Sample records for climate analysis center

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Centers for Environmental Prediction Environmental Modeling Center NOAA Center for Weather and Climate

  2. National Centers for Environmental Prediction (NCEP)

    Science.gov Websites

    Tropical Marine Fire Weather Forecast Maps Unified Surface Analysis Climate Climate Prediction Climate forecasts of hazardous flight conditions at all levels within domestic and international air space. Climate Prediction Center monitors and forecasts short-term climate fluctuations and provides information on the

  3. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Products People GLOBAL CLIMATE & WEATHER MODELING Personnel Jordan Alpert Email Website Dave Behringer Prediction Environmental Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830

  4. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Contacts Change Log Events Calendar Numerical Forecast Systems NCEP Model Analysis and Guidance Page [< Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  5. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  6. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Environmental Prediction Environmental Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP

  7. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  8. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Environmental Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research

  9. Development of Distributed Research Center for analysis of regional climatic and environmental changes

    NASA Astrophysics Data System (ADS)

    Gordov, E.; Shiklomanov, A.; Okladnikov, I.; Prusevich, A.; Titov, A.

    2016-11-01

    We present an approach and first results of a collaborative project being carried out by a joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center UNH, USA. Its main objective is development of a hardware and software platform prototype of a Distributed Research Center (DRC) for monitoring and projecting of regional climatic and environmental changes in the Northern extratropical areas. The DRC should provide the specialists working in climate related sciences and decision-makers with accurate and detailed climatic characteristics for the selected area and reliable and affordable tools for their in-depth statistical analysis and studies of the effects of climate change. Within the framework of the project, new approaches to cloud processing and analysis of large geospatial datasets (big geospatial data) inherent to climate change studies are developed and deployed on technical platforms of both institutions. We discuss here the state of the art in this domain, describe web based information-computational systems developed by the partners, justify the methods chosen to reach the project goal, and briefly list the results obtained so far.

  10. Data near processing support for climate data analysis

    NASA Astrophysics Data System (ADS)

    Kindermann, Stephan; Ehbrecht, Carsten; Hempelmann, Nils

    2016-04-01

    Climate data repositories grow in size exponentially. Scalable data near processing capabilities are required to meet future data analysis requirements and to replace current "data download and process at home" workflows and approaches. On one hand side, these processing capabilities should be accessible via standardized interfaces (e.g. OGC WPS), on the other side a large variety of processing tools, toolboxes and deployment alternatives have to be supported and maintained at the data/processing center. We present a community approach of a modular and flexible system supporting the development, deployment and maintenace of OGC-WPS based web processing services. This approach is organized in an open source github project (called "bird-house") supporting individual processing services ("birds", e.g. climate index calculations, model data ensemble calculations), which rely on basic common infrastructural components (e.g. installation and deployment recipes, analysis code dependencies management). To support easy deployment at data centers as well as home institutes (e.g. for testing and development) the system supports the management of the often very complex package dependency chain of climate data analysis packages as well as docker based packaging and installation. We present a concrete deployment scenario at the German Climate Computing Center (DKRZ). The DKRZ one hand side hosts a multi-petabyte climate archive which is integrated e.g. into the european ENES and worldwide ESGF data infrastructure, and on the other hand hosts an HPC center supporting (model) data production and data analysis. The deployment scenario also includes openstack based data cloud services to support data import and data distribution for bird-house based WPS web processing services. Current challenges for inter-institutionnal deployments of web processing services supporting the european and international climate modeling community as well as the climate impact community are highlighted. Also aspects supporting future WPS based cross community usage scenarios supporting data reuse and data provenance aspects are reflected.

  11. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Weather Service National Centers for Environmental Prediction Environmental Modeling Center NOAA Center

  12. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Weather Service National Centers for Environmental Prediction Environmental Modeling Center NOAA Center

  13. Geo-climatic heterogeneity in self-reported asthma, allergic rhinitis and chronic bronchitis in Italy.

    PubMed

    Pesce, G; Bugiani, M; Marcon, A; Marchetti, P; Carosso, A; Accordini, S; Antonicelli, L; Cogliani, E; Pirina, P; Pocetta, G; Spinelli, F; Villani, S; de Marco, R

    2016-02-15

    Several studies highlighted a great variability, both between and within countries, in the prevalence of asthma and chronic airways diseases. To evaluate if geo-climatic variations can explain the heterogeneity in the prevalence of asthma and respiratory diseases in Italy. Between 2006 and 2010, a postal screening questionnaire on respiratory health was administered to 18,357 randomly selected subjects, aged 20-44, living in 7 centers in northern, central, and southern Italy. A random-effects meta-analysis was fitted to evaluate the between-centers heterogeneity in the prevalence of asthma, asthma-like symptoms, allergic rhinitis, and chronic bronchitis (CB). A principal component analysis (PCA) was performed to synthetize the geo-climatic information (annual mean temperature, range of temperature, annual rainfalls, global solar radiations, altitude, distance from the sea) of all the 110 Italian province capital towns. The associations between these geo-climatic components obtained with PCA and the prevalence of respiratory diseases were analyzed through meta-regression models. 10,464 (57%) subjects responded to the questionnaire. There was a significant between-centers heterogeneity in the prevalence of asthma (I(2)=59.5%, p=0.022) and CB (I(2)=60.5%, p=0.019), but not in that of asthma-like symptoms or allergic rhinitis. Two independent geo-climatic components explaining together about 80% of the overall geo-climatic variability were identified: the first principally summarized the climatic variables; the second the topographic ones. Variations in the prevalence of asthma across centers were significantly associated with differences in the climatic component (p=0.017), but not with differences in the topographic one. Our findings suggest that climate play a role in determining the between-center heterogeneity in the prevalence of asthma in Italy, with higher prevalence in dry-hot Mediterranean climates, and lower in rainy-cold northern climates. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / National Weather Service National Centers for Environmental Prediction Environmental Modeling Center NOAA

  15. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / National Weather Service National Centers for Environmental Prediction Environmental Modeling Center NOAA

  16. Network-based approaches to climate knowledge discovery

    NASA Astrophysics Data System (ADS)

    Budich, Reinhard; Nyberg, Per; Weigel, Tobias

    2011-11-01

    Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.

  17. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change,more » including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.« less

  18. NASA Center for Climate Simulation (NCCS) Presentation

    NASA Technical Reports Server (NTRS)

    Webster, William P.

    2012-01-01

    The NASA Center for Climate Simulation (NCCS) offers integrated supercomputing, visualization, and data interaction technologies to enhance NASA's weather and climate prediction capabilities. It serves hundreds of users at NASA Goddard Space Flight Center, as well as other NASA centers, laboratories, and universities across the US. Over the past year, NCCS has continued expanding its data-centric computing environment to meet the increasingly data-intensive challenges of climate science. We doubled our Discover supercomputer's peak performance to more than 800 teraflops by adding 7,680 Intel Xeon Sandy Bridge processor-cores and most recently 240 Intel Xeon Phi Many Integrated Core (MIG) co-processors. A supercomputing-class analysis system named Dali gives users rapid access to their data on Discover and high-performance software including the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT), with interfaces from user desktops and a 17- by 6-foot visualization wall. NCCS also is exploring highly efficient climate data services and management with a new MapReduce/Hadoop cluster while augmenting its data distribution to the science community. Using NCCS resources, NASA completed its modeling contributions to the Intergovernmental Panel on Climate Change (IPCG) Fifth Assessment Report this summer as part of the ongoing Coupled Modellntercomparison Project Phase 5 (CMIP5). Ensembles of simulations run on Discover reached back to the year 1000 to test model accuracy and projected climate change through the year 2300 based on four different scenarios of greenhouse gases, aerosols, and land use. The data resulting from several thousand IPCC/CMIP5 simulations, as well as a variety of other simulation, reanalysis, and observationdatasets, are available to scientists and decision makers through an enhanced NCCS Earth System Grid Federation Gateway. Worldwide downloads have totaled over 110 terabytes of data.

  19. National Centers for Environmental Prediction

    Science.gov Websites

    Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Products People GLOBAL CLIMATE & WEATHER MODELING Global Forecast System (GFS) products - Please see

  20. Evaluating Transient Global and Regional Model Simulations: Bridging the Model/Observations Information Gap

    NASA Astrophysics Data System (ADS)

    Rutledge, G. K.; Karl, T. R.; Easterling, D. R.; Buja, L.; Stouffer, R.; Alpert, J.

    2001-05-01

    A major transition in our ability to evaluate transient Global Climate Model (GCM) simulations is occurring. Real-time and retrospective numerical weather prediction analysis, model runs, climate simulations and assessments are proliferating from a handful of national centers to dozens of groups across the world. It is clear that it is no longer sufficient for any one national center to develop its data services alone. The comparison of transient GCM results with the observational climate record is difficult for several reasons. One limitation is that the global distributions of a number of basic climate quantities, such as precipitation, are not well known. Similarly, observational limitations exist with model re-analysis data. Both the NCEP/NCAR, and the ECMWF, re-analysis eliminate the problems of changing analysis systems but observational data also contain time-dependant biases. These changes in input data are blended with the natural variability making estimates of true variability uncertain. The need for data homogeneity is critical to study questions related to the ability to evaluate simulation of past climate. One approach to correct for time-dependant biases and data sparse regions is the development and use of high quality 'reference' data sets. The primary U.S. National responsibility for the archive and service of weather and climate data rests with the National Climatic Data Center (NCDC). However, as supercomputers increase the temporal and spatial resolution of both Numerical Weather Prediction (NWP) and GCM models, the volume and varied formats of data presented for archive at NCDC, using current communications technologies and data management techniques is limiting the scientific access of these data. To address this ever expanding need for climate and NWP information, NCDC along with the National Center's for Environmental Prediction (NCEP) have initiated the NOAA Operational Model Archive and Distribution System (NOMADS). NOMADS is a collaboration between the Center for Ocean-Land-Atmosphere studies (COLA); the Geophysical Fluid Dynamics Laboratory (GFDL); the George Mason University (GMU); the National Center for Atmospheric Research (NCAR); the NCDC; NCEP; the Pacific Marine Environmental Laboratory (PMEL); and the University of Washington. The objective of the NOMADS is to preserve and provide retrospective access to GCM's and reference quality long-term observational and high volume three dimensional data as well as NCEP NWP models and re-start and re-analysis information. The creation of the NOMADS features a data distribution, format independent, methodology enabling scientific collaboration between researchers. The NOMADS configuration will allow a researcher to transparently browse, extract and intercompare retrospective observational and model data products from any of the participating centers. NOMADS will provide the ability to easily initialize and compare the results of ongoing climate model assessments and NWP output. Beyond the ingest and access capability soon to be implemented with NOMADS is the challenge of algorithm development for the inter-comparison of large-array data (e.g., satellite and radar) with surface, upper-air, and sub-surface ocean observational data. The implementation of NOMADS should foster the development of new quality control processes by taking advantage of distributed data access.

  1. Overview of Climate Confluence Security Issues

    NASA Astrophysics Data System (ADS)

    Reisman, J. P.

    2011-12-01

    Presentation will focus on an overview of the security perspectives based on the confluence considerations including energy, economics and climate change. This will include perspectives from reports generated by the Quadrennial Defense Review, Joint Forces Command, the Center for Strategic International Studies, MIT, the Inter-agency Climate Change Adaptation Task Force, the Central Intelligence Agency, the Center for Naval Analysis, and other relevant reports. The presentation will highlight the connections between resource issues and climate change which can be interpreted into security concerns. General discussion of global issues, contextual review of AR4 WGII may be included and any other report updates as applicable. The purpose of this presentation is to give a rounded view of the general qualitative and quantitative perspectives regarding climate related security considerations.

  2. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post streamline the interaction of analysis, forecast, and post-processing systems within NCEP. The NEMS Force, and will eventually provide support to the community through the Developmental Test Center (DTC

  3. PAVICS: A Platform for the Analysis and Visualization of Climate Science

    NASA Astrophysics Data System (ADS)

    Gauvin St-Denis, B.; Landry, T.; Huard, D. B.; Byrns, D.; Chaumont, D.; Foucher, S.

    2016-12-01

    Climate service providers are boundary organizations working at the interface of climate science research and users of climate information. Users include academics in other disciplines looking for credible, customized future climate scenarios, government planners, resource managers, asset owners, as well as service utilities. These users are looking for relevant information regarding the impacts of climate change as well as informing decisions regarding adaptation options. As climate change concerns become mainstream, the pressure on climate service providers to deliver tailored, high quality information in a timely manner increases rapidly. To meet this growing demand, Ouranos, a climate service center located in Montreal, is collaborating with the Centre de recherche informatique de Montreal (CRIM) to develop a climate data analysis web-based platform interacting with RESTful services covering data access and retrieval, geospatial analysis, bias correction, distributed climate indicator computing and results visualization. The project, financed by CANARIE, relies on the experience of the UV-CDAT and ESGF-CWT teams, as well as on the Birdhouse framework developed by the German Climate Research Center (DKRZ) and French IPSL. Climate data is accessed through OPEnDAP, while computations are carried through WPS. Regions such as watersheds or user-defined polygons, used as spatial selections for computations, are managed by GeoServer, also providing WMS, WFS and WPS capabilities. The services are hosted on independent servers communicating by high throughput network. Deployment, maintenance and collaboration with other development teams are eased by the use of Docker and OpenStack VMs. Web-based tools are developed with modern web frameworks such as React-Redux, OpenLayers 3, Cesium and Plotly. Although the main objective of the project is to build a functioning, usable data analysis pipeline within two years, time is also devoted to explore emerging technologies and assess their potential. For instance, sandbox environments will store climate data in HDFS, process it with Apache Spark and allow interaction through Jupyter Notebooks. Data streaming of observational data with OpenGL and Cesium is also considered.

  4. Measuring Workplace Climate in Community Clinics and Health Centers.

    PubMed

    Friedberg, Mark W; Rodriguez, Hector P; Martsolf, Grant R; Edelen, Maria O; Vargas Bustamante, Arturo

    2016-10-01

    The effectiveness of community clinics and health centers' efforts to improve the quality of care might be modified by clinics' workplace climates. Several surveys to measure workplace climate exist, but their relationships to each other and to distinguishable dimensions of workplace climate are unknown. To assess the psychometric properties of a survey instrument combining items from several existing surveys of workplace climate and to generate a shorter instrument for future use. We fielded a 106-item survey, which included items from 9 existing instruments, to all clinicians and staff members (n=781) working in 30 California community clinics and health centers, receiving 628 responses (80% response rate). We performed exploratory factor analysis of survey responses, followed by confirmatory factor analysis of 200 reserved survey responses. We generated a new, shorter survey instrument of items with strong factor loadings. Six factors, including 44 survey items, emerged from the exploratory analysis. Two factors (Clinic Workload and Teamwork) were independent from the others. The remaining 4 factors (staff relationships, quality improvement orientation, managerial readiness for change, and staff readiness for change) were highly correlated, indicating that these represented dimensions of a higher-order factor we called "Clinic Functionality." This 2-level, 6-factor model fit the data well in the exploratory and confirmatory samples. For all but 1 factor, fewer than 20 survey responses were needed to achieve clinic-level reliability >0.7. Survey instruments designed to measure workplace climate have substantial overlap. The relatively parsimonious item set we identified might help target and tailor clinics' quality improvement efforts.

  5. Distributed Research Center for Analysis of Regional Climatic Changes and Their Impacts on Environment

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Okladnikov, I.; Gordov, E. P.; Proussevitch, A. A.; Titov, A. G.

    2016-12-01

    Presented is a collaborative project carrying out by joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center, University of New Hampshire, USA. Its main objective is development of a hardware and software prototype of Distributed Research Center (DRC) for monitoring and projecting of regional climatic and and their impacts on the environment over the Northern extratropical areas. In the framework of the project new approaches to "cloud" processing and analysis of large geospatial datasets (big geospatial data) are being developed. It will be deployed on technical platforms of both institutions and applied in research of climate change and its consequences. Datasets available at NCEI and IMCES include multidimensional arrays of climatic, environmental, demographic, and socio-economic characteristics. The project is aimed at solving several major research and engineering tasks: 1) structure analysis of huge heterogeneous climate and environmental geospatial datasets used in the project, their preprocessing and unification; 2) development of a new distributed storage and processing model based on a "shared nothing" paradigm; 3) development of a dedicated database of metadata describing geospatial datasets used in the project; 4) development of a dedicated geoportal and a high-end graphical frontend providing intuitive user interface, internet-accessible online tools for analysis of geospatial data and web services for interoperability with other geoprocessing software packages. DRC will operate as a single access point to distributed archives of spatial data and online tools for their processing. Flexible modular computational engine running verified data processing routines will provide solid results of geospatial data analysis. "Cloud" data analysis and visualization approach will guarantee access to the DRC online tools and data from all over the world. Additionally, exporting of data processing results through WMS and WFS services will be used to provide their interoperability. Financial support of this activity by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) and by the Iola Hubbard Climate Change Endowment is acknowledged.

  6. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most recent CMIP5 global climate model data output.

  7. Climate Prediction Center

    Science.gov Websites

    Climate Stratosphere Pacific Islands International Desks Climate.gov Climate Test Bed (CTB) JAWF USAID FEWS-NET NWS / NCEP Aviation Weather Center Climate Prediction Center Environmental Modeling Center non-operational server hosts the redesigned web pages developed, thus far, as part of the Climate

  8. Bethany Speer | NREL

    Science.gov Websites

    Strategic Energy Analysis Center. Areas of Expertise International economic policy Climate change mitigation Markets Climate change mitigation policies Education M.A. in global finance, trade and economic Keyser, Suzanne Tegen. 2016. Floating Offshore Wind in California: Gross Potential for Jobs and Economic

  9. Climate Prediction Center - Outlooks: Current UV Index Forecast Map

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Service NOAA Center for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Page Author: Climate Prediction Center Internet Team Disclaimer

  10. Exploring and Analyzing Climate Variations Online by Using MERRA-2 data at GES DISC

    NASA Astrophysics Data System (ADS)

    Shen, S.; Ostrenga, D.; Vollmer, B.; Kempler, S.

    2016-12-01

    NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) (http://giovanni.sci.gsfc.nasa.gov/giovanni/) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Recently, long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, and preprocessing the data. Example data include climate reanalysis from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS) which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM) which assimilates data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.

  11. Exploring and Analyzing Climate Variations Online by Using NASA MERRA-2 Data at GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Kempler, Steven J.

    2016-01-01

    NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) (http:giovanni.sci.gsfc.nasa.govgiovanni) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, preprocessing, and learning data. Example data include climate reanalysis data from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning in 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS), which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM), which provides data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.

  12. Report of the international workshop on quality control of monthly climate data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    The National Climatic Data Center (NCDC), the US Department of Energy`s Carbon Dioxide Information Analysis Center, and the World Meteorological Organization (WMO) cosponsored an international quality control workshop for monthly climate data, October 5--6, 1993, at NCDC. About 40 scientists from around the world participated. The purpose of the meeting was to discuss and compare various quality control methods and to draft recommendations concerning the most successful systems. The near-term goal to improve quality control of CLIMAT messages for the NCDC/WMO publication Monthly Climatic Data for the World was sucessfully met. An electronic bulletin board was established to post errorsmore » and corrections. Improved communications among Global Telecommunication System hubs will be implemented. Advanced quality control algorithms were discussed and improvements were suggested. Further data exchanges were arranged.« less

  13. National Centers for Environmental Prediction

    Science.gov Websites

    Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Model Configuration Collaborators Documentation and Code FAQ Operational Change Log Parallel Experiment

  14. Climate Change, Instability and a Full Spectrum Approach to Conflict Prevention in Africa

    DTIC Science & Technology

    2009-10-23

    commander to follow. 15. SUBJECT TERMS Climate Change, Global Warming , Security Cooperation, Stability, Instability, Stabilization, Security...note that global warming could also create similar impacts on resources.19 In modern times disputes over natural resources have erupted into conflict...16. Center for Naval Analysis, National Security and the Threat of Climate Change, 18. 17. Michael T. Klare, ― Global Warming Battlefields: How

  15. Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests

    NASA Astrophysics Data System (ADS)

    Ryker, S. J.

    2014-12-01

    The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on Ice, the Northeast's Consortium Retreat, the Northwest's Climate Science Boot Camp; the whole-network Early Career Climate Forum; the South Central Climate Science Center's Minority Internship; and a growing curriculum through Interior's National Conservation Training Center.

  16. Ciguatera Fish Poisoning and Climate Change: Analysis of National Poison Center Data in the United States, 2001–2011

    PubMed Central

    Strickland, Matthew J.; Hess, Jeremy J.

    2014-01-01

    Background: Warm sea surface temperatures (SSTs) are positively related to incidence of ciguatera fish poisoning (CFP). Increased severe storm frequency may create more habitat for ciguatoxic organisms. Although climate change could expand the endemic range of CFP, the relationship between CFP incidence and specific environmental conditions is unknown. Objectives: We estimated associations between monthly CFP incidence in the contiguous United States and SST and storm frequency in the Caribbean basin. Methods: We obtained information on 1,102 CFP-related calls to U.S. poison control centers during 2001–2011 from the National Poison Data System. We performed a time-series analysis using Poisson regression to relate monthly CFP call incidence to SST and tropical storms. We investigated associations across a range of plausible lag structures. Results: Results showed associations between monthly CFP calls and both warmer SSTs and increased tropical storm frequency. The SST variable with the strongest association linked current monthly CFP calls to the peak August SST of the previous year. The lag period with the strongest association for storms was 18 months. If climate change increases SST in the Caribbean 2.5–3.5°C over the coming century as projected, this model implies that CFP incidence in the United States is likely to increase 200–400%. Conclusions: Using CFP calls as a marker of CFP incidence, these results clarify associations between climate variability and CFP incidence and suggest that, all other things equal, climate change could increase the burden of CFP. These findings have implications for disease prediction, surveillance, and public health preparedness for climate change. Citation: Gingold DB, Strickland MJ, Hess JJ. 2014. Ciguatera fish poisoning and climate change: analysis of National Poison Center data in the United States, 2001–2011. Environ Health Perspect 122:580–586; http://dx.doi.org/10.1289/ehp.1307196 PMID:24618280

  17. Contributions of climate change to the boundary shifts in the farming-pastoral ecotone in northern China since 1970

    NASA Astrophysics Data System (ADS)

    Shi, W.; Liu, Y.; Shi, X.

    2017-12-01

    Critical transitions of farming-pastoral ecotone (FPE) boundaries can be affected by climate change and human activities, yet current studies have not adequately analyzed the spatially explicit contributions of climate change to FPE boundary shifts, particularly those in different regions and periods. In this study, we present a series of analyses at the point (gravity center analysis), line (boundary shifts detected using two methods) and area (spatial analysis) levels to quantify climate contributions at the 1 km scale in each ecological functional region during three study periods from the 1970s to the 2000s using climate and land use data. Both gravity center analysis and boundary shift detection reveal similar spatial patterns, with more extensive boundary shifts in the northeastern and southeastern parts of the FPE in northern China, especially during the 1970s-1980s and 1990s-2000s. Climate contributions in the X- and Y-coordinate directions and in the directions of transects along boundaries show that significant differences in climate contributions to FPE boundary shifts exist in different ecological regions during the three periods. Additionally, the results in different directions exhibit good agreement in most of the ecological functional regions during most of the periods. However, the contribution values in the directions of transects along the boundaries (with 1-17%) were always smaller than those in the X-and Y-coordinate directions (4-56%), which suggests that the analysis in the transect directions is more stable and reasonable. Thus, this approach provides an alternative method for detecting the climate contributions to boundary shifts associated with land use changes. Spatial analysis of the relationship between climate change and land use change in the context of FPE boundary shifts in northern China provides further evidence and explanation of the driving forces of climate change. Our findings suggest that an improved understanding of the quantitative contributions of climate change to the formation and transition of the FPE in northern China is essential for addressing current and future adaptation and mitigation measures and regional land use management.

  18. Guidelines for the air-sea interaction special study: An element of the NASA climate research program, JPL/SIO workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.

  19. Data management and analysis for the Earth System Grid

    NASA Astrophysics Data System (ADS)

    Williams, D. N.; Ananthakrishnan, R.; Bernholdt, D. E.; Bharathi, S.; Brown, D.; Chen, M.; Chervenak, A. L.; Cinquini, L.; Drach, R.; Foster, I. T.; Fox, P.; Hankin, S.; Henson, V. E.; Jones, P.; Middleton, D. E.; Schwidder, J.; Schweitzer, R.; Schuler, R.; Shoshani, A.; Siebenlist, F.; Sim, A.; Strand, W. G.; Wilhelmi, N.; Su, M.

    2008-07-01

    The international climate community is expected to generate hundreds of petabytes of simulation data within the next five to seven years. This data must be accessed and analyzed by thousands of analysts worldwide in order to provide accurate and timely estimates of the likely impact of climate change on physical, biological, and human systems. Climate change is thus not only a scientific challenge of the first order but also a major technological challenge. In order to address this technological challenge, the Earth System Grid Center for Enabling Technologies (ESG-CET) has been established within the U.S. Department of Energy's Scientific Discovery through Advanced Computing (SciDAC)-2 program, with support from the offices of Advanced Scientific Computing Research and Biological and Environmental Research. ESG-CET's mission is to provide climate researchers worldwide with access to the data, information, models, analysis tools, and computational capabilities required to make sense of enormous climate simulation datasets. Its specific goals are to (1) make data more useful to climate researchers by developing Grid technology that enhances data usability; (2) meet specific distributed database, data access, and data movement needs of national and international climate projects; (3) provide a universal and secure web-based data access portal for broad multi-model data collections; and (4) provide a wide-range of Grid-enabled climate data analysis tools and diagnostic methods to international climate centers and U.S. government agencies. Building on the successes of the previous Earth System Grid (ESG) project, which has enabled thousands of researchers to access tens of terabytes of data from a small number of ESG sites, ESG-CET is working to integrate a far larger number of distributed data providers, high-bandwidth wide-area networks, and remote computers in a highly collaborative problem-solving environment.

  20. Underlying influence of perception of management leadership on patient safety climate in healthcare organizations - A mediation analysis approach.

    PubMed

    Weng, Shao-Jen; Kim, Seung-Hwan; Wu, Chieh-Liang

    2017-02-01

    We aim to draw insights on how medical staff's perception of management leadership affects safety climate with key safety related dimensions-teamwork climate, job satisfaction and working conditions. A cross-sectional survey using Safety Attitude Questionnaire (SAQ) was performed in a medical center in Taichung City, Taiwan. The relationships among the dimensions in SAQ were then analyzed by structural equation modeling with a mediation analysis. 2205 physicians and nurses of the medical center participated in the survey. Because not all questions in the survey are suitable for entire hospital staff, only the valid responses (n = 1596, response rate of 72%) were extracted for analysis. Key measures are the direct and indirect effects of teamwork climate, job satisfaction, perception of management leadership, and working conditions on safety climate. Outcomes show that effect of perception of management leadership on safety climate is significant (standardized indirect effect of 0.892 with P-value 0.002) and fully mediated by other dimensions, where 66.9% is mediated through teamwork climate, 24.1% through working conditions and 9.0% through job satisfaction. Our findings point to the importance of management leadership and the mechanism of its influence on safety climate. To improve safety climate, the implication is that commitment by management on leading safety improvement needs to be demonstrated when it implements daily supportive actions for other safety dimensions. For future improvement, development of a management system that can facilitate two-way trust between management and staff over the long term is recommended. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Configuration Collaborators Documentation and Code FAQ Operational Change Log Parallel Experiment Change Log

  2. National Centers for Environmental Prediction

    Science.gov Websites

    Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Collaborators Documentation and Code FAQ Operational Change Log Parallel Experiment Change Log Contacts

  3. Studies of Day Care Center Climate and Its Effect on Children's Social and Emotional Behavior.

    ERIC Educational Resources Information Center

    Ekholm, Bodil; Hedin, Anna

    School climates at 12 day care centers in Sweden were compared to investigate effects of center climates on children's social and emotional behavior. Observations and interviews conducted at the day care centers revealed differences in center climates related to child-rearing patterns, patterns of interaction, the distribution of power, and in…

  4. National Climate Assessment - Land Data Assimilation System (NCA-LDAS) Data at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Jasinski, Michael; Mocko, David; Kempler, Steven

    2016-01-01

    As part of NASA's active participation in the Interagency National Climate Assessment (NCA) program, the Goddard Space Flight Center's Hydrological Sciences Laboratory (HSL) is supporting an Integrated Terrestrial Water Analysis, by using NASA's Land Information System (LIS) and Land Data Assimilation System (LDAS) capabilities. To maximize the benefit of the NCA-LDAS, on completion of planned model runs and uncertainty analysis, NASA will provide open access to all NCA-LDAS components, including input data, output fields, and indicator data, to other NCA-teams and the general public. The NCA-LDAS data will be archived at the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) and can be accessed via direct ftp, THREDDS, Mirador search and download, and Giovanni visualization and analysis system.

  5. Tribal engagement strategy of the South Central Climate Science Center, 2014

    USGS Publications Warehouse

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  6. Assessing Climate Vulnerabilities of Food Distribution Center Sites in Greater Boston and Their Regional Implications: Climate Adaptation Planning in Practice

    NASA Astrophysics Data System (ADS)

    Teferra, A.; Watson, C.; Douglas, E. M.

    2016-12-01

    The Metro Boston region, an area whose civic leaders have been at the forefront of climate resilience initiatives in recent years, is finalizing a flood vulnerability assessment of food distribution center sites located north of Boston, with the support of the University of Massachusetts Boston and the American Geophysical Union's Thriving Earth Exchange program. The community-scientist collaboration emerged because of the need for more local analyses of the area to inform climate resiliency policy and planning actions for the region. A significant amount of the metro region's food supply passes through two major distribution centers in the cities of Everett and Chelsea, just north of the Mystic River. The Metropolitan Area Planning Council (MAPC), on behalf of the Metro Boston Climate Preparedness Taskforce, is working with Chris Watson and Ellen Douglas of UMass Boston to build on existing analyses of the region's food system and climate vulnerabilities and to develop a report identifying flood risk exposure to the sites. The analysis brings in dynamic modeling techniques that incorporate storm surge and sea level rise projections under different climate scenarios, and aims to align methodologies with those of other regional analyses, such as Climate Ready Boston and the City of Cambridge's Vulnerability Assessment. The study is helping to inform MAPC's and the Metro Boston Climate Preparedness Taskforce's understanding of this critical food distribution infrastructure, illustrate the larger regional implications of climate impacts on food distribution in the Greater Boston area, and guide the development of site-specific strategies for addressing identified vulnerabilities.

  7. Hydrological responses to dynamically and statistically downscaled climate model output

    USGS Publications Warehouse

    Wilby, R.L.; Hay, L.E.; Gutowski, W.J.; Arritt, R.W.; Takle, E.S.; Pan, Z.; Leavesley, G.H.; Clark, M.P.

    2000-01-01

    Daily rainfall and surface temperature series were simulated for the Animas River basin, Colorado using dynamically and statistically downscaled output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis. A distributed hydrological model was then applied to the downscaled data. Relative to raw NCEP output, downscaled climate variables provided more realistic stimulations of basin scale hydrology. However, the results highlight the sensitivity of modeled processes to the choice of downscaling technique, and point to the need for caution when interpreting future hydrological scenarios.

  8. Indicators of climate change for the African continent derived from radiosondes

    NASA Astrophysics Data System (ADS)

    Añel, J. A.; Gimeno, L.; Tesouro, M.; de La Torre, L.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    Here we study the interannual variability of different parameters calculated from radiosonde data in the African continent. Data used in the analysis were a subset of the National Climatic Data Center Upper Air Digital Files of the National Oceanic and Atmospheric Administration (USA) (CARDS). This work show the climatic trends in the studied region during the period and from 1973 to 1998). Results show that radiosonde stations were useful for this analysis in the African continent. Main oscillations and the relationship with the Northern Annular Mode and El Niño-Southern Oscillation were also studied.

  9. MMAB FAQs

    Science.gov Websites

    Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact Us Website Weather Service NWS logo - Click to go to the NWS homepage Environmental Modeling Center Home News for Environmental Prediction Environmental Modeling Center W/NP 21, NCWCP 5830 Unversity Research

  10. Climate Prediction Center - Monitoring & Data: Seasonal ENSO Impacts on

    Science.gov Websites

    page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center , state and local government Web resources and services. HOME > Monitoring and Data > U.S. Climate and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland

  11. Geospatial Analysis Tool Kit for Regional Climate Datasets (GATOR) : An Open-source Tool to Compute Climate Statistic GIS Layers from Argonne Climate Modeling Results

    DTIC Science & Technology

    2017-08-01

    This large repository of climate model results for North America (Wang and Kotamarthi 2013, 2014, 2015) is stored in Network Common Data Form (NetCDF...Network Common Data Form (NetCDF). UCAR/Unidata Program Center, Boulder, CO. Available at: http://www.unidata.ucar.edu/software/netcdf. Accessed on 6/20...emissions diverge from each other regarding fossil fuel use, technology, and other socioeconomic factors. As a result, the estimated emissions for each of

  12. Childhood intermittent and persistent rhinitis prevalence and climate and vegetation: a global ecologic analysis.

    PubMed

    Fuertes, Elaine; Butland, Barbara K; Ross Anderson, H; Carlsten, Chris; Strachan, David P; Brauer, Michael

    2014-10-01

    The effect of climate change and its effects on vegetation growth, and consequently on rhinitis, are uncertain. To examine between- and within-country associations of climate measures and the normalized difference vegetation index with intermittent and persistent rhinitis symptoms in a global context. Questionnaire data from 6- to 7-year-olds and 13- to 14-year-olds were collected in phase 3 of the International Study of Asthma and Allergies in Childhood. Associations of intermittent (>1 symptom report but not for 2 consecutive months) and persistent (symptoms for ≥2 consecutive months) rhinitis symptom prevalences with temperature, precipitation, vapor pressure, and the normalized difference vegetation index were assessed in linear mixed-effects regression models adjusted for gross national income and population density. The mean difference in prevalence per 100 children (with 95% confidence intervals [CIs]) per interquartile range increase of exposure is reported. The country-level intermittent symptom prevalence was associated with several country-level climatic measures, including the country-level mean monthly temperature (6.09 °C; 95% CI, 2.06-10.11°C per 10.4 °C), precipitation (3.10 mm; 95% CI, 0.46-5.73 mm; per 67.0 mm), and vapor pressure (6.21 hPa; 95% CI, 2.17-10.24 hPa; per 10.4 hPa) among 13- to 14-year-olds (222 center in 94 countries). The center-level persistent symptom prevalence was positively associated with several center-level climatic measures. Associations with climate were also found for the 6- to 7-year-olds (132 center in 57 countries). Several between- and within-country spatial associations between climatic factors and intermittent and persistent rhinitis symptom prevalences were observed. These results provide suggestive evidence that climate (and future changes in climate) may influence rhinitis symptom prevalence. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Climate Leadership Awards Frequent Questions

    EPA Pesticide Factsheets

    Provides answers to frequently asked questions regarding the Climate Leadership Awards, sponsored by EPA's Center for Corporate Climate Leadership with co-sponsorship from the Center for Climate and Energy Solutions and The Climate Registry.

  14. Measuring Workplace Climate in Community Clinics and Health Centers

    PubMed Central

    Friedberg, Mark W.; Rodriguez, Hector P.; Martsolf, Grant; Edelen, Maria Orlando; Vargas-Bustamante, Arturo

    2018-01-01

    Background The effectiveness of community clinics and health centers’ efforts to improve the quality of care might be modified by clinics’ workplace climates. Several surveys to measure workplace climate exist, but their relationships to each other and to distinguishable dimensions of workplace climate are unknown. Objective To assess the psychometric properties of a survey instrument combining items from several existing surveys of workplace climate and to generate a shorter instrument for future use. Methods We fielded a 106-item survey, which included items from 9 existing instruments, to all clinicians and staff members (n=781) working in 30 California community clinics and health centers, receiving 628 responses (80% response rate). We performed exploratory factor analysis of survey responses, followed by confirmatory factor analysis of 200 reserved survey responses. We generated a new, shorter survey instrument of items with strong factor loadings. Results Six factors, including 44 survey items, emerged from the exploratory analysis. Two factors (Clinic Workload and Teamwork) were independent from the others. The remaining 4 factors (Staff Relationships, Quality Improvement Orientation, Managerial Readiness for Change, and Staff Readiness for Change) were highly correlated, indicating that these represented dimensions of a higher-order factor we called “Clinic Functionality.” This two-level, six-factor model fit the data well in the exploratory and confirmatory samples. For all but one factor, fewer than 20 survey responses were needed to achieve clinic-level reliability >0.7. Conclusion Survey instruments designed to measure workplace climate have substantial overlap. The relatively parsimonious item set we identified might help target and tailor clinics’ quality improvement efforts. PMID:27326549

  15. Climate Prediction Center - The ENSO Cycle

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > El Niño/La Niña > The ENSO Cycle ENSO Cycle Banner Climate for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College

  16. Climate change 101 : understanding and responding to global climate change

    DOT National Transportation Integrated Search

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  17. PAVICS: A platform for the Analysis and Visualization of Climate Science - adopting a workflow-based analysis method for dealing with a multitude of climate data sources

    NASA Astrophysics Data System (ADS)

    Gauvin St-Denis, B.; Landry, T.; Huard, D. B.; Byrns, D.; Chaumont, D.; Foucher, S.

    2017-12-01

    As the number of scientific studies and policy decisions requiring tailored climate information continues to increase, the demand for support from climate service centers to provide the latest information in the format most helpful for the end-user is also on the rise. Ouranos, being one such organization based in Montreal, has partnered with the Centre de recherche informatique de Montreal (CRIM) to develop a platform that will offer climate data products that have been identified as most useful for users through years of consultation. The platform is built as modular components that target the various requirements of climate data analysis. The data components host and catalog NetCDF data as well as geographical and political delimitations. The analysis components are made available as atomic operations through Web Processing Service (WPS) or as workflows, whereby the operations are chained through a simple JSON structure and executed on a distributed network of computing resources. The visualization components range from Web Map Service (WMS) to a complete frontend for searching the data, launching workflows and interacting with maps of the results. Each component can easily be deployed and executed as an independent service through the use of Docker technology and a proxy is available to regulate user workspaces and access permissions. PAVICS includes various components from birdhouse, a collection of WPS initially developed by the German Climate Research Center (DKRZ) and Institut Pierre Simon Laplace (IPSL) and is designed to be highly interoperable with other WPS as well as many Open Geospatial Consortium (OGC) standards. Further connectivity is made with the Earth System Grid Federation (ESGF) nodes and local results are made searchable using the same API terminology. Other projects conducted by CRIM that integrate with PAVICS include the OGC Testbed 13 Innovation Program (IP) initiative that will enhance advanced cloud capabilities, application packaging deployment processes, as well as enabling Earth Observation (EO) processes relevant to climate. As part of its experimental agenda, working implementations of scalable machine learning on big climate data with Spark and SciSpark were delivered.

  18. Post-processing Seasonal Precipitation Forecasts via Integrating Climate Indices and the Analog Approach

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, Y.; Wood, A.; Lee, H. S.; Wu, L.; Schaake, J. C.

    2016-12-01

    Seasonal precipitation forecasts are a primary driver for seasonal streamflow prediction that is critical for a range of water resources applications, such as reservoir operations and drought management. However, it is well known that seasonal precipitation forecasts from climate models are often biased and also too coarse in spatial resolution for hydrologic applications. Therefore, post-processing procedures such as downscaling and bias correction are often needed. In this presentation, we discuss results from a recent study that applies a two-step methodology to downscale and correct the ensemble mean precipitation forecasts from the Climate Forecast System (CFS). First, CFS forecasts are downscaled and bias corrected using monthly reforecast analogs: we identify past precipitation forecasts that are similar to the current forecast, and then use the finer-scale observational analysis fields from the corresponding dates to represent the post-processed ensemble forecasts. Second, we construct the posterior distribution of forecast precipitation from the post-processed ensemble by integrating climate indices: a correlation analysis is performed to identify dominant climate indices for the study region, which are then used to weight the analysis analogs selected in the first step using a Bayesian approach. The methodology is applied to the California Nevada River Forecast Center (CNRFC) and the Middle Atlantic River Forecast Center (MARFC) regions for 1982-2015, using the North American Land Data Assimilation System (NLDAS-2) precipitation as the analysis. The results from cross validation show that the post-processed CFS precipitation forecast are considerably more skillful than the raw CFS with the analog approach only. Integrating climate indices can further improve the skill if the number of ensemble members considered is large enough; however, the improvement is generally limited to the first couple of months when compared against climatology. Impacts of various factors such as ensemble size, lead time, and choice of climate indices will also be discussed.

  19. Climate Prediction Center - Outlooks

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Outreach > Publications > Climate Diagnostics Bulletin Climate Diagnostics Bulletin - Tropics Climate Diagnostics Bulletin - Forecast Climate Diagnostics

  20. Attention: Page has moved

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News with the new address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Climate Prediction Center Web Team

  1. Attention: Page has moved

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Page Author: Climate Prediction Center Internet Team

  2. Attention: Page has moved

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News National Centers for Environmental Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Climate Prediction Center Web Team Page last modified: December 13, 2005

  3. Climate Prediction Center - Expert Assessments: East Pacific Hurricane

    Science.gov Websites

    influence seasonal eastern Pacific hurricane activity, along with climate model forecasts. The outlook also National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map Administration (NOAA) Climate Prediction Center (CPC), and is produced in collaboration with scientists from the

  4. Climate Prediction Center - Atlantic Hurricane Outlook

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Seasonal Climate Summary Archive The 2018 Atlantic hurricane season outlook is an official product of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). The outlook is

  5. Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models.

    PubMed

    Chaves, D A; Lyra, G B; Francelino, M R; Silva, Ldb; Thomazini, A; Schaefer, Cegr

    2017-04-15

    Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75cm in the polygon border and 0.64cm in the center, indicating the presence of permafrost (within 80cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1day (at 10cm depth) in the polygon center, and 5days (at 80cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Attention: Page has moved

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Climate Prediction Center

  7. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Contacts Change Log Events Calendar People Numerical Forecast Systems Ensemble and Post Processing Team

  8. 40 CFR 436.31 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., the general definitions, abbreviations and methods of analysis set forth in part 401 of this chapter... may be obtained from the National Climatic Center of the Environmental Data Service, National Oceanic...

  9. 40 CFR 436.21 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... definitions, abbreviations and methods of analysis set forth in part 401 of this chapter shall apply to this... National Climatic Center of the Environmental Data Service, National Oceanic and Atmospheric Administration...

  10. 40 CFR 436.41 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... definitions, abbreviations, and methods of analysis set forth in part 401 of this chapter shall apply to this... National Climatic Center of the Environmental Data Service, National Oceanic and Atmospheric Administration...

  11. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and using geographic information systems - (GIS). 4. Using the output of the first three tasks, compilation of the DRC prototype, its validation, and testing the DRC feasibility for analyses of the recent regional environmental changes over Northern Eurasia and North America. Results of the first stage of the Project implementation are presented. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement № 14.613.21.0037.

  12. Climate Prediction Center - Outlooks

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. Climate Diagnostics Bulletin Climate Diagnostics Bulletin - Home Climate Diagnostics Bulletin - Tropics Climate Diagnostics Bulletin - Extratropics About the Forecast Forum ENSO

  13. North Central Climate Science Center--science agenda 2012-2017

    USGS Publications Warehouse

    Morisette, Jeffrey T.

    2012-01-01

    The information presented here provides the five-year science agenda for the North Central Climate Science Center. It is meant to be a high-level guide that describes the spatial context of the center, the primary partners and stakeholders, and the strategic framework the center will use in applying climate science to inform management.

  14. Data Integration Plans for the NOAA National Climate Model Portal (NCMP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, G. K.; Williams, D. N.; Deluca, C.; Hankin, S. C.; Compo, G. P.

    2010-12-01

    NOAA’s National Climatic Data Center (NCDC) and its collaborators have initiated a five-year development and implementation of an operational access capability for the next generation weather and climate model datasets. The NOAA National Climate Model Portal (NCMP) is being designed using format neutral open web based standards and tools where users at all levels of expertise can gain access and understanding to many of NOAA’s climate and weather model products. NCMP will closely coordinate with and reside under the emerging NOAA Climate Services Portal (NCSP). To carry out its mission, NOAA must be able to successfully integrate model output and other data and information from all of its discipline specific areas to understand and address the complexity of many environmental problems. The NCMP will be an initial access point for the emerging NOAA Climate Services Portal (NCSP), which is the basis for unified access to NOAA climate products and services. NCMP is currently collaborating with the emerging Environmental Projection Center (EPC) expected to be developed at the Earth System Research Laboratory in Boulder CO. Specifically, NCMP is being designed to: - Enable policy makers and resource managers to make informed national and global policy decisions using integrated climate and weather model outputs, observations, information, products, and other services for the scientist and the non-scientist; - Identify model to observational interoperability requirements for climate and weather system analysis and diagnostics; - Promote the coordination of an international reanalysis observational clearinghouse (i.e.., Reanalysis.org) spanning the worlds numerical processing Center’s for an “Ongoing Analysis of the Climate System”. NCMP will initially provide access capabilities to 3 of NOAA’s high volume Reanalysis data sets of the weather and climate systems: 1) NCEP’s Climate Forecast System Reanalysis (CFS-R); 2) NOAA’s Climate Diagnostics Center/ Earth System Research Laboratory (ESRL) Twentieth Century Reanalysis Project data set (20CR, G. Compo, et al.), a historical reanalysis that will provide climate information dating back to 1850 to the present; and 3) the CPC’s Upper Air Reanlaysis. NCMP will advance the highly successful NOAA National Operational Model Archive and Distribution System (NOMADS, Rutledge, BAMS 2006), and standards already in use including Unidata’s THREDDS (TDS), PMEL’s Live Access Server (LAS) and the GrADS Data Server (GDS) from COLA; the Department of Energy (DOE) Earth System Grid (ESG) and the associated IPCC Climate model archive located at the Program for Climate Model Diagnostics and Inter-comparison (PCMDI) through the ESG; and NOAA’s Unified Access Framework (UAF) effort; and core standards developed by Open Geospatial Consortium (OGC). The format neutral OPeNDAP protocol as used in the NOMADS system will also be a key aspect of the design of NCMP.

  15. 40 CFR 436.181 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... definitions, abbreviations and methods of analysis set forth in 40 CFR part 401 shall apply to this subpart... obtained from the National Climatic Center of the Environmental Data Service, National Oceanic and...

  16. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > RAP, HRRR > Home Operational Products Experimental Data Verification Model Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post

  17. The National Climate Change and Wildlife Science Center and Department of the Interior Climate Science Centers annual report for 2014

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2015-10-27

    The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more. 

  18. The role of the World Data Centers in handling ocean climate data

    NASA Technical Reports Server (NTRS)

    Webster, Ferris

    1992-01-01

    The World Data Center System, set up for the International Geophysical Year in 1957, is an international network of data centers that links data contributors to data users in the geosciences. It includes means for the synthesis, analysis, and preparation of data products. It was set up in response to the needs of the international scientific community, and is still overseen by non-governmental scientific organizations. Because it is freely available to researchers in all countries, the World Data Center System has a special role to play in support of ocean climate research and monitoring programs. The World Data Centers face a number of challenges today. Apathy is probably the greatest, since many scientists take the system for granted. There is need to improve access and exploit new technology. The system must establish new links to assure continuity in a world with political changes. The multidisciplinary needs of global change research will demand capabilities for data and information management that go beyond the traditional emphasis on geophysics.

  19. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread among the ensemble members of individual model, strong teleconnection (correlation analysis) with SST, coefficient of variation, inter-annual variability, analysis of Taylor diagram, etc. suggest that there is a need to improve coupled model instead of uncoupled model for the development of a better dynamical seasonal forecast system.

  20. Detecting and Attributing the Effects of Climate Change on the Distributions of Snake Species Over the Past 50 Years.

    PubMed

    Wu, Jianguo

    2016-01-01

    It is unclear whether the distributions of snakes have changed in association with climate change over the past years. We detected the distribution changes of snakes over the past 50 years and determined whether the changes could be attributed to recent climate change in China. Long-term records of the distribution of nine snake species in China, grey relationship analysis, fuzzy sets classification techniques, the consistency index, and attributed methods were used. Over the past 50 years, the distributions of snake species have changed in multiple directions, primarily shifting northwards, and most of the changes were related to the thermal index. Driven by climatic factors over the past 50 years, the distribution boundary and distribution centers of some species changed with the fluctuations. The observed and predicted changes in distribution were highly consistent for some snake species. The changes in the northern limits of distributions of nearly half of the species, as well as the southern and eastern limits, and the distribution centers of some snake species can be attributed to climate change.

  1. The distributions of Chinese yak breeds in response to climate change over the past 50 years.

    PubMed

    Wu, Jianguo

    2016-07-01

    The effects of prior climate change on yak breed distributions are uncertain. Here, we measured changes in the distributions of 12 yak breeds over the past 50 years in China and examined whether the changes could be attributed to climate change. Long-term records of yak breed distribution, grey relational analysis, fuzzy sets classification techniques and attribution methods were used. Over the past 50 years, the distributions of several yak breeds have changed in multiple directions, mainly shifting northward or westward, and most of these changes are related to the thermal index. Driven by climate change over the past years, the suitable range and the distribution centers of certain yak breeds have changed with fluctuation and have mainly shifted northward, eastward or southward. The consistency of observed versus predicted changes in distribution boundaries or distribution centers is higher for certain yak breeds. Changes in the eastern distribution boundary of two yak breeds over the past 50 years can be attributed to climate change. © 2015 Japanese Society of Animal Science.

  2. NCEP SST Analysis

    Science.gov Websites

    Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC Weather Service NWS logo - Click to go to the NWS homepage Environmental Modeling Center Home News Organization Search Go Search Polar Go MMAB SST Analysis Main page About MMAB Our Mission Our Personnel EMC

  3. WASCAL - West African Science Service Center on Climate Change and Adapted Land Use Regional Climate Simulations and Land-Atmosphere Simulations for West Africa at DKRZ and elsewhere

    NASA Astrophysics Data System (ADS)

    Hamann, Ilse; Arnault, Joel; Bliefernicht, Jan; Klein, Cornelia; Heinzeller, Dominikus; Kunstmann, Harald

    2014-05-01

    Changing climate and hydro-meteorological boundary conditions are among the most severe challenges to Africa in the 21st century. In particular West Africa faces an urgent need to develop effective adaptation and mitigation strategies to cope with negative impacts on humans and environment due to climate change, increased hydro-meteorological variability and land use changes. To help meet these challenges, the German Federal Ministry of Education and Research (BMBF) started an initiative with institutions in Germany and West African countries to establish together a West African Science Service Center on Climate Change and Adapted Land Use (WASCAL). This activity is accompanied by an establishment of trans-boundary observation networks, an interdisciplinary core research program and graduate research programs on climate change and related issues for strengthening the analytical capabilities of the Science Service Center. A key research activity of the WASCAL Competence Center is the provision of regional climate simulations in a fine spatio-temporal resolution for the core research sites of WASCAL for the present and the near future. The climate information is needed for subsequent local climate impact studies in agriculture, water resources and further socio-economic sectors. The simulation experiments are performed using regional climate models such as COSMO-CLM, RegCM and WRF and statistical techniques for a further refinement of the projections. The core research sites of WASCAL are located in the Sudanian Savannah belt in Northern Ghana, Southern Burkina Faso and Northern Benin. The climate in this region is semi-arid with six rainy months. Due to the strong population growth in West Africa, many areas of the Sudanian Savannah have been already converted to farmland since the majority of the people are living directly or indirectly from the income produced in agriculture. The simulation experiments of the Competence Center and the Core Research Program are accompanied by the WASCAL Graduate Research Program on the West African Climate System. The GRP-WACS provides ten scholarships per year for West African PhD students with a duration of three years. Present and future WASCAL PhD students will constitute one important user group of the Linux cluster that will be installed at the Competence Center in Ouagadougou, Burkina Faso. Regional Land-Atmosphere Simulations A key research activity of the WASCAL Core Research Program is the analysis of interactions between the land surface and the atmosphere to investigate how land surface changes affect hydro-meteorological surface fluxes such as evapotranspiration. Since current land surface models of global and regional climate models neglect dominant lateral hydrological processes such as surface runoff, a novel land surface model is used, the NCAR Distributed Hydrological Modeling System (NDHMS). This model can be coupled to WRF (WRF-Hydro) to perform two-way coupled atmospheric-hydrological simulations for the watershed of interest. Hardware and network prerequisites include a HPC cluster, network switches, internal storage media, Internet connectivity of sufficient bandwidth. Competences needed are HPC, storage, and visualization systems optimized for climate research, parallelization and optimization of climate models and workflows, efficient management of highest data volumes.

  4. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  5. Climate Prediction Center - Outlooks: CFS Forecast of Seasonal Climate

    Science.gov Websites

    National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site government Web resources and services. CFS Seasonal Climate Forecasts CFS Forecast of Seasonal Climate discontinued after October 2012. This page displays seasonal climate anomalies from the NCEP coupled forecast

  6. Climate Prediction Center - Monitoring and Data Index

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface Temperature Indices

  7. Indices of climate change in the Atlantic coast derived from radiosondes

    NASA Astrophysics Data System (ADS)

    Añel, J. A.; Gimeno, L.; Nieto, R.; Tesouro, M.; de La Torre, L.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    In this poster we present the use of National Climatic Data Center Upper Air Digital Files (CARDS) to look for indications of climatic change over the principal area affected by the North Atlantic Oscillation. To do that we use several parameters calculated using radiosonde data. In this analysis, we take into account radiosonde stations from 28 North to 64 North, with data for the period from 1973 to 1998. Trends, oscillations and the relationship with the Northern Annular Mode and ENSO (El Niño-Southern Oscillation) were also studied.

  8. Delivering Climate Science for the Nation's Fish, Wildlife, and Ecosystems: The U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Beard, T. Douglas

    2011-01-01

    Changes to the Earth's climate-temperature, precipitation, and other important aspects of climate-pose significant challenges to our Nation's natural resources now and will continue to do so. Managers of land, water, and living resources need to understand the impacts of climate change-which will exacerbate ongoing stresses such as habitat fragmentation and invasive species-so they can design effective response strategies. In 2008 Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS); this center was formed to address challenges resulting from climate change and to empower natural resource managers with rigorous scientific information and effective tools for decision-making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has invested over $20M in cutting-edge climate change research and is now leading the effort to establish eight regional Department of the Interior (DOI) Climate Science Centers (CSCs).

  9. Regional climate projections for the MENA-CORDEX domain: analysis of projected temperature and precipitation changes

    NASA Astrophysics Data System (ADS)

    Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela

    2014-05-01

    Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.

  10. Attention: Page has moved

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News bookmarks with the new address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Page Author: Climate

  11. Attention: Page has moved

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News bookmarks with the new address. NOAA/ National Weather Service National Centers for Environmental Prediction Climate Prediction Center 5200 Auth Road Camp Springs, Maryland 20746 Page Author: Climate Prediction

  12. National Climate Change and Wildlife Science Center, Version 2.0

    USGS Publications Warehouse

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  13. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Ice group works on sea ice analysis from satellite, sea ice modeling, and ice-atmosphere-ocean / VISION | About EMC Analysis Drift Model KISS Model Numerical Forecast Systems The Polar and Great Lakes

  14. 77 FR 60717 - Establishment of the Advisory Committee on Climate Change and Natural Resource Science

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... seeking nominations for the Advisory Committee on Climate Change and Natural Resource Science (Committee... of the U.S. Geological Survey National Climate Change and Wildlife Science Center and the DOI Climate... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  15. Climate Prediction Center - Expert Assessments Index

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Global Climate Data & Maps > ; Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are

  16. CPC - Monitoring & Data: Pacific Island Climate Data

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Pacific Islands Climate Data & Maps island stations. NOAA/ National Weather Service NOAA Center for Weather and Climate Prediction Climate

  17. Safety climate and attitude as evaluation measures of organizational safety.

    PubMed

    Isla Díaz, R; Díaz Cabrera, D

    1997-09-01

    The main aim of this research is to develop a set of evaluation measures for safety attitudes and safety climate. Specifically it is intended: (a) to test the instruments; (b) to identify the essential dimensions of the safety climate in the airport ground handling companies; (c) to assess the quality of the differences in the safety climate for each company and its relation to the accident rate; (d) to analyse the relationship between attitudes and safety climate; and (e) to evaluate the influences of situational and personal factors on both safety climate and attitude. The study sample consisted of 166 subjects from three airport companies. Specifically, this research was centered on ground handling departments. The factor analysis of the safety climate instrument resulted in six factors which explained 69.8% of the total variance. We found significant differences in safety attitudes and climate in relation to type of enterprise.

  18. [Attaching importance to study on acute health risk assessment and adaptation of air pollution and climate change].

    PubMed

    Shi, X M

    2017-03-10

    Air pollution and climate change have become key environmental and public health problems around the world, which poses serious threat to human health. How to assess and mitigate the health risks and increase the adaptation of the public have become an urgent topic of research in this area. The six papers in this issue will provide important and rich information on design, analysis method, indicator selection and setting about acute health risk assessment and adaptation study of air pollution and climate change in China, reflecting the advanced conceptions of multi-center and area-specific study and multi-pollutant causing acute effect study. However, the number and type of the cities included in these studies were still limited. In future, researchers should further expand detailed multi-center and multi-area study coverage, conduct area specific predicting and early warning study and strengthen adaptation study.

  19. Ciguatera fish poisoning and climate change: analysis of National Poison Center Data in the United States, 2001-2011.

    PubMed

    Gingold, Daniel B; Strickland, Matthew J; Hess, Jeremy J

    2014-06-01

    Warm sea surface temperatures (SSTs) are positively related to incidence of ciguatera fish poisoning (CFP). Increased severe storm frequency may create more habitat for ciguatoxic organisms. Although climate change could expand the endemic range of CFP, the relationship between CFP incidence and specific environmental conditions is unknown. We estimated associations between monthly CFP incidence in the contiguous United States and SST and storm frequency in the Caribbean basin. We obtained information on 1,102 CFP-related calls to U.S. poison control centers during 2001-2011 from the National Poison Data System. We performed a time-series analysis using Poisson regression to relate monthly CFP call incidence to SST and tropical storms. We investigated associations across a range of plausible lag structures. Results showed associations between monthly CFP calls and both warmer SSTs and increased tropical storm frequency. The SST variable with the strongest association linked current monthly CFP calls to the peak August SST of the previous year. The lag period with the strongest association for storms was 18 months. If climate change increases SST in the Caribbean 2.5-3.5 °C over the coming century as projected, this model implies that CFP incidence in the United States is likely to increase 200-400%. Using CFP calls as a marker of CFP incidence, these results clarify associations between climate variability and CFP incidence and suggest that, all other things equal, climate change could increase the burden of CFP. These findings have implications for disease prediction, surveillance, and public health preparedness for climate change.

  20. Delivering climate science about the Nation's fish, wildlife, and ecosystems: the U.S. Geological Survey National Climate Change and Wildlife Science Center

    USGS Publications Warehouse

    Varela-Acevedo, Elda

    2014-01-01

    Changes to the Earth’s climate—temperature, precipitation, and other climate variables—pose significant challenges to our Nation’s natural resources. Managers of land, water, and living resources require an understanding of the impacts of climate change—which exacerbate ongoing stresses such as habitat alteration and invasive species—in order to design effective response strategies. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to address environmental challenges resulting from climate and land-use change and to provide natural resource managers with rigorous scientific information and effective tools for decision making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has established eight regional Department of the Interior (DOI) Climate Science Centers (CSCs) and has invested over $93 million (through fiscal year 2013) in cutting-edge climate change research.

  1. SRB Data and Information

    Atmospheric Science Data Center

    2017-01-13

    ... grid. Model inputs of cloud amounts and other atmospheric state parameters are also available in some of the data sets. Primary inputs to ... Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. SRB products are reformatted for the use of ...

  2. Supervisors matter more than you think: components of a mission-centered organizational climate.

    PubMed

    Butcher, A H

    1994-01-01

    A study was conducted in a medical center among a diverse sample of employees to examine whether components of organizational climate related to workers' knowledge of the organization's mission and mission-centered values. Findings supported a mediated relationship between supervisor behaviors, mission knowledge, and customer service orientation (the organization's key mission value). Employee perceptions of coworker and organizational support and knowledge of their own performance expectations also related positively to customer service orientation. Results suggest that supervisors are in an ideal position to disseminate a mission-centered climate. Practical applications of these findings for management wishing to develop mission-centered climates in health care organizations are discussed.

  3. About the Center for Corporate Climate Leadership

    EPA Pesticide Factsheets

    EPA's Center for Corporate Climate Leadership encourages organizations with emerging climate objectives to identify and achieve cost-effective GHG emission reductions, while helping more advanced organizations drive innovations in reducing GHG impacts.

  4. Blue Hill Observatory Sunshine - Assessment of Climate Signals in the Longest Continuous Meteorological Record in North America

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Finocchio, P.; Melaas, E. K.; Iacono, M. J.

    2014-12-01

    The Blue Hill Meteorological Observatory occupies a unique place in the history of the American Meteorological Society and the development of atmospheric science. Through its 129-year history, the Observatory has been operated by founder Abbott Lawrence Rotch (1861-1912), Harvard University, and the National Weather Service, and it is presently run by the non-profit Blue Hill Observatory Science Center. While daily temperature and precipitation records are available through the National Climatic Data Center, they do not include the full record of sunshine duration data that were measured using a Campbell-Stokes sunshine recorder. We have recently digitized the Observatory's original daily sunshine archives, and now present the first full collection and analysis of sunshine records extending from 1889 to the present. This data set is unique and salient to modern climate research because the collection represents the earliest and longest continuous measurements of insolation outside of Western Europe. Together the record provides an unprecedented glimpse into regional climate features, as well as important links between global phenomena and regional climate. Analysis reveals long-term fluctuations of cloud-cover and solar radiation, including signals of regional industrialization, global-dimming, volcanic eruptions, the 11-Year Solar Cycle, and the El Niño Southern Oscillation. Shorter period fluctuations include evidence of an intricate annual pattern of sunshine duration and correlations with the Arctic Oscillation, North Atlantic Oscillation, and galactic cosmic rays.

  5. EPA Center for Corporate Climate Leadership

    EPA Pesticide Factsheets

    EPA's Center for Corporate Climate Leadership is a comprehensive resource to help organizations measure & manage GHG emissions. The Center provides technical tools, educational resources, opportunities for information sharing & highlights best practices.

  6. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed Central

    Wu, Jianguo; Zhang, Guobin

    2015-01-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals. PMID:26078858

  7. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed

    Wu, Jianguo; Zhang, Guobin

    2015-06-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals.

  8. The potential roles of science centers in climate change adaptation

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2012-12-01

    The overwhelming consensus amongst climatologists is that anthropogenic climate change is underway, but leading climate scientists also anticipate that over the next 20 years research may only modestly reduce the uncertainty about where, when and by how much climate will change. Uncertainty presents not only scientific challenges but social, political and economic quandaries as well. Both scientific and educational communities understand that climate change will test the resilience of societies especially because of the uncertainties regarding the timing, nature and severity of climate change. Thus the need is great for civic conversations regarding climate change adaptation. What roles might science centers play in helping their audiences and communities make decisions about climate change adaptation despite less-than-perfect knowledge? And how might informal and formal education work together on this task? This session will begin with a review of some initial efforts by selected science centers and their partners to engage their audiences in and help their communities grapple with climate change adaptation. It then will conclude with an audience discussion about potential future efforts by science centers both individually and in collaboration with formal education institutions to elevate public and policymaker awareness and appreciation of the need for climate change adaptation.

  9. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  10. Mapping Climate Science Information Needs and Networks in the Northwest, USA through Evaluating the Northwest Climate Science Center Climate Science Digest

    NASA Astrophysics Data System (ADS)

    Gergel, D. R.; Watts, L. H.; Salathe, E. P.; Mankowski, J. D.

    2017-12-01

    Climate science, already a highly interdisciplinary field, is rapidly evolving, and natural resource managers are increasingly involved in policymaking and adaptation decisions to address climate change that need to be informed by state-of-the-art climate science. Consequently, there is a strong demand for unique organizations that engender collaboration and cooperation between government, non-profit, academic and for-profit sectors that are addressing issues relating to natural resources management and climate adaptation and resilience. These organizations are often referred to as boundary organizations. The Northwest Climate Science Center (NW CSC) and the North Pacific Landscape Conservation Cooperative (NP LCC) are two such boundary organizations operating in different contexts. Together, the NW CSC and the NP LCC fulfill the need for sites of co-production between researchers and managers working on climate-related issues, and a key component of this work is a monthly climate science newsletter that includes recent climate science journal articles, reports, and climate-related events. Our study evaluates the effectiveness of the climate science digest (CSD) through a three-pronged approach: a) in-depth interviews with natural resource managers who use the CSD, b) poll questions distributed to CSD subscribers, and c) quantitative analysis of CSD effectiveness using analytics from MailChimp distribution. We aim to a) map the reach of the CSD across the Northwest and at a national level; b) understand the efficacy of the CSD at communicating climate science to diverse audiences; c) evaluate the usefulness of CSD content for diverse constituencies of subscribers; d) glean transferrable knowledge for future evaluations of boundary management tools; and e) establish a protocol for designing climate science newsletters for other agencies disseminating climate science information. We will present results from all three steps of our evaluation process and describe their implications for future evaluations of climate science communications products and other boundary management tools in the field of natural resources management.

  11. Climate state: Science-state struggles and the formation of climate science in the US from the 1930s to 1960s.

    PubMed

    Baker, Zeke

    2017-12-01

    This article has two aims: first, to understand the co-production of climate science and the state, and second, to provide a test case for Pierre Bourdieu's field theory. To these ends, the article reconstructs the historical formation of a US climate science field, with an analytic focus on inter-field dynamics and heterogeneous networking practices. Drawing from primary- and secondary-source materials, the historical analysis focuses on relations between scientists and state actors from the 1930s to the 1960s. The account shows how actors with positions linking scientific and bureaucratic fields constructed critical nodes and 'hinges' that co-produced war-making and state expansion on the one hand, and a relatively autonomous climate science field on the other. The analysis explains the emergence of climate science by focusing on the WWII-era transformation of meteorology and oceanography into distinct disciplines, the emergence of 'basic' research as a central principle of post-war government, and the formation of a climate science field by the 1960s centered on computerized modeling and populated by an interdisciplinary scientific elite. The article concludes by indicating how these processes led to the subsequent development of climate change as a science-state conundrum that has reorganized the climate science field in recent decades.

  12. Climate Prediction Center - Monitoring and Data

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News monthly data, time series, and maps for various climate parameters, such as precipitation, temperature Oscillations (ENSO) and other climate patterns such as the North Atlantic and Pacific Decadal Oscillations, and

  13. A climate analysis using CORDEX simulations in a cooperation framework: the case of Paraguay

    NASA Astrophysics Data System (ADS)

    Mercogliano, Paola; Bucchignani, Edoardo; Ciervo, Fabio; Montesarchio, Myriam; Zollo, Alessandra Lucia; Villani, Veronica; Barbato, Giuliana; Vendemia, Rosalba; Polato, Raul; Baez, Julian; Pasten, Max

    2017-04-01

    In recent years, changes in climate have entailed variations in surface temperature and precipitation patterns in various countries of the South America, among which Paraguay. Climate change-attributed effects on weather impacts, such as river and urban floods, droughts and heat waves could severely affect the actual conditions of the country. In fact, Paraguay exhibits significant vulnerabilities to climate changes, especially because of its dependence on commodities production (e.g. agriculture, livestock, etc.) and its infrastructural and logistic asset not yet fully formed. In this context, climate change analysis can be an important technical support for practitioners to assist - under uncertainty - national/regional planning, financial resources managing and development (e.g. land-use practices, population growth, economic and community behavior, health, etc.). Moreover, actions in adaptation, disaster risk reduction (DRR), social protection and impacts mitigation may involve high costs if not properly contextualized. The assessment of 21st century climate change and development of whatever response strategies requires climate scenarios at high resolution, including an accurate evaluation of projection uncertainties (i.e. robustness of the analysis). This should ensure adequate insights into the potential impacts of climate change and allow practitioners, usually ill equipped to consider uncertain climate outputs into a broader context (e.g. planning, designing, managing), to make appropriate choices. In the framework of CORDEX initiative, Paraguay is included into the SOUTH-AMERICA-CORDEX one. Three climate simulations over this area are available at the spatial resolution of 0.44° (about 50km), obtained with RCM SMHI-RCA4 (forced by GCMs ICHEC-EC-EARTH and MPI-M-MPI-ESM-LR) and RCM MPI-CSC-REMO2009 (forced by MPI-M-MPI-ESM-LR). Simulations over the 21st century have been performed according with IPCC RCP2.6, RCP4.5 and RCP8.5 scenarios. The plausibility of the acquired climate simulations has been determined by comparison with different observational datasets over the baseline period. Three future periods have been selected for the analysis: 2011-2040, 2041-2070 and 2071-2100. The analysis is carried out in order to address the mean changes in seasonal mean temperature and total precipitation, and of some indicators suitable to quantify the impact of climate extreme events. The analysis is performed in the framework of the Chake Ou project "Strengthening of institutional and community preparedness and coordination capacities for disaster risk reduction in Paraguay" funded by the European Commission's Humanitarian Aid and Civil Protection Department (ECHO), in the context of the Disaster Preparedness Action Plan (DIPECHO) (code ECHO/-SM/BUD/2015/91028). The partners of the project are COOPI (a humanitarian, no-confessional and independent organization that works to support civil, economic and social development of populations struck by emergencies (disasters and conflicts), PLAN International (a child-centered community development organization) and CMCC Foundation (Euro-Mediterranean Center on Climate Change). The consortium works in close collaboration with the local institutions such as the Secretaria de Emergencia Nacional (SEN) and the Dirección de Meteorología e Hidrología (DMH - DINAC).

  14. Climate and Weather Analysis of Afghanistan Thunderstorms

    DTIC Science & Technology

    2011-09-01

    dry, continental polar (cP) air. The subtropical jet (STJ) and Extratropical storm track tend to lie south of Kabul. Mean high SFC temperatures...March-April-May (MAM). Note that AFG lies to the east of a broad trough centered over southern Europe and to the west of broad ridge centered over... Extratropical Cyclone FAR False Alarm Rate FOB Forward Operating Base FRN Forecaster Reference Notebook GFS Global Forecast System GoA

  15. Farmers perceptions on climate change in lowland and highland vegetable production centers of South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Adiyoga, W.

    2018-02-01

    A survey was carried out in South Sulawesi, Indonesia interviewing 220 vegetable farmers. It was aimed at examining the vegetable farmers’ perception of climate change and assessing the consistency of farmers’ perception with available time series meteorological data. Results suggest that meteorological data analysis is in agreement with farmers’ perception regarding faster start, longer ending, and longer duration of rainy season. Further data analysis supports the claim of most farmers who perceive the occurrence of increasing air temperature, changing or shifting of the hottest and coldest month. Most respondents also suggest that climate change has affected vegetable farm yield and profitability. Other respondents even predict that climate change may affect the quality of life of their future descendants. Meanwhile, significant number of farmers is quite optimistic that they can cope with climate change problems through adaptation strategy. However, the attitude of farmers towards climate change is mostly negative as compared to positive or neutral feeling. Informative and educational campaign should be continuously carried out to encourage farmers in developing positive attitude or positive thinking towards climate change. Positive attitude may eventually lead to constructive behavior in selecting and implementing adaptation options.

  16. Air, Climate and Energy (ACE) Centers: Supporting Air Quality and Climate Solutions

    EPA Pesticide Factsheets

    EPA through its Science to Achieve Results (STAR) program, is providing $30 million in funding for three university-based research centers to investigate regional differences in air pollution and the effects of global climate change.

  17. The National Climate Change and Wildlife Science Center annual report for 2012

    USGS Publications Warehouse

    Varela-Acevedo, Elda; O'Malley, Robin

    2013-01-01

    Welcome to the inaugural edition of the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) annual report. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $70 million in cutting-edge climate change research and, in response to Secretarial Order No. 3289,established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). The mission of the NCCWSC is to provide natural resource managers with the tools and information they need to develop and execute management strategies that address the impacts of climate and other ongoing global changes on fish and wildlife and their habitats. The DOI CSCs are joint Federal-university partnerships that focus their scientific work on regional priorities identified by DOI Landscape Conservation Cooperatives (LCCs) as well as Federal, State, Tribal, and other resource managers. The CSCs provide access to a wide range of scientific capabilities through their network of university partners along with the USGS and other Federal agency scientists. The focus of the NCCWSC on multiregion and national priorities complements the regionally focused agendas of the CSCs.

  18. Safety climate and its association with office type and team involvement in primary care.

    PubMed

    Gehring, Katrin; Schwappach, David L B; Battaglia, Markus; Buff, Roman; Huber, Felix; Sauter, Peter; Wieser, Markus

    2013-09-01

    To assess differences in safety climate perceptions between occupational groups and types of office organization in primary care. Primary care physicians and nurses working in outpatient offices were surveyed about safety climate. Explorative factor analysis was performed to determine the factorial structure. Differences in mean climate scores between staff groups and types of office were tested. Logistic regression analysis was conducted to determine predictors for a 'favorable' safety climate. 630 individuals returned the survey (response rate, 50%). Differences between occupational groups were observed in the means of the 'team-based error prevention'-scale (physician 4.0 vs. nurse 3.8, P < 0.001). Medical centers scored higher compared with single-handed offices and joint practices on the 'team-based error prevention'-scale (4.3 vs. 3.8 vs. 3.9, P < 0.001) but less favorable on the 'rules and risks'-scale (3.5 vs. 3.9 vs. 3.7, P < 0.001). Characteristics on the individual and office level predicted favorable 'team-based error prevention'-scores. Physicians (OR = 0.4, P = 0.01) and less experienced staff (OR 0.52, P = 0.04) were less likely to provide favorable scores. Individuals working at medical centers were more likely to provide positive scores compared with single-handed offices (OR 3.33, P = 0.001). The largest positive effect was associated with at least monthly team meetings (OR 6.2, P < 0.001) and participation in quality circles (OR 4.49, P < 0.001). Results indicate that frequent quality circle participation and team meetings involving all team members are effective ways to strengthen safety climate in terms of team-based strategies and activities in error prevention.

  19. Hadoop for High-Performance Climate Analytics: Use Cases and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Tamkin, Glenn

    2013-01-01

    Scientific data services are a critical aspect of the NASA Center for Climate Simulations mission (NCCS). Hadoop, via MapReduce, provides an approach to high-performance analytics that is proving to be useful to data intensive problems in climate research. It offers an analysis paradigm that uses clusters of computers and combines distributed storage of large data sets with parallel computation. The NCCS is particularly interested in the potential of Hadoop to speed up basic operations common to a wide range of analyses. In order to evaluate this potential, we prototyped a series of canonical MapReduce operations over a test suite of observational and climate simulation datasets. The initial focus was on averaging operations over arbitrary spatial and temporal extents within Modern Era Retrospective- Analysis for Research and Applications (MERRA) data. After preliminary results suggested that this approach improves efficiencies within data intensive analytic workflows, we invested in building a cyber infrastructure resource for developing a new generation of climate data analysis capabilities using Hadoop. This resource is focused on reducing the time spent in the preparation of reanalysis data used in data-model inter-comparison, a long sought goal of the climate community. This paper summarizes the related use cases and lessons learned.

  20. 43 CFR Appendix III to Part 11 - Format for Data Inputs and Modifications to the NRDAM/GLE

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Analysis The NRDAM/GLE begins its calculations at the point that the released substance entered water in an... wind's origin. [One possible source of information is the National Climatic Data Center, Asheville, NC... U.S. Department of Commerce/Bureau of Economic Analysis, 1441 L Street, NW, Washington, D.C., 20230...

  1. Air, Climate And Energy (ACE) Centers: Supporting Air Quality And Climate Solutions

    EPA Pesticide Factsheets

    EPA, through its Science to Achieve Results program, is funding three university-based research centers to investigate regional differences in air pollution and effects of climate change, technology, and societal choices on local air quality and health.

  2. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Hurricane Weather Research and Forecast System ANALYSIS FORECAST MODEL GSI Gridpoint Statistical Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 Page Author

  3. Evolution of carbon sinks in a changing climate.

    PubMed

    Fung, Inez Y; Doney, Scott C; Lindsay, Keith; John, Jasmin

    2005-08-09

    Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.

  4. Evolution of carbon sinks in a changing climate

    PubMed Central

    Fung, Inez Y.; Doney, Scott C.; Lindsay, Keith; John, Jasmin

    2005-01-01

    Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain. PMID:16061800

  5. A Framework for Assessing Operational Madden–Julian Oscillation Forecasts: A CLIVAR MJO Working Group Project

    DOE PAGES

    Gottschalck, J.; Wheeler, M.; Weickmann, K.; ...

    2010-09-01

    The U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group (MJOWG) has taken steps to promote the adoption of a uniform diagnostic and set of skill metrics for analyzing and assessing dynamical forecasts of the MJO. Here we describe the framework and initial implementation of the approach using real-time forecast data from multiple operational numerical weather prediction (NWP) centers. The objectives of this activity are to provide a means to i) quantitatively compare skill of MJO forecasts across operational centers, ii) measure gains in forecast skill over time by a given center and the community as a whole, and iii)more » facilitate the development of a multimodel forecast of the MJO. The MJO diagnostic is based on extensive deliberations among the MJOWG in conjunction with input from a number of operational centers and makes use of the MJO index of Wheeler and Hendon. This forecast activity has been endorsed by the Working Group on Numerical Experimentation (WGNE), the international body that fosters the development of atmospheric models for NWP and climate studies. The Climate Prediction Center (CPC) within the National Centers for Environmental Prediction (NCEP) is hosting the acquisition of the forecast data, application of the MJO diagnostic, and real-time display of the standardized forecasts. The activity has contributed to the production of 1–2-week operational outlooks at NCEP and activities at other centers. Further enhancements of the diagnostic's implementation, including more extensive analysis, comparison, illustration, and verification of the contributions from the participating centers, will increase the usefulness and application of these forecasts and potentially lead to more skillful predictions of the MJO and indirectly extratropical and other weather variability (e.g., tropical cyclones) influenced by the MJO. The purpose of this article is to inform the larger scientific and operational forecast communities of the MJOWG forecast effort and invite participation from additional operational centers.« less

  6. Climate risks workshop

    NASA Image and Video Library

    2012-10-16

    Participants in an Oct. 16-18 workshop at John C. Stennis Space Center focused on identifying current and future climate risks and developing strategies to address them. NASA Headquarters sponsored the Resilience and Adaptation to Climate Risks Workshop to understand climate change risks and adaptation strategies. The workshop was part of an effort that joins the science and operations arms of the agency in a coordinated response to climate change. NASA Headquarters is holding workshops on the subject at all NASA centers.

  7. Five-year external reviews of the eight Department of Interior Climate Science Centers: Southeast Climate Science Center

    USGS Publications Warehouse

    Rice, Kenneth G.; Beier, Paul; Breault, Tim; Middleton, Beth A.; Peck, Myron A.; Tirpak, John M.; Ratnaswamy, Mary; Austen, Douglas; Harrison, Sarah

    2017-01-01

    In 2008, the U.S. Congress authorized the establishment of the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Department of Interior (DOI). Housed administratively within the U.S. Geological Survey (USGS), NCCWSC is part of the DOI’s ongoing mission to meet the challenges of climate change and its effects on wildlife and aquatic resources. From 2010 through 2012, NCCWSC established eight regional DOI Climate Science Centers (CSCs). Each of these regional CSCs operated with the mission to “synthesize and integrate climate change impact data and develop tools that the Department’s managers and partners can use when managing the Department’s land, water, fish and wildlife, and cultural heritage resources” (Salazar 2009). The model developed by NCCWSC for the regional CSCs employed a dual approach of a federal USGS-staffed component and a parallel host-university component established competitively through a 5-year cooperative agreement with NCCWSC. At the conclusion of this 5-year agreement, a review of each CSC was undertaken, with the Southeast Climate Science Center (SE CSC) review in February 2016. The SE CSC is hosted by North Carolina State University (NCSU) in Raleigh, North Carolina, and is physically housed within the NCSU Department of Applied Ecology along with the Center for Applied Aquatic Ecology, the North Carolina Cooperative Fish and Wildlife Research Unit (CFWRU), and the North Carolina Agromedicine Institute. The U.S. Department of Agriculture Southeast Regional Climate Hub is based at NCSU as is the National Oceanic and Atmospheric Administration (NOAA) Southeast Regional Climate Center, the North Carolina Institute for Climate Studies, the North Carolina Wildlife Resources Commission, the NOAA National Weather Service, the State Climate Office of North Carolina, and the U.S. Forest Service Eastern Forest Environmental Threat Assessment Center. This creates a strong core of organizations operating in close proximity focused on climate issues. The geographic area covered by the SE CSC represents all or part of 16 states and the Caribbean Islands and has overlapping boundaries with seven Landscape Conservation Cooperatives (LCCs): Appalachian LCC, Eastern Tallgrass Prairie and Big Rivers LCC, Gulf Coast Prairie LCC, Gulf Coastal Plains and Ozarks LCC, Peninsular Florida LCC, South Atlantic LCC, and Caribbean LCC. The SE CSC region also encompasses 134 U.S. Fish and Wildlife Service refuges and 89 National Park Service (NPS) units and is home to 11 federally recognized and 54 state recognized tribes. 

  8. Evaluation of Prospective Changes in Temperature Extremes for the CORDEX-Australasia Domain Using the NEX-GDDP Dataset

    NASA Astrophysics Data System (ADS)

    Turp, M. Tufan; An, Nazan; Kurnaz, M. Levent

    2017-04-01

    CORDEX-Australasia is a vast domain where comprises primarily Australia, New Zealand, and Papua New Guinea whilst it also covers the islands in the Pacific Ocean such as New Caledonia, Fiji, Tonga, Tuvalu, and Vanuatu as well. Climate of Australasia varies from tropical monsoonal and arid to moist temperate and alpine. The number of studies about the domain of Australasia is very limited and it is in urgent need of further efforts. This research points out the relationship between the climate change and temperature extremes over the domain of Australasia and it investigates the changes in the number of some specific temperature extreme indices (i.e. summer days, consecutive summer days, heat wave duration, very warm days, tropical nights, etc.) as described by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI). All these extreme indices were also calculated using the NASA Earth Exchange Global Daily Downscaled Projection (NEX-GDDP) dataset. In this study, all these index computations have been employed by utilizing ACCESS1-0 and MPI-ESM-MR global circulation models' bias corrected daily minimum and maximum air temperature variables, which were statistically downscaled to a 0.25 degrees x 0.25 degrees spatial resolution by the Climate Analytics Group and NASA Ames Research Center, under both medium-low and high emission trajectories (i.e. RCP4.5 and RCP8.5). Moreover, the analysis of the projected changes in the temperature extremes was applied for the period of 2081-2100 with respect to the reference period of 1986-2005. Acknowledgements: This research has been supported by Bogazici University Research Fund Grant Number 12220. Climate scenarios used were from the NEX-GDDP dataset, prepared by the Climate Analytics Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS).

  9. Terrestrial Hydrological Data from NASA's Hydrology Data and Information Services Center (HDISC): Products, Services, and Applications

    NASA Technical Reports Server (NTRS)

    Fang, Hongliang; Beaudoing, Hiroko K.; Mocko, David M.; Rodell, Matthew; Teng, Bill; Vollmer, Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. The North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) have been generating a series of land surface states (soil moisture, snow, and temperature) and fluxes (evapotranspiration, radiation, and heat flux) variables. These data, hosted at and available from NASA s Hydrology Data and Information Services Center (HDISC), include the NLDAS hourly 1/8 degree products and the GLDAS 3-hourly 0.25 and 1.0 degree products. HDISC provides easy access and visualization and analysis capabilities for these products, thus reducing the time and resources spent by scientists on data management and facilitating hydrological research. Users can perform spatial and parameter subsetting, data format transformation, and data analysis operations without needing to first download the data. HDISC is continually being developed as a data and services portal that supports weather and climate forecasts, and water and energy cycle research.

  10. Expanding research capabilities with sea ice climate records for analysis of long-term climate change and short-term variability

    NASA Astrophysics Data System (ADS)

    Scott, D. J.; Meier, W. N.

    2008-12-01

    Recent sea ice analysis is leading to predictions of a sea ice-free summertime in the Arctic within 20 years, or even sooner. Sea ice topics, such as concentration, extent, motion, and age, are predominately studied using satellite data. At the National Snow and Ice Data Center (NSIDC), passive microwave sea ice data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing sea ice conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic sea ice, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in sea ice and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of sea ice beyond the traditional cryospheric community.

  11. Climate Prediction Center - Global Tropical Hazards Assessment

    Science.gov Websites

    Skip Navigation Links www.nws.noaa.gov NOAA logo - Click to go to the NOAA home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Organization Search Go Search the CPC Go Climate Outlooks Climate & Weather Link El Niño/La Niña MJO

  12. Network access to PCDS (SPAN, ESN, SESNET, ARPANET)

    NASA Technical Reports Server (NTRS)

    Green, J.

    1986-01-01

    One of the major goals of the National Space Science Data Center is to increase access to NASA data systems by enhancing networking activities. The activities are centered around three basic networking systems: the Space Physics Analysis Network (SPAN); the Earth Science Network (ESN); and the NASA Packet Switched System (NPSS). Each system is described, linkages among systems are explained, and future plans are announced. The inclusion of several new climate nodes on SPAN or ESN are also mentioned. Presently, the Pilot Climate Data System is accessible through SPAN and will be accessible through NPSS by summer and ESN by the end of 1986. Ambitious plans for implementation are underway. The implementation of these plans will represent a major advance in the utilization and accessibility of data worldwide.

  13. 77 FR 30261 - Petition To List 83 Species of Coral as Threatened or Endangered Under the Endangered Species Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... Center, Center of Excellence in Coral Reef Ecosystems Science, 8000 North Ocean Drive; Dania Beach, FL... Center, Center of Excellence in Coral Reef Ecosystems Science, 8000 North Ocean Drive, Dania Beach, FL... science workshops will focus on two themes: ``Climate Change and Climate Impacts on Coral Reef Ecosystems...

  14. Climate Prediction Center - monthly Outlook

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Outlooks monthly Climate Outlooks Banner OFFICIAL Forecasts June 2018 [UPDATED MONTHLY FORECASTS SERVICE CHANGE NOTICE] [EXPERIMENTAL TWO-CLASS SEASONAL FORECASTS] Text-Format Discussions Monthly Long Lead 30

  15. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    USGS Publications Warehouse

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  16. Climate of the Kennedy Space Center and vicinity

    NASA Technical Reports Server (NTRS)

    Mailander, Joseph L.

    1990-01-01

    Climate plays a large role in determining the biota of a region. Summary data are presented for climate variables of ecological importance including precipitation, temperature, evapotranspiration, wind, isolation, lightning, and humidity. The John F. Kennedy Space Center, Cape Canaveral Air Force Station, and surrounding area are sampled intensively for climatic conditions; data are presented for the barrier island, Merritt Island, and the mainland, which represents the range of conditions in the local area. Climatic figures, database listings, and historic data (pre-1931) are presented in the appendix.

  17. Incorporating Fundamentals of Climate Monitoring into Climate Indicators at the National Climatic Data Center

    NASA Astrophysics Data System (ADS)

    Arndt, D. S.

    2014-12-01

    In recent years, much attention has been dedicated to the development, testing and implementation of climate indicators. Several Federal agencies and academic groups have commissioned suites of indicators drawing upon and aggregating information available across the spectrum of climate data stewards and providers. As a long-time participant in the applied climatology discipline, NOAA's National Climatic Data Center (NCDC) has generated climate indicators for several decades. Traditionally, these indicators were developed for sectors with long-standing relationships with, and needs of, the applied climatology field. These have recently been adopted and adapted to meet the needs of sectors who have newfound sensitivities to climate and needs for climate data. Information and indices from NOAA's National Climatic Data Center have been prominent components of these indicator suites, and in some cases have been drafted in toto by these aggregators, often with improvements to the communicability and aesthetics of the indicators themselves. Across this history of supporting needs for indicators, NCDC climatologists developed a handful of practical approaches and philosophies that inform a successful climate monitoring product. This manuscript and presentation will demonstrate the utility this set of practical applications that translate raw data into useful information.

  18. Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present

    NASA Astrophysics Data System (ADS)

    Fan, Yun; van den Dool, Huug

    2004-05-01

    We have produced a 0.5° × 0.5° monthly global soil moisture data set for the period from 1948 to the present. The land model is a one-layer "bucket" water balance model, while the driving input fields are Climate Prediction Center monthly global precipitation over land, which uses over 17,000 gauges worldwide, and monthly global temperature from global Reanalysis. The output consists of global monthly soil moisture, evaporation, and runoff, starting from January 1948. A distinguishing feature of this data set is that all fields are updated monthly, which greatly enhances utility for near-real-time purposes. Data validation shows that the land model does well; both the simulated annual cycle and interannual variability of soil moisture are reasonably good against the limited observations in different regions. A data analysis reveals that, on average, the land surface water balance components have a stronger annual cycle in the Southern Hemisphere than those in the Northern Hemisphere. From the point of view of soil moisture, climates can be characterized into two types, monsoonal and midlatitude climates, with the monsoonal ones covering most of the low-latitude land areas and showing a more prominent annual variation. A global soil moisture empirical orthogonal function analysis and time series of hemisphere means reveal some interesting patterns (like El Niño-Southern Oscillation) and long-term trends in both regional and global scales.

  19. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING NOAA

  20. US Naval Facilities Engineering Service Center Environmental Program on Climate Change

    DTIC Science & Technology

    2008-09-01

    of environmental issues related to climate change . There is a growing recognition that the Navy will need to perform its national security mission in... climate change -related technology work at the Naval Facilities Engineering Service Center (NAVFAC ESC) in Port Hueneme, California. NAVFAC ESC...categorized technologies that can be applied to climate change as mitigation, adaptation, and intervention. An essential element of the Navy’s response to

  1. Data Serving Climate Simulation Science at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2011-01-01

    The NASA Center for Climate Simulation (NCCS) provides high performance computational resources, a multi-petabyte archive, and data services in support of climate simulation research and other NASA-sponsored science. This talk describes the NCCS's data-centric architecture and processing, which are evolving in anticipation of researchers' growing requirements for higher resolution simulations and increased data sharing among NCCS users and the external science community.

  2. A National Program for Analysis of the Climate System

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Arkin, Phil; Kalnay, Eugenia; Laver, James; Trenberth, Kevin

    2002-01-01

    Perhaps the single greatest roadblock to fundamental advances in our understanding of climate variability and climate change is the lack of robust and unbiased long-term global observations of the climate system. Such observations are critical for the identification and diagnosis of climate variations, and provide the constraints necessary for developing and validating climate models. The first generation of reanalysis efforts, by using fixed analysis systems, eliminated the artificial climate signals that occurred in analyses generated at the operational numerical weather prediction centers. These datasets are now widely used by the scientific community in a variety of applications including atmosphere-ocean interactions, seasonal prediction, climate monitoring, the hydrological cycle, and a host of regional and other diagnostic studies. These reanalyses, however, had problems that made them sub-optimal or even unusable for some applications. Perhaps the most serious problem for climate applications was that, while the assimilation system remained fixed, changes in the observing systems did produce spurious changes in the perceived climate. The first generation reanalysis products also exposed problems with physical consistency of the products and the accurate representation of physical processes in the climate system. Examples are bias in the estimates of ocean surface fluxes, and inadequate representation of polar hydrology. In this talk, I will describe some initial plans for a national program on reananlysis. The program is envisioned to be part of an on-going activity to maintain, improve, and reprocess our record of climate observations. I will discuss various issues affecting the quality of reanalyses, with a special focus on those relevant to the ocean.

  3. Forecasted range shifts of arid-land fishes in response to climate change

    USGS Publications Warehouse

    Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.; Olden, Julian D.; Strecker, Angela L.

    2017-01-01

    Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change.

  4. eSACP - a new Nordic initiative towards developing statistical climate services

    NASA Astrophysics Data System (ADS)

    Thorarinsdottir, Thordis; Thejll, Peter; Drews, Martin; Guttorp, Peter; Venälainen, Ari; Uotila, Petteri; Benestad, Rasmus; Mesquita, Michel d. S.; Madsen, Henrik; Fox Maule, Cathrine

    2015-04-01

    The Nordic research council NordForsk has recently announced its support for a new 3-year research initiative on "statistical analysis of climate projections" (eSACP). eSACP will focus on developing e-science tools and services based on statistical analysis of climate projections for the purpose of helping decision-makers and planners in the face of expected future challenges in regional climate change. The motivation behind the project is the growing recognition in our society that forecasts of future climate change is associated with various sources of uncertainty, and that any long-term planning and decision-making dependent on a changing climate must account for this. At the same time there is an obvious gap between scientists from different fields and between practitioners in terms of understanding how climate information relates to different parts of the "uncertainty cascade". In eSACP we will develop generic e-science tools and statistical climate services to facilitate the use of climate projections by decision-makers and scientists from all fields for climate impact analyses and for the development of robust adaptation strategies, which properly (in a statistical sense) account for the inherent uncertainty. The new tool will be publically available and include functionality to utilize the extensive and dynamically growing repositories of data and use state-of-the-art statistical techniques to quantify the uncertainty and innovative approaches to visualize the results. Such a tool will not only be valuable for future assessments and underpin the development of dedicated climate services, but will also assist the scientific community in making more clearly its case on the consequences of our changing climate to policy makers and the general public. The eSACP project is led by Thordis Thorarinsdottir, Norwegian Computing Center, and also includes the Finnish Meteorological Institute, the Norwegian Meteorological Institute, the Technical University of Denmark and the Bjerknes Centre for Climate Research, Norway. This poster will present details of focus areas in the project and show some examples of the expected analysis tools.

  5. Factors influencing teamwork and collaboration within a tertiary medical center

    PubMed Central

    Chien, Shu Feng; Wan, Thomas TH; Chen, Yu-Chih

    2012-01-01

    AIM: To understand how work climate and related factors influence teamwork and collaboration in a large medical center. METHODS: A survey of 3462 employees was conducted to generate responses to Sexton’s Safety Attitudes Questionnaire (SAQ) to assess perceptions of work environment via a series of five-point, Likert-scaled questions. Path analysis was performed, using teamwork (TW) and collaboration (CO) as endogenous variables. The exogenous variables are effective communication (EC), safety culture (SC), job satisfaction (JS), work pressure (PR), and work climate (WC). The measurement instruments for the variables or summated subscales are presented. Reliability of each sub-scale are calculated. Alpha Cronbach coefficients are relatively strong: TW (0.81), CO (0.76), EC (0.70), SC (0.83), JS (0.91), WP (0.85), and WC (0.78). Confirmatory factor analysis was performed for each of these constructs. RESULTS: Path analysis enables to identify statistically significant predictors of two endogenous variables, teamwork and intra-organizational collaboration. Significant amounts of variance in perceived teamwork (R2 = 0.59) and in collaboration (R2 = 0.75) are accounted for by the predictor variables. In the initial model, safety culture is the most important predictor of perceived teamwork, with a β weight of 0.51, and work climate is the most significant predictor of collaboration, with a β weight of 0.84. After eliminating statistically insignificant causal paths and allowing correlated predictors1, the revised model shows that work climate is the only predictor positively influencing both teamwork (β = 0.26) and collaboration (β = 0.88). A relatively weak positive (β = 0.14) but statistically significant relationship exists between teamwork and collaboration when the effects of other predictors are simultaneously controlled. CONCLUSION: Hospital executives who are interested in improving collaboration should assess the work climate to ensure that employees are operating in a setting conducive to intra-organizational collaboration. PMID:25237612

  6. Results of an Institutional LGBT Climate Survey at an Academic Medical Center.

    PubMed

    Chester, Sean D; Ehrenfeld, Jesse M; Eckstrand, Kristen L

    2014-12-01

    The purpose of this study was to characterize the climate and culture experienced by lesbian, gay, bisexual, and transgender (LGBT) employees and students at one large academic medical center. An anonymous, online institutional climate survey was used to assess the attitudes and experiences of LGBT employees and students. There were 42 LGBT and 14 non-LGBT survey participants. Results revealed that a surprisingly large percentage of LGBT individuals experienced pressure to remain "closeted" and were harassed despite medical center policies of non-discrimination. Continuing training, inclusive policies and practices, and the development of mechanisms to address LGBT-specific harassment are necessary for improving institutional climate.

  7. Western Mountain Initiative - Research Links

    Science.gov Websites

    Parks programS Forest Service Climate Change Resource Center (CCRC) North American Nitrogen Center to be told." US Global Change Research Program (GlobalChange.gov) USGS Climate and Land Use Rocky Mountain Science Center Global Change Research Program -- A Focus on Mountain Ecosystems Western

  8. Detection and attribution of streamflow timing changes to climate change in the Western United States

    USGS Publications Warehouse

    Hidalgo, H.G.; Das, T.; Dettinger, M.D.; Cayan, D.R.; Pierce, D.W.; Barnett, T.P.; Bala, G.; Mirin, A.; Wood, A.W.; Bonfils, Celine; Santer, B.D.; Nozawa, T.

    2009-01-01

    This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow "center" timing (the day in the "water-year" on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States_the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier "center" timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States. ?? 2009 American Meteorological Society.

  9. Deriving evaluation indicators for knowledge transfer and dialogue processes in the context of climate research

    NASA Astrophysics Data System (ADS)

    Treffeisen, Renate; Grosfeld, Klaus; Kuhlmann, Franziska

    2017-12-01

    Knowledge transfer and dialogue processes in the field of climate science have captured intensive attention in recent years as being an important part of research activities. Therefore, the demand and pressure to develop a set of indicators for the evaluation of different activities in this field have increased, too. Research institutes are being asked more and more to build up structures in order to map these activities and, thus, are obliged to demonstrate the success of these efforts. This paper aims to serve as an input to stimulate further reflection on the field of evaluation of knowledge transfer and dialogue processes in the context of climate sciences. The work performed in this paper is embedded in the efforts of the German Helmholtz Association in the research field of earth and environment and is driven by the need to apply suitable indicators for knowledge transfer and dialogue processes in climate research center evaluations. We carry out a comparative analysis of three long-term activities and derive a set of indicators for measuring their output and outcome by balancing the wide diversity and range of activity contents as well as the different tools to realize them. The case examples are based on activities which are part of the regional Helmholtz Climate Initiative Regional Climate Change (REKLIM) and the Climate Office for Polar Regions and Sea Level Rise at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Both institutional units have been working on a wide range of different knowledge transfer and dialogue processes since 2008/2009. We demonstrate that indicators for the evaluation must be based on the unique objectives of the individual activities and the framework they are embedded in (e.g., research foci which provide the background for the performed knowledge transfer and dialogue processes) but can partly be classified in a principle two-dimensional scheme. This scheme might serve as a usable basis for climate research center evaluation in the future. It, furthermore, underlines the need for further development of proper mechanisms to evaluate scientific centers, in particular with regard to knowledge transfer and dialogue processes.

  10. 50 CFR 660.713 - Drift gillnet fishery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... offices which monitor El Nino events, such as NOAA's Climate Prediction Center and the West Coast Office... event has been declared by the NOAA Climate Prediction Center. Specifically, the Assistant Administrator...

  11. 50 CFR 660.713 - Drift gillnet fishery.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... offices which monitor El Nino events, such as NOAA's Climate Prediction Center and the West Coast Office... event has been declared by the NOAA Climate Prediction Center. Specifically, the Assistant Administrator...

  12. 50 CFR 660.713 - Drift gillnet fishery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... offices which monitor El Nino events, such as NOAA's Climate Prediction Center and the West Coast Office... event has been declared by the NOAA Climate Prediction Center. Specifically, the Assistant Administrator...

  13. Climate risk and food security in Mali: A historical perspective on adaptation

    NASA Astrophysics Data System (ADS)

    Giannini, Alessandra; Krishnamurthy, P. Krishna; Cousin, Rémi; Labidi, Naouar; Choularton, Richard J.

    2017-02-01

    We combine socioeconomic data from a large-scale household survey with historical climate data to map the climate sensitivity of availability and access dimensions of food security in Mali, and infer the ways in which at-risk communities may have been impacted by persistent climatic shift. Thirty years after 1982-1984, the period of most intense drought during the protracted late 20th century drying of the Sahel, the impact of drought on livelihoods and food security is still recognizable in the Sahelian center of Mali. This impact is expressed in the larger fraction of households in this Sahelian center of the country—the agro-ecological transition between pastoralism in the north, and sedentary agriculture in the south—who practice agriculture but not livestock raising, despite environmental conditions that are suitable to their combination. These households have lower food security and rely more frequently on detrimental nutrition-based coping strategies, such as reducing the quantity or quality of meals. In contrast, the more food secure households show a clear tendency toward livelihood diversification away from subsistence agriculture. These households produce less of what they consume, yet spend less on food in proportion. The analysis points to the value of interdisciplinary research—in this case bridging climate science and vulnerability analysis—to gain a dynamical understanding of complex systems, understanding which may be exploited to address real-world challenges, offering lessons about food security and local adaptation strategies in places among the most vulnerable to climate.

  14. Educational and Scientific Applications of Climate Model Diagnostic Analyzer

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.

    2016-12-01

    Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of Two Variables, and the datasets used are NCAR CAM total cloud fraction and MODIS total cloud fraction. The scientific highlight of the use case is that the CAM5 model overall does a fairly decent job at simulating total cloud cover, though simulates too few clouds especially near and offshore of the eastern ocean basins where low clouds are dominant.

  15. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Chuang (POST) Fanglin Yang (VSDB) Perry Shafran (VERIFICATION) Ilya Rivin (HYCOM) David Behringer (MOM4 * Functional Equivalence test for MOM4p0 on GAEA - Dave Behringer * NCEP Gaea module - $NETCDF * Use a forum

  16. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Documentation, experiments, web content Nicole McKee Makefiles, scripts, launcher Edward Colon NEMSIO, post Yang GFS post Hui-ya Chuang NAM development Tom Black Dusan Jovic Jim Abeles GFS development S Moorthi

  17. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > IMPLEMENTATION INFO Home Mission Models R & D ; Extratropical Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING

  18. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING JUMP TO

  19. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > MODELS Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING SREF

  20. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > CALENDAR Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING CALENDAR

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > R & D Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING Air

  2. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    USGS Publications Warehouse

    Varela Minder, Elda; Padgett, Holly A.

    2016-04-07

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  3. Potential Seasonal Predictability of Water Cycle in Observations and Reanalysis

    NASA Astrophysics Data System (ADS)

    Feng, X.; Houser, P.

    2012-12-01

    Identification of predictability of water cycle variability is crucial for climate prediction, water resources availability, ecosystem management and hazard mitigation. An analysis that can assess the potential skill in seasonal prediction was proposed by the authors, named as analysis of covariance (ANOCOVA). This method tests whether interannual variability of seasonal means exceeds that due to weather noise under the null hypothesis that seasonal means are identical every year. It has the advantage of taking into account autocorrelation structure in the daily time series but also accounting for the uncertainty of the estimated parameters in the significance test. During the past several years, multiple reanalysis datasets have become available for studying climate variability and understanding climate system. We are motivated to compare the potential predictability of water cycle variation from different reanalysis datasets against observations using the newly proposed ANOCOVA method. The selected eight reanalyses include the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) 40-year Reanalysis Project (NNRP), the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) Reanalysis Project (NDRP), the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis, The Japan Meteorological Agency 25-year Reanalysis Project (JRA25), the ECMWF) Interim Reanalysis (ERAINT), the NCEP Climate Forecast System Reanalysis (CFSR), the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the National Oceanic and Atmospheric Administration-Cooperative Institute for Research in Environmental Sciences (NOAA/CIRES) 20th Century Reanalysis Version 2 (20CR). For key water cycle components, precipitation and evaporation, all reanalyses consistently show high fraction of predictable variance in the tropics, low predictability over the extratropics, more potential predictability over the ocean than land, and a stronger seasonal variation in potential predictability over land than ocean. The substantial differences are observed especially over the extropical areas where boundary-forced signal is not as significant as in tropics. We further evaluate the accuracy of reanalysis in estimating seasonal predictability over several selected regions, where rain gauge measurement or land surface data assimilation product is available and accurate, to gain insight on the strength and weakness of reanalysis products.

  4. The effect of organizational climate on patient-centered medical home implementation.

    PubMed

    Reddy, Ashok; Shea, Judy A; Canamucio, Anne; Werner, Rachel M

    2015-01-01

    Organizational climate is a key determinant of successful adoption of innovations; however, its relation to medical home implementation is unknown. This study examined the association between primary care providers' (PCPs') perception of organization climate and medical home implementation in the Veterans Health Administration. Multivariate regression was used to test the hypothesis that organizational climate predicts medical home implementation. This analysis of 191 PCPs found that higher scores in 2 domains of organizational climate (communication and cooperation, and orientation to quality improvement) were associated with a statistically significantly higher percentage (from 7 to 10 percentage points) of PCPs implementing structural changes to support the medical home model. In addition, some aspects of a better organizational climate were associated with improved organizational processes of care, including a higher percentage of patients contacted within 2 days of hospital discharge (by 2 to 3 percentage points) and appointments made within 3 days of a patient request (by 2 percentage points). © The Author(s) 2014.

  5. The National Oceanic and Atmospheric Administration (NOAA) Climate Services Portal: A New Centralized Resource for Distributed Climate Information

    NASA Astrophysics Data System (ADS)

    Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.

    2010-09-01

    With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.

  6. Climate Change Anticipation on Supporting Capacity of Fishing Environment in the Coastal Area of Tanjungmas Semarang City

    NASA Astrophysics Data System (ADS)

    Sari, Indah Kurniasih Wahyu; Hadi, Sudharto P.

    2018-02-01

    Climate change is no longer a debate about its existence but already a problem shared between communities, between agencies, between countries even global for handling serious because so many aspects of life and the environment is affected, especially for communities in coastal environments This climate change is a threat to the Earth, because it can affect all aspects of life and will damage the balance of life of Earth Climate change happens slowly in a fairly long period of time and it is a change that is hard to avoid. These Phenomena will give effect to the various facets of life. Semarang as areas located to Java and bordering the Java Sea are at high risk exposed to the impacts of climate change Also not a few residents of the city of Semarang who settled in the northern part of the city of Semarang and also have a livelihood as farmers/peasants and fishermen Many industrial centers or attractions that are prone to impacted by climate change. Thus, the anticipation of climate change on resources support neighborhood of fishermen in the coastal area of Tanjungmas Semarang interesting for further review. This study aims to find out more the influence of climate change on the environment of fishing identify potential danger due to the impacts of climate change on coastal areas of Tanjungmas Semarang The research was conducted through surveys, interviews and field observation without a list of questions to obtain primary and secondary data As for the analysis undertaken, namely the analysis of climate change on the coastal environment, the analysis of productivity of fishermen as well as the analysis of the likelihood of disaster risk at the coast due to climate change. From the results of the study the occurrence of sea rise as one of the indicators of climate change in the coastal City of Semarang to reach 0.8 mm/year and average soil degradation that ranged between 5 - 12 cm/year cause most coastal communities as well as the social life of the agricultural areas of its economy relies on the resources becoming increasingly erratic.

  7. NOAA Climate Information and Tools for Decision Support Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to provision of information that will help guide long-term preparedness for severe weather events and extreme conditions as well as climate variability and change GFCS recently summarized examples of existing initiatives to advance provision of climate services in the 2012 publication Climate ExChange. In this publication, NWS introduced the new Local Climate Analysis Tool (LCAT), a tool that is used to conduct local climate studies that are needed to create efficient and reliable guidance for DSS. LCAT allows for analyzing trends in local climate variables and identifying local impacts of climate variability (e.g., ENSO) on weather and water conditions. In addition to LCAT, NWS, working in partnership with the North East Regional Climate center, released xmACIS version 2, a climate data mining tool, for NWS field operations. During this talk we will demonstrate LCAT and xmACIS as well as outline several examples of their application to DSS and its potential use for achieving GFCS goals. The examples include LCAT-based temperature analysis for energy decisions, guidance on weather and water events leading to increased algal blooms and red tide months in advance, local climate sensitivities to droughts, probabilities of hot/cold conditions and their potential impacts on agriculture and fish kills or fish stress.

  8. Remote Sensing the Thermal and Humidity Structure of the Earth's Atmosphere Using the GPS Radio Occultation Technique: Applications in Climate Studies

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.; Verkhoglyadova, O. P.; Iijima, B.

    2017-12-01

    This presentation introduces the fundamentals of the Global Positioning System radio occultation (GPS RO) remote sensing technique in retrieving atmospheric temperature and humidity information and presents the use of these observations in climate research. Our objective is to demonstrate and establish the GPS RO remote sensing technique as a complementary data set to existing state-of-the-art space-based platforms for climate studies. We show how GPS RO measurements at 1.2-1.6 GHz frequency band can be used to infer the upper tropospheric water vapor and temperature feedbacks and we present a decade-long specific humidity (SH) record from January 2007 until December 2015. We cross-compare the GPS RO-estimated climate feedbacks and the SH long-record with independent data sets from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), the European Center for Medium-range Weather Forecasts Re-Analysis Interim (ERA-Interim), and the Atmospheric Infrared Sounder (AIRS) instrument. These cross-comparisons serve as a performance guide for the GPS-RO observations with respect to other data sets by providing an independent measure of climate feedbacks and humidity short-term trends.

  9. Earth Radiation Budget Research at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  10. The NOAA Local Climate Analysis Tool - An Application in Support of a Weather Ready Nation

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Horsfall, F. M.

    2012-12-01

    Citizens across the U.S., including decision makers from the local to the national level, have a multitude of questions about climate, such as the current state and how that state fits into the historical context, and more importantly, how climate will impact them, especially with regard to linkages to extreme weather events. Developing answers to these types of questions for locations has typically required extensive work to gather data, conduct analyses, and generate relevant explanations and graphics. Too frequently providers don't have ready access to or knowledge of reliable, trusted data sets, nor sound, scientifically accepted analysis techniques such that they can provide a rapid response to queries they receive. In order to support National Weather Service (NWS) local office forecasters with information they need to deliver timely responses to climate-related questions from their customers, we have developed the Local Climate Analysis Tool (LCAT). LCAT uses the principles of artificial intelligence to respond to queries, in particular, through use of machine technology that responds intelligently to input from users. A user translates customer questions into primary variables and issues and LCAT pulls the most relevant data and analysis techniques to provide information back to the user, who in turn responds to their customer. Most responses take on the order of 10 seconds, which includes providing statistics, graphical displays of information, translations for users, metadata, and a summary of the user request to LCAT. Applications in Phase I of LCAT, which is targeted for the NWS field offices, include Climate Change Impacts, Climate Variability Impacts, Drought Analysis and Impacts, Water Resources Applications, Attribution of Extreme Events, and analysis techniques such as time series analysis, trend analysis, compositing, and correlation and regression techniques. Data accessed by LCAT are homogenized historical COOP and Climate Prediction Center climate division data available at NCDC. Applications for other NOAA offices and Federal agencies are currently being investigated, such as incorporation of tidal data, fish stocks, sea surface temperature, health-related data, and analyses relevant to those datasets. We will describe LCAT, its basic functionality, examples of analyses, and progress being made to provide the tool to a broader audience in support of ocean, fisheries, and health applications.

  11. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  12. Data and Data Products for Climate Research: Web Services at the Asia-Pacific Data-Research Center (APDRC)

    NASA Astrophysics Data System (ADS)

    DeCarlo, S.; Potemra, J. T.; Wang, K.

    2012-12-01

    The International Pacific Research Center (IPRC) at the University of Hawaii maintains a data center for climate studies called the Asia-Pacific Data-Research Center (APDRC). This data center was designed within a center of excellence in climate research with the intention of serving the needs of the research scientist. The APDRC provides easy access to a wide collection of climate data and data products for a wide variety of users. The data center maintains an archive of approximately 100 data sets including in-situ and remote data, as well as a range of model-based output. All data are available via on-line browsing tools such as a Live Access Server (LAS) and DChart, and direct binary access is available through OPeNDAP services. On-line tutorials on how to use these services are now available. Users can keep up-to-date with new data and product announcements via the APDRC facebook page. The main focus of the APDRC has been climate scientists, and the services are therefore streamlined to such users, both in the number and types of data served, but also in the way data are served. In addition, due to the integration of the APDRC within the IPRC, several value-added data products (see figure for an example using Argo floats) have been developed via a variety of research activities. The APDRC, therefore, has three main foci: 1. acquisition of climate-related data, 2. maintenance of integrated data servers, and 3. development and distribution of data products The APDRC can be found at http://apdrc.soest.hawaii.edu. The presentation will provide an overview along with specific examples of the data, data products and data services available at the APDRC.; APDRC product example: gridded field from Argo profiling floats

  13. Analysis of the Impact of Climate Change on Extreme Hydrological Events in California

    NASA Astrophysics Data System (ADS)

    Ashraf Vaghefi, Saeid; Abbaspour, Karim C.

    2016-04-01

    Estimating magnitude and occurrence frequency of extreme hydrological events is required for taking preventive remedial actions against the impact of climate change on the management of water resources. Examples include: characterization of extreme rainfall events to predict urban runoff, determination of river flows, and the likely severity of drought events during the design life of a water project. In recent years California has experienced its most severe drought in recorded history, causing water stress, economic loss, and an increase in wildfires. In this paper we describe development of a Climate Change Toolkit (CCT) and demonstrate its use in the analysis of dry and wet periods in California for the years 2020-2050 and compare the results with the historic period 1975-2005. CCT provides four modules to: i) manage big databases such as those of Global Climate Models (GCMs), ii) make bias correction using observed local climate data , iii) interpolate gridded climate data to finer resolution, and iv) calculate continuous dry- and wet-day periods based on rainfall, temperature, and soil moisture for analysis of drought and flooding risks. We used bias-corrected meteorological data of five GCMs for extreme CO2 emission scenario rcp8.5 for California to analyze the trend of extreme hydrological events. The findings indicate that frequency of dry period will increase in center and southern parts of California. The assessment of the number of wet days and the frequency of wet periods suggests an increased risk of flooding in north and north-western part of California, especially in the coastal strip. Keywords: Climate Change Toolkit (CCT), Extreme Hydrological Events, California

  14. Weather and seasonal climate prediction for South America using a multi-model superensemble

    NASA Astrophysics Data System (ADS)

    Chaves, Rosane R.; Ross, Robert S.; Krishnamurti, T. N.

    2005-11-01

    This work examines the feasibility of weather and seasonal climate predictions for South America using the multi-model synthetic superensemble approach for climate, and the multi-model conventional superensemble approach for numerical weather prediction, both developed at Florida State University (FSU). The effect on seasonal climate forecasts of the number of models used in the synthetic superensemble is investigated. It is shown that the synthetic superensemble approach for climate and the conventional superensemble approach for numerical weather prediction can reduce the errors over South America in seasonal climate prediction and numerical weather prediction.For climate prediction, a suite of 13 models is used. The forecast lead-time is 1 month for the climate forecasts, which consist of precipitation and surface temperature forecasts. The multi-model ensemble is comprised of four versions of the FSU-Coupled Ocean-Atmosphere Model, seven models from the Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction (DEMETER), a version of the Community Climate Model (CCM3), and a version of the predictive Ocean Atmosphere Model for Australia (POAMA). The results show that conditions over South America are appropriately simulated by the Florida State University Synthetic Superensemble (FSUSSE) in comparison to observations and that the skill of this approach increases with the use of additional models in the ensemble. When compared to observations, the forecasts are generally better than those from both a single climate model and the multi-model ensemble mean, for the variables tested in this study.For numerical weather prediction, the conventional Florida State University Superensemble (FSUSE) is used to predict the mass and motion fields over South America. Predictions of mean sea level pressure, 500 hPa geopotential height, and 850 hPa wind are made with a multi-model superensemble comprised of six global models for the period January, February, and December of 2000. The six global models are from the following forecast centers: FSU, Bureau of Meteorology Research Center (BMRC), Japan Meteorological Agency (JMA), National Centers for Environmental Prediction (NCEP), Naval Research Laboratory (NRL), and Recherche en Prevision Numerique (RPN). Predictions of precipitation are made for the period January, February, and December of 2001 with a multi-analysis-multi-model superensemble where, in addition to the six forecast models just mentioned, five additional versions of the FSU model are used in the ensemble, each with a different initialization (analysis) based on different physical initialization procedures. On the basis of observations, the results show that the FSUSE provides the best forecasts of the mass and motion field variables to forecast day 5, when compared to both the models comprising the ensemble and the multi-model ensemble mean during the wet season of December-February over South America. Individual case studies show that the FSUSE provides excellent predictions of rainfall for particular synoptic events to forecast day 3. Copyright

  15. NOAA's world-class weather and climate prediction center opens at

    Science.gov Websites

    StumbleUpon Digg More Destinations NOAA's world-class weather and climate prediction center opens at currents and large-scale rain and snow storms. Billions of earth observations from around the world flow operations. Investing in this center is an investment in our human capital, serving as a world class facility

  16. The Benefits of Incorporating Shipping Containers into the Climate Change Adaption Plans at NASA Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Hamilton, Carl Kenneth Gonzaga

    2017-01-01

    The National Aeronautics and Space Administration has several centers and facilities located near the coast that are undoubtedly susceptible to climate change. One of those facilities is Wallops Flight Facility on the Eastern Shore of Virginia which is separated into three areas: Main Base, Mainland, and the Island. Wallops Island has numerous buildings and assets that are vulnerable to flood inundation, intense storms, and storm surge. The shoreline of Wallops Island is prone to beach erosion and is slated for another beach replenishment project in 2019. In addition, current climate projections for NASAs centers and facilities, conducted by the Climate Adaptation Science Investigators, warn of inevitable increases in annual temperature, precipitation, sea level rise, and extreme events such as heat waves. The aforementioned vulnerabilities Wallops Island faces in addition to the projections of future climate change reveal an urgency for NASA to adjust how new buildings at its centers and facilities near the coast are built to adapt to the inevitable effects of climate change. Although the agency has made strides to mitigate the effects of climate change by incorporating L.E.E.D. into new buildings that produce less greenhouse gas, the strides for the agency to institute clear climate adaptation policies for the buildings at its centers and facilities near the coast seem to lag behind. As NASA continues to formulate formidable climate change adaptation plans for its centers and facilities, an architectural trend that should be examined for its potential to replace several old buildings at Wallops Island is shipping containers buildings. Shipping containers or Intermodal Steel Building Units offer an array of benefits such as strength, durability, versatility, modular, and since they can be upcycled, they are also eco-friendly. Some disadvantages of shipping containers are they contain harmful chemicals, insulation must be added, fossil fuels must be used to transport them to the site, and multiple ISBUs are needed. However, the benefits of shipping container buildings could be utilized at NASA centers or facilities near the coast such as Wallops Island on new buildings that are designed to adapt to the impending effects of climate change. Thus, this Masters Research Project will explore how those benefits can be incorporated into the climate change adaptation plans at Wallops Island and make recommendations for policy guidelines and shipping container buildings specific to Wallops Island.

  17. Climate signature of Northwest U.S. precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Kushnir, Y.; Nakamura, J.

    2017-12-01

    The climate signature of precipitation extremes in the Northwest U.S. - the region that includes Oregon, Washington, Idaho, Montana and Wyoming - is studied using composite analysis of atmospheric fields leading to and associated with extreme rainfall events. A K-Medoids cluster analysis is applied to winter (November-February) months, maximum 5-day precipitation amounts calculated from 1-degree gridded daily rainfall between 1950/51 and 2013/14. The clustering divides the region into three sub-regions: one over the far eastern part of the analysis domain, includeing most of Montana and Wyoming. Two other sub-regions are in the west, lying north and south of the latitude of 45N. Using the time series corresponding to the Medoid centers, we extract the largest (top 5%) monthly extreme events to form the basis for the composite analysis. The main circulation feature distinguishing a 5-day extreme precipitation event in the two western sub-regions of the Northwest is the presence of a large, blocking, high pressure anomaly over the Gulf of Alaska about a week before the beginning of the 5-day intense precipitation event. The high pressure center intensifies considerably with time, drifting slowly westward, up to a day before the extreme event. During that time, a weak low pressure centers appears at 30N, to the southwest of the high, deepening as it moves east. As the extreme rainfall event is about to begin, the now deep low is encroaching on the Northwest coast while its southern flank taps well south into the subtropical Pacific, drawing moisture from as south as 15N. During the 5-day extreme precipitation event the high pressure center moves west and weakens while the now intense low converges large amounts of subtropical moisture to precipitate over the western Northwest. The implication of this analysis for extended range prediction is assessed.

  18. 78 FR 57604 - Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for Gunnison Sage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... likely impacts of climate change on the Gunnison sage-grouse and proposed critical habitat. (11) With... draft economic analysis, or the draft environmental assessment by mail from the Western Colorado Field... public hearing will be held at Western State Colorado University, University Center, 600 N. Adams Street...

  19. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post missed NDAS cycles since 1 Apr 1995 Log of NAM model code changes Log of NAM model test runs Problems and Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 Page Author: EMC Webmaster Page

  20. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post do data transfer from Gaea to Vapor; DTN (Nwave) has set up for all users but wants one user to test numerous cpu intensive scripts? Click here to view more information Open Effects of the problem: NCEP pre

  1. Legacy data center integration into distributed data federations: The World Data Center for Climate (WDCC) experience

    NASA Astrophysics Data System (ADS)

    Kindermann, Stephan; Berger, Katharina; Toussaint, Frank

    2014-05-01

    The integration of well-established legacy data centers into newly developed data federation infrastructures is a key requirement to enhance climate data access based on widely agreed interfaces. We present the approach taken to integrate the ICSU World Data Center for Climate (WDCC) located in Hamburg, Germany into the European ENES climate data Federation which is part of the international ESGF data federation. The ENES / ESGF data federation hosts petabytes of climate model data and provides scalable data search and access services across the worldwide distributed data centers. Parts of the data provided by the ENES / ESGF data federation is also long term archived and curated at the WDCC data archive, allowing e.g. for DOI based data citation. An integration of the WDCC into the ENES / ESGF federation allows end users to search and access WDCC data using consistent interfaces worldwide. We will summarize the integration approach we have taken for WDCC legacy system and ESGF infrastructure integration. On the technical side we describe the provisioning of ESGF consistent metadata and data interfaces as well as the security infrastructure adoption. On the non-technical side we describe our experiences in integrating a long-term archival center with costly quality assurance procedures with an integrated distributed data federation putting emphasis on providing early and consistent data search and access services to scientists. The experiences were gained in the process of curating ESGF hosted CMIP5 data at the WDCC. Approximately one petabyte of CMIP5 data which was used for the IPCC climate report is being replicated and archived at the WDCC.

  2. Impact of four-dimensional data assimilation (FDDA) on urban climate analysis

    NASA Astrophysics Data System (ADS)

    Pan, Linlin; Liu, Yubao; Liu, Yuewei; Li, Lei; Jiang, Yin; Cheng, Will; Roux, Gregory

    2015-12-01

    This study investigates the impact of four-dimensional data assimilation (FDDA) on urban climate analysis, which employs the NCAR (National Center for Atmospheric Research) WRF (the weather research and forecasting model) based on climate FDDA (CFDDA) technology to develop an urban-scale microclimatology database for the Shenzhen area, a rapidly developing metropolitan located along the southern coast of China, where uniquely high-density observations, including ultrahigh-resolution surface AWS (automatic weather station) network, radio sounding, wind profilers, radiometers, and other weather observation platforms, have been installed. CFDDA is an innovative dynamical downscaling regional climate analysis system that assimilates diverse regional observations; and has been employed to produce a 5 year multiscale high-resolution microclimate analysis by assimilating high-density observations at Shenzhen area. The CFDDA system was configured with four nested-grid domains at grid sizes of 27, 9, 3, and 1 km, respectively. This research evaluates the impact of assimilating high-resolution observation data on reproducing the refining features of urban-scale circulations. Two experiments were conducted with a 5 year run using CFSR (climate forecast system reanalysis) as boundary and initial conditions: one with CFDDA and the other without. The comparisons of these two experiments with observations indicate that CFDDA greatly reduces the model analysis error and is able to realistically analyze the microscale features such as urban-rural-coastal circulation, land/sea breezes, and local-hilly terrain thermal circulations. It is demonstrated that the urbanization can produce 2.5 k differences in 2 m temperatures, delays/speeds up the land/sea breeze development, and interacts with local mountain-valley circulations.

  3. DOI Climate Science Centers--Regional science to address management priorities

    USGS Publications Warehouse

    O'Malley, Robin

    2012-01-01

    Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.

  4. Evaluation of the CFSv2 CMIP5 decadal predictions

    NASA Astrophysics Data System (ADS)

    Bombardi, Rodrigo J.; Zhu, Jieshun; Marx, Lawrence; Huang, Bohua; Chen, Hua; Lu, Jian; Krishnamurthy, Lakshmi; Krishnamurthy, V.; Colfescu, Ioana; Kinter, James L.; Kumar, Arun; Hu, Zeng-Zhen; Moorthi, Shrinivas; Tripp, Patrick; Wu, Xingren; Schneider, Edwin K.

    2015-01-01

    Retrospective decadal forecasts were undertaken using the Climate Forecast System version 2 (CFSv2) as part of Coupled Model Intercomparison Project 5. Decadal forecasts were performed separately by the National Center for Environmental Prediction (NCEP) and by the Center for Ocean-Land-Atmosphere Studies (COLA), with the centers using two different analyses for the ocean initial conditions the NCEP Climate Forecast System Reanalysis (CFSR) and the NEMOVAR-COMBINE analysis. COLA also examined the sensitivity to the inclusion of forcing by specified volcanic aerosols. Biases in the CFSv2 for both sets of initial conditions include cold midlatitude sea surface temperatures, and rapid melting of sea ice associated with warm polar oceans. Forecasts from the NEMOVAR-COMBINE analysis showed strong weakening of the Atlantic Meridional Overturning Circulation (AMOC), eventually approaching the weaker AMOC associated with CFSR. The decadal forecasts showed high predictive skill over the Indian, the western Pacific, and the Atlantic Oceans and low skill over the central and eastern Pacific. The volcanic forcing shows only small regional differences in predictability of surface temperature at 2m (T2m) in comparison to forecasts without volcanic forcing, especially over the Indian Ocean. An ocean heat content (OHC) budget analysis showed that the OHC has substantial memory, indicating potential for the decadal predictability of T2m; however, the model has a systematic drift in global mean OHC. The results suggest that the reduction of model biases may be the most productive path towards improving the model's decadal forecasts.

  5. Advancing Heliophysics Student Research and Public Outreach in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S. A.; Frost, J.; Cheung, T. K.; Tremberger, G.; Robbins, I.; Paglione, T.; Damas, C.; Steiner, J. C.; Rudolph, E.; Carlson, B. E.; Lewis, E.; Cline, T. D.; Zalava-Gutierrez, R.; Howard, A.; Morris, P. A.; Reiff, P. H.; Scalzo, F.; Chow, Y.; Stewart, A.; Zamor, P.; Brathwaite, K.; Barley, R.; Tulsee, T.

    2012-12-01

    During 2012, City University of New York (CUNY) and NASA Goddard Space Fight Center (GSFC) Heliophysics Research and Education Consortium centered on faculty and undergraduate research, as well as public outreach. Research areas spanned Heliophysics from solar surface to Earth's magnetosphere/ionosphere, microsatellite development for ionospheric experiments and climate change investigations. The Summer 2012 research teams were located at CUNY campuses and GSFC. Fourteen undergraduate students participated; four are female and eleven are underrepresented minorities. Topics included: Analyzing the Links Between Aurora Borealis, Magnetic Reconnection, and Substorms; Solar Energy Upsurge in 2012-Jun Active Region 1520 with 2010-Jun Active Region 1108 Calibration; Solar Limb Active Region 1515 Analysis and Coronal Heating; Testing Solar Energetic Particle Origin Through COMPTEL Small X-Ray Line Flares; Investigation of Sunspot Regions connection to Coronal Mass Ejections and Solar Flares; A Study of the Stratospheric Aerosols on Jupiter Using Hubble Space Telescope Data; An Integration and Testing Methodology for a Nanosatellite; Software Architecture for Autonomous Control; Combining Passive Polarimetric Remote Sensing and Advanced Measurements of Lidar Intensive Variables in Vertically Resolved Aerosol Retrievals; Tropospheric Ozone Investigations in New York City; The Effects of the Arctic, North Atlantic and El Niño-Southern Oscillation on Climate in the New York Metropolitan Area; Fluctuation Analysis of Magnetic Tornadoes Simulation Model; Ocean Mixing Models Parameterization for Climate Studies; and Analyses of Colloidal Leachate Recovered from Field- and Laboratory-Experiments on Bio-reacted Mining Waste. Public outreach activities included Space Weather workshops, for high school teachers and undergraduate students, conducted by GSFC Space Weather Action Center scientist and a week of CUNY-wide activities for Sun-Earth Day conducted by CUNY faculty and external university partners. The project is supported by NASA awards NNX10AE72G and NNX09AL77G.

  6. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations

    NASA Astrophysics Data System (ADS)

    Dogar, Muhammad Mubashar; Stenchikov, Georgiy; Osipov, Sergey; Wyman, Bruce; Zhao, Ming

    2017-08-01

    The Middle East and North Africa (MENA) regional climate appears to be extremely sensitive to volcanic eruptions. Winter cooling after the 1991 Pinatubo eruption far exceeded the mean hemispheric temperature anomaly, even causing snowfall in Israel. To better understand MENA climate variability, the climate responses to the El Chichón and Pinatubo volcanic eruptions are analyzed using observations, NOAA/National Centers for Environmental Prediction Climate Forecast System Reanalysis, and output from the Geophysical Fluid Dynamics Laboratory's High-Resolution Atmospheric Model. A multiple regression analysis both for the observations and the model output is performed on seasonal summer and winter composites to separate out the contributions from climate trends, El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian summer monsoon, and volcanic aerosols. Strong regional temperature and precipitation responses over the MENA region are found in both winter and summer. The model and the observations both show that a positive NAO amplifies the MENA volcanic winter cooling. In boreal summer, the patterns of changing temperature and precipitation suggest a weakening and southward shift of the Intertropical Convergence Zone, caused by volcanic surface cooling and weakening of the Indian and West African monsoons. The model captures the main features of the climate response; however, it underestimates the total cooling, especially in winter, and exhibits a different spatial pattern of the NAO climate response in MENA compared to the observations. The conducted analysis sheds light on the internal mechanisms of MENA climate variability and helps to selectively diagnose the model deficiencies.

  7. Approaches to Climate Change & Health in Cuba: Guillermo Mesa MD MPhil, Director, Disasters & Health, National School of Public Health. Paulo Ortiz MS PhD, Senior Researcher, Climate Center, Cuban Meteorology Institute.

    PubMed

    Mesa, Guillermo; Ortiz, Paulo; Gorry, Conner

    2015-04-01

    The US National Institutes of Health predict climate change will cause an additional 250,000 deaths between 2030 and 2050, with damages to health costing US$2-$4 billion by 2030. Although much debate still surrounds climate change, island ecosystems-such as Cuba's-in the developing world are arguably among the most vulnerable contexts in which to confront climate variability. Beginning in the 1990s, Cuba launched research to develop the evidence base, set policy priorities, and design mitigation and adaptation actions specifically to address climate change and its effects on health. Two researchers at the forefront of this interdisciplinary, intersectoral effort are epidemiologist Dr Guillermo Mesa, who directed design and implementation of the nationwide strategy for disaster risk reduction in the Cuban public health system as founding director of the Latin American Center for Disaster Medicine (CLAMED) and now heads the Disasters and Health department at the National School of Public Health; and Dr Paulo Ortiz, a biostatistician and economist at the Cuban Meteorology Institute's Climate Center (CENCLIM), who leads the research on Cuba's Climate and Health project and is advisor on climate change and health for the UN Economic Commission for Latin America and the Caribbean (ECLAC).

  8. Nurses' perception of ethical climate at a large academic medical center.

    PubMed

    Lemmenes, Donna; Valentine, Pamela; Gwizdalski, Patricia; Vincent, Catherine; Liao, Chuanhong

    2016-09-07

    Nurses are confronted daily with ethical issues while providing patient care. Hospital ethical climates can affect nurses' job satisfaction, organizational commitment, retention, and physician collaboration. At a metropolitan academic medical center, we examined nurses' perceptions of the ethical climate and relationships among ethical climate factors and nurse characteristics. We used a descriptive correlational design and nurses (N = 475) completed Olson's Hospital Ethical Climate Survey. Data were analyzed using STATA. Approvals by the Nursing Research Council and Institutional Review Board were obtained; participants' rights were protected. Nurses reported an ethical climate total mean score of 3.22 ± 0.65 that varied across factors; significant differences were found for ethical climate scores by nurses' age, race, and specialty area. These findings contribute to what is known about ethical climate and nurses' characteristics and provides the foundation to develop strategies to improve the ethical climate in work settings. © The Author(s) 2016.

  9. Climate Literacy: Progress in AMS Climate Studies Undergraduate Course in Meteorology Program at Jackson State University

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2013-12-01

    AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide and increasing involvement of under-represented groups The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. The AMS Climate Studies Diversity Project Workshop participation is on a first-come, first-serve basis as determined by the date-of-receipt of the License Order Form. To grow AMS Diversity Programs to their fullest extent, institutions are encouraged to nominate course instructors who did not previously attend Diversity Project workshops. Until three months before the workshop, two-thirds of the workshop positions would be reserved for institutions new to AMS Diversity Projects. The AMS five day course implementation workshop was held in Washington, DC, during May 24-29, 2012. It covered essential course topics in climate science and global climate change, and strategies for course implementation. Talks would feature climate science and sustainability experts from Federal agencies and area research institutions, such as NASA, NOAA, University of Maryland, Howard University, George Mason University, and other Washington, DC, area institutions. The workshop would also include visits to NASA Goddard Space Flight Center and NOAA's Climate Prediction Center. JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2014. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and applied concepts of climatology, and climate change for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional and global climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more advanced courses.

  10. Method and Early Results of Applying the Global Land Data Assimilation System (GLDAS) in the Third Global Reanalysis of NCEP

    NASA Astrophysics Data System (ADS)

    Meng, J.; Mitchell, K.; Wei, H.; Yang, R.; Kumar, S.; Geiger, J.; Xie, P.

    2008-05-01

    Over the past several years, the Environmental Modeling Center (EMC) of the National Centers for Environmental Prediction (NCEP) of the U.S. National Weather Service has developed a Global Land Data Assimilation System (GLDAS). For its computational infrastructure, the GLDAS applies the NASA Land Information System (LIS), developed by the Hydrological Science Branch of NASA Goddard Space Flight Center. The land model utilized in the NCEP GLDAS is the NCEP Noah Land Surface Model (Noah LSM). This presentation will 1) describe how the GLDAS component has been included in the development of NCEP's third global reanalysis (with special attention to the input sources of global precipitation), and 2) will present results from the GLDAS component of pilot tests of the new NCEP global reanalysis. Unlike NCEP's past two global reanalysis projects, this new NCEP global reanalysis includes both a global land data assimilation system (GLDAS) and a global ocean data assimilation system (GODAS). The new global reanalysis will span 30-years (1979-2008) and will include a companion realtime operational component. The atmospheric, ocean, and land states of this global reanalysis will provide the initial conditions for NCEP's 3rd- generation global coupled Climate Forecast System (CFS). NCEP is now preparing to launch a 28-year seasonal reforecast project with its new CFS, to provide the reforecast foundation for operational NCEP seasonal climate forecasts using the new CFS. Together, the new global reanalysis and companion CFS reforecasts constitute what NCEP calls the Climate Forecast System Reanalysis and Reforecast (CFSRR) project. Compared to the previous two generations of NCEP global reanalysis, the hallmark of the GLDAS component of CFSRR is GLDAS use of global analyses of observed precipitation to drive the land surface component of the reanalysis (rather than the typical reanalysis approach of using precipitation from the assimilating background atmospheric model). Specifically, the GLDAS merges two global analyses of observed precipitation produced by the Climate Prediction Center (CPC) of NCEP, as follows: 1) a new CPC daily gauge-only land-only global precipitation analysis at 0.5-degree resolution and 2) the well-known CPC CMAP global 2.0 x 2.5 degree 5-day precipitation analysis, which utilizes satellite estimates of precipitation, as well as some gauge observations. The presentation will describe how these two analyses are merged with latitude-dependent weights that favor the gauge-only analysis in mid-latitudes and the satellite-dominated CMAP analysis in tropical latitudes. Finally, we will show some impacts of using GLDAS to initialize the land states of seasonal CFS reforecasts, versus using the previous generation of NCEP global reanalysis as the source for CFS initial land states.

  11. Climate Variability and Impact at NASA's Marshal Space Flight Center

    NASA Technical Reports Server (NTRS)

    Smoot, James L.; Jedlovec, Gary; Williams, Brett

    2013-01-01

    Climate analysis for the Southeast U. S. has indicated that inland regions have experienced an average temperature increase of 2F since 1970. This trend is generally characterized by warmer winters with an indication of increased precipitation in the Fall season. Extended periods of limited rainfall in the Spring and Summer periods have had greater areal coverage and, at other times the number of precipitation events has been increasing. Climate model projections for the next 10-70 years indicate warmer temperatures for the Southeast U.S., particularly in the Spring and Summer, with some indication of more extremes in temperature and precipitation as shown in the table below. The realization of these types of regional climate changes in the form of extended heat waves and droughts and their subsequent stress on facilities, infrastructure, and workforce could have substantial impact on the activities and functions of NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This presentation will present the results of an examination of the 100 year temperature and precipitation record for MSFC. Local warming has cause an increase in daily maximum and minimum temperatures by nearly 3F, with a substantial increase in the number of maximum temperatures exceeding 90F and a decrease in the number of days with minimum temperatures below freezing. These trends have substantial impact of the number of heating / cooling degree days for the area. Yearly precipitation totals are inversely correlated with the change in mean temperature and the frequency of heavy rain events has remain consistent with the changes in yearly totals. An extended heat wave index was developed which shows an increase in frequency of heat waves over the last 35 years and a subsequent reduction in precipitation during the heat waves. This trend will contribute to more intense drought conditions over the northern Alabama region, increasing the potential of destructive wildfires in and around the Center. MSFC has begun using this climate change information to adapt short-term and long-term plans for Center operations.

  12. The potential of exceptional climate change education on individual lifetime carbon emissions

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Centeno, D.; Todd, A. M.

    2016-12-01

    Strategies to mitigate climate change often center on clean technologies such as electric vehicles and solar panels, while the mitigation potential of a quality educational experience is rarely discussed. We investigate the role of education on individual carbon emissions using case studies from an intensive one-year university general education course focused on climate science and solutions. Results from this analysis demonstrate that students who completed the university course had significantly lower carbon emissions compared to a control group. If such an educational experience could be expanded throughout the United States, we estimate that education could be as valuable a climate change mitigation method as improving the fuel efficiency of automobiles. Relatedly, we also report on a new approach to apply real-time cloud based data to track the environmental impact of students during their participation in educational climate change programs. Such a tool would help illustrate the potential of education as a viable carbon mitigation strategy.

  13. Global atmospheric circulation statistics, 1000-1 mb

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1992-01-01

    The atlas presents atmospheric general circulation statistics derived from twelve years (1979-90) of daily National Meteorological Center (NMC) operational geopotential height analyses; it is an update of a prior atlas using data over 1979-1986. These global analyses are available on pressure levels covering 1000-1 mb (approximately 0-50 km). The geopotential grids are a combined product of the Climate Analysis Center (which produces analyses over 70-1 mb) and operational NMC analyses (over 1000-100 mb). Balance horizontal winds and hydrostatic temperatures are derived from the geopotential fields.

  14. 50 CFR 660.713 - Drift gillnet fishery.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries... offices which monitor El Nino events, such as NOAA's Climate Prediction Center and the West Coast Office... event has been declared by the NOAA Climate Prediction Center. Specifically, the Assistant Administrator...

  15. 50 CFR 660.713 - Drift gillnet fishery.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Highly Migratory Fisheries... offices which monitor El Nino events, such as NOAA's Climate Prediction Center and the West Coast Office... event has been declared by the NOAA Climate Prediction Center. Specifically, the Assistant Administrator...

  16. The creation of a pedagogy of promise: Examples of educational excellence in high-stakes science classrooms

    NASA Astrophysics Data System (ADS)

    McCollough, Cherie A.

    The current reform movement in education has two forces that appear contradictory in nature. The first is an emphasis on rigor and accountability that is assessed through high-stakes testing. The second is the recommendation to have student centered approaches to teaching and learning, especially those that emphasize inquiry methodology and constructivist pedagogy. Literature reports that current reform efforts involving accountability through high-stakes tests are detrimental to student learning and are contradictory to student-centered teaching approaches. However, by focusing attention on those teachers who "teach against the grain" and raise the achievement levels of students from diverse backgrounds, instructional strategies and personal characteristics of exemplary teachers can be identified. This mixed-methods research study investigated four exemplary urban high school science teachers in high-stakes (TAKS) tested science classrooms. Classroom observations, teacher and student interviews, pre-/postcontent tests and the Constructivist Learning Environment Survey (CLES) (Johnson & McClure, 2004) provided the main data sources. The How People Learn (National Research Council, 2000) theoretical framework provided evidence of elements of inquiry-based, student-centered teaching. Descriptive case analysis (Yin, 1994) and quantitative analysis of pre/post tests and the CLES revealed the following results. First, all participating teachers included elements of learner-centeredness, knowledge-centeredness, assessment-centeredness and community-centeredness in their teaching as recommended by the National Research Council, (2000), thus creating student-centered classroom environments. Second, by establishing a climate of caring where students felt supported and motivated to learn, teachers managed tensions resulting from the incorporation of student-centered elements and the accountability-based instructional mandates outlined by their school district and state agencies. For example, their classroom climate was fair and democratic with elements of mutual respect, student advocacy, the freedom to make mistakes, and student-teacher negotiation practices. Common teacher qualities included being enthusiastic, life-long learners with high expectations for students. When teachers did not agree with administrative mandates that were not in the best interest of their students, they utilized a "close-door" policy. This report provides recommendations including the increased development of student-centered curricula, using multiple test-criteria versus one single standardized test, and increased teacher training to assist in the creation of a climate of caring. Future studies are also suggested.

  17. VEMAP Phase 2 bioclimatic database. I. Gridded historical (20th century) climate for modeling ecosystem dynamics across the conterminous USA

    USGS Publications Warehouse

    Kittel, T.G.F.; Rosenbloom, N.A.; Royle, J. Andrew; Daly, Christopher; Gibson, W.P.; Fisher, H.H.; Thornton, P.; Yates, D.N.; Aulenbach, S.; Kaufman, C.; McKeown, R.; Bachelet, D.; Schimel, D.S.; Neilson, R.; Lenihan, J.; Drapek, R.; Ojima, D.S.; Parton, W.J.; Melillo, J.M.; Kicklighter, D.W.; Tian, H.; McGuire, A.D.; Sykes, M.T.; Smith, B.; Cowling, S.; Hickler, T.; Prentice, I.C.; Running, S.; Hibbard, K.A.; Post, W.M.; King, A.W.; Smith, T.; Rizzo, B.; Woodward, F.I.

    2004-01-01

    Analysis and simulation of biospheric responses to historical forcing require surface climate data that capture those aspects of climate that control ecological processes, including key spatial gradients and modes of temporal variability. We developed a multivariate, gridded historical climate dataset for the conterminous USA as a common input database for the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), a biogeochemical and dynamic vegetation model intercomparison. The dataset covers the period 1895-1993 on a 0.5?? latitude/longitude grid. Climate is represented at both monthly and daily timesteps. Variables are: precipitation, mininimum and maximum temperature, total incident solar radiation, daylight-period irradiance, vapor pressure, and daylight-period relative humidity. The dataset was derived from US Historical Climate Network (HCN), cooperative network, and snowpack telemetry (SNOTEL) monthly precipitation and mean minimum and maximum temperature station data. We employed techniques that rely on geostatistical and physical relationships to create the temporally and spatially complete dataset. We developed a local kriging prediction model to infill discontinuous and limited-length station records based on spatial autocorrelation structure of climate anomalies. A spatial interpolation model (PRISM) that accounts for physiographic controls was used to grid the infilled monthly station data. We implemented a stochastic weather generator (modified WGEN) to disaggregate the gridded monthly series to dailies. Radiation and humidity variables were estimated from the dailies using a physically-based empirical surface climate model (MTCLIM3). Derived datasets include a 100 yr model spin-up climate and a historical Palmer Drought Severity Index (PDSI) dataset. The VEMAP dataset exhibits statistically significant trends in temperature, precipitation, solar radiation, vapor pressure, and PDSI for US National Assessment regions. The historical climate and companion datasets are available online at data archive centers. ?? Inter-Research 2004.

  18. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  19. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  20. NOAA OI SST Analysis

    Science.gov Websites

    will be referred to as OI.v2. The most significant change for the OI.v2 is the improved simulation of SST obs from sea ice data following a technique developed at the UK Met Office. This change has developed at the Climate Prediction Center using the method of Reynolds and Smith (1995) and Smith and

  1. Widespread, Very Heavy Precipitation Events in Contemporary and Scenario Summer Climates from NARCCAP Simulations

    NASA Astrophysics Data System (ADS)

    Kawazoe, S.; Gutowski, W. J., Jr.

    2015-12-01

    We analyze the ability of regional climate models (RCMs) to simulate very heavy daily precipitation and supporting processes for both contemporary and future-scenario simulations during summer (JJA). RCM output comes from North American Regional Climate Change Assessment Program (NARCCAP) simulations, which are all run at a spatial resolution of 50 km. Analysis focuses on the upper Mississippi basin for summer, between 1982-1998 for the contemporary climate, and 2052-2068 during the scenario climate. We also compare simulated precipitation and supporting processes with those obtained from observed precipitation and reanalysis atmospheric states. Precipitation observations are from the University of Washington (UW) and the Climate Prediction Center (CPC) gridded dataset. Utilizing two observational datasets helps determine if any uncertainties arise from differences in precipitation gridding schemes. Reanalysis fields come from the North American Regional Reanalysis. The NARCCAP models generally reproduce well the precipitation-vs.-intensity spectrum seen in observations, while producing overly strong precipitation at high intensity thresholds. In the future-scenario climate, there is a decrease in frequency for light to moderate precipitation intensities, while an increase in frequency is seen for the higher intensity events. Further analysis focuses on precipitation events exceeding the 99.5 percentile that occur simultaneously at several points in the region, yielding so-called "widespread events". For widespread events, we analyze local and large scale environmental parameters, such as 2-m temperature and specific humidity, 500-hPa geopotential heights, Convective Available Potential Energy (CAPE), vertically integrated moisture flux convergence, among others, to compare atmospheric states and processes leading to such events in the models and observations. The results suggest that an analysis of atmospheric states supporting very heavy precipitation events is a more fruitful path for understanding and detecting changes than simply looking at precipitation itself.

  2. Mommy, Where Do Climate Service Products Come From?

    NASA Astrophysics Data System (ADS)

    Redmond, K. T.

    2015-12-01

    Since the middle 20th Century -- and earlier-- a large variety of climate services have become available to existing and potential users needing climate information to inform a decision of interest to them. Climate may play a minor to major role in such decisions. Originally, most such information was delivered in the form of products, which could range in complexity from the simplest possible form, the original or edited data themselves, to more highly developed and manipulated information in the form of summaries, typically in fixed forms. These were intended to serve a need for widely, routinely, and frequently requested basic statistical information about climate, in the form of tables, graphics and sometimes narratives. With the rise of the internet this approach has given way to applications that can generate tailored summaries on demand, with the user able to control date intervals, statistical thresholds, formats, and a variety of other issues of both substance and style. A much richer environment for the creation of such information now exists. This tradition arose largely through the combined efforts of NOAA and predecessor agencies via the National Weather Records Center, renamed the National Climate Center, renamed the National Climatic Data Center, now combined with geophysical and oceanographic counterparts into the National Centers for Environmental Information, in analogy with the National Centers for Environmental Prediction. A steady partner during this history has been the membership of the American Association of State Climatologists. The first efforts were intended to address to most common questions and to assist with reduction in workload in answering multiple repeated requests for the same information. Over time users and uses have become increasingly sophisticated, specialized, and diverse. Increasing efforts are directed to a more systematic approach, involving explicit engagement of stakeholders, to learn which applications to develop or improve. The recent merger of three centers into NCEI presents opportunities in this realm.

  3. Software Analysis of New Space Gravity Data for Geophysics and Climate Research

    NASA Technical Reports Server (NTRS)

    Deese, Rupert; Ivins, Erik R.; Fielding, Eric J.

    2012-01-01

    Both the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites are returning rich data for the study of the solid earth, the oceans, and the climate. Current software analysis tools do not provide researchers with the ease and flexibility required to make full use of this data. We evaluate the capabilities and shortcomings of existing software tools including Mathematica, the GOCE User Toolbox, the ICGEM's (International Center for Global Earth Models) web server, and Tesseroids. Using existing tools as necessary, we design and implement software with the capability to produce gridded data and publication quality renderings from raw gravity data. The straight forward software interface marks an improvement over previously existing tools and makes new space gravity data more useful to researchers. Using the software we calculate Bouguer anomalies of the gravity tensor's vertical component in the Gulf of Mexico, Antarctica, and the 2010 Maule earthquake region. These maps identify promising areas of future research.

  4. Health Effects of Climate Change (Environmental Health Student Portal)

    MedlinePlus

    ... your health. Read About It Climate Change and Human Health (Public Broadcasting Services (including their teacher resources)) - Web ... of the potential effects of climate change on human health. Climate and Health Program: Health Effects (Centers for ...

  5. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    NASA Astrophysics Data System (ADS)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like coastal damages, have monotonically increasing costs throughout the 21st century. Taken together, the results from the ACP presents a unique and novel view of the short-, medium-, and long-term economic risks of climate change in the US. References: [1] T. Houser et al (2014), American Climate Prospectus, www.climateprospectus.org.

  6. User-centered design to improve clinical decision support in primary care.

    PubMed

    Brunner, Julian; Chuang, Emmeline; Goldzweig, Caroline; Cain, Cindy L; Sugar, Catherine; Yano, Elizabeth M

    2017-08-01

    A growing literature has demonstrated the ability of user-centered design to make clinical decision support systems more effective and easier to use. However, studies of user-centered design have rarely examined more than a handful of sites at a time, and have frequently neglected the implementation climate and organizational resources that influence clinical decision support. The inclusion of such factors was identified by a systematic review as "the most important improvement that can be made in health IT evaluations." (1) Identify the prevalence of four user-centered design practices at United States Veterans Affairs (VA) primary care clinics and assess the perceived utility of clinical decision support at those clinics; (2) Evaluate the association between those user-centered design practices and the perceived utility of clinical decision support. We analyzed clinic-level survey data collected in 2006-2007 from 170 VA primary care clinics. We examined four user-centered design practices: 1) pilot testing, 2) provider satisfaction assessment, 3) formal usability assessment, and 4) analysis of impact on performance improvement. We used a regression model to evaluate the association between user-centered design practices and the perceived utility of clinical decision support, while accounting for other important factors at those clinics, including implementation climate, available resources, and structural characteristics. We also examined associations separately at community-based clinics and at hospital-based clinics. User-centered design practices for clinical decision support varied across clinics: 74% conducted pilot testing, 62% conducted provider satisfaction assessment, 36% conducted a formal usability assessment, and 79% conducted an analysis of impact on performance improvement. Overall perceived utility of clinical decision support was high, with a mean rating of 4.17 (±.67) out of 5 on a composite measure. "Analysis of impact on performance improvement" was the only user-centered design practice significantly associated with perceived utility of clinical decision support, b=.47 (p<.001). This association was present in hospital-based clinics, b=.34 (p<.05), but was stronger at community-based clinics, b=.61 (p<.001). Our findings are highly supportive of the practice of analyzing the impact of clinical decision support on performance metrics. This was the most common user-centered design practice in our study, and was the practice associated with higher perceived utility of clinical decision support. This practice may be particularly helpful at community-based clinics, which are typically less connected to VA medical center resources. Published by Elsevier B.V.

  7. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.

  8. Development of an Irrigation Scheduling Tool for the High Plains Region

    NASA Astrophysics Data System (ADS)

    Shulski, M.; Hubbard, K. G.; You, J.

    2009-12-01

    The High Plains Regional Climate Center (HPRCC) at the University of Nebraska is one of NOAA’s six regional climate centers in the U.S. Primary objectives of the HPRCC are to conduct applied climate research, engage in climate education and outreach, and increase the use and availability of climate information by developing value-added products. Scientists at the center are engaged in utilizing regional weather data to develop tools that can be used directly by area stakeholders, particularly for agricultural sectors. A new study is proposed that will combine NOAA products (short-term forecasts and seasonal outlooks of temperature and precipitation) with existing capabilities to construct an irrigation scheduling tool that can be used by producers in the region. This tool will make use of weather observations from the regional mesonet (specifically the AWDN, Automated Weather Data Network) and the nation-wide relational database and web portal (ACIS, Applied Climate Information System). The primary benefit to stakeholders will be a more efficient use of water and energy resources owing to the reduction of uncertainty in the timing of irrigation.

  9. Department of the Interior Climate Science Centers

    USGS Publications Warehouse

    Jones, Sonya A.

    2011-01-01

    What is a Climate Science Center? On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs), which will integrate DOI science and management expertise with similar contributions from our partners to provide information to support adaptation and mitigation efforts on both public and private lands, across the United States and internationally.The Southeast CSC, hosted by NC State University (NCSU), will collaborate with a number of other universities, State and Federal agencies, and nongovernmental organizations (NGOs) with interest and expertise in climate science. The primary partner for the Southeast CSC will be the Landscape Conservation Cooperatives (LCCs) in the Southeast, including the Appalachian, Gulf Coastal Plains and Ozarks, Gulf Coast Prairie, Peninsular Florida, and the South Atlantic. CSC collaborations are focused on common science priorities, addressing priority partner needs, minimizing redundancies in science, sharing scientific findings, and expanding understanding of climate change impacts in the Southeast.

  10. Analysis of long-term trends (1950–2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.

    2013-01-01

    This study investigates the long-term trends in precipitation, runoff and runoff coefficient in major urban watersheds in the United States. The seasonal Mann–Kendall trend test was performed on monthly precipitation, runoff and runoff coefficient data from 1950 to 2009 obtained from 62 urban watersheds covering 21 major urban centers in the United States. The results indicate that only five out of 21 urban centers in the United States showed an uptrend in precipitation. Twelve urban centers showed an uptrend in runoff coefficient. However, six urban centers did not show any trend in runoff coefficient, and three urban centers showed a significant downtrend. The highest rate of change in precipitation, runoff and runoff coefficient was observed in the Houston urban watershed. Based on the results obtained, we also attributed plausible causes for the trends. Our analysis indicated that while a human only influence is observed in most of the urban watersheds, a combined climate and human influence is observed in the central United States.

  11. Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen

    2014-05-01

    Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  12. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments in terms of regional and large-scale climate variability during the past.

  13. Introduction to Federal and EPA Climate Change Web Resources

    EPA Science Inventory

    Presentation provides an overview of four climate data and tool websites: the US Global Change Research Program (USGCRP) and Climate Resilience Toolkit (interagency websites); the main EPA climate change website; and the internal EPA Adaptation Resource Center website.

  14. Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Russell, Gary L.

    2002-08-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies atmosphere-ocean model (AOM). The computed trends of surface pressure; surface temperature; 850, 500, and 200 mbar geopotential heights; and related temperatures of the model for the time frame 1960-2000 are compared with those obtained from the National Centers for Enviromental Prediction (NCEP) observations. The domain of interest is the Northern Hemisphere because of the higher reliability of both the model results and the observations. A spatial correlation analysis and a mean value comparison are performed, showing good agreement in terms of statistical significance for most of the variables considered in the winter and annual means. However, the 850 mbar temperature trends do not show significant positive correlation, and the surface pressure and 850 mbar geopotential height mean trends confidence intervals do not overlap. A brief general discussion about the statistics of trend detection is presented. The accuracy that this AOM has in describing the regional and NH mean climate trends inferred from NCEP through the atmosphere suggests that it may be reliable in forecasting future climate changes.

  15. An Update on Experimental Climate Prediction and Analysis Products Being Developed at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    The Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center is developing a number of experimental prediction and analysis products suitable for research and applications. The prediction products include a large suite of subseasonal and seasonal hindcasts and forecasts (as a contribution to the US National MME), a suite of decadal (10-year) hindcasts (as a contribution to the IPCC decadal prediction project), and a series of large ensemble and high resolution simulations of selected extreme events, including the 2010 Russian and 2011 US heat waves. The analysis products include an experimental atlas of climate (in particular drought) and weather extremes. This talk will provide an update on those activities, and discuss recent efforts by WCRP to leverage off these and similar efforts at other institutions throughout the world to develop an experimental global drought early warning system.

  16. CPC - Monitoring & Data: Regional Climate Maps

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Information CPC Web Team HOME > Monitoring and Data > Global Climate Data & Maps > Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are usually

  17. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, Frederic H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.; Wagner, Frederic H.

    2003-01-01

    Three procedures were used to develop a set of plausible scenarios of anthropogenic climate change by the year 2100 that could be posed to the sectors selected for assessment (Fig. 2.2). First, a workshop of climatologists with expertise in western North American climates was convened from September 10-12, 1998 at the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA to discuss and propose a set of scenarios for the Rocky Mountain/Great Basin (RMGB) region.Secondly, the 20th-century climate record was analyzed to determine what trends might have occurred during the period. Since CO2 and other greenhouse gases increased during the century, it was reasonable to examine whether the changes projected for the 21st century had begun to appear during the 20th, at least qualitatively though not quantitatively.Third, on the assumption of a two-fold increase in atmospheric CO2 by 2100, climate-change scenarios for the 21st century were projected with two, state-of-the-art computer models that simulate the complex interactions between earth, atmosphere, and ocean to produce the earth’s climate system. Each of the last two procedures has its strengths and weaknesses, and each can function to some degree as a check on the other. The historical analysis has the advantage of using empirical measurements of actual climate change taken over an extensive network of measuring stations. These make it possible to subdivide a large region like the RMGB into subreqions to assess the uniformity of climate and climate change over the region. And the historical measurements can to some degree serve as a check on the GCM simulations when the two are compared over the same time period.

  18. Climate Prediction Center - ENSO FAQ

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Additional Links General Questions about El Niño and La Niña What is climate variability? What are El Niño . Impacts How do El Niño and La Niña influence the U.S. Winter weather patterns? How do El Niño and La

  19. Final report on a cold climate permeable interlocking concrete pavement test facility at the University of New Hampshire Stormwater Center.

    DOT National Transportation Integrated Search

    2013-05-01

    University of New Hampshire Stormwater Center (UNHSC) completed a two year field verification study of a permeable interlocking concrete pavement (PICP) stormwater management system. The purpose of this study was to evaluate the cold climate function...

  20. Climate Prediction Center - Seasonal Outlook

    Science.gov Websites

    SEASONAL CLIMATE VARIABILITY, INCLUDING ENSO, SOIL MOISTURE, AND VARIOUS STATE-OF-THE-ART DYNAMICAL MODEL ACROSS PARTS OF THE EAST-CENTRAL CONUS CENTERED ON THE MISSISSIPPI RIVER. THIS IS DUE TO VERY HIGH SOIL TRENDS, NEGATIVE SOIL MOISTURE ANOMALIES, LAGGED ENSO REGRESSIONS, AND DYNAMICAL MODEL GUIDANCE ARE ALL

  1. The Northeast Climate Science Center

    NASA Astrophysics Data System (ADS)

    Ratnaswamy, M. J.; Palmer, R. N.; Morelli, T.; Staudinger, M.; Holland, A. R.

    2013-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. Recognizing the critical threats, unique climate challenges, and expansive and diverse nature of the northeast region, the University of Massachusetts Amherst, College of Menominee Nation, Columbia University, Marine Biological Laboratory, University of Minnesota, University of Missouri Columbia, and University of Wisconsin-Madison have formed a consortium to host the NE CSC. This partnership with the U.S. Geological Survey climate science center network provides wide-reaching expertise, resources, and established professional collaborations in both climate science and natural and cultural resources management. This interdisciplinary approach is needed for successfully meeting the regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach throughout the northeast region. Thus, the NE CSC conducts research, both through its general funds and its annual competitive award process, that responds to the needs of natural resource management partners that exist, in part or whole, within the NE CSC bounds. This domain includes the North Atlantic, Upper Midwest and Great Lakes, Eastern Tallgrass and Big Rivers, and Appalachian Landscape Conservation Cooperatives (LCCs), among other management stakeholders. For example, researchers are developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; conducting a Designing Sustainable Landscapes project to assess the capability of current and potential future landscapes in the Northeast to provide integral ecosystems and suitable habitat for a suite of representative species and provide guidance for strategic habitat conservation; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling.

  2. Climate Science Centers: An "Existence Theorem" for a Federal-University Partnership to Develop Actionable and Needs-Driven Science Agendas

    NASA Astrophysics Data System (ADS)

    Moore, B., III

    2014-12-01

    Climate Science Centers: An "Existence Theorem" for a Federal-University Partnership to Develop Actionable and Needs-Driven Science Agendas. Berrien Moore III (University of Oklahoma) The South Central Climate Science Center (CSC) is one of eight regional centers established by the Department of the Interior (DoI) under Secretarial Order 3289 to address the impacts of climate change on America's water, land, and other natural and cultural resources. Under DoI leadership and funding, these CSCs will provide scientific information tools and techniques to study impacts of climate change synthesize and integrate climate change impact data develop tools that the DoI managers and partners can use when managing the DOI's land, water, fish and wildlife, and cultural heritage resources (emphasis added) The network of Climate Science Centers will provide decision makers with the science, tools, and information they need to address the impacts of climate variability and change on their areas of responsibility. Note from Webster, a tool is a device for doing work; it makes outcomes more realizable and more cost effective, and, in a word, better. Prior to the existence of CSCs, the university and federal scientific world certainly contained a large "set" of scientists with considerable strength in the physical, biological, natural, and social sciences to address the complexities and interdisciplinary nature of the challenges in the areas of climate variability, change, impacts, and adaptation. However, this set of scientists were hardly an integrated community let alone a focused team, but rather a collection of distinguished researchers, educators, and practitioners that were working with disparate though at times linked objectives, and they were rarely aligning themselves formally to an overarching strategic pathway. In addition, data, models, research results, tools, and products were generally somewhat "disconnected" from the broad range of stakeholders. I should note also that NOAA's Regional Integrated Sciences and Assessments ( RISA) program is an earlier "Existence Theorem" for a Federal-University Partnership to Develop Actionable and Needs-Driven Science Agendas. This contribution will discuss the important cultural shift that has flowed from Secretarial Order 3289.

  3. Alternative Fuels Data Center

    Science.gov Websites

    Climate Change Action Plan The Rhode Island Executive Climate Change Coordinating Council (Council ) and the State Chief Resiliency Officer will develop a statewide Action Plan to Stand Up to Climate

  4. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post and are available via /nwprod/lib: bacio w3 sp nemsio The following will be used only when Post is set : gmake nmm NMM with post: gmake nmm_post GSM only: gmake gsm GSM with post: gmake gsm_post GSM w

  5. Department of Defense In-House RDT and E Activities

    DTIC Science & Technology

    1976-10-30

    BALLISTIC TESTS.FAC AVAL FCR TESIS OF SP ELELTRONIC’ FIl’ CON EQUIP 4 RELATED SYSTEMS E COMPONFNTZ, 35 INSTALLATION: MEDICAL BIOENGINEERINC- R&D LABORATORY...ANALYSIS OF CHEMICAL AND METALLOGRAPHIC EFFECTS, MICROBIOLOGICAL EFFECTS, CLIMATIC ENVIRONMENTAL EFFECTS. TEST AND EVALUATE WARHEADS AND SPECIAL...CCMMUNICATI’N SYST:M INSTRUMENTED DROP ZONES ENGINEERING TEST FACILITY INSTRUMENTATION CALIBRATICN FACILITY SCIENTIFIC COMPUTER CENTER ENVIRONMENTAL TESY

  6. Learn What’s New for the 2016 Climate Leadership Awards: A Webinar Review of 2016 Categories, Eligibility, Criteria, and the Application Process

    EPA Pesticide Factsheets

    EPA, The Climate Registry, and Center for Climate and Energy Solutions provide information to assist organizations in applying for Climate Leadership Awards, including eligibility, evaluation criteria, and application content.

  7. VIIRS Product Evaluation at the Ocean PEATE

    NASA Technical Reports Server (NTRS)

    Patt, Frederick S.; Feldman, Gene C.

    2010-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) mission will support the continuation of climate records generated from NASA missions. The NASA Science Data Segment (SDS) relies upon discipline-specific centers of expertise to evaluate the NPP data products for suitability as climate data records, The Ocean Product Evaluation and Analysis Tool Element (PEATE) will build upon Well established NASA capabilities within the Ocean Color program in order to evaluate the NPP Visible and Infrared Imager/Radiometer Suite (VIIRS) Ocean Color and Chlorophyll data products. The specific evaluation methods will support not only the evaluation of product quality but also the sources of differences with existing data records.

  8. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  9. Rescuing Data from International Scientific Assessments: A Case Study

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Chen, R. S.; Xing, X.

    2016-12-01

    International scientific assessments such as the Millennium Ecosystem Assessment (MA) and the Intergovernmental Panel on Climate Change (IPCC) assessments represent significant efforts by the global scientific community to review, synthesize, and communicate diverse scientific knowledge, data, and information to support societal decision making on pressing problems such as resource management and climate change. To support the transparency, integrity, and usability of these assessments, it is vital that the underlying data used in these assessments be made openly available and usable by diverse stakeholders. Unfortunately, due to the many geographically dispersed contributors to assessments of this kind, as well as the severe time pressures and limited resources when assessments are conducted, appropriate management and preservation of these data are not always a priority. This can lead to the need to "rescue" key data to ensure their long-term preservation, integrity, accessibility, and appropriate reuse, especially in subsequent assessments. We describe here efforts over two decades to rescue selected data from the MA and IPCC assessments, to work with assessment authors and other contributors to validate and document assessment data, and to develop appropriate levels of data stewardship in light of potential user needs and constrained resources. The IPCC efforts are supported by the IPCC Data Distribution Center (DDC), which is operated collaboratively by the Center for Environmental Data Analysis in the United Kingdom, the World Data Center-Climate in Germany, and the NASA Socioeconomic Data and Applications Center (SEDAC) in the U.S. With the sixth IPCC assessment cycle now starting, a key challenge is to help the assessment community improve data management during the assessment process to reduce the risks of data loss, inadequate documentation, incomplete provenance, unnecessary data restrictions, and other problems.

  10. Climate Services - Innovation for Smart Solutions

    NASA Astrophysics Data System (ADS)

    Jacob, Daniela

    2015-04-01

    Living in a changing climate is becoming an increasing challenge for all kinds of human activities. Mitigation of global warming is of utmost importance to avoid further and stronger changes in our climate. At the same time, adaptation to today's and future changes is needed. To address both, a new field of activity developed within the last couple of years: climate services. They develop and deliver easy understandable and useful information for decision makers in public and private business and society as a whole. The German Climate Service Center 2.0 was one of the first institutions worldwide bridging the gap between scientific climate change knowledge and user needs. Developing prototype products and services, the Climate Service Center 2.0 orients its activities toward consultation of climate change topics and adaptation to climate change impacts. It prepares high quality and state of the art information for decision makers. What have we learned and where are we heading to? What are the roles of partners and networks? And how might a new field of expertise like climate services develop and stimulate the job market? These questions will be discussed and examples will be given.

  11. Harrison Ford Tapes Climate Change Show at Ames (Reporter Package)

    NASA Image and Video Library

    2014-04-11

    Hollywood legend Harrison Ford made a special visit to NASA's Ames Research Center to shoot an episode for a new documentary series about climate change called 'Years of Living Dangerously.' After being greeted by Center Director Pete Worden, Ford was filmed meeting with NASA climate scientists and discussed global temperature prediction data processed using one of the world's fastest supercomputers at Ames. Later he flew in the co-pilot seat in a jet used to gather data for NASA air quality studies.

  12. Climate Prediction Center - Outreach: 41st Annual Climate Diagnostics &

    Science.gov Websites

    the University of Maine Climate Change Institute and School of Earth and Climate Sciences and is co (drought, heat waves, severe weather, tropical cyclones) in the framework of climate variability and change and including the use of paleoclimate data. Arctic climate variability and change, and linkages to

  13. Correlation between asthma and climate in the European Community Respiratory Health Survey.

    PubMed

    Verlato, Giuseppe; Calabrese, Rolando; De Marco, Roberto

    2002-01-01

    The European Community Respiratory Health Survey, performed during 1991-1993, found a remarkable geographical variability in the prevalence of asthma and asthma-like symptoms in individuals aged 20-44 yr. The highest values occurred in the English-speaking centers. In the present investigation, the ecological relationship between climate and symptom prevalence was evaluated in the 48 centers of the European Community Respiratory Health Survey. Meteorological variables were derived from the Global Historical Climatology Network and were averaged over an 11-yr period (i.e., 1980-1990). Respiratory symptom prevalence was directly related to temperature in the coldest month and was related inversely to the temperature in the hottest month. Warm winters and cool summers are features of oceanic climate found in most English-speaking centers of the European Community Respiratory Health Survey (i.e., England, New Zealand, and Oregon). In conclusion, climate can account for significant geographic variability in respiratory symptom prevalence.

  14. Customer Use Cases and Analytics for Climate Data at NOAA's National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Ritchey, N. A.; Brewer, M.; Houston, T.; Hollingshead, A.; Jones, N.; Dissen, J.

    2017-12-01

    NOAA's National Centers for Environmental Information (NCEI) is the world's largest repository of climate data. Customer analytics and uses of NCEI information are critical to understanding and evolving NCEI's suite of use-inspired data and information to make them applicable to decision making. Over the past three years, NCEI's Center for Weather and Climate has made a concerted effort to: 1) Establish a system for collection of user requirements, 2) Ensure that collected information informs product area management and prioritization activities, and 3) Include user insights into future products and product versions. These process changes require a long-term commitment to climate services and success is not possible with a "build it and they will come" mentality nor with a "drop-in, drop-out" customer engagement strategy. This presentation will focus on the path necessary to get from effective user engagement, centered on collection and adjudication of user requirements, all the way through the outcomes of the changed products and services and how those have benefitted users, including economic examples.

  15. A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hubs

    NASA Astrophysics Data System (ADS)

    Foster, J. G.

    2014-12-01

    NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.

  16. A Three-Legged Stool or Race? Governance Models for NOAA RISAs, DOI CSCs, and USDA Climate Hub

    NASA Astrophysics Data System (ADS)

    Foster, J. G.

    2014-12-01

    NOAAs Regional Integrated Sciences and Assessments (RISA) Teams, DOIs Climate Science Centers (CSCs), and USDAs Regional Climate Hubs (RCHs) have common missions of integrating climate and related knowledge across scientific disciplines and regions to create "actionable" information that decision-makes can use to manage climate risks and impacts at state and local scales. However, the sponsoring agency programs, university investigators, and local federal officials govern each differently. The three models of program and center governance are 1) exclusively university (RISAs), 2) a hybrid of Federal government and (host) university (CSCs,), and 3) exclusively Federal (Hubs). Each model has it's advantages and disadvantages in terms of legal definition and authority, scientific mission requirements and strategies, flexibility and legitimacy to conduct research and to collaborate regionally with constituencies, leadership and governance approach and "friction points,", staff capacity and ability to engage stakeholders, necessity to deliver products and services, bureaucratic oversight, performance evaluation, and political support at Congressional, state, and local levels. Using available sources of information and data, this paper will compare and contrast the strengths and weakness of these three regional applied climate science center governance models.

  17. High resolution global climate modelling; the UPSCALE project, a large simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-01-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  18. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-08-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environment Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  19. MERRA Analytic Services

    NASA Astrophysics Data System (ADS)

    Schnase, J. L.; Duffy, D. Q.; McInerney, M. A.; Tamkin, G. S.; Thompson, J. H.; Gill, R.; Grieg, C. M.

    2012-12-01

    MERRA Analytic Services (MERRA/AS) is a cyberinfrastructure resource for developing and evaluating a new generation of climate data analysis capabilities. MERRA/AS supports OBS4MIP activities by reducing the time spent in the preparation of Modern Era Retrospective-Analysis for Research and Applications (MERRA) data used in data-model intercomparison. It also provides a testbed for experimental development of high-performance analytics. MERRA/AS is a cloud-based service built around the Virtual Climate Data Server (vCDS) technology that is currently used by the NASA Center for Climate Simulation (NCCS) to deliver Intergovernmental Panel on Climate Change (IPCC) data to the Earth System Grid Federation (ESGF). Crucial to its effectiveness, MERRA/AS's servers will use a workflow-generated realizable object capability to perform analyses over the MERRA data using the MapReduce approach to parallel storage-based computation. The results produced by these operations will be stored by the vCDS, which will also be able to host code sets for those who wish to explore the use of MapReduce for more advanced analytics. While the work described here will focus on the MERRA collection, these technologies can be used to publish other reanalysis, observational, and ancillary OBS4MIP data to ESGF and, importantly, offer an architectural approach to climate data services that can be generalized to applications and customers beyond the traditional climate research community. In this presentation, we describe our approach, experiences, lessons learned,and plans for the future.; (A) MERRA/AS software stack. (B) Example MERRA/AS interfaces.

  20. Comparison of Mean Climate Trends in the Northern Hemisphere Between N.C.E.P. and Two Atmosphere-Ocean Model Forced Runs

    NASA Technical Reports Server (NTRS)

    Lucarini, Valerio; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies Atmosphere-Ocean Model (AOM). The computed trends of surface pressure, surface temperature, 850, 500 and 200 mb geopotential heights and related temperatures of the model for the time frame 1960-2000 are compared to those obtained from the National Centers for Environmental Prediction observations. A spatial correlation analysis and mean value comparison are performed, showing good agreement. A brief general discussion about the statistics of trend detection is presented. The domain of interest is the Northern Hemisphere (NH) because of the higher reliability of both the model results and the observations. The accuracy that this AOM has in describing the observed regional and NH climate trends makes it reliable in forecasting future climate changes.

  1. Spatial-temporal analysis of climate variations in mid-17th through 19th centuries in East China and the possible relationships with Monsoon climate

    NASA Astrophysics Data System (ADS)

    Lin, K. H. E.; Wang, P. K.; Liao, Y. C.; Lee, S. Y.; Tan, P.

    2016-12-01

    IPCC AR5 has revealed more frequent extreme climate events and higher climate variability in the near future. Regardless of all the improvements, East Asia monsoon climate is still less understood and/or poorly projected due partly to insufficient records. Most areas of the Asian region lack sufficient observational records to draw conclusions about trends in annual precipitation over the past century (i.e. WGIAR5 Chapter 2). Precipitation trends, including extremes, are characterized by strong variability, with both increasing and decreasing observed in different parts and seasons of Asia. Understanding the variations of the monsoon climate in historical time may bring significant insights to reveal its spatial and temporal patterns embedded in the atmospheric dynamics at different decadal or centennial scales. This study presents some preliminary research results of high resolution climate reconstruction, in both time and space coverage, in east China, by using RCEC historical climate dataset that is developed under interdisciplinary collaboration led by Research Center for Environmental Changes at Academia Sinica, Taiwan. The present research results are derived from chronological meteorological records in the RCEC dataset in Qing dynasty labeling mid-17th to 19th centuries. In total, the dataset comprises more than 1,300 cities/counties in China that has had more than sixty thousands meteorological records in the period. The analysis comprises three parts. Firstly, the frequency of extreme temperature, precipitation, drought, and flood in every recorded cities/counties were computed to depicting climate variabilities in northeast, central-east and southeast China. Secondly, the multivariate regression model was conducted to estimate the coefficients among the climatic index (temperature, precipitation, and drought). It is found that the temperature and wet-dry characteristics have great seasonal and yearly variations; northeast China compared with central-east or southeast tends to have higher variability. Thirdly, those data was used to conduct empirical orthogonal function (EOF) analysis to decompose possible mechanisms that might have cause changes in East Asia monsoon regime during the time period. The reconstructed data were also compared against paleoclimate simulation.

  2. Early Citability of Data vs Peer-Review like Data Publishing Procedures

    NASA Astrophysics Data System (ADS)

    Stockhause, Martina; Höck, Heinke; Toussaint, Frank; Lautenschlager, Michael

    2014-05-01

    The World Data Center for Climate (WDCC) hosted at the German Climate Computing Center (DKRZ) was one of the first data centers, which established a peer-review like data publication procedure resulting in DataCite DOIs. Data in the long-term archive (LTA) is diligently reviewed by data managers and data authors to grant high quality and widely reusability of the published data. This traditional data publication procedure for LTA data bearing DOIs is very time consuming especially for WDCC's high data volumes of climate model data in the order of multiple TBytes. Data is shared with project members and selected scientists months before the data is long-term archived. The scientific community analyses and thus reviews the data leading to data quality improvements. Scientists wish to cite these unstable data in scientific publications before the long-term archiving and the thorough data review process are finalized. A concept for early preprint DOIs for shared but not yet long-term archived data is presented. Requirements on data documentation, persistence and quality and use cases for preprint DOIs within the data life-cycle are discussed as well as questions of how to document the differences of the two DOI types and how to relate them to each other with the recommendation to use LTA DOIs in citations. WDCC wants to offer an additional user service for early citations of data of basic quality without compromising the LTA DOIs, i.e. WDCC's standard DOIs, as trustworthy indicator for high quality data. Referencing Links: World Data Center for Climate (WDCC): http://www.wdc-climate.de German Climate Computing Center (DKRZ): http://www.dkrz.de DataCite: http://datacite.org

  3. A Framework for Prioritizing NOAA's Climate Data Portfolio to Improve Relevance and Value

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Hutchins, C.; McPherson, T.; Wunder, D.

    2016-12-01

    NOAA's National Centers for Environmental Information (NCEI) is the largest civilian environmental data archive in the world. NCEI operationally provides hundreds of long term homogeneous climate data records and assessments that describe Earth's atmosphere, oceans and land surface. For decades, these data have underpinned leading climate research and modeling efforts and provided key insights into weather and climate changes. Recently, NCEI has increased support for economic and societal sectors beyond climate research by emphasizing use-inspired product development and services. Accordingly, NCEI has begun comprehensively assessing customer needs and user applications. In parallel, NCEI is analyzing and adjusting its full product portfolio to best address those needs and applications. In this presentation, we will describe NCEI's new approaches to capturing needs, performing use analytics, and molding a more responsive portfolio. We will summarize the findings of a quantitative relevance- and cost-scoring analysis that suggests the relative effectiveness of NCEI science and service investments. Finally, we will describe NCEI's effort to review, document and validate customer-driven product requirements. Results will help guide future prioritization of measurements, research and development, and product services.

  4. Development of a Work Climate Scale in Emergency Health Services

    PubMed Central

    Sanduvete-Chaves, Susana; Lozano-Lozano, José A.; Chacón-Moscoso, Salvador; Holgado-Tello, Francisco P.

    2018-01-01

    An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS) have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability) are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate. Thus, we integrated the results found in (a) a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b) the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work). In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension). Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with four components (RMSEA = 0.079, GFI = 0.97, AGFI = 0.97, CFI = 0.97; NFI = 0.95, and NNFI = 0.97); absence of Differential Item Functioning (DIF) in 80% of the items; reliability (α = 0.96); and validity evidence based on relations to other variables, specifically the test-criterion relationship (ρ = 0.680). Finally, we discuss further developments of the instrument and its possible implications for EHS workers. PMID:29403417

  5. Development of a Work Climate Scale in Emergency Health Services.

    PubMed

    Sanduvete-Chaves, Susana; Lozano-Lozano, José A; Chacón-Moscoso, Salvador; Holgado-Tello, Francisco P

    2018-01-01

    An adequate work climate fosters productivity in organizations and increases employee satisfaction. Workers in emergency health services (EHS) have an extremely high degree of responsibility and consequent stress. Therefore, it is essential to foster a good work climate in this context. Despite this, scales with a full study of their psychometric properties (i.e., validity evidence based on test content, internal structure and relations to other variables, and reliability) are not available to measure work climate in EHS specifically. For this reason, our objective was to develop a scale to measure the quality of work climates in EHS. We carried out three studies. In Study 1, we used a mixed-method approach to identify the latent conceptual structure of the construct work climate . Thus, we integrated the results found in (a) a previous study, where a content analysis of seven in-depth interviews obtained from EHS professionals in two hospitals in Gibraltar Countryside County was carried out; and (b) the factor analysis of the responses given by 113 EHS professionals from these same centers to 18 items that measured the work climate in health organizations. As a result, we obtained 56 items grouped into four factors (work satisfaction, productivity/achievement of aims, interpersonal relationships, and performance at work). In Study 2, we presented validity evidence based on test content through experts' judgment. Fourteen experts from the methodology and health fields evaluated the representativeness, utility, and feasibility of each of the 56 items with respect to their factor (theoretical dimension). Forty items met the inclusion criterion, which was to obtain an Osterlind index value greater than or equal to 0.5 in the three aspects assessed. In Study 3, 201 EHS professionals from the same centers completed the resulting 40-item scale. This new instrument produced validity evidence based on the internal structure in a second-order factor model with four components ( RMSEA = 0.079, GFI = 0.97, AGFI = 0.97, CFI = 0.97; NFI = 0.95, and NNFI = 0.97); absence of Differential Item Functioning (DIF) in 80% of the items; reliability (α = 0.96); and validity evidence based on relations to other variables, specifically the test-criterion relationship (ρ = 0.680). Finally, we discuss further developments of the instrument and its possible implications for EHS workers.

  6. Person-centered work environments, psychological safety, and positive affect in healthcare: a theoretical framework.

    PubMed

    Rathert, Cheryl; May, Douglas R

    2008-01-01

    We propose that in order to systematically improve healthcare quality, healthcare organizations (HCOs) need work environments that are person-centered: environments that support the careprovider as well as the patient. We further argue that HCOs have a moral imperative to provide a workplace where professional care standards can be achieved. We draw upon a large body of research from several disciplines to propose and articulate a theoretical framework that explains how the work environment should be related to the well-being of patients and careproviders, that is, the potential mediating mechanisms. Person-centered work environments include: 1. Climates for patient-centered care. 2. Climates for quality improvement. 3. Benevolent ethical climates. Such a work environment should support the provision of patient-centered care, and should lead to positive psychological states for careproviders, including psychological safety and positive affect. The model contributes to theory by specifying relationships between important organizational variables. The model can potentially contribute to practice by linking specific work environment attributes to outcomes for careproviders and patients.

  7. Seeing is Believing? An Examination of Perceptions of Local Weather Conditions and Climate Change Among Residents in the U.S. Gulf Coast.

    PubMed

    Shao, Wanyun; Goidel, Kirby

    2016-11-01

    What role do objective weather conditions play in coastal residents' perceptions of local climate shifts and how do these perceptions affect attitudes toward climate change? While scholars have increasingly investigated the role of weather and climate conditions on climate-related attitudes and behaviors, they typically assume that residents accurately perceive shifts in local climate patterns. We directly test this assumption using the largest and most comprehensive survey of Gulf Coast residents conducted to date supplemented with monthly temperature data from the U.S. Historical Climatology Network and extreme weather events data from National Climatic Data Center. We find objective conditions have limited explanatory power in determining perceptions of local climate patterns. Only the 15- and 19-year hurricane trends and decadal summer temperature trend have some effects on perceptions of these weather conditions, while the decadal trend of total number of extreme weather events and 15- and 19-year winter temperature trends are correlated with belief in climate change. Partisan affiliation, in contrast, plays a powerful role affecting individual perceptions of changing patterns of air temperatures, flooding, droughts, and hurricanes, as well as belief in the existence of climate change and concern for future consequences. At least when it comes to changing local conditions, "seeing is not believing." Political orientations rather than local conditions drive perceptions of local weather conditions and these perceptions-rather than objectively measured weather conditions-influence climate-related attitudes. © 2016 Society for Risk Analysis.

  8. 1. View southeast of Climatic Chambers Building from roof of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View southeast of Climatic Chambers Building from roof of Research Building. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  9. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    NASA Technical Reports Server (NTRS)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data for the NASA Johnson Space Center into a NASA-Wide GIS Institutional Portal.

  10. Climate Prediction Center - NCEP Global Ocean Data Assimilation System:

    Science.gov Websites

    home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Monthly in NetCDF Other formats Links NOAA Ocean Climate Observation Program (OCO) Climate Test Bed About Prediction (NCEP) are a valuable community asset for monitoring different aspects of ocean climate

  11. M.Y.S.P.A.C.E. : Multinational Youth Studying Practical Applications of Climatic Events

    NASA Astrophysics Data System (ADS)

    Mckay, M.; Arvedson, J. P.; Arvedson, P.

    2014-12-01

    M.Y. S.P.A.C.E. (Multinational Youth Studying Practical Applications of Climatic Events) is an international collaboration of high school students engaged in self-selected research projects on the local impact of global environmental issues. Students work with their own, trained, Teacher Leaders at their school sites using both locally generated and satellite-based remote-sensing data with support from the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA). Teams from each school meet at the annual Satellites & Education Conference to discover global trends in their collective data and present their findings. Students learn and practice techniques of scientific investigation; methods of data processing, analysis and interpretation; leadership; and effective communication. They work with NOAA and NASA scientists and engineers, experience university campus life, and can apply for special internships at selected university research centers such as the Center for Energy and Sustainability (CE&S), the Center for Spatial Analysis and Remote Sensing (CSARS), and graduate research opportunities in Geosciences and Environment. The M.Y. S.P.A.C.E. Program is an initiative of the Satellites & Education Conference, which is produced by the non-profit Satellite Educators Association. It is administered from the campus of California State University, Los Angeles. NOAA, NASA, and the NOAA-CREST West grant support the program. It is aligned with NOAA goals of building excitement about careers in science, math, engineering and technology.

  12. SciDAC's Earth System Grid Center for Enabling Technologies Semiannual Progress Report October 1, 2010 through March 31, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-04-02

    This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators andmore » stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.« less

  13. Geomagnetic and Solar Indices Data at NGDC

    NASA Astrophysics Data System (ADS)

    Mabie, J. J.

    2012-12-01

    The National Geophysical Data Center, Solar and Terrestrial Physics Indices program is a central repository for global indices derived at numerous organizations around the world. These datasets are used by customers to drive models, evaluate the solar and geomagnetic environment, and to understand space climate. Our goal is to obtain and disseminate this data in a timely and accurate manner, and to provide the short term McNish-Lincoln sunspot number prediction. NGDC is in partnership with the NOAA Space Weather Prediction Center (SWPC), University Center for Atmospheric Sciences (UCAR), the Potsdam Helmholtz Center (GFZ), the Solar Indices Data Center (SIDC), the World Data Center for Geomagnetism Kyoto and many other organizations. The large number of available indices and the complexity in how they are derived makes understanding the data one of the biggest challenges for the users of indices. Our data services include expertise in our indices and related datasets to provide feedback and analysis for our global customer base.

  14. Regional climate enterprises in the south central U.S.: Crossover relationships to maximize user engagement effectiveness

    USDA-ARS?s Scientific Manuscript database

    Several Federal agencies have recently established regional enterprises that provide climate science and services. These include DOI’s Climate Science Centers (CSCs), USDA’s Regional Climate Hubs (Hubs), DOI’s Landscape Conservation Cooperatives (LCCs), and NOAA’s Regional Integrated Sciences and As...

  15. 78 FR 50085 - Advisory Committee on Climate Change and Natural Resource Science

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Climate Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting.... 2, we announce that the Advisory Committee on Climate Change and Natural Resource Science will hold... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  16. 78 FR 79478 - Advisory Committee on Climate Change and Natural Resource Science

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... announce that the Advisory Committee on Climate Change and Natural Resource Science will hold a meeting..., National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive...: Chartered in May 2013, the Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS...

  17. Recent Naval Postgraduate School Publications.

    DTIC Science & Technology

    1980-04-01

    Numerical models of ocean circulation and Climate interaction Revs, of Geophis,.and Space Phys., vol. 17, no. 7, p. 1494-1507, (1 979) Haney, R 1...POSTGRADUATE SCHOOL Monterey, California DEPARTMENT OF COMPUTER SCIENCE C06FEBENCE PRESENTATIONS Bradley, G H Enerqy modelling with network optimization...Systems Analysis, Sept., 97 Bradley, G H; Brown, G G Network optimization and defense modeling Center for Nay. Analyses, Arlington, Va., Aug., 1976

  18. Discover Supercomputer 5

    NASA Image and Video Library

    2017-12-08

    Two rows of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS) contain more than 4,000 computer processors. Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  19. Discover Supercomputer 4

    NASA Image and Video Library

    2017-12-08

    This close-up view highlights one row—approximately 2,000 computer processors—of the “Discover” supercomputer at the NASA Center for Climate Simulation (NCCS). Discover has a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  20. Sonification of Climate Data

    NASA Astrophysics Data System (ADS)

    Vogt, Katharina; Visda, Goudarzi

    2013-04-01

    Sonification is the acoustic analogue of data visualization and takes advantage of human perceptual and cognitive capabilities. The amount of data being processed today is steadily increasing, and both scientists and society need new ways to understand scientific data and their implications. Sonification is especially suited to the preliminary exploration of complex, dynamic, and multidimensional data sets, as can be found in climate science. In the research project SysSon (https://sysson.kug.ac.at/), we apply a systematic approach to design sonifications to climate data. In collaboration with the Wegener Center for Climate and Global Change (http://www.wegcenter.at/) we assessed the metaphors climate scientists use and their typical workflows, and chose data sets where sonification has high potential revealing new phenomena. This background will be used to develop an audio interface which is directly linked to the visualization interfaces for data analysis the scientists use today. The protoype will be evaluated according to its functionality, intuitivity for climate scientists, and aesthetic criteria. In the current stage of the project, conceptual links between climate science and sound have been elaborated and first sonification designs have been developed. The research is mainly carried out at the Institute of Electronic Music and Acoustics (http://iem.kug.ac.at/), which has extensive experience in interactive sonification with multidimensional data sets.

  1. Cloud-Enabled Climate Analytics-as-a-Service using Reanalysis data: A case study.

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Duffy, D.; Schnase, J. L.; McInerney, M.; Tamkin, G.; Potter, G. L.; Thompson, J. H.

    2014-12-01

    The NASA Center for Climate Simulation (NCCS) maintains advanced data capabilities and facilities that allow researchers to access the enormous volume of data generated by weather and climate models. The NASA Climate Model Data Service (CDS) and the NCCS are merging their efforts to provide Climate Analytics-as-a-Service for the comparative study of the major reanalysis projects: ECMWF ERA-Interim, NASA/GMAO MERRA, NOAA/NCEP CFSR, NOAA/ESRL 20CR, JMA JRA25, and JRA55. These reanalyses have been repackaged to netCDF4 file format following the CMIP5 Climate and Forecast (CF) metadata convention prior to be sequenced into the Hadoop Distributed File System ( HDFS ). A small set of operations that represent a common starting point in many analysis workflows was then created: min, max, sum, count, variance and average. In this example, Reanalysis data exploration was performed with the use of Hadoop MapReduce and accessibility was achieved using the Climate Data Service(CDS) application programming interface (API) created at NCCS. This API provides a uniform treatment of large amount of data. In this case study, we have limited our exploration to 2 variables, temperature and precipitation, using 3 operations, min, max and avg and using 30-year of Reanalysis data for 3 regions of the world: global, polar, subtropical.

  2. Climate services: Lessons learned and future prospects

    NASA Astrophysics Data System (ADS)

    Brasseur, Guy P.; Gallardo, Laura

    2016-03-01

    This perspective paper reviews progress made in the last decades to enhance the communication and use of climate information relevant to the political and economic decision process. It focuses, specifically, on the creation and development of climate services, and highlights a number of difficulties that have limited the success of these services. Among them are the insufficient awareness by societal actors of their vulnerability to climate change, the lack of relevant products and services offered by the scientific community, the inappropriate format in which the information is provided, and the inadequate business model adopted by climate services. The authors suggest that, to be effective, centers should host within the same center a diversity of staff including experts in climate science, specialists in impact, adaptation, and vulnerability, representatives of the corporate world, agents of the public service as well as social managers and communication specialists. The role and importance of environmental engineering is emphasized.

  3. Status and Preliminary Evaluation for Chinese Re-Analysis Datasets

    NASA Astrophysics Data System (ADS)

    bin, zhao; chunxiang, shi; tianbao, zhao; dong, si; jingwei, liu

    2016-04-01

    Based on operational T639L60 spectral model, combined with Hybird_GSI assimilation system by using meteorological observations including radiosondes, buoyes, satellites el al., a set of Chinese Re-Analysis (CRA) datasets is developing by Chinese National Meteorological Information Center (NMIC) of Chinese Meteorological Administration (CMA). The datasets are run at 30km (0.28°latitude / longitude) resolution which holds higher resolution than most of the existing reanalysis dataset. The reanalysis is done in an effort to enhance the accuracy of historical synoptic analysis and aid to find out detailed investigation of various weather and climate systems. The current status of reanalysis is in a stage of preliminary experimental analysis. One-year forecast data during Jun 2013 and May 2014 has been simulated and used in synoptic and climate evaluation. We first examine the model prediction ability with the new assimilation system, and find out that it represents significant improvement in Northern and Southern hemisphere, due to addition of new satellite data, compared with operational T639L60 model, the effect of upper-level prediction is improved obviously and overall prediction stability is enhanced. In climatological analysis, compared with ERA-40, NCEP/NCAR and NCEP/DOE reanalyses, the results show that surface temperature simulates a bit lower in land and higher over ocean, 850-hPa specific humidity reflects weakened anomaly and the zonal wind value anomaly is focus on equatorial tropics. Meanwhile, the reanalysis dataset shows good ability for various climate index, such as subtropical high index, ESMI (East-Asia subtropical Summer Monsoon Index) et al., especially for the Indian and western North Pacific monsoon index. Latter we will further improve the assimilation system and dynamical simulating performance, and obtain 40-years (1979-2018) reanalysis datasets. It will provide a more comprehensive analysis for synoptic and climate diagnosis.

  4. Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael

    2018-01-01

    This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.

  5. Northwest Climate Science Center: Integrating Regional Research, Conservation and Natural Resource Management

    NASA Astrophysics Data System (ADS)

    Mote, P.; Bisbal, G.

    2012-12-01

    The Northwest Climate Science Center (NW CSC) was established in 2010, among the first three of eight regional Climate Science Centers created by the Department of the Interior (DOI). The NW CSC is supported by an academic consortium (Oregon State University, University of Idaho, and the University of Washington), which has the capacity to generate and coordinate decision-relevant science related to climate, thus serving stakeholders across the Pacific Northwest region. The NW CSC has overlapping boundaries with three Landscape Conservation Cooperatives (LCCs): the Great Northern, the Great Basin, and the North Pacific. Collaboration between the NW CSC and these three LCCs addresses the highest priority regional climate science needs of Northwest natural and cultural resource managers. Early in 2012, the NW CSC released its first Strategic Plan for the period 2012-2015. The plan offers a practical blueprint for operation and describes five core services that the NW CSC provides to the Northwest community. These core services emphasize (a) bringing together the regional resource management and science communities to calibrate priorities and ensure efficient integration of climate science resources and tools when addressing practical issues of regional significance; (b) developing and implementing a stakeholder-driven science agenda which highlights the NW CSC's regional leadership in generating scenarios of the future environment of the NW; (c) supporting and training graduate students at the three consortium universities, including through an annual 'Climate science boot camp'; (d) providing a platform for effective climate-change-related communication among scientists, resource managers, and the general public; and (e) national leadership in data management and climate scenario development.

  6. The ARGO Project: assessing NA-TECH risks on off-shore oil platforms

    NASA Astrophysics Data System (ADS)

    Capuano, Paolo; Basco, Anna; Di Ruocco, Angela; Esposito, Simona; Fusco, Giannetta; Garcia-Aristizabal, Alexander; Mercogliano, Paola; Salzano, Ernesto; Solaro, Giuseppe; Teofilo, Gianvito; Scandone, Paolo; Gasparini, Paolo

    2017-04-01

    ARGO (Analysis of natural and anthropogenic risks on off-shore oil platforms) is a 2 years project, funded by the DGS-UNMIG (Directorate General for Safety of Mining and Energy Activities - National Mining Office for Hydrocarbons and Georesources) of Italian Ministry of Economic Development. The project, coordinated by AMRA (Center for the Analysis and Monitoring of Environmental Risk), aims at providing technical support for the analysis of natural and anthropogenic risks on offshore oil platforms. In order to achieve this challenging objective, ARGO brings together climate experts, risk management experts, seismologists, geologists, chemical engineers, earth and coastal observation experts. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore oil platforms in the Italian seas, including extreme events related to climate changes. Furthermore the environmental effect of offshore activities has been investigated, including: changes on seismicity and on the evolution of coastal areas close to offshore platforms. Then a probabilistic multi-risk framework has been developed for the analysis of NA-TECH events on offshore installations for hydrocarbon extraction.

  7. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  8. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  9. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  10. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Environmental Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research

  11. Web-GIS platform for monitoring and forecasting of regional climate and ecological changes

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Krupchatnikov, V. N.; Lykosov, V. N.; Okladnikov, I.; Titov, A. G.; Shulgina, T. M.

    2012-12-01

    Growing volume of environmental data from sensors and model outputs makes development of based on modern information-telecommunication technologies software infrastructure for information support of integrated scientific researches in the field of Earth sciences urgent and important task (Gordov et al, 2012, van der Wel, 2005). It should be considered that original heterogeneity of datasets obtained from different sources and institutions not only hampers interchange of data and analysis results but also complicates their intercomparison leading to a decrease in reliability of analysis results. However, modern geophysical data processing techniques allow combining of different technological solutions for organizing such information resources. Nowadays it becomes a generally accepted opinion that information-computational infrastructure should rely on a potential of combined usage of web- and GIS-technologies for creating applied information-computational web-systems (Titov et al, 2009, Gordov et al. 2010, Gordov, Okladnikov and Titov, 2011). Using these approaches for development of internet-accessible thematic information-computational systems, and arranging of data and knowledge interchange between them is a very promising way of creation of distributed information-computation environment for supporting of multidiscipline regional and global research in the field of Earth sciences including analysis of climate changes and their impact on spatial-temporal vegetation distribution and state. Experimental software and hardware platform providing operation of a web-oriented production and research center for regional climate change investigations which combines modern web 2.0 approach, GIS-functionality and capabilities of running climate and meteorological models, large geophysical datasets processing, visualization, joint software development by distributed research groups, scientific analysis and organization of students and post-graduate students education is presented. Platform software developed (Shulgina et al, 2012, Okladnikov et al, 2012) includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also data preprocessing, run and visualization of modeling results of models WRF and «Planet Simulator» integrated into the platform is provided. All functions of the center are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of visualization of processing results, selection of geographical region of interest (pan and zoom) and data layers manipulation (order, enable/disable, features extraction). Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches (Shulgina et al, 2011). Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified graphical web-interface.

  12. How Teachers' Beliefs About Climate Change Influence Their Instruction and Resulting Student Outcomes

    NASA Astrophysics Data System (ADS)

    Nation, M.; Feldman, A.; Smith, G.

    2017-12-01

    The purpose of the study was to understand the relationship between teachers' beliefs and understandings of climate change and their instructional practices to determine if and how they impact student outcomes. Limited research has been done in the area of teacher beliefs on climate change, their instruction, and resulting student outcomes. This study contributes to the greater understanding of teachers' beliefs and impact on climate change curriculum implementation. The study utilized a mixed methods approach to data collection and analysis. Data were collected in the form of classroom observations, surveys, and interviews from teachers and students participating in the study over a four-month period. Qualitative and quantitative findings were analyzed through thematic coding and descriptive analysis and compared in an effort to triangulate findings. The results of the study suggest teachers and students believe climate change is occurring and humans are largely to blame. Personal beliefs are important when teaching controversial topics, such as climate change, but participants maintained neutrality within their instruction of the topic, as not to appear biased or influence students' decisions about climate change, and avoid political controversy in the classroom. Overall, the study found teachers' level of understandings and beliefs about climate change had little impact on their instruction and resulting student outcomes. Based on the findings, simply adding climate change to the existing science curriculum is not sufficient for teachers or students. Teachers need to be better prepared about effective pedagogical practices of the content in order to effectively teach a climate-centered curriculum. The barriers that exist for the inclusion of teachers' personal beliefs need to be removed in order for teachers to assert their own personal beliefs about climate change within their classroom instruction. Administrators and stakeholders need to support science teachers' beliefs about climate change, and uphold the efforts of the scientific community, regardless of political hierarchy. Students are loosing an opportunity for insight into educated, knowledgeable mentors, and are by-in-large left to the opinions of climate change that overwhelm news media, which may not be as trustworthy.

  13. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; hide

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  14. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park

  15. NASA Downscaling Project: Final Report

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA - 2 reanalyses were used to drive the NU - WRF regional climate model and a GEOS - 5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000 - 2010. The results of these experiments were compared to observational datasets to evaluate the output.

  16. Chapter 11: City-Wide Collaborations for Urban Climate Education

    NASA Technical Reports Server (NTRS)

    Snyder, Steven; Hoffstadt, Rita Mukherjee; Allen, Lauren B.; Crowley, Kevin; Bader, Daniel A.; Horton, Radley M.

    2014-01-01

    Although cities cover only 2 percent of the Earth's surface, more than 50 percent of the world's people live in urban environments, collectively consuming 75 percent of the Earth's resources. Because of their population densities, reliance on infrastructure, and role as centers of industry, cities will be greatly impacted by, and will play a large role in, the reduction or exacerbation of climate change. However, although urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies, education efforts on these strategies have not been comprehensive. To meet the needs of an informed and engaged urban population, a more systemic, multiplatform and coordinated approach is necessary. The Climate and Urban Systems Partnership (CUSP) is designed to explore and address this challenge. Spanning four cities-Philadelphia, New York, Pittsburgh, and Washington, DC-the project is a partnership between the Franklin Institute, the Columbia University Center for Climate Systems Research, the University of Pittsburgh Learning Research and Development Center, Carnegie Museum of Natural History, New York Hall of Science, and the Marian Koshland Science Museum of the National Academy of Sciences. The partnership is developing a comprehensive, interdisciplinary network to educate urban residents about climate science and the urban impacts of climate change.

  17. NASA Downscaling Project

    NASA Technical Reports Server (NTRS)

    Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa

    2017-01-01

    A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA-2 reanalyses were used to drive the NU-WRF regional climate model and a GEOS-5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000-2010. The results of these experiments were compared to observational datasets to evaluate the output.

  18. Korean Early Childhood Educators' Multi-Dimensional Teacher Self-Efficacy and ECE Center Climate and Depression Severity in Teachers as Contributing Factors

    ERIC Educational Resources Information Center

    Kim, Yeon Ha; Kim, Yang Eun

    2010-01-01

    This study investigated profiles of South Korean early childhood educators' teacher self-efficacy and contributing factors to teacher self-efficacy. The contributing factors were examined with a focus on early childhood education (ECE) center climate and depression severity in teachers as well as teacher and classroom characteristics. The results…

  19. Sustained Satellite Missions for Climate Data Records

    NASA Technical Reports Server (NTRS)

    Halpern, David

    2012-01-01

    Satellite CDRs possess the accuracy, longevity, and stability for sustained moni toring of critical variables to enhance understanding of the global integrated Earth system and predict future conditions. center dot Satellite CDRs are a critical element of a global climate observing system. center dot Satellite CDRs are a difficult challenge and require high - level managerial commitment, extensive intellectual capital, and adequate funding.

  20. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Gerald L; Bader, David C; Riches, Michael

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment andmore » because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDI's success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de M'©t'©orologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research.« less

  1. Final Scientific/Technical Report from Hofstra University on DE-SC0001985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, E. Christa

    The U.S. Department of Energy award DE-SC0001985 funded the Hofstra University Center for Climate Study (HUCCS) from 29 September 2009 through 1 October 2016. This support enabled several activities over the period of the grant, including 1) the pursuit of several research projects, including sediment coring of coastal marshes, analysis of habitat impact due to climate change, and effects of raindrops of CO2 transfer; 2) support for multiple graduate and undergraduate students, and sponsorship of research projects that involved high school students; 3) fostering mentoring relationships and networking; 4) the design, creation, and installation of an exhibit on climate changemore » at the Cradle of Aviation Museum in Garden City, NY as an effort of public outreach. A total of 11 presentations at conferences, one book, and one peer-reviewed journal article resulted from these activities.« less

  2. Impacts of Canadian and global black carbon shipping emissions on Arctic climate

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; von Salzen, K.

    2017-12-01

    Shipping activities have increased across the Arctic and are projected to continue to increase in the future. In this study we compare the climate impacts of Canadian and global shipping black carbon (BC) emissions on the Arctic using the Canadian Center for Climate Modelling and Analysis Earth System Model (CanESM4.1). The model simulations are performed with and without shipping emissions at T63 (128 x 64) spectral resolution. Results indicate that shipping activities enhance BC concentrations across the area close to the shipping emissions, which causes increased absorption of solar radiation (direct effect). An impact of shipping on temperatures is simulated across the entire Arctic, with maximum warming in fall and winter seasons. Although global mean temperature changes are very similar between the two simulations, increase in Canadian BC shipping emissions cause warmer Arctic land surface temperature in summer due to the direct radiative effects of aerosol.

  3. Performance analysis of the lineal model for estimating the maximum power of a HCPV module in different climate conditions

    NASA Astrophysics Data System (ADS)

    Fernández, Eduardo F.; Almonacid, Florencia; Sarmah, Nabin; Mallick, Tapas; Sanchez, Iñigo; Cuadra, Juan M.; Soria-Moya, Alberto; Pérez-Higueras, Pedro

    2014-09-01

    A model based on easily obtained atmospheric parameters and on a simple lineal mathematical expression has been developed at the Centre of Advanced Studies in Energy and Environment in southern Spain. The model predicts the maximum power of a HCPV module as a function of direct normal irradiance, air temperature and air mass. Presently, the proposed model has only been validated in southern Spain and its performance in locations with different atmospheric conditions still remains unknown. In order to address this issue, several HCPV modules have been measured in two different locations with different climate conditions than the south of Spain: the Environment and Sustainability Institute in southern UK and the National Renewable Energy Center in northern Spain. Results show that the model has an adequate match between actual and estimated data with a RMSE lower than 3.9% at locations with different climate conditions.

  4. The ICARDA agro-climate tool

    USDA-ARS?s Scientific Manuscript database

    A Visual Basic agro-climate application by climatologists at the International Center for Agricultural Research in the Dry Areas and the U.S. Department of Agriculture is described here. The database from which the application derives climate information consists of weather generator parameters der...

  5. The ICARDA Agro-Climate Tool

    USDA-ARS?s Scientific Manuscript database

    A Visual Basic agro-climate application developed by climatologists at the International Center for Agricultural Research in the Dry Areas and the U.S. Department of Agriculture is described here. The database from which the application derives climate information consists of weather generator param...

  6. Trends in Total Cloud Amount Over China (1951 - 1994)

    DOE Data Explorer

    Kaiser, Dale P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States).

    1999-01-01

    These total cloud amount time series for China are derived from the work of Kaiser (1998). The cloud data were extracted from a database of 6-hourly weather observations provided by the National Climate Center of the China Meteorological Administration (CMA) to the U.S. Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) through a bilateral research agreement. Surface-observed (visual) six-hourly observations [0200, 0800, 1400, and 2000 Beijing Time (BT)] of cloud amount (0-10 tenths of sky cover) were available from 196 Chinese stations covering the period 1954-94. Data from 1951-1953 were also available; however, they only included 0800, 1400, and 2000 BT observations.

  7. Building partnerships to produce actionable science to support climate-informed management decisions: North Central Climate Science Center example

    NASA Astrophysics Data System (ADS)

    Lackett, J.; Ojima, D. S.; McNeeley, S.

    2017-12-01

    As climate change impacts become more apparent in our environment, action is needed to enhance the social-ecological system resilience. Incorporating principles which lead to actionable research and project co-development, when appropriate, will facilitate building linkages between the research and the natural resource management communities. In order to develop strategies to manage for climatic and ecosystem changes, collaborative actions are needed between researchers and resource managers to apply appropriate knowledge of the ecosystem and management environments to enable feasible solutions and management actions to respond to climate change. Our team has been involved in developing and establishing a research and engagement center, the North Central Climate Science Center (NC CSC), for the US Department of Interior, to support the development and translation of pertinent climate science information to natural resource managers in the north central portion of the United States. The NC CSC has implemented a platform to support the Resource for Vulnerability Assessment, Adaptation, and Mitigation Projects (ReVAMP) with research, engagement, and training activities to support resource managers and researchers. These activities are aimed at the co-production of appropriate response strategies to climate change in the region, in particular to drought-related responses. Through this platform we, with other partners in the region, including the Department of Interior and the Department of Agriculture, are bringing various training tools, climate information, and management planning tools to resource managers. The implementation of ReVAMP has led to development of planning efforts which include a more explicit representation of climate change as a driver of drought events in our region. Scenario planning provides a process which integrates management goals with possible outcomes derived from observations and simulations of ecological impacts of climate change. Co-development of management options under these various scenarios have allowed for guidance about further research needed, observations needed to better monitor ecological conditions under climate changes, and adaptive management practices to increase resilience.

  8. Managing Boulder Colorado's Water Supply to Address Risks from Climate Change

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Strzepek, K.; Rozaklis, L.; Ellinghouse, C.; Hallett, K. C.

    2008-12-01

    Stratus Consulting, the City of Boulder, the University of Colorado and AMEC Consulting (formerly Hydrosphere) studied the impacts of climate change on Boulder, Colorado's water supply. The City of Boulder's Water Resources Coordinator was closely involved in the design of the study and the analysis of results. The work, funded by a grant from the National Oceanographic and Atmospheric Administration to Stratus Consulting, is an example of a successful collaboration between municipal, academic, government, and professional institutes. This study combines the potential impacts of climate change with long-term climate variability to examine their effects on the water supply of one community. The study team examined outputs from general circulation models (GCMs; supplied by the National Center for Atmospheric Research) for grid boxes that include Boulder, Colorado, and selected the wettest model, the driest model, and a middle model. Estimates of climate change for 20-year periods centering on 2030 and 2070 were used. In addition, 437-year (1566- 2002) reconstructions of streamflow in Boulder Creek, South Boulder Creek, and the Colorado River (conducted by Connie Woodhouse) were used. A "nearest neighbor" approach was used to select years in the observed climate record that resemble the paleoclimate reconstructions. Average monthly GCM changes in temperature and precipitation for 2030 and 2070 were combined with multiple recreations of the paleoclimate record to simulate the combined effects of change in climate and paleoclimate variability. Using Boulder's water management model (which incorporates supply and demand for water and water rights) and accounting for population growth in Boulder and changes in demand for crop irrigation, the study found that wet and "middle" scenarios had little effect on the reliability of Boulder's water supply. But reduced precipitation scenarios resulted in violations of some of Boulder's water supply reliability criteria, which give goals for the frequency of providing specified levels of service (e.g., for indoor use, lawns). In general, Boulder is in a relatively good position to adapt to climate change because it has relatively senior water rights and can fill its reservoirs during later winter and spring months when runoff is projected to increase.

  9. Incorporating geodiversity into conservation decisions.

    PubMed

    Comer, Patrick J; Pressey, Robert L; Hunter, Malcolm L; Schloss, Carrie A; Buttrick, Steven C; Heller, Nicole E; Tirpak, John M; Faith, Daniel P; Cross, Molly S; Shaffer, Mark L

    2015-06-01

    In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species-centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others' approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate. © 2015 Society for Conservation Biology.

  10. State Policies on School Climate and Bully Prevention Efforts: Challenges and Opportunities for Deepening State Policy Support for Safe and Civil Schools

    ERIC Educational Resources Information Center

    Piscatelli, Jennifer; Lee, Chiqueena

    2011-01-01

    The National School Climate Center (NSCC) completed a 50-state policy scan on state school climate and anti-bullying policies to better understand the current state policy infrastructure supporting the development of positive school climates. This policy brief examines the current status of school climate and anti-bullying policies in each state,…

  11. Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.

    2013-12-01

    In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to increasing mean sea level. We examine the implications in the face of the CMIP5 projections. Storm intensification may result in increased flooding hazards at Ames. We analyze how the changes in precipitation intensity will impact the storm drainage system at Ames through continuous stormwater modeling of runoff with the EPA model SWMM 5 and projected downscaled daily precipitation data. Although extreme events will not adversely affect wetland habitats, adaptation projects--especially levee construction and improvement--will require filling of wetlands. Federal law mandates mitigation for fill placed in wetlands. We are currently calculating the potential mitigation burden by habitat type.

  12. Analysis of Stakeholder-Defined Needs in Northeast U.S. Coastal Communities to Determine Gaps in Research Informing Coastal Resilience Planning

    NASA Astrophysics Data System (ADS)

    Molino, G. D.; Kenney, M. A.; Sutton-Grier, A.; Penn, K.

    2017-12-01

    The impacts of climate change on our coastlines are increasing pressure on communities, ecosystems, infrastructure, and state-to-local economies in the northeastern United States (U.S.). As a result of current or imminent risk of acute and chronic hazards, local, state and regional entities have taken steps to identify and address vulnerabilities to climate change. Decisions to increase coastal infrastructure resilience and grey, green, and cultural infrastructure solutions requires physical, natural, and social science that is useful for decision-making and effective science translation mechanisms. Despite the desire to conduct or fund science that meets the needs of communities, there has been no comprehensive analysis to determine stakeholder-defined research needs. To address this gap, this study conducts a stakeholder needs analysis in northeast U.S. coastal communities to determine gaps in information and translation processes supporting coastal resilience planning. Documents were sourced from local, state, and regional organizations in both the public and private sectors, using the northeast region defined by the third National Climate Assessment. Modeled after Dilling et al. (2015), a deductive coding schema was developed that categorized documents using specific search terms such as "Location and condition of infrastructure" and "Proactive planning". A qualitative document analysis was then executed using NVivo to formally identify patterns and themes present in stakeholder surveys, workshop proceedings, and reports. Initial stakeholder priorities centered around incorporation of climate science into planning and decision making regarding vulnerabilities of infrastructure, enhanced emergency planning and response, and communication of key information.

  13. Discover Supercomputer 3

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  14. Discover Supercomputer 2

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  15. Discover Supercomputer 1

    NASA Image and Video Library

    2017-12-08

    The heart of the NASA Center for Climate Simulation (NCCS) is the “Discover” supercomputer. In 2009, NCCS added more than 8,000 computer processors to Discover, for a total of nearly 15,000 processors. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  16. 78 FR 51740 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... information collection, Registry of Climate Change Vulnerability Assessments. SUMMARY: We (the U.S. Geological... of Climate Change Vulnerability Assessments'' in the subject line. FOR FURTHER INFORMATION CONTACT: Laura Thompson, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  17. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  18. Regional Test Centers | Photovoltaic Research | NREL

    Science.gov Websites

    Regional Test Centers Regional Test Centers Five Regional Test Centers (RTCs), established by the the bankability of new photovoltaic (PV) technologies. Photo of the Regional Test Centers The DOE Regional Test Centers help to validate PV technologies in a range of different climates. Pictured here is

  19. University of Rhode Island Regional Earth Systems Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, Lewis; Cornillon, P.

    The primary objective of this program was to establish the URI Regional Earth System Center (“Center”) that would enhance overall societal wellbeing (health, financial, environmental) by utilizing the best scientific information and technology to achieve optimal policy decisions with maximum stakeholder commitment for energy development, coastal environmental management, water resources protection and human health protection, while accelerating regional economic growth. The Center was to serve to integrate existing URI institutional strengths in energy, coastal environmental management, water resources, and human wellbeing. This integrated research, educational and public/private sector outreach Center was to focus on local, state and regional resources. Themore » centerpiece activity of the Center was in the development and implementation of integrated assessment models (IAMs) that both ‘downscaled’ global observations and interpolated/extrapolated regional observations for analyzing the complexity of interactions among humans and the natural climate system to further our understanding and, ultimately, to predict the future state of our regional earth system. The Center was to begin by first ‘downscaling’ existing global earth systems management tools for studying the causes of local, state and regional climate change and potential social and environmental consequences, with a focus on the regional resources identified above. The Center would ultimately need to address the full feedbacks inherent in the nonlinear earth systems by quantifying the “upscaled” impacts of those regional changes on the global earth system. Through an interacting suite of computer simulations that are informed by observations from the nation’s evolving climate observatories, the Center activities integrates climate science, technology, economics, and social policy into forecasts that will inform solutions to pressing issues in regional climate change science, ‘green economy’ investment and climate policy. These project objectives were designed as part of a 5-year program, which would have constituted the initial phase for the establishment of the Center. Almost immediately (i.e. before receiving even the first year of funding) we were informed that we would not be receiving any funding beyond the initial phase; one year. This seriously impacted our ability to deliver on our objectives and, with that, a re-scoping of the Center priorities was designed to fit the 1-year constraints on funding. It was decided that, given the Center’s emphasis on building IAMs, the best way to proceed was to first focus on one particularly important component of the IAM – a natural sciences model that would be useful for research and forecasting of the circualation/ecology/biogeochemistry of RI’s coastal waters. We have succeeded on that necessarily more limited objective, as we will describe below.« less

  20. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  1. Climate Prediction Center - 6-10 Day Wind Chill Outlook

    Science.gov Websites

    8-14 Day Obsrv'd About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team 6-10 & official Web portal to all federal, state, and local government Web resources and services. 6-10 Day Lowest Park, Maryland 20740 Climate Prediction Center Web Team Page last modified: August 30, 2012 Disclaimer

  2. Climate Prediction Center - Monitoring & Data: La Niña Seasonal Maps and

    Science.gov Websites

    Statistics Skip Navigation Links www.nws.noaa.gov NOAA logo - Click to go to the NOAA home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Organization Search Go Search the CPC Go About Us Our Mission Who We Are Contact Us

  3. University of Colorado at Boulder: Energy and Climate Revolving Fund. Green Revolving Funds in Action: Case Study Series

    ERIC Educational Resources Information Center

    Caine, Rebecca

    2012-01-01

    The University of Colorado at Boulder's student run Environmental Center leads the campus' sustainability efforts. The Center created the Energy and Climate Revolving Fund (ECRF) in 2007 to finance energy-efficiency upgrades. The ECRF functions as a source of funding for project loans and provides a method of financing projects that seeks to save…

  4. Psychological and Organizational Climate: Dimensions and Relationships

    DTIC Science & Technology

    1977-03-07

    SPSYCHOLOGICAL AND ON IZATIONAL CUMATE: DIESINSAND RELATINSI’ K0 A. P. INES L . R. JAMES REPWIINO 77-12 N(AVAL HEALTH RESEARCH CENTER SAN DIEGO...CALIFORNIA 92152 a NAVAL MEDICAL RESEARCH AND DEVELOPMENT COMMAND BhEThESDA1 MARYLAND Psychological and Organizational Climate: Dimensions and...Relationships Allan P. Jones Naval Health Research Center San Diego, California 92152 and Lawrence R. James Institute of Behavioral Research Texas Christian

  5. Genomic diversity and macroecology of the crop wild relatives of domesticated pea.

    PubMed

    Smýkal, Petr; Hradilová, Iveta; Trněný, Oldřich; Brus, Jan; Rathore, Abhishek; Bariotakis, Michael; Das, Roma Rani; Bhattacharyya, Debjyoti; Richards, Christopher; Coyne, Clarice J; Pirintsos, Stergios

    2017-12-12

    There is growing interest in the conservation and utilization of crop wild relatives (CWR) in international food security policy and research. Legumes play an important role in human health, sustainable food production, global food security, and the resilience of current agricultural systems. Pea belongs to the ancient set of cultivated plants of the Near East domestication center and remains an important crop today. Based on genome-wide analysis, P. fulvum was identified as a well-supported species, while the diversity of wild P. sativum subsp. elatius was structured into 5 partly geographically positioned clusters. We explored the spatial and environmental patterns of two progenitor species of domesticated pea in the Mediterranean Basin and in the Fertile Crescent in relation to the past and current climate. This study revealed that isolation by distance does not explain the genetic structure of P. sativum subsp. elatius in its westward expansion from its center of origin. The genetic diversity of wild pea may be driven by Miocene-Pliocene events, while the phylogenetic diversity centers may reflect Pleisto-Holocene climatic changes. These findings help set research and discussion priorities and provide geographical and ecological information for germplasm-collecting missions, as well as for the preservation of extant diversity in ex-situ collections.

  6. Global Three-Dimensional Atmospheric Structure of the Atlantic Multidecadal Oscillation as Revealed by Two Reanalyses

    NASA Astrophysics Data System (ADS)

    Stuckman, Scott Seele

    This study is a first documentation of the structure of the entire AMO life cycle, including extreme and transition phases, throughout the global troposphere. The extreme phase climate signature is constructed based on the strongest and most robust patterns identified by two methods (linear correlation and composite analyses), two reanalysis datasets (the National Centers for Environmental Prediction/National Center for Atmospheric Research and Twentieth Century Reanalysis, supplemented with precipitation data from the University of Delaware dataset) and data from two consecutive AMO cycles. The first characterization of the AMO transition phases uses a transition index based on the time derivative of AMO index. When trying to compare the zonal mean structure of AMO with the El Niño-Southern Oscillation (ENSO), a literature search showed the zonal mean structure of ENSO remained unpublished, despite the otherwise generally well-characterized horizontal structures. Therefore this study includes a seasonal analysis of the ENSO zonal mean structure during boreal winter (DJF) and summer (JJA). The AMO extreme phase is characterized by a blend of low and middle latitude centers of action, with the associated tilt of geopotential height anomaly patterns consistent with off-equatorial heating patterns generated by the Held idealized model. The surface climate signature is connected to the upper air with baroclinic vertical structure over the North Atlantic but barotropic structures elsewhere. The associated zonal mean circulation features three circulation cells globally with strong inter-hemispheric mixing that suggests the traditional view of the AMO involving a Northern-Southern Hemisphere asymmetry is accurate only near the surface. The AMO transition phase features a more equatorial-based climate signature and associated geopotential height anomaly patterns consistent with the Matsuno-Gill idealized model. The zonal mean circulation of the transition phases features six, rather than three, circulation cells globally. The only baroclinic structure, over North America, and several barotropic structures are positioned west of corresponding similar structures during the AMO extreme phase, suggesting an eastward evolution of climate anomalies as the AMO progresses from a cool-to-warm transition phase to warm phase. The Pacific-based climate signature resembles the IPO warm phase and it is proposed the AMO and IPO are different basin-wide expressions of a single multidecadal oscillation. The identification of an AMO transition phase climate signature distinct from the extreme phase suggests transition phases are not neutral and may provide an additional source of information for characterizing climate cycles.

  7. Development of a global historic monthly mean precipitation dataset

    NASA Astrophysics Data System (ADS)

    Yang, Su; Xu, Wenhui; Xu, Yan; Li, Qingxiang

    2016-04-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to other datasets. Using the Penalized Maximal t-test method, significant inhomogeneity has been detected in historic precipitation datasets at 340 stations. The ratio method is then employed to effectively remove these remarkable change points. Global precipitation analysis based on CGP v1.0 shows that rainfall has been increasing during 1901-2013 with an increasing rate of 3.52 ± 0.5 mm (10 yr)-1, slightly higher than that in the NCDC data. Analysis also reveals distinguished long-term changing trends at different latitude zones.

  8. Regional Climate Variations and Change for Terrestrial Ecosystems Workshop Review

    EPA Science Inventory

    North Carolina State University, the University of North Carolina at Chapel Hill, and the U.S. Environmental Protection Agency, in partnership with the U.S. Department of the Interior Southeast Climate Science Center (SECSC), hosted the Regional Climate Variations and Change for ...

  9. Use of a Principal Components Analysis for the Generation of Daily Time Series.

    NASA Astrophysics Data System (ADS)

    Dreveton, Christine; Guillou, Yann

    2004-07-01

    A new approach for generating daily time series is considered in response to the weather-derivatives market. This approach consists of performing a principal components analysis to create independent variables, the values of which are then generated separately with a random process. Weather derivatives are financial or insurance products that give companies the opportunity to cover themselves against adverse climate conditions. The aim of a generator is to provide a wider range of feasible situations to be used in an assessment of risk. Generation of a temperature time series is required by insurers or bankers for pricing weather options. The provision of conditional probabilities and a good representation of the interannual variance are the main challenges of a generator when used for weather derivatives. The generator was developed according to this new approach using a principal components analysis and was applied to the daily average temperature time series of the Paris-Montsouris station in France. The observed dataset was homogenized and the trend was removed to represent correctly the present climate. The results obtained with the generator show that it represents correctly the interannual variance of the observed climate; this is the main result of the work, because one of the main discrepancies of other generators is their inability to represent accurately the observed interannual climate variance—this discrepancy is not acceptable for an application to weather derivatives. The generator was also tested to calculate conditional probabilities: for example, the knowledge of the aggregated value of heating degree-days in the middle of the heating season allows one to estimate the probability if reaching a threshold at the end of the heating season. This represents the main application of a climate generator for use with weather derivatives.


  10. Climate Change Adaptation Activities at the NASA John F. Kennedy Space Center, FL., USA

    NASA Technical Reports Server (NTRS)

    Hall, Carlton; Phillips, Lynne

    2016-01-01

    In 2010, the Office of Strategic Infrastructure and Earth Sciences established the Climate Adaptation Science Investigators (CASI) program to integrate climate change forecasts and knowledge into sustainable management of infrastructure and operations needed for the NASA mission. NASA operates 10 field centers valued at $32 billion dollars, occupies 191,000 acres and employs 58,000 people. CASI climate change and sea-level rise forecasts focus on the 2050 and 2080 time periods. At the 140,000 acre Kennedy Space Center (KSC) data are used to simulate impacts on infrastructure, operations, and unique natural resources. KSC launch and processing facilities represent a valued national asset located in an area with high biodiversity including 33 species of special management concern. Numerical and advanced Bayesian and Monte Carlo statistical modeling is being conducted using LiDAR digital elevation models coupled with relevant GIS layers to assess potential future conditions. Results are provided to the Environmental Management Branch, Master Planning, Construction of Facilities, Engineering Construction Innovation Committee and our regional partners to support Spaceport development, management, and adaptation planning and design. Potential impacts to natural resources include conversion of 50% of the Center to open water, elevation of the surficial aquifer, alterations of rainfall and evapotranspiration patterns, conversion of salt marsh to mangrove forest, reductions in distribution and extent of upland habitats, overwash of the barrier island dune system, increases in heat stress days, and releases of chemicals from legacy contamination sites. CASI has proven successful in bringing climate change planning to KSC including recognition of the need to increase resiliency and development of a green managed shoreline retreat approach to maintain coastal ecosystem services while maximizing life expectancy of Center launch and payload processing resources.

  11. Climate Change Adaptation Activities at the NASA John F. Kennedy Space Center, Fl., USA

    NASA Astrophysics Data System (ADS)

    Hall, C. R.; Phillips, L. V.; Foster, T.; Stolen, E.; Duncan, B.; Hunt, D.; Schaub, R.

    2016-12-01

    In 2010, the Office of Strategic Infrastructure and Earth Sciences established the Climate Adaptation Science Investigators (CASI) program to integrate climate change forecasts and knowledge into sustainable management of infrastructure and operations needed for the NASA mission. NASA operates 10 field centers valued at $32 billion dollars, occupies 191,000 acres and employs 58,000 people. CASI climate change and sea-level rise forecasts focus on the 2050 and 2080 time periods. At the 140,000 acre Kennedy Space Center (KSC) data are used to simulate impacts on infrastructure, operations, and unique natural resources. KSC launch and processing facilities represent a valued national asset located in an area with high biodiversity including 33 species of special management concern. Numerical and advanced Bayesian and Monte Carlo statistical modeling is being conducted using LiDAR digital elevation models coupled with relevant GIS layers to assess potential future conditions. Results are provided to the Environmental Management Branch, Master Planning, Construction of Facilities, Engineering Construction Innovation Committee and our regional partners to support Spaceport development, management, and adaptation planning and design. Potential impacts to natural resources include conversion of 50% of the Center to open water, elevation of the surficial aquifer, alterations of rainfall and evapotranspiration patterns, conversion of salt marsh to mangrove forest, reductions in distribution and extent of upland habitats, overwash of the barrier island dune system, increases in heat stress days, and releases of chemicals from legacy contamination sites. CASI has proven successful in bringing climate change planning to KSC including recognition of the need to increase resiliency and development of a green managed shoreline retreat approach to maintain coastal ecosystem services while maximizing life expectancy of Center launch and payload processing resources.

  12. Lessons Learned on Effective Co-production of Drought Science and Decision Support Tools with the Wind River Reservation Tribal Water Managers

    NASA Astrophysics Data System (ADS)

    McNeeley, S.; Ojima, D. S.; Beeton, T.

    2015-12-01

    The Wind River Reservation in west-central Wyoming is home of the Eastern Shoshone and Northern Arapaho Tribes. The reservation has experienced severe drought impacts on Tribal livelihoods and cultural activities in recent years. Scientists from the North Central Climate Science Center, the National Drought Mitigation Center, the High Plains Regional Climate Center, and multiple others are working in close partnership with the tribal water managers on a reservation-wide drought preparedness project that includes a technical assessment of drought risk, capacity building to train managers on drought and climate science and indicators, and drought planning. This talk will present project activities to date along with the valuable and transferrable lessons learned on effective co-production of actionable science for decision making in a tribal context.

  13. U.S. Department of the Interior South Central Climate Science Center

    USGS Publications Warehouse

    Shipp, Allison A.

    2012-01-01

    On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.

  14. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final)

    EPA Science Inventory

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  15. Lessons from Earth's Deep Time

    ERIC Educational Resources Information Center

    Soreghan, G. S.

    2005-01-01

    Earth is a repository of data on climatic changes from its deep-time history. Article discusses the collection and study of these data to predict future climatic changes, the need to create national study centers for the purpose, and the necessary cooperation between different branches of science in climatic research.

  16. What Renaissance Literary Theory Tells us about Climate Communication

    NASA Astrophysics Data System (ADS)

    Guenther, G. J.

    2017-12-01

    Many current debates in climate communication-to convey the consensus or not to convey the consensus; to frighten people or encourage them-seem to center on the question of how to discuss climate science and its ability to predict climate impacts. By examining the Renaissance literary theory that represents poets as better teachers than philosophers and scientists, this paper argues that climate advocates should redefine climate communication to include a variety of artistic discourses that make meaning in order to inspire people into political action.

  17. Analysis of the structure of climate networks under El Niño and La Niña conditions

    NASA Astrophysics Data System (ADS)

    Graciosa, Juan Carlos; Pastor, Marissa

    The El Niño-Southern Oscillation (ENSO) is the most important driver of natural climate variability and is characterized by anomalies in the sea surface temperatures (SST) over the tropical Pacific ocean. It has three phases: neutral, a warming phase or El Niño, and a cooling phase called La Niña. In this research, we modeled the climate under the three phases as a network and characterized its properties. We utilized the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) daily surface temperature reanalysis data from January 1950 to December 2016. A network associated to a month was created using the temperature spanning from the previous month to the succeeding month, for a total of three months worth of data for each network. Each site of the included data was a potential node in the network and the existence of links were determined by the strength of their relationship, which was based on mutual information. Interestingly, we found that climate networks exhibit small-world properties and these are found to be more prominent from October to April, coinciding with observations that El Niño occurrences peak from December to March. During these months, the temperature of a relatively large part of the Pacific ocean and its surrounding areas increase and the anomaly values become synchronized. This synchronization in the temperature anomalies forms links around the Pacific, increasing the clustering in the region and in effect, that of the entire network.

  18. Climate Prediction Center - Seasonal Color Maps

    Science.gov Websites

    HOME > Outlook Maps > Monthly to Seasonal Outlooks > Seasonal Outlooks > Color Monthly & ; Seasonal Outlooks Monthly & Seasonal Climate Outlooks Banner Issued: 17 May 2018 [EXPERIMENTAL TWO

  19. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    NASA Astrophysics Data System (ADS)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena Convention Center in Pasadena, California. Although our goals and objectives remain the same, we continue to improve the event, which now includes student staff and student exhibitors. Our poster will give an overview and highlights of the November 16, 2012 event.

  20. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar conducts a program of research and development in support of the National Centers for Environmental Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park

  1. Climate Prediction Center - 6-10 and 8-14 Day Prognostic Discussions

    Science.gov Websites

    About Us Our Mission Who We Are Contact Us CPC Information CPC Web Team 6-10 Day outlooks are issued DISCUSSIONS FOR 6 TO 10 AND 8 TO 14 DAY OUTLOOKS NWS CLIMATE PREDICTION CENTER COLLEGE PARK MD 300 PM EDT SAT CONSISTENCY ISSUES. IN THESE CASES, FORECASTS ARE MANUALLY DRAWN BUT A FULL DISCUSSION IS NOT ISSUED. THE

  2. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2017

    USGS Publications Warehouse

    Varela Minder, Elda

    2018-04-19

    IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.

  3. Pacific Region Integrated Climatology Information Products (PRICIP) Derived-data Products

    NASA Astrophysics Data System (ADS)

    Marra, J. J.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Integrated Data and Environmental Applications (IDEA) Center has initiated the Pacific Region Integrated Climatology Information Products (PRICIP) project to improve our understanding of patterns and trends of storm frequency and intensity - 'storminess'- within the Pacific region and develop a suite of integrated data and information products. Strong winds, heavy rains, and high seas theme-specific data integration and product development teams have been formed to carry out this work. These teams are comprised of recognized agency and university- based experts in the area of climate-related processes that govern storminess. They include representatives from NOAA's National Climatic Data Center (NCDC), Center for Operational Products and Services (CO-OPS), and National Weather Service (NWS), as well as the University of Hawai'i, University of Alaska, University of Guam, and Oregon State University. Each team is developing regional climatological overviews, identifying corresponding extremes indices, establishing data treatment and analysis protocols, and conducting analyses to establish baseline statistics, long term trends, patterns of variability, and event return recurrence intervals via Generalized Extreme Value (GEV) analyses. Preliminary results of these analyses can be viewed via a beta-version of a Google map- based query utility (http://www.pricip.org/ddp.php ). Data sources for these analyses include NOAA's Integrated Surface Hourly (ISH) mean sea level pressure and wind speed data; the Global Historical Climate Network (GHCN) precipitation dataset; the National Water Level Observing Network (NWLON) sea level station records; the National Data Buoy Center (NDBC) wave buoy records; the U.S. Army Corps of Engineers" Coastal Data Information (CDIP) buoy data, and other data. The northern and central north Pacific, which includes Alaska, the Pacific Northwest, and Hawai'i, have been targeted as initial priority areas. It is envisioned that the results of this effort will be used by emergency managers, mitigation planners, government agencies and decision-makers in key sectors including water and natural resource management, agriculture and fisheries, transportation and communication, and recreation and tourism.

  4. An interactive web application for visualizing climate data

    USGS Publications Warehouse

    Alder, J.; Hostetler, S.; Williams, D.

    2013-01-01

    Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.

  5. An Interactive Web Application for Visualizing Climate Data

    NASA Astrophysics Data System (ADS)

    Alder, J.; Hostetler, S.; Williams, D.

    2013-05-01

    Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.

  6. NASA's Pleiades Supercomputer Crunches Data For Groundbreaking Analysis and Visualizations

    NASA Image and Video Library

    2016-11-23

    The Pleiades supercomputer at NASA's Ames Research Center, recently named the 13th fastest computer in the world, provides scientists and researchers high-fidelity numerical modeling of complex systems and processes. By using detailed analyses and visualizations of large-scale data, Pleiades is helping to advance human knowledge and technology, from designing the next generation of aircraft and spacecraft to understanding the Earth's climate and the mysteries of our galaxy.

  7. There's an Elephant in the Room! How Talking Around Climate Can Be More Effective Than Talking About Climate

    NASA Astrophysics Data System (ADS)

    Unger, M.; Rockwell, A.

    2014-12-01

    Conversations about climate change can easily devolve into polarization and political finger-pointing, where there should be a civilized discussion and enthusiastic brainstorming. How can we change the pugilistic back into the personable? We will examine some examples of reinstating dialogue in various settings, drawing on our experiences working with the public, students and educators in our visitor centers and public areas at the National Center for Atmospheric Research (NCAR), as well as using off-the-clock opportunities to communicate about our work in social and other informal settings. We will share lessons about what works and what doesn't when communicating about climate online and offline, and the differences in discussions that occur in virtual, digital settings and face-to-face.

  8. The Moderating Role of Performance in the Link From Interactional Justice Climate to Mutual Trust Between Managers and Team Members.

    PubMed

    Martínez-Tur, Vicente; Gracia, Esther; Moliner, Carolina; Molina, Agustín; Kuster, Inés; Vila, Natalia; Ramos, José

    2016-06-01

    The main goal of this study was to examine the interaction between team members' performance and interactional justice climate in predicting mutual trust between managers and team members. A total of 93 small centers devoted to the attention of people with intellectual disability participated in the study. In each center, the manager (N = 93) and a group of team members (N = 746) were surveyed. On average, team members were 36.2 years old (SD = 9.3), whereas managers were 41.2 years old (SD = 8.8). The interaction between interactional justice climate and performance was statistically significant. Team members' performance strengthened the link from interactional justice climate to mutual trust. © The Author(s) 2016.

  9. Assessing Culture and Climate of Federally Qualified Health Centers: A Plan for Implementing Behavioral Health Interventions.

    PubMed

    Kramer, Teresa L; Drummond, Karen L; Curran, Geoffrey M; Fortney, John C

    2017-01-01

    This study examines organizational factors relating to climate and culture that might facilitate or impede the implementation of evidence-based practices (EBP) targeting behavioral health in federally qualified health centers (FQHCs). Employees at six FQHCs participating in an evidence-based quality improvement (EBQI) initiative for mood disorders and alcohol abuse were interviewed (N=32) or surveyed using the Organizational Context Survey (OCS) assessing culture and climate (N=64). The FQHCs scored relatively well on proficiency, a previously established predictor of successful EBP implementation, but also logged high scores on scales assessing rigidity and resistance, which may hinder implementation. Qualitative data contextualized scores on FQHC culture and climate dimensions. Results suggest that the unique culture of FQHCs may influence implementation of evidence-based behavioral health interventions.

  10. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios and Ecosystem ServicesIndicators

    EPA Science Inventory

    While discussions of global climate change tend to center on greenhouse gases and sea level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasin...

  11. A Review of School Climate Research

    ERIC Educational Resources Information Center

    Thapa, Amrit; Cohen, Jonathan; Guffey, Shawn; Higgins-D'Alessandro, Ann

    2013-01-01

    For more than a century, there has been a growing interest in school climate. Recently, the U.S. Department of Education, Center for Disease Control and Prevention, Institute for Educational Sciences, a growing number of State Departments of Education, foreign educational ministries, and UNICEF have focused on school climate reform as an…

  12. Beyond the Inventory: Planning for Campus Greenhouse Gas Reduction

    ERIC Educational Resources Information Center

    Willson, Richard

    2010-01-01

    Climate change planning is fast becoming an important element in university policy and governance. As the causes and impacts of global climate change become more apparent, many universities are embracing climate planning roles as community leaders, educators and researchers, and operators of major activity centers. For example, 685 university…

  13. EnviroAtlas: A Spatially Explicit Tool Combining Climate Change Scenarios with Ecosystem Services Indicators

    EPA Science Inventory

    While discussions of global climate change tend to center on greenhouse gases and seal level rise, other factors, such as technological developments, land and energy use, economics, and population growth all play a critical role in understanding climate change. There is increasi...

  14. Hampton Roads climate impact quantification initiative : baseline assessment of the transportation assets & overview of economic analyses useful in quantifying impacts

    DOT National Transportation Integrated Search

    2016-09-13

    The Hampton Roads Climate Impact Quantification Initiative (HRCIQI) is a multi-part study sponsored by the U.S. Department of Transportation (DOT) Climate Change Center with the goals that include developing a cost tool that provides methods for volu...

  15. Data-Driven Synthesis for Investigating Food Systems Resilience to Climate Change

    NASA Astrophysics Data System (ADS)

    Magliocca, N. R.; Hart, D.; Hondula, K. L.; Munoz, I.; Shelley, M.; Smorul, M.

    2014-12-01

    The production, supply, and distribution of our food involves a complex set of interactions between farmers, rural communities, governments, and global commodity markets that link important issues such as environmental quality, agricultural science and technology, health and nutrition, rural livelihoods, and social institutions and equality - all of which will be affected by climate change. The production of actionable science is thus urgently needed to inform and prepare the public for the consequences of climate change for local and global food systems. Access to data that spans multiple sectors/domains and spatial and temporal scales is key to beginning to tackle such complex issues. As part of the White House's Climate Data Initiative, the USDA and the National Socio-Environmental Synthesis Center (SESYNC) are launching a new collaboration to catalyze data-driven research to enhance food systems resilience to climate change. To support this collaboration, SESYNC is developing a new "Data to Motivate Synthesis" program designed to engage early career scholars in a highly interactive and dynamic process of real-time data discovery, analysis, and visualization to catalyze new research questions and analyses that would not have otherwise been possible and/or apparent. This program will be supported by an integrated, spatially-enabled cyberinfrastructure that enables the management, intersection, and analysis of large heterogeneous datasets relevant to food systems resilience to climate change. Our approach is to create a series of geospatial abstraction data structures and visualization services that can be used to accelerate analysis and visualization across various socio-economic and environmental datasets (e.g., reconcile census data with remote sensing raster datasets). We describe the application of this approach with a pilot workshop of socio-environmental scholars that will lay the groundwork for the larger SESYNC-USDA collaboration. We discuss the particular challenges of supporting an integrated, repeatable workflow for socio-environmental data synthesis, and the advantages and limitations to using data as a launching point for interdisciplinary research projects.

  16. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, R.C.; Boden, T.A.; Easterling, D.R.

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have beenmore » used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.« less

  17. Technical Report Series on Global Modeling and Data Assimilation. Volume 13; Interannual Variability and Potential Predictability in Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Min, Wei; Schubert, Siegfried D.; Suarez, Max J. (Editor)

    1997-01-01

    The Data Assimilation Office (DAO) at Goddard Space Flight Center and the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) have produced multi-year global assimilations of historical data employing fixed analysis systems. These "reanalysis" products are ideally suited for studying short-term climatic variations. The availability of multiple reanalysis products also provides the opportunity to examine the uncertainty in the reanalysis data. The purpose of this document is to provide an updated estimate of seasonal and interannual variability based on the DAO and NCEP/NCAR reanalyses for the 15-year period 1980-1995. Intercomparisons of the seasonal means and their interannual variations are presented for a variety of prognostic and diagnostic fields. In addition, atmospheric potential predictability is re-examined employing selected DAO reanalysis variables.

  18. Improving Performance of the System Safety Function at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kiessling, Ed; Tippett, Donald D.; Shivers, Herb

    2004-01-01

    The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.

  19. Operational Products Archived at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Fetterer, F. M.; Ballagh, L.; Gergely, K.; Kovarik, J.; Wallace, A.; Windnagel, A.

    2009-12-01

    Sea ice charts for shipping interests from the Navy/NOAA/Coast Guard National Ice Center are often laboriously produced by manually interpreting and synthesizing data from many sources, both satellite and in situ. They are generally more accurate than similar products from single sources. Upward looking sonar data from U.S. Navy submarines operating in the Arctic provides information on ice thickness. Similarly extensive data were available from no other source prior to the recently established reliability of ice thickness estimates from polar orbiting instruments like the Geoscience Laser Altimeter System (GLAS). Snow Data Assimilation System (SNODAS) products from the NOAA NWS National Operational Hydrologic Remote Sensing Center give researchers the best possible estimates of snow cover and associated variables to support hydrologic modeling and analysis for the continental U.S. These and other snow and ice data products are produced by the U.S. Navy, the NOAA National Weather Service, and other agency entities to serve users who have an operational need: to get a ship safely to its destination, for example, or to predict stream flow. NOAA supports work at NSIDC with data from operational sources that can be used for climate research and change detection. We make these products available to a new user base, by archiving operational data, making data available online, providing documentation, and fielding questions from researchers about the data. These data demand special consideration: often they are advantageous because they are available on a schedule in near real time, but their use in climate studies is problematic since many are produced with regard for ‘best now’ and without regard for time series consistency. As arctic climate changes rapidly, operational and semi-operational products have an expanding science support role to play.

  20. Building dampness and mold in European homes in relation to climate, building characteristics and socio-economic status: The European Community Respiratory Health Survey ECRHS II.

    PubMed

    Norbäck, D; Zock, J-P; Plana, E; Heinrich, J; Tischer, C; Jacobsen Bertelsen, R; Sunyer, J; Künzli, N; Villani, S; Olivieri, M; Verlato, G; Soon, A; Schlünssen, V; Gunnbjörnsdottir, M I; Jarvis, D

    2017-09-01

    We studied dampness and mold in homes in relation to climate, building characteristics and socio-economic status (SES) across Europe, for 7127 homes in 22 centers. A subsample of 3118 homes was inspected. Multilevel analysis was applied, including age, gender, center, SES, climate, and building factors. Self-reported water damage (10%), damp spots (21%), and mold (16%) in past year were similar as observed data (19% dampness and 14% mold). Ambient temperature was associated with self-reported water damage (OR=1.63 per 10°C; 95% CI 1.02-2.63), damp spots (OR=2.95; 95% CI 1.98-4.39), and mold (OR=2.28; 95% CI 1.04-4.67). Precipitation was associated with water damage (OR=1.12 per 100 mm; 95% CI 1.02-1.23) and damp spots (OR=1.11; 95% CI 1.02-1.20). Ambient relative air humidity was not associated with indoor dampness and mold. Older buildings had more dampness and mold (P<.001). Manual workers reported less water damage (OR=0.69; 95% CI 0.53-0.89) but more mold (OR=1.27; 95% CI 1.03-1.55) as compared to managerial/professional workers. There were correlations between reported and observed data at center level (Spearman rho 0.61 for dampness and 0.73 for mold). In conclusion, high ambient temperature and precipitation and high building age can be risk factors for dampness and mold in homes in Europe. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2

    NASA Astrophysics Data System (ADS)

    Groll, Nikolaus; Weisse, Ralf

    2017-12-01

    Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.

  2. Helping Water Utilities Grapple with Climate Change

    NASA Astrophysics Data System (ADS)

    Yates, D.; Gracely, B.; Miller, K.

    2008-12-01

    The Water Research Foundation (WRF), serving the drinking water industry and the National Center for Atmospheric Research (NCAR) are collaborating on an effort to develop and implement locally-relevant, structured processes to help water utilities consider the impacts and adaptation options that climate variability and change might have on their water systems. Adopting a case-study approach, the structured process include 1) a problem definition phase, focused on identifying goals, information needs, utility vulnerabilities and possible adaptation options in the face of climate and hydrologic uncertainty; 2) developing and/or modifying system-specific Integrated Water Resource Management (IWRM) models and conducting sensitivity analysis to identify critical variables; 3) developing probabilistic climate change scenarios focused on exploring uncertainties identified as important in the sensitivity analysis in step 2; and 4) implementing the structured process and examining approaches decision making under uncertainty. Collaborators include seven drinking water utilities and two state agencies: 1) The Inland Empire Utility Agency, CA; 2) The El Dorado Irrigation District, Placerville CA; 2) Portland Water Bureau, Portland OR; 3) Colorado Springs Utilities, Colo Spgs, CO; 4) Cincinnati Water, Cincinnati, OH; 5) Massachusetts Water Resources Authority (MWRA), Boston, MA; 6) Durham Water, Durham, NC; and 7) Palm Beach County Water (PBCW), Palm Beach, FL. The California Department of Water Resources and the Colorado Water Conservation Board were the state agencies that we have collaborated with.

  3. Decay hazard (Scheffer) index values calculated from 1971-2000 climate normal data

    Treesearch

    Charles G. Carll

    2009-01-01

    Climate index values for estimating decay hazard to wood exposed outdoors above ground (commonly known as Scheffer index values) were calculated for 280 locations in the United States (270 locations in the conterminous United States) using the most current climate normal data available from the National Climatic Data Center. These were data for the period 1971–2000. In...

  4. Sea surface temperature predictions using a multi-ocean analysis ensemble scheme

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhu, Jieshun; Li, Zhongxian; Chen, Haishan; Zeng, Gang

    2017-08-01

    This study examined the global sea surface temperature (SST) predictions by a so-called multiple-ocean analysis ensemble (MAE) initialization method which was applied in the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). Different from most operational climate prediction practices which are initialized by a specific ocean analysis system, the MAE method is based on multiple ocean analyses. In the paper, the MAE method was first justified by analyzing the ocean temperature variability in four ocean analyses which all are/were applied for operational climate predictions either at the European Centre for Medium-range Weather Forecasts or at NCEP. It was found that these systems exhibit substantial uncertainties in estimating the ocean states, especially at the deep layers. Further, a set of MAE hindcasts was conducted based on the four ocean analyses with CFSv2, starting from each April during 1982-2007. The MAE hindcasts were verified against a subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) Project. Comparisons suggested that MAE shows better SST predictions than CFSRR over most regions where ocean dynamics plays a vital role in SST evolutions, such as the El Niño and Atlantic Niño regions. Furthermore, significant improvements were also found in summer precipitation predictions over the equatorial eastern Pacific and Atlantic oceans, for which the local SST prediction improvements should be responsible. The prediction improvements by MAE imply a problem for most current climate predictions which are based on a specific ocean analysis system. That is, their predictions would drift towards states biased by errors inherent in their ocean initialization system, and thus have large prediction errors. In contrast, MAE arguably has an advantage by sampling such structural uncertainties, and could efficiently cancel these errors out in their predictions.

  5. Successfully Engaging Family and Student Audiences in Climate Science Workshops in an Informal Learning Venue

    NASA Astrophysics Data System (ADS)

    DeFrancis, G.; Haynes, R.; Schroer, K.

    2017-12-01

    The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.

  6. Methodology for qualitative uncertainty assessment of climate impact indicators

    NASA Astrophysics Data System (ADS)

    Otto, Juliane; Keup-Thiel, Elke; Rechid, Diana; Hänsler, Andreas; Pfeifer, Susanne; Roth, Ellinor; Jacob, Daniela

    2016-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing an integrated platform of climate data services to provide a single point of access for authoritative scientific information on climate change and climate change impacts. In this project, the Climate Service Center Germany (GERICS) has been in charge of the development of a methodology on how to assess the uncertainties related to climate impact indicators. Existing climate data portals mainly treat the uncertainties in two ways: Either they provide generic guidance and/or express with statistical measures the quantifiable fraction of the uncertainty. However, none of the climate data portals give the users a qualitative guidance how confident they can be in the validity of the displayed data. The need for such guidance was identified in CLIPC user consultations. Therefore, we aim to provide an uncertainty assessment that provides the users with climate impact indicator-specific guidance on the degree to which they can trust the outcome. We will present an approach that provides information on the importance of different sources of uncertainties associated with a specific climate impact indicator and how these sources affect the overall 'degree of confidence' of this respective indicator. To meet users requirements in the effective communication of uncertainties, their feedback has been involved during the development process of the methodology. Assessing and visualising the quantitative component of uncertainty is part of the qualitative guidance. As visual analysis method, we apply the Climate Signal Maps (Pfeifer et al. 2015), which highlight only those areas with robust climate change signals. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Reference Pfeifer, S., Bülow, K., Gobiet, A., Hänsler, A., Mudelsee, M., Otto, J., Rechid, D., Teichmann, C. and Jacob, D.: Robustness of Ensemble Climate Projections Analyzed with Climate Signal Maps: Seasonal and Extreme Precipitation for Germany, Atmosphere (Basel)., 6(5), 677-698, doi:10.3390/atmos6050677, 2015.

  7. People as sensors: mass media and local temperature influence climate change discussion on Twitter

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Molodtsova, T.; Stepchenkova, S.

    2014-12-01

    We examined whether people living under significant temperature anomalies connect their sensory experiences to climate change and the role that media plays in this process. We used Twitter messages containing words "climate change" and "global warming" as the indicator of attention that public pays to the issue. Specifically, the goals were: (1) to investigate whether people immediately notice significant local weather anomalies and connect them to climate change and (2) to examine the role of mass media in this process. Over 2 million tweets were collected for a two-year period (2012 - 2013) and were assigned to 157 urban areas in the continental USA (Figure 1). Geographical locations of the tweets were identified with a geolocation resolving algorithm based the profile of the users. Daily number of tweets (tweeting rate) was computed for 157 conterminous USA urban areas and adjusted for data acquisition errors. The USHCN daily minimum and maximum temperatures were obtained for the station locations closest to the centers of the urban areas and the 1981-2010 30-year temperature mean and standard deviation were used as the climate normals. For the analysis, we computed the following indices for each day of 2012 - 2013 period: standardized temperature anomaly, absolute standardized temperature anomaly, and extreme cold and hot temperature anomalies for each urban zone. The extreme cold and hot temperature anomalies were then transformed into country-level values that represent the number of people living in extreme temperature conditions. The rate of tweeting on climate change was regressed on the time variables, number of climate change publications in the mass media, and temperature. In the majority of regression models, the mass media and temperature variables were significant at the p<0.001 level. Additionally, we did not find convincing evidence that the media acts as a mediator in the relationship between local weather and climate change discourse intensity. Our analysis of Twitter data confirmed that the public is able to recognize extreme temperature anomalies and connects these anomalies to climate change. Finally, we demonstrated the utility of social network data for research on public climate change perception.

  8. Projections of the Ganges-Brahmaputra precipitation: downscaled from GCM predictors

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2014-01-01

    Downscaling Global Climate Model (GCM) projections of future climate is critical for impact studies. Downscaling enables use of GCM experiments for regional scale impact studies by generating regionally specific forecasts connecting global scale predictions and regional scale dynamics. We employed the Statistical Downscaling Model (SDSM) to downscale 21st century precipitation for two data-sparse hydrologically challenging river basins in South Asia—the Ganges and the Brahmaputra. We used CGCM3.1 by Canadian Center for Climate Modeling and Analysis version 3.1 predictors in downscaling the precipitation. Downscaling was performed on the basis of established relationships between historical Global Summary of Day observed precipitation records from 43 stations and National Center for Environmental Prediction re-analysis large scale atmospheric predictors. Although the selection of predictors was challenging during the set-up of SDSM, they were found to be indicative of important physical forcings in the basins. The precipitation of both basins was largely influenced by geopotential height: the Ganges precipitation was modulated by the U component of the wind and specific humidity at 500 and 1000 h Pa pressure levels; whereas, the Brahmaputra precipitation was modulated by the V component of the wind at 850 and 1000 h Pa pressure levels. The evaluation of the SDSM performance indicated that model accuracy for reproducing precipitation at the monthly scale was acceptable, but at the daily scale the model inadequately simulated some daily extreme precipitation events. Therefore, while the downscaled precipitation may not be the suitable input to analyze future extreme flooding or drought events, it could be adequate for analysis of future freshwater availability. Analysis of the CGCM3.1 downscaled precipitation projection with respect to observed precipitation reveals that the precipitation regime in each basin may be significantly impacted by climate change. Precipitation during and after the monsoon is likely to increase in both basins under the A1B and A2 emission scenarios; whereas, the pre-monsoon precipitation is likely to decrease. Peak monsoon precipitation is likely to shift from July to August, and may impact the livelihoods of large rural populations linked to subsistence agriculture in the basins. Uncertainty analysis of the downscaled precipitation indicated that the uncertainty in the downscaled precipitation was less than the uncertainty in the original CGCM3.1 precipitation; hence, the CGCM3.1 downscaled precipitation was a better input for the regional hydrological impact studies. However, downscaled precipitation from multiple GCMs is suggested for comprehensive impact studies.

  9. Leading the Learner-Centered Campus

    ERIC Educational Resources Information Center

    Stamm, Liesa

    2011-01-01

    For those who advocate for greater attention to the development of the whole student, promoting a climate of student-centered learning on our campuses should be a major component of our endeavors. In "Leading the Learner-Centered Campus", Harris and Cullen provide some concrete proposals for achieving student-centered learning as central to the…

  10. Comparative glacio-climatological analysis of mass balance variability along the geographical margin of Europe

    NASA Astrophysics Data System (ADS)

    Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita

    2014-05-01

    Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the integrative climatic signal in the averaged mass balance records of the selected regions; (ii) to analyse the possible coupling between the mass balance and climatic variables, including the dominant patterns of Northern Hemisphere climate variability; and (iii) to compare the main characteristics of the three regions. Furthermore, (iv) a short discussion is given considering the significant decreasing trend of the cumulative annual mass balances in every region under the detected climatic changes in the second half of the 20th century. Preliminary results suggest that the strongest teleconnection links could be between winter mass balance and winter NAO for the Polar Ural (r=0.46, p<0.05), and between annual mass balance and PDO for Svalbard (r=-0.43, p<0.05). Neither seasonal, nor annual mass balance records showed significant correlation with any of the examined circulation indices for the Caucasus.

  11. Lessons Learned from the Advanced Topographic Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  12. Impacts of alternative climate information on hydrologic processes with SWAT: A comparison of NCDC, PRISM and NEXRAD datasets

    USDA-ARS?s Scientific Manuscript database

    Precipitation and temperature are two primary drivers that significantly affect hydrologic processes in a watershed. A network of land-based National Climatic Data Center (NCDC) weather stations has been typically used as a primary source of climate input for agro-ecosystem models. However, the ne...

  13. Climate Prediction Center - Monitoring and Data - Regional Climate Maps:

    Science.gov Websites

    ; Precipitation & Temperature > Regional Climate Maps: USA Menu Weekly 1-Month 3-Month 12-Month Weekly Total Precipitation Average Temperature Extreme Maximum Temperature Extreme Minimum Temperature Departure of Average Temperature from Normal Extreme Apparent Temperature Minimum Wind Chill Temperature

  14. Projected climate change for the coastal plain region of Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...

  15. Collaborating at a Regional Scale for Climate Literacy and Action

    NASA Astrophysics Data System (ADS)

    Carlton, C.; Shcherba, O.

    2016-12-01

    Since 2014, the Bay Area Climate Literacy Impact Collaborative (Bay-CLIC) has been the leading regional consortium dedicated to improving climate education and action. Collectively, Bay-CLIC members reach over 3 million individuals through their educational programming, serve counties all throughout the Bay Area, offer multiple methods of climate communication like place-based school programs and visitor centers, and serve audiences representing all age groups. With over 30 organizations ranging from park agencies to science museums and nonprofits promoting energy efficiency, Bay-CLIC is preparing to push out climate change messaging through a suite of projects. Currently, Bay-CLIC's work is centered on building connections between educators and local scientists and region-specific climate data, implementing joint campaigns to promote the social norming of sustainable behavior change, and developing a toolkit and trainings targeted to the needs of Bay Area environmental educators. Meeting the needs of this diverse group offers many opportunities for increasing impact, growing new, strategic partnerships, as well as overcoming a few challenges along the way. Come learn more about what we've accomplished so far and what new, exciting projects are coming down the pike.

  16. Transportation, Air Pollution, and Climate Change

    MedlinePlus

    ... Offices Labs and Research Centers Contact Us Share Transportation, Air Pollution, and Climate Change Overview Learn about ... Smog, soot, and other air pollution from transportation Transportation and Air Quality Resources Press releases Federal Register ...

  17. Empowering High School Students in Scientific Careers: Developing Statewide Partnerships

    NASA Astrophysics Data System (ADS)

    Aguilar, C.; Swartz, D.

    2008-05-01

    Center for Multiscale Modeling of Atmospheric Processes (CMMAP) is a National Science Foundation Science and Technology Center focused on improving the representation of cloud processes in climate models. The Center is divided into three sections including Knowledge Transfer, Research, and Education and Diversity. The Science Education and Diversity mission is to educate and train people with diverse backgrounds in Climate and Earth System Science by enhancing teaching and learning and disseminating science results through multiple media. CMMAP is partnering with two local school districts to host an annual global climate conferences for high school students. The 2008 Colorado Global Climate Conference seeks "To educate students on global and local climate issues and empower them to se their knowledge." The conference is sponsored by CMMAP, The Governor's Energy Office, Poudre School District, Thompson School District, Clif Bar, and Ben and Jerry's Scoop Shop of Fort Collins. The conference seeks to inspire students to pursue future education and careers in science fields. Following an opening welcome from the Governor's Energy Office, Keynote Piers Sellers will discuss his experiences as an atmospheric scientist and NASA astronaut. Students will then attend 3 out of 16 breakout sessions including such sessions as "Hot poems, Cool Paintings, and the treasures of Antiquity of Climate Change", "Mitigation vs Adaptation", "Bigfoot Walks(What Size is our carbon footprint?)" "The Wedges: Reduc ing Carbon Emissions", and "We the People: Climate and Culture of Climate Change" to name a few. Using The Governor's High School Conference on the Environment sponsored by the Wisconsin Center for Environmental Education as a model we are developing statewide partnerships to bring high school students together to look at global climate issues that will impact their future and of which they can be part of the solution through their education and career paths. In addition to attending breakout sessions, students will participate in a Learning Fair where over 100 demonstrations and hands on experiments will be available from everything to "Making a Cloud in a Bottle" to "Making a Difference One Tea Bag at a Time." Students will also bring a poster to showcase their accomplishments in their own schools. The target audience is 400 high school students from across the state of Colorado, specifically targeting underserved populations such as students from rural areas, minority populations and students that are eligible for free and reduced lunch.

  18. Survey Plan For Characterization of the Subsurface Underlying the National Aeronautics and Space Administration's Marshall Space Flight Center in Huntsville, Alabama. Volume 1 and 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topic considered include: survey objectives; technologies for non-Invasive imaging of subsurface; cost; data requirements and sources; climatic condition; hydrology and geology; chemicals; magnetometry; electrical(resistivity, potential); optical-style imaging; reflection/refraction seismics; gravitometry; photo-acoustic activation;well drilling and borehole analysis; comparative assessment matrix; ground sensors; choice of the neutron sources; logistic of operations; system requirements; health and safety plans.

  19. Aerosol forcing of extreme summer drought over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.

    2017-12-01

    The frequency of extreme summer drought has been increasing in North China during the past sixty years, which has caused serious water shortages. It remains unclear whether anthropogenic forcing has contributed to the increasing extreme droughts. Using the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) re-analysis data and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations with various combinations of historical forcings, the authors investigated the driving mechanism behind the observed changes. Metrological drought is usually measured by precipitation anomalies, which show lower fidelity in current climate models compared to largescale circulation patterns. Based on NCEP/NCAR re-analysis, a linear relationship is firstly established between the weakest regional average 850 hPa southerly winds and extreme summer drought. This meridional winds index (MWI) is then used as a proxy for attribution of extreme North China drought using CMIP5 outputs. Examination of the CMIP5 simulations reveals that the probability of the extreme summer droughts with the first percentile of MWI for 1850-2004 under anthropogenic forcing has increased by 100%, on average, relative to a pre-industrial control run. The more frequent occurrence of extremely weak MWIs or drought over North China is ascribed from weakened climate and East Asian summer monsoon (EASM) circulation due to the direct cooling effect from increased aerosol.

  20. The Importance of Simulation Workflow and Data Management in the Accelerated Climate Modeling for Energy Project

    NASA Astrophysics Data System (ADS)

    Bader, D. C.

    2015-12-01

    The Accelerated Climate Modeling for Energy (ACME) Project is concluding its first year. Supported by the Office of Science in the U.S. Department of Energy (DOE), its vision is to be "an ongoing, state-of-the-science Earth system modeling, modeling simulation and prediction project that optimizes the use of DOE laboratory resources to meet the science needs of the nation and the mission needs of DOE." Included in the "laboratory resources," is a large investment in computational, network and information technologies that will be utilized to both build better and more accurate climate models and broadly disseminate the data they generate. Current model diagnostic analysis and data dissemination technologies will not scale to the size of the simulations and the complexity of the models envisioned by ACME and other top tier international modeling centers. In this talk, the ACME Workflow component plans to meet these future needs will be described and early implementation examples will be highlighted.

  1. Analysis of forecasting malaria case with climatic factors as predictor in Mandailing Natal Regency: a time series study

    NASA Astrophysics Data System (ADS)

    Aulia, D.; Ayu, S. F.; Matondang, A.

    2018-01-01

    Malaria is the most contagious global concern. As a public health problem with outbreaks, affect the quality of life and economy, also could lead to death. Therefore, this research is to forecast malaria cases with climatic factors as predictors in Mandailing Natal Regency. The total number of positive malaria cases on January 2008 to December 2016 were taken from health department of Mandailing Natal Regency. Climates data such as rainfall, humidity, and temperature were taken from Center of Statistic Department of Mandailing Natal Regency. E-views ver. 9 is used to analyze this study. Autoregressive integrated average, ARIMA (0,1,1) (1,0,0)12 is the best model to explain the 67,2% variability data in time series study. Rainfall (P value = 0.0005), temperature (P value = 0,0029) and humidity (P value = 0.0001) are significant predictors for malaria transmission. Seasonal adjusted factor (SAF) in November and March shows peak for malaria cases.

  2. NOAA's Satellite Climate Data Records: The Research to Operations Process and Current State

    NASA Astrophysics Data System (ADS)

    Privette, J. L.; Bates, J. J.; Kearns, E. J.; NOAA's Climate Data Record Program

    2011-12-01

    In support of NOAA's mandate to provide climate products and services to the Nation, the National Climatic Data Center initiated the satellite Climate Data Record (CDR) Program. The Program develops and sustains climate information products derived from satellite data that NOAA has collected over the past 30+ years. These are the longest sets of continuous global measurements in existence. Data from other satellite programs, including those in NASA, the Department of Defense, and foreign space agencies, are also used. NOAA is now applying advanced analysis techniques to these historic data. This process is unraveling underlying climate trend and variability information and returning new value from the data. However, the transition of complex data processing chains, voluminous data products and documentation into an systematic, configuration controlled context involves many challenges. In this presentation, we focus on the Program's process for research-to-operations transition and the evolving systems designed to ensure transparency, security, economy and authoritative value. The Program has adopted a two-phase process defined by an Initial Operational Capability (IOC) and a Full Operational Capability (FOC). The principles and procedures for IOC are described, as well as the process for moving CDRs from IOC to FOC. Finally, we will describe the state of the CDRs in all phases the Program, with an emphasis on the seven community-developed CDRs transitioned to NOAA in 2011. Details on CDR access and distribution will be provided.

  3. Does Employee Safety Matter for Patients Too? Employee Safety Climate and Patient Safety Culture in Health Care.

    PubMed

    Mohr, David C; Eaton, Jennifer Lipkowitz; McPhaul, Kathleen M; Hodgson, Michael J

    2015-04-22

    We examined relationships between employee safety climate and patient safety culture. Because employee safety may be a precondition for the development of patient safety, we hypothesized that employee safety culture would be strongly and positively related to patient safety culture. An employee safety climate survey was administered in 2010 and assessed employees' views and experiences of safety for employees. The patient safety survey administered in 2011 assessed the safety culture for patients. We performed Pearson correlations and multiple regression analysis to examine the relationships between a composite measure of employee safety with subdimensions of patient safety culture. The regression models controlled for size, geographic characteristics, and teaching affiliation. Analyses were conducted at the group level using data from 132 medical centers. Higher employee safety climate composite scores were positively associated with all 9 patient safety culture measures examined. Standardized multivariate regression coefficients ranged from 0.44 to 0.64. Medical facilities where staff have more positive perceptions of health care workplace safety climate tended to have more positive assessments of patient safety culture. This suggests that patient safety culture and employee safety climate could be mutually reinforcing, such that investments and improvements in one domain positively impacts the other. Further research is needed to better understand the nexus between health care employee and patient safety to generalize and act upon findings.

  4. Aiding cities in their work on climate change adaptation

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2013-12-01

    Urban areas around the world are at the frontlines of climate change because of their enormous aggregate populations and because of their vulnerability to multiple climate change stressors. Half of our planet's 7.1 billion inhabitants currently reside in cities with six billion people projected to call cities home by 2050. In the U.S. and much of the rest of the world, cities are warming at twice the rate of the planet. Superimposed on urban climate changes driven by global warming are the regional effects of urban heat domes driven by large differences in land use, building materials, and vegetation between cities and their rural surroundings. In megacities - those with populations exceeding 10 million people - such as Tokyo - urban heat domes can contribute to daytime temperatures that soar to more than 11°C higher than their rural surroundings. In addition, the localized warming can alter patterns of precipitation in metropolitan regions and perhaps even influence the frequency and severity of severe weather. Municipal officials need to accelerate their efforts to prepare and implement climate change adaptation strategies but what are the institutions that can help enable this work? Informal science education centers can play vital roles because they are overwhelmingly in urban settings and because they can act as ';competent outsiders.' They are neither responsible for conducting climate change research nor accountable for implementing public policies to address climate change. They instead can play an essential role of ensuring that solid science informs the formulation of good practices and policies. It is incumbent, therefore, for informal science education centers to accelerate and enhance their abilities to help translate scientific insights into on-the-ground actions. This session will explore the potential roles of informal science education centers to advance climate change adaptation through a review of the urban climate change education initiatives for municipal officials that the Science Museum of Minnesota has implemented over the past two years.

  5. Informing climate change adaptation in the Northeast and Midwest United States: The role of Climate Science Centers

    NASA Astrophysics Data System (ADS)

    Bryan, A. M.; Morelli, T. L.

    2015-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information and tools that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change. The NE CSC partners with other federal agencies, universities, and NGOs to facilitate stakeholder interaction and delivery of scientific products. For example, NE CSC researchers have partnered with the National Park Service to help managers at Acadia National Park adapt their infrastructure, operations, and ecosystems to rising seas and more extreme events. In collaboration with the tribal College of Menominee Nation and Michigan State University, the NE CSC is working with indigenous communities in Michigan and Wisconsin to co-develop knowledge of how to preserve their natural and cultural values in the face of climate change. Recently, in its largest collaborative initiative to date, the NE CSC led a cross-institutional effort to produce a comprehensive synthesis of climate change, its impacts on wildlife and their habitats, and available adaptation strategies across the entire Northeast and Midwest region; the resulting document was used by wildlife managers in 22 states to revise their Wildlife Action Plans (WAPs). Additionally, the NE CSC is working with the Wildlife Conservation Society to help inform moose conservation management. Other research efforts include hydrological modeling to inform culvert sizing under greater rainfall intensity, forest and landscape modeling to inform tree planting that mitigates the spread of invasive species, species and habitat modeling to help identify suitable locations for wildlife refugia. In addition, experimental research is being conducted to improve our understanding of how species such as brook trout are responding to climate change. Interacting with stakeholders during all phases of these projects ensures that the science produced meets their specific needs and allows them to make informed decisions to better adapt to our changing climate.

  6. Practice and philosophy of climate model tuning across six US modeling centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Gavin A.; Bader, David; Donner, Leo J.

    Model calibration (or tuning) is a necessary part of developing and testing coupled ocean–atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major US climate modeling centers. While details differ among groups in terms of scientificmore » missions, tuning targets, and tunable parameters, there is a core commonality of approaches. Furthermore, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present-day radiative imbalance vs. the implied balance in the preindustrial era as a target.« less

  7. Practice and philosophy of climate model tuning across six US modeling centers

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin A.; Bader, David; Donner, Leo J.; Elsaesser, Gregory S.; Golaz, Jean-Christophe; Hannay, Cecile; Molod, Andrea; Neale, Richard B.; Saha, Suranjana

    2017-09-01

    Model calibration (or tuning) is a necessary part of developing and testing coupled ocean-atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major US climate modeling centers. While details differ among groups in terms of scientific missions, tuning targets, and tunable parameters, there is a core commonality of approaches. However, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present-day radiative imbalance vs. the implied balance in the preindustrial era as a target.

  8. Practice and philosophy of climate model tuning across six US modeling centers

    DOE PAGES

    Schmidt, Gavin A.; Bader, David; Donner, Leo J.; ...

    2017-09-01

    Model calibration (or tuning) is a necessary part of developing and testing coupled ocean–atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa. This paper describes the approach and practice of model tuning for the six major US climate modeling centers. While details differ among groups in terms of scientificmore » missions, tuning targets, and tunable parameters, there is a core commonality of approaches. Furthermore, practices differ significantly on some key aspects, in particular, in the use of initialized forecast analyses as a tool, the explicit use of the historical transient record, and the use of the present-day radiative imbalance vs. the implied balance in the preindustrial era as a target.« less

  9. Data Exploration Theater 3

    NASA Image and Video Library

    2017-12-08

    The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 3.5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  10. Data Exploration Theater 4

    NASA Image and Video Library

    2017-12-08

    The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  11. Data Exploration Theater 1

    NASA Image and Video Library

    2017-12-08

    The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 3.5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  12. Data Exploration Theater 2

    NASA Image and Video Library

    2017-12-08

    The NASA Center for Climate Simulation (NCCS) Data Exploration Theater features a 17- by 6-foot multi-screen visualization wall for engaging visitors and scientists with high-definition movies of simulation results. Here, the wall displays a 5-kilometer-resolution global simulation that captures numerous cloud types at groundbreaking fidelity. Credit: NASA/Pat Izzo To learn more about NCCS go to: www.nasa.gov/topics/earth/features/climate-sim-center.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  13. Solar radiation observation stations with complete listing of data archived by the National Climatic Center, Asheville, North Carolina and initial listing of data not currently archived

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Wells, R. E.; Williams, B. B.; Christensen, D. L.

    1976-01-01

    A listing is provided of organizations taking solar radiation data, the 166 stations where observations are made, the type of equipment used, the form of the recorded data, and the period of operation of each station. Included is a listing of the data from 150 solar radiation stations collected over the past 25 years and stored by the National Climatic Center.

  14. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    NASA Astrophysics Data System (ADS)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  15. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    PubMed

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  16. Determination of Arctic sea ice variability modes on interannual timescales via nonhierarchical clustering

    NASA Astrophysics Data System (ADS)

    Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco

    2015-04-01

    Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the Arctic basin. The intermediate mode, with negative anomalies centered on the East Siberian shelf and positive anomalies along the North American side of the basin, has predominately dynamic characteristics. The associated sea ice concentration (SIC) clusters vary more between different seasons and months, but the SIC patterns are physically framed by the SIT cluster patterns.

  17. Policy-based Distributed Data Management

    NASA Astrophysics Data System (ADS)

    Moore, R. W.

    2009-12-01

    The analysis and understanding of climate variability and change builds upon access to massive collections of observational and simulation data. The analyses involve distributed computing, both at the storage systems (which support data subsetting) and at compute engines (for assimilation of observational data into simulations). The integrated Rule Oriented Data System (iRODS) organizes the distributed data into collections to facilitate enforcement of management policies, support remote data processing, and enable development of reference collections. Currently at RENCI, the iRODS data grid is being used to manage ortho-photos and lidar data for the State of North Carolina, provide a unifying storage environment for engagement centers across the state, support distributed access to visualizations of weather data, and is being explored to manage and disseminate collections of ensembles of meteorological and hydrological model results. In collaboration with the National Climatic Data Center, an iRODS data grid is being established to support data transmission from NCDC to ORNL, and to integrate NCDC archives with ORNL compute services. To manage the massive data transfers, parallel I/O streams are used between High Performance Storage System tape archives and the supercomputers at ORNL. Further, we are exploring the movement and management of large RADAR and in situ datasets to be used for data mining between RENCI and NCDC, and for the distributed creation of decision support and climate analysis tools. The iRODS data grid supports all phases of the scientific data life cycle, from management of data products for a project, to sharing of data between research institutions, to publication of data in a digital library, to preservation of data for use in future research projects. Each phase is characterized by a broader user community, with higher expectations for more detailed descriptions and analysis mechanisms for manipulating the data. The higher usage requirements are enforced by management policies that define the required metadata, the required data formats, and the required analysis tools. The iRODS policy based data management system automates the creation of the community chosen data products, validates integrity and authenticity assessment criteria, and enforces management policies across all accesses of the system.

  18. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar WEATHER RESEARCH and FORECASTING HMON HMON - OPERATIONAL HURRICANE FORECASTING WAVEWATCH III WAVEWATCH III Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  19. Increasing Diversity in Global Climate Change, Space Weather and Space Technology Research and Education

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Austin, S. A.; Howard, A. M.; Boxe, C.; Jiang, M.; Tulsee, T.; Chow, Y. W.; Zavala-Gutierrez, R.; Barley, R.; Filin, B.; Brathwaite, K.

    2015-12-01

    This presentation describes projects at Medgar Evers College of the City University of New York that contribute to the preparation of a diverse workforce in the areas of ocean modeling, planetary atmospheres, space weather and space technology. Specific projects incorporating both undergraduate and high school students include Assessing Parameterizations of Energy Input to Internal Ocean Mixing, Reaction Rate Uncertainty on Mars Atmospheric Ozone, Remote Sensing of Solar Active Regions and Intelligent Software for Nano-satellites. These projects are accompanied by a newly developed Computational Earth and Space Science course to provide additional background on methodologies and tools for scientific data analysis. This program is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research and the NASA New York State Space Grant Consortium.

  20. A study of model parameters associated with the urban climate using HCMM data. [analysis of St. Louis, Missouri infrared imagery

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in the study of the intensity of the urban heat island is reported. The intensity of the heat island is commonly defined as the temperature difference between the center of the city and the surrounding suburban and rural regions. The intensity is considered as a function of changes in the season and changes in meteorological conditions in order to derive various parameters which may be used in numerical models for urban climate. Twelve case studies were selected and CCT's were ordered. In situ data was obtained from sixteen stations scattered about the city of St. Louis. Upper-air meteorological data were obtained and the water vapor and the temperature data were processed. Atmospheric transmissivities were computed for each of the case studies.

  1. Topographic, latitudinal and climatic distribution of Pinus coulteri: geographic range limits are not at the edge of the climate envelope

    USGS Publications Warehouse

    Chardon, Nathalie I.; Cornwell, William K.; Flint, Lorraine E.; Flint, Alan L.; Ackerly, David D.

    2015-01-01

    With changing climate, many species are projected to move poleward or to higher elevations to track suitable climates. The prediction that species will move poleward assumes that geographically marginal populations are at the edge of the species' climatic range. We studied Pinus coulteri from the center to the northern (poleward) edge of its range, and examined three scenarios regarding the relationship between the geographic and climatic margins of a species' range. We used herbarium and iNaturalist.org records to identify P. coulteri sites, generated a species distribution model based on temperature, precipitation, climatic water deficit, and actual evapotranspiration, and projected suitability under future climate scenarios. In fourteen populations from the central to northern portions of the range, we conducted field studies and recorded elevation, slope and aspect (to estimate solar insolation) to examine relationships between local and regional distributions. We found that northern populations of P. coulteri do not occupy the cold or wet edge of the species' climatic range; mid-latitude, high elevation populations occupy the cold margin. Aspect and insolation of P. coulteri populations changed significantly across latitudes and elevations. Unexpectedly, northern, low-elevation stands occupy north-facing aspects and receive low insolation, while central, high-elevation stands grow on more south-facing aspects that receive higher insolation. Modeled future climate suitability is projected to be highest in the central, high elevation portion of the species range, and in low-lying coastal regions under some scenarios, with declining suitability in northern areas under most future scenarios. For P. coulteri, the lack of high elevation habitat combined with a major dispersal barrier may limit northward movement in response to a warming climate. Our analyses demonstrate the importance of distinguishing geographically vs. climatically marginal populations, and the importance of quantitative analysis of the realized climate space to understand species range limits.

  2. Exploring Remote Sensing Products Online with Giovanni for Studying Urbanization

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina; Kempler, Steve

    2012-01-01

    Recently, a Large amount of MODIS land products at multi-spatial resolutions have been integrated into the online system, Giovanni, to support studies on land cover and land use changes focused on Northern Eurasia and Monsoon Asia regions. Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC) providing a simple and intuitive way to visualize, analyze, and access Earth science remotely-sensed and modeled data. The customized Giovanni Web portals (Giovanni-NEESPI and Giovanni-MAIRS) are created to integrate land, atmospheric, cryospheric, and social products, that enable researchers to do quick exploration and basic analyses of land surface changes and their relationships to climate at global and regional scales. This presentation documents MODIS land surface products in Giovanni system. As examples, images and statistical analysis results on land surface and local climate changes associated with urbanization over Yangtze River Delta region, China, using data in Giovanni are shown.

  3. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park, MD 20740

  4. Problems, Prescriptions and Potential in Actionable Climate Change Science - A Case Study from California Coastal Marsh Research

    NASA Astrophysics Data System (ADS)

    MacDonald, G. M.; Ambrose, R. F.; Thorne, K.; Takekawa, J.; Brown, L. N.; Fejtek, S.; Gold, M.; Rosencranz, J.

    2015-12-01

    Frustrations regarding the provision of actionable science extend to both producers and consumers. Scientists decry the lack of application of their research in shaping policy and practices while decision makers bemoan the lack of applicability of scientific research to the specific problems at hand or its narrow focus relative to the plethora of engineering, economic and social considerations that they must also consider. Incorporating climate change adds additional complexity due to uncertainties in estimating many facets of future climate, the inherent variability of climate and the decadal scales over which significant changes will develop. Recently a set of guidelines for successful science-policy interaction was derived from the analysis of transboundary water management. These are; 1 recognizing that science is a crucial but bounded input into the decision-making processes, 2 early establishment of conditions for collaboration and shared commitment among participants, 3 understanding that science-policy interactions are enhanced through greater collaboration and social or group-learning processes, 4 accepting that the collaborative production of knowledge is essential to build legitimate decision-making processes, and 5 engaging boundary organizations and informal networks as well as formal stakeholders. Here we present as a case study research on California coastal marshes, climate change and sea-level that is being conducted by university and USGS scientists under the auspices of the Southwest Climate Science Center. We also present research needs identified by a seperate analysis of best practices for coastal marsh restoration in the face of climate change that was conducted in extensive consultation with planners and managers. The initial communication, scientific research and outreach-dissemination of the marsh scientfic study are outlined and compared to best practices needs identified by planners and the science-policy guidelines outlined above. Matches, mismatches, early-stage evidence of applicability and potential improvements of program development and design are considered.

  5. Climate-Energy Nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, Gary; Gentry, Randall; Zhuang, Jie

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit futuremore » cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology for assessment of the sustainable production of biofuels (such as life-cycle analysis, sustainability metrics, and land-use policy). Establishment of two US-China scientific research networks in the area of bioenergy and environmental science is a significant result of the workshop.« less

  6. Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6

    NASA Astrophysics Data System (ADS)

    Angerer, Barbara; Ladstädter, Florian; Scherllin-Pirscher, Barbara; Schwärz, Marc; Steiner, Andrea K.; Foelsche, Ulrich; Kirchengast, Gottfried

    2017-12-01

    The demand for high-quality atmospheric data records, which are applicable in climate studies, is undisputed. Using such records requires knowledge of the quality and the specific characteristics of all contained data sources. The latest version of the Wegener Center (WEGC) multi-satellite Global Positioning System (GPS) radio occultation (RO) record, OPSv5.6, provides globally distributed upper-air satellite data of high quality, usable for climate and other high-accuracy applications. The GPS RO technique has been deployed in several satellite missions since 2001. Consistency among data from these missions is essential to create a homogeneous long-term multi-satellite climate record. In order to enable a qualified usage of the WEGC OPSv5.6 data set we performed a detailed analysis of satellite-dependent quality aspects from 2001 to 2017. We present the impact of the OPSv5.6 quality control on the processed data and reveal time-dependent and satellite-specific quality characteristics. The highest quality data are found for MetOp (Meteorological Operational satellite) and GRACE (Gravity Recovery and Climate Experiment). Data from FORMOSAT-3/COSMIC (Formosa Satellite mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate) are also of high quality. However, comparatively large day-to-day variations and satellite-dependent irregularities need to be taken into account when using these data. We validate the consistency among the various satellite missions by calculating monthly mean temperature deviations from the multi-satellite mean, including a correction for the different sampling characteristics. The results are highly consistent in the altitude range from 8 to 25 km, with mean temperature deviations less than 0.1 K. At higher altitudes the OPSv5.6 RO temperature record is increasingly influenced by the characteristics of the bending angle initialization, with the amount of impact depending on the receiver quality.

  7. Convening Young Leaders for Climate Resilience in New York State

    NASA Astrophysics Data System (ADS)

    Kretser, J.

    2017-12-01

    This project, led by The Wild Center, will partner with Cornell Cooperative Extension of Delaware County, the Kurt Hahn Expeditionary Learning School in Brooklyn, and the Alliance for Climate Education to do the following over three years: 1) increase climate literacy and preparedness planning in high school students through place-based Youth Climate Summits in the Adirondacks, Catskills, and New York City; 2) enhance young people's capacity to lead on climate issues through a Youth Climate Leadership Practicum 3) increase teacher comprehension and understanding of climate change through a Teacher Climate Institute and 4) communicate climate change impacts and resilience through student-driven Community Climate Outreach activities. The project will align with New York State's climate resiliency planning by collaborating with the NYS Department of Environmental Conservation Office of Climate (OCC), NYS Energy Research Development Authority (NYSERDA), and NOAA's Climate Program Office to provide accurate scientific information, resources, and tools. This collaboration will result in an increase in understanding of the impacts of climate change in rural (Adirondacks, Catskills) and urban (New York City) regions of New York State; a wider awareness of the threats and vulnerabilities that are associated with a community's location; and a stronger connection between current community resilience initiatives, educators, and youth. All three of the project sites are critically underserved in both climate literacy and action, making addressing the need of these sites to be resilient and proactive in the face of climate change critical. Our model will provide pilot lessons for how youth in both rural and urban areas can draw on local assets to address resiliency in ways appropriate for their own areas, and these lessons may be able to be applied across the United States.The proposed project is informed by best practices and specifically strengthens and replicates The Wild Center's past success with the Adirondack Youth Climate Summit, student leadership, and student-led community outreach for climate awareness - all work that has been tested or piloted over the last seven years.

  8. Improving School Climate in an Urban Junior High School.

    ERIC Educational Resources Information Center

    Lawson, Robert C.

    The problem of poor school climate in an eighth- and ninth-grade center was addressed by the implementation of a school climate improvement project. The following are the primary goals of this practicum: (1) improve school attendance; (2) reduce out-of-school suspensions; and (3) improve student and teacher morale. To address these goals, a…

  9. National Centers for Environmental Prediction

    Science.gov Websites

    : Influence of convective parameterization on the systematic errors of Climate Forecast System (CFS) model ; Climate Dynamics, 41, 45-61, 2013. Saha, S., S. Pokhrel and H. S. Chaudhari : Influence of Eurasian snow Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather

  10. NOAA's Regional Climate Services Program: Building Relationships with Partners and Customers to Deliver Trusted Climate Information at Usable Scales

    NASA Astrophysics Data System (ADS)

    Mecray, E. L.; Dissen, J.

    2016-12-01

    Federal agencies across multiple sectors from transportation to health, emergency management and agriculture, are now requiring their key stakeholders to identify and plan for climate-related impacts. Responding to the drumbeat for climate services at the regional and local scale, the National Oceanic and Atmospheric Administration (NOAA) formed its Regional Climate Services (RCS) program to include Regional Climate Services Directors (RCSD), Regional Climate Centers, and state climatologists in a partnership. Since 2010, the RCS program has engaged customers across the country and amongst many of the nation's key economic sectors to compile information requirements, deliver climate-related products and services, and build partnerships among federal agencies and their regional climate entities. The talk will include a sketch from the Eastern Region that may shed light on the interaction of the multiple entities working at the regional scale. Additionally, we will show examples of our interagency work with the Department of Interior, the Department of Agriculture, and others in NOAA to deliver usable and trusted climate information and resources. These include webinars, print material, and face-to-face customer engagements to gather and respond to information requirements. NOAA/National Centers for Environmental Information's RCSDs work on-the-ground to learn from customers about their information needs and their use of existing tools and resources. As regional leads, the RCSDs work within NOAA and with our regional partners to ensure the customer receives a broad picture of the tools and information from across the nation.

  11. Water Resources Program. Volume II. Milford and Beryl Operational Bases, Escalante Valley, Utah.

    DTIC Science & Technology

    1981-05-28

    12 3.2 Climate .......................................... 14 3.3 Vegetation....................................... 14 4.0...and clay toward the center of the valley. -Erta E-TR-51 -II5 14 I 3.2 CLIMATE The climate of Escalante Valley is semiarid and is character- ized by mild...the Escalante Valley, the natural vegetative associations are I characteristic of a semiarid climate and, in some cases, are i indicatots of the depth

  12. Tool kit development to refine and visualize essential climate data and information for marine protected areas

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Stachniewicz, J.; Shein, K. A.; Ansari, S.; Jarvis, C.

    2013-05-01

    Marine ecosystem responses to climate variability and change such as changing water temperature, water chemistry (e.g., pH, salinity), water level, or storminess may result in adverse impacts including mass mortality, loss of habitat, increased disease susceptibility, and trophic cascade feedbacks. Unfortunately, while marine ecosystem resource managers are aware of these threats, they often lack sufficient expertise with identifying, accessing and using the many large and complex climate data products that would inform ecosystem-scale climate impact assessments. NOAA's National Climatic Data Center (NCDC) has been working with the Gulf of the Farallones National Marine Sanctuary Ocean Climate Center to enhance and expand the functionality of NCDC's Weather and Climate Toolkit (WCT) to begin to address this limitation. The WCT is a freely available, Java-based user interface (http://www.ncdc.noaa.gov/oa/wct/) designed to access, analyze, and display a variety of NCDC's georeferenced climate data products (e.g., satellite data, radar, reanalysis datasets, in-situ observations). However, the WCT requires the user to have already identified a data set of interest and gained access to it. This can limit its utility by users who are not knowledgeable about which data sets are relevant to their needs and where those data sets can be found. The Integrated Marine Protected Area Climate Tools (IMPACT) prototype modification to the WCT addresses those requirements through an iterative process between climate scientists and resource managers. The WCT-IMPACT prototype couples a user query approach with a quasi-expert system that determines, retrieves, and loads the appropriate data products for visualization and analysis by the user. Relevant data products are identified based on the environmental variables in which ecosystem managers have indicated an importance to their ecosystems. To improve response time, the user, through the WCT-IMPACT interface, crops (or subsets) the larger gridded data products, such as NOAA's satellite Climate Data Records to the geographic boundaries of each included marine protected area (MPA). These clipped data sets are processed to produce MPA-specific analytics (e.g., files for averages, extremes, peaks over threshold, etc). Once a specific MPA has been selected, the associated data may be visualized, analyzed, and exported to other formats (e.g., netCDF, KML) from within the tool. The WCT-IMPACT tool kit will provide marine ecosystem managers with the capacity to answer such questions as what was the climate like during periods of optimal ecological health, or have climate conditions changed equally across an ecosystem's domain? The WCT-IMPACT extension is being developed specifically to address the needs of marine ecosystem managers to have access to relevant climate data and information for developing ecosystem-scale climate assessments, while retaining the ability for a WCT user to identify and access the full suite of georeferenced climate data provided by NCDC. In this tool kit development scheme, the need to coordinate with the resource managers is paramount and end user participation in an iterative process with the climate scientists is essential.

  13. Transportation system resilience, extreme weather and climate change : a thought leadership series

    DOT National Transportation Integrated Search

    2014-09-01

    This report summarizes key findings from the Transportation System Resilience, Extreme Weather and Climate Change thought leadership series held at Volpe, the National Transportation Systems Center from fall 2013 to spring 2014.

  14. CENTER FOR CLIMATIC RESEARCH, UNIVERSITY OF DELAWARE

    EPA Science Inventory

    The synoptic climatology group performs research into a variety of applied climatological issues that affect humans and other organisms around the world. Synoptic climatology is essentially an holistic approach to weather and climate. Synoptic climatologists attempt to characteri...

  15. Range Commanders Council Meteorology Group 88th Meeting: NASA Marshall Space Flight Center Task Report, 2004

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.

    2004-01-01

    Supported Return-to-Flight activities by providing surface climate data from Kennedy Space Center used primarily for ice and dew formation studies, and upper air wind analysis primarily used for ascent loads analyses. The MSFC Environments Group's Terrestrial and Planetary Environments Team documented Space Shuttle day-of-launch support activities by publishing a document in support of SSP Return-to-Flight activities entitled "Space Shuttle Program Flight Operations Support". The team also formalized the Shuttle Natural Environments Technical Panel and chaired the first special session of the SSP Natural Environments Panel meeting at KSC, November 4-7,2003.58 participants from NASA, DOD and other government agencies from across the country attended the meeting.

  16. Climate Change Education in Protected Areas: Highlights from the Earth to Sky NASA-NPS-USFWS Partnership

    NASA Astrophysics Data System (ADS)

    Davis, A.; Morris, J.; Paglierani, R.

    2009-12-01

    National Parks, Hatcheries, Refuges, and other protected lands provide ideal settings for communicating the immediate and obvious effects of climate change, from rapidly melting glaciers, increased intensity and length of fire seasons, to flooding of archeological and historical treasures. Our nation's protected areas demonstrate clearly that climate change is happening now, and the impacts are affecting us all. Highlights of interpretive, educational and informational products presented in these sites, and developed through the Earth to Sky (ETS) partnership are described. The visiting public in our nation's parks, refuges, cultural sites and other protected lands wants to learn more about climate change, and is asking questions—often, complex questions. A broad array of educational programs and media are delivered in these unique settings, to diverse audiences. To be good "honest brokers" of the best information, staff needs access to accurate, up-to-date data, descriptions, analysis, and imagery that make the issues understandable. Pairing real world experiences of climate effects such as glacial retreat or beetle infestations, with NASA’s unique planetary perspective provides opportunities to link local, regional, and global effects in the minds and hearts of the public and students. The perspective afforded by such linkages can create powerful and long lasting impressions, and will likely provoke further learning about this topic. About Earth to Sky Earth to Sky is a partnership between NASA's Space and Earth Science disciplines, the US Fish and Wildlife Service (USFWS), and the National Park Service (NPS). The partnership actively fosters collaborative work between the science and interpretation/education communities of NPS, USFWS, and NASA, centering around a series of professional development workshops aimed at informal educators. The workshops weave NASA content with NPS and USFWS interpretation and environmental education methodology, and use best practices in professional development. The partnership is funded by NASA, with in-kind contributions from NPS and USFWS. Earth to Sky III: Interpreting Climate Change, held in Jan. 2009, featured over 25 NASA scientists and education specialists who presented to 30 NPS rangers and several attendees from U.S. Fish and Wildlife Service (USFWS), and other informal education groups. Participant's action plans include Junior Ranger programs; pod casts; a public outreach campaign at one of our nation’s leading zoos; creation of talking points for staff at a variety of sites; use of the Landsat satellite's 35+ year record of changes in western parks for public programs, a site bulletin and a podcast; workshops for teachers; new exhibits in visitor centers; curriculum-based educational programming; fact sheets; training for USFWS regional staff; and of course standard ranger campfire and slide programs. Earth to Sky IV: Building Climate Literacy for Informal Educators will be held in Feb. 2010. A pilot course on Interpreting Climate Change is under development, and will be offered in September of 2011 at the USFWS’ National Conservation Training Center in Shepherdstown, WV.

  17. Earthwatch and the HSBC Climate Partnership: Impacting the Bottom Line One Citizen Scientist at a Time

    NASA Astrophysics Data System (ADS)

    Kusek, K. M.; Stover, D. B.; Phillips, R.; Jones, A.; Campbell, J.

    2009-12-01

    Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results will establish baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests in a changing climate. A critical component of the program is the engagement of 2,200 HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Their charge is to develop a project they will implement back in their office that furthers HSBC’s commitment to sustainability. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified versions of the two-week field program. New models of citizen science engagement are currently under development, and Earthwatch will share “lessons learned” and stories documenting the effectiveness of the program design from a research, engagement and business perspective. By the end of the partnership nearly 100,000 citizen science research hours will have been invested in the program globally—leading to scientific publications, policy development and citizen engagement.

  18. Issues in the Development of Long Term Care Gerontology Centers: The Centers Concept. Selected Topics in Long Term Care. Volume 6.

    ERIC Educational Resources Information Center

    Mortenson, Lee E.; Berdes, Celia M.

    This document, one in a series developed to provide technical assistance to 22 Long-Term Care Gerontology Centers, describes the current administrative and structural phenomenon of these centers. Precedents useful in assessing both the current climate and actual prospects for development of long term care centers are cited. The first section…

  19. Analysis of terrestrial conditions and dynamics

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1984-01-01

    Land spectral reflectance properties for selected locations, including the Goddard Space Flight Center, the Wallops Flight Facility, a MLA test site in Cambridge, Maryland, and an acid test site in Burlington, Vermont, were measured. Methods to simulate the bidirectional reflectance properties of vegetated landscapes and a data base for spatial resolution were developed. North American vegetation patterns observed with the Advanced Very High Resolution Radiometer were assessed. Data and methods needed to model large-scale vegetation activity with remotely sensed observations and climate data were compiled.

  20. A Descriptive Analysis of the Organizational Climate for Quality at the National Naval Medical Center

    DTIC Science & Technology

    1991-12-01

    Training 40 4.4 Employee Recognition and Perfornance Measurement 20 4.5 Employee Well-Being and Morale 20 5.0 Quality Assurance of Products and Services 150...and Services 25 5.4 Quality Assessment 15 5.5 Documentation 10 5.6 Quality Assurance , Quality Assessment and Quality Improvement of Support Services ...those of industry averages and industry leaders. 28 The Quality Assurance of Products and Services category examines the systematic approaches used by

  1. Water Infrastructure and Resiliency Finance Center

    EPA Pesticide Factsheets

    The Water Infrastructure and Resiliency Finance Center serves as a resource to communities to improve their wastewater, drinking water and stormwater systems, particularly through innovative financing and increased resiliency to climate change.

  2. Precipitation frequency analysis based on regional climate simulations in Central Alberta

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Chao; Gan, Thian Yew; Hanrahan, Janel L.

    2014-03-01

    A Regional Climate Model (RCM), MM5 (the Fifth Generation Pennsylvania State University/National Center for Atmospheric Research mesoscale model), is used to simulate summer precipitation in Central Alberta. MM5 was set up with a one-way, three-domain nested framework, with domain resolutions of 27, 9, and 3 km, respectively, and forced with ERA-Interim reanalysis data of ECMWF (European Centre for Medium-Range Weather Forecasts). The objective is to develop high resolution, grid-based Intensity-Duration-Frequency (IDF) curves based on the simulated annual maximums of precipitation (AMP) data for durations ranging from 15-min to 24-h. The performance of MM5 was assessed in terms of simulated rainfall intensity, precipitable water, and 2-m air temperature. Next, the grid-based IDF curves derived from MM5 were compared to IDF curves derived from six RCMs of the North American Regional Climate Change Assessment Program (NARCCAP) set up with 50-km grids, driven with NCEP-DOE (National Centers for Environmental Prediction-Department of Energy) Reanalysis II data, and regional IDF curves derived from observed rain gauge data (RG-IDF). The analyzed results indicate that 6-h simulated precipitable water and 2-m temperature agree well with the ERA-Interim reanalysis data. However, compared to RG-IDF curves, IDF curves based on simulated precipitation data of MM5 are overestimated especially for IDF curves of 2-year return period. In contract, IDF curves developed from NARCCAP data suffer from under-estimation and differ more from RG-IDF curves than the MM5 IDF curves. The over-estimation of IDF curves of MM5 was corrected by a quantile-based, bias correction method. By dynamically downscale the ERA-Interim and after bias correction, it is possible to develop IDF curves useful for regions with limited or no rain gauge data. This estimation process can be further extended to predict future grid-based IDF curves subjected to possible climate change impacts based on climate change projections of GCMs (general circulation models) of IPCC (Intergovernmental Panel on Climate Change).

  3. Climate Services Information System Activities in Support of The Global Framework for Climate Services Implementation

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Pulwarty, R. S.; Klein-Tank, A.; Kolli, R. K.; Hechler, P.; Dilley, M.; Ceron, J. P.; Goodess, C.

    2017-12-01

    The WMO Commission on Climatology (CCl) supports the implementation of the Global Framework for Climate Services (GFCS) with a particular focus on the Climate Services Information System (CSIS), which is the core operational component of GFCS at the global, regional, and national level. CSIS is designed for producing, packaging and operationally delivering authoritative climate information data and products through appropriate operational systems, practices, data exchange, technical standards, authentication, communication, and product delivery. Its functions include climate analysis and monitoring, assessment and attribution, prediction (monthly, seasonal, decadal), and projection (centennial scale) as well as tailoring the associated products tUEAo suit user requirements. A central, enabling piece of implementation of CSIS is a Climate Services Toolkit (CST). In its development phase, CST exists as a prototype (www.wmo.int/cst) as a compilation of tools for generating tailored data and products for decision-making, with a special focus on national requirements in developing countries. WMO provides a server to house the CST prototype as well as support operations and maintenance. WMO members provide technical expertise and other in-kind support, including leadership of the CSIS development team. Several recent WMO events have helped with the deployment of CST within the eight countries that have been recognized by GFCS as illustrative for developing their climate services at national levels. Currently these countries are developing climate services projects focusing service development and delivery for selected economic sectors, such as for health, agriculture, energy, water resources, and hydrometeorological disaster risk reduction. These countries are working together with their respective WMO Regional Climate Centers (RCCs), which provide technical assistance with implementation of climate services projects at the country level and facilitate development of regional climate products, starting with the CST. The paper will introduce the CST prototype to the wider meteorological, hydrological, and climatological communities and provide details of its implementation in the context of the global framework.

  4. The NASA NEESPI Data Portal: Products, Information, and Services

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory; Loboda, Tatiana; Csiszar, Ivan; Romanov, Peter; Gerasimov, Irina

    2008-01-01

    Studies have indicated that land cover and use changes in Northern Eurasia influence global climate system. However, the procedures are not fully understood and it is challenging to understand the interactions between the land changes in this region and the global climate. Having integrated data collections form multiple disciplines are important for studies of climate and environmental changes. Remote sensed and model data are particularly important die to sparse in situ measurements in many Eurasia regions especially in Siberia. The NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) NEESPI data portal has generated infrastructure to provide satellite remote sensing and numerical model data for atmospheric, land surface, and cryosphere. Data searching, subsetting, and downloading functions are available. ONe useful tool is the Web-based online data analysis and visualization system, Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure), which allows scientists to assess easily the state and dynamics of terrestrial ecosystems in Northern Eurasia and their interactions with global climate system. Recently, we have created a metadata database prototype to expand the NASA NEESPI data portal for providing a venue for NEESPI scientists fo find the desired data easily and leveraging data sharing within NEESPI projects. The database provides product level information. The desired data can be found through navigation and free text search and narrowed down by filtering with a number of constraints. In addition, we have developed a Web Map Service (WMS) prototype to allow access data and images from difference data resources.

  5. Implementation and calibration of a stochastic multicloud convective parameterization in the NCEP Climate Forecast System (CFSv2)

    NASA Astrophysics Data System (ADS)

    Goswami, B. B.; Khouider, B.; Phani, R.; Mukhopadhyay, P.; Majda, A. J.

    2017-07-01

    A comparative analysis of fourteen 5 year long climate simulations produced by the National Centers for Environmental Predictions (NCEP) Climate Forecast System version 2 (CFSv2), in which a stochastic multicloud (SMCM) cumulus parameterization is implemented, is presented here. These 5 year runs are made with different sets of parameters in order to figure out the best model configuration based on a suite of state-of-the-art metrics. This analysis is also a systematic attempt to understand the model sensitivity to the SMCM parameters. The model is found to be resilient to minor changes in the parameters used implying robustness of the SMCM formulation. The model is found to be most sensitive to the midtropospheric dryness parameter (MTD) and to the stratiform cloud decay timescale (τ30). MTD is more effective in controlling the global mean precipitation and its distribution while τ30 has more effect on the organization of convection as noticed in the simulation of the Madden-Julian oscillation (MJO). This is consistent with the fact that in the SMCM formulation, midtropospheric humidity controls the deepening of convection and stratiform clouds control the backward tilt of tropospheric heating and the strength of unsaturated downdrafts which cool and dry the boundary layer and trigger the propagation of organized convection. Many other studies have also found midtropospheric humidity to be a key factor in the capacity of a global climate model to simulate organized convection on the synoptic and intraseasonal scales.

  6. Teacher Centers as a Social Phenomenon: An Anthropological Inquiry.

    ERIC Educational Resources Information Center

    Van Fleet, Alanson

    1979-01-01

    This article discusses the social and educational conditions that have supported the development of teacher centers, using a perspective from social anthropology, Malinowski's "functional" theory of institutions. Teacher centers are seen as a reflection of growing teacher power in a climate of shifting authority structures. (SJL)

  7. Predicting rainfall beyond tomorrow

    USDA-ARS?s Scientific Manuscript database

    NOAA’s Climate Prediction Center issues climate precipitation forecasts that offer potential support for water resource managers and farmers and ranchers in New Mexico, but the forecasts are frequently misunderstood and not widely used in practical decision making. The objectives of this newsletter ...

  8. Satellite-enhanced dynamical downscaling for the analysis of extreme events

    NASA Astrophysics Data System (ADS)

    Nunes, Ana M. B.

    2016-09-01

    The use of regional models in the downscaling of general circulation models provides a strategy to generate more detailed climate information. In that case, boundary-forcing techniques can be useful to maintain the large-scale features from the coarse-resolution global models in agreement with the inner modes of the higher-resolution regional models. Although those procedures might improve dynamics, downscaling via regional modeling still aims for better representation of physical processes. With the purpose of improving dynamics and physical processes in regional downscaling of global reanalysis, the Regional Spectral Model—originally developed at the National Centers for Environmental Prediction—employs a newly reformulated scale-selective bias correction, together with the 3-hourly assimilation of the satellite-based precipitation estimates constructed from the Climate Prediction Center morphing technique. The two-scheme technique for the dynamical downscaling of global reanalysis can be applied in analyses of environmental disasters and risk assessment, with hourly outputs, and resolution of about 25 km. Here the satellite-enhanced dynamical downscaling added value is demonstrated in simulations of the first reported hurricane in the western South Atlantic Ocean basin through comparisons with global reanalyses and satellite products available in ocean areas.

  9. Communicating climate information to end-users: an experience driven by the understanding and anticipation of user needs.

    NASA Astrophysics Data System (ADS)

    Chaumont, Diane; Huard, David; Logan, Travis; Sottile, Marie-France; Brown, Ross; Gauvin St-Denis, Blaise; Grenier, Patrick; Braun, Marco

    2013-04-01

    Planning and adapting to a changing climate requires credible information about the magnitude and rate of projected changes. Ouranos, a consortium on regional climatology and adaptation to climate change was launched in the Province of Québec, Canada, ten years ago, with the objective of developing and providing climate information and expertise in support to adaption. Ouranos differs from most other climate service centers by integrating climate modeling activities, impacts and adaptation expertise and climate analysis services under one roof. The Climate Scenarios Group operates at the interface between climate modellers and users and is responsible for developing, producing and communicating climate scenarios to end-users in a consistent manner. This process requires close collaboration with users to define, understand and eventually anticipate their needs. The varied scientific expertise of climate scenarios specialists --who also act as communicators-- has proven to be a key element for successful communication. A large amount of effort is spent on the characterization and communication of the uncertainties involved in scenario construction. Two main activities have been put in place by the experts in climate modeling to address this: (1) a training course on climate models and (2) a fact-sheet summarizing the uncertainty and robustness of the climate change scenario provided for each I&A application. The latter tool ensures the transparency, traceability, and accountability of our products, and at the same time, encourages a sense of shared responsibility for the final choice of climate scenarios. In addition to uncertainty, two other main issues have been identified as essential in communication with users: 1) observed natural variability at relevant scales and 2) reconciliation of the projected trend with the recent observed trend. Our group has devoted substantial resources for the advancement of communication with end-users in these particular areas. This presentation will provide an overview of progress in communicating climate information at the Ouranos Consortium. We will discuss success and failures and future plans, in particular the extent to which Ouranos needs to work with users in decision-making activities.

  10. NW CSC annual report fiscal year 2013

    USGS Publications Warehouse

    Bisbal, Gustavo A.

    2013-01-01

    The Northwest Climate Science Center (NW CSC) was established in 2010 as one of eight regional Climate Science Centers created by the Department of the Interior (DOI). The NW CSC encompasses Washing-ton, Oregon, Idaho, and western Montana and has overlapping boundaries with three Landscape Conservation Cooperatives (LCCs): the Great Northern, the Great Basin, and the North Pacific. With guidance from its Executive Stakeholder Advisory Committee (ESAC), the NW CSC and its partner LCCs are addressing the highest priority regional climate science needs of Northwest natural and cultural resource managers. Climate Science Centers tap into the scientific expertise of both the U.S. Geological Survey (USGS) and academic institutions. The NW CSC is supported by an academic consortium with the capacity to generate climate science and tools in a coordinated fashion, serving stakeholders across the Northwest region. This consortium is primarily represented by Oregon State University (OSU), the University of Id-ho (UI), and the University of Washington (UW). The academic consortium and USGS provide capabilities in climate science, ecology, impacts and vulnerability assessment, modeling, adaptation planning, and advanced information technology, all necessary to address and respond to climate change in the Northwest. University members also recruit and train graduate students and early-career scientists. This Annual Report summarizes progress for the goals set out in the NW CSC Strategic Plan for 2012-2015 (http://www.doi.gov/csc/northwest/upload/Northwest-CSC-Strategic-Plan.cfm) and the NW CSC Work-plan for Fiscal Year (FY) 2013 (October 1, 2012 through September 30, 2013). The report follows the structure of the Strategic Plan, which describes the five core services (Executive, Science, Data, Communications, and Education and Training) provided by the NW CSC in support of the stated vision: Our Vision: To become nationally recognized as a best-practice model for the provision of climate science and decision support tools to address conservation and management issues in the Pacific Northwest Region.

  11. The US economic impacts of climate change and the costs of inaction : a review and assessment by the Center for Integrative Environmental Research (CIER) at the University of Maryland

    DOT National Transportation Integrated Search

    2007-10-01

    This report presents a review of economic studies for the United States and relates them to predicted impacts of climate change. The summary findings are organized by region and identify the key sectors likely affected by climate change, the main imp...

  12. Vulnerability Assessments in Support of the Climate Ready ...

    EPA Pesticide Factsheets

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared this draft report exploring a new methodology for climate change vulnerability assessments using San Francisco Bay’s salt marsh and mudflat ecosystems as a demonstration. N/A

  13. Mapping New Terrain: Climate Change and America's West. Report of the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT)

    Treesearch

    Henry F. CIRMOUNT Committee (Diaz; Constance I. Millar; Daniel R. Cayan; Michael D. Dettinger; Daniel B. Fagre; Lisa J. Graumlich; Greg Greenwood; Malcolm K. Hughes; David L. Peterson; Frank L. Powell; Kelly T. Redmond; Nathan L. Stephenson; Thomas W. Swetnam; Connie) Woodhouse

    2006-01-01

    Climate variability and sustained change presage far-reaching transformations across America’s West, an expanse dominated by immense mountain ranges and interspersed with important urban centers. These mountains provide the region’s life blood—water that courses through its streams and runs out its faucets, power that fuels its industries...

  14. Climate Change and Impacts Research Experiences for Urban Students

    NASA Astrophysics Data System (ADS)

    Marchese, P.; Carlson, B. E.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Scalzo, F.; Frost, J.; Moshary, F.; Greenbaum, S.; Cheung, T. K.; Howard, A.; Steiner, J. C.; Johnson, L. P.

    2011-12-01

    Climate change and impacts research for undergraduate urban students is the focus of the Center for Global Climate Research (CGCR). We describe student research and significant results obtained during the Summer 2011. The NSF REU site, is a collaboration between the City University of New York (CUNY) and the NASA Goddard Institute for Space Studies (GISS). The research teams are mentored by NASA scientists and CUNY faculty. Student projects include: Effects of Stratospheric Aerosols on Tropical Cyclone Activity in the North Atlantic Basin; Comparison of Aerosol Optical Depth and Angstrom Exponent Retrieved by AERONET, MISR, and MODIS Measurements; White Roofs to the Rescue: Combating the Urban Heat Island Effect; Tropospheric Ozone Investigations in New York City; Carbon Sequestration with Climate Change in Alaskan Peatlands; Validating Regional Climate Models for Western Sub-Sahara Africa; Bio-Remediation of Toxic Waste Sites: Mineral Characteristics of Cyanide-Treated Mining Waste; Assessment of an Ocean Mixing Parameterization for Climate Studies; Comparative Wind Speed through Doppler Sounding with Pulsed Infrared LIDAR; and Satellite Telemetry and Communications. The CGCR also partners with the New York City Research Initiative (NYCRI) at GISS. The center is supported by NSF ATM-0851932 and the American Recovery and Reinvestment Act of 2009 (ARRA).

  15. Climate extremes in Malaysia and the equatorial South China Sea

    NASA Astrophysics Data System (ADS)

    Salahuddin, Ahmed; Curtis, Scott

    2011-08-01

    The southern extent of the South China Sea (SCS) is an important natural resource epicenter for Malaysia which experiences climate extremes. This paper documents the variability of extremes in the equatorial SCS through selected ground-based observations of precipitation in Malaysia and ship-based observations of wind data in the Maritime Continent region, to elucidate the interrelationship between precipitation variability over Malaysia and wind variability over the ocean. The data have been carefully inspected and analyzed, and related to the real-time multivariate Madden-Julian Oscillation (MJO) time series. The analysis suggests that the northeast or boreal winter monsoon dominates extreme rainfall in eastern Malaysian cities. Further, the west coast of Peninsular Malaysia and Borneo Malaysia are affected by the MJO differently than the east coast of Peninsular Malaysia. From the wind analysis we found that average zonal wind is westerly from May to September and easterly from November to April. When the active (convective) phase of the MJO is centered over the Maritime Continent, the strong westerly wind bursts are more frequent in the South China Sea. While more investigation is needed, these results suggest that the status of the Madden-Julian Oscillation can be used to help forecast climate extremes in areas of Malaysia.

  16. Earthwatch and the HSBC Climate Partnership: Linking climate change and forests management one citizen scientist at a time

    NASA Astrophysics Data System (ADS)

    Stover, D. B.; Jones, A.; Kusek, K.; Bebber, D.; Phillips, R.; Campbell, J.

    2010-12-01

    Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC banking employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results are establishing baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests within a changing climate. A critical component of the program is the engagement of 2,200 corporate HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Program participants are empowered and have successfully developed sustainability projects they implement back in their office, homes and communities that furthers corporate and public commitment to sustainability and combating the effects of climate change. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified one week versions of the field program. New models of citizen science engagement are currently under development, with best practices and stories documenting the effectiveness of the program design from a research, engagement and business perspective. In US, the program has successfully collected over 10,000 hours of data collection in just 2 years and has contributed to our understanding of positive growth response to climate change in the Chesapeake Bay forests. Additionally, preliminary results are indicating that invasive species recruitment in recently logging areas is modifying the future crown species dominance. By the end of the program, nearly 100,000 citizen science research hours will have been invested in the program globally—leading to scientific publications on forest responses to climate change, policy development and citizen engagement.

  17. Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Mannucci, Anthony J.; Ao, Chi O.; Verkhoglyadova, Olga; Iijima, Byron

    2018-03-01

    We construct a 9-year data record (2007-2015) of the tropospheric specific humidity using Global Positioning System radio occultation (GPS RO) observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission. This record covers the ±40° latitude belt and includes estimates of the zonally averaged monthly mean specific humidity from 700 up to 400 hPa. It includes three major climate zones: (a) the deep tropics (±15°), (b) the trade winds belts (±15-30°), and (c) the subtropics (±30-40°). We find that the RO observations agree very well with the European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim), the Modern-Era Retrospective Analysis for Research and Applications (MERRA), and the Atmospheric Infrared Sounder (AIRS) by capturing similar magnitudes and patterns of variability in the monthly zonal mean specific humidity and interannual anomaly over annual and interannual timescales. The JPL and UCAR specific humidity climatologies differ by less than 15 % (depending on location and pressure level), primarily due to differences in the retrieved refractivity. In the middle-to-upper troposphere, in all climate zones, JPL is the wettest of all data sets, AIRS is the driest of all data sets, and UCAR, ERA-Interim, and MERRA are in very good agreement, lying between the JPL and AIRS climatologies. In the lower-to-middle troposphere, we present a complex behavior of discrepancies, and we speculate that this might be due to convection and entrainment. Conclusively, the RO observations could potentially be used as a climate variable, but more thorough analysis is required to assess the structural uncertainty between centers and its origin.

  18. IMPACT2C: Quantifying projected impacts under 2°C warming

    NASA Astrophysics Data System (ADS)

    Jacob, D.; Kotova, L.; Impact2C Team

    2012-04-01

    Political discussions on the European goal to limit global warming to 2°C demand, that information is provided to society by the best available science on projected impacts and possible benefits. The new project IMPACT2C is supported by the European Commission's 7th Framework Programme as a 4 year large-scale integrating project. IMPACT2C is coordinated by the Climate Service Center, Helmholtz-Zentrum Geesthacht. IMPACT2C enhances knowledge, quantifies climate change impacts, and adopts a clear and logical structure, with climate and impacts modelling, vulnerabilities, risks and economic costs, as well as potential responses, within a pan-European sector based analysis. The project utilises a range of models within a multi-disciplinary international expert team and assesses effects on water, energy, infrastructure, coasts, tourism, forestry, agriculture, ecosystems services, and health and air quality-climate interactions. IMPACT2C introduces key innovations. First, harmonised socio-economic assumptions/scenarios will be used, to ensure that both individual and cross-sector assessments are aligned to the 2°C (1.5°C) scenario for both impacts and adaptation, e.g. in relation to land-use pressures between agriculture and forestry. Second, it has a core theme of uncertainty, and will develop a methodological framework integrating the uncertainties within and across the different sectors, in a consistent way. In so doing, analysis of adaptation responses under uncertainty will be enhanced. Finally, a cross-sectoral perspective is adopted to complement the sector analysis. A number of case studies will be developed for particularly vulnerable areas, subject to multiple impacts (e.g. the Mediterranean), with the focus being on cross-sectoral interactions (e.g. land use competition) and cross-cutting themes (e.g. cities). The project also assesses climate change impacts in some of the world's most vulnerable regions: Bangladesh, Africa (Nile and Niger basins), and the Maldives. An overview about the scientific goals and the structure of IMPACT2C will be presented.

  19. Energy Modeling Capabilities in ORD's Air, Climate and ...

    EPA Pesticide Factsheets

    Presentation to ACE Centers Kick-Off Meeting highlighting energy modeling work, capabilities and tools that are under development in ORD/NRMRL under the ACE Program. Presentation to ACE Centers Kick-Off Meeting

  20. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar projects. Starting a Monsoon Mission experiment or research project? Let us know so we can add it to our Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University Research Court

  2. Impact of the Climate Change on Cultural Heritage Sites in Cyprus

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Michaelides, Silas; Hadjimitsis, Diofantos G.

    2016-04-01

    Climate change is one of the main factors with a significant impact on changes of cultural heritage and landscapes. Exposed and buried archaeological remains are particularly endangered by effects of climate change processes hence it is of great importance to understand the type of risks and the degree of their impact on such assets. Some of the potential risks for cultural heritage and landscape include flooding, intense rainfall, increase in time of wetness, extreme events in temperature change, coastal flooding, drought, wind driven/transported agents (sand, rain or salt) and so forth. From the geo-science perspective, the topic of climate change and the risks it causes is of crucial importance for environmental monitoring in general and it is one of the main applications of the European program on Earth Observation Copernicus. The activities performed in CLIMA project - "Cultural Landscape risk Identification, Management and Assessment" have as one of the main tasks to combining the fields of remote sensing technologies, including the Sentinel data, and cultural heritage monitoring. Such interdisciplinary approach was undertaken in order to identify major climate change risks affecting archaeological heritage in rural areas in Cyprus and to identify the most suitable Earth Observation (EO) and ground-based methods that might be effective in the mapping, diagnostics and monitoring of such risks. This thorough analysis will support the overall design of the CLIMA platform based in EO data analysis, risk models and ground-based methods to provide integrated information for specialists in remote sensing but also to archeologists and policy makers engaged in heritage preservation and management. The case study selected for Cyprus is the awarded Nea Paphos archeological site and historical center of Paphos that is surrounding this UNSECO World Heritage site.

  3. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  4. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  5. Integration of climate change considerations in statewide and regional transportation planning processes

    DOT National Transportation Integrated Search

    2009-07-01

    This report is part on on-going work for the US Department of Transportations Center for Climate Change and Environmental Forecasting and the Federal Highway Administration to highlight innovative actions and initiatives undertaken by states and m...

  6. Enabling Research Tools for Sustained Climate Assessment

    NASA Technical Reports Server (NTRS)

    Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.

    2016-01-01

    The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.

  7. Equilibrium and Effective Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Rugenstein, M.; Bloch-Johnson, J.

    2016-12-01

    Atmosphere-ocean general circulation models, as well as the real world, take thousands of years to equilibrate to CO2 induced radiative perturbations. Equilibrium climate sensitivity - a fully equilibrated 2xCO2 perturbation - has been used for decades as a benchmark in model intercomparisons, as a test of our understanding of the climate system and paleo proxies, and to predict or project future climate change. Computational costs and limited time lead to the widespread practice of extrapolating equilibrium conditions from just a few decades of coupled simulations. The most common workaround is the "effective climate sensitivity" - defined through an extrapolation of a 150 year abrupt2xCO2 simulation, including the assumption of linear climate feedbacks. The definitions of effective and equilibrium climate sensitivity are often mixed up and used equivalently, and it is argued that "transient climate sensitivity" is the more relevant measure for predicting the next decades. We present an ongoing model intercomparison, the "LongRunMIP", to study century and millennia time scales of AOGCM equilibration and the linearity assumptions around feedback analysis. As a true ensemble of opportunity, there is no protocol and the only condition to participate is a coupled model simulation of any stabilizing scenario simulating more than 1000 years. Many of the submitted simulations took several years to conduct. As of July 2016 the contribution comprises 27 scenario simulations of 13 different models originating from 7 modeling centers, each between 1000 and 6000 years. To contribute, please contact the authors as soon as possible We present preliminary results, discussing differences between effective and equilibrium climate sensitivity, the usefulness of transient climate sensitivity, extrapolation methods, and the state of the coupled climate system close to equilibrium. Caption for the Figure below: Evolution of temperature anomaly and radiative imbalance of 22 simulations with 12 models (color indicates the model). 20 year moving average.

  8. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    USGS Publications Warehouse

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.

  9. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  10. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    PubMed Central

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.

    2014-01-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388

  11. Country Contributions to Climate Change

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.

    2016-12-01

    An assignment called "Country Contributions to Climate Change" is used in an introductory Global Climate Change course and answers the question, "Who is responsible for climate change?" This assignment is used about a third of the way into the course, which fulfills a science requirement, but also a Global Diversity requirement within the university. The assignment involves taking a trip to the computer lab to learn how to create graphs in Excel. Two graphs are created, the Keeling Curve, and a graph on total carbon emissions by country since 1900. Students are given data for a few key countries, then are sent to the Carbon Dioxide Information Analysis Center (CDIAC) website to find data on their assigned country. Students create a graph to compare emissions over time from each of these countries. Using this data and the data from the CDIAC, students are asked to draw conclusions about which country is the largest emitter, then on a per capita basis, which people are the largest emitters. Later in the semester they will calculate their own carbon footprint and compare to these numbers. Finally, students are asked to add up emissions by country since 1900 to find out how the countries compare in cumulative emissions, and we learn why this number is relevant. Students also learn the difference between carbon emissions and concentrations, tying together some lessons on the carbon cycle. Students discover the complex role of several countries in climate change, showing them how complicated a climate change solution policy can be.

  12. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    USGS Publications Warehouse

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and cultural resources. The South Central CSC will provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife, and cultural resources can use to anticipate, monitor, and adapt to climate change, actively engaging LCCs and other partners in translating science into management decisions. This document is the first Strategic Science Plan for the South Central CSC (2013-18). Using the January 2011 DOI guidance as a model, this document (1) describes the role and interactions of the South Central CSC among partners and stakeholders including Federal, State, and non-governmental organizations throughout the region; (2) describes a concept of what the center will provide to its partners; (3) defines a context for climate impacts in the south central United States; and (4) establishes the science priorities the center will address through research. Science priorities are currently organized as immediate or future research needs; however, this document is intended to be reevaluated and modified as partner needs change and as scientific work progresses.

  13. Report of the Defense Science Board Task Force on Trends and Implications of Climate Change on National and International Security

    DTIC Science & Technology

    2011-10-01

    Propulsion Laboratory Dr. Diane Evans Jet Propulsion Laboratory CAPT Tim Gallaudet US Navy Task Force on Climate Change Mr. David Goldwyn State...Ashley Moran Strauss Center, University of Texas, Austin DOD’s (Minerva) Climate Change and African Political Stability Project CAPT Timothy ... Gallaudet Office of the Oceanographer of the Navy Navy’s Climate Change Task Force Dr. Sherri Goodman, Dr. Ralph Espach and Mr. Peter MacKenzie CNA

  14. Assessment of Equal Opportunity Climate: Results of the 1989 Navy-wide Survey

    DTIC Science & Technology

    1992-05-01

    Navy Personnel Research and Development Center San Diego, Califomia 92152-6800 TR-92-14 May 1992 AD-A251 318 Assessment of Equal Opportunity Climate...9 2 6 04 Approved for publc release; distibution is unlimited. NPRDC-TR-92-14 May 1992 Assessment of Equal Opportunity Climate: Results of the 1989...FUNDING NUMBERS Assessment of Equal Opportunity Climate: Reimbursable Results of the 1989 Navy-wide Survey N0002289WREE562 N0002290POEE562 6. AUTHOR(S

  15. NOAA's State Climate Summaries for the National Climate Assessment: A Sustained Assessment Product

    NASA Astrophysics Data System (ADS)

    Kunkel, K.; Champion, S.; Frankson, R.; Easterling, D. R.; Griffin, J.; Runkle, J. D.; Stevens, L. E.; Stewart, B. C.; Sun, L.; Veasey, S.

    2016-12-01

    A set of State Climate Summaries have been produced for all 50 U.S. states as part of the National Climate Assessment Sustained Assessment and represent a NOAA contribution to this process. Each summary includes information on observed and projected climate change conditions and impacts associated with future greenhouse gas emissions pathways. The summaries focus on the physical climate and coastal issues as a part of NOAA's mission. Core climate data and simulations used to produce these summaries have been previously published, and have been analyzed to represent a targeted synthesis of historical and plausible future climate conditions. As these are intended to be supplemental to major climate assessment development, the scope of the content remains true to a "summary" style document. Each state's Climate Summary includes its climatology and projections of future temperatures and precipitation, which are presented in order to provide a context for the assessment of future impacts. The climatological component focuses on temperature, precipitation, and noteworthy weather events specific to each state and relevant to the climate change discussion. Future climate scenarios are also briefly discussed, using well-known and consistent sets of climate model simulations based on two possible futures of greenhouse gas emissions. These future scenarios present an internally consistent climate picture for every state and are intended to inform the potential impacts of climate change. These 50 State Climate Summaries were produced by NOAA's National Centers for Environmental Information (NCEI) and the North Carolina State University Cooperative Institute for Climate and Satellites - NC (CICS-NC) with additional input provided by climate experts, including the NOAA Regional Climate Centers and State Climatologists. Each summary document also underwent a comprehensive and anonymous peer review. Each summary contains text, figures, and an interactive web presentation. A full suite of the comprehensive analyses and metadata are also available. The audience is targeted as both decision-makers and informed non-scientists. This presentation will discuss the scientific development for the project, demonstrate the suite of information, and provide examples of noteworthy figures from select states.

  16. Impact of climate change on maize potential productivity and the potential productivity gap in southwest China

    NASA Astrophysics Data System (ADS)

    He, Di; Wang, Jing; Dai, Tong; Feng, Liping; Zhang, Jianping; Pan, Xuebiao; Pan, Zhihua

    2014-12-01

    The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China (SWC) are investigated in this paper. We analyze the impact of climate change on the photosynthetic, light-temperature, and climatic potential productivity of maize and their gaps in SWC, by using a crop growth dynamics statistical method. During the maize growing season from 1961 to 2010, minimum temperature increased by 0.20°C per decade ( p < 0.01) across SWC. The largest increases in average and minimum temperatures were observed mostly in areas of Yunnan Province. Growing season average sunshine hours decreased by 0.2 h day-1 per decade ( p < 0.01) and total precipitation showed an insignificant decreasing trend across SWC. Photosynthetic potential productivity decreased by 298 kg ha-1 per decade ( p < 0.05). Both light-temperature and climatic potential productivity decreased ( p < 0.05) in the northeast of SWC, whereas they increased ( p < 0.05) in the southwest of SWC. The gap between light-temperature and climatic potential productivity varied from 12 to 2729 kg ha-1, with the high value areas centered in northern and southwestern SWC. Climatic productivity of these areas reached only 10%-24% of the light-temperature potential productivity, suggesting that there is great potential to increase the maize potential yield by improving water management in these areas. In particular, the gap has become larger in the most recent 10 years. Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC. The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.

  17. Improving Seasonal Climate Predictability in the Colorado River Basin for Enhanced Decision Support

    NASA Astrophysics Data System (ADS)

    Rajagopal, S.; Mahmoud, M. I.

    2016-12-01

    The water resource management community is increasingly seeking skillful seasonal climate forecasts with long lead times. But predicting wet or dry climate with sufficient lead time (3 months) for a season (especially winter) in the Colorado River Basin (CRB) is a challenging problem. The typical approach taken to predicting winter climate is based on using climate indices and climate models to predict precipitation or streamflow in the Colorado River Basin. In addition to this approach; which may have a long lead time, water supply forecasts are also generated based on current observations by the Colorado River Forecast Center. Recently, the effects of coupled atmospheric-ocean phenomena such as ENSO over North America, and atmospheric circulation patterns at the 500 mb pressure level, which make the CRB wet or dry, have been studied separately. In the current work we test whether combining climate indices and circulation patterns improve predictability in the CRB. To accomplish this, the atmospheric circulation data from the Earth System Research Laboratory (ESRL) and climate indices data from the Climate Prediction Center were combined using logical functions. To quantify the skill in prediction, statistics such as the hit ratio and false alarm ratio were computed. The results from using a combination of climate indices and atmospheric circulation patterns suggest that there is an improvement in the prediction skill with hit ratios higher than 0.8, as compared to using either predictor individually (which typically produced a hit ratio of 0.6). Based on this result, there is value in using this hybrid approach when compared to a black box statistical model, as the climate index is an analog to the moisture availability and the right atmospheric circulation pattern helps in transporting that moisture to the Basin.

  18. Commentaries on the National School Climate Standards. Benchmarks to Promote Effective Teaching, Learning and Comprehensive School Improvement. School Climate Brief, Number 2

    ERIC Educational Resources Information Center

    National School Climate Center, 2010

    2010-01-01

    The majority of Americans have a shared vision that K-12 education needs to support children's ability to love, work and participate effectively in a democratic society. The National School Climate Center, a growing number of State Departments of Education and recently, the United States Department of Education believe that when school communities…

  19. Proceedings of the Fourth Conference on the Climatic Impact Assessment Program

    DOT National Transportation Integrated Search

    1976-08-01

    This volume contains the proceedings of the final, Fourth Conference on the Climatic Impact Assessment Program, held at the DOT Transportation Systems Center February 4 through 7, 1975. It includes 55 papers, a panel discussion, and edited question-a...

  20. Langley Research Center Utility Risk from Future Climate Change

    NASA Technical Reports Server (NTRS)

    De Young, Russell J.; Ganoe, Rene

    2015-01-01

    The successful operation of NASA Langley Research Center (LaRC) depends on services provided by several public utility companies. These include Newport News Waterworks, Dominion Virginia Power, Virginia Natural Gas and Hampton Roads Sanitation District. LaRC's plan to respond to future climate change should take into account how these companies plan to avoid interruption of services while minimizing cost to the customers. This report summarizes our findings from publicly available documents on how each company plans to respond. This will form the basis for future planning for the Center. Our preliminary findings show that flooding and severe storms could interrupt service from the Waterworks and Sanitation District but the potential is low due to plans in place to address climate change on their system. Virginia Natural Gas supplies energy to produce steam but most current steam comes from the Hampton trash burning plant, thus interruption risk is low. Dominion Virginia Power does not address climate change impacts on their system in their public reports. The potential interruption risk is considered to be medium. The Hampton Roads Sanitation District is projecting a major upgrade of their system to mitigate clean water inflow and infiltration. This will reduce infiltration and avoid overloading the pump stations and treatment plants.

  1. Projected climate change impacts in rainfall erosivity over Brazil.

    PubMed

    Almagro, André; Oliveira, Paulo Tarso S; Nearing, Mark A; Hagemann, Stefan

    2017-08-15

    The impacts of climate change on soil erosion may bring serious economic, social and environmental problems. However, few studies have investigated these impacts on continental scales. Here we assessed the influence of climate change on rainfall erosivity across Brazil. We used observed rainfall data and downscaled climate model output based on Hadley Center Global Environment Model version 2 (HadGEM2-ES) and Model for Interdisciplinary Research On Climate version 5 (MIROC5), forced by Representative Concentration Pathway 4.5 and 8.5, to estimate and map rainfall erosivity and its projected changes across Brazil. We estimated mean values of 10,437 mm ha -1  h -1 year -1 for observed data (1980-2013) and 10,089 MJ mm ha -1  h -1 year -1 and 10,585 MJ mm ha -1  h -1 year -1 for HadGEM2-ES and MIROC5, respectively (1961-2005). Our analysis suggests that the most affected regions, with projected rainfall erosivity increases ranging up to 109% in the period 2007-2040, are northeastern and southern Brazil. Future decreases of as much as -71% in the 2071-2099 period were estimated for the southeastern, central and northwestern parts of the country. Our results provide an overview of rainfall erosivity in Brazil that may be useful for planning soil and water conservation, and for promoting water and food security.

  2. NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA): Early Results and Future Directions

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2008-01-01

    This talk will review the status and progress of the NASA/Global Modeling and Assimilation Office (GMAO) atmospheric global reanalysis project called the Modern Era Retrospective-Analysis for Research and Applications (MERRA). An overview of NASA's emerging capabilities for assimilating a variety of other Earth Science observations of the land, ocean, and atmospheric constituents will also be presented. MERRA supports NASA Earth science by synthesizing the current suite of research satellite observations in a climate data context (covering the period 1979-present), and by providing the science and applications communities with of a broad range of weather and climate data with an emphasis on improved estimates of the hydrological cycle. MERRA is based on a major new version of the Goddard Earth Observing System Data Assimilation System (GEOS-5), that includes the Earth System Modeling Framework (ESMF)-based GEOS-5 atmospheric general circulation model and the new NOAA National Centers for Environmental Prediction (NCEP) unified grid-point statistical interpolation (GST) analysis scheme developed as a collaborative effort between NCEP and the GMAO. In addition to MERRA, the GMAO is developing new capabilities in aerosol and constituent assimilation, ocean, ocean biology, and land surface assimilation. This includes the development of an assimilation capability for tropospheric air quality monitoring and prediction, the development of a carbon-cycle modeling and assimilation system, and an ocean data assimilation system for use in coupled short-term climate forecasting.

  3. Indices of climate change in the Artic zone derived from radiosondes

    NASA Astrophysics Data System (ADS)

    Añel, J. A.; Gimeno, L.; de La Torre, L.; Nieto, R.; Tesouro, M.; Ribera, P.; García, R.; Hernández, E.

    2003-04-01

    The use of indices has been traditionally one of the main tools to identify climatic change. Here we present a study of the interannual variability of parameters derived from radiosonde data to study climate change in the artic zone. Trends, oscillations and the relationship with the principal climate variability mode for this region ( Northern Annular Mode) have been studied. We calculate the indices from the Upper Air Digital Files of the National Climatic Data Center (CARDS). We chose for our work the radiosonde data of stations over the studied region, with a temporal coverage of 27 years (1973-1998).

  4. Defending climate science

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The National Center for Science Education (NCSE), which has long been in the lead in defending the teaching of evolution in public schools, has expanded its core mission to include defending climate science, the organization announced in January. “We consider climate change a critical issue in our own mission to protect the integrity of science education,” said NSCE executive director Eugenie Scott. “Climate affects everyone, and the decisions we make today will affect generations to come. We need to teach kids now about the realities of global warming and climate change so that they're prepared to make informed, intelligent decisions in the future.”

  5. Climatic Consequences of a Large-Scale Desertification in Northeast Brazil: A GCM Simulation Study.

    NASA Astrophysics Data System (ADS)

    Oyama, Marcos Daisuke; Nobre, Carlos Afonso

    2004-08-01

    The climatic impacts of a large-scale desertification in northeast Brazil (NEB) are assessed by using the Center for Weather Forecasting and Climate Studies Center for Ocean Land Atmosphere Studies (CPTEC COLA) AGCM. Two numerical runs are performed. In the control run, NEB is covered by its natural vegetation (most of NEB is covered by a xeromorphic vegetation known as caatinga); in the desertification run, NEB vegetation is changed to desert (bare soil). Each run consists of five 1-yr numerical integrations. The results for NEB wet season (March May) are analyzed. Desertification results in hydrological cycle weakening: precipitation, evapotranspiration, moisture convergence, and runoff decrease. Surface net radiation decreases and this reduction is almost evenly divided between sensible and latent heat flux. Atmospheric diabatic heating decreases and subsidence anomalies confined at lower atmospheric levels are found. The climatic impacts result from the cooperative action of feedback processes related to albedo increase, plant transpiration suppression, and roughness length decrease. On a larger scale, desertification leads to precipitation increase in the oceanic belt close to the northernmost part of NEB (NNEB). In the NEB NNEB dipole, the anomalies of vertical motion and atmospheric circulation are confined to lower atmospheric levels, that is, 850 700 hPa. At these levels, circulation anomalies resemble the linear baroclinic response of a shallow atmospheric layer (850 700 hPa) to a tropical heat sink placed over NEB at the middle-layer level. Therefore, NEB climate does show sensitivity to a vegetation change to desert. The present work shows the possibility of significant and pronounced climate impacts, on both regional and large scales, if the environmental degradation in NEB continues unchecked.


  6. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    NASA Astrophysics Data System (ADS)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if researchers are to widely adopt co-production methods

  7. Preschool Teachers' Child-Centered Beliefs: Direct and Indirect Associations with Work Climate and Job-Related Wellbeing

    ERIC Educational Resources Information Center

    Hur, Eunhye; Jeon, Lieny; Buettner, Cynthia K.

    2016-01-01

    Background: Early childhood teachers' child-centered beliefs, defined as teachers' attitudes about how children learn, have been associated with teachers' developmentally appropriate practices and positive child outcomes. The predictors of teachers' child-centered beliefs, however, are less frequently explored. Objective: This study tested whether…

  8. Social Inequalities in Body Weight and Physical Activity: Exploring the Role of Fitness Centers

    ERIC Educational Resources Information Center

    McLaren, Lindsay; Rock, Melanie J.; McElgunn, Jamie

    2012-01-01

    Fitness centers are a viable option for physical activity, particularly in climates with significant weather variation. Due to variation in economic and social expressions of exclusivity, fitness centers may have some relation to social inequalities in physical inactivity and related health outcomes; thus, our objective was to explore this…

  9. Potential Impacts of Climate Change in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  10. Association between climate factors, pollen counts, and childhood hay fever prevalence in the United States.

    PubMed

    Silverberg, Jonathan I; Braunstein, Marc; Lee-Wong, Mary

    2015-02-01

    Climate factors and pollen counts may play a role in hay fever. We sought to determine the impact of specific climate factors and pollen counts on the US prevalence of hay fever and statewide variation in prevalence. We used a merged analysis of the 2007 National Survey of Children's Health from a representative sample of 91,642 children aged 0 to 17 years and the 2006-2007 National Climate Data Center and Weather Service measurements of relative humidity (%), indoor heating degree days, precipitation, Palmer Hydrological Drought Index, clear sky and issued ultraviolet indices, stratospheric ozone levels, and outdoor air temperature and National Allergy Bureau total pollen counts. Multivariate survey logistic regression models controlled for sex, race/ethnicity, age, household income, and birthplace. The US prevalence of hay fever in childhood was 18.0% (95% CI, 17.7% to 18.2%), with the highest prevalence in southeastern and southern states. Hay fever prevalence was significantly lower with second and third quartile mean annual relative humidity (logistic regression, P ≤ .01 for both), fourth quartile mean annual Palmer Hydrological Drought Index (P = .02), third and fourth quartile mean annual heating degree days (P < .0001 for both), and third and fourth quartile mean annual stratospheric ozone levels but increased with second, third, and fourth quartile mean annual temperature (P ≤ .02 for both), fourth quartile mean annual precipitation (P = .0007), mean total pollen counts (P = .01), and second, third, and fourth quartile issued ultraviolet index (P ≤ .0001 for all). Principal-component analysis was also used to determine the combined effects of correlated climate variables and pollen counts. This study provides evidence of the influence of climate on the US prevalence of childhood hay fever. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Advancing NOAA NWS Arctic Program Development

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will enable analysis of sea ice changes in different parts of the Arctic, and allow users to link those change to phases of climate variability such as El Nino Southern Oscillation Arctic Oscillation, etc.

  12. Systematic Review of Methods in Low-Consensus Fields: Supporting Commensuration through `Construct-Centered Methods Aggregation' in the Case of Climate Change Vulnerability Research.

    PubMed

    Delaney, Aogán; Tamás, Peter A; Crane, Todd A; Chesterman, Sabrina

    2016-01-01

    There is increasing interest in using systematic review to synthesize evidence on the social and environmental effects of and adaptations to climate change. Use of systematic review for evidence in this field is complicated by the heterogeneity of methods used and by uneven reporting. In order to facilitate synthesis of results and design of subsequent research a method, construct-centered methods aggregation, was designed to 1) provide a transparent, valid and reliable description of research methods, 2) support comparability of primary studies and 3) contribute to a shared empirical basis for improving research practice. Rather than taking research reports at face value, research designs are reviewed through inductive analysis. This involves bottom-up identification of constructs, definitions and operationalizations; assessment of concepts' commensurability through comparison of definitions; identification of theoretical frameworks through patterns of construct use; and integration of transparently reported and valid operationalizations into ideal-type research frameworks. Through the integration of reliable bottom-up inductive coding from operationalizations and top-down coding driven from stated theory with expert interpretation, construct-centered methods aggregation enabled both resolution of heterogeneity within identically named constructs and merging of differently labeled but identical constructs. These two processes allowed transparent, rigorous and contextually sensitive synthesis of the research presented in an uneven set of reports undertaken in a heterogenous field. If adopted more broadly, construct-centered methods aggregation may contribute to the emergence of a valid, empirically-grounded description of methods used in primary research. These descriptions may function as a set of expectations that improves the transparency of reporting and as an evolving comprehensive framework that supports both interpretation of existing and design of future research.

  13. Systematic Review of Methods in Low-Consensus Fields: Supporting Commensuration through `Construct-Centered Methods Aggregation’ in the Case of Climate Change Vulnerability Research

    PubMed Central

    Crane, Todd A.; Chesterman, Sabrina

    2016-01-01

    There is increasing interest in using systematic review to synthesize evidence on the social and environmental effects of and adaptations to climate change. Use of systematic review for evidence in this field is complicated by the heterogeneity of methods used and by uneven reporting. In order to facilitate synthesis of results and design of subsequent research a method, construct-centered methods aggregation, was designed to 1) provide a transparent, valid and reliable description of research methods, 2) support comparability of primary studies and 3) contribute to a shared empirical basis for improving research practice. Rather than taking research reports at face value, research designs are reviewed through inductive analysis. This involves bottom-up identification of constructs, definitions and operationalizations; assessment of concepts’ commensurability through comparison of definitions; identification of theoretical frameworks through patterns of construct use; and integration of transparently reported and valid operationalizations into ideal-type research frameworks. Through the integration of reliable bottom-up inductive coding from operationalizations and top-down coding driven from stated theory with expert interpretation, construct-centered methods aggregation enabled both resolution of heterogeneity within identically named constructs and merging of differently labeled but identical constructs. These two processes allowed transparent, rigorous and contextually sensitive synthesis of the research presented in an uneven set of reports undertaken in a heterogenous field. If adopted more broadly, construct-centered methods aggregation may contribute to the emergence of a valid, empirically-grounded description of methods used in primary research. These descriptions may function as a set of expectations that improves the transparency of reporting and as an evolving comprehensive framework that supports both interpretation of existing and design of future research. PMID:26901409

  14. Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments

    NASA Astrophysics Data System (ADS)

    Vezer, M. A.

    2010-12-01

    Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between object and target systems) and some arguments for the claim that materiality entails some inferential advantage to traditional experimentation. I maintain that Parker’s account of the ontology of computer simulations has some interesting though potentially problematic implications regarding conventional distinctions between abstract and concrete methods of inquiry. With respect to her account of materiality, I outline and defend an alternative account, posited by Mary Morgan (2002, 2003, 2005), which holds that ontological similarity between target and object systems confers some epistemological advantage to traditional forms of experimental inquiry.

  15. Building Capacity to Use Earth Observations in Decision Making for Climate, Health, Agriculture and Natural Disasters

    NASA Astrophysics Data System (ADS)

    Robertson, A. W.; Ceccato, P.

    2015-12-01

    In order to fill the gaps existing in climate and public health, agriculture, natural disasters knowledge and practices, the International Research Institute for Climate and Society (IRI) has developed a Curriculum for Best Practices in Climate Information. This Curriculum builds on the experience of 10 years courses on 'Climate Information' and captures lessons and experiences from different tailored trainings that have been implemented in many countries in Africa, Asia and Latin America. In this presentation, we will provide examples of training activities we have developed to bring remote sensing products to monitor climatic and environmental information into decision processes that benefited users such as the World Health Organization, Ministries of Health, Ministries of Agriculture, Universities, Research Centers such as CIFOR and FIOCRUZ. The framework developed by IRI to provide capacity building is based on the IDEAS framework: Innovation (research) Around climate impacts, evaluation of interventions, and the value of climate information in reducing risks and maximizing opportunities Demonstration E.g. in-country GFCS projects in Tanzania and Malawi - or El Nino work in Ethiopia Education Academic and professional training efforts Advocacy This might focus on communication of variability and change? We are WHO collaborating center so are engaged through RBM/Global Malaria Programme Service ENACTS and Data library key to this. Country data better quality than NASA as incorporates all relevant station data and NASA products. This presentation will demonstrate how the IDEAS framework has been implemented and lessons learned.

  16. The relationship between constructivist supervisory practices, school climate, and student proficiency in reading, mathematics, and science: Evidence from NELS:88

    NASA Astrophysics Data System (ADS)

    Molnar, John Alexander

    In an effort to improve instruction and student learning, school reform efforts have become prevalent. School reformers have examined many aspects of the school experience, including learning theories such as behaviorism and constructivism, the changing roles of teachers and supervisors, and even the concept of the school itself. The theoretical framework for this study centered around constructivist learning theory. The study itself focused on the application of constructivist learning theory to the supervisory process. The study examined five areas of interest: (a) teachers' perceptions of constructivist supervisory behavior; (b) teachers' perceptions of efficacy and control in the classroom; (c) teachers' perceptions of school climate; (d) teachers' perceptions of job satisfaction, and (e) the influences of each of the aforementioned on student proficiency in mathematics, reading, and science. Data for the study was drawn from the first follow-up survey of the National Educational Longitudinal Study of 1988 (NELS: 88). NELS: 88 investigated a wide variety of factors that influence the educational process. The first follow-up focuses on environmental factors that affect teachers and students. Variables were selected from the NELS:88 data set that represented the areas to be examined. Factor analysis and correlational analysis were applied to ensure that the variables were measuring distinct constructs and to determine ways they could be grouped for analysis. Multiple linear regression analysis was applied to determine relationships among the individual and composite variables, controlling for student and teacher demographic factors. The results of the study suggest that varying relationships do exist between constructivist supervisory practices and the constructs measuring school climate and job satisfaction. The results also suggest that varying relationships exist between each of these factors and student proficiency in mathematics, reading, and science. Specifically, school climate, job satisfaction, and student proficiency were influenced by constructivist supervisory practices that included teachers' freedom to experiment with teaching and teachers' control over texts and materials.

  17. Six and Three-Hourly Meteorological Observations From 223 Former U.S.S.R. Stations (NPD-048)

    DOE Data Explorer

    Razuvaev, V. N. [All-Russian Research Institute of Hydrometeorological Information, World Data Center, Russia; Apasova, E. B. [All-Russian Research Institute of Hydrometeorological Information, World Data Center, Russia; Martuganov, R. A. [All-Russian Research Institute of Hydrometeorological Information, World Data Center, Russia; Kaiser, D. P. [CDIAC, Oak Ridge National Laboratory; Marino, G. P. [CDIAC, Oak Ridge National Laboratory

    2007-11-01

    This database contains 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information-World Data Centre (RIHMI-WDC) in Obninsk, Russia. The first version of this database extended through the mid-1980s (ending year dependent upon station) and was made available in 1995 by the Carbon Dioxide Information Analysis Center (CDIAC) as NDP-048. A second version of the database extended the data records through 1990. This third, and current version of the database includes data through 2000 for over half of the stations (mainly for Russia), whereas the remainder of the stations have records extending through various years of the 1990s. Because of the break up of the Soviet Union in 1991, and since RIHMI-WDC is a Russian institution, only Russain stations are generally available through 2000. The non-Russian station records in this database typically extend through 1991. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, past and present weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 through 1965; the 3-hourly observations extend from 1966 through 2000 (or through the latest year available). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and CDIAC. The database represents a wealth of meteorological information for a large and climatologically important portion of the earth's land area, and should prove extremely useful for a wide variety of regional climate change studies.

  18. Climate Impact of Solar Variability

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H. (Editor); Arking, Albert (Editor)

    1990-01-01

    The conference on The Climate Impact of Solar Variability, was held at Goddard Space Flight Center from April 24 to 27, 1990. In recent years they developed a renewed interest in the potential effects of increasing greenhouse gases on climate. Carbon dioxide, methane, nitrous oxide, and the chlorofluorocarbons have been increasing at rates that could significantly change climate. There is considerable uncertainty over the magnitude of this anthropogenic change. The climate system is very complex, with feedback processes that are not fully understood. Moreover, there are two sources of natural climate variability (volcanic aerosols and solar variability) added to the anthropogenic changes which may confuse our interpretation of the observed temperature record. Thus, if we could understand the climatic impact of the natural variability, it would aid our interpretation and understanding of man-made climate changes.

  19. A CLIMATOLOGY OF WATER BUDGET VARIABLES FOR THE NORTHEAST UNITED STATES

    EPA Science Inventory

    This dataset provided only by the Northeast Regional Climatic Center is the basis for A Climatology of Water Budget Variables for the Northeast United States (Leathers and Robinson 1995). Climatic division precipitation and temperature data are used to calculate water budget vari...

  20. Proceedings of the Second Conference on the Climatic Impact Assessment Program, November 14-17, 1972

    DOT National Transportation Integrated Search

    1973-04-01

    This volume contains the proceedings of the Second Conference on the Climatic Impact Assessment Program (CIAP), held at the DOT Transportation Systems Center on November 14-17, 1972. It includes 37 invited papers, four unscheduled presentations, thre...

  1. Climate Change Adaptation Support for Transportation Practitioners: 2013 Volpe Center Innovation Challenge Project.

    DOT National Transportation Integrated Search

    2015-09-30

    The nature of the U.S. transportation system requires that actions to adapt to climate change impacts occur primarily at the State and local levels. Federal agencies support State, regional, and local agencies and they work hard to provide frameworks...

  2. 76 FR 33923 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List Abronia...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Sipes 2006, p. 76). The leaf blades are succulent (fleshy) and oval or diamond-shaped with smooth edges... of climate model runs performed at modeling centers worldwide using 22 global climate models (Ray et...

  3. Alternative Fuels Data Center

    Science.gov Websites

    Carbon Reduction Procurement Policies The Vermont Agency of Administration and the Climate Cabinet must revise state acquisition policies to ensure consideration of vendor business practices that promote clean energy and address climate change. Policies should consider, for example, the use of and

  4. Asia-Pacific Center for Security Studies Annual Report 2008

    DTIC Science & Technology

    2008-01-01

    construction efforts. Knowledge and The Natural Disaster Posing the Greatest Threat to You is: 1. Flood (22%) 2. Global warming / climate change (22...highly likely to rec- ommend APCSS to a colleague.  1. International financial crisis (29%) . Global warming / climate change (1%) . Pandemic

  5. MODIS Interactive Subsetting Tool (MIST)

    NASA Astrophysics Data System (ADS)

    McAllister, M.; Duerr, R.; Haran, T.; Khalsa, S. S.; Miller, D.

    2008-12-01

    In response to requests from the user community, NSIDC has teamed with the Oak Ridge National Laboratory Distributive Active Archive Center (ORNL DAAC) and the Moderate Resolution Data Center (MrDC) to provide time series subsets of satellite data covering stations in the Greenland Climate Network (GC-NET) and the International Arctic Systems for Observing the Atmosphere (IASOA) network. To serve these data NSIDC created the MODIS Interactive Subsetting Tool (MIST). MIST works with 7 km by 7 km subset time series of certain Version 5 (V005) MODIS products over GC-Net and IASOA stations. User- selected data are delivered in a text Comma Separated Value (CSV) file format. MIST also provides online analysis capabilities that include generating time series and scatter plots. Currently, MIST is a Beta prototype and NSIDC intends that user requests will drive future development of the tool. The intent of this poster is to introduce MIST to the MODIS data user audience and illustrate some of the online analysis capabilities.

  6. Wisconsin Partnerships to Educate and Engage Public Audiences on Climate Change Topics

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Ackerman, S.; Rowley, P.; Crowley Conn, K.

    2011-12-01

    The complexity and scale of climate change-related challenges requires more than one strategy to share meaningful information with public audiences. This presentation will discuss a few initiatives to engage the public originating from the University of Wisconsin-Madison. First, a local partnership between the Cooperative Institute for Meteorological Satellite Studies (CIMSS) and the Aldo Leopold Nature Center (ALNC), an informal learning center with a new climate change "classroom" which recently acquired a Science on a Sphere (SOS) exhibit. Second, an informal education project funded by the NOAA Office of Education coordinated by CIMSS in partnership with the national SOS Network with the goal of helping museum docents share meaningful interpretation of real-time weather and climate data. CIMSS staff has been conducting weather and climate discussions on a Magic Planet display for several years. This "mini-SOS" is powered by a solar panel on the roof, modeling the essential Sun-Earth connection and the first principle of climate literacy. However, the convenient proximity of CIMSS and ALNC provides a perfect opportunity to test "SOS-scale" talking points posted on a weekly docent blog to the benefit of the entire SOS Network. Two other Wisconsin projects of note include the Wisconsin Initiative on Climate Change Impacts, a partnership between the University and the Wisconsin Department of Natural Resources, and a pilot project between CIMSS and NOAA's National Weather Service to engage storm spotters in climate mitigation and stewardship. Ideally, the synergistic benefits and lessons learned from these collaborations can inform similar efforts in order to galvanize meaningful responses to climate change.

  7. Status of High Latitude Precipitation Estimates from Observations and Reanalyses

    NASA Technical Reports Server (NTRS)

    Behrangi, Ali; Christensen, Matthew; Richardson, Mark; Lebsock, Matthew; Stephens, Graeme; Huffman, George J.; Bolvin, David T.; Adler, Robert F.; Gardner, Alex; Lambrigtsen, Bjorn H.; hide

    2016-01-01

    An intercomparison of high-latitude precipitation characteristics from observation-based and reanalysis products is performed. In particular, the precipitation products from CloudSat provide an independent assessment to other widely used products, these being the observationally based Global Precipitation Climatology Project (GPCP), Global Precipitation Climatology Centre, and Climate Prediction Center Merged Analysis of Precipitation (CMAP) products and the ERA-Interim, Modern-Era Retrospective Analysis for Research and Applications (MERRA), and National Centers for Environmental Prediction-Department of Energy Reanalysis 2 (NCEP-DOE R2) reanalyses. Seasonal and annual total precipitation in both hemispheres poleward of 55 latitude are considered in all products, and CloudSat is used to assess intensity and frequency of precipitation occurrence by phase, defined as rain, snow, or mixed phase. Furthermore, an independent estimate of snow accumulation during the cold season was calculated from the Gravity Recovery and Climate Experiment. The intercomparison is performed for the 20072010 period when CloudSat was fully operational. It is found that ERA-Interim and MERRA are broadly similar, agreeing more closely with CloudSat over oceans. ERA-Interim also agrees well with CloudSat estimates of snowfall over Antarctica where total snowfall from GPCP and CloudSat is almost identical. A number of disagreements on regional or seasonal scales are identified: CMAP reports much lower ocean precipitation relative to other products, NCEP-DOE R2 reports much higher summer precipitation over Northern Hemisphere land, GPCP reports much higher snowfall over Eurasia, and CloudSat overestimates precipitation over Greenland, likely due to mischaracterization of rain and mixed-phase precipitation. These outliers are likely unrealistic for these specific regions and time periods. These estimates from observations and reanalyses provide useful insights for diagnostic assessment of precipitation products in high latitudes, quantifying the current uncertainties, improving the products, and establishing a benchmark for assessment of climate models.

  8. Alaska Center for Climate Assessment and Policy: Partnering with Decision-Makers in Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    White, D.; Trainor, S.; Walsh, J.; Gerlach, C.

    2008-12-01

    The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and resource managers to document traditional ecological knowledge (TEK) and integrate this knowledge with Western science for crafting adaptation response to climate impacts in rural Native Alaska.

  9. Predicted Thermal Responses of Military Working Dog (MWD) to Chemical, Biological, Radiological, Nuclear (CBRN) Protective Kennel Enclosure

    DTIC Science & Technology

    2011-08-01

    meteorological conditions. More specifically, climate chamber studies of the chemical protective kennel cover were conducted over a range of...responses to predict how long the dog could safely remain in the enclosure for various ambient environmental conditions. Climate chamber studies of...Engineering Center (NSRDEC) was tested in a climate - controlled chamber to quantify its insulation and vapor permeability properties. A schematic of

  10. Climate Prediction Center - Monitoring & Data Index

    Science.gov Websites

    Data North American Monsoon Experiment United States Climate Data & Graphics ENSO Impacts on the United States Previous ENSO Events El Niño Impacts on United States Climate El Niño Impacts State by State La Niña Impacts by Region El Niño's Influence on United States Precipitation Amounts El Niño

  11. A Long-Term and Reproducible Passive Microwave Sea Ice Concentration Data Record for Climate Studies and Monitoring

    NASA Technical Reports Server (NTRS)

    Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.

    2013-01-01

    A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.

  12. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    USGS Publications Warehouse

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the evolution of the SE CSC science agenda, which has evolved over the first 5 years of the Center’s operation.

  13. Building Climate Resilience at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Mueller, C.; Podolske, J. R.; Milesi, C.

    2016-12-01

    NASA Ames Research Center, located at the southern end of the San Francisco Bay (SFB) estuary, has identified three primary vulnerabilities to changes in climate. The Ames Climate Adaptation Science Investigator (CASI) workgroup has studied each of these challenges to operations and the potential exposure of infrastructure and employees to an increased frequency of hazards. Sea level rise inundation scenarios for the SFB Area generally refer to projected scenarios in mean sea level rather than changes in extreme tides that could occur during future storm conditions. In the summer of 2014, high resolution 3-D mapping of the low-lying portion of Ames was performed. Those data are integrated with improved sea level inundation scenarios to identify the buildings, basements and drainage systems potentially affected. We will also identify the impacts of sea level and storm surge effects on transportation to and from the Center. This information will help Center management develop future master plans. Climate change will also lead to changes in temperature, storm frequency and intensity. These changes have potential impacts on localized floods and ecosystems, as well as on electricity and water availability. Over the coming decades, these changes will be imposed on top of ongoing land use and land cover changes, especially those deriving from continued urbanization and increase in impervious surface areas. These coupled changes have the potential to create a series of cascading impacts on ecosystems, including changes in primary productivity and disturbance of hydrological properties and increased flood risk. The majority of the electricity used at Ames is supplied by hydroelectric dams, which will be influenced by reductions in precipitation or changes in the timing or phase of precipitation which reduces snow pack. Coupled with increased demand for summertime air conditioning and other cooling needs, NASA Ames is at risk for electricity shortfalls. To assess the anticipated energy usage as climate changes, the Ames CASI team is collecting historical energy usage data from Ames facilities, historical weather data, and projected future weather parameters from the CASI Climate subgroup. This data will be incorporated into the RETScreen model to predict how energy usage at Ames will change over the coming century.

  14. ODISEES V1.0 Data Portal Release

    Atmospheric Science Data Center

    2015-10-07

    ... vertical location of the measurement) across multiple missions and data products. Users who are unfamiliar with ASDC data products ... at the National Center for Climate Simulation at the Goddard Space Flight Center.   For more information on ODISEES, visit ...

  15. Climate Prediction Center - Outlooks Index

    Science.gov Websites

    Temperature and Precipitation Outlooks 3-7 Day Excessive Heat Outlooks (Weather Prediction Center) 6-10 Day Excessive Heat Outlook 8-14 Day Excessive Heat Outlook 6-10 Day Wind Chill Index Outlooks 8-14 Day Wind

  16. Climate Change Assessment of Precipitation in Tandula Reservoir System

    NASA Astrophysics Data System (ADS)

    Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.

    2018-02-01

    The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.

  17. [Relationship between perceptions of safety climate at workplace and depressive disorders in manufacturing workers].

    PubMed

    Liu, Xu-hua; Xiao, Ya-ni; Huang, Zhi-xiong; Huang, Shao-bin; Cao, Xiao-ou; Guan, Dong-bo; Chen, Wei-qing

    2013-04-01

    To investigate the risk factors for depressive disorders in manufacturing workers and to provide a basis for developing health promotion measures at workplace. A questionnaire survey was performed in 8085 front-line production workers from 33 manufacturing enterprises in Nanhai District of Foshan, Guangdong Province, China. The questionnaire contained a survey of demographic characteristics, the Safety Climate Scale, the Center for Epidemiological Studies Depression Scale, etc. The multilevel logistic regression analysis was applied to investigate the risk factors for depressive disorders in workers. A total of 6260 workers completed the survey; their mean age was 31.1 ± 8.6 years, and 53.2% of them were males. The multilevel logistic regression analysis showed that after adjustment for sociodemographic factors such as age, sex, and martial status, more depressive disorders were reported in the enterprises with higher score of "production safety training" than in those with lower score (OR = 1.46, 95%CI = 1.07 ∼ 1.97); fewer depressive disorders were reported in the enterprises with higher score of "colleagues concerned about production safety" than in those with lower score (OR = 0.08, 95%CI = 0.03 ∼ 0.26); the relationships of "safety warnings and precautions" and "managers concerned about production safety" with workers' depressive disorders were not statistically significant (OR = 0.78, 95%CI = 0.48 ∼ 1.28; OR = 1.08, 95%CI = 0.68 ∼ 1.72). Depressive disorders in manufacturing workers are related to the safety climate at workplace, which indicates that a good safety climate at workplace should be created to prevent and control depressive disorders in workers.

  18. Classification of Global Urban Centers Using ASTER Data: Preliminary Results From the Urban Environmental Monitoring Program

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.

    2001-05-01

    Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.

  19. Environmental Technology Verification Report: Climate Energy freewatt™ Micro-Combined Heat and Power System

    EPA Science Inventory

    The EPA GHG Center collaborated with the New York State Energy Research and Development Authority (NYSERDA) to evaluate the performance of the Climate Energy freewatt Micro-Combined Heat and Power System. The system is a reciprocating internal combustion (IC) engine distributed e...

  20. Proceedings of the Third Conference on the Climatic Impact Assessment Program : February 26-March 1, 1974

    DOT National Transportation Integrated Search

    1974-11-01

    This volume contains the proceedings of the Third Conference on the Climatic Impact Assessment Program (CIAP), held at the DOT Transportation Systems Center from February 26 to March 1, 1972. It includes 45 invited papers, 20 unscheduled presentation...

  1. 75 FR 4411 - Agency Information Collection Activities: Department of the Interior Regional Climate Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... capacity, and those of other science partners. Information from this collection will be used to evaluate... DEPARTMENT OF THE INTERIOR United States Geological Survey Agency Information Collection Activities: Department of the Interior Regional Climate Science Centers AGENCY: United States Geological...

  2. Confronting Climate Change

    ERIC Educational Resources Information Center

    Roach, Ronald

    2009-01-01

    The Joint Center for Political and Economic Studies, an African-American think tank based in Washington, D.C., convenes a commission to focus on the disparate impact of climate change on minority communities and help involve historically Black institutions in clean energy projects. Launched formally in July 2008, the Commission to Engage…

  3. Use of output from high-resolution atmospheric models in landscape-scale hydrologic models: An assessment

    USGS Publications Warehouse

    Hostetler, S.W.; Giorgi, F.

    1993-01-01

    In this paper we investigate the feasibility of coupling regional climate models (RCMs) with landscape-scale hydrologic models (LSHMs) for studies of the effects of climate on hydrologic systems. The RCM used is the National Center for Atmospheric Research/Pennsylvania State University mesoscale model (MM4). Output from two year-round simulations (1983 and 1988) over the western United States is used to drive a lake model for Pyramid Lake in Nevada and a streamfiow model for Steamboat Creek in Oregon. Comparisons with observed data indicate that MM4 is able to produce meteorologic data sets that can be used to drive hydrologic models. Results from the lake model simulations indicate that the use of MM4 output produces reasonably good predictions of surface temperature and evaporation. Results from the streamflow simulations indicate that the use of MM4 output results in good simulations of the seasonal cycle of streamflow, but deficiencies in simulated wintertime precipitation resulted in underestimates of streamflow and soil moisture. Further work with climate (multiyear) simulations is necessary to achieve a complete analysis, but the results from this study indicate that coupling of LSHMs and RCMs may be a useful approach for evaluating the effects of climate change on hydrologic systems.

  4. Spatiotemporal Co-variability of Surface Climate for Renewable Energy across the Contiguous United States: Role of the North Atlantic Subtropical High

    NASA Astrophysics Data System (ADS)

    Doering, K.; Steinschneider, S.

    2017-12-01

    The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.

  5. A consistent prescription of stratospheric aerosol for both radiation and chemistry in the Community Earth System Model (CESM1)

    DOE PAGES

    Neely, III, Ryan Reynolds; Conley, Andrew J.; Vitt, Francis; ...

    2016-07-25

    Here we describe an updated parameterization for prescribing stratospheric aerosol in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM1). The need for a new parameterization is motivated by the poor response of the CESM1 (formerly referred to as the Community Climate System Model, version 4, CCSM4) simulations contributed to the Coupled Model Intercomparison Project 5 (CMIP5) to colossal volcanic perturbations to the stratospheric aerosol layer (such as the 1991 Pinatubo eruption or the 1883 Krakatau eruption) in comparison to observations. In particular, the scheme used in the CMIP5 simulations by CESM1 simulated a global mean surface temperature decreasemore » that was inconsistent with the GISS Surface Temperature Analysis (GISTEMP), NOAA's National Climatic Data Center, and the Hadley Centre of the UK Met Office (HADCRUT4). The new parameterization takes advantage of recent improvements in historical stratospheric aerosol databases to allow for variations in both the mass loading and size of the prescribed aerosol. An ensemble of simulations utilizing the old and new schemes shows CESM1's improved response to the 1991 Pinatubo eruption. Most significantly, the new scheme more accurately simulates the temperature response of the stratosphere due to local aerosol heating. Here, results also indicate that the new scheme decreases the global mean temperature response to the 1991 Pinatubo eruption by half of the observed temperature change, and modelled climate variability precludes statements as to the significance of this change.« less

  6. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  7. Exploring emotional climate in preservice science teacher education

    NASA Astrophysics Data System (ADS)

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; Sandhu, Maryam; Sandhu, Satwant

    2013-09-01

    Classroom emotional climates (ECs) are interrelated with students' engagement with university courses. Despite growing interest in emotions and EC research, little is known about the ways in which social interactions and different subject matter mediate ECs in preservice science teacher education classes. In this study we investigated the EC and associated classroom interactions in a preservice science teacher education class. We were interested in the ways in which salient classroom interactions were related to the EC during lessons centered on debates about science-based issues (e.g., nuclear energy alternatives). Participants used audience response technology to indicate their perceptions of the EC. Analysis of conversation for salient video clips and analysis of non-verbal conduct (acoustic parameters, body movements, and facial expressions) supplemented EC data. One key contribution that this study makes to preservice science teacher education is to identify the micro-processes of successful and unsuccessful class interactions that were associated with positive and neutral EC. The structure of these interactions can inform the practice of other science educators who wish to produce positive ECs in their classes. The study also extends and explicates the construct of intensity of EC.

  8. Vulnerability Assessments in Support of the Climate Ready ...

    EPA Pesticide Factsheets

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology for climate change vulnerability assessments using Massachusetts Bays’ salt marsh ecosystem as a demonstration. The aim is to synthesize place-based information on the potential implications of climate change for key ecosystem processes in each estuary, in a form that will enable managers to undertake management adaptation planning.

  9. Climate Web sites

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    With the growing interest in extreme climate and weather events, the National Oceanic and Atmospheric Administration (NOAA) has set up a one-stop Web site. It includes data on tornadoes, hurricanes, and heavy rainfall, temperature extremes, global climate change, satellite images, and El Niño and La Niña. The Web address is http://www.ncdc.noaa.gov.Another good climate Web site is the La Niña Home Page. Set up by the Environmental and Societal Impacts Group of the National Center for Atmospheric Research, the site includes forecasts, data sources, impacts, and Internet links.

  10. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    USGS Publications Warehouse

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. The NCCWSC is establishing a network of eight DOI CSCs (Alaska, Southeast, Northwest, North Central, Pacific Islands, Southwest, Northeast, and South Central) that will work with a variety of partners and stakeholders to provide resource managers the tools and information they need to help them anticipate and adapt conservation planning and design for projected climate change. The Southeast CSC, a federally led research collaboration hosted by North Carolina State University, was established in 2010. The Southeast CSC brings together the expertise of federal and university scientists to address climate-change priority needs of federal, state, non-governmental, and tribal resource managers. This document is the first draft of a science and operational plan for the Southeast CSC. The document describes operational considerations, provides the context for climate-change impacts in the Southeastern United States, and establishes six major science themes the Southeast CSC will address in collaboration with partners. This document is intended to be reevaluated and modified as partner needs change.

  11. Comparison of Symptom Severity between Clients at a University Counseling Center and a Community Mental Health Agency

    ERIC Educational Resources Information Center

    Gunn, Joshua E.; Grieve, Frederick G.; Greer, Richard M.; Thomas, Adrian

    2005-01-01

    University counseling centers have been in a constant state of transition since their inception. Many variables, including economics, the social and political climate on and off campus, staff interests, and changing consumer needs have driven the direction of the modern counseling center. Throughout the more than 70 years that university…

  12. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makesmore » an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected.« less

  13. A Science-Faith Partnership to Provide Education and Facilitate Action on Climate Change and Energy Use

    NASA Astrophysics Data System (ADS)

    Cervenec, J. M.; Hitzhusen, G.; Ward, S.; Foster, C.

    2014-12-01

    In 2009, the Byrd Polar Research Center (BPRC) and Ohio Interfaith Power and Light (OhIPL) collaborated on a climate change education summit for scientists and clergy. Since that first program, a robust partnership has been nurtured where researchers at the center regularly contribute to events within the faith community. In 2014 alone, BPRC supported OhIPL in hosting a Teach-In event on climate change before a live audience that was simultaneously broadcast to three remote sites across Ohio; a State of the Climate event at the Ohio Statehouse that featured presentations by a scientist, a policymaker, and a member of the faith community; and an Earthkeeping Summit to bring together members of the faith community from across Ohio. OhIPL has helped BPRC fulfill one of our mission objectives of communicating science to a broad community. OhIPL engages houses of worship of all denominations through faith and education with a goal of moving them towards actions that reduce energy consumption. Houses of worship take actions for various reasons - including creation care, concerns of social justice related to climate change, or a desire to save money through building efficiency.

  14. Evolutionary response of landraces to climate change in centers of crop diversity

    PubMed Central

    Mercer, Kristin L; Perales, Hugo R

    2010-01-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941

  15. Evolutionary response of landraces to climate change in centers of crop diversity.

    PubMed

    Mercer, Kristin L; Perales, Hugo R

    2010-09-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.

  16. Regional climate change-Science in the Southeast

    USGS Publications Warehouse

    Jones, Sonya A.

    2010-01-01

    Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation's resources and proactively develop strategies for dealing with those impacts on plants, animals, and ecosystems. This requires rigorous, scientific understanding of environmental change. The role of the U.S. Geological Survey (USGS) in this effort is to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. This information will assist Federal, State, local, and tribal partners manage resources strategically. The 2008 Omnibus Budget Act and Secretarial Order 3289 established a new network of eight Department of Interior Regional Climate Science Centers to provide technical support for resource managers. The Southeast Regional Assessment Project (SERAP) is the first regional assessment to be funded by the USGS National Climate Change and Wildlife Science Center (http://nccw.usgs.gov/). The USGS is working closely with the developing Department of Interior Landscape Conservation Cooperatives to ensure that the project will meet the needs of resource managers in the Southeast. In addition, the U.S. Fish and Wildlife Service is providing resources to the SERAP to expand the scope of the project.

  17. Winds: intensity and power density simulated by RegCM4 over South America in present and future climate

    NASA Astrophysics Data System (ADS)

    Reboita, Michelle Simões; Amaro, Tatiana Rocha; de Souza, Marcelo Rodrigues

    2017-09-01

    Since wind is an important source of renewable energy, it has attracted attention worldwide. Several studies have been developed in order to know favorable areas where wind farms can be implemented. Therefore, the purpose of this study is to project changes in wind intensity and in wind power density (PD), at 100 m high, over South America and adjacent oceans, by downscaling and ensemble techniques. Regional climate model version 4 (RegCM4) was nested in the output of three global climate models, considering the RCP8.5 scenario. RegCM4 ensemble in the present climate (1979-2005) was validated through comparisons with ERA-Interim reanalysis. The ensemble represents well the spatial pattern of the winds, but there are some differences in relation to the wind intensity registered by ERA-Interim, mainly in center-east Brazil and Patagonia. The comparison between the future climate (2020-2050 and 2070-2098) and the present one shows that there is an increase in wind intensity and PD on the north of SA, center-east Brazil (except in summer) and latitudes higher than 50°S. Such increase is more intense in the period 2070-2098.

  18. The Virtual Climate Data Server (vCDS): An iRODS-Based Data Management Software Appliance Supporting Climate Data Services and Virtualization-as-a-Service in the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Schnase, John L.; Tamkin, Glenn S.; Ripley, W. David III; Stong, Savannah; Gill, Roger; Duffy, Daniel Q.

    2012-01-01

    Scientific data services are becoming an important part of the NASA Center for Climate Simulation's mission. Our technological response to this expanding role is built around the concept of a Virtual Climate Data Server (vCDS), repetitive provisioning, image-based deployment and distribution, and virtualization-as-a-service. The vCDS is an iRODS-based data server specialized to the needs of a particular data-centric application. We use RPM scripts to build vCDS images in our local computing environment, our local Virtual Machine Environment, NASA s Nebula Cloud Services, and Amazon's Elastic Compute Cloud. Once provisioned into one or more of these virtualized resource classes, vCDSs can use iRODS s federation capabilities to create an integrated ecosystem of managed collections that is scalable and adaptable to changing resource requirements. This approach enables platform- or software-asa- service deployment of vCDS and allows the NCCS to offer virtualization-as-a-service: a capacity to respond in an agile way to new customer requests for data services.

  19. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis over a long time period while past studies, to our knowledge, have used less than 10 year time period. References: Vautard, R., Thais, F., Tobin, I., Bréon, F.-M., de Lavergne, J.-G.D., Colette, A., Yiou, P., and Ruti, P.M. (2014). Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms. Nat. Commun. 5, 3196. Haylock, M.R., Hofstra, N., Tank, A.M.G.K., Klok, E.J., Jones, P.D., New, M., 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res.-Atmos. 113. doi:10.1029/2008JD010201 GRDC (Global Runoff Data Center), 1999. Long-term mean monthly discharges of selected GRDC stations, Global Runoff Data Centre, Koblenz, Germany.

  20. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data

    NASA Astrophysics Data System (ADS)

    Stockhause, M.; Höck, H.; Toussaint, F.; Lautenschlager, M.

    2012-08-01

    The preservation of data in a high state of quality which is suitable for interdisciplinary use is one of the most pressing and challenging current issues in long-term archiving. For high volume data such as climate model data, the data and data replica are no longer stored centrally but distributed over several local data repositories, e.g. the data of the Climate Model Intercomparison Project Phase 5 (CMIP5). The most important part of the data is to be archived, assigned a DOI, and published according to the World Data Center for Climate's (WDCC) application of the DataCite regulations. The integrated part of WDCC's data publication process, the data quality assessment, was adapted to the requirements of a federated data infrastructure. A concept of a distributed and federated quality assessment procedure was developed, in which the workload and responsibility for quality control is shared between the three primary CMIP5 data centers: Program for Climate Model Diagnosis and Intercomparison (PCMDI), British Atmospheric Data Centre (BADC), and WDCC. This distributed quality control concept, its pilot implementation for CMIP5, and first experiences are presented. The distributed quality control approach is capable of identifying data inconsistencies and to make quality results immediately available for data creators, data users and data infrastructure managers. Continuous publication of new data versions and slow data replication prevents the quality control from check completion. This together with ongoing developments of the data and metadata infrastructure requires adaptations in code and concept of the distributed quality control approach.

Top