filled with gutta-percha cones and AH-Plus. In group A, a traditional warm vertical compaction technique was performed using the Touch'n Heat, and back-filling with the Obtura II. In group B, a modified warm vertical compaction technique was used: small amounts of gutta-percha were removed, and the remaining most apical 3 mm were compacted with a 1 mm movement; then thermomechanical back-filling was performed. The teeth were extracted, stored in dye, cleared, and the distance between the apex and apical limit of the filling, linear dye penetration, and voids were measured from the buccal, lingual, mesial and distal perspective. The homogeneity of variance and means was verified using Levene's test and t-test. ANOVA and Dunnett post hoc test were used to establish the significance and to analyse the effects through multiple comparisons. Compared with the specimens of group A, the specimens of group B exhibited less mean linear dye penetration (P < 0.05), smaller void length (P < or = 0.05) and maximal width (P < or = 0.05) when examined in all four views, and a more precise filling when viewed from the buccal aspect (P < 0.05). The modified warm vertical compaction technique with apical back-filling produced a more effective and precise three-dimensional filling.

  14. Compilation of References and Bibliography. Volume 1. An Annotated Bibliography on Low Intensity Conflict Taken from the Joint Low- Intensity Conflict Project Final Report of 1 August 1986. CLIC PAPERS.

    DTIC Science & Technology

    1987-08-01

    conditions--especially in rural areas. Moreover, the author recognizes a continued dependence upon the army in various matters. Some of these are electoral ...Mau Mau revolt in Kenya in East Africa, and the period of the " violencia " in Colombia. 54. Book, Insurgency, COIN. Wesson, Robert, editor, Communism

  15. Polar Motions Measurement Study.

    DTIC Science & Technology

    1984-09-01

    tiltmeters and a single GG1389 RLG. The sensors and their electronics are fixed to a platform that is mounted on a computer-driven ULIRADEX precision...gyroscopes ; and accelerometers and/or tiltmeters . It is marginally feasible, using laser gyros equivalent to the Honeywell GG1389, either...using one CLIC- enhanced GG1389 ring laser gyro, two state-of-the-art tiltmeters , an Ultradex indexer, and a Hewlett-Packard micro-computer..--.~ ’k

  16. Peacekeeping. A Selected Bibliography

    DTIC Science & Technology

    1994-01-01

    Tactics. Techniques. and Procedures. CLIC Paper. Langley Air Force Base: US Army- Air Force Center for Low Intensity Conflict, April 1989. 96pp...Organization of African Unity to Develop a Peacekeeping Capability. Research Report. Maxwell Air Force Base: US Air University, Air War College, 1990...Arab League and Peacekeeping in the Lebanon. New York: St. Martin’s Press, 1987. 214pp. (DS36.2 P64 1987) Renner , Michael. Critical Juncture: The

  17. Compact tunable silicon photonic differential-equation solver for general linear time-invariant systems.

    PubMed

    Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai

    2014-10-20

    We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.

  18. Geotechnical and mineralogical characteristics of marl deposits in Jordan

    NASA Astrophysics Data System (ADS)

    Shaqour, Fathi M.; Jarrar, Ghaleb; Hencher, Steve; Kuisi, Mostafa

    2008-10-01

    Marls and marly limestone deposits cover most of Northern Jordan, where Amman City and its suburbs are located. These deposits serve as foundations for most buildings and roads as well as fill material for structural back filling, especially road bases and sub-bases. The present study aims at investigating the geotechnical characteristics and mineral composition of the marl units of these deposits through field investigations and laboratory testing. Using X-ray diffraction technique along with chemical analysis, representative samples of marl horizons were tested for mineral composition, and for a set of index and geotechnical properties including: specific gravity, grain size, Atterberg limits, Proctor compaction and shear strength properties. The test results show a positive linear relationship as expected between the clay content and both liquid and plastic limits. The tests results also show an inverse linear relationship between the clay content and the maximum dry density in both standard and modified compaction. This is attributed to the adsorption of water by the clay minerals. The relationship is more prominent in the case of modified compaction test. The results also indicate a similar relationship for the angle of internal friction. No clear correlation between cohesion and clay content was apparent.

  19. Compact terahertz spectrometer based on disordered rough surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Jiang, Bing; Ge, Jia-cheng; Zhu, Yong-yuan; Li, Xing-ao; Huang, Wei

    2018-01-01

    In this paper, a compact spectrometer based on disordered rough surfaces for operation in the terahertz band is presented. The proposed spectrometer consists of three components, which are used for dispersion, modulation and detection respectively. The disordered rough surfaces, which are acted as the dispersion component, are modulated by the modulation component. Different scattering intensities are captured by the detection component with different extent of modulation. With a calibration measurement process, one can reconstruct the spectra of the probe terahertz beam by solving a system of simultaneous linear equations. A Tikhonov regularization approach has been implemented to improve the accuracy of the spectral reconstruction. The reported broadband, compact, high-resolution terahertz spectrometer is well suited for portable terahertz spectroscopy applications.

  20. A Large-Particle Monte Carlo Code for Simulating Non-Linear High-Energy Processes Near Compact Objects

    NASA Technical Reports Server (NTRS)

    Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek

    1995-01-01

    High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.

  1. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains.

    PubMed

    Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George

    2016-10-04

    The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < M e ), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > M e undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.

  2. U.S. Military Civic Action in Honduras, 1982-1985: Tactical Success, Strategic Uncertainty. CLIC Papers

    DTIC Science & Technology

    1988-09-01

    four doctors treated about 600 patients, mostly for upper respiratory infections, malnutrition, skin infections and anemia . One villager, Jose Nolasco...gastro-intestinal problems, upper respiratory and skin infection, anemia , and malnutrition. Captain Gilbert Handal, a US Army doctor and a native of Chile...created by government opponents, but have been exploited by them. As former President of Peru , Fernando Belaunde-Terry argued "The enemies of democracy

  3. Compilation of LIC (Low Intensity Conflict) References and Bibliography, Volume 2. CLIC Papers

    DTIC Science & Technology

    1988-09-01

    Mexico . It reviews these nations’ historical and institutional settings, the characteristics of their political culture, the style of their negotiators...invitations, body language, world view, time, machismo , success, and manual labor. It explains teaching and training Latins in terms of the personal...30, Mexico , 14 31, 37 Morocco-Polisario, 15. Summers, 11, 21 Motley, 7 Swenarski, 11 Murray, 8 Taylor, 12 Nails, 13 Technological, 2, 16, 30

  4. Permanent magnet focused X-band photoinjector

    DOEpatents

    Yu, David U. L.; Rosenzweig, James

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  5. Sensitive bridge circuit measures conductance of low-conductivity electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Schmidt, K.

    1967-01-01

    Compact bridge circuit measures sensitive and accurate conductance of low-conductivity electrolyte solutions. The bridge utilizes a phase sensitive detector to obtain a linear deflection of the null indicator relative to the measured conductance.

  6. Understanding Least Squares through Monte Carlo Calculations

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2005-01-01

    The method of least squares (LS) is considered as an important data analysis tool available to physical scientists. The mathematics of linear least squares(LLS) is summarized in a very compact matrix rotation that renders it practically "formulaic".

  7. rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi

    2017-11-01

    We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.

  8. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.

    PubMed

    Dannenmayer, K; Mazouffre, S

    2012-12-01

    A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.

  9. Hadamard States for the Linearized Yang-Mills Equation on Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Gérard, C.; Wrochna, M.

    2015-07-01

    We construct Hadamard states for the Yang-Mills equation linearized around a smooth, space-compact background solution. We assume the spacetime is globally hyperbolic and its Cauchy surface is compact or equal . We first consider the case when the spacetime is ultra-static, but the background solution depends on time. By methods of pseudodifferential calculus we construct a parametrix for the associated vectorial Klein-Gordon equation. We then obtain Hadamard two-point functions in the gauge theory, acting on Cauchy data. A key role is played by classes of pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs. The general problem is reduced to the ultra-static spacetime case using an extension of the deformation argument of Fulling, Narcowich and Wald. As an aside, we derive a correspondence between Hadamard states and parametrices for the Cauchy problem in ordinary quantum field theory.

  10. High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon

    2016-10-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  11. Optical Manipulation with Plasmonic Beam Shaping Antenna Structures

    DOE PAGES

    Jun, Young Chul; Brener, Igal

    2012-01-01

    Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.

  12. Anticrack inclusion model for compaction bands in sandstone

    NASA Astrophysics Data System (ADS)

    Sternlof, Kurt R.; Rudnicki, John W.; Pollard, David D.

    2005-11-01

    Detailed observations of compaction bands exposed in the Aztec Sandstone of southeastern Nevada indicate that these thin, tabular, bounded features of localized porosity loss initiated at pervasive grain-scale flaws, which collapsed in response to compressive tectonic loading. From many of these Griffith-type flaws, an apparently self-sustaining progression of collapse propagated outward to form bands of compacted grains a few centimeters thick and tens of meters in planar extent. These compaction bands can be idealized as highly eccentric ellipsoidal bodies that have accommodated uniform uniaxial plastic strain parallel to their short dimension within a surrounding elastic material. They thus can be represented mechanically as contractile Eshelby inclusions, which generate near-tip compressive stress concentrations consistent with self-sustaining, in-plane propagation. The combination of extreme aspect ratio (˜10-4) and significant uniaxial plastic strain (˜10%) also justifies an approximation of the bands as anticracks: sharp boundaries across which a continuous distribution of closing mode displacement discontinuity has been accommodated. This anticrack interpretation of compaction bands is analogous to that of pressure solution surfaces, except that porosity loss takes the place of material dissolution. We find that displacement discontinuity boundary element modeling of compaction bands as anticracks within a two-dimensional linear elastic continuum can accurately represent the perturbed external stress fields they induce.

  13. On τ-Compactness of Products of τ-Measurable Operators

    NASA Astrophysics Data System (ADS)

    Bikchentaev, Airat M.

    2017-12-01

    Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We obtain some new inequalities for rearrangements of τ-measurable operators products. We also establish some sufficient τ-compactness conditions for products of selfadjoint τ-measurable operators. Next we obtain a τ-compactness criterion for product of a nonnegative τ-measurable operator with an arbitrary τ-measurable operator. We construct an example that shows importance of nonnegativity for one of the factors. The similar results are obtained also for elementary operators from M. We apply our results to symmetric spaces on (M, τ ). The results are new even for the *-algebra B(H) of all linear bounded operators on H endowed with the canonical trace τ = tr.

  14. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    NASA Technical Reports Server (NTRS)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of the bed media increased with decrease in initial compaction of the bed media. This effect could be attributed to the greater tendency for inter-particle sliding/rub bing due to smaller internal friction angles, as seen from the shear tests, at lesser initial compacted levels. Upon unloading, it was obse rved that there was no change in displacement (especially rebounding) in the bed media. This effect could be attributed to the fact that th e porous activated alumina particles fracture/break upon increase in applied load (during loading phase) and occupy void spaces in between the material grains; thereby leading to settling of the media. The lo ad-displacement curve becomes more linear with increase in initial compaction of the bed media. It is concluded that compaction considerabl y affects the load-displacement behavior of the bed media. A series of tests were also conducted on the packed bed media to determine the f orce required to mobilize the friction between the bed media and the housing cylinder. The results from these tests showed the existence of significant friction between the bed media and the encasing stainles s steel cylinder. Further, it was found that friction effects were more pronounced for media with higher initial compaction. Internal frict ion of the granular media was measured using direct shear apparatus. It was observed that the internal friction increased with increase in initial compaction of the bed media. In this study, a computational m odel (CM) is also developed using finite element software ANSYS to verify experimental results obtained for the distribution of the axial n ormal stress and axial displacement along the length of the full-scal e activated alumina bed media. In the computational model, the granular material is considered to have appropriate failure and frictional c ontact exists between the wall and the granular media. It is observed that the model predicts results closely with the experimental method. The compational results show that the axial normal stress distribution along the length of the activated alumina media decreases non-linea rly from the loading end and is negligible beyond a certain depth. Th is can be attributed to the existence of friction between the walls and the media and that the friction takes up most of the applied load.

  15. Compact universal logic gates realized using quantization of current in nanodevices.

    PubMed

    Zhang, Wancheng; Wu, Nan-Jian; Yang, Fuhua

    2007-12-12

    This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.

  16. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  17. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  18. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivi, M.T.F.; Collet, G.; King, F.

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less

  19. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less

  20. A Survey of Power Source Options for a Compact Battery Charger for Soldier Applications

    DTIC Science & Technology

    2008-12-01

    virtually any flammable liquid could be used as a fuel. Research on linear engines, enabled by developments in power control and linear electrical...the use of atmospheric oxygen. Molten carbonate and phosphoric acid fuel cells use hot corrosive liquid electrolytes and are best applied to...cells using DuPont’s NAFION membranes began at General Electric and Ballard Industries in the early 1980s. NAFION is a fluoropolymer with

  1. Reserve Component Support to United States National Low Intensity Conflict Strategy: Future Issues. CLIC Papers

    DTIC Science & Technology

    1989-04-01

    transportation systems; (3) Well drilling and construction of basic sanitation facilities; and (4) Rudimentary construction and repair of public facilities. e. 10...reporting. The conferees, therefore, exempted ( de minimus) activities from this section. The conferees did not put a specific dollar ceiling on the...definition of ( de minimus) but wish to make clear they had in mind activities that have been commonplace on foreign exercises for decades. These would include

  2. Introduction to Understanding Latin Americans. CLIC Papers

    DTIC Science & Technology

    1988-08-01

    differences between Bolivia and Chile alone are as diverse as those between Germany and India, and these ethnic and social differences make it very difficult...people in Bolivia, for instance, livs above 12,000 feet in a perpetually cold climate. Chile and Argentina have some of the finest ski areas in the world...Northern Chile also has one of the driest spots on eaih, the Atacama desert, arid Southern Chile looks like Scandinavia. In short, there is a great

  3. A Scientific Synthesis and Assessment of the Arctic Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Daniel J.; Guo, Laodong; McGuire, A. David

    2007-06-01

    The Arctic Monitoring and Assessment Programme (AMAP), along with the Climate and Cryosphere (CliC) Project and the International Arctic Science Committee (IASC), sponsored the Arctic Carbon Cycle Assessment Workshop, at the Red Lion Hotel in Seattle, Wash., between 27 February and 1 March 2007. The workshop was held in a general effort toward the scientific synthesis and assessment of the Arctic system carbon cycle, as well as to generate feedback on the working draft of an assessment document. The initial assessment was prepared by the Arctic carbon cycle assessment writing team, which is led by A. David McGuire (University of Alaska Fairbanks) and includes Leif Anderson (Goteborg University, Sweden), Torben Christensen (Lund University, Sweden), Scott Dallimore (Natural Resources Canada), Laodong Guo (University of Southern Mississippi), Martin Heimann (Max Planck Institute, Germany), Robie MacDonald (Department of Fisheries and Oceans, Canada), and Nigel Roulet (McGill University, Canada). The workshop brought together leading researchers in the fields of terrestrial, marine, and atmospheric science to report on and discuss the current state of knowledge on contemporary carbon stocks and fluxes in the Artie and their potential responses to a changing climate. The workshop was attended by 35 scientists representing institutions from 10 countries in addition to two representatives of the sponsor agencies (John Calder for AMAP and Diane Verseghy for CliC).

  4. Factor XIII stiffens fibrin clots by causing fiber compaction.

    PubMed

    Kurniawan, N A; Grimbergen, J; Koopman, J; Koenderink, G H

    2014-10-01

    Factor XIII-induced cross-linking has long been associated with the ability of fibrin blood clots to resist mechanical deformation, but how FXIII can directly modulate clot stiffness is unknown. We hypothesized that FXIII affects the self-assembly of fibrin fibers by altering the lateral association between protofibrils. To test this hypothesis, we studied the cross-linking kinetics and the structural evolution of the fibers and clots during the formation of plasma-derived and recombinant fibrins by using light scattering, and the response of the clots to mechanical stresses by using rheology. We show that the lateral aggregation of fibrin protofibrils initially results in the formation of floppy fibril bundles, which then compact to form tight and more rigid fibers. The first stage is reflected in a fast (10 min) increase in clot stiffness, whereas the compaction phase is characterized by a slow (hours) development of clot stiffness. Inhibition of FXIII completely abrogates the slow compaction. FXIII strongly increases the linear elastic modulus of the clots, but does not affect the non-linear response at large deformations. We propose a multiscale structural model whereby FXIII-mediated cross-linking tightens the coupling between the protofibrils within a fibrin fiber, thus making the fiber stiffer and less porous. At small strains, fiber stiffening enhances clot stiffness, because the clot response is governed by the entropic elasticity of the fibers, but once the clot is sufficiently stressed, the modulus is independent of protofibril coupling, because clot stiffness is governed by individual protofibril stretching. © 2014 International Society on Thrombosis and Haemostasis.

  5. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  6. Design and evaluation of a miniature laser speckle imaging device to assess gingival health

    PubMed Central

    Regan, Caitlin; White, Sean M.; Yang, Bruce Y.; Takesh, Thair; Ho, Jessica; Wink, Cherie; Wilder-Smith, Petra; Choi, Bernard

    2016-01-01

    Abstract. Current methods used to assess gingivitis are qualitative and subjective. We hypothesized that gingival perfusion measurements could provide a quantitative metric of disease severity. We constructed a compact laser speckle imaging (LSI) system that could be mounted in custom-made oral molds. Rigid fixation of the LSI system in the oral cavity enabled measurement of blood flow in the gingiva. In vitro validation performed in controlled flow phantoms demonstrated that the compact LSI system had comparable accuracy and linearity compared to a conventional bench-top LSI setup. In vivo validation demonstrated that the compact LSI system was capable of measuring expected blood flow dynamics during a standard postocclusive reactive hyperemia and that the compact LSI system could be used to measure gingival blood flow repeatedly without significant variation in measured blood flow values (p<0.05). Finally, compact LSI system measurements were collected from the interdental papilla of nine subjects and compared to a clinical assessment of gingival bleeding on probing. A statistically significant correlation (ρ=0.53; p<0.005) was found between these variables, indicating that quantitative gingival perfusion measurements performed using our system may aid in the diagnosis and prognosis of periodontal disease. PMID:27787545

  7. Design and evaluation of a miniature laser speckle imaging device to assess gingival health

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin; White, Sean M.; Yang, Bruce Y.; Takesh, Thair; Ho, Jessica; Wink, Cherie; Wilder-Smith, Petra; Choi, Bernard

    2016-10-01

    Current methods used to assess gingivitis are qualitative and subjective. We hypothesized that gingival perfusion measurements could provide a quantitative metric of disease severity. We constructed a compact laser speckle imaging (LSI) system that could be mounted in custom-made oral molds. Rigid fixation of the LSI system in the oral cavity enabled measurement of blood flow in the gingiva. In vitro validation performed in controlled flow phantoms demonstrated that the compact LSI system had comparable accuracy and linearity compared to a conventional bench-top LSI setup. In vivo validation demonstrated that the compact LSI system was capable of measuring expected blood flow dynamics during a standard postocclusive reactive hyperemia and that the compact LSI system could be used to measure gingival blood flow repeatedly without significant variation in measured blood flow values (p<0.05). Finally, compact LSI system measurements were collected from the interdental papilla of nine subjects and compared to a clinical assessment of gingival bleeding on probing. A statistically significant correlation (ρ=0.53 p<0.005) was found between these variables, indicating that quantitative gingival perfusion measurements performed using our system may aid in the diagnosis and prognosis of periodontal disease.

  8. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  9. Fiber-based Coherent Lidar for Target Ranging, Velocimetry, and Atmospheric Wind Sensing

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego

    2006-01-01

    By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing state-of-the-art fiber optic technologies, highly efficient, compact and reliable lidar suitable for operation in a space environment is being developed.

  10. Deep Hashing for Scalable Image Search.

    PubMed

    Lu, Jiwen; Liong, Venice Erin; Zhou, Jie

    2017-05-01

    In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.

  11. Finite volume treatment of dispersion-relation-preserving and optimized prefactored compact schemes for wave propagation

    NASA Astrophysics Data System (ADS)

    Popescu, Mihaela; Shyy, Wei; Garbey, Marc

    2005-12-01

    In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving (DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the computational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formulations of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equations, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high gradient or discontinuity.

  12. Compactly supported linearised observables in single-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröob, Markus B.; Higuchi, Atsushi; Hack, Thomas-Paul, E-mail: mbf503@york.ac.uk, E-mail: thomas-paul.hack@itp.uni-leipzig.de, E-mail: atsushi.higuchi@york.ac.uk

    We investigate the gauge-invariant observables constructed by smearing the graviton and inflaton fields by compactly supported tensors at linear order in general single-field inflation. These observables correspond to gauge-invariant quantities that can be measured locally. In particular, we show that these observables are equivalent to (smeared) local gauge-invariant observables such as the linearised Weyl tensor, which have better infrared properties than the graviton and inflaton fields. Special cases include the equivalence between the compactly supported gauge-invariant graviton observable and the smeared linearised Weyl tensor in Minkowski and de Sitter spaces. Our results indicate that the infrared divergences in the tensormore » and scalar perturbations in single-field inflation have the same status as in de Sitter space and are both a gauge artefact, in a certain technical sense, at tree level.« less

  13. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Project

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2017-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. Major project activities will be reviewed, including the T4B and T5 plasma heating experiments. The goal of the experiments is to demonstrate a suitable plasma target for heating experiments, to characterize the behavior of plasma sources in the CFR configuration and to then heat the plasma with neutral beams, with the plasma transitioning into the high Beta confinement regime. The design and preliminary results of the experiments will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  14. Mode 1 crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  15. Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.

    1997-01-01

    The compact form of the discontinuous Galerkin method allows for a detailed local analysis of the method in the neighborhood of the shock for a non-linear model problem. Insight gained from the analysis leads to new flux formulas that are stable and that preserve the compactness of the method. Although developed for a model equation, the flux formulas are applicable to systems such as the Euler equations. This article presents the analysis for methods with a degree up to 5. The analysis is accompanied by supporting numerical experiments using Burgers' equation and the Euler equations.

  16. Compact multichannel MEMS based spectrometer for FBG sensing

    NASA Astrophysics Data System (ADS)

    Ganziy, D.; Rose, B.; Bang, O.

    2017-04-01

    We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.

  17. Toward a low-cost, low-power, low-complexity DAC-based multilevel (M-ary QAM) coherent transmitter using compact linear optical field modulator

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin

    2017-01-01

    In this invited paper, we summarize the current developments in linear optical field modulators (LOFMs) for coherent multilevel optical transmitters. Our focus is the presentation of a new, novel LOFM design that provides beneficial and necessary features such as lowest hardware component counts, lowered insertion loss, smaller RF power consumption, smaller footprint, simple structure, and lowered cost. We refer to this modulator as called Double-Pass LOFM (DP-LOFM) that becomes the building block for high-performance, linear Dual-Polarization, In-Phase- Quadrature-Phase (DP-IQ) modulator. We analyze its performance in term of slope linearity, and present one of its unique feature -- a built-in compensation functionality that no other linear modulators possessed till now.

  18. Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis

    PubMed Central

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905

  19. Effect of roll compaction on granule size distribution of microcrystalline cellulose-mannitol mixtures: computational intelligence modeling and parametric analysis.

    PubMed

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.

  20. On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds

    NASA Astrophysics Data System (ADS)

    Lupo, Umberto

    2018-04-01

    The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.

  1. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    PubMed

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  2. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  3. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  4. Growth of the eye lens: II. Allometric studies.

    PubMed

    Augusteyn, Robert C

    2014-01-01

    The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size.

  5. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  6. Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Mason, Thomas J.; Millichamp, Jason; Neville, Tobias P.; El-kharouf, Ahmad; Pollet, Bruno G.; Brett, Daniel J. L.

    2012-12-01

    This paper describes the use of an in situ analytical technique based on simultaneous displacement and resistance measurement of gas diffusion layers (GDLs) used in polymer electrolyte fuel cells (PEFCs), when exposed to varying compaction pressure. In terms of the losses within fuel cells, the ohmic loss makes up a significant portion. Of this loss, the contact resistance between the GDL and the bipolar plate (BPP) is an important constituent. By analysing the change in thickness and ohmic resistance of GDLs under compression, important mechanical and electrical properties are obtained. Derived parameters such as the 'displacement factor' are used to characterise a representative range of commercial GDLs. Increasing compaction pressure leads to a non-linear decrease in resistance for all GDLs. For Toray paper, compaction becomes more irreversible with pressure with no elastic region observed. Different GDLs have different intrinsic resistance; however, all GDLs of the same class share a common compaction profile (change in resistance with pressure). Cyclic compression of Toray GDL leads to progressive improvement in resistance and reduction in thickness that stabilises after ∼10 cycles.

  7. An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid

    NASA Astrophysics Data System (ADS)

    Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique

    2018-04-01

    The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.

  8. New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.

    1992-01-01

    A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.

  9. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-04-01

    A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.

  10. Pathwise upper semi-continuity of random pullback attractors along the time axis

    NASA Astrophysics Data System (ADS)

    Cui, Hongyong; Kloeden, Peter E.; Wu, Fuke

    2018-07-01

    The pullback attractor of a non-autonomous random dynamical system is a time-indexed family of random sets, typically having the form {At(ṡ) } t ∈ R with each At(ṡ) a random set. This paper is concerned with the nature of such time-dependence. It is shown that the upper semi-continuity of the mapping t ↦At(ω) for each ω fixed has an equivalence relationship with the uniform compactness of the local union ∪s∈IAs(ω) , where I ⊂ R is compact. Applied to a semi-linear degenerate parabolic equation with additive noise and a wave equation with multiplicative noise we show that, in order to prove the above locally uniform compactness and upper semi-continuity, no additional conditions are required, in which sense the two properties appear to be general properties satisfied by a large number of real models.

  11. Mode I crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results of this study are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  12. Dynamics of poroelastic foams

    NASA Astrophysics Data System (ADS)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  13. A two-phase micromorphic model for compressible granular materials

    NASA Astrophysics Data System (ADS)

    Paolucci, Samuel; Li, Weiming; Powers, Joseph

    2009-11-01

    We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.

  14. Compact Spreader Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, M.; Jung, J. -Y.; Ratti, A.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibilitymore » when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.« less

  15. Non-orthogonal internally contracted multi-configurational perturbation theory (NICPT): Dynamic electron correlation for large, compact active spaces

    NASA Astrophysics Data System (ADS)

    Kähler, Sven; Olsen, Jeppe

    2017-11-01

    A computational method is presented for systems that require high-level treatments of static and dynamic electron correlation but cannot be treated using conventional complete active space self-consistent field-based methods due to the required size of the active space. Our method introduces an efficient algorithm for perturbative dynamic correlation corrections for compact non-orthogonal MCSCF calculations. In the algorithm, biorthonormal expansions of orbitals and CI-wave functions are used to reduce the scaling of the performance determining step from quadratic to linear in the number of configurations. We describe a hierarchy of configuration spaces that can be chosen for the active space. Potential curves for the nitrogen molecule and the chromium dimer are compared for different configuration spaces. Already the most compact spaces yield qualitatively correct potentials that with increasing size of configuration spaces systematically approach complete active space results.

  16. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    NASA Astrophysics Data System (ADS)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  17. Characterization of compressibility and compactibility of poly(ethylene oxide) polymers for modified release application by compaction simulator.

    PubMed

    Yang, L; Venkatesh, G; Fassihi, R

    1996-10-01

    Poly(ethylene oxide) polymers (PEO) appear to have great potential for controlled release applications. These polymers are hydrophilic with good water solubility, low toxicity, and high swelling capacity. As part of formulation optimization for a large-scale solid dosage form production, physicomechanical characterization of PEO was undertaken using a compaction simulator. Heckel plots for all PEOs were constructed, and yield pressures (Py) at different punch velocities were calculated from the linear portion of the plots. Low Py values, increase of Py with increasing punch speed, upward curvature of the plot, and strain rate sensitivity values indicate that the densification process and consolidation mechanism for PEOs of various molecular weights (0.2 x 10(6) to 7 x 10(6)) are identical and follow plastic deformation. PEOs have a high degree of crystallinity (57-85%) and show significant axial recovery (15-25%) upon decompression and ejection. The low Py values (58-78 MPa) and low mean compaction pressures demonstrate that volume reduction (compressibility) under pressure is excellent. However, due to viscoelastic behavior and large axial expansion, tablets of relatively low tensile strength are produced. These observations suggest the need to blend PEO with highly compactible excipients in order to produce tables on a high-speed production press.

  18. Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook

    2013-05-01

    This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.

  19. Chemical networks with inflows and outflows: a positive linear differential inclusions approach.

    PubMed

    Angeli, David; De Leenheer, Patrick; Sontag, Eduardo D

    2009-01-01

    Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to a ubiquitous biochemical reaction network with inflows and outflows, known as the futile cycle. We also provide a characterization of exponential stability of general homogeneous switched systems which is not only of interest in itself, but also plays a role in the analysis of the futile cycle. 2009 American Institute of Chemical Engineers

  20. Schwarzschild and linear potentials in Mannheim's model of conformal gravity

    NASA Astrophysics Data System (ADS)

    Phillips, Peter R.

    2018-05-01

    We study the equations of conformal gravity, as given by Mannheim, in the weak field limit, so that a linear approximation is adequate. Specialising to static fields with spherical symmetry, we obtain a second-order equation for one of the metric functions. We obtain the Green function for this equation, and represent the metric function in the form of integrals over the source. Near a compact source such as the Sun the solution no longer has a form that is compatible with observations. We conclude that a solution of Mannheim type (a Schwarzschild term plus a linear potential of galactic scale) cannot exist for these field equations.

  1. Spatial dependence of extreme rainfall

    NASA Astrophysics Data System (ADS)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  2. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility of permanent, time-independent (plastic) rock deformation significantly increases the pore space compressibility (compaction), which becomes a leading term in the total compressibility. Inclusion of rock and fluid compressibilities in the model can explain both linear and nonlinear leak­off. In particular, inclusion of rock compaction and decompaction may be important for description of naturally fractured and tight gas reservoirs for which very strong dependence of permeability on porosity has been reported. Carter R.D. Derivation of the general equation for estimating the extent of the fractured area. Appendix I of "Optimum fluid characteristics for fracture extension", Drilling and Production Practice, G.C. Howard and C.R.Fast, New York, New York, USA, American Petroleum Institute (1957), 261-269.

  3. Non-compact nonlinear sigma models

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong

    2016-09-01

    The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz-invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a Λ2 decoupling limit can be defined on these vacua.

  4. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Elementmore » Analysis of the system are presented.« less

  5. Compact photonic crystal fiber refractometer based on modal interference

    NASA Astrophysics Data System (ADS)

    Wong, Wei Chang; Chan, Chi Chiu; Tou, Zhi Qiang; Chen, Li Han; Leong, Kam Chew

    2011-05-01

    A compact photonic crystal fiber (PCF) refractometer based on modal interference has been proposed by the use of commercial fusion splicer to collapse the holes of PCF to form a Mach Zehnder interferometer by splitting the fundamental core mode into cladding and core modes in the PCF. Collapsed of holes was done at the interface between the single mode fiber and PCF, and the PCF's end. The shift of the interference fringes was measured when the sensor was placed into different refractive index liquid. High linear sensitivity of 253.13nm/RIU with resolution of 3.950×10-5RIU was obtained.

  6. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  7. Porosity localizing instability in a compacting porous layer in a pure shear flow and the evolution of porosity band wavelength

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2010-09-01

    A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the wavelength becomes similar to one compaction length. Once the wavelength becomes similar to one compaction length, the growth of the amplitude of the band slows and shorter wavelength bands that are increasing in amplitude at a greater rate take over. This may provide a mechanism to explain the experimental observation that band spacing is controlled by the compaction length ( Kohlstedt and Holtzman, 2009).

  8. Key Results of Interaction Models with Centering

    ERIC Educational Resources Information Center

    Afshartous, David; Preston, Richard A.

    2011-01-01

    We consider the effect on estimation of simultaneous variable centering and interaction effects in linear regression. We technically define, review, and amplify many of the statistical issues for interaction models with centering in order to create a useful and compact reference for teachers, students, and applied researchers. In addition, we…

  9. Multimedia in Education: Summary Chapter.

    ERIC Educational Resources Information Center

    Hooper, Kristina

    1986-01-01

    This summary of issues addressed at the conference identifies 10 important themes: (1) the nature of interactivity, and whether linear presentations are obsolete; (2) what can be done with all the imagery made possible with videodisks and the sounds enabled by compact disks, and whether any of this is really new; (3) whether emotional…

  10. Wormhole solutions with a complex ghost scalar field and their instability

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    2018-01-01

    We study compact configurations with a nontrivial wormholelike spacetime topology supported by a complex ghost scalar field with a quartic self-interaction. For this case, we obtain regular asymptotically flat equilibrium solutions possessing reflection symmetry. We then show their instability with respect to linear radial perturbations.

  11. Solar Interferometric imaging from the Moon

    NASA Astrophysics Data System (ADS)

    Dame, L.; Martic, M.; Porteneuve, J.

    1994-06-01

    We present the concept of a Lunar Interferometer for Solar Physics. In particular we explain the rationale for a compact 2D array and we propose the use of a novel mechanical support structure based on linear mounting rods-these optimizing room and mass issues for transportation to the Moon.

  12. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are also presented. Overall, this thesis demonstrates the feasibility of an integrated HFET Doherty amplifier for LTE band 7 which entails the frequencies from 2.62-2.69GHz. The realization of the layout and various issues related to the PA design is discussed and attempted to be solved.

  13. The Literature of Low Intensity Conflict: A Selected Bibliography and Suggestions for Future Research (CLIC Papers)

    DTIC Science & Technology

    1988-09-01

    Alnwick, Kenneth J. "Perspectives on Air Power At the Low End of the Conflict Spectrum." Air University Review 35 (March- April 1984). Arendt , Hannah . On...HUNTINGTON on the cause of disorder in developing nations, ARENDT on the philosophy of revolution, CHALMERS JOHNSON on the general theory of revolution... Arendt , 2, 7 Doctrine, 1, 3, 4, 6, 8, 9, 10, Arnold, 14 13, 14, 16, 17, 18, 19, 20 Asprey, 3, 7 Dodd, 10 Atkinson, 1, 7 Dubik, 3, 10 Barber, 2, 7 Dunn, 2

  14. NOAA Weather Radio

    Science.gov Websites

    . -------------------------------------------------------------------------------- La DESCRIPCIÓN DE COLUMNAS EN TABLAS DE ESTADOS Al hacer un clic en un estado o territorio de la la radio. (Todas áreas de ahora en adelante serán llamados condados.) Entonces la radio les mensaje de la emisión, los oyentes oirán un corto estallido estático digital que señala el fin del

  15. A Security Assistance Example: The U.S. Air Force and the African Coastal Security Program. CLIC Papers

    DTIC Science & Technology

    1989-04-01

    Civic Action in Honduras, 1982-1985 A205 084 CompiLation of LIC References and Bibliography, Vol i A205 086 PsychoLogicaL Strategies In LIC Arms...a military school and on training and maintaining 5 a paracommando battalion, located at Atar . Both projects are intended to make the Mauritanian...impunity for years. The GARIM has practically no capability to move troops in a timely manner from an air base at Atar to several airstrips along its long

  16. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  17. The case of escape probability as linear in short time

    NASA Astrophysics Data System (ADS)

    Marchewka, A.; Schuss, Z.

    2018-02-01

    We derive rigorously the short-time escape probability of a quantum particle from its compactly supported initial state, which has a discontinuous derivative at the boundary of the support. We show that this probability is linear in time, which seems to be a new result. The novelty of our calculation is the inclusion of the boundary layer of the propagated wave function formed outside the initial support. This result has applications to the decay law of the particle, to the Zeno behaviour, quantum absorption, time of arrival, quantum measurements, and more.

  18. Highly linear ring modulator from hybrid silicon and lithium niobate.

    PubMed

    Chen, Li; Chen, Jiahong; Nagy, Jonathan; Reano, Ronald M

    2015-05-18

    We present a highly linear ring modulator from the bonding of ion-sliced x-cut lithium niobate onto a silicon ring resonator. The third order intermodulation distortion spurious free dynamic range is measured to be 98.1 dB Hz(2/3) and 87.6 dB Hz(2/3) at 1 GHz and 10 GHz, respectively. The linearity is comparable to a reference lithium niobate Mach-Zehnder interferometer modulator operating at quadrature and over an order of magnitude greater than silicon ring modulators based on plasma dispersion effect. Compact modulators for analog optical links that exploit the second order susceptibility of lithium niobate on the silicon platform are envisioned.

  19. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, R.W.; Silva, L.L.

    1988-05-10

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole. 6 figs.

  20. Article mounting and position adjustment stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved adjustment and mounting stage of the type used for the detection of laser beams is disclosed. A ring sensor holder has locating pins on a first side thereof which are positioned within a linear keyway in a surrounding housing for permitting reciprocal movement of the ring along the keyway. A rotatable ring gear is positioned within the housing on the other side of the ring from the linear keyway and includes an oval keyway which drives the ring along the linear keyway upon rotation of the gear. Motor-driven single-stage and dual (x, y) stage adjustment systems are disclosed which are of compact construction and include a large laser transmission hole.

  1. On intrinsic nonlinear particle motion in compact synchrotrons

    NASA Astrophysics Data System (ADS)

    Hwang, Kyung Ryun

    Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.

  2. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu

    2015-03-01

    Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.

  3. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  4. Mechanical monolithic compact sensors for real-time linear and angular broadband low frequency monitoring and control of spacecrafts and satellites

    NASA Astrophysics Data System (ADS)

    Barone, F.; Giordano, G.

    2017-09-01

    In this paper we describe the characteristics and performances of a monolithic sensor designed for low frequency motion measurement of spacecrafts and satellites, whose mechanics is based on the UNISA Folded Pendulum. The latter, developed for ground-based applications, exhibits unique features (compactness, lightness, scalability, low resonance frequency and high quality factor), consequence of the action of the gravitational force on its inertial mass. In this paper we introduce and discuss the general methodology used to extend the application of ground-based folded pendulums to space, also in total absence of gravity, still keeping all their peculiar features and characteristics.

  5. Non-compact nonlinear sigma models

    DOE PAGES

    de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong

    2016-07-19

    The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz–invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a decoupling limitmore » can be defined on these vacua.« less

  6. Non-compact nonlinear sigma models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong

    The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz–invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a decoupling limitmore » can be defined on these vacua.« less

  7. The effect of RNA stiffness on the self-assembly of virus particles

    NASA Astrophysics Data System (ADS)

    Li, Siyu; Erdemci-Tandogan, Gonca; van der Schoot, Paul; Zandi, Roya

    2018-01-01

    Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between an ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.

  8. Design and implementation of a novel rotary micropositioning system driven by linear voice coil motor.

    PubMed

    Xu, Qingsong

    2013-05-01

    Limited-angle rotary micropositioning stages are required in precision engineering applications where an ultrahigh-precision rotational motion within a restricted range is needed. This paper presents the design, fabrication, and control of a compliant rotary micropositioning stage dedicated to the said applications. To tackle the challenge of achieving both a large rotational range and a compact size, a new idea of multi-stage compound radial flexure is proposed. A compact rotary stage is devised to deliver an over 10° rotational range while possessing a negligible magnitude of center shift. The stage is driven by a linear voice coil motor and its output motion is measured by laser displacement sensors. Analytical models are derived to facilitate the parametric design, which is validated by conducting finite element analysis. The actuation and sensing issues are addressed to guarantee the stage performance. A prototype is fabricated and a proportional-integral-derivative control is implemented to achieve a precise positioning. Experimental results demonstrate a resolution of 2 μrad over 10° rotational range as well as a low level of center shift of the rotary micropositioning system.

  9. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  10. Compacting biomass waste materials for use as fuel

    NASA Astrophysics Data System (ADS)

    Zhang, Ou

    Every year, biomass waste materials are produced in large quantity. The combustibles in biomass waste materials make up over 70% of the total waste. How to utilize these waste materials is important to the nation and the world. The purpose of this study is to test optimum processes and conditions of compacting a number of biomass waste materials to form a densified solid fuel for use at coal-fired power plants or ordinary commercial furnaces. Successful use of such fuel as a substitute for or in cofiring with coal not only solves a solid waste disposal problem but also reduces the release of some gases from burning coal which cause health problem, acid rain and global warming. The unique punch-and-die process developed at the Capsule Pipeline Research Center, University of Missouri-Columbia was used for compacting the solid wastes, including waste paper, plastics (both film and hard products), textiles, leaves, and wood. The compaction was performed to produce strong compacts (biomass logs) under room temperature without binder and without preheating. The compaction conditions important to the commercial production of densified biomass fuel logs, including compaction pressure, pressure holding time, back pressure, moisture content, particle size, binder effects, and mold conditions were studied and optimized. The properties of the biomass logs were evaluated in terms of physical, mechanical, and combustion characteristics. It was found that the compaction pressure and the initial moisture content of the biomass material play critical roles in producing high-quality biomass logs. Under optimized compaction conditions, biomass waste materials can be compacted into high-quality logs with a density of 0.8 to 1.2 g/cm3. The logs made from the combustible wastes have a heating value in the range 6,000 to 8,000 Btu/lb which is only slightly (10 to 30%) less than that of subbituminous coal. To evaluate the feasibility of cofiring biomass logs with coal, burn tests were conducted in a stoke boiler. A separate burning test was also carried out by burning biomass logs alone in an outdoor hot-water furnace for heating a building. Based on a previous coal compaction study, the process of biomass compaction was studied numerically by use of a non-linear finite element code. A constitutive model with sufficient generality was adapted for biomass material to deal with pore contraction during compaction. A contact node algorithm was applied to implement the effect of mold wall friction into the finite element program. Numerical analyses were made to investigate the pressure distribution in a die normal to the axis of compaction, and to investigate the density distribution in a biomass log after compaction. The results of the analyses gave generally good agreement with theoretical analysis of coal log compaction, although assumptions had to be made about the variation in the elastic modulus of the material and the Poisson's ratio during the compaction cycle.

  11. Xq28 duplication overlapping the int22h-1/int22h-2 region and including RAB39B and CLIC2 in a family with intellectual and developmental disability.

    PubMed

    Andersen, Erica F; Baldwin, Erin E; Ellingwood, Sara; Smith, Rosemarie; Lamb, Allen N

    2014-07-01

    Duplications involving terminal Xq28 are a known cause of intellectual disability (ID) in males and in females with unfavorable X-inactivation patterns. Within Xq28, functional disomy of MECP2 causes a severe ID syndrome, however the dosage sensitivity of other Xq28 duplicated genes is less certain. Duplications involving the int22h-1/int22h-2 LCR-flanked region in distal Xq28 have recently been linked to a novel ID-associated phenotype. While evidence for the dosage sensitivity of this region is emerging, the phenotypic contribution of individual genes within the int22h-1/int22h-2-flanked region has yet to be determined. We report a familial case of a novel 774 kb Xq28-qter duplication, detected by cytogenomic microarray analysis, that partially overlaps the int22h-1/int22h-2-flanked region. This duplication and a 570 kb Xpter-p22.33 loss within the pseudoautosomal region were identified in three siblings, one female and two males, who presented with developmental delays/intellectual disability, mild dysmorphic features and short stature. Although unconfirmed, these results are suggestive of maternal inheritance of a recombinant X. We compare our clinical findings to patients with int22h-1/int22h-2-mediated duplications and discuss the potential pathogenicity of genes within the duplicated region, including those within the shared region of overlap, RAB39B and CLIC2. © 2014 Wiley Periodicals, Inc.

  12. Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding

    NASA Astrophysics Data System (ADS)

    Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng

    2018-04-01

    The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.

  13. Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding

    NASA Astrophysics Data System (ADS)

    Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng

    2018-05-01

    The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.

  14. Tectonic significance of porosity and permeability regimes in the red beds formations of the South Georgia Rift Basin

    NASA Astrophysics Data System (ADS)

    Akintunde, Olusoga M.; Knapp, Camelia C.; Knapp, James H.

    2014-09-01

    A simple, new porosity/permeability-depth profile was developed from available laboratory measurements on Triassic sedimentary red beds (sandstone) from parts of the South Georgia Rift (SGR) basin in order to investigate the feasibility for long-term CO2 storage. The study locations were: Sumter, Berkeley, Dunbarton, Clubhouse Crossroad-3 (CC-3) and Norris Lightsey wells. As expected, both porosity and permeability show changes with depth at the regional scale that was much greater than at local scale. The significant changes in porosity and permeability with depth suggest a highly compacted, deformed basin, and potentially, a history of uplift and erosion. The permeability is generally low both at shallow (less than 1826 ft/556.56 m) and deeper depths (greater than 1826 ft/556.56 m). Both porosity and permeability follow the normal trend, decreasing linearly with depth for most parts of the study locations with the exception of the Norris Lightsey well. A petrophysical study on a suite of well logs penetrating the Norris Lightsey red beds at depths sampled by the core-derived laboratory measurements shows an abnormal shift (by 50%) in the acoustic travel time and/or in the sonic-derived P-wave velocity that indicates possible faulting or fracturing at depth. The departure of the Norris Lightsey's porosities and permeabilities from the normal compaction trend may be a consequence of the existence of a fault/fracture controlled abnormal pressure condition at depth. The linear and non-linear behaviors of the porosity/permeability distribution throughout the basin imply the composition of the SGR red beds, and by extension analog/similar Triassic-Jurassic formations within the Eastern North American Margin have been altered by compaction, uplift, erosion and possible faulting that have shaped the evolution of these Triassic formations following the major phase of rifting.

  15. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    NASA Astrophysics Data System (ADS)

    Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh

    2016-09-01

    Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  16. Evaluation of submarine strain-gage systems for monitoring coastal sediment migration

    NASA Technical Reports Server (NTRS)

    Shideler, G. L.; Mcgrath, D. G.

    1973-01-01

    Single and multiple strain-gage systems were respectively evaluated as in situ point and areal sensors for monitoring sand-height variations in coastal environments. Static loading tests indicate that gage response pressure is linear for sand heights up to 24 inches. Response pressures are a function of both sand height and aggregate density, with density being influenced by both sediment texture and degree of compaction. Poorer sediment sorting and greater compaction result in higher response pressures. Field tests in a beach foreshore environment indicate that the gage systems are effective qualitative instruments for monitoring long-period migration trends of beach sediments; whereas, short-period responses are not sufficiently reliable. The durability and compactness of the gage systems must be substantially increased for effective field operations. It is recommended that the systems' qualitative potentials be further developed, whereas their development as quantitative instruments be terminated. Further development should emphasize the construction of remote recording systems designed for semipermanent installation.

  17. A smart sensor architecture based on emergent computation in an array of outer-totalistic cells

    NASA Astrophysics Data System (ADS)

    Dogaru, Radu; Dogaru, Ioana; Glesner, Manfred

    2005-06-01

    A novel smart-sensor architecture is proposed, capable to segment and recognize characters in a monochrome image. It is capable to provide a list of ASCII codes representing the recognized characters from the monochrome visual field. It can operate as a blind's aid or for industrial applications. A bio-inspired cellular model with simple linear neurons was found the best to perform the nontrivial task of cropping isolated compact objects such as handwritten digits or characters. By attaching a simple outer-totalistic cell to each pixel sensor, emergent computation in the resulting cellular automata lattice provides a straightforward and compact solution to the otherwise computationally intensive problem of character segmentation. A simple and robust recognition algorithm is built in a compact sequential controller accessing the array of cells so that the integrated device can provide directly a list of codes of the recognized characters. Preliminary simulation tests indicate good performance and robustness to various distortions of the visual field.

  18. Compaction trends of full stiffness tensor and fluid permeability in artificial shales

    NASA Astrophysics Data System (ADS)

    Beloborodov, Roman; Pervukhina, Marina; Lebedev, Maxim

    2018-03-01

    We present a methodology and describe a set-up that allows simultaneous acquisition of all five elastic coefficients of a transversely isotropic (TI) medium and its permeability in the direction parallel to the symmetry axis during mechanical compaction experiments. We apply the approach to synthetic shale samples and investigate the role of composition and applied stress on their elastic and transport properties. Compaction trends for the five elastic coefficients that fully characterize TI anisotropy of artificial shales are obtained for a porosity range from 40 per cent to 15 per cent. A linear increase of elastic coefficients with decreasing porosity is observed. The permeability acquired with the pressure-oscillation technique exhibits exponential decrease with decreasing porosity. Strong correlations are observed between an axial fluid permeability and seismic attributes, namely, VP/VS ratio and acoustic impedance, measured in the same direction. These correlations might be used to derive permeability of shales from seismic data given that their mineralogical composition is known.

  19. Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides

    PubMed Central

    Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing

    2014-01-01

    We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz. PMID:25415417

  20. Highly compact circulators in square-lattice photonic crystal waveguides.

    PubMed

    Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing

    2014-01-01

    We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz.

  1. Analytical evaluation of Lumipulse® BRAHMS PCT CLEIA assay and clinical performances in an unselected population as compared with central lab PCT assay.

    PubMed

    Dupuy, Anne Marie; Né, Maxence; Bargnoux, Anne Sophie; Badiou, Stéphanie; Cristol, Jean Paul

    2017-03-01

    We report the analytical performances of the Lumipulse®G BRAHMS PCT assay (Fujirebio, Courteboeuf, France) and the concordance with BRAHMS PCT Kryptor CompactPlus© results from central laboratory. Lumipulse®G BRAHMS PCT immunoassay on Lumipulse®G600II instrument is a chemiluminescence enzyme immunoassay (CLEIA). Analytical performances included imprecision study, linearity, limit of detection and comparison study on 138 plasma specimen on Lumipulse®G600II vs plasma on Kryptor CompactPlus©. The intra and inter assay imprecision of Lumipulse®G BRAHMS PCT was between 2 and 5%. The LoD in our condition was 0.0029ng/mL in accordance with the LoD provided by the manufacturer (0.0048ng/mL). The linear equation of linearity was y=1,001×-0,052 with r 2 =0.99, with a mean recovery (SD) percentage of 1.8% (8%). Correlation studies showed a good correlation (r=0.99) between plasma on Kryptor and Lumipulse, with a bias of 0.02 in the range from 0.12 to 1ng/mL. The new adaptation developed from Fujirebio on quantification of PCT with CLEIA technology from monoclonal antibodies from ThermoFisher appears to be acceptable for clinical use. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. PSC algorithm description

    NASA Technical Reports Server (NTRS)

    Nobbs, Steven G.

    1995-01-01

    An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.

  3. Semilinear programming: applications and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.

    Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less

  4. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.

    PubMed

    Wu, Kuan-Yi; Su, Yin-Yu; Yu, Ying-Lung; Lin, Kuei-You; Lan, Chao-Chieh

    2017-07-01

    Powered exoskeletons can facilitate rehabilitation of patients with upper limb disabilities. Designs using rotary motors usually result in bulky exoskeletons to reduce the problem of moving inertia. This paper presents a new linearly actuated elbow exoskeleton that consists of a slider crank mechanism and a linear motor. The linear motor is placed beside the upper arm and closer to shoulder joint. Thus better inertia properties can be achieved while lightweight and compactness are maintained. A passive joint is introduced to compensate for the exoskeleton-elbow misalignment and intersubject size variation. A linear series elastic actuator (SEA) is proposed to obtain accurate force and impedance control at the exoskeleton-elbow interface. Bidirectional actuation between exoskeleton and forearm is verified, which is required for various rehabilitation processes. We expect this exoskeleton can provide a means of robot-aided elbow rehabilitation.

  5. Growth of the eye lens: II. Allometric studies

    PubMed Central

    2014-01-01

    Purpose The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Methods Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Results Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Conclusions Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size. PMID:24715759

  6. The future of the Large Hadron Collider and CERN.

    PubMed

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  7. Nonlinear Statistical Estimation with Numerical Maximum Likelihood

    DTIC Science & Technology

    1974-10-01

    probably most directly attributable to the speed, precision and compactness of the linear programming algorithm exercised ; the mutual primal-dual...discriminant analysis is to classify the individual as a member of T# or IT, 1 2 according to the relative...Introduction to the Dissertation 1 Introduction to Statistical Estimation Theory 3 Choice of Estimator.. .Density Functions 12 Choice of Estimator

  8. Compact Method for Modeling and Simulation of Memristor Devices

    DTIC Science & Technology

    2011-08-01

    single-valued equations. 15. SUBJECT TERMS Memristor, Neuromorphic , Cognitive, Computing, Memory, Emerging Technology, Computational Intelligence 16...resistance state depends on its previous state and present electrical biasing conditions, and when combined with transistors in a hybrid chip ...computers, reconfigurable electronics and neuromorphic computing [3,4]. According to Chua [4], the memristor behaves like a linear resistor with

  9. Inexpensive Raman Spectrometer for Undergraduate and Graduate Experiments and Research

    ERIC Educational Resources Information Center

    Mohr, Christian; Spencer, Claire L.; Hippler, Michael

    2010-01-01

    We describe the construction and performance of an inexpensive modular Raman spectrometer that has been assembled in the framework of a fourth-year undergraduate project (costs below $5000). The spectrometer is based on a 4 mW 532 nm green laser pointer and a compact monochromator equipped with glass fiber optical connections, linear detector…

  10. Infrared weak corrections to strongly interacting gauge boson scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciafaloni, Paolo; Urbano, Alfredo

    2010-04-15

    We evaluate the impact of electroweak corrections of infrared origin on strongly interacting longitudinal gauge boson scattering, calculating all-order resummed expressions at the double log level. As a working example, we consider the standard model with a heavy Higgs. At energies typical of forthcoming experiments (LHC, International Linear Collider, Compact Linear Collider), the corrections are in the 10%-40% range, with the relative sign depending on the initial state considered and on whether or not additional gauge boson emission is included. We conclude that the effect of radiative electroweak corrections should be included in the analysis of longitudinal gauge boson scattering.

  11. Radiometric liquid level gauge with linear-detection (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, M.; Emmelmann, K.P.

    1973-09-01

    A description is given of a radiometric liquid level gauge with linear detection. It consists of a set of radioactive sources (e.g., /sup 137/Cs) with quadratic graduation in their activities, of a scintillation counter with electronic back-up unit and of a slender tube. The tube, sources and scintillation counter form a compact snd easily transportsble liquid level gauge. It is-especially adapted for liquid level measurements in slender, difficulty accessible and opaque containers. The device supplements the different methods for liquid level measurement with a new variant which is adopted for many cases in practice. (auth)

  12. Low Intensity Conflict Education and Training within the DOD (Department of Defense). A Compilation of Courses and Instructional Periods. CLIC Papers

    DTIC Science & Technology

    1988-05-01

    Major , USAF Army-Air F o r c e Center for Low Intensity Conflict Langley A i r F o r c e Base, Virginia 2 3 6 6 5 - 5 5 5 6 May 1988 This paper...are a- aila able in many major military libraries. Copies can be obtained from the Defense Technical Information Center (DTlC) , Defense Loqisti cs...peacekeeping operations. Those dealing with terrorism account for more than one third of the entries, thus reflecting the major emphasis that has been

  13. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI.

    PubMed

    Lin, Muqing; Chan, Siwa; Chen, Jeon-Hor; Chang, Daniel; Nie, Ke; Chen, Shih-Ting; Lin, Cheng-Ju; Shih, Tzu-Ching; Nalcioglu, Orhan; Su, Min-Ying

    2011-01-01

    Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3+FCM > FCM) in 2 breasts. The results of the second reading session were similar. The performance in each pairwise Wilcoxon signed-rank test is significant, showing N3+FCM superior to both N3 and FCM, and N3 superior to FCM. The performance of the new N3+FCM algorithm was comparable to that of CLIC, showing equivalent quality in 57/60 breasts. Choosing an appropriate bias field correction method is a very important preprocessing step to allow an accurate segmentation of fibroglandular tissues based on breast MRI for quantitative measurement of breast density. The proposed algorithm combining N3+FCM and CLIC both yield satisfactory results.

  14. Compact high-efficiency linear cryocooler in single-piston moving magnet design for HOT detectors

    NASA Astrophysics Data System (ADS)

    Rühlich, I.; Mai, M.; Rosenhagen, C.; Withopf, A.; Zehner, S.

    2012-06-01

    State of the art Mid Wave IR-technology has the potential to rise the FPA temperature from 77K to 130-150K (High Operation Temperature, HOT). Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore, compact high performance cryocoolers are mandatory. AIM has developed the SX040 cooler, optimized for FPA temperatures of about 95K (presented at SPIE 2010). The SX040 cooler incorporates a high efficient dual piston driving mechanism resulting in a very compact compressor of less than 100mm length. Higher compactness - especially shorter compressors - can be achieved by change from dual to single piston design. The new SX030 compressor has such a single piston Moving Magnet driving mechanism resulting in a compressor length of about 60mm. Common for SX040 and SX030 family is a Moving Magnet driving mechanism with coils placed outside the helium vessel. In combination with high performance plastics for the piston surfaces this design enables lifetimes in excess of 20,000h MTTF. Because of the higher FPA temperature and a higher operating frequency also a new displacer needs to be developed. Based on the existing 1/4" coldfinger interface AIM developed a new displacer optimized for an FPA temperature of 140K and above. This paper gives an overview on the development of this new compact single piston cryocooler. Technical details and performance data will be shown.

  15. Compact light-emitting-diode sun photometer for atmospheric optical depth measurements.

    PubMed

    Acharya, Y B; Jayaraman, A; Ramachandran, S; Subbaraya, B H

    1995-03-01

    A new compact light-emitting diode (LED) sun photometer, in which a LED is used as a spectrally selective photodetector as well as a nonlinear feedback element in the operational amplifier, has been developed. The output voltage that is proportional to the logarithm of the incident solar intensity permits the direct measurement of atmospheric optical depths in selected spectral bands. Measurements made over Ahmedabad, India, show good agreement, within a few percent, of optical depths derived with a LED as a photodetector in a linear mode and with a LED as both a photodetector and a feedback element in an operational amplifier in log mode. The optical depths are also found to compare well with those obtained simultaneously with a conventional filter photometer.

  16. Synthesis of spiro quasi[1]catenanes and quasi[1]rotaxanes via a templated backfolding strategy

    PubMed Central

    Steemers, Luuk; Wanner, Martin J.; Lutz, Martin; Hiemstra, Henk; van Maarseveen, Jan H.

    2017-01-01

    Due to their well-defined three-dimensional geometry, spiro compounds are widely utilized in drug research. From the central tetrahedral carbon atom, besides the regular structure, an inverted spiro connectivity may be envisioned. Here we disclose the synthesis of this molecule class that we have coined quasi[1]catenanes. Next to their fascinating and aesthetic shape, the higher compactness as compared to regular spiro bicycles is noteworthy. To enable synthetic access to compact entangled multimacrocyclic molecules, we have developed a new strategy. The key element is a template, which is covalently connected to the linear precursors, and spatially directs the sterically congested backfolding macrocyclizations that are required to give quasi[1]catenanes. Similarly, quasi[1]rotaxanes are made. PMID:28541349

  17. High sensitivity optical fiber liquid level sensor based on a compact MMF-HCF-FBG structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshan; Zhang, Weigang; Chen, Lei; Zhang, Yanxin; Wang, Song; Yan, Tieyi

    2018-05-01

    An ultra-high sensitivity fiber liquid level sensor based on wavelength demodulation is proposed and demonstrated. The sensor is composed of a segment of multimode fiber and a large aperture hollow-core fiber assisted by a fiber Bragg grating (FBG). Interference occurs due to core mismatching and different modes with different effective refractive indices. The experimental results show that the liquid level sensitivity of the sensor is 1.145 nm mm‑1, and the linearity is up to 0.996. The dynamic temperature compensation of the sensor can be achieved by cascading an FBG. Considering the high sensitivity and compact structure of the sensor, it can be used for real-time intelligent monitoring of tiny changes in liquid level.

  18. Multimodal nonlinear microscope based on a compact fiber-format laser source

    NASA Astrophysics Data System (ADS)

    Crisafi, Francesco; Kumar, Vikas; Perri, Antonio; Marangoni, Marco; Cerullo, Giulio; Polli, Dario

    2018-01-01

    We present a multimodal non-linear optical (NLO) laser-scanning microscope, based on a compact fiber-format excitation laser and integrating coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS) and two-photon-excitation fluorescence (TPEF) on a single platform. We demonstrate its capabilities in simultaneously acquiring CARS and SRS images of a blend of 6-μm poly(methyl methacrylate) beads and 3-μm polystyrene beads. We then apply it to visualize cell walls and chloroplast of an unprocessed fresh leaf of Elodea aquatic plant via SRS and TPEF modalities, respectively. The presented NLO microscope, developed in house using off-the-shelf components, offers full accessibility to the optical path and ensures its easy re-configurability and flexibility.

  19. Two modes of longe-range orientation of DNA bases realized upon compaction.

    PubMed Central

    Yevdokimov YuM; Salyanov, V I; Berg, H

    1981-01-01

    Formation of compact particles from linear DNA-anthracycline complexes is accompanied by appearance of intense bands in the CD spectra in the region of absorption of DNA bases (UV-region) and in the region of absorption of anthracycline chromophores (visible region). The intense (positive or negative) bands in the region of anthracycline absorption demonstrate an ordered helical location of anthracycline molecules on the DNA template. This fact, in its turn, is related to formation of the DNA superstructure in PEG-containing water-salt solutions with a long-range orientation of nitrogen bases. Possible types of DNA superstructures and the relation between the local- and the long-range order of bases in the DNA superstructure are discussed. PMID:6938929

  20. Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetti, E.; Shanks, R. P.; Manahan, G. G.

    2010-11-19

    Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUVmore » FELs.« less

  1. Development and application of compact and on-chip electron linear accelerators for dynamic tracking cancer therapy and DNA damage/repair analysis

    NASA Astrophysics Data System (ADS)

    Uesaka, M.; Demachi, K.; Fujiwara, T.; Dobashi, K.; Fujisawa, H.; Chhatkuli, R. B.; Tsuda, A.; Tanaka, S.; Matsumura, Y.; Otsuki, S.; Kusano, J.; Yamamoto, M.; Nakamura, N.; Tanabe, E.; Koyama, K.; Yoshida, M.; Fujimori, R.; Yasui, A.

    2015-06-01

    We are developing compact electron linear accelerators (hereafter linac) with high RF (Radio Frequency) frequency (9.3 GHz, wavelength 32.3 mm) of X-band and applying to medicine and non-destructive testing. Especially, potable 950 keV and 3.95 MeV linac X-ray sources have been developed for on-site transmission testing at several industrial plants and civil infrastructures including bridges. 6 MeV linac have been made for pinpoint X-ray dynamic tracking cancer therapy. The length of the accelerating tube is ∼600 mm. The electron beam size at the X-ray target is less than 1 mm and X-ray spot size at the cancer is less than 3 mm. Several hardware and software are under construction for dynamic tracking therapy for moving lung cancer. Moreover, as an ultimate compact linac, we are designing and manufacturing a laser dielectric linac of ∼1 MeV with Yr fiber laser (283 THz, wavelength 1.06 pm). Since the wavelength is 1.06 μm, the length of one accelerating strcture is tens pm and the electron beam size is in sub-micro meter. Since the sizes of cell and nuclear are about 10 and 1 μm, respectively, we plan to use this “On-chip” linac for radiation-induced DNA damage/repair analysis. We are thinking a system where DNA in a nucleus of cell is hit by ∼1 μm electron or X-ray beam and observe its repair by proteins and enzymes in live cells in-situ.

  2. Charged reflecting stars supporting charged massive scalar field configurations

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-03-01

    The recently published no-hair theorems of Hod, Bhattacharjee, and Sarkar have revealed the intriguing fact that horizonless compact reflecting stars cannot support spatially regular configurations made of scalar, vector and tensor fields. In the present paper we explicitly prove that the interesting no-hair behavior observed in these studies is not a generic feature of compact reflecting stars. In particular, we shall prove that charged reflecting stars can support charged massive scalar field configurations in their exterior spacetime regions. To this end, we solve analytically the characteristic Klein-Gordon wave equation for a linearized charged scalar field of mass μ , charge coupling constant q, and spherical harmonic index l in the background of a spherically symmetric compact reflecting star of mass M, electric charge Q, and radius R_{ {s}}≫ M,Q. Interestingly, it is proved that the discrete set {R_{ {s}}(M,Q,μ ,q,l;n)}^{n=∞}_{n=1} of star radii that can support the charged massive scalar field configurations is determined by the characteristic zeroes of the confluent hypergeometric function. Following this simple observation, we derive a remarkably compact analytical formula for the discrete spectrum of star radii in the intermediate regime M≪ R_{ {s}}≪ 1/μ . The analytically derived resonance spectrum is confirmed by direct numerical computations.

  3. Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them

    USGS Publications Warehouse

    Schultz, R.A.; Soliva, R.; Fossen, H.; Okubo, C.H.; Reeves, D.M.

    2008-01-01

    Displacement-length data from faults, joints, veins, igneous dikes, shear deformation bands, and compaction bands define two groups. The first group, having a power-law scaling relation with a slope of n = 1 and therefore a linear dependence of maximum displacement and discontinuity length (Dmax = ??L), comprises faults and shear (non-compactional or non-dilational) deformation bands. These shearing-mode structures, having shearing strains that predominate over volumetric strains across them, grow under conditions of constant driving stress, with the magnitude of near-tip stress on the same order as the rock's yield strength in shear. The second group, having a power-law scaling relation with a slope of n = 0.5 and therefore a dependence of maximum displacement on the square root of discontinuity length (Dmax = ??L0.5), comprises joints, veins, igneous dikes, cataclastic deformation bands, and compaction bands. These opening- and closing-mode structures grow under conditions of constant fracture toughness, implying significant amplification of near-tip stress within a zone of small-scale yielding at the discontinuity tip. Volumetric changes accommodated by grain fragmentation, and thus control of propagation by the rock's fracture toughness, are associated with scaling of predominantly dilational and compactional structures with an exponent of n = 0.5. ?? 2008 Elsevier Ltd.

  4. Determination of specific gravity of municipal solid waste.

    PubMed

    Yesiller, Nazli; Hanson, James L; Cox, Jason T; Noce, Danielle E

    2014-05-01

    This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100-350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remy, L.; Cheymol, G.; Gusarov, A.

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensormore » design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison of measurements made before and after the irradiation, at the same temperature, allowed us to measure the loss in reflectivity as well as the Bragg wavelength drift. The results are quite promising for some of the investigated gratings. (authors)« less

  6. Laminated grid and web magnetic cores

    DOEpatents

    Sefko, John; Pavlik, Norman M.

    1984-01-01

    A laminated magnetic core characterized by an electromagnetic core having core legs which comprise elongated apertures and edge notches disposed transversely to the longitudinal axis of the legs, such as high reluctance cores with linear magnetization characteristics for high voltage shunt reactors. In one embodiment the apertures include compact bodies of microlaminations for more flexibility and control in adjusting permeability and/or core reluctance.

  7. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  8. Phenomenological model of sintering of oxide nuclear fuel with doping admixtures

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khomyakov, O. V.

    2015-12-01

    It is shown that a change in the linear dimension of compacted UO2 in the sintering process is associated with its plastic yielding under the action of the forces of residual stress and capillary forces. From the curves of sintering of a fuel with doping admixtures in various gaseous media, its rate of creep is reduced.

  9. Portent of Heine's Reciprocal Square Root Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohl, H W

    Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.

  10. Design a software real-time operation platform for wave piercing catamarans motion control using linear quadratic regulator based genetic algorithm.

    PubMed

    Liang, Lihua; Yuan, Jia; Zhang, Songtao; Zhao, Peng

    2018-01-01

    This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller.

  11. Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China.

    PubMed

    Chen, Sha; Zhang, Jiaxing; Kim, Junbeum

    2017-01-01

    China is the world's largest emitter of carbon dioxide, and it is also one of the largest fluorescent lamp consuming and producing country in the world. However, there are few studies evaluating greenhouse gas (GHG) emissions of fluorescent lamps in China. This analysis compared GHG emissions of compact fluorescent lamps with linear fluorescent lamps using life cycle assessment method in China's national conditions. The GHG emissions of fluorescent lamps from their manufacture to the final disposal phase on the national level of China were also quantified. The results indicate that the use phase dominates the GHG emissions for both lamps. Linear fluorescent lamp is a better source of light compared to compact fluorescent lamp with respect to GHG emissions. The analysis found that in 2011, China generated around 710.90milliontons CO 2 -eq associated with fluorescent lamps. The raw material production and use phases accounted for major GHG emissions. More than half of GHG emissions during the domestic production were embodied in the exported lamps in recent years. This urges the government to take necessary measures that lead to more environmental friendly production, consumption and trade patterns. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Design a software real-time operation platform for wave piercing catamarans motion control using linear quadratic regulator based genetic algorithm

    PubMed Central

    Liang, Lihua; Zhang, Songtao; Zhao, Peng

    2018-01-01

    This work presents optimal linear quadratic regulator (LQR) based on genetic algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem in head seas for wave piercing catamarans (WPC). The proposed LQR based GA control strategy is to select optimal weighting matrices (Q and R). The seakeeping performance of WPC based on proposed algorithm is challenged because of multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides the kinematical constraint problems of WPC, the external conditions must be considered, like the sea disturbance and the actuators (a T-foil and two flaps) control. Moreover, this paper describes the MATLAB and LabVIEW software plats to simulate the reduction effects of WPC. Finally, the real-time (RT) NI CompactRIO embedded controller is selected to test the effectiveness of the actuators based on proposed techniques. In conclusion, simulation and experimental results prove the correctness of the proposed algorithm. The percentage of heave and pitch reductions are more than 18% in different high speeds and bad sea conditions. And the results also verify the feasibility of NI CompactRIO embedded controller. PMID:29709008

  13. Development of a Miniature Pulse Tube Cryocooler of 2.5W at 65K for Telecommunication Applications

    NASA Astrophysics Data System (ADS)

    Matsumoto, Noboru; Yasukawa, Yukio; Ohshima, Keishi; Takeuchi, Takayuki; Matsushita, Tomoyuki; Mizoguchi, Yoshinori

    The Fuji Electric Group has established main technologies with high reliability for use in Stirling cryocoolers for space satellite systems. For commercial applications, we also have developed and started selling a miniature pulse tube cryocooler from 2W to 3W at 70K with 100W electric power input. In the development of a new compressor, we introduce a moving magnet to a driving system to achieve greater compactness and higher efficiency in place of the moving coil that had about 70% efficiency. In addition, we adopted a coaxial pulse tube as an expander for compactness. This development is aimed at cooling a high-temperature superconductive (HTS) device in a wireless telecommunication system. The compressor requires total compression work of 75W with 90% efficiency for longer than 50,000 hours. Preliminary tests of each part of a moving magnet linear motor and a coaxial pulse tube have been completed. In the next phase, we have made a first-stage prototype compressor used by the new linear motor, and we have tested the new machine. Here we describe each test and combination test results of the cryocooler.

  14. Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator

    NASA Astrophysics Data System (ADS)

    Hamm, Robert W.

    2000-12-01

    Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.

  15. Compressed modes for variational problems in mathematical physics and compactly supported multiresolution basis for the Laplace operator

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley

    2014-03-01

    We will describe a general formalism for obtaining spatially localized (``sparse'') solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an L1 regularization term to the variational principle, which is shown to yield solutions with compact support (``compressed modes''). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. In addition, we introduce an L1 regularized variational framework for developing a spatially localized basis, compressed plane waves (CPWs), that spans the eigenspace of a differential operator, for instance, the Laplace operator. Our approach generalizes the concept of plane waves to an orthogonal real-space basis with multiresolution capabilities. Supported by NSF Award DMR-1106024 (VO), DOE Contract No. DE-FG02-05ER25710 (RC) and ONR Grant No. N00014-11-1-719 (SO).

  16. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  17. A Lys-Trp cation-π interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain.

    PubMed

    Peter, Bradley; Polyansky, Anton A; Fanucchi, Sylvia; Dirr, Heini W

    2014-01-14

    Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.

  18. Development of a linear compressor for compact 2 K Gifford- McMahon cryocoolers

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Y.

    2015-12-01

    Recently, a new, compact Gifford-McMahon (GM) cryocooler for cooling superconducting single photon detectors (SSPD) has been developed at Sumitomo Heavy Industries, Ltd. (SHI) [1, 2]. The objective is to reduce the total height of the expander by 33% relative to the existing RDK-101 GM expander and to reduce the total volume of the compressor unit by 50% relative to the existing CNA-11 compressor. In addition, considering the targeted cooling application, we set the design temperature targets of the first and the second stages to 1 W and 20 mW of heat load at 60 K and 2.3 K, respectively. Although optimization of the internal components is one way to miniaturize the volume of the compressor unit, major design changes are required because the volume of the adsorber and the oil separator is almost the same as the volume of the compressor capsule. Thus, one approach is to develop a non-lubricated compressor, such as a valved linear compressor. An experimental unit of a valved linear compressor was designed and built, and preliminary experiments were conducted. Under no-load condition, a low temperature of 2.19 K has been achieved. With 1 W and 14 mW heat load, the temperature is 48 K at the first stage and 2.3 K at the second stage, with an input power of about 1.2 KW. The detailed experimental results will be discussed in this paper.

  19. Important Learnings for Reliable Management of Hydrocarbon Production and Salt Solution Mining induced Subsidence from Case Histories in the Netherlands

    NASA Astrophysics Data System (ADS)

    Waal, H. D.; Muntendam-Bos, A.; Breunese, J.; Roest, H.; Fokker, P. A.

    2012-12-01

    Reliable management of subsidence caused by hydrocarbon production and salt solution mining is important for a country like the Netherlands where most land surface is below or near sea level. However, a factor two difference between prediction and observation is not uncommon. To nevertheless ensure a high probability that subsidence is kept within the limits an area can robustly sustain, a tightly integrated prediction/monitoring/updating loop is applied. Prior to production, scenario's spanning the range of parameter and model uncertainties are generated to calculate possible subsidence outcomes. The probability of each scenario is updated over time through confrontation with measurements (e.g. using Bayesian statistics) as they become available. Production can thus be halted or adjusted timely if probabilities start to indicate an unacceptable risk of exceeding set limits now or in the future. A number of projects with well documented, high quality prediction and monitoring were started in the Netherlands in the second half of the previous century. They provide quality case histories covering multi-decade production periods from which important learnings have been been extracted. Firstly, from the data it is clear that sandstone reservoir compaction is not a linear function of pressure depletion. Initially the rock in the field compacts much less than expected based on standard lab measurements. As pressure drops further, compaction gradually increases, reaching and exceeding lab values. Various mechanisms could be responsible: delayed compaction in lower permeability/poorly connected parts of the reservoir or aquifers; intrinsic non-linear, time-dependent, rate-type or diffusive behavior of the reservoir rock; previous deeper burial or increasing overpressure over geological time. The observed field behavior is described reasonably well by a single exponential time decay model. The non-linear and/or time-dependent field behavior has to be accounted for when updating predictions based on early field data. Otherwise it leads to under-prediction of subsidence, followed by multiple upward adjustments as new data become available. Secondly, the large difference between lab and field loading rate results in late time field compressibilities that can be 20 to 30% higher then the lab data. For chalk reservoirs the difference in loading rate causes much earlier pore collapse in the field. These effects need and can be accounted for. Thirdly, the case histories show that the shape of the subsidence bowl changes over time. The bowl shape becomes steeper in time for hydrocarbon extraction and flatter in the case of salt extraction. This is believed to be related to the changing elasticity contrast between the compacting volume and its surroundings as the reservoir compressibility increases and surrounding salt layers start to creep. The observed shape changes can be modeled numerically or by a varying rigid basement depth in the analytical van Opstal model. Not accounting for it can result in large subsidence allocation errors where salt mining and hydrocarbon production bowls overlap.

  20. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  1. Development of a miniature Stirling cryocooler for LWIR small satellite applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Perella, M. D.; Crittenden, T. M.; Ghiaasiaan, S. M.

    2017-05-01

    The optimum small satellite (SmallSat) cryocooler system must be extremely compact and lightweight, achieved in this paper by operating a linear cryocooler at a frequency of approximately 300 Hz. Operation at this frequency, which is well in excess of the 100-150 Hz reported in recent papers on related efforts, requires an evolution beyond the traditional Oxford-class, flexure-based methods of setting the mechanical resonance. A novel approach that optimizes the electromagnetic design and the mechanical design together to simultaneously achieve the required dynamic and thermodynamic performances is described. Since highly miniaturized pulse tube coolers are fundamentally ill-suited for the sub-80K temperature range of interest because the boundary layer losses inside the pulse tube become dominant at the associated very small pulse tube size, a moving displacer Stirling cryocooler architecture is used. Compact compressor mechanisms developed on a previous program are reused for this design, and they have been adapted to yield an extremely compact Stirling warm end motor mechanism. Supporting thermodynamic and electromagnetic analysis results are reported.

  2. A new compact structure for a high intensity low-energy heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng

    2013-12-01

    A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.

  3. Review: Regional land subsidence accompanying groundwater extraction

    USGS Publications Warehouse

    Galloway, Devin L.; Burbey, Thomas J.

    2011-01-01

    The extraction of groundwater can generate land subsidence by causing the compaction of susceptible aquifer systems, typically unconsolidated alluvial or basin-fill aquifer systems comprising aquifers and aquitards. Various ground-based and remotely sensed methods are used to measure and map subsidence. Many areas of subsidence caused by groundwater pumping have been identified and monitored, and corrective measures to slow or halt subsidence have been devised. Two principal means are used to mitigate subsidence caused by groundwater withdrawal—reduction of groundwater withdrawal, and artificial recharge. Analysis and simulation of aquifer-system compaction follow from the basic relations between head, stress, compressibility, and groundwater flow and are addressed primarily using two approaches—one based on conventional groundwater flow theory and one based on linear poroelasticity theory. Research and development to improve the assessment and analysis of aquifer-system compaction, the accompanying subsidence and potential ground ruptures are needed in the topic areas of the hydromechanical behavior of aquitards, the role of horizontal deformation, the application of differential synthetic aperture radar interferometry, and the regional-scale simulation of coupled groundwater flow and aquifer-system deformation to support resource management and hazard mitigation measures.

  4. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles. These detectors consist of 30-layer thermopiles deposited in series upon a silicon nitride membrane. At 300 K, the thermopile arrays are highly linear over many orders of magnitude of incident IR power, and have a reported specific detectivity that exceeds the requirements imposed on future mission concepts. The bandpass filter array board is integrated with a thermopile array board by mounting both boards on a machined aluminum jig.

  5. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  6. Superstrong Adjustable Permanent Magnet for a Linear Collider Final Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihara, T.

    A superstrong permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens for the linear collider because of its compactness and low power consumption. The first fabricated prototype of our PMQ achieved a 300T/m superstrong field gradient with a 100mm overall magnet radius and a 7mm bore radius, but a drawback is its fixed strength. Therefore, a second prototype of PMQ, whose strength is adjustable, was fabricated. Its strength adjustability is based on the ''double ring structure'', rotating subdivided magnet slices separately. This second prototype is being tested. Some of the early results are presented.

  7. Compressed modes for variational problems in mathematics and physics

    PubMed Central

    Ozoliņš, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley

    2013-01-01

    This article describes a general formalism for obtaining spatially localized (“sparse”) solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger’s equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support (“compressed modes”). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. PMID:24170861

  8. Compressed modes for variational problems in mathematics and physics.

    PubMed

    Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley

    2013-11-12

    This article describes a general formalism for obtaining spatially localized ("sparse") solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support ("compressed modes"). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size.

  9. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  10. Noncontact acousto-ultrasonics using laser generation and laser interferometric detection

    NASA Technical Reports Server (NTRS)

    Green, Robert E., Jr.; Huber, Robert D.

    1991-01-01

    A compact, portable fiber-optic heterodyne interferometer designed to detect out-of-plane motion on surfaces is described. The interferometer provides a linear output for displacements over a broad frequency range and can be used for ultrasonic, acoustic emission, and acousto-ultrasonic (AU) testing. The interferometer in conjunction with a compact pulsed Nd:YAG laser represents a noncontact testing system. This system was tested to determine its usefulness for the AU technique. The results obtained show that replacement of conventional piezoelectric transducers (PZT) with a laser generation/detection system make it possible to carry out noncontact AU measurements. The waveforms recorded were 5 MHZ PZT-generated ultrasound propagating through an aluminum block, detection of the acoustic emission event, and laser AU waveforms from graphite-epoxy laminates and a filament-wound composite.

  11. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  12. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  13. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  14. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Low, D; Mutic, S

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was funded by ViewRay, Inc., Oakwood, OH.« less

  15. Confinement-induced Molecular Templating and Controlled Ligation

    NASA Astrophysics Data System (ADS)

    Berard, Daniel; Shayegan, Marjan; Michaud, François; Henkin, Gil; Scott, Shane; Leith, Jason; Leslie, Sabrina; Leslie Lab Team

    Loading and manipulating long DNA molecules within sub-50 nm cross-section nanostructures for genomic and biochemical analyses, while retaining their structural integrity, present key technological challenges to the biotechnology sector, such as device clogging and molecular breakage. We overcome these challenges by using Convex Lens-induced Confinement (CLiC) technology to gently load DNA into nanogrooves from above. Here, we demonstrate single-fluorophore visualization of custom DNA barcodes as well as efficient top-loading of DNA into sub-50 nm nanogrooves of variable topographies. We study confinement-enhanced self-ligation of polymers loaded in circular nanogrooves. Further, we use concentric, circular nanogrooves to eliminate confinement gradient-induced drift of stretched DNA.

  16. ADC interface for data server with data preselection for luminosity detector in AIDA-2020 project

    NASA Astrophysics Data System (ADS)

    Daniluk, W.; Dziedzic, B.; Korcyl, G.; Wojtoń, T.; Zawiejski, L.

    2017-08-01

    Main aim of the AIDA-2020 project is development of detectors for future accelerators. In FCAL Colaboration we are working on forward subdetectors for ILC and CLIC accelerators. My team is developing prototype module which receives data from ADC, provides the data preselection, and transmits them as packages to the data server for further their analysis. Common prototype is based on AC701 evaluation board which contains Artix-7 FPGA and is equipped with SMA connectors for gigabit transceivers and ethernet connector. In my talk I will describe architecture of the device and current state of module development.

  17. Ammonia Optical Sensing by Microring Resonators.

    PubMed

    Passaro, Vittorio M N; Dell'Olio, Francesco; De Leonardis, Francesco

    2007-11-15

    A very compact (device area around 40 μm²) optical ammonia sensor based on amicroring resonator is presented in this work. Silicon-on-insulator technology is used insensor design and a dye doped polymer is adopted as sensing material. The sensor exhibitsa very good linearity and a minimum detectable refractive index shift of sensing materialas low as 8x10 -5 , with a detection limit around 4 ‰.

  18. High Productivity Computing Systems Analysis and Performance

    DTIC Science & Technology

    2005-07-01

    cubic grid Discrete Math Global Updates per second (GUP/S) RandomAccess Paper & Pencil Contact Bob Lucas (ISI) Multiple Precision none...can be found at the web site. One of the HPCchallenge codes, RandomAccess, is derived from the HPCS discrete math benchmarks that we released, and...Kernels Discrete Math … Graph Analysis … Linear Solvers … Signal Processi ng Execution Bounds Execution Indicators 6 Scalable Compact

  19. Aromatic Cluster Sensor of Protein Folding: Near-UV Electronic Circular Dichroism Bands Assigned to Fold Compactness.

    PubMed

    Farkas, Viktor; Jákli, Imre; Tóth, Gábor K; Perczel, András

    2016-09-19

    Both far- and near-UV electronic circular dichroism (ECD) spectra have bands sensitive to thermal unfolding of Trp and Tyr residues containing proteins. Beside spectral changes at 222 nm reporting secondary structural variations (far-UV range), L b bands (near-UV range) are applicable as 3D-fold sensors of protein's core structure. In this study we show that both L b (Tyr) and L b (Trp) ECD bands could be used as sensors of fold compactness. ECD is a relative method and thus requires NMR referencing and cross-validation, also provided here. The ensemble of 204 ECD spectra of Trp-cage miniproteins is analysed as a training set for "calibrating" Trp↔Tyr folded systems of known NMR structure. While in the far-UV ECD spectra changes are linear as a function of the temperature, near-UV ECD data indicate a non-linear and thus, cooperative unfolding mechanism of these proteins. Ensemble of ECD spectra deconvoluted gives both conformational weights and insight to a protein folding↔unfolding mechanism. We found that the L b 293 band is reporting on the 3D-structure compactness. In addition, the pure near-UV ECD spectrum of the unfolded state is described here for the first time. Thus, ECD folding information now validated can be applied with confidence in a large thermal window (5≤T≤85 °C) compared to NMR for studying the unfolding of Trp↔Tyr residue pairs. In conclusion, folding propensities of important proteins (RNA polymerase II, ubiquitin protein ligase, tryptase-inhibitor etc.) can now be analysed with higher confidence. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Support Minimized Inversion of Acoustic and Elastic Wave Scattering

    NASA Astrophysics Data System (ADS)

    Safaeinili, Ali

    Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work needs to be performed in three areas: (1) exploitation of state-of-the-art parallel computation, (2) improvement of theoretical formulation of the scattering process for better computation efficiency, and (3) development of better methods for guiding the non-linear inversion. (Abstract shortened by UMI.).

  1. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.

    PubMed

    Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders

    2009-08-01

    Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).

  2. Compact gain saturated plasma based X-ray lasers down to 6.9nm

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge; Wang, Y.; Wang, S.; Rockwood, A.; Berrill, M.; Shlyaptsev, V.

    2017-10-01

    Plasma based soft x-ray amplifiers allow many experiments requiring bright, high energy soft x-ray laser pulses to be conducted in compact facilities. We have extended the wavelength of compact gain saturated x-ray lasers to 6.89 nm in a Ni-like Gd plasma generated by a Ti:Sa laser. Gain saturated laser operation was also obtained at 7.36 nm in Ni-like Sm. Isolectronic scaling and optimization of laser pre-pulse duration allowed us to also observe strong lasing at 6.6 nm and 6.1 nm in Ni-like Tb, and amplification at 6.4 nm and 5.89 nm in Ni-like Dy. The results were obtained by transient laser heating of solid targets with traveling wave excitation at progressively increased gracing incidence angles. We show that the optimum pump angle of incidence for collisional Ni-like lasers increases linearly with atomic number from Z =42 to Z =66, reaching 43 degrees for Ni-like Dy, in good agreement with hydrodynamic/atomic physics simulations. These results will enable single-shot nano-scale imaging and other application of sub-7 nm lasers to be performed at compact facilities. Work supported by Grant DE-FG02-4ER15592 of the Department of Energy, Office of Science, and by the National Science Foundation Grant ECCS 1509925.

  3. Excitation-emission fluorimeter based on linear interference filters.

    PubMed

    Gouzman, Michael; Lifshitz, Nadia; Luryi, Serge; Semyonov, Oleg; Gavrilov, Dmitry; Kuzminskiy, Vyacheslav

    2004-05-20

    We describe the design, properties, and performance of an excitation-emission (EE) fluorimeter that enables spectral characterization of an object simultaneously with respect to both its excitation and its emission properties. Such devices require two wavelength-selecting elements, one in the optical path of the excitation broadband light to obtain tunable excitation and the other to analyze the resulting fluorescence. Existing EE instruments are usually implemented with two monochromators. The key feature of our EE fluorimeter is that it employs lightweight and compact linear interference filters (LIFs) as the wavelength-selection elements. The spectral tuning of both the excitation and the detection LIFs is achieved by their mechanical shift relative to each other by use of two computer-controlled linear step motors. The performance of the LIF-based EE fluorimeter is demonstrated with the fluorescent spectra of various dyes and their mixtures.

  4. Explicit 2-D Hydrodynamic FEM Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  5. WCRP's Climate and Cryosphere (CliC) Project: Climate Change and Middle and Low Latitude Glaciers

    NASA Astrophysics Data System (ADS)

    Dick, C. A.; Clic Project, W.

    2004-12-01

    The newest World Climate Research Programme (WCRP) Core Project, the Climate and Cryosphere (CliC) Project, is concerned with all aspects of the interactions between the cryosphere and climate. The cryosphere, defined as those portions of the Earth's surface where water exists in solid form, is an integral part of the climate system, both responding to, and influencing climate change. The cryosphere also provides many of the best indicators of climate variability and change. In addition to a range of direct physical indicators (e.g., snow/sea ice/glacier extent and thickness, river and lake freeze-up/break-up dates, etc.), ice cores from glaciers, ice caps and ice sheets have been shown to contain a wealth of information about past climate and environmental conditions. Ice cores are of particular value, since they often come from areas that are remote and poorly observed, yet have a major effect on the climate of the rest of the globe. General Circulation Models (GCMs) usually predict that the Earth's polar regions will warm fastest with the increasing levels of atmospheric greenhouse gases. However, models also indicate that continental interiors should warm more quickly than marine areas at non-polar latitudes. In fact, while some areas in the Arctic and Antarctic have warmed rapidly over the last few decades, it has generally been in the middle and low latitudes that the greatest effects of climate change have been observed. Particularly obvious has been the widespread retreat of glaciers. This retreat, and the warming which it implies, will have not only important scientific consequences but also socio-economic consequences in areas where glacier melt-water is an important component of the water supply. Glaciers preserve records of climate and the environment through both the isotopic composition of the water molecules, and through the chemicals 'trapped' in the snow, firn and ice layers. In polythermal (i.e., cold) glaciers where only limited melt occurs, the isotopic and chemical signals remain largely undisturbed, and ice cores can provide excellent high resolution records of past conditions. In temperate glaciers, where the ice is at its pressure melting point throughout, diffusion processes are much more rapid, and summer melt and run-off can drastically alter the chemical composition. Much of the climatic and environmental information is destroyed. This presentation will discuss the very serious concern that so many middle and low latitude glaciers are retreating and warming. The CliC Project recognizes an urgent need to recover ice cores from all non-polar glaciated regions before warming affects the glaciers and removes the information they contain. Without such information our ability to understand the climate changes that have occurred in the world's mountainous regions will be restricted, and our ability to model and predict future climate will be severely impaired.

  6. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  7. Variational formulation for dissipative continua and an incremental J-integral

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.

    2018-01-01

    Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.

  8. Linearized radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements

    NASA Astrophysics Data System (ADS)

    Molina García, Víctor; Sasi, Sruthy; Efremenko, Dmitry S.; Doicu, Adrian; Loyola, Diego

    2018-07-01

    In this paper, we describe several linearized radiative transfer models which can be used for the retrieval of cloud parameters from EPIC (Earth Polychromatic Imaging Camera) measurements. The approaches under examination are (1) the linearized forward approach, represented in this paper by the linearized discrete ordinate and matrix operator methods with matrix exponential, and (2) the forward-adjoint approach based on the discrete ordinate method with matrix exponential. To enhance the performance of the radiative transfer computations, the correlated k-distribution method and the Principal Component Analysis (PCA) technique are used. We provide a compact description of the proposed methods, as well as a numerical analysis of their accuracy and efficiency when simulating EPIC measurements in the oxygen A-band channel at 764 nm. We found that the computation time of the forward-adjoint approach using the correlated k-distribution method in conjunction with PCA is approximately 13 s for simultaneously computing the derivatives with respect to cloud optical thickness and cloud top height.

  9. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    PubMed

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.

  10. High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep-spectrum sources

    NASA Astrophysics Data System (ADS)

    Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.

    2018-06-01

    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz < 1027 W Hz-1) gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.

  11. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  12. Polarization anisotropy in fiber-optic second harmonic generation microscopy.

    PubMed

    Fu, Ling; Gu, Min

    2008-03-31

    We report the investigation and implementation of a compact second harmonic generation microscope that uses a single-mode fiber coupler and a double-clad photonic crystal fiber. Second harmonic polarization anisotropy through the fiber-optic microscope systems is quantitatively measured with KTP microcrystals, fish scale and rat tail tendon. It is demonstrated that the polarized second harmonic signals can be excited and collected through the single-mode fiber coupler to analyze the molecular orientations of structural proteins. It has been discovered that a double-clad photonic crystal fiber can preserve the linear polarization in the core, although a depolarization effect is observed in the inner cladding region. The feasibility of polarization anisotropy measurements in fiber-optic second harmonic generation microscopy will benefit the in vivo study of collagen-related diseases with a compact imaging probe.

  13. Improvement of the Narrowband Linear Predictive Coder. Part 2. Synthesis Improvements.

    DTIC Science & Technology

    1984-06-11

    it possible to generate a replica of the voiced excitation sig- nal which can be stored in memory and read out sequentially at every voiced pitch epoch...4.7 Sustention 74.0 77.1 +3.1 Sibilation 80.2 84.9 +4.7 Graveness 63.5 77.9 +14.4 Compactness 88.5 87.8 -0.7 Overall 81.5 85.1 +3.6 Table 8-DRT score

  14. Fast Algorithms for Mining Co-evolving Time Series

    DTIC Science & Technology

    2011-09-01

    Keogh et al., 2001, 2004] and (b) forecasting, like an autoregressive integrated moving average model ( ARIMA ) and related meth- ods [Box et al., 1994...computing hardware? We develop models to mine time series with missing values, to extract compact representation from time sequences, to segment the...sequences, and to do forecasting. For large scale data, we propose algorithms for learning time series models , in particular, including Linear Dynamical

  15. Linear polarization of light scattered by cometary analogs: New samples

    NASA Astrophysics Data System (ADS)

    Hadamcik, E.; Renard, J.; Buch, A.; Carrasco, N.; Johnson, N.; Nuth, J.

    2014-07-01

    Mixtures of silicates (Mg and Fe) with carbonaceous compounds (carbon and/or organics) are currently proposed as cometary analogs. The particles are fluffy aggregates of submicron-sized constituent grains and compact grains (tens of micrometers), similar to those captured in the Earth's stratosphere (interplanetary dust particles or IDPs) and deduced from the Stardust results. They are lifted or in microgravity or levitated by an air-draught. The light source is unpolarized. The linear polarization of the scattered light floating in the beam is studied as a function of the phase angle. In previous experiments with the PROGRA2 instrument (Hadamcik et al., 2011), the general shape of the cometary polarimetric phase curves is reproduced with a shallow negative branch and a more developed positive branch (maximum polarization around 20--30 %) depending on the size distributions of the particles (compact and/or aggregates) and their constituent grains. To observe the increase of polarization with wavelength, the organic materials were necessary. When fluffy aggregates (silicates and carbon black mixtures) and compact silicate grains of tens of micrometers are present, the whole cometary coma polarization phase curve is well fitted by the phase curves obtained. The maximum polarization value decreases when the ratio of compact silicates to fluffy aggregates increases. The observed differences in polarization between different coma regions may be also simulated. When only fluffy aggregates are used, the maximum polarization corresponds to the polarization in jets of 'high polarization' active comets (Hadamcik and Levasseur-Regourd, 2003). A high polarization region may exist in some 'low polarization' comets, with large slowly moving particles; using the experimental results, we suggest the presence of dark relatively compact particles larger than 20 micrometers (Hadamcik et al., 2007; 2011). When not hidden by jets, a polarimetric halo is sometimes observed in the inner coma. The negative branch can be as deep as -6% and the positive branch is smaller as compared to the whole coma (Hadamcik et al., 2003). Zubko et al. (2012) have proposed an increased fraction of silicates. From the experiments, we suggest some carbonaceous compounds with refractive indices close to those of silicates (relatively transparent). This material, if heated by the Sun after ejection, should be darker as observed when these materials are heated to 200--300°C. We are working on new analogs with mixtures of silicates and organics (not only carbon), silicates coated by organics (Johnson et al., 2004), or organics heated or not and with different elemental compositions (N/C ratios).

  16. On the stability of a superspinar

    NASA Astrophysics Data System (ADS)

    Nakao, Ken-ichi; Joshi, Pankaj S.; Guo, Jun-Qi; Kocherlakota, Prashant; Tagoshi, Hideyuki; Harada, Tomohiro; Patil, Mandar; Królak, Andrzej

    2018-05-01

    The superspinar proposed by Gimon and Hořava is a rapidly rotating compact entity whose exterior is described by the over-spinning Kerr geometry. The compact entity itself is expected to be governed by superstringy effects, and in astrophysical scenarios it can give rise to interesting observable phenomena. Earlier it was suggested that the superspinar may not be stable but we point out here that this does not necessarily follow from earlier studies. We show, by analytically treating the Teukolsky equations by Detwiler's method, that in fact there are infinitely many boundary conditions that make the superspinar stable at least against the linear perturbations of m = l modes, and that the modes will decay in time. Further consideration leads us to the conclusion that it is possible to set the inverse problem to the linear stability issue: since the radial Teukolsky equation for the superspinar has no singular point on the real axis, we obtain regular solutions to the Teukolsky equation for arbitrary discrete frequency spectrum of the quasi-normal modes (no incoming waves) and the boundary conditions at the "surface" of the superspinar are found from obtained solutions. It follows that we need to know more on the physical nature of the superspinar in order to decide on its stability in physical reality.

  17. Real-time passenger counting by active linear cameras

    NASA Astrophysics Data System (ADS)

    Khoudour, Louahdi; Duvieubourg, Luc; Deparis, Jean-Pierre

    1996-03-01

    The companies operating subways are very much concerned with counting the passengers traveling through their transport systems. One of the most widely used systems for counting passengers consists of a mechanical gate equipped with a counter. However, such simple systems are not able to count passengers jumping above the gates. Moreover, passengers carrying large luggage or bags may meet some difficulties when going through such gates. The ideal solution is a contact-free counting system that would bring more comfort of use for the passengers. For these reasons, we propose to use a video processing system instead of these mechanical gates. The optical sensors discussed in this paper offer several advantages including well defined detection areas, fast response time and reliable counting capability. A new technology has been developed and tested, based on linear cameras. Preliminary results show that this system is very efficient when the passengers crossing the optical gate are well separated. In other cases, such as in compact crowd conditions, reasonable accuracy has been demonstrated. These results are illustrated by means of a number of sequences shot in field conditions. It is our belief that more precise measurements could be achieved, in the case of compact crowd, by other algorithms and acquisition techniques of the line images that we are presently developing.

  18. Superconductor bearings, flywheels and transportation

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  19. Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery.

    PubMed

    Tolmachov, Oleg E

    2012-05-01

    The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II topoisomerases. The technology for such self-entanglement can be an avenue for the improvement of gene delivery with high-molecular-weight naked DNA using therapeutically important methods associated with considerable shear stress. Priority applications include in vivo muscle electroporation and sonoporation for Duchenne muscular dystrophy patients, aerosol inhalation to reach the target lung cells of cystic fibrosis patients and bio-ballistic delivery to skin melanomas with the vector DNA adsorbed on gold or tungsten projectiles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Differential compaction influences on structure in West Cameron Block 225 field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, W.R.

    The concept to be illustrated here is the influence on structural configuration of differential compaction caused by lateral variations in stratigraphy, specifically, changes from sand to shale within the same stratigraphic interval, The example chosen to illustrate this concept is West Cameron Block 225 field. As seen in structural stratigraphic cross sections as well as net sand maps constructed in the example field, several channel sands are seen to strongly influence the structural configuration. The basic structure within the field as defined by well and seismic data consists of a gentle, southerly dipping, north south-oriented ridge, bounded by a down-to-the-eastmore » fault on the west flank and a down-to-the-south fault to the north. Gentle roll into these faults closes the north flank of the structure. The stratigraphic section consists of alternating sands and shales of Miocene and Pliocene age. Several of these sands map out as linear sand bodies interpreted to be channels. These channels, representing thickened sand bodies that grade laterally into predominantly shale facies, are oriented in a general east-west direction. The juxtaposition of the basic structural orientation with the orientation of the channel sand(s) sets up a crossing point(s) on the southern flank of the structure. With the advent of differential compaction between the channel sands and the bounding shale faces, a stratigraphic structure is generated. This resulting compaction structure maps out as a double-lobed or saddled high. This effect is amplified as channels in the shallower section stack out over the southern flank of the structure until the southern crest dominates over the northern one. The overall result is one of migrating structural crests caused by variations in compactibility within the stratigraphic section.« less

  1. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    PubMed

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  2. Comparison of the compact dry TC method with the standard method ISO 21149:2006 for determining aerobic colony counts in cosmetic emulsion.

    PubMed

    De Vaugelade, S; Aime, M; Farcette, N; Maurel, E; Lacour, T; Thomas, C; Bouchonnet, S; Pirnay, S

    2017-02-01

    Compact Dry TC, a rapid method kit for determining aerobic colony counts, has been developed by Nissui Pharmaceutical Co. for food application. These plates are pre-sterilized and contain culture medium, a cold-soluble gelling agent and a colour redox indicator for rapid enumeration. In this study, the alternative method is compared with the standard method ISO 21149:2006 - Cosmetic - Microbiology - Enumeration and detection of aerobic mesophilic bacteria, for cosmetic emulsions application. An oil-in-water (o/w) cosmetic emulsion was contaminated with a pool of bacterial strains (Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 9027). One millilitre of samples was spread on agar as described in ISO 21149. The colonies were enumerated after 3 days of incubation. At the same time, 1.2 mL samples were spread on Compact Dry TC kits. The kit was incubated at 35°C ± 1°C for 48 h, and the colonies were enumerated. Accuracy determination was carried out using six replicates at four levels of concentrations (10, 50, 100 and 250 CFU mL -1 ). The repeatability study was carried out using 12 replicates at four levels of concentrations (10, 50, 100 and 250 CFU mL -1 ). Variations relative to the analyst and to the batch of emulsion have been investigated. The linear correlation coefficients of Compact Dry TC Kit enumeration with standard method ISO 21149:2006 was 0.9999. In comparison study, no apparent differences were noted between the Compact Dry TC kit and the reference method ISO 21149, for the detection level of aerobic microorganisms. Relative accuracy, repeatability and intermediate precision studies were acceptable. In the repeatability study, the Shapiro-Wilk test has confirmed the normally distribution of the twelve assays. No significant variations in Compact Dry TC count results were observed with different analysts and different batches of emulsion. The results showed that the two compared methods 'Compact Dry TC' vs. 'conventional pour plate' performed equally well. Demonstration was achieved that the Compact Dry TC method may constitute a useful alternative tool for rapid enumeration of aerobic mesophilic bacteria in cosmetic emulsions. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Mechanism of vacuum breakdown in radio-frequency accelerating structures

    NASA Astrophysics Data System (ADS)

    Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.

    2018-06-01

    It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.

  4. Analysis of continuously rotating quadrupole focusing channels using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2013-08-15

    By extending the recently developed generalized Courant-Snyder theory for coupled transverse beam dynamics, we have constructed the Gaussian beam distribution and its projections with arbitrary mode emittance ratios. The new formulation has been applied to a continuously rotating quadrupole focusing channel because the basic properties of this channel are known theoretically and could also be investigated experimentally in a compact setup such as the linear Paul trap configuration. The new formulation retains a remarkably similar mathematical structure to the original Courant-Snyder theory, and thus, provides a powerful theoretical tool to investigate coupled transverse beam dynamics in general and more complexmore » linear focusing channels.« less

  5. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  6. Structure of alcohol cluster ions in the gas phase, according to spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krisilov, A. V.; Lantsuzskaya, E. V.; Levina, A. M.

    2017-01-01

    Reduced ion mobility and scattering cross sections are calculated from experimentally obtained spectra of the ion mobility of linear aliphatic alcohols with carbon atom numbers from 2 to 9. A linear increase in the scattering cross sections as the molecular weight grows is found. According to the results from experiments and quantum chemical calculations, alcohol cluster ions do not form a compact structure. Neither are dipole moments compensated for during dimerization, in contrast to the aldehydes and ketones described earlier. It was concluded from ab initio calculations that charge delocalization in monomeric and dimeric ions of alcohols increases the dipole moment many times over.

  7. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  8. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Dierking, Wolfgang; Zhang, Jie; Meng, Junmin; Lang, Haitao

    2016-07-01

    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the "CP ratio". In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8 m thick.

  9. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  10. A 1420 MHz Catalog of Compact Sources in the Northern Galactic Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A. R.; Leahy, D. A.; Sunstrum, C.

    We present a catalog of compact sources of radio emission at 1420 MHz in the northern Galactic plane from the Canadian Galactic Plane Survey. The catalog contains 72,758 compact sources with an angular size less than 3′ within the Galactic longitude range 52° <  ℓ  < 192° down to a 5 σ detection level of ∼1.2 mJy. Linear polarization properties are included for 12,368 sources with signals greater than 4 σ{sub QU} in the Canadian Galactic Plane Survey (CGPS) Stokes Q and U images at the position of the total intensity peak. We compare CGPS flux densities with cataloged flux densities in themore » Northern VLA Sky Survey catalog for 10,897 isolated unresolved sources with CGPS flux density greater than 4 mJy to search for sources that show variable flux density on timescales of several years. We identify 146 candidate variables that exhibit high fractional variations between the two surveys. In addition, we identify 13 candidate transient sources that have CGPS flux density above 10 mJy but are not detected in the Northern VLA Sky Survey.« less

  11. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  12. Comparison between instrumented precracked Charpy and compact specimen tests of carbon steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, R.K.

    1980-01-01

    The General Atomic Company High Temperature Gas-Cooled Reactor (HTGR) is housed within a prestressed concrete reactor vessel (PCRV). Various carbon steel structural members serve as closures at penetrations in the vessel. A program of testing and evaluation is underway to determine the need for reference fracture toughness (K/sub IR/) and indexing procedures for these materials as described in Appendix G to Section III, ASME Code for light water reactor steels. The materials of interest are carbon steel forgings (SA508, Class 1) and plates (SA537, Classes 1 and 2) as well as weldments of these steels. The fracture toughness behavior ismore » characterized with instrumented precracked Charpy V-votch specimens (PCVN) - slow-bend and dynamic - and compact specimens (10-mm and 25-mm thicknesses) using both linear elastic (ASTM E399) and elastic-plastic (equivalent Energy and J-Integral) analytical procedures. For the dynamic PCVN tests, force-time traces are analyzed according to the procedures of the Pressure Vessel Research Council (PVRC)/Metal Properties Council (MPC). Testing and analytical procedures are discussed and PCVN results are compared to those obtained with compact specimens.« less

  13. Compact sources for eyesafe illumination

    NASA Astrophysics Data System (ADS)

    Baranova, Nadia; Pu, Rui; Stebbins, Kenneth; Bystryak, Ilya; Rayno, Michael; Ezzo, Kevin; DePriest, Christopher

    2018-02-01

    Q-peak has demonstrated a compact, pulsed eyesafe laser architecture operating with >10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2˜4), while also providing a path toward higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high-pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse widths <30 ns, and utilizing an end-pumped Nd:YAG gain medium with a rubidium titanyl phosphate electro-optical crystal. The oscillator provides an effective front-end-seed for an optical parametric oscillator (OPO), which utilizes potassium titanyl arsenate in a linear OPO geometry. This laser efficiently operates in the eyesafe band, and has been designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.

  14. Compact sources for eyesafe illumination

    NASA Astrophysics Data System (ADS)

    Baranova, N.; Pu, R.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2017-02-01

    Q-Peak has demonstrated a novel, compact, pulsed eyesafe laser architecture operating with <10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2 4), while also providing a path towards higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse-widths <30 ns, and utilizing an end-pumped Nd: YAG gain medium with a Rubidium Titanyl Phosphate (RTP) electro-optical crystal. The oscillator provides an effective front-end-seed for an optical parametric oscillator (OPO), which utilizes Potassium Titanyl Arsenate (KTA) in a linear OPO geometry. This laser efficiently operates in the eyesafe band, and has been designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.

  15. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  16. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  17. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  18. The Compaction of Ultramafic Cumulates in Layered Intrusions - Time and Length Scales (Invited)

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Manoochehri, S.

    2013-12-01

    Many large mafic intrusions have thick series of mostly ultramafic cumulates composed of dense cumulus minerals (chromite, olivine, pyroxenes) precipitated from low viscosity (roughly basaltic) liquids. To understand the time and length scales involved, the crystal settling and compaction process was simulated through centrifuge-assisted experiments of olivine or chromite in basaltic melt. Experiments were performed in a centrifuging piston cylinder at 200-1500 g, 1200-1300 C, 0.5-1.1 GPa on previously annealed and texturally equilibrated samples. The mechanical settling of the dense olivine or chromite suspensions occurs at 1/6 and 1/2 the speed of simple Stokes settling. The porosity (φm ) of orthocumulates resulting from gravitational settling is 50-55 %, pile up times for natural grain sizes result to 0.1-10 m/day. Hence, gravitational deposition (including re-deposition) of crystals may take place within years, i.e. almost instantaneously with progressing crystallization. After (re-)deposition, grains rest on each other. Further (chemical) compaction occurs through pressure dissolution at grain contacts, olivine or chromite re-precipitates where in contact with melt. Concomitantly excess liquid is expulsed from the cumulate layer. Centrifugation let to porosities as low as 30.3 vol% for olivine. The crystal content at the bottom of the experimentally compacted cumulate is 1-φm ~ log(Δρ h a t), where Δρ = crystal-melt density difference, h = crystal layer thickness, a = acceleration and t = time. Compaction is hence proportional to effective stress integrated over time indicating that pressure dissolution is the dominant mechanism. Notably, chromite crystals compact only about half as fast as olivine crystals. The compaction limit, i.e. the lowermost porosity to be reached, is calculated by equating the lithostatic and hydraulic pressure gradients in the cumulate and results to 3-5 % porosity for the experiments. Crystal size distribution curves and a growth exponent n of 3.1(3) (for olivine) indicate that diffusion controlled Ostwald ripening is the dominant crystal growth mechanism. The experimentally calibrated compaction relationship, combined with a linear scaling for grain size as appropriate for reaction-controlled pressure solution creep, allows calculation of formation times of natural adcumulates. A single layer of olivine adcumulate of 1/2 m thickness with 70-75 vol% olivine at the base (as observed in Rhum), would have typical formation times of 0.4-3 yrs for grain sizes of 2-10 mm, comparing favourably with characteristic cooling times of sills. If a >20 m thick series of cumulate layers pressurizes a base layer with the porosity still filled by a melt, then compaction proceeds to the compaction limit within a few years. To understand the thickness of a simultaneously compacting (layered) crystal pile, (paleo)-porosity gradients determined from incompatible trace elements can be employed when combined with modelled characteristic cooling times. In layered mafic intrusions where cumulates are deposited from a large magma chamber, compaction zones of several tens to hundreds of meter may form adcumulates with porosities in the order of 5%. In conclusion, gravitation driven chemical compaction is feasible for dense mafic minerals in basaltic magmas, in particular in large layered intrusions. The limiting factor appears to be rather the supply of crystals then the time necessary for compaction.

  19. Ammonia Optical Sensing by Microring Resonators

    PubMed Central

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; De Leonardis, Francesco

    2007-01-01

    A very compact (device area around 40 μm2) optical ammonia sensor based on a microring resonator is presented in this work. Silicon-on-insulator technology is used in sensor design and a dye doped polymer is adopted as sensing material. The sensor exhibits a very good linearity and a minimum detectable refractive index shift of sensing material as low as 8×10-5, with a detection limit around 4 ‰. PMID:28903258

  20. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Harrison, R. G.

    2010-12-01

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  1. Three-dimensional passive sensing photon counting for object classification

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  2. An algorithm for solving the perturbed gas dynamic equations

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1993-01-01

    The present application of a compact, higher-order central-difference approximation to the linearized Euler equations illustrates the multimodal character of these equations by means of computations for acoustic, vortical, and entropy waves. Such dissipationless central-difference methods are shown to propagate waves exhibiting excellent phase and amplitude resolution on the basis of relatively large time-steps; they can be applied to wave problems governed by systems of first-order partial differential equations.

  3. The E3 combustors: Status and challenges. [energy efficient turbofan engines

    NASA Technical Reports Server (NTRS)

    Sokolowski, D. E.; Rohde, J. E.

    1981-01-01

    The design, fabrication, and initial testing of energy efficient engine combustors, developed for the next generation of turbofan engines for commercial aircraft, are described. The combustor designs utilize an annular configuration with two zone combustion for low emissions, advanced liners for improved durability, and short, curved-wall, dump prediffusers for compactness. Advanced cooling techniques and segmented construction characterize the advanced liners. Linear segments are made from castable, turbine-type materials.

  4. New shielding material development for compact accelerator-driven neutron source

    NASA Astrophysics Data System (ADS)

    Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei

    2017-04-01

    The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.

  5. Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces

    NASA Astrophysics Data System (ADS)

    Mantile, Andrea; Posilicano, Andrea; Sini, Mourad

    2016-07-01

    The theory of self-adjoint extensions of symmetric operators is used to construct self-adjoint realizations of a second-order elliptic differential operator on Rn with linear boundary conditions on (a relatively open part of) a compact hypersurface. Our approach allows to obtain Kreĭn-like resolvent formulae where the reference operator coincides with the ;free; operator with domain H2 (Rn); this provides an useful tool for the scattering problem from a hypersurface. Concrete examples of this construction are developed in connection with the standard boundary conditions, Dirichlet, Neumann, Robin, δ and δ‧-type, assigned either on a (n - 1) dimensional compact boundary Γ = ∂ Ω or on a relatively open part Σ ⊂ Γ. Schatten-von Neumann estimates for the difference of the powers of resolvents of the free and the perturbed operators are also proven; these give existence and completeness of the wave operators of the associated scattering systems.

  6. Ionization correction factors for H II regions in blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Holovatyi, V. V.; Melekh, B. Ya.

    2002-08-01

    Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.

  7. Compaction by impact of unconsolidated lunar fines

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1975-01-01

    New Hugoniot and release adiabat data for 1.8 g/cu cm lunar fines in the approximately 2 to 70 kbar range demonstrate that upon shock compression intrinsic crystal density (approximately 3.1 g/cu cm) is achieved under shock stress of 15 to 20 kbar. Release adiabat determinations indicate that measurable irreversible compaction occurs upon achieving shock pressures above approximately 4 kbar. For shocks in the approximately 7 to 15 kbar range, the inferred post-shock specific volumes observed decrease nearly linearly with increasing peak shock pressures. Upon shocking to approximately 15 kbar the post-shock density is approximately that of the intrinsic minerals. If the present data are taken to be representative of the response to impact of unconsolidated regolith material on the moon, it is inferred that the formation of appreciable quantities of soil breccia can be associated with the impact of meteoroids or ejecta at speeds as low as approximately 1 km/sec.

  8. Compact, semi-passive beam steering prism array for solar concentrators.

    PubMed

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  9. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  10. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  11. Bag of Lines (BoL) for Improved Aerial Scene Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Harini; Cheriyadat, Anil M.

    2014-09-22

    Feature representation is a key step in automated visual content interpretation. In this letter, we present a robust feature representation technique, referred to as bag of lines (BoL), for high-resolution aerial scenes. The proposed technique involves extracting and compactly representing low-level line primitives from the scene. The compact scene representation is generated by counting the different types of lines representing various linear structures in the scene. Through extensive experiments, we show that the proposed scene representation is invariant to scale changes and scene conditions and can discriminate urban scene categories accurately. We compare the BoL representation with the popular scalemore » invariant feature transform (SIFT) and Gabor wavelets for their classification and clustering performance on an aerial scene database consisting of images acquired by sensors with different spatial resolutions. The proposed BoL representation outperforms the SIFT- and Gabor-based representations.« less

  12. Deformations of super Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Ninnemann, Holger

    1992-11-01

    Two different approaches to (Kostant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincaré upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function.

  13. Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons

    NASA Astrophysics Data System (ADS)

    Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun

    2016-03-01

    We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.

  14. High-reliable linear cryocoolers and miniaturization developments at Thales Cryogenics

    NASA Astrophysics Data System (ADS)

    van der Weijden, H.; Benschop, A.; v. D. Groep, W.; Willems, D.; Mullie, J.

    2010-04-01

    Thales Cryogenics (TCBV) has an extensive background in delivering long life cryogenic coolers for military, civil and space programs. This cooler range is based on two main compressor concepts: close tolerance contact seals (UP) and flexure bearing (LSF/LPT) coolers. Main difference between these products is the Mean Time To Failure (MTTF). In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Also test results from both the installed base and the Thales Cryogenics test lab will be presented. New developments at Thales Cryogenics regarding compact long lifetime coolers will be outlined. In addition new developments for miniature linear cooler drive electronics with high temperature stability and power density will be described.

  15. RadioAstron Maser Observations: a Record in Angular Resolution

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.; Shakhvorostova, N. N.; Alakoz, A. V.; Baan, W. A.; RadioAstron Maser Team

    2017-06-01

    Extremely long baselines of the space-ground interferometer RadioAstron allow to achieve ultra-high angular resolutions. The possibility of detection of a maser emission with resolutions about tens of micro-arcseconds was arguable before successful experiments reported in this paper. We present the results of the maser survey obtained by RadioAstron during first 5 years of operation. Extremely high angular resolution of 11 microarcseconds have been achieved in observations of the megamaser galaxy NGC 4258. For the galaxy at the distance about 7 Mpc this corresponds to linear resolution around 80 AU. Very compact features with angular sizes about 20 micro-arcseconds have been detected in star-forming regions of our Galaxy. Corresponding linear sizes are about 5-10 millions of kilometers.

  16. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2015-10-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.

  17. Earth fissures and localized differential subsidence

    USGS Publications Warehouse

    Holzer, Thomas L.; Pampeyan, Earl H.

    1981-01-01

    Long linear tension cracks associated with declining groundwater levels at four sites in subsiding areas in south-central Arizona, Fremont Valley, California, and Las Vegas Valley, Nevada, occur near points of maximum convex-upward curvature in subsidence profiles oriented perpendicular to the cracks. Profiles are based on repeated precise vertical control surveys of lines of closely spaced bench marks. Association of these fissures with zones of localized differential subsidence indicates that linear earth fissures are caused by horizontal tensile strains probably resulting from localized differential compaction. Horizontal tensile strains across the fissures at the point of maximum convex-upward curvature, ranging from approximately 100 to 700 microstrains (0.01 to 0.07% per year), were indicated based on measurements with a tape or electronic distance meter.

  18. 250 kA compact linear transformer driver for wire array z-pinch loads

    NASA Astrophysics Data System (ADS)

    Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.

    2011-05-01

    We present the application of a short rise (˜150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers ˜200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.

  19. Dirac Theory on a Space with Linear Lie Type Fuzziness

    NASA Astrophysics Data System (ADS)

    Shariati, Ahmad; Khorrami, Mohammad; Fatollahi, Amir H.

    2012-08-01

    A spinor theory on a space with linear Lie type noncommutativity among spatial coordinates is presented. The model is based on the Fourier space corresponding to spatial coordinates, as this Fourier space is commutative. When the group is compact, the real space exhibits lattice characteristics (as the eigenvalues of space operators are discrete), and the similarity of such a lattice with ordinary lattices is manifested, among other things, in a phenomenon resembling the famous fermion doubling problem. A projection is introduced to make the dynamical number of spinors equal to that corresponding to the ordinary space. The actions for free and interacting spinors (with Fermi-like interactions) are presented. The Feynman rules are extracted and 1-loop corrections are investigated.

  20. Application and Miniaturization of Linear and Nonlinear Raman Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Mittal, Richa

    Current diagnostics for several disorders rely on surgical biopsy or evaluation of ex vivo bodily fluids, which have numerous drawbacks. We evaluated the potential for vibrational techniques (both linear and nonlinear Raman) as a reliable and noninvasive diagnostic tool. Raman spectroscopy is an optical technique for molecular analysis that has been used extensively in various biomedical applications. Based on demonstrated capabilities of Raman spectroscopy we evaluated the potential of the technique for providing a noninvasive diagnosis of mucopolysaccharidosis (MPS). These studies show that Raman spectroscopy can detect subtle changes in tissue biochemistry. In applications where sub-micrometer visualization of tissue compositional change is required, a transition from spectroscopy to high quality imaging is necessary. Nonlinear vibrational microscopy is sensitive to the same molecular vibrations as linear Raman, but features fast imaging capabilities. Coherent Raman scattering when combined with other nonlinear optical (NLO) techniques (like two-photon excited fluorescence and second harmonic generation) forms a collection of advanced optical techniques that provide noninvasive chemical contrast at submicron resolution. This capability to examine tissues without external molecular agents is driving the NLO approach towards clinical applications. However, the unique imaging capabilities of NLO microscopy are accompanied by complex instrument requirements. Clinical examination requires portable imaging systems for rapid inspection of tissues. Optical components utilized in NLO microscopy would then need substantial miniaturization and optimization to enable in vivo use. The challenges in designing compact microscope objective lenses and laser beam scanning mechanisms are discussed. The development of multimodal NLO probes for imaging oral cavity tissue is presented. Our prototype has been examined for ex vivo tissue imaging based on intrinsic fluorescence and SHG contrast. These studies show a potential for multiphoton compact probes to be used for real time imaging in the clinic.

  1. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    PubMed

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Urinary leukotriene E4/exhaled nitric oxide ratio and montelukast response in childhood asthma.

    PubMed

    Rabinovitch, Nathan; Graber, Nora J; Chinchilli, Vernon M; Sorkness, Christine A; Zeiger, Robert S; Strunk, Robert C; Bacharier, Leonard B; Martinez, Fernando D; Szefler, Stanley J

    2010-09-01

    A subset of children with asthma respond better to leukotriene receptor antagonists than to inhaled corticosteroids. Information is needed to identify children with these preferential responses. We sought to determine whether the ratio of urinary leukotriene E(4) (LTE(4)) to fractional exhaled nitric oxide (FE(NO)) delineates children with preferential responsiveness to montelukast compared with fluticasone propionate (FP) therapy. Data from 318 children with mild-to-moderate asthma enrolled in 2 National Heart, Lung, and Blood Institute Childhood Asthma Research and Education Network studies (Characterizing the Response to a Leukotriene Receptor Antagonist and an Inhaled Corticosteroid [CLIC] and the Pediatric Asthma Controller Trial [PACT]) were analyzed. The association between LTE(4)/FE(NO) ratios at baseline and improved lung function or asthma control days (ACDs) with montelukast and FP therapy was determined, and phenotypic characteristics related to high ratios were assessed. LTE(4)/FE(NO) ratios were associated with a greater response to montelukast than FP therapy for FEV(1) measurements (2.1% increase per doubling of ratio, P = .001) and for ACDs per week (0.3-ACD increase, P = .009) in the CLIC study. In PACT the ratio was associated with greater ACD responsiveness to MT than FP therapy (0.6 ACD increase, P=.03) [corrected]. In a combined study analysis, LTE(4): FE(NO) ratios were associated with greater response to MT than FP therapy for FEV(1) (1.8% increase, P =.0005) and ACDs (0.4 increase, P =.001)[corrected].Children with LTE(4)/FE(NO) ratios at or above the 75th percentile were likely (P < .05) to be younger and female and exhibit lower levels of atopic markers and methacholine reactivity. LTE(4)/FE(NO) ratios predict a better response to montelukast than FP therapy in children with mild-to-moderate asthma. Copyright (C) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  3. Linear fixed-field multipass arcs for recirculating linear accelerators

    DOE PAGES

    Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...

    2012-06-14

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less

  4. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  5. Three Dimensional Integration and On-Wafer Packaging for Heterogeneous Wafer-Scale Circuit Architectures

    DTIC Science & Technology

    2006-11-01

    Chip Level CMOS Chip High resistivity Si Metal Interconnect 25μm 24GHz fully integrated receiver CMOS transimpedance Amplifier (13GHz BW, 52dBΩ...power of a high-resistivity SiGe power amplifier chip with the wide operating frequency range and compactness of a CMOS mixed signal chip operating...With good RF channel selectivity, system specifications such as the linearity of the low noise amplifier (LNA), the phase noise of the voltage

  6. A Fabry-Pérot interferometer with wire-grid polarizers as beamsplitters at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Harrison, H.; Lancaster, A. J.; Konoplev, I. V.; Doucas, G.; Aryshev, A.; Shevelev, M.; Terunuma, N.; Urakawa, J.; Huggard, P. G.

    2018-03-01

    The design of a compact Fabry-Pérot interferometer (FPi) and results of the experimental studies carried out using the device are presented. Our FPi uses freestanding wire-grid polarizers (WGPs) as beamsplitters and is suitable for use at terahertz (THz) frequencies. The FPi was studied at the LUCX facility, KEK, Japan, and an 8 MeV linear electron accelerator was used to generate coherent Smith-Purcell radiation. The FPi was designed to be easy to align and reposition for experiments at linear accelerator facilities. All of the components used were required to have a flat or well understood frequency response in the THz range. The performance of the FPi with WGPs was compared to that of a Michelson interferometer and the FPi is seen to perform well. The effectiveness of the beamsplitters used in the FPi is also investigated. Measurements made with the FPi using WGPs, the preferred beamsplitters, are compared to measurements made with the FPi using silicon wafers as alternative beamsplitters. The FPi performs well with both types of beamsplitter in the frequency range used (0.3-0.5 THz). The successful measurements taken with the FPi demonstrate a compact and adaptable interferometer that is capable of analyzing THz radiation over a broad frequency range. The scheme is particularly well suited for polarization studies of THz radiation produced in an accelerator environment.

  7. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  8. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-gradient low-β accelerating structure using the first negative spatial harmonic of the fundamental mode

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.

    2017-12-01

    The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.

  10. Gravitational waves and the death-dance of compact stellar binaries

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    1996-05-01

    The completion of a network of advanced laser-interferometric gravitational-wave observatories (US LIGO and European VIRGO projects) around 2001 will make possible the study of the inspiral and coalescence of binary systems of compact objects (neutron stars and black holes), using gravitational radiation. To extract useful information from the waves, such as the masses and spins of the bodies, theoretical general relativistic gravitational waveforms will be used as templates, cross-correlated against the detector output, in a matched filtering process. Because the broad-band detectors will be very sensitive to the non-linearly evolving phase of the waves, the templates must be extremely accurate in their treatment of the gravitational back-reaction on the orbital frequency, probably as accurate as O[(v/c)^6] beyond the predictions of the quadrupole formula. This presents a major challenge to theorists. Recently, templates accurate to O[(v/c)^4] were obtained by two independent methods (L. Blanchet, T. Damour, B. R. Iyer, C. M. Will and A. G. Wiseman, Phys. Rev. Lett. 74), 3515 (1995), and extensions to O[(v/c)^5] and higher are in progress. We summarize one of these methods, which extends and improves an earlier framework due to Epstein and Wagoner (R. Epstein and R. V. Wagoner, Astrophys. J. 210), 764 (1975), in which Einstein's equations are recast as a flat spacetime wave equation with source comprised of matter confined to compact regions and gravitational non-linearities extending to infinity. The new method (C. M. Will and A. G. Wiseman, Phys. Rev. D, submitted), carried through O[(v/c)^4], is free of divergences or undefined integrals, correctly predicts all gravitational wave ``tail'' effects caused by backscatter of the outgoing radiation off the background curved spacetime, and yields radiation that propagates asymptotically along true null cones of the curved spacetime.

  11. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    NASA Astrophysics Data System (ADS)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  12. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less

  13. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks.

    PubMed

    Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H

    2017-08-01

    A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.

  14. Micromechanics of cataclastic pore collapse in limestone

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Baud, Patrick; Wong, Teng-Fong

    2010-04-01

    The analysis of compactant failure in carbonate formations hinges upon a fundamental understanding of the mechanics of inelastic compaction. Microstructural observations indicate that pore collapse in a limestone initiates at the larger pores, and microcracking dominates the deformation in the periphery of a collapsed pore. To capture these micromechanical processes, we developed a model treating the limestone as a dual porosity medium, with the total porosity partitioned between macroporosity and microporosity. The representative volume element is made up of a large pore which is surrounded by an effective medium containing the microporosity. Cataclastic yielding of this effective medium obeys the Mohr-Coulomb or Drucker-Prager criterion, with failure parameters dependent on porosity and pore size. An analytic approximation was derived for the unconfined compressive strength associated with failure due to the propagation and coalescence of pore-emanated cracks. For hydrostatic loading, identical theoretical results for the pore collapse pressure were obtained using the Mohr-Coulomb or Drucker-Prager criterion. For nonhydrostatic loading, the stress state at the onset of shear-enhanced compaction was predicted to fall on a linear cap according to the Mohr-Coulomb criterion. In contrast, nonlinear caps in qualitative agreement with laboratory data were predicted using the Drucker-Prager criterion. Our micromechanical model implies that the effective medium is significantly stronger and relatively pressure-insensitive in comparison to the bulk sample.

  15. Grouper: A Compact, Streamable Triangle Mesh Data Structure.

    PubMed

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2013-05-08

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle, Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access.

  16. Development and calibration of a compact self-sensing atomic force microscope head for micro-nano characterization

    NASA Astrophysics Data System (ADS)

    Guo, Tong; Wang, Siming; Zhao, Jian; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2011-12-01

    A compact self-sensing atomic force microscope (AFM) head is developed for the micro-nano dimensional measurement. This AFM head works in tapping mode equipped with a commercial self-sensing probe. This kind of probe can benefit not only from the tuning fork's stable resonant frequency and high quality factor but also from the silicon cantilever's reasonable spring constant. The head is convenient to operate by its simplicity of structure, since it does not need any optical detector to measure the bending of the cantilever. The compact structure makes the head ease to combine with other measuring methods. According to the probe"s characteristics, a method is proposed to quickly calculate the cantilever"s resonance amplitude through measuring its electro-mechanical coupling factor. An experiment system is established based on the nano-measuring machine (NMM) as a high precision positioning stage. Using this system, the approach/retract test is carried out for calibrating the head. The tests can be traced to the meter definition by interferometers in NMM. Experimental results show that the non-linearity error of this AFM head is smaller than 1%, the sensitivity reaches 0.47nm/mV and the measurement stroke is several hundreds of nanometers.

  17. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.

    PubMed

    Cunningham, J C; Sinka, I C; Zavaliangos, A

    2004-08-01

    In this first of two articles on the modeling of tablet compaction, the experimental inputs related to the constitutive model of the powder and the powder/tooling friction are determined. The continuum-based analysis of tableting makes use of an elasto-plastic model, which incorporates the elements of yield, plastic flow potential, and hardening, to describe the mechanical behavior of microcrystalline cellulose over the range of densities experienced during tableting. Specifically, a modified Drucker-Prager/cap plasticity model, which includes material parameters such as cohesion, internal friction, and hydrostatic yield pressure that evolve with the internal state variable relative density, was applied. Linear elasticity is assumed with the elastic parameters, Young's modulus, and Poisson's ratio dependent on the relative density. The calibration techniques were developed based on a series of simple mechanical tests including diametrical compression, simple compression, and die compaction using an instrumented die. The friction behavior is measured using an instrumented die and the experimental data are analyzed using the method of differential slices. The constitutive model and frictional properties are essential experimental inputs to the finite element-based model described in the companion article. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2022-2039, 2004

  18. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    PubMed

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Quantitative descriptions of rice plant architecture and their application

    PubMed Central

    Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation. PMID:28545144

  20. Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation

    NASA Astrophysics Data System (ADS)

    Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.

    2012-09-01

    The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.

  1. Quantitative descriptions of rice plant architecture and their application.

    PubMed

    Li, Xumeng; Wang, Xiaohui; Peng, Yulin; Wei, Hailin; Zhu, Xinguang; Chang, Shuoqi; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    Plant architecture is an important agronomic trait, and improving plant architecture has attracted the attention of scientists for decades, particularly studies to create desirable plant architecture for high grain yields through breeding and culture practices. However, many important structural phenotypic traits still lack quantitative description and modeling on structural-functional relativity. This study defined new architecture indices (AIs) derived from the digitalized plant architecture using the virtual blade method. The influences of varieties and crop management on these indices and the influences of these indices on biomass accumulation were analyzed using field experiment data at two crop growth stages: early and late panicle initiation. The results indicated that the vertical architecture indices (LAI, PH, 90%-DRI, MDI, 90%-LI) were significantly influenced by variety, water, nitrogen management and the interaction of water and nitrogen, and compact architecture indices (H-CI, Q-CI, 90%-LI, 50%-LI) were significantly influenced by nitrogen management and the interaction of variety and water. Furthermore, there were certain trends in the influence of variety, water, and nitrogen management on AIs. Biomass accumulation has a positive linear correlation with vertical architecture indices and has a quadratic correlation with compact architecture indices, respectively. Furthermore, the combination of vertical and compact architecture indices is the indicator for evaluating the effects of plant architecture on biomass accumulation.

  2. 2017 Topical Workshop on Electronics for Particle Physics

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The workshop will cover all aspects of electronics for particle physics experiments, and accelerator instrumentation of general interest to users. LHC experiments (and their operational experience) will remain a focus of the meeting but a strong emphasis on R&D for future experimentation will be maintained, such as SLHC, CLIC, ILC, neutrino facilities as well as other particle and astroparticle physics experiments. The purpose of the workshop is: To present results and original concepts for electronic research and development relevant to experiments as well as accelerator and beam instrumentation at future facilities; To review the status of electronics for the LHC experiments; To identify and encourage common efforts for the development of electronics; To promote information exchange and collaboration in the relevant engineering and physics communities.

  3. Wide Field Spectroscopy of Diffusing and Interacting DNA Using Tunable Nanoscale Geometries

    NASA Astrophysics Data System (ADS)

    Scott, Shane; Leith, Jason; Brandao, Hugo; Sehayek, Simon; Hofkirchner, Alexander; Laurin, Jill; Berard, Daniel; Verge, Alexander; Wiseman, Paul; Leslie, Sabrina

    2015-03-01

    It remains an outstanding challenge to directly image interacting and diffusing biomolecules under physiological conditions. Many biochemical questions can be posed in the form: Does A interact with B? What are the energetics, kinetics, stoichiometry, and cooperativity of this interaction? To tackle this challenge, we use tunable nanoscale confinement to perform wide-field imaging of interacting DNA molecules in free solution, under an extended range of reagent concentrations and interaction rates. We present the integration of ``Convex Lens-induced Confinement (CLiC)'' microscopy with image correlation analysis, simultaneously suppressing background fluorescence and extending imaging times. The measured DNA-DNA interactions would be inaccessible to standard techniques but are important for developing a mechanistic understanding of life-preserving processes such as DNA transcription. NSERC.

  4. Novel linear piezoelectric motor for precision position stage

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Shi, Yunlai; Zhang, Jun; Wang, Junshan

    2016-03-01

    Conventional servomotor and stepping motor face challenges in nanometer positioning stages due to the complex structure, motion transformation mechanism, and slow dynamic response, especially directly driven by linear motor. A new butterfly-shaped linear piezoelectric motor for linear motion is presented. A two-degree precision position stage driven by the proposed linear ultrasonic motor possesses a simple and compact configuration, which makes the system obtain shorter driving chain. Firstly, the working principle of the linear ultrasonic motor is analyzed. The oscillation orbits of two driving feet on the stator are produced successively by using the anti-symmetric and symmetric vibration modes of the piezoelectric composite structure, and the slider pressed on the driving feet can be propelled twice in only one vibration cycle. Then with the derivation of the dynamic equation of the piezoelectric actuator and transient response model, start-upstart-up and settling state characteristics of the proposed linear actuator is investigated theoretically and experimentally, and is applicable to evaluate step resolution of the precision platform driven by the actuator. Moreover the structure of the two-degree position stage system is described and a special precision displacement measurement system is built. Finally, the characteristics of the two-degree position stage are studied. In the closed-loop condition the positioning accuracy of plus or minus <0.5 μm is experimentally obtained for the stage propelled by the piezoelectric motor. A precision position stage based the proposed butterfly-shaped linear piezoelectric is theoretically and experimentally investigated.

  5. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming.

    PubMed

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil; Park, Sang-Won

    2010-09-01

    The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block.

  6. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  7. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempien, John Dennis; Rice, Francine Joyce; Harp, Jason Michael

    2016-03-01

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of themore » rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite rings and fuel compacts). This equipment performed well for separating each capsule in the test train and extracting the capsule components. Only a few problems were encountered. In one case, the outermost ring (the sink ring) was cracked during removal of the capsule through tubes. Although the sink ring will be analyzed in order to obtain a mass balance of fission products in the experiment, these cracks do not pose a major concern because the sink ring will not be analyzed in detail to obtain the spatial distribution of fission products. In Capsules 4 and 5, the compacts could not be removed from the inner rings. Strategies for removing the compacts are being evaluated. Sampling the inner rings with the compacts in-place is also an option. Dimensional measurements were made on the compacts, inner rings, outer rings, and sink rings. The diameters of all compacts decreased by 0.5 to 2.0 %. Generally, the extent of diametric shrinkage increased linearly with increasing neutron fluence. Most compact lengths also decreased. Compact lengths decreased with increasing fluence, reaching maximum shrinkage of about 0.9 % at a fast fluence of 4.0x10 25 n/m 2 E > 0.18 MeV. Above this fluence, the extent of length shrinkage appeared to decrease with fluence, and two compacts from Capsule 7 were found to have slightly increased in length (< 0.1 %) after a fluence of 5.2x10 25 n/m 2.« less

  8. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stempien, John Dennis; Rice, Francine Joyce; Harp, Jason Michael

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of themore » rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite rings and fuel compacts). This equipment performed well for separating each capsule in the test train and extracting the capsule components. Only a few problems were encountered. In one case, the outermost ring (the sink ring) was cracked during removal of the capsule through tubes. Although the sink ring will be analyzed in order to obtain a mass balance of fission products in the experiment, these cracks do not pose a major concern because the sink ring will not be analyzed in detail to obtain the spatial distribution of fission products. In Capsules 4 and 5, the compacts could not be removed from the inner rings. Strategies for removing the compacts are being evaluated. Sampling the inner rings with the compacts in-place is also an option. Dimensional measurements were made on the compacts, inner rings, outer rings, and sink rings. The diameters of all compacts decreased by 0.5 to 2.0 %. Generally, the extent of diametric shrinkage increased linearly with increasing neutron fluence. Most compact lengths also decreased. Compact lengths decreased with increasing fluence, reaching maximum shrinkage of about 0.9 % at a fast fluence of 4.0x1025 n/m2 E > 0.18 MeV. Above this fluence, the extent of length shrinkage appeared to decrease with fluence, and two compacts from Capsule 7 were found to have slightly increased in length (< 0.1 %) after a fluence of 5.2x1025 n/m2.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  10. VizieR Online Data Catalog: Broadband polarisation of radio AGN (O'Sullivan+, 2017)

    NASA Astrophysics Data System (ADS)

    O'Sullivan, S. P.; Purcell, C. R.; Anderson, C. S.; Farnes, J. S.; Sun, X. H.; Gaensler, B. M.

    2017-08-01

    Linear polarisation data as a function of wavelength-squared for 100 extragalactic radio sources, selected to be highly polarised at 1.4GHz. The data presented here were obtained using the Australia Telescope Compact Array (ATCA) over 1.1-3.1GHz (16cm) with 1MHz spectral resolution between 2014 April 19-28. The integrated emission from each source, imaged at 10 MHz intervals, is presented below. See Section 2 for details. (2 data files).

  11. Miniature integrated-optical wavelength analyzer chip

    NASA Astrophysics Data System (ADS)

    Kunz, R. E.; Dübendorfer, J.

    1995-11-01

    A novel integrated-optical chip suitable for realizing compact miniature wavelength analyzers with high linear dispersion is presented. The chip performs the complete task of converting the spectrum of an input beam into a corresponding spatial irradiance distribution without the need for an imaging function. We demonstrate the feasibility of this approach experimentally by monitoring the changes in the mode spectrum of a laser diode on varying its case temperature. Comparing the results with simultaneous measurements by a commercial spectrometer yielded a rms wavelength deviation of 0.01 nm.

  12. Simulations of laser undulators

    NASA Astrophysics Data System (ADS)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  13. Proceedings of the 2009 Antenna Applications Symposium held in Monticello, Illinois on 22-24 September 2009. Volume 1

    DTIC Science & Technology

    2009-12-12

    Circuit Design, Theory and Applications. Prentice-Hall, 1 ed., 2000. 39 MEASUREMENT OF ELECTRICALLY SMALL ANTENNAS Suhail Barot, Paul E. Mayes, Paul ...2] “Ansoft HFSS, Version 9.2.1,” Ansoft Corporation, Pittsburgh, PA. 50 REDUCED-SIZE LINEAR ANTENNA ELEMENTS Paul E. Mayes, Paul W. Klock and...structures," IRE Internation convention, vol. 5, pp. 119-129, Mar 1957. [2] K. M. P. Aghdam, R. Faraji- Dana , and J. Rashed-Mohassel, "Compact dual

  14. Fast Exact Search in Hamming Space With Multi-Index Hashing.

    PubMed

    Norouzi, Mohammad; Punjani, Ali; Fleet, David J

    2014-06-01

    There is growing interest in representing image data and feature descriptors using compact binary codes for fast near neighbor search. Although binary codes are motivated by their use as direct indices (addresses) into a hash table, codes longer than 32 bits are not being used as such, as it was thought to be ineffective. We introduce a rigorous way to build multiple hash tables on binary code substrings that enables exact k-nearest neighbor search in Hamming space. The approach is storage efficient and straight-forward to implement. Theoretical analysis shows that the algorithm exhibits sub-linear run-time behavior for uniformly distributed codes. Empirical results show dramatic speedups over a linear scan baseline for datasets of up to one billion codes of 64, 128, or 256 bits.

  15. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    PubMed

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process.

  16. Metric Learning for Hyperspectral Image Segmentation

    NASA Technical Reports Server (NTRS)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  17. Exploring Short Linear Motifs Using the ELM Database and Tools.

    PubMed

    Gouw, Marc; Sámano-Sánchez, Hugo; Van Roey, Kim; Diella, Francesca; Gibson, Toby J; Dinkel, Holger

    2017-06-27

    The Eukaryotic Linear Motif (ELM) resource is dedicated to the characterization and prediction of short linear motifs (SLiMs). SLiMs are compact, degenerate peptide segments found in many proteins and essential to almost all cellular processes. However, despite their abundance, SLiMs remain largely uncharacterized. The ELM database is a collection of manually annotated SLiM instances curated from experimental literature. In this article we illustrate how to browse and search the database for curated SLiM data, and cover the different types of data integrated in the resource. We also cover how to use this resource in order to predict SLiMs in known as well as novel proteins, and how to interpret the results generated by the ELM prediction pipeline. The ELM database is a very rich resource, and in the following protocols we give helpful examples to demonstrate how this knowledge can be used to improve your own research. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Symmetry operators and decoupled equations for linear fields on black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2017-02-01

    In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2  +  2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.

  19. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  20. Novel permanent magnet linear motor with isolated movers: analytical, numerical and experimental study.

    PubMed

    Yan, Liang; Peng, Juanjuan; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-01

    This paper proposes a novel permanent magnet linear motor possessing two movers and one stator. The two movers are isolated and can interact with the stator poles to generate independent forces and motions. Compared with conventional multiple motor driving system, it helps to increase the system compactness, and thus improve the power density and working efficiency. The magnetic field distribution is obtained by using equivalent magnetic circuit method. Following that, the formulation of force output considering armature reaction is carried out. Then inductances are analyzed with finite element method to investigate the relationships of the two movers. It is found that the mutual-inductances are nearly equal to zero, and thus the interaction between the two movers is negligible. A research prototype of the linear motor and a measurement apparatus on thrust force have been developed. Both numerical computation and experiment measurement are conducted to validate the analytical model of thrust force. Comparison shows that the analytical model matches the numerical and experimental results well.

  1. Evaluating Mass Analyzers as Candidates for Small, Portable, Rugged Single Point Mass Spectrometers for Analysis of Permanent Gases

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Ottens, Andrew K.; Diaz, Jorge A.; Griffin, Timothy P.; Follestein, Duke; Adams, Fredrick; Steinrock, T. (Technical Monitor)

    2001-01-01

    For Space Shuttle launch safety, there is a need to monitor the concentration Of H2, He, O2, and Ar around the launch vehicle. Currently a large mass spectrometry system performs this task, using long transport lines to draw in samples. There is great interest in replacing this stationary system with several miniature, portable, rugged mass spectrometers which act as point sensors which can be placed at the sampling point. Five commercial and two non-commercial analyzers are evaluated. The five commercial systems include the Leybold Inficon XPR-2 linear quadrupole, the Stanford Research (SRS-100) linear quadrupole, the Ferran linear quadrupole array, the ThermoQuest Polaris-Q quadrupole ion trap, and the IonWerks Time-of-Flight (TOF). The non-commercial systems include a compact double focusing sector (CDFMS) developed at the University of Minnesota, and a quadrupole ion trap (UF-IT) developed at the University of Florida.

  2. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  3. Ultra compact spectrometer using linear variable filters

    NASA Astrophysics Data System (ADS)

    Dami, M.; De Vidi, R.; Aroldi, G.; Belli, F.; Chicarella, L.; Piegari, A.; Sytchkova, A.; Bulir, J.; Lemarquis, F.; Lequime, M.; Abel Tibérini, L.; Harnisch, B.

    2017-11-01

    The Linearly Variable Filters (LVF) are complex optical devices that, integrated in a CCD, can realize a "single chip spectrometer". In the framework of an ESA Study, a team of industries and institutes led by SELEX-Galileo explored the design principles and manufacturing techniques, realizing and characterizing LVF samples based both on All-Dielectric (AD) and Metal-Dielectric (MD) Coating Structures in the VNIR and SWIR spectral ranges. In particular the achieved performances on spectral gradient, transmission bandwidth and Spectral Attenuation (SA) are presented and critically discussed. Potential improvements will be highlighted. In addition the results of a feasibility study of a SWIR Linear Variable Filter are presented with the comparison of design prediction and measured performances. Finally criticalities related to the filter-CCD packaging are discussed. The main achievements reached during these activities have been: - to evaluate by design, manufacturing and test of LVF samples the achievable performances compared with target requirements; - to evaluate the reliability of the projects by analyzing their repeatability; - to define suitable measurement methodologies

  4. Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation.

    PubMed

    Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V

    2012-06-01

    Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

  5. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  6. Completely monolithic linearly polarized high-power fiber laser oscillator

    NASA Astrophysics Data System (ADS)

    Belke, Steffen; Becker, Frank; Neumann, Benjamin; Ruppik, Stefan; Hefter, Ulrich

    2014-03-01

    We have demonstrated a linearly polarized cw all-in-fiber oscillator providing 1 kW of output power and a polarization extinction ratio (PER) of up to 21.7 dB. The design of the laser oscillator is simple and consists of an Ytterbium-doped polarization maintaining large mode area (PLMA) fiber and suitable fiber Bragg gratings (FBG) in matching PLMA fibers. The oscillator has nearly diffraction-limited beam quality (M² < 1.2). Pump power is delivered via a high power 6+1:1 pump coupler. The slope efficiency of the laser is 75 %. The electro/optical efficiency of the complete laser system is ~30 % and hence in the range of Rofin's cw non-polarized fiber lasers. Choosing an adequate bending diameter for the Yb-doped PLMA fiber, one polarization mode as well as higher order modes are sufficiently supressed1. Resulting in a compact and robust linearly polarized high power single mode laser without external polarizing components. Linearly polarized lasers are well established for one dimensional cutting or welding applications. Using beam shaping optics radially polarized laser light can be generated to be independent from the angle of incident to the processing surface. Furthermore, high power linearly polarized laser light is fundamental for nonlinear frequency conversion of nonlinear materials.

  7. Probabilistic measurement of non-physical constructs during early childhood: Epistemological implications for advancing psychosocial science

    NASA Astrophysics Data System (ADS)

    Bezruczko, N.; Fatani, S. S.

    2010-07-01

    Social researchers commonly compute ordinal raw scores and ratings to quantify human aptitudes, attitudes, and abilities but without a clear understanding of their limitations for scientific knowledge. In this research, common ordinal measures were compared to higher order linear (equal interval) scale measures to clarify implications for objectivity, precision, ontological coherence, and meaningfulness. Raw score gains, residualized raw gains, and linear gains calculated with a Rasch model were compared between Time 1 and Time 2 for observations from two early childhood learning assessments. Comparisons show major inconsistencies between ratings and linear gains. When gain distribution was dense, relatively compact, and initial status near item mid-range, linear measures and ratings were indistinguishable. When Time 1 status was distributed more broadly and magnitude of change variable, ratings were unrelated to linear gain, which emphasizes problematic implications of ordinal measures. Surprisingly, residualized gain scores did not significantly improve ordinal measurement of change. In general, raw scores and ratings may be meaningful in specific samples to establish order and high/low rank, but raw score differences suffer from non-uniform units. Even meaningfulness of sample comparisons, as well as derived proportions and percentages, are seriously affected by rank order distortions and should be avoided.

  8. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    PubMed

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  9. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal micro-resonators

    NASA Astrophysics Data System (ADS)

    Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.

    2017-09-01

    Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.

  10. Compact diode-pumped continuous-wave and passively Q-switched Nd:GYSO laser at 1.07 μm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Huang, Xiaoxu; Lan, Jinglong; Cui, Shengwei; Wang, Yi; Xu, Bin; Luo, Zhengqian; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Xiaoyan; Wang, Jun; Xu, Jun

    2016-08-01

    We report diode-pumped continuous-wave (CW) and Q-switched Nd:GYSO lasers using a compact two-mirror linear laser cavity. Single-wavelength laser emissions at 1074.11 nm with 4.1-W power and at 1058.27 nm with 1.47-W power have been obtained in CW mode. The slope efficiencies with respect to the absorbed pump powers are 48.5% and 22.9%, respectively. Wavelength tunability is also demonstrated with range of about 8 nm. Using a MoS2 saturable absorber, maximum average output power up to 410 mW at 1074 nm can be yielded with absorbed pump power 6.41 W and the maximum pulse energy reaches 1.20 μJ with pulse repetition rate of 342.5 kHz and shortest pulse width of 810 ns. The CW laser results represent the best laser performance and the Q-switching also present the highest output power for Q-switched Nd3+ lasers with MoS2 as saturable absorber.

  11. Rational solutions of CYBE for simple compact real Lie algebras

    NASA Astrophysics Data System (ADS)

    Pop, Iulia; Stolin, Alexander

    2007-04-01

    In [A.A. Stolin, On rational solutions of Yang-Baxter equation for sl(n), Math. Scand. 69 (1991) 57-80; A.A. Stolin, On rational solutions of Yang-Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533-548; A. Stolin, A geometrical approach to rational solutions of the classical Yang-Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.), Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347-357] a theory of rational solutions of the classical Yang-Baxter equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We prove that up to gauge equivalence all rational solutions have the form X(u,v)={Ω}/{u-v}+t1∧t2+⋯+t∧t2n, where Ω denotes the quadratic Casimir element of g and {ti} are linearly independent elements in a maximal torus t of g. The quantization of these solutions is also emphasized.

  12. A compact x-ray system for two-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  13. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    DOE PAGES

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; ...

    2014-10-10

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF« less

  14. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.« less

  15. A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Gasmi, Khaled

    2018-02-01

    An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm  ×  90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.

  16. Theoretical models for stellar X-ray polarization in compact objects

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1991-01-01

    Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.

  17. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR.

    PubMed

    Tres, Francesco; Coombes, Steven R; Phillips, Andrew R; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C

    2015-09-10

    We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide). A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  18. Permanent magnets as biasing mechanism for improving the performance of circular dielectric elastomer out-of-plane actuators

    NASA Astrophysics Data System (ADS)

    Loew, P.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric Elastomers (DE) represent an attractive technology for the realization of mechatronic actuators, due to their lightweight, high energy density, high energy efficiency, scalability, and low noise features. In order to produce a stroke, a DE membrane needs to be pre-loaded with a mechanical biasing mechanism. In our previous works, we compared the stroke achieved with different biasing mechanisms for a circular out-of-plane DE Actuator (DEA), i.e., hanging masses, linear and bi-stable springs. The novel contribution of this paper is the investigation of a biasing design approach based on permanent magnets. The resulting magnet-based actuators are usually more compact than the spring-based ones, allowing to obtain more compact systems. Two design solutions are proposed and compared, namely a first one characterized by a stable actuation, and a second one which permits to achieve a higher stroke, but it is intrinsically unstable. The effectiveness of the novel design solution is assessed by means of several experiments.

  19. An overview of optical diagnostics developed for the Lockheed Martin compact fusion reactor

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Raymond, Anthony; Gucker, Sarah; Lockheed Martin Compact Fusion Reactor Team

    2017-10-01

    The T4B experiment is a linear, encapsulated ring cusp confinement device, designed to develop a physics and technology basis for a follow-on high beta machine as part of the compact fusion reactor program. Toward this end, a collection of non-invasive optical diagnostics have been developed to investigate confinement, neutral beam heating, and source behavior on the T4B device. These diagnostics include: (1) a multipoint Thomson scattering system employing a 532 nm Nd:YAG laser and high throughput spectrometer to measure 1D profiles of electron density and temperature, (2) a dispersion interferometer utilizing a continuous-wave CO2 laser (10.6 μm) to measure time resolved, line-integrated electron density, and (3) a bolometer suite utilizing four AXUV photodiodes with 64 lines of sight to generate 2D reconstructions of total radiative power and soft x-ray emission (via beryllium filters). An overview of design methods, including laser systems, detection schemes, and data analysis techniques is presented as well as results to date.

  20. Laboratory Characterization of Cemented Rock Fill for Underhand Cut and Fill Method of Mining

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Singh, Upendra Kumar; Singh, Gauri Shankar Prasad

    2016-10-01

    Backfilling with controlled specifications is employed for improved ground support and pillar recovery in underground metalliferous mine workings. This paper reports the results of a laboratory study to characterise various mechanical properties of cemented rock fill (CRF) formulations for different compaction levels and cement content percentage for use in underhand cut and fill method of mining. Laboratory test set ups and procedures have been described for conducting compressive and bending tests of CRF block samples. A three dimensional numerical modelling study has also been carried out to overcome the limitations arising due to non-standard dimension of test blocks used in flexural loading test and the test setup devised for this purpose. Based on these studies, specific relations have been established between the compressive and the flexural properties of the CRF. The flexural strength of the wire mesh reinforced CRF is also correlated with its residual strength and the Young's modulus of elasticity under flexural loading condition. The test results of flexural strength, residual flexural strength and modulus show almost linear relations with cement content in CRF. The compressive strength of the CRF block samples is estimated as seven times the flexural strength whereas the compressive modulus is four times the flexural modulus. It has been found that the strengths of CRF of low compaction and no compaction are 75 and 60 % respectively to that of the medium compaction CRF. The relation between the strength and the unit weight of CRF as obtained in this study is significantly important for design and quality control of CRF during its large scale application in underhand cut and fill stopes.

  1. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    NASA Astrophysics Data System (ADS)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  2. Optimal design of compact and connected nature reserves for multiple species.

    PubMed

    Wang, Yicheng; Önal, Hayri

    2016-04-01

    When designing a conservation reserve system for multiple species, spatial attributes of the reserves must be taken into account at species level. The existing optimal reserve design literature considers either one spatial attribute or when multiple attributes are considered the analysis is restricted only to one species. We built a linear integer programing model that incorporates compactness and connectivity of the landscape reserved for multiple species. The model identifies multiple reserves that each serve a subset of target species with a specified coverage probability threshold to ensure the species' long-term survival in the reserve, and each target species is covered (protected) with another probability threshold at the reserve system level. We modeled compactness by minimizing the total distance between selected sites and central sites, and we modeled connectivity of a selected site to its designated central site by selecting at least one of its adjacent sites that has a nearer distance to the central site. We considered structural distance and functional distances that incorporated site quality between sites. We tested the model using randomly generated data on 2 species, one ground species that required structural connectivity and the other an avian species that required functional connectivity. We applied the model to 10 bird species listed as endangered by the state of Illinois (U.S.A.). Spatial coherence and selection cost of the reserves differed substantially depending on the weights assigned to these 2 criteria. The model can be used to design a reserve system for multiple species, especially species whose habitats are far apart in which case multiple disjunct but compact and connected reserves are advantageous. The model can be modified to increase or decrease the distance between reserves to reduce or promote population connectivity. © 2015 Society for Conservation Biology.

  3. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting.

    PubMed

    Khorasani, Milad; Amigo, José M; Sun, Changquan Calvin; Bertelsen, Poul; Rantanen, Jukka

    2015-06-01

    In the present study the application of near-infrared chemical imaging (NIR-CI) supported by chemometric modeling as non-destructive tool for monitoring and assessing the roller compaction and tableting processes was investigated. Based on preliminary risk-assessment, discussion with experts and current work from the literature the critical process parameter (roll pressure and roll speed) and critical quality attributes (ribbon porosity, granule size, amount of fines, tablet tensile strength) were identified and a design space was established. Five experimental runs with different process settings were carried out which revealed intermediates (ribbons, granules) and final products (tablets) with different properties. Principal component analysis (PCA) based model of NIR images was applied to map the ribbon porosity distribution. The ribbon porosity distribution gained from the PCA based NIR-CI was used to develop predictive models for granule size fractions. Predictive methods with acceptable R(2) values could be used to predict the granule particle size. Partial least squares regression (PLS-R) based model of the NIR-CI was used to map and predict the chemical distribution and content of active compound for both roller compacted ribbons and corresponding tablets. In order to select the optimal process, setting the standard deviation of tablet tensile strength and tablet weight for each tablet batch was considered. Strong linear correlation between tablet tensile strength and amount of fines and granule size was established, respectively. These approaches are considered to have a potentially large impact on quality monitoring and control of continuously operating manufacturing lines, such as roller compaction and tableting processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. "Compacted" procedures for adults' simple addition: A review and critique of the evidence.

    PubMed

    Chen, Yalin; Campbell, Jamie I D

    2018-04-01

    We review recent empirical findings and arguments proffered as evidence that educated adults solve elementary addition problems (3 + 2, 4 + 1) using so-called compacted procedures (e.g., unconscious, automatic counting); a conclusion that could have significant pedagogical implications. We begin with the large-sample experiment reported by Uittenhove, Thevenot and Barrouillet (2016, Cognition, 146, 289-303), which tested 90 adults on the 81 single-digit addition problems from 1 + 1 to 9 + 9. They identified the 12 very-small addition problems with different operands both ≤ 4 (e.g., 4 + 3) as a distinct subgroup of problems solved by unconscious, automatic counting: These items yielded a near-perfectly linear increase in answer response time (RT) yoked to the sum of the operands. Using the data reported in the article, however, we show that there are clear violations of the sum-counting model's predictions among the very-small addition problems, and that there is no real RT boundary associated with addends ≤4. Furthermore, we show that a well-known associative retrieval model of addition facts-the network interference theory (Campbell, 1995)-predicts the results observed for these problems with high precision. We also review the other types of evidence adduced for the compacted procedure theory of simple addition and conclude that these findings are unconvincing in their own right and only distantly consistent with automatic counting. We conclude that the cumulative evidence for fast compacted procedures for adults' simple addition does not justify revision of the long-standing assumption that direct memory retrieval is ultimately the most efficient process of simple addition for nonzero problems, let alone sufficient to recommend significant changes to basic addition pedagogy.

  6. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  7. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    DOE PAGES

    Persaud, A.; Ji, Q.; Feinberg, E.; ...

    2017-06-08

    Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less

  8. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  9. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    PubMed

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  10. 3rd-generation MW/LWIR sensor engine for advanced tactical systems

    NASA Astrophysics Data System (ADS)

    King, Donald F.; Graham, Jason S.; Kennedy, Adam M.; Mullins, Richard N.; McQuitty, Jeffrey C.; Radford, William A.; Kostrzewa, Thomas J.; Patten, Elizabeth A.; McEwan, Thomas F.; Vodicka, James G.; Wootan, John J.

    2008-04-01

    Raytheon has developed a 3rd-Generation FLIR Sensor Engine (3GFSE) for advanced U.S. Army systems. The sensor engine is based around a compact, productized detector-dewar assembly incorporating a 640 x 480 staring dual-band (MW/LWIR) focal plane array (FPA) and a dual-aperture coldshield mechanism. The capability to switch the coldshield aperture and operate at either of two widely-varying f/#s will enable future multi-mode tactical systems to more fully exploit the many operational advantages offered by dual-band FPAs. RVS has previously demonstrated high-performance dual-band MW/LWIR FPAs in 640 x 480 and 1280 x 720 formats with 20 μm pitch. The 3GFSE includes compact electronics that operate the dual-band FPA and variable-aperture mechanism, and perform 14-bit analog-to-digital conversion of the FPA output video. Digital signal processing electronics perform "fixed" two-point non-uniformity correction (NUC) of the video from both bands and optional dynamic scene-based NUC; advanced enhancement processing of the output video is also supported. The dewar-electronics assembly measures approximately 4.75 x 2.25 x 1.75 inches. A compact, high-performance linear cooler and cooler electronics module provide the necessary FPA cooling over a military environmental temperature range. 3GFSE units are currently being assembled and integrated at RVS, with the first units planned for delivery to the US Army.

  11. Self-Deploying Trusses Containing Shape-Memory Polymers

    NASA Technical Reports Server (NTRS)

    Schueler, Robert M.

    2008-01-01

    Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).

  12. Thermal infrared spectral analysis of compacted fine-grained mineral mixtures: implications for spectral interpretation of lithified sedimentary materials on Mars

    NASA Astrophysics Data System (ADS)

    Pan, C.; Rogers, D.

    2012-12-01

    Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of <10 micron mineral mixtures to 1) assess linearity of spectral combinations, 2) determine whether there are consistent over- or under-estimations of different types of minerals in spectral models and 3) determine if model accuracy can be improved by including both fine- and coarse-grained end-members. Major primary and secondary minerals found on the Martian surface including feldspar, pyroxene, smectite, sulfate and carbonate were crushed with an agate mortar and pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through optically thin grains in the compacted mixture. Inclusion of loose powder (<10 μm) sample spectra improves mineral abundance estimates for some mixtures. In general, mineral abundances are predicted to within +/- 10% (absolute) for approximately 60% of our samples; thus far, there are no clear trends in which cases produce better model results. With the exception of pyroxene/feldspar ratios being consistently overestimated, there are no consistent trends in over- or under-estimation of minerals. The results described here are based on the unsubstantiated assumption that areal abundance on the pellet surface is equal to the volume abundance. Thus future work will include micro-imaging of our samples to constrain areal abundance. We will also prepareclay mixtures using a wetting/drying sequence rather than pressure, and expand our set of samples to include additional mixture combinations to further characterize the spectral behavior of compacted mixtures. This work will be directly applicable to analysis of TES and Mini-TES data of lithified sedimentary deposits.

  13. Power electromagnetic strike machine for engineering-geological surveys

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.

    2017-10-01

    When implementing the processes of dynamic sensing of soils and pulsed nonexplosive seismic exploration, the most common and effective method is the strike one, which is provided by a variety of structure and parameters of pneumatic, hydraulic, electrical machines of strike action. The creation of compact portable strike machines which do not require transportation and use of mechanized means is important. A promising direction in the development of strike machines is the use of pulsed electromagnetic actuator characterized by relatively low energy consumption, relatively high specific performance and efficiency, and providing direct conversion of electrical energy into mechanical work of strike mass with linear movement trajectory. The results of these studies allowed establishing on the basis of linear electromagnetic motors the electromagnetic pulse machines with portable performance for dynamic sensing of soils and land seismic pulse of small depths.

  14. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Arenas, Gustavo; Noriega, Sergio; Vallo, Claudia; Duchowicz, Ricardo

    2007-03-01

    A fiber optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring linear polymerization shrinkage in dental restoratives. This technique offers several advantages over the conventional methods of measuring polymerization contraction. This simple, compact, non-invasive and self-calibrating system competes with both conventional and other high-resolution bulk interferometric techniques. In this work, an analysis of the quality of interference signal and fringes visibility was performed in order to characterize their resolution and application range. The measurements of percent linear contraction as a function of the sample thickness were carried out in this study on two dental composites: Filtek P60 (3M ESPE) Posterior Restorer and Filtek Z250 (3M ESPE) Universal Restorer. The results were discussed with respect to others obtained employing alternative techniques.

  15. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.

    PubMed

    Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You

    2013-11-04

    A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.

  16. G-sequentially connectedness for topological groups with operations

    NASA Astrophysics Data System (ADS)

    Mucuk, Osman; Cakalli, Huseyin

    2016-08-01

    It is a well-known fact that for a Hausdorff topological group X, the limits of convergent sequences in X define a function denoted by lim from the set of all convergent sequences in X to X. This notion has been modified by Connor and Grosse-Erdmann for real functions by replacing lim with an arbitrary linear functional G defined on a linear subspace of the vector space of all real sequences. Recently some authors have extended the concept to the topological group setting and introduced the concepts of G-sequential continuity, G-sequential compactness and G-sequential connectedness. In this work, we present some results about G-sequentially closures, G-sequentially connectedness and fundamental system of G-sequentially open neighbourhoods for topological group with operations which include topological groups, topological rings without identity, R-modules, Lie algebras, Jordan algebras, and many others.

  17. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Tuito, A.

    2017-02-01

    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  18. Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowes, Ted

    Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number ofmore » fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The fraction of total SSL luminaire cost made up by the LEDs themselves has steadily fallen over the past several years, but can still make up 30% or more of the bill of materials; the new LED design will radically lower this proportion. Ultra-compact, highly efficient LEDs with optimal distribution in the system will further benefit luminaire materials and assembly costs by reducing the complexity and volume of thermal management and optical subsystems.« less

  19. Intelligent Controller for a Compact Wide-Band Compositional Infrared Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Yiu, P.; Keymeulen, D.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.

    2013-12-01

    This paper presents the design and integration of an intelligent controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device that is intrinsically radiation-hard, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 μm) on planetary exploration missions. A traditional Michelson FTS passes a monochromatic light source (incident light from the sample) through a system of refractors/mirrors followed by a mirror moving linearly in the plane of the incident light. This process selectively blocks certain wavelengths and permits measurement of the sample's absorption rates as a function of the wavelengths blocked to produce an 'inteferogram.' This is subsequently processed using a Fourier transform to obtain the sample's spectrum and ascertain the sample's composition. With our prototype CIRIS instrument in development at Design and Prototype Inc. and NASA-JPL, we propose the use of a rotating refractor spinning at a constant velocity to variably phase shift incident light to the detector as an alternative to a linearly moving mirror. This design eliminates sensitivity to vibrations, minimizing path length and non-linear errors due to minor perturbations to the system, in addition to facilitating compact design critical to meeting the strict volume requirements of spacecraft. Further, this is done without sacrificing spectral resolution or throughput when compared to Michelson or diffractive designs. While Michelson designs typically achieve very high wavelength resolution, the intended application of our instrument (spectroscopic investigation of Europa's surface) places higher emphasis on the greater wavelength band sensitivity in the 2-12 μm range provided by a rotating refractor design. The instrument's embedded microcontroller is implemented on a flight-qualified VIRTEX-5 FPGA with the aim of sampling the instrument's detector and optical rotary encoder in order to construct an interferogram. Subsequent signal processing, including a Fast Fourier Transform (FFT), noise reduction/averaging, and spectral calibration techniques are applied in real-time to compose the sample spectrum. Deployment of an FPGA eliminates the instrument's need to share computing resources with the main spacecraft computer and takes advantage of the low power consumption and high-throughput hardware parallelism intrinsic to FPGA applications. This parallelism facilitates the high speed, low latency sampling/signal processing critical to instrument precision with minimal power consumption to achieve highly sensitive spectra within the constraints of available spacecraft resources. The instrument is characterized in simulated space-flight conditions and we demonstrate that this technology is capable of meeting the strict volume, sensitivity, and power consumption requirements for implementation in scientific space systems.

  20. A superlinear convergence estimate for an iterative method for the biharmonic equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, M.A.

    In [CDH] a method for the solution of boundary value problems for the biharmonic equation using conformal mapping was investigated. The method is an implementation of the classical method of Muskhelishvili. In [CDH] it was shown, using the Hankel structure, that the linear system in [Musk] is the discretization of the identify plus a compact operator, and therefore the conjugate gradient method will converge superlinearly. The purpose of this paper is to give an estimate of the superlinear convergence in the case when the boundary curve is in a Hoelder class.

Top